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A new design for hybrid axial-torsional transducers using pretwisted beams requires the
resonance frequencies of the torsional and axial vibration modes to be matched. To aid
in designing such transducers, the effects of increasing pretwist and changing the cross-
section geometry on the resonance frequencies are investigated analytically. The governing
equations and boundary conditions for extension, torsion, and cross-sectional warping are
derived using the semi-inverse method and Hamilton’s principle. A general set of differ-

- ential equations for the cross-sectional warping of pretwisted beams is derived. Through s
scaling, the warping function is shown to be locally similar to the Saint-Venant warping
function when the beam is slender, low in pretwist, and torsional deformation is dominant.
Using this approach, geometric and material limitations in the use of the Saint-Venant’s
warping function are illustrated, beyond which the simpler form may no longer be used.

The simplified equations of motion are solved under the free-free boundary condition for
resonance frequencies and mode shapes, and a comparison with finite element analysis
illustrates the limitations.

I. Introduction

A key element in the development of various ultrasonic devices is a hybrid axial-torsional piezoelectric
transducer, which converts electrical excitations to and from combined axial-torsional vibrations. Appli-
cations for these transducers can be found in micro-actuation,! ultrasonic welding,? and rotary ultrasonic
motors.”

Conventional hybrid axial-torsional transducers are composed of both axially-poled and circumferentially-
poled piezoelectric-ceramic disks. While the design theory is well developed,? such transducers are difficult
to manufacture due to the need for circumferentially-poled piezoelectric elements.* The construction in-
volves cutting a piezoelectric-ceramic ring into small sectors, which are then individually polarized along the
circumferential direction, and finally glued back together. A different design by Tsujino® > eliminates this
problem by using only axially-poled piezoceramic disks, converting the axial vibration iuto coupled axial-
torsional vibration via helically slotted cylinders. The vibration converter approach has been successfully
implemented in welding applications, but the helical slots requires CNC machining and presents a major
challenge to its miniaturization for wire-bonding and micro-actuation applications.

Friend and his colleagues® investigated the use of pretwisted beams as simple vibration converters. Using
simple beam theory, the finite-element method, and experiments, they demonstrated the possibility of making
practical vibration converters using pretwisted beamms. The investigation on the use of pretwisted beams as
vibration converters is extended in this paper; the effect of pretwist and cross-sectional geometry on the
resonance frequencies and the vibration mode shapes are examined. This is done by deriving the equations
of motion and boundary conditions using Hamilton’s principle, which is then solved using free-free boundary
conditions.

The structural and dynamic behaviour of pretwisted beams has been the subject of extensive research
due to its importance as a model for rotor blades.” Because of its complex geometry, a number of approxi-
mate beam theories have been developed. The static axial-torsional coupling was investigated by Rosen,™?°
Hodges,'° Krenk,'! while the dynamic response was studied by Rosen,” Tsuiji,’? and Curti and Risitano.'?

*Graduate student, Desk 63 Rm 134 Bldg 37, AIAA Student member. daniel.Jiu@eng.monash.edu.au
t Associate Professor, Rm 133 Bldg 31.
*Senior Lecturer, Rm 132 Bldg 31.
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In the above works on beam theories (except
ef.13), semi-inverse and variational methods were |
sed to derive the equations of motion. The cor-

tness and complexity of the resulting equations /“ \ .
epend crucially on the initial choice of the com- + Y Jarlm) .
patible displacement field. Two major assumptions O\ Distribuied
were made by the previous authors: first, that de- Dy eouple

formation parallel to the cross-sections is negligible,
nd second, that axial deformation consists of a bulk
displacement u; and a cross-sectional warpage given
by the Saint-Venant warping function v of the same
beamm with zero pretwist. For example, the displace- X
ment field used by Rosen® (and Tsuiji'? if bending 2
s neglected) is k

u(:l'.vyazvt) = ul(mat) + C‘é’(‘va)T/)(*Tryvz)a (13) Iz Poi .
Ve - Point counle %

v(z,y, 2, t) = yleos @z, t) — 1] — zsind(x,1), (1b) A4 T TONE £oup el

w(z, y:z,t) = ysin gz, t) + z[cos ¢(x, ) — 1}, (1lc) '

-

where u,v,w are, respectively, the displacement
components in the x, y, 2 directions, ¢ represents the
P Y- > @ 1ep Figure 1. The coordinate systems used to describe the

angle of elastic rotation (in addition to the pretwist pretwisted beam, and the external forces and moments
ngle J) and the prime denotes differentiation with acting on the beam.

respect to x (see figure 1).

- There are two shortcomings in the exisitng work on the vibration of pretwisted beams. The first problem
concerns the correct form of the warping function used in Eq.(1). Through an asymptotic solution to the
- three-dimensional equations of elasticity, Krenk!? showed that the Saint-Venant warping function was the
‘leading term in the axial-torsional coupling. This provided a justification for the assuned form of Eq.(1)
when the pretwist is small, however, it is unclear at what limit the approximation fails.

The second problem concerns the correct form of the strain-displacement relation and the potential energy
used to derive the equations of motion. Rosen® derived a set of nonlinear static load—deformhation relations
for the torsion and extension of twisted bars. He assumed that torsion was uniform (i.e. —g;“_é = 0), which
simplifies the potential energy function considerably. Later, in a review of twisted structures,’ Rosen derived
the equations of motion for the dynamic case by adding inertia terms to the linearized version of the static
load-deformation relations. This is equivalent to adding kinetic energy to the potential energy in Ref.9 and
- applying Hamilton’s principle. The equations he obtain has the following form,

ayuf + azd” =4

byt 4 bad = @, (2)

which is the same as those derived by Tsuiji,!? and Curti and Risitano® except. for slight differences in
coeflicients. The problem with Rosen’s approach is that while the assumption of uniform torsion may be
valid in the static case, it is not true in the dynamic case.” As can be seen in Eq.(2) the ¢” terms are clearly
not taken to be zero.

In this work, the semi-inverse method and Eq.(1) remain the starting point, however, torsion is not
assumed to be uniform, furthermore the complete governing equations for the warping function and equations
of motion of a pretwisted beam are sought. The warping function is treated as an unknown, dependent
variable in applying Hamilton’s principle. Inclusion of the warping function in the variational process results
in a new set of governing equations for the warping function. Scaling analysis is then used to quantify the
limits under which the Saint-Venant warping function and other simplifying assumptions may be applied.
The new equations of motion are then solved to determine how the resonauce frequencies are affected by
pretwist and the cross-sectional geometry. Note that the present derivation will be limited to linearly elastic
and istropic materials and cross-sections with at least two-fold symmetry. This is done so that bending does
not appear as a consequence of coupling with torsion and extension.?
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II. Equations of motion

The equations of motion are derived using Hamilton’s principle:

t2
5| (T+Wey—Udt =0, (3)

Jty

where T is the kinetic energy, W, is the virtual work applied by external forces, and U is the strain energy.
Note that the deformed state of the pretwisted beam can be described using two coordinate systems (CS):
an orthogonal CS (x,v, z), and a rotating CS (z,7,() where 1 and ( rotate with the pretwist angle 3(x)
(see figure 1). In this section the orthogonal CS is used since it allows simpler derivation of the equation of
motion. Later a switch is made to the rotating CS where simpler boundary conditions can be used when
various sectional integrals involving the warping function need to be evaluated.

A. Describing the motion and the deformation

In order to express the strain energy in terms of the displacement field, Green’s strain-displacement relation
is used,

e 1 Ou; | Oui | Oug ug (4)
) 979\ ow  Or; Oy Oz
The resulting strain components are
du 86, 1[0\
= —f = = + 7 2g2 &
€ra = 7 + 3! + 3 (07) reg } . (5a)
1 oy ou
oy =20 | 5= |14 -] -2 !
]2
1 [ov . Ou .
€ry — 56 i:g [1 T—@} + ?j} (O(,)
1, [0 1, [8v 8y 1, [ow]?
9 = S izw'—eu A zz*_e a7 5d
= 5 {By} v: = g [ay 8z 2 =57 | 2 (5d)
where
ou gy 09 duy O " 5 5
bl oy =— e : S=2" 4yt 6
5o =€ + 08;7; + s €= 2 0 e and T +y (6)

To express the kinetic energy in terms of the displacement field, the velocity vector R of each point in the
beam is given by

R

= (1)é; + (0)€y + (W)é.
=(itq + 04p)e, + G(—ysind — zcos @)é, + By cos ¢ — zsin d)é,
=(its + 09)é, +ré|—(sin 9)é, + (cos 9)8) . (7)

where the cartesian unit vectors (é,, é,.€,) are transformed to cylindrical unit vectors (€, é,.és) for com-
pactness. The relationship between cartesian and cylindrical unit vectors are

1 1
ép = j;(yéy + zé.), and €p = ;(—zéy +yé,). (8)

B. Scaling and nondimeunsionalization

There is a need to simplify Eq.(5); when fully expanded, Eq.(5a) has 11 terms, which in turn contributes 66
terms to the strain energy. Hence, scaling is used to determine the terms and the conditions under which
some of the terms may be neglected. By dividing each of the three dependent variables (u,®,%) and the
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four independent variables (x,y,2,t) by an appropriate characteristic length scale (denoted with subscript
¢), the following nondimensionalized variables (denoted with a subscript s) are obtained:

Uy ) , (/]

Urs = 'Uzl(;, (/55 - (b(;’ Vs = 'Zj)c - 7"—(‘2'-; (9&)
T T Y z t t |E

Ty = — = =, = oz = to=— = 2 |2

T ZTe L Ys Te Te * te L P (gb)

where z. = L is the beam length and y. = 2. = 7. is the radius of the circle inscribing the beam cross-section
(chosen to reflect the geometry to the beam); t. = L/p/E is the time scale of the axial resonance frequency
. of the prismatic beam (chosen as a reference) and ¥, = 7"2 is estimated from the Saint-Venant warping

function of a prismatic elliptical beam!® (similar estimates are obtained from other cross-sections),
- b2 1 —(b/a)?
ionh B = ——— 1 = —Byz.
WEllipse (Z + br)y 1+ (b/a)gy Yz, (10)

where a and b are the semi-major and semi-minor axes, and B € (—1,1) is a dimensionless coefficient.
Substituting Eq.(9) into ¢, = ¢/, provides the following estimate for the scale of v

P —B(r.ys)(rezs) .2
Yo, = = = s = (11)
Ws —Byszs 5
The definitions for the characteristic deformations (uy.,¢.) are chosen at a later stage of the derivation to

. simplify the equations of motion. They are shown here for completeness;

%  frol?
Ute = s and ¢ == £S5

where ( fro, faro) are the characteristic amplitudes of the distributed axial and torsional loads ( fr, far). Note
the use of fq for o, is intentional.

Applying the change of variables in Eq.(9) to Eq.(5), the terms contributing to strain may be separated
into four classes by their nondimensional coefficients (NDCs) as shown in Table 1. Note that the NDCs are
obtained by dividing the dimensional coeflicient by ¢.r./L.

=
o

(12)

Class Terms Coeflicients NDC
I E?_u,l. Ulc U1e
dx L OeTe
I 9(‘97/’) ()9 Oet2 re
br Bz " L2 L
I 1 1 1 1 @ere 1
I 201,/),, =8¢ 29 -2—011 A 5
1 o 2.2 1¢2rs 1 gere.
v 5" r29°%, 9 Hz/yu‘ —9 WL, CE S

Table 1. Classification of strain components by their Nondimensional Coefficients (INDCs)

A comparison of the relative magnitude of the NDCs show that if the characteristic axial strain e, = u,/L
and the characteristic shear strain v, = @.r./L are small then the underlined terms in Eq.(5) and the Class
IV terms can be ignored, thus simplifying the strain components to

Cxz = €1 05‘_‘[ + .d—i—l‘- "/“7 (14(’1)
1, |ov

€xy = 59 [()_’lj - Zj] y (14[))
1 |o¢

€xz = 50 oo + Yyl (14C)

€yy = €yz = €52 = 0, (14d)




For example, an aluminium beam (E = 71 MPa, G =~ 27 GPa, Tyeqd =~ 250 MPa) with an elliptical cross.
section satisfies the first condition in the elastic region (€05 = 9.3 x 107%). Using Saint-Venant's theory of

torsion for prismatic beams,®
2
a‘b o,
Tmar =26
tere Tmax 1 !
~° = — 4+ b , 5
L~ 2¢ \ija T (15)

where it is noted that r. = a (the radius of the inscribing circle), it can be estimated that ¢.r./L < 0.05
when the ellipse aspect ratio b/a > 0.1. This implies that Eq.(14) may not be valid for extremely thin cross-
sections. Note that the same strain components are obtained if an infinitesimal strain-displacement relation
is used and the elastic rotation ¢ is limited to small angles (eg. ¢ < 8° for 1% error from the trigonometric
functions in Eq.(1)).

C. Strain energy, kinetic energy and virtual work

The strain energy function is determined from the simplified strain components in Eq.(14) and the con-
stitutive law for elastic isotropic materials. Since €,, = €., = €,. = 0, the contitutive law is given by:

3
Tar = Fegz, (16‘1)
Tey = 2Gesy = Gay, (16b)
Tez = QGEJ:Z = G’)’Iz- . (16C)
The strain energy is thus
1 1 1
U= [If _2‘7—1:1:6:17.1: + 6‘7—:::yﬁl':z:y + 37-3_:71‘2({‘/’

7. 2 1
1 5 ; -
- ﬂ j S L€, +20(&, + €)aV, (17)

v

Substituting Eq.(5) into Eq.(17), the strain energy (in terms of the displacement field) is found to be
S 1 2 a2 N2
U= JJ] e 0+ 00
+ 2610"0 + 26169 + 266" y)

S T 2w\

The kinetic energy is given by the following integral
T2 )
. = 7 s
T—fvfj 2p‘R| dv, (19)

which, upon the substitution of R from Eq.(7) results in

dv (18)

I‘::J}]~ép[(ﬂl4—é¢)2%7r2$2(ﬁn2@_+coszé)}dv
0

1 . s ™ :
= {[[ 50 [uf + 2016+ 6292 + -7‘2(_/)“} av. (20)
v
The virtual work done by external forces is
L
Wepr = / Frei + Fa0 + frus + fu¢  dx
Zz

220

([ ¢Fr dFy ,  dfr  dfy
_w et 0w + eV, (21)
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where force Fr(t) and moment Fy;(t) are applied at the ends of the beam, and tensile force fr(z,t) and
moment fas(z,t) are distributed along the axis of the beam.

With the virtual work, kinetic and elastic energies now expressed in terms of three unknown functions
w1, ¢, and 1, Hamilton’s principle may be applied to derive the equations of motion (for details of the
variational calculus see Appendix A). Since there are three dependent variables, there are three governing
equations:

dfr

8 6 A
- Y ] i — p— {2 )
Ea (q+01p+9w)+d4(rt) P t(m—{—&d), (22a)

o
B (9'¢"2+61¢'+0"¢)¢)+C‘-[ ((hy — 2)* + (¥ +1)%)]

8 9 /- 82 ..
— B (007 + et + 0 + sy 4y = p 2 (-r2¢)) —p5 (ulw + 01;/.,2) , (22b)

dr dA It
0 (9'&1 + 9.21/.’> ~ E (679 + 160" +00'y")
a 2. / 2 d ' a :
+ E— (6% + €10 + 08'y) + GO° | = (vy — 2) + = (¥ +y)| =0, (22¢)
dx Oy Dz
where the natural boundary conditions over the entire surface of the beam are
e F
@ ( E(eq + 60 +69") + (fi—AT> QpndA = 0, (23a)
4 (B (000 + 2000 + 020" + ) = G [y — 2> + (0 +9)*)] 6
- 1F
— p (Wi + w2) + S ) apdA = (23b)
dA
§§ —E (020 + i + v6) anedAd = 0, (23¢)
gfjf E (6°¢ + €16 + 00'0) ang + GO?|(¥y — 2) any + (¥ +y) an:]dA =0, (23d)

and @png, Gny, tnz are components of the normal vectors on the surface of the beam.

D. Simplification of the warpi';lg function

The underlined terms in Eq.(22¢) and Eq.(23d) are the governing equations for the Saint-Venant warping
function of a prismatic bar. To determine the conditions under which the extra terms can he neglected for
pretwisted beams, Eq.(22c) and Eq.(23d) are scaled by substituting the change of variables defined in Eq.(9).
The terms in the resulting equations can be separated into six classes by their NDCs (see Table 2): Class
V to VII are terms from Eq.(22¢) (nondimensionalized with respect to Coef VII) and Class VIII to X are
terms from Eq.(23d) (nondimensionalized with respect to [Coef X|) where

2
@ T
|Coef X| = szam and  anr = /a2, +ai,. (24)

IfNDC V, VI, VIIT and IX are small relative to unity (in other words, small relaive to NDC VII and X)),
then Eq.(22¢) and Eq.(23d) are simplified to the governing equations of the Saint-Venant warping function

V¥ =0,
N oy
<"53—/‘ — Z) Qny -+ (5; + y) Ap, = 0
on the cross-section boundary. (26)

NDC V, VI, VIII and IX can be expressed in terms of four nondimensional parameters: the slenderness ratio
SL, the amplitude ratio R, the tilt ratio of surface normal vectors TR, and Poisson’s ratio v

e po®le gl G 1 (27)

SL = =5, ) .
L Uie anr B 2(1 +v)
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Class Terms Coeflicients NDC
A T
\% PO, P Iz
d Pell1e E uye 7. E SL
Ee 8. E— (0 E— — = s —
o, Bgr (610) L G e L GR
, ; oir
VI P, PiEs
c
Ef™y, BOG'y,
o o, a . ., 22 Er? E._ ,
— (6°") , E— (68 Jopaats — L —
E(")Lagg/ L4 ) ’ )}87[ ( 1[))’ l_;fl G L2 GbL
207V 207 @
VII GQayg,Gﬁaz.2 GE% 1 1
T E uie 050 ETR
VIII Eeiba,,, EZ5 %, = -
1 ZL‘; o gd’c"'c Oy g R
. r e Gy '
IX E0%) apy, EOO' EIee — L — xSLx TR
Wany Plng I Gnz T an G X Skx
2/ . DeTe Qny
X Go (wy - 4)(171;1/, ~ G—I2—any, ;lw— \
nr 5
20 Pore Onz
Go (U'z + y)a"n,za G'fz_'anzv .

Table 2. Classification of the components of Eq.(22¢c) and Eq.(23d) by their NDC

0 < 0.1
R § < 0.05 R 4§ << 0.05
101
8 -
6 4
4 4
2
' : TR
0.1 0.2 0.3
TR
0.3 1
0.1

Figure 2. The region in the parameter space (SL,TR.R) where NDC V, VI, VIII and IX are less than §,
representing the criteria under which the simplified warping function Eq.(26) is valid. The region where
J = 0.1 is shaded in gray, and the region where § = 0.05 is shaded in green.
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Choosing NDC < § as the criteria under which the simplified warping function is valid, the region in the
parameters space (SL, TR, R) where NDC < § is true can be plotted for visualization. Note that a Poisson’s
ratio of 0.3 is chosen since it approximates the behaviour of a wide range of metals. In figure 2 the regions
where NDC < 4 for NCD V,VLVIILIX are shown by a bounding curve and an arrow, the region where
§ = 0.1 is shaded in gray and where § = 0.05 is shaded in green. The figure shows that there is a flat cap
ou the slenderness ratio, which means that the approximation is invalid for thick beams. For a beam with
rectangular cross-section of width a and height b, the maximum tilt ratio TR is related to slenderness ratio
SL = 7./L, aspect ratio AR = b/a and pretwist angle kL = 3 by following equation,

" . kot L .SL
TRmax - koo = L = = kL.S s (28)
2 V1+AR? V1+AR?

where k.7, = r.3/L can be interpreted as a nondimensional rate of pretwist. Note that TRmax is directly
proportional to k.7, which means that the cap on the allowable tilt ratio sets a maximum pretwist under
which the simplified warping function is applicable. The analysis in Appendix B shows the general procedure
for determining the tilt ratio of a uniformly twisted beam.

While Eq.(26) appears identical to the governing equations for Saint-Venant’s warping function of pris-
matic bars, there is a subtle difference in the solution. In the present problem, the bar is pretwisted and
hence the components of the surface normal vectors (., an.) are not constant along the beam. By applying
a coordinate transformation from the orthorgonal CS (z,y, z) to the rotating CS (z,7,¢) Eq.(26) is shown
to be

Vi =0,
o 51#}
on the cross-section boundary, {29)

where (@py. an¢) are now constant. Hence the warping functions from prismatic bars can be applied to
pretwisted beams through a simple modification: replacing (y, z) by (n,¢).

Integrating Eq.(22) and Eq.(23) with respect to the cross-sectional area and applying the change of
variables Eq.(12), the equation of motion can be nondimensionalized to the simple form

P, %, O%u
frs + s + go ot (30a)

M G oz’
& 3o 0o, o, Do, &%u .
by fars +bo—m L bg—on + b S Py — s Dy 30b
thats Thegg F e F i = b~ gy T (300)
and the natural boundary conditions at @ = 0 and x = L are
D6,
2 (31a)
u ¢, Fp
— 4 = ——, 31b
Ox s " Oz, FroLl (31b)
I? G o, 93¢ 36 L5 F

f(gt]s— 02)(.—); 2% .ar,%s = ,1 M, (31¢)

Ko E vy,  Oxd  Ot2ox, Kofro

where the coefficients are
L? fa051 S22 L? G
by = —2, by = ——t— by = —(=Js — 2K1 — 3Dq2), 32a
' TKofro ¢ A #= 55, (gl 20— 3De) (322)
I,L* 52172

by = —1, by = -E—, bg = ———-. 32b
4 5 Ky 6 oA (32b)
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The sectional integrals Sy, Ko, K1, Dog, Js, I, are defined as follows

ISR
S = [ 5o dudz, (33a)
Aty
K= ff (52) due= (330)
Bty

o N\ (o, et
Js *IJ (wwz) +($ +y> dydz, (33d)

I, = Jj ridydz where 1,7 =0,1,2, ... (33e)
A

The simple form of Eq.(30) depends on the use of the modified Saint-Venant’s warping function, which causes
many sectional integrals to vanish due to odd symmetry. For example, S; = 0 when i is even and Dy =

Jwhen i and j are not both even or both odd.
’ 3

III. Resonance frequency and mode shapes for pretwisted beams with
rectangular cross-sections

To test how well the above equations capture the behaviour of pretwisted beams, the resonance frequencies
and the corresponding mode shapes for rectangular cross-sectioned beams were solved semi-analytically and
compared to the finite-element analysis solution. A simple, free-free boundary condition is used so that
Eq.(31) - the natural boundary conditions, and Eq.(30) — the equations of motion are used without the
forcing terms frs, faure or Fr, Fyy. To determine the coefficients of Eq.(30), a two term approximation of the
warping function for rectangular cross-sections is used!®

8a? sinh =& ™

¥(n,¢) = ’]Q iy coslh 22 r,, sin e (34)

Equations (30) and (31) are then fully defined by four nondimensional parameters: v, the Poisson’s ratio;
SL, the beam slenderness ratio; AR, the cross-sectional aspect ratio; and kL, the total pretwist angle.
A. Solving the equation of motion
To solve Eqs.(30) and (31) analytically, the solutions are assumed to be of the following form,
(. 1) = UerPseiwhs
bs(,t) = PeTseits, (35)

Substituting Eq.(35) into Eq.(30) results in an amplitude ratio R,,

¢ A2 w2 .
R, = TRV (36)
and a characteristic equation of the form
A% 4 (Ag + Aso)AN 4 (g + AswHN + w0t =0, (37)
where the coeflicients A4, ..., A5 are combinations of coefficients b4, ..., bg. The characteristic equation has
six complex roots
Mg = Fipg (w), (38a)
/\3 4 = Lipa({w), (38b)
As6 = Tpg(w), (38¢)
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where p1, tio, 3 are real-valued functions of w. The solution thus has the form

us(xs,ta) = [Ur cos(prxs) + Us sin(py ) + Us cos(fas) + Ug sin{uozy)

+ Us cosh(usz,) + Us sinh(uzx,)] e, (39a)
$s(zs,ts) = [RyUs cos(uizs) + Ralysin(uyze) + RalUs cos(pars + RyUysin(pox,)
+ R5Us cosh{usxs) + ReUs sinh(pax,)] €™t (39b)

Substituting Eq.(39) into the six boundary conditions in Eq.(31) results in a matrix equation
[BCIU =0, (40)

where U = {U;...Ug]" determines the mode shape and [BC|is a 6 x 6 matrix whose entries are composed of
trigonometric and hyperbolic functions of w. The natural frequencies w, are given by the solutions to the
transcendental equation

det({BC]) = 0, (41)
and the corresponding mode shapes are determined by the null space of Eq.(40) after substituting w,, back
into [BC).

In the present work, the roots of Eq.(41) were \

found numerically using the secant method. The det{BC] ( x10'%)
root-finding algorithm was set to terminate when ,
det({[BC]) < 107°, and the initial root-containing 7'5'
intervals were obtained by plotting det(BC) and
extracting the intervals where a sign change takes o
place. Due to the presence of hyperbolic functions, 2.5
numerical evaluation of det(BC) is highly sensi-

' (\/\ \Q . L 3 \‘lﬁ(— w
: : . i T 2 N dn Sx 14
tive to machine round-off errors. The problem was a5 3 ; 5 = 2n
overcome through the use of the arbitrary precision i ) ;

arithmetics of Mathematica 5.0 (Wolfram Research
Inc., Champaign, [llinois). An example of the curve ~7.5
det([BCY) as a function of w is shown in figure 3.

As a check to the validity of the numerical meth-
ods employed, the resonance frequencies predicted Figure 3. Determining the natural frequencies: the
by the current method were compared to those pre- Plot of det([BC]) as a function of w at AR=0.3, SL=0.1,

. e . . kL=0, v = 0.3. The roots found from the secant method
du"tEd t.)y prismatic bar theory" AL(’?rdlng to the are marked with red dots. The roots corresponding to
prismatic beam theory the nondimensionalized tor- integer multiples of 7= are marked with black crosses.

sional and axial resonance frequencies (ws 7,,ws. 4,)

are
|G ;
Wa, = 'mr\/ L n=12... (42a)
P

Ws, A, = MTA, m=1,2,.... {42b)

Integer multiples of 7, as marked by the crosses on figure 3, are found to be exact roots of Eq.(41), which
agrees with the axial resonance frequencies from Eq.(42b) of prismatic beam theory. The first non-zero root
of Eq.(41) is compared with the fundamental torsional frequency predicted by Eq.(42a) in figure 4. It shows
agreement between the simple torsion theory and the present theory when pretwist is zero. This result lends
credence to the method employed in solving the equations of motion.

A representative set of vibration mode shapes is shown in figure 5, where the mode number n denotes
that it corresponds to the n-th non-zero solution to Eq.(41). Whether the n-th root represents an axial
or torsional resonance can be inferred from its frequency and the observed mode shape. For example, the
vibration mode at n = 3 is an axial resonance because it has no torsional motion ¢ =0and wy =7
corresponds to the fundamental axial resonance of prismatic bars. The status of the other frequencies is
more ambiguous, due to significant coupling between torsional and axial motion, however n = 1 can be
traced to the fundamental torsional resonance frequency of prismatic bar theory (as shown in figure 4), thus
it is predominantly a torsional mode.
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Figure 4. A comparison between the first resonance frequency at kL=0 determined by the analysis presented
in this paper and the fundamental torsional resonance frequencies predicted by simple prismatic bar theory,

The variation of the w; torsional resonance as pretwist £L is increased from O to 1 revolution was
determined for rectangular cross-sections over a wide range of geometries. The beam slenderness ratio
(SL = r¢/L) was varied from 0.1, 0.05 to 0.025, and the aspect ratio (AR = b/a =) was varied from*0.3 to
0.9. The sole relevant material property — Poisson’s ratio was fixed at 0.3 as reasoned before. The results
for the fundamental torsional resonance w, r are summarized in figure 7.

B. Finite Element Analysis

Finite element modal analysis (FEA) of pretwisted beams were performed using ANSYS 10.0 (ANSYS Inc.,
Canonsburg, PA USA). The resonance frequencies and the vibration mode shapes were determined over
the same range of geometric configurations used for the analytical solutions. In order to automate the
identification of the vibration modes of the FEA results -— to determine whether the mode is flexural, axial
or torsional — a modal identification parameter A was defined:!7

1 U.e;
\7- = e -—1 & 4:
A; 5}{ o ds, (43)

where the path integral is performed along the cross-section periieter at the beam tip, S is the path length,
and i denotes the vibration mode of interest. The parameter A; varies between —1 and 1 and it represents a
normalised average of the displacement component in the e; direction, where e, is associated with torsional
vibration, and e, is associated with axial vibration. In figure 6, the parameters A, and A, are plotted
against frequency for the first 30 modes of all geometries considered in the FEA. The path iutegral for A;
was evaluated as a discretized summation over 60 divisions (15 per edge) along the cross-section perimeter.
It shows that A, and A, works well as identification parameters for the presence of torsional and axial
components in a vibration mode. At low frequencies, the modes are quite distinct and a simple mode
classification rule can be used:

e Torsional modes: {A,| > 0.9, represented by black dots on figure 6.

e Axial modes: |A;| > 0.9, represented by red boxes on figure 6.

e Flexural modes: [Ag| < 0.1 and |A;| < 0.1, represented by blue “x’s on figure 6.

o Mixed modes: 0.1 < [Agf < 0.9 and 0.1 < A, < 0.9, represented by grey ‘+’s on figure 6.

The first torsional mode for each geometry, as classified by the above scheme, are taken as the fundamental
torsional resonance wg y. The results are summarized in figure 8.

At higher harmonics, a significant amount of coupling is present for various geometries. Note especially
the series of resonance modes that lie along the unit circle on figure 6(c) and form vertical lines at w ~ 37/2
on figure 6(a) and (b). These modes belong to geometries with SL = 0.1 and AR ~ 1, in other words, thick
square beams. Many points in this series are close to the maximum coupling point of Ay, = A, = 1/+/2,
which makes them promising candidates as vibration converters for the torsional transducer.
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Figure 5. The vibration mode shapes of an rectangular beam with aspect ratio = 0.4, slenderness ratio = 0.1,
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Figure 6. The mode identification parameters Ay, and A; vs nondimensionalized frequency for the first 30
modes of all geometries considered by FEA. The black dots, red squares, blue x’s, and grey plus signs are
correspondingly, those points with [Agi 2 0.9, |Az] > 0.9, A,z 0.1 and 0.1 < [Ay | < 0.9.

C. Comparison of the theoretical predictions with the FEA results

Figure 7 shows that Egs. (30) and (31) predict, in general, a fall in Ws.T as pretwist is increased. Additionally,
as the cross-section aspect ratio AR approaches one, w, r rises — as expected from the increased torsional
stiffness. However. as the cross-section becomes less elongated, the influence of pretwist on w, r is reduced.
On the other hand, the slenderness SL of the heam has little direct influence on wy, 7 when kL = 0, but as
the beam becomes less slender, the influence of pretwist on ws,r is amplified.

Similar trends for the effect of AR and SL on w7 are observed for FEA results on figure 8. As AR is
varied from zero to one, w, 7 increases and becoines less influenced by pretwist. As SL is increased, the effect
of pretwist becomes more pronounced. A fundamental difference exists, however, between the theoretical
and the FEA results. Instead of a fall in wy,T, FEA predicts a rise in w, + when pretwist is increased. Note
that the trend predicted by FEA agrees with existing experimental results,” which show that an increase in
pretwist causes a rise in torisonal rigidity and thus a rise in Ws,T-

The discrepancy between the present theory aind the FEA result may be traced to simplification of the
governing equations for the warping function. The simplification from Egs.(22¢c) and (23d) to Eq.(26) holds
only if NDC V|, VI, VIII and IX are small. Taking NDCs < § as the criteria under which Eq.(26) is valid, it
may be seen on figure 7 that many points with large pretwist lies outside the valid region. The points marked
with black boxes and crosses are, respectively, those points where 0.05 < 6 < 0.104 and 4 > 0.104. The
difference between the present theory and the FEA result is significantly reduced within the region where
4 < 0.05.

Another source of error is the warping function used for rectangular cross-sections. The solution to
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Figure 7. Analytical results for the variation of the fundamental torsional resonance frequency for beams with
rectangular cross-sections as pretwist, aspect ratio and slenderness ratio are varied.
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Figure 9. The effect of neglecting higher order terms of the warping function for rectangular cross-sections.
The variation of the fundamental torsional resonance frequency w, r predicted by the prismatic bar theory is
plotted against AR when the warping function is evaluated to the n-th term.

Eq.(26) “fqr rectangular cross sections with width o and height b is an infinite series!® >
8a® o= (=1)*  sinhknC
(N, ) = n¢ — — ‘ sin k.7,
v €) =g w3 4= (2n + 1)3 cosh(k,b/2) S Fndl;
2 Z ]. /
where k, = (—u (44)
a

Due to the complex sectional integrals involved in Egs.(30)-(33). the warping function was only evaluated
to the n = 0 term in Section A. The effect of neglecting the higher order terms at zero pretwist can be
seen on figure 9, where w; - predicted by prismatic beam theory is plotted against AR as successively more
terms are included in . The torsional resonance frequency should approach zero as AR — 0, however due
to the series approximation of 4%, an erroneous finite ws,r is predicted. As more terms are included in v, the
more accurate the w, 7 predictions become at low AR. While it may appear from figure 9 that the errors
caused by the n = 0 approximation is’"hegligible when AR > 0.4, it should be noted that only two sectional
constants J; and I, are involved in the prismnatic beam theory. In the present theory, with non-zero pretwist
and other sectional constants, predictions at higher AR may also be affected.

IV. Conclusions

A new set of governing equations for the warping function, and the axial and torsional displacement of
a pretwisted beam was derived. The conditions under which the modified Saint-Venant warping function
is valid for a pretwisted beam was shown to be when the beam is slender, the pretwist is small, and the
vibration is torsionally dominant. For rectangular cross-sectioned beams outside the region of validity of the
equations of motion, the solutions predict. a fall in torsional resonance frequency when pretwist is increased,
contrary to some previous theories, our computational results, and existing experimental results.

The importance of understanding the assumptions under which the Saint-Venant’s warpage function and
related cquations are found as commonly performed in the literature™12:1% ig illustrated by this discrepancy.
Even for the complex derivation shown here. once the simplification to allow use of Saint-Venant’s function
Is made the domain over which the resulting equations may be used becomes quite small, especially in
comparison to FEA. However, the theory corresponds to the computational results over this domain. The
derivation illustrates a means to further improve and expand the results described in this paper through
solution of the more general warpage function described in Egs. (22¢) and (23d) instead of Eq. (26).

For further work on the use of pretwisted beams as vibration converters for hybrid axial-torsional trans-
ducers, experimental validation of the FEA results should be performed. When reliable data on the effect of
Pretwist on resonance frequencies are obtained, they should be compared with predictions from the present
theory and also the simpler theories of Rosen, Tsuiji, and Curti and Risitano. Should the simpler theories be
found to model the vibration characteristics of pretwisted beams well, harmonic analysis may be performed
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to determine the response of pretwisted beams under forced excitation, paving the way towards the desigp
of simple hybrid axial-torsional transducers.
A. Hamilton’s principle and the resulting Euler-Lagrange equation

To apply Hamilton’s principle, the strain energy Eq.(18), the kinetic energy Eq.(20), and the work done
by external loads Eq.(21) are substituted into Eq.(3), resulting in an equation of the form

) (/tlf-z j;ff F(.T,y,z,t,ul,qb,w’)dth) =0, (45)

where
F(‘L" y) 'z’ t) ul ’ .@? Il/") -

L., . _
SE (1 +(0'9)* + (0¢')? + 26100 + 2e, 60 + 20'0' )

Lol (0w N\ [op ?
+5G6 K%n) +<5;+y>}

1 L .-
+ 50 [a% 20,0 + 0292 + r“d)Q}

dFr dFa ,  dfr dfm
Tt ittt (46)

The Euler-Lagrange equation resulting from Eq.(45) is

tr OF 8 [8F a (AF
y T == )1aV
[I ‘[J"J Tl {6,&1 or <a€1> ot <3u1 )} at

oo OF _ -
+/t] g"r/ulégamdAdt + gf%l ;‘u? |

—

v =0 (47a)
Iz

& OF 8 (OF\ 0 (OF\ @* [(OF 82 (9F ) e
o T A Vasm )= — 5| = T | = IV dlt -+ Ty ——
/t f‘ﬂ"‘b {6@6 oz (09) ot (w) " o (69'> " Gadt <09>J Wt w "ol Y
e OF 0 (dF\ & (oF OF OF |2
i Wime im0 — o=l a5 ) — 5l = || @ne + 175 ==ane | dAd b = dV = 7
+f (e % - (69') 5 (5 )| one 1 e ) aae I 55 H7b)
2 oOF 8 [ 8F a [ oF 8 [ oF
plmm == - = — — 1 'V dt
/,1 ‘ﬂ " { by ox <a¢I) dy (aw) R (ag” vd
t2 OF oF OF .
o), I (o Ffom+ e asar <o (470)
where 7., 15, 1 Tepresents three independent arbitrary functions and the variational derivatives of F are
OF  dfy aF . o dEr OF ) -
= — = - b+ 69') + —— —= + 69), ¢
T R 7, Eer + 60y + 64') + R 5, {4y + 69), (48a)
OF d:fJVI oF 72 Iy T3NIRY; , 2 . 2 dEW
=T = =, — = —-F(fy¢ g ) - GO (v, — z)* ¥ z)* .
8o ~ dA’ B8 G673 et + 090 = GO (v = 2" + (9 + 2)°) + =
aF 2. aF ‘.2 /. Lot 8F o 32102
58 = prée, i —E(0"%)° + eqv + ), e p(ty ) + Gy, (48b)
OF . . oF 5
(5? = p(é’ul + 92’(;//‘) - E(G/Q‘I,L” + 6101 + 99"w'), 5-'—, = —E(G“'lli’, + 519 + 99"{,'),
w w
OF 9, oF 5
= = —( -z = GO0 (y, + y). 18
go, = "GOy D), g = —GE(w +y) (45

- Subsitituting Eq.(48) into the Euler-Lagrange equation Eq.(47) gives the equatons of motion and the bound-
ary conditions.
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B. Normal vectors on the surface of pretwisted beams
The surface of a constant cross-section pretwisted beam can be described by the following position vector
r(z,s) = ze, + I'(s), (49)
where I'(s) traces the perimeter of the cross-sectional geometry with the path variable s

T(s) = n(s)e, + ((s)ec
= (n(s) coskx — {(s) sin kz)e, + (n(s) sinkx + ((s) cos kz)e,. (50)

Normal vectors can be obtained from the cross product of two non-parallel tangent vectors to the surface of

the pretwisted beam, thus
_Or _ Or

= — X —. 51
=5 b (51)
Expressing Eq.(49) in vector form,
Teq
- r(z,s) = {ncoskr — (sinkx |, (52)
nsinkx + ¢ cos kx
the tangent vectors are obtained as
; 0 . 1
r . . or i )
5;(:0, 8) = |n'coskx — 'sinkx|, and 5;(1?, s) = | —k(nsinkz + ¢ coskx)| . (53)
' sinkz + ' coskz k(ncoskz — ¢ sin k)

Substituting Eq.(53) into Eq.(51) yields

k(my' +¢¢')
n= | y'sinkr+ coskx |, (54)
—n'coskz + ' sinkx
which can then be used to detrmine the components of the unit normal vector fi:

R n . oy
= m - la"'-f-’any-a-nz}l . (55)

From Eq.(54), the component of the unit normal vector in the radial direction ay, is

1
Qe = (JU3, + a2, = m\/(n’)z + ({2, (56)

which can be used to determine the the following ratios, which is needed for comparing the magnitude of
the NDCs in Table 2

ane k(' +¢C)

Inr /() ()

Qny W sinkz + (' coskx (57b)

I = s ‘v,)

PN CUEE TR

Qn,  —0 coskx + (' sinka) (57¢)
g . Q{C

@nr ()2 +(¢)?
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A. Elliptical cross-section

For a beam with an elliptical cross-section

7(s) = acos(s), 7'(s) = —asin(s), (58)
¢(s) = bsiu(s), ' ¢'(s) = beos(s). (59)

Substituting Eq.(58) into Eq.(57a) yields

anz k(6% - a®) cos(s) sin(s)

, (60)
Gnr \/(1,2 sin?(s) + b2 cos?(s)
Any —asin®(s) + bcos?(s) (61)
Zny ‘ , }
Cnr \/(L2 sin®(s) + b2 cos?(s)
any _ —asin(s)cos(s) + beos(s) sin(s) (62)
Zny ) 52
nr \/CLQ sin?(s) + 62 cos?(s)
The extreme values of Qny/0nr are determined by solving for the stationary points of Eq.(60)
d [ Gng (0% — a®)k(b? cos?(s) — a2 sin(s)) .

/b2 cos?(s) + a2 sin’(s)

s =tan"'(y/b/a) = tan~'(VAR).

Substituting Eq.(64) back into Eq.(60) gives the extreme values of Onz/ny for a beam with elliptical cross
section

which has the solution

(Z"T) = k(b ~a) = kL x SL(AR - 1). (64)
nr / extreme

B. Rectangular cross-section

For a beam with a rectangular cress-section of width « and height b, the boundary path can be parameterized
as,

[ —(a/2)(~1+25) |, se(0,1) ( ~a , se(0.1)
) ~a/2 . se(1,2) N a0 . se(L2)
i) = (€/2)(-5+25) | se(2.3) RORA A S (2,3)
L a/2 . 8€(3,4) 0 , se€(3,4)
( b/2 , 5€(0,1) (0 . se(0,1)

() — (0/2)(3-2s5) |, se(1.2) N iy ) b s€(1,2) .
) = ~b/2 . se(2.3) Ty . 23
—(b/2)(7~2s) , se(3.4) L b . se(3,4)

Substituting Eq.(65) into the first of Eq.(57a) yields
—k(a/2)(1 -25) | se(0,1)
Ong —k(b/2)(3~2s) |, se(1,2) (66)
Qnr —k(a/2)(5-2s) |, se(2,3)
—k(b/2)(7 — 2s) s€(3,4)

It is clear from Eq.(66) that the extreme values of Anz [nr occurs at the corners of the cross-sections. Since
b < a, the maximum tilt ratio for a rectangular cross-section is

ne _ kxa kxr. kL x SL (67)

Qpp 2 vI1+ AR2 - \/1 + ARZ
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