Lambda Calculus Integers

home1 home2
and the


The integers (and other constants) can be defined in the Lambda Calculus; it is not necessary to provide them as "built in". However this "implementation" of integers is very inefficient and so they invariably are built into programming languages based on the Lambda Calculus.

Here is a Lambda Calculus definition of non-negative integers and some operators on them:-

let rec
  ZERO = lambda s. lambda z. z,
  ONE  = lambda s. lambda z. s(z),
  TWO  = lambda s. lambda z. s(s(z)),
  THREE= lambda s. lambda z. s(s(s(z))),{etc.}

  PLUS = lambda x. lambda y.
    lambda s. lambda z. x s (y s z),
  {traditional defn of + }

  SUCC = lambda x. lambda s. lambda z. s(x s z),
  {successor function}

  PLUSb = lambda x. x SUCC,
  {a nicer alternative defn of +, PLUS}

  TIMES = lambda x. lambda y. x (PLUS y) ZERO,

  PRED = lambda n. lambda s. lambda z.
    let s2 = lambda n. lambda f. f(n s),
        z2 = lambda f. z
    in n s2 z2 (lambda x.x),

  ISZERO = lambda n. n (lambda x. false) true,

  LE =  lambda x. lambda y. ISZERO (MONUS x y),
  { ? x <= y ? }

  MONUS = lambda a. lambda b. b PRED a,
  {NB. assumes a >= b >= 0}

  DIVMOD = lambda x. lambda y.
    let rec dm = lambda q. lambda x.
      if LE y x then {y <= x}
        dm (SUCC q) (MONUS x y)
      else pair q x
    in dm ZERO x,

  DIV = lambda x. lambda y. DIVMOD x y fst,
  MOD = lambda x. lambda y. DIVMOD x y snd,

  pair = lambda fst. lambda snd. lambda sel. sel fst snd,
  fst  = lambda x. lambda y. x, {see}
  snd  = lambda x. lambda y. y, {Bool}

  PRINT = lambda n. n (lambda m. 'I'::m) '.'

in let rec {e.g.}
  eight = PLUSb four four

{ Define (non -ve) Int From Scratch. }

For example:


= (λ x. λ y. λ s. λ z. x s (y s z))
   (λ s. λ z. s(z))
    (λ s. λ z. s(s(z)))

= (λ y. λ s. λ z.
     ((λ s'. λ z'. s'(z')) s (y s z)))
    (λ s. λ z. s(s(z)))

= (λ y. λ s. λ z. (s(y s z)))
    (λ s. λ z. s(s(z)))

= λ s. λ z.
   s( (λ s". λ z". s"(s"(z"))) s z)

= λ s. λ z. s(s(s(z)))


Integers are PRINTed in unary notation. (Well, you try defining a binary or decimal print routine this way!-).

Also see [Boolean] and [Lists].
Thanks to Joel R. for DIVMOD, TIMES and LE, the latter nicely making the point that "you cannot do something less than 0 times."
Coding Ockham's Razor, L. Allison, Springer

A Practical Introduction to Denotational Semantics, L. Allison, CUP

free op. sys.
free office suite
~ free photoshop
web browser

λ ...
:: list cons
nil the [ ] list
null  predicate
hd head (1st)
tl tail (rest)

© L. Allison   (or as otherwise indicated),
Faculty of Information Technology (Clayton), Monash University, Australia 3800 (6/'05 was School of Computer Science and Software Engineering, Fac. Info. Tech., Monash University,
was Department of Computer Science, Fac. Comp. & Info. Tech., '89 was Department of Computer Science, Fac. Sci., '68-'71 was Department of Information Science, Fac. Sci.)
Created with "vi (Linux + Solaris)",  charset=iso-8859-1,  fetched Saturday, 25-May-2024 02:10:49 AEST.