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A simple expression for the local construction of a marginally trapped surface in a simplicial

spacetime will be presented. The result will be obtained by two distinct methods; in one

method a differential equation will be solved, in the other method the aberration formula

from special relativity will be used.
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1. Introduction.

In any spacetime the existence and location of black-holes can only be determined by a

global analysis (ie. one must construct all past-directed non-spacelike curves from future

null-infinity [1] ). This procedure cannot be applied directly to a numerical spacetime since

such spacetimes are usually not evolved to null-infinity. However, it is possible to infer the

existence of a black-hole from the existence of a closed marginally trapped surface. The

advantage of this approach is that the marginally trapped surface can be determined by a

local analysis (ie. within one Cauchy surface).

The essential idea is to find a closed 2-dimensional surface for which the outgoing null

geodesics have vanishing divergence. The procedure may be broken into two steps. First,

one determines locally the form of all 2-surfaces for which the divergence vanishes. Second,

one attempts to construct a closed 2-surface by piecing together the local 2-surfaces. This

step is also the crucial step. In any space it is always possible to find, locally, a divergence

free 2-surface (eg. any 2-plane in flat space). However, only when a black-hole exists can a

globally divergence free 2-surface be found [1] .

The main result, equation (2.6), will be obtained by two distinct methods. In the first method

the problem is viewed as one of finding an appropriate solution to a specific differential

equation. This method will be presented in the following section § 2. The same result

can also be easily derived by applying some simple formulae from special relativity. This

approach forms the basis of the second method and will be presented in section § 3.
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2. Marginally trapped surfaces.

Let M be any smooth spacetime with metric gµν and let pµ be a null-vector normalized such

that 0 = pµ;νp
ν . The condition that the divergence of pµ vanishes is then

0 = pµ;µ = gµνpµ;ν .

This may also be expressed in terms of the intrinsic and extrinsic geometries of each Cauchy

surface. Let S be a typical Cauchy surface in M and let hµν be the metric on S. The timelike

unit normal to S will be denoted by nµ and the extrinsic curvature, hα
µhβ

νnµ;ν , by Kαβ.

Now suppose that qµ is the unit vector in S tangent to the direction of propagation of the

light rays in S (ie. qµ is the projection of pµ onto S). The marginally trapped surface will

be the closed 2-surface that is everywhere normal to qµ in S. By writing gµν = −nµnν +hµν

and pµ = nµ + qµ the zero-divergence condition may also be written as (see [2] )

0 = −Kα
α + qαqβKαβ + qα|α (2.1)

where qα|α is the covariant divergence of qα in S.

Our aim is to obtain an appropriate solution of this differential equation when S is a simplicial

space. Since the metric inside each 3-simplex of S is flat and since the extrinsic curvature is

concentrated on the 2-dimensional faces of each 3-simplex (see [3] ), it follows that a constant

qµ is a solution of (2.1) in each 3-simplex. The problem now is to find a suitable choice of

the qµ in each 3-simplex so that (2.1) is satisfied for any reasonable interpolation of the qµ

across the boundary between any pair of neighbouring 3-simplicies.

Let s1 and s2 be a pair of adjacent 3-simplicies. Their 2-dimensional interface will be denoted

by s12. The value of qµ in the pair of 3-simplicies will be denoted by qµ1 in s1 and qµ2 in

s2. Suppose that the 2-plane normal to qµ1 (ie. the wave front) intersects s12. The common

region must be a line segment in s12 and will be denoted by γ12. Now since a closed 2-surface

is to be built, it follows that this line segment must also be the intersection of s12 and the

2-plane normal to qµ2 . Thus the only quantity that varies as the wave front crosses s12 is

the inclination of the wave front to s12. The above differential equation will now be used to

determine the change in inclination of the wave front in crossing s12.
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Let xµ, µ = 1, · · · 3 be a set of Euclidian coordinates in S that covers the interior of s1 ∪ s2.

In this frame the metric components are just δµν . Choose a unit orthonormal frame uµ, vµ

and wµ so that vµ and wµ lie in s12 with wµ parallel to γ12. Notice that, since the metric in

s1 ∪ s2 is flat,

0 = uµ;ν = vµ;ν = wµ
;ν .

The projections of qµ1 and qµ2 onto this frame may be written as

qµi = uµ cos ρi + vµ sin ρi i = 1, 2

where ρi is the angle between qµi and uµ. Clearly, the component of qµi parallel to wµ
i does

not change upon crossing s12. Thus the dependence upon this vector will be suppressed

in the following analysis. Consider now a path, in S, from s1 into s2. Upon this path an

interpolated qµ may be defined by

qµ(l) = uµ cos ρ(l) + vµ sin ρ(l) (2.2)

where l is the proper distance measured along the path. The function ρ(l) is chosen to vary

very rapidly over a short distance through s12. It must also be chosen so that ρ = ρ1 in s1

and ρ = ρ2 in s2.

In an earlier paper [3] it was shown that, in the neighbourhood of s12,

Kµν = uµ uν
dβ

du
(2.3)

where u is the proper distance measured along uµ and β is the angle between the timelike

unit normal (suitably interpolated across s12) on S and some constant timelike vector on

s1 ∪ s2 (the metric is flat, thus such a vector can always be constructed). The change in β

in crossing s12 is just the boost angle that maps the rest frame of s1 into the rest frame of

s2. The derivative, dβ/du, behaves like a Dirac delta-function on s12.

A substitution of (2.2) and (2.3) into (2.1) will lead to

0 = −
dβ

du
sin2 ρ− uµρ,µ sin ρ+ vµρ,µ cos ρ . (2.4)
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A simple expression for ρ,µ can be obtained by noting that the metric in s1 ∪ s2 is invariant

with respect to translations parallel to s12. Thus, by generating a family of paths from s1

to s2 (eg. by Lie dragging the original path along a vector parallel to s12), it follows that ρ

depends only upon the distance measured away from s12. Consequently

ρ,µ = uµ
dρ

du

which upon substitution into (2.4) will lead to

0 = −
dβ

du
sin2 ρ−

dρ

du
sin ρ . (2.5)

For the moment suppose that sin ρ 6= 0. The differential equation is then rather easy to

integrate, with the result that

∆β = ∆
(

tanh−1(cos ρ)
)

. (2.6)

The singular solution, sin ρ = 0, arises when s12 is a piece of the marginally trapped surface.

3. The aberration formula.

Let T1 and T2 be the 4-dimensional timelike tubes representing the evolution of s1 and s2

respectively. The metric throughout T1 ∪ T2 is flat. Let ci, i = 1, 2 be the two pieces of

the marginally trapped surface in si, i = 1, 2. Consider the family of outward pointing null

geodesics to c1. Since the metric in T1 ∪ T2 is flat it follows that for any flat spatial cross

section of this family the divergence of the null geodesics must also be zero. The pieces c1

and c2 are therefore the cross sections of this family generated by the intersection of the

family with s1 and s2 respectively. Now consider any one point on c1. The projection of the

geodesic onto s1 ∪ s2 will be a path from s1 into s2. This is the path of the light ray in S.

If the rest frames of s1 and s2 are in relative motion then the appearance of this light ray

must differ between s1 and s2.

Choose a set of Lorentzian coordinates xµ, µ = 1, · · · 4 throughout T1 ∪ T2. Let pµ be the

components of the null vector and let nµi be the unit timelike normal to si. Choose vµ
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and wµ to be unit spatial vectors tangent to s12 with wµ chosen so that 0 = pµwµ. Finally

choose uµi to be unit vector that completes the tetrad in Ti. The rest frames of s1 and s2

are related by the Lorentz transformation

nµ2 = nµ1 cosh∆β + uµ1 sinh∆β ,

uµ2 = nµ1 sinh∆β + uµ1 cosh∆β ,

where ∆β is the boost angle. The projection of pµ onto the two tetrads is

pµ = λ1 (n
µ
1 + u1µ cos ρ1 + vµ sin ρ1) = λ2 (n

µ
2 + u2µ cos ρ2 + vµ sin ρ2)

where λi, i = 1, 2 are a pair of constants. Combining this expression with the above Lorentz

transformation and a subsequent elimination of the λi will lead to

cos ρ1 =
cos ρ2 + tanh∆β

1 + cos ρ2 tanh∆β
.

This is the usual aberration formula from special relativity. It is rather easy to show that

this equation and equation (2.6) are equivalent.
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4. Discussion.

Equation (2.6) is the principal result of this paper. If a piece of a marginally trapped surface

has been constructed in one 3-simplex then that equation may be used to extend this surface

to the neighbouring 3-simplicies. Whether a continued application of this construction will

lead to a closed 2-surface is a matter of trial and error. It has been suggested [4] that

in the construction of initial data for spaces with many black holes the marginally trapped

surfaces should be built into the space as a boundary condition. This is motivated by the fact

that the marginally trapped surface will always be contained within the black hole. Thus

spacetimes built from this condition will contain all the information relevant to external

observers. Building the space in this way also avoids the trial and error method of searching

for the trapped surfaces. A systematic method of constructing marginally trapped surfaces

that are guaranteed to be closed has been presented by Nakamura et al. [2] . Whether or

not a related construction, with a similar guarantee, can be developed for the Regge calculus

is an open question.
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