Learning Hybrid Bayesian Networks by MML

Rodney T. O'Donnell, Lloyd Allison, and Kevin B. Korb

home
 Bib
 Algorithms
 Bioinfo
 FP
 Logic
 MML
 Prog.Lang
and the
 mmlist

MML
 AI2006

Also see:
 II
  1.1
   BNs
MML
 Glossary
 Discrete
 Continuous
 Structured
 SMML
 KL-dist
 "Art"
 Ind. Inf.

AI2006, Springer Verlag, LNCS Vol.4304, pp.192-203, 2006.

Abstract. We use a Markov Chain Monte Carlo (MCMC) MML algorithm to learn hybrid Bayesian networks from observational data. Hybrid networks represent local structure using conditional probability tables (CPT), logit models, decision trees or hybrid models, i.e., combinations of the three. We compare this method with alternative local structure learning algorithms using the MDL and BDe metrics. Results are presented for both real and artificail data sets. Hybrid models compare favourably to other local structure learners, allowing simple representations given limited data combined with richer representations given massive data.

Paper:
[doi:10.1007/11941439_23]['06], isbn:978-3-540-49787-5.
[pdf]['06]
Coding Ockham's Razor, L. Allison, Springer

A Practical Introduction to Denotational Semantics, L. Allison, CUP

Linux
 Ubuntu
free op. sys.
OpenOffice
free office suite
The GIMP
~ free photoshop
Firefox
web browser

Also see:
 II
  ACSC06
  JFP05
  ACSC03

© L. Allison   http://www.allisons.org/ll/   (or as otherwise indicated),
Faculty of Information Technology (Clayton), Monash University, Australia 3800 (6/'05 was School of Computer Science and Software Engineering, Fac. Info. Tech., Monash University,
was Department of Computer Science, Fac. Comp. & Info. Tech., '89 was Department of Computer Science, Fac. Sci., '68-'71 was Department of Information Science, Fac. Sci.)
Created with "vi (Linux + Solaris)",  charset=iso-8859-1,  fetched Monday, 25-Oct-2021 12:14:52 AEDT.