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Abstract X

An efficient numerical technique Jor modeling biological {\ é

fissues using the radiative transfer equation is, presented. z

Time dependence of the transient radiative transfer equa-

tion is approximated using Laguerre-expansion. Azimuthal y

angle is discretized using the discrete ordinates method and. /\

the resulting set of ordinary differential equations is solved

using the Runge-Kutta-Felhberg method. Incident puise

1 Introduction z=0
Modeling of light propagation through biological tissues ‘ Figure 1. Short light puise incident on the bi-

is important for many medical applications such as optical ological tissue

tomography. for cancer detection [ 1] and non-invasive

detection of diabetes mellitus [2]. Researchers have been

working on modeling biological tissues over the last two

decades [3],[4]. ‘

Light. propagation through biological tissues can be 2 Formulation
modeled: using the Radiative Transfer Equation (RTE) . . L
(3, 6]. Several numerical models have been developed to Light propagation through biological ussues can be.mod-
solve the RTE over the recent years [7, 8, 9, 10]. These eled vsing the transient RTE [8, 10, 11], which is given by,

models include techniques for solving the steady state RTE 19 5
[7], as well as the transient RTE for short pulse propagation ;&I (9, 2,u,6,t) + € 6701 (Z,9,2,u,6,t)
[§, 9, 101. 3 )
’ +715“[(5L', Y,%,u, ¢v t) +U5;I(il:, Y, 2, u, ¢7 t)
This paper presents an efficient and faster approach 23 1 -
for modeling the light propagation through scattering and _gs / P, ¢'su, §) [(z,y, 2,4, ¢, tydu'dg’
absorbing media, such as biological tissue, by solving the dnlo J
transient RTE numerically. +ol(z,y, 2,u,0,t) = F(z,y, 2, u, o), ()
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where I{z,u,¢,t) is the light ntensity, (x,y, 2,8, ¢) are
the standard: coordinates, u,§ and 7 are direction cosines
such that u = cos @, £ = sin f cos ¢, 7 = sin@sin ¢ and ¢ is
the time variable; o; and o, are attenuation and scattering
coefficients, respectively. The speed of Light in the medium
is v, P(u/, ¢';u,$) is the phase function and F(z,u,¢,t)
is the source term.

For. the. problem considered in this paper there are no
sources inside the medium, and a short pulse is incident on
the boundary of the tissue at x = Oy=02=00=09,
and ¢ = ¢ attime ¢ = 0. Therefore, the RTE in (1) reduces
to,
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+O'tI(iL‘, Y, 2, u, ¢7 t) = 0) (2)

whete = i+ nj + uk, V = (Zi+ 2j+ 2k) andi,
J, k are the unit vectors along z, Y, % axes, respectively,

In this paper it is assumed that there is no initial intensity
on the right boundary (atz = 0,y = 0,2 = 0) other than the
incident. i.e.,

1(0,0,0, w0, ¢, £) = Toe™ T 8(u — uo)6(é — do). (3)

The proposed method involves solving the RTE given by
(2) numerically. It reduces the original RTE given by (2) to
a set of simple uncoupled differential equations which can
then be solved using the Runge-Kutta—Felhberg method.
In order to do this, the original equation which contains

- functions of six independent variables should be reduced

to a set of equations which carries functions of only spatial
variables, z, y and 2.

Without loss. of generality, from this point onwards we
consider the one dimensional case in order to improve
the clarity of the algorithmic formulation by reducing the
mathematical complexity of the presentation. However, the
same technique can be applied to two and three dimensional
cases.

First, the followingv substitution is used on the RTE and
the boundary. condition in order to obtain a better approxi-
mation. with Laguerre polynomials:

z

t—— @

T = )
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With this substitution the RTE becomes

uﬁl(z, Uy &, 7) + oI (2, u, @, T)
8z
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s P, ¢5u, ) (2,0, 0, 7)de/dgf = 0. (5)
4r Jo S

First, the azimuthal angle is discretized using the discrete
ordinates method [7] which results in a set of uncoupled
equations of only three independent variables, u, t and z.
The next step is to remove the time dependence by expand-
ing the intensity using Laguerre polynomials. . This opera-
tion will result in the following set of equations;

a8
ué;Bn<Z7 U, (]57-) + JtBn(za U, ¢T‘)
L 1
2wt P gs5,0,)Bale i g1 =0, (@
j=1 J-1
wheren. = 0,..., N. n(6) By (2, u, ¢,) represents the r 1

Laguerre coefficient and w? is the gaussian weight for o.

Then the azimuthal angle, 6, is discretized using the
Gaussian quadrature and the following  set of uncoupled
equations is obtained,;

uan (Z, Uy, ¢T) + atBn (Z, Ui, ¢'I‘)

8z
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i=1 k=1

where wy are the Gaussian weights for u. Now there are
K x L number of uncoupled equations corresponding to
each quadrature point, (u;,@,). This set of equations can
be represented in matrix format as follows:

0 o,
M =B, = <EPmW - o) B, ®)
where By, = [Bp(z,us, ¢r )] xxr. If the boundary condi-
tion is simplified using the same operations (3) reduces to

Cr su=up, =gy (9a)
0 susug, ¢#¢o (9b)
where Cy =~ Zj\;l w;f (t; ~ 2/(vu)) Li(r) and w; are

the Laguerre weights. Thus, (8) can be solved using the
Runge-Kutta-Fehlberg (RKF) method.

Bu(:=0)~{

3 Results and Discussion

The figures below were obtained from the above algo-
rithm. Without loss of generality we have obtained these
results for the one dimensional 'problem. The Henyey-
Greenstein phase function [12] was used for the simulation
where g is the asymmetry factor.
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Figure 2. Intensity at z = 1 for different asym-
metry factor (g) values

Figure 2 shows the variation of intensity with time at

z = 1 with varying g. The graphs corresponds to ¢ = 0.8,
g = 0.7, g = 0.6 and g = 0. Other parameters such as the
scattering coefficient and- the absorption coefficient. were
kept constant for all the three graphs. The condition g = 0
corresponds to.the isotropic scattering case while g = 0.8
represents strong forward scattering. This is illustrated: by
the above four graphs.

Figure 3.shows the variation of the forward intensity at
different locations, that i is, corresponding to different z val-
ues, with a constant asymmetry factor, ¢ = 0. It can be
cleatly seen from this figure that the intensity reduces with
mcreasmg distance due to scattering and absorption. Also,
the pulse is shifted in time as shown.

4 = Conclusion

This paper introduces a novel numerical model to solve
the transient radiative transfer equation for modeling bio-
logical tissues. It has several advantages over the existing
methods. Laguerre polynomials, which are causal, are used
to represent the time dependence. Therefore, it is not nec-
essary to impose causality. explicitly. Since it is possible
to approximate a short pulse using a few number of La-
guerre polynomials, this model is capable of producing ac-
curate results with relatively low computational power and
in less time when compared with most of the existing meth-
ods which uses time marching techniques such as Cranck-
Nicholson to propagate the pulse. Also, it is anticipated that
the extension to layered media will not increase the compu-
tational requirements considerably, as is the case with many
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Figure 3. Forward intensity at different loca-
tions for isotropic (g = 0) scattering

of the other models.
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