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The theory of distributions will be used in computing the ADM energy for a finite simplicial

space. A related method will be presented for the computation of the ADM 3-momentum.

It will be shown that the energy is proportional to the contribution to the integral curvature

from the legs on the boundary of the space.



2

1. Introduction.

Although the Regge calculus deals entirely with geometric quantities the translation of those

quantities into physically interesting quantities seems rather obscure. For example, how

would one calculate the momentum or the energy of a simplicial space given only a set of leg

lengths? The problem appears to arise from our limited understanding of the relationship

between continuum and discrete based concepts. Thus even though there are well defined

procedures for calculating the physical quantities in a continuous space those procedures can

not be applied directly to discrete or simplicial spaces.

Two examples of how these difficulties may be overcome, in the computation of the ADM

energy and 3-momentum [1,2] , are the principal results of this paper. The basic procedure

will be to re-interpret the usual integral formula as the value of a distribution on a suitable

test function. This distribution will then be applied to a simplicial space. Ultimately, after

some standard manipulations, a geometric expression for the ADM energy arises. This part

of the work will be presented in section § 3. Unfortunately a number of technical difficulties

precludes the use of this method in the calculation of the ADM 3-momentum. Thus in

section § 4 an alternative method will be presented. The definitions of asymptotic flatness,

the choice of coordinates and the values of the metric components for the simplicial space

will be presented in the section § 2. Our analysis will be restricted to finite simplicial spaces

in which each 3-simplex is a tetrahedron. The generic n-simplex will always be denoted by

σn. The notation σm(σn) will appear frequently and will represent some set of m-simplicies

associated with this n-simplex. Latin indicies will cover the values 1,2 and 3.

This paper is a sequel to a recent paper by the author [3] in which a detailed use of the

theory of distributions for weak simplicial spacetimes was presented. The style and notation

of this paper are based upon that paper.
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2. Asymptotically flat simplicial spaces.

A notion of asymptotic flatness for a simplicial space might well be based upon the rate at

which the defects decay as one chooses legs closer and closer to the boundary of the space.

However this approach would not yield a satisfactory definition. For example suppose it were

possible to attach a flat external space to the boundary of the original space. It would then be

possible to calculate the defects on those legs in the boundary of the original space. However,

the fact that the defects on the neighbouring internal legs are weak does not guarantee that

the defects on the boundary should also be weak. It is for this reason that the following

assumptions are made.

i) The original simplicial space may be attached to a flat external space.

ii) The metric is continuous across the boundary between the two spaces.

iii) The defects on the legs on and near the boundary of the original space are all weak (ie. the

defects are dominated by the leading term in the perturbation series.)

Simplicial spaces that satisfy these conditions will, in this paper, be referred to as being

asymptotically flat. This definition is nowhere near as precise as that used for continuous

spacetimes [4,5] . It is however sufficient for our purposes.

The original and extended spaces will be denoted by Σ and Σ respectively. Their respective

boundaries will be denoted by S and S.

The geometry of a simplicial space is normally represented by a table of leg-lengths and a

table of inter-vertex connections. However the integral formula for the ADM energy requires

a coordinate frame that is asymptotically Euclidian in Σ. Thus our first task will be to

establish a relationship between the leg-lengths and the coordinate frame on Σ. Since the

geometry external to Σ is flat it is always possible to choose Euclidian coordinates in Σ−Σ.

The metric components, hij , will then equal δij . Now choose any reasonable extension of

these coordinates into the interior of Σ. Let xia be the coordinates of the vertex a in Σ. The

metric components are piecewise constants in each 3-simplex of Σ and will, in general, differ

from δij . Their values may be calculated from

L2
ab = hij ∆xiab∆xjab (2.1)
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where Lab is the length of the leg joining vertices a and b while ∆xiab = xia − xib. By this

method one can tabulate the hij in each of the 3-simplicies of Σ.

It will be assumed throughout most of the next section that the simplicial space is not only

asymptotically weak but that it is globally weak. Thus the hij ≈ δij in Σ and all of the

terms in the integrals will be accurate to first order in hij − δij . Indicies will be raised and

lowered using δij . This assumption is not essential (and in fact will be removed at the end

of the analysis) but it does make the analysis a little more transparent than would otherwise

be the case.

3. The ADM energy.

If the metric components hij were smooth on Σ then the ADM energy [1,2] could be calcu-

lated as

E =
1

16π

∫

S

(hij,i − hii,j) nj d
2A (3.1)

where nj are the components of the unit-normal to S and d2A is the area element on S. Our

aim is to interpret this integral for simplicial spaces.

There are two problems in applying this equation directly to a simplicial space. The most

obvious is that the metric components hij are not differentiable. This problem will be

overcome by viewing these components as distributions. The above integral will then arise

as the value of a certain distribution on a suitably chosen test function. The second and not

so obvious difficulty is that the integrand involves derivatives in all three coordinates. Thus

the double integral will only remove two of the three derivatives. A method of avoiding this

problem is to first re-write the integral as a volume integral. This later integral will be used

as the basis for the subsequent analysis.

Using Gauss’s theorem the above integral may be re-written as

E =
1

16π

∫

Σ
(hij,ij − hii,jj) d3V

where d3V is the volume element on Σ. Now consider the distribution

I(f) =

∫

Σ
(hij,ij − hii,jj) f(x) d

3V (3.2)
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where f(x) is any test function with compact support on Σ (ie. f and all of its derivatives

vanish on and outside S). The ADM energy will then be the value of this distribution when

f = 1/16π throughout Σ (such a test function can always be constructed, see [6,7] ).

Since f and its derivatives vanish on S it follows that after two integrations by parts one

may also write

I(f) =

∫

Σ
(hijf,ij − hiif,jj) d3V.

However for a simplicial space the hij are piecewise constant in each of the simplicies of the

space. Thus one also has

I(f) = −2

∫

Σ−Σ
f,ii d

3V +
∑

σ3(Σ)

∫

σ3

(hijf,ij − hiif,jj) d3V

where the summation includes all of the 3-simplicies of Σ. The integral throughout each

3-simplex may be converted, using Gauss’s theorem, to surface integrals over the faces of the

3-simplicies. This leads to

I(f) = −2

∫

Σ−Σ
f,ii d

3V +
∑

σ3(Σ)

∑

σ2(σ3)

∫

σ2

(hijf,i − hiif,j)nj d
2A

in which the inner sum includes each of the four faces of each tetrahedron, nj are the

components of the unit normal to each face and d2A is the element of area on each face.

Notice that the nj are constant on each face. Before applying Gauss’s theorem once again it

is important to notice that the integrand contains derivatives in all three coordinates. This

problem can be overcome in the following way. First define Ai by

Ai = (hijnj − hjjni) f

then the integrand is just Ai,i. Now consider one face and choose (temporarily) the orthog-

onal coordinates x0, x1, x2 so that x0 is measured normal to the face. Let n be the proper

distance measured along x0 then

Ai,i =
dA⊥

dn
+

2
∑

j=1

A‖j,j
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where

A⊥ = Aini

A‖j = Aj − njA⊥ .

Gauss’s theorem may then be applied to the term involving the A‖j,j . The result (expressed

in the original coordinates) is

I(f) =− 2

∫

Σ−Σ
f,ii d

3V

+
∑

σ3(Σ)

∑

σ2(σ3)

∫

σ2

(hijninj − hiinjnj)
df

dn
d2A

+
∑

σ3(Σ)

∑

σ2(σ3)

∑

σ1(σ2)

∫

σ1

hijnimj f dL

where the sum over σ1 includes the three legs of each face, dL is the element of length on σ1

and mi is the outward pointing unit normal to σ1 and tangent to σ2.

This expression may be further simplified by first noting that in the double sum each σ2

on the interior of Σ is counted twice, once with one orientation for ni and once with the

opposite orientation. Thus these terms must cancel leaving only the contributions from the

σ2
′s on the boundary S. The expression may now be written as

I(f) =− 2

∫

Σ−Σ
f,ii d

3V

+
∑

σ3(∂Σ)

∑

σ2(σ3)

(hijninj − hiinjnj)

∫

σ2

df

dn
d2A

+
∑

σ3(Σ)

∑

σ2(σ3)

∑

σ1(σ2)

hijnimj

∫

σ1

f dL .

The ADM energy may now be obtained by choosing f = 1/16π in Σ while setting f and

its derivatives equal to zero on and outside S. If these conditions had been imposed in the
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larger region Σ then the ADM energy would vanish since in the region of S the 3-metric is

exactly flat. Upon making this choice one has

E =
1

16π

∑

σ3(Σ)

∑

σ2(σ3)

∑

σ1(σ2)

hijnimj Lω(σ1,Σ) , (3.3)

where L is the length of the leg σ1 and ω(σ1,Σ) = 1 only when σ1 does not lie on S, otherwise

ω = 0.

This expression would appear to contain contributions from all of the legs in Σ. In fact most

of the terms arising from inside Σ cancel. This can be seen by looking at the simple identity

0 =
∑

σ1(σ2)

miL . (3.4)

This identity can be applied to all of the triangles that lie totally within Σ (ie. ω = 1 for each

leg) . This leaves contributions from only those triangles that have one or more legs lying on

the boundary S. If all three legs of the triangle lie on S then there will be no contribution

from that triangle. Thus one need only consider those triangles that have exactly one leg

lying in S. Let σ′1 be one such leg and suppose that there are m tetrahedra and m + 1

triangles attached to this leg. Denote the ordered sequence of tetrahedra and triangles by

σ3(i), i = 1, 2, · · ·m and σ2(i), i = 1, 2, · · ·m + 1 respectively. Each of the interior triangles

σ2(i), i = 2, 3, · · ·m will share a pair of tetrahedra and will therefore appear twice in the

triple sum, once with one orientation for ni and once with the opposite orientation. Thus

the contribution to the triple sum for each interior triangle will be of the form Lnimj∆hij .

However for the two triangles σ2(1) and σ2(m + 1) that lie on S there will be no such

contribution. It is convenient to introduce extra terms so that there is a similar contribution

from each of these triangles. From (3.4) it follows that

0 =
∑

σ′

2
(S)

∑

σ1(σ
′

2
)

Lnimj ∆hij

where ∆hij = hij − δij and hij are the metric components of the tetrahedron based on the

face σ′2. The summation includes only those faces lying on S. This sum can now be added
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to (3.3) without altering the value of the energy. There are now sufficient terms in this

expression so that for every triangle attached to each σ′1 there is a contribution of the form

Lnimj∆hij . One final simplification needs to be made. By once again using the identity

(3.4) it is easy to show that

(miL)σ′

1

= −
∑

σ1(σ2)

miLω(σ1,Σ) .

Upon combining each of the above re-arrangements the result will be

E =
−1

16π

∑

σ1(S)

∑

σ2(σ1)

Lnimj ∆hij

where the sum over σ1 includes only those legs on S and the sum over σ2 includes all of the

triangles attached to each such leg.

In a previous paper [3] it was shown that for a weak simplicial spacetime the defect θ is

related to the metric perturbations γαβ by

2θ =
∑

σ3(σ2)

nµmν ∆γµν .

It is easy to see that for the space Σ the appropriate formula for the defect on the legs on

and near S would be

2α =
∑

σ2(σ1)

nimj ∆τij

where α is the defect and τij are the perturbations in the 3-metric (ie. τij = hij−δij). Using

this equation the above expression may be simplified to just

E =
−1

8π

∑

σ1(S)

αL . (3.5)

This is our final expression for the ADM energy. It was derived under the assumption that

the global geometry was weak. This condition can now be relaxed since the result depends
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only upon the geometry near S and not upon the geometry deep in the interior of S. Thus

this result applies to any asymptotically flat simplicial spacetime. It shows that the energy

of the simplicial space is proportional to the contribution to the integral curvature from the

bones on the boundary when the external geometry is flat.

4. The ADM 3-momentum.

The ADM 3-momentum for the space Σ may be calculated as [1,2]

Pi(S) =
1

8π

∫

S

(

KijN
j −KNi

)

d2A (4.1)

whereKij is the extrinsic curvature tensor of the space, Ni is the unit normal to the boundary,

S, of the space and d2A is the element of area on S. It is natural to ask whether the techniques

just presented might also be suitable in evaluating this integral when S is a simplicial space.

The most obvious difficulty in applying the above expression to a simplicial space is that

the integrand is not a well behaved function. This same problem arose in the previous

sections where it was shown that the integrand possessed a delta-function distribution on

each leg lying in S. The integration over the 2-surface S could therefore be dealt with

rather easily. For the above integral, (4.1), the situation is not so easy. The problem is that

the Kij in the integrand give rise to delta-functions concentrated on the triangles of S [8] .

To obtain a meaningful value for the integral it will therefore be necessary to perform the

integration not over the triangles but on some surface that cuts through the triangles. This

will be done by introducing an artificial 2-surface S′ as a slightly shrunken version of S.

The ADM 3-momentum for S will then be defined as the limit of the ADM 3-momentum

for S′ as S′ is expanded to coincide with S. Alternatively, it could be argued that since

the space is asymptoticaly flat the same 3-momentum should arise irrespective of whether

the calculations are performed on S or S′. The calculations will proceed as follows. The

surface S′ will be partitioned into a set of non-overlapping regions each containing just one

leg (arising from the intersection of a triangle with S′). As the integrand is linear in Kij

there will not be any interactions amongst the adjacent triangles. The integral over S′ will,

therefore, be reduced to a sum over the separate integrals for each of the sub-regions in the
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partition of S′. Each term in the sum will be evaluated, terms will be grouped to obtain

the cotribution from each leg after which these groups will be summed to yield the final

expression.

Consider a typical leg in S and denote that leg by σ1. Suppose that there are n triangles

attached to this leg. Now let σ2(j), j = 1, 2, 3 · · ·n represent an ordered sequence of those

triangles. The first and last triangles lie in S and thus will not intersect S′. Let σ′1(j)

represent the leg generated by the intersection of σ2(j) with S′ and let L′
j represent the

length of that leg. Consider a partition of S′ into a set of regions S′
i, i = 1, 2, 3 · · · such that

S′
j contains only one leg, σ′1(j). Now consider the integral

Pi(σ1, S
′
j) =

1

8π

∫

S′

j

(KikNk −KNi) d2A j = 2, 3 · · ·n− 1 . (4.2)

To evaluate this integral first choose a unit orthonormal basis ui, vi, wi such that ui is normal

to σ2(j) and vi is normal to σ′1(j). It follows that w
i must be tangent to σ2(j) and parallel

to σ′1(j). Now let (u, v, w) be a set of coordinates measured along the integral curves of this

basis. Construct also the orthogonal coordinates (w, x, y), with x measured normal to S′
j . A

pictorial representation of these symbols is presented in Figs.(1a,b). It has previously been

shown [8] that, for each σ2(j),

Kij = uiuj
dβ

du
(4.3a)

and

∆β =

∫

C

dβ (4.3b)

where C is any simple path that crosses σ2(j) and ∆β is the boost parameter for the Lorentz

transformation between the rest frames of the blocks on either side of σ2(j). Upon using

(4.3a) and

uiNi = cos ρ ,

du = dy sin ρ ,

Ni = ui cos ρ− vi sin ρ ,
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where ρ is the angle between σ2(j) and S′
j , the previous integral may be reduced to

Pi(σ1, S
′
j) =

1

8π

∫

S′

j

vi
dβ

dy
d2A .

However the element of area d2A on S′
j is just dwdy, thus the integration is easily performed

with the result that

Pi(σ1, S
′
j) =

1

8π
vi L

′
j ∆β . (4.4)

This expression is, clearly, well defined in the limit as S′ → S. There is one such expression

for each σ2(j), j = 2, 3 · · ·n− 1. Thus the nett contribution to the ADM 3-momentum from

this single leg, σ1, in S is given by

Pi(σ1) =
L

8π

n−1
∑

j=2

vi∆β

where L is the length of σ1 (note that L′
j → L as S′ → S). In calculating this sum it will

be necessary to parallel transport each vector to some predefined point in Σ. The choice of

this point and the paths along which the vectors are parallel transported will affect the final

values for Pi(σ1). However, since the metric is assumed to be weak in this region, the various

possible values for Pi(σ1) must differ by an order of magnitude less than Pi(σ1). This can be

seen by noting that the vi when parallel transported around σ1 will incur a change of order

∆β thus leading to a perturbation in Pi(σ1) of order (∆β)2. Suppose now that the point

at which the above sum is evaluated is chosen in Σ − Σ. Since the metric in this region is

chosen to be flat it is now possible to add together the separate contributions to the ADM

3-momentum from each leg in S. This leads to

Pi(S) =
1

8π

∑

σ1(S)

L
n−1
∑

j=2

vi∆β (4.5)

as our final expression for the ADM 3-momentum for a simplicial space.
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4. Discussion.

It seems natural to ask whether similar techniques might be useful in calculating certain other

quantities, for example the Komar mass or the angular momentum of the space. Work is

currently under progress on both of these problems. The main difficulty with the calculation

of the Komar mass is that one must obtain a suitable definition, that can be expressed in

terms of the leg-lengths and defects, of a timelike Killing vector in the far flat regions of

the Regge spacetime. The nature of the symmetry groups and gauge transformations in

the Regge calculus has been a problem for some time. If one is to use such symmetries to

compute certain physical quantities then this problem must be resolved.
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Figures.

Fig. 1a. A perpendicular cross-section through one of the legs σ1 in S. The

dashed lines indicate a continuation of the surfaces.

Fig. 1b. A perspective view of one of the triangles σ2(j) and its intersection

with a portion of the surface S′. Notice that the sub-region S′
j may be

of any shape provided it encloses the leg σ′1(j).

Fig. 1c. As for Fig. 1b. but viewed along the leg σ′1(j).


