
Trusted Boolean Search on Cloud Using Searchable
Symmetric Encryption

Cong Zuo
School of Computer and Information Engineering

Zhejiang Gongshang University
Zhejiang, 310018, P.R. China
Email: zuocong10@gmail.com

James Macindoe, Siyin Yang
Ron Steinfeld, Joseph K. Liu∗

Faculty of Information Technology
Clayton Campus, Monash University, VIC 3800, Australia

Email: joseph.liu@monash.edu

Abstract—A Searchable Symmetric Encryption (SSE) scheme
allows a server to search a user’s data without having to
decrypt the data. This provides the user with a high degree
of privacy and is particularly useful when data is stored on
Cloud. Numerous SSE schemes have already been proposed and
while most have excellent security properties, few meet high
performance requirements and most only support searching for
a single keyword at a time. The SSE scheme of Cash et al.
(CRYPTO 2013) is notable for its high efficiency on restricted
forms of Boolean queries, but has low efficiency for, or does not
support, other common forms of boolean queries. In this paper,
we propose a generalization and optimization of the Cash et al.
SSE scheme, which extends to support a much larger class of
boolean queries, and performs no worse, and often with much
higher efficiency than the Cash et al. scheme for the remaining
queries.

Index Terms—SSE, Boolean Query, Cloud

I. INTRODUCTION

The privacy of confidential data is highly valued by busi-
ness, government and individuals. It is becoming increasingly
common for data to be hosted off-site, especially with the
rise of cloud computing [12], [13], [16], [22], [21], [18]. It
is very useful in many scenarios, such as healthcare [23],
[15] and smart grid system [1]. However, hosting providers
often cannot be trusted to respect the privacy of the data
they host [7], especially in the face of malicious insiders. A
simple solution is to encrypt the data before uploading it to
the cloud. However, this would prevent the data from being
searched [17], [14]. For example, a user may wish to use their
mobile phone to search their email. The cloud server will not
be able to identify which documents match the search query
if the user’s email data is encrypted using standard encryption
techniques.

Searchable symmetric encryption (SSE) solves this problem
by providing a way for encrypted data to be searched securely.
However, all SSE schemes must trade off between security,
performance and functionality. Most previous schemes have
focused on security, to the detriment of performance and
functionality, which has made many of them impractical
for widespread use. Functionality includes such features as

∗ Corresponding author. The last author has a second affiliation: Fujian
Provincial Key Laboratory of Network Security and Cryptology, Fujian
Normal University, Fuzhou, Fujian, China, 350117.

boolean search, range search and key revocation. The security
of a scheme can be defined in terms of its leakage, and
formal proofs of the security can be produced. Most current
schemes leak very little. However, the performance of schemes
varies greatly, with the best performing schemes having the
same asymptotic performance as unencrypted search schemes.
However, search times can still be slow in practice, especially
when operating on very large amounts of data, as is becoming
increasingly common with the rise of “Big Data”.

If SSE schemes are to be widely deployed, they must have
a feature set that is comparable with unencrypted databases.
Boolean search is a very widely used feature of databases. Any
query which contains an AND, OR or NOT requires boolean
support to execute. Despite its importance, there are almost no
existing schemes that can handle any boolean features. In fact,
most existing SSE schemes can only support single keyword
searches and so could not run a multi-keyword search such as
“male teacher”.

Recently, Cash et al. [5] (named CJJ+13 afterwards) pub-
lished an efficient scheme which can handle handle multi-
keyword conjunctions (Computer AND Science) and a limited
set of boolean queries. Namely, in CJJ+13, only queries
of the form ws ∧ φ(w1, . . . , wn) are supported where φ
is any boolean expression. This is implemented in CJJ+13
by the client sending to the server a ‘search token’ (called
an stag) related to the keyword ws (called the ‘s-term’),
which allows the server to retrieve the set DB[ws] of all
database documents containing ws. In addition, the client
sends ‘intersection tokens’ (called xtraps) related to ws and
each of the remaining query keywords w1, . . . , wn (called
‘x-terms’), which allow the server to filter the set DB(ws)
to determine the subset of documents that also contains
each of the keywords wi, returning only those documents
that satisfy the Boolean expression φ(w1, . . . , wn). Therefore,
since the query is evaluated by looking up all documents
containing the ‘s-term’ ws, the server computation time is
proportional to |DB[ws]|, i.e. the number of database doc-
uments containing ws. For many typical query expressions,
such as “Male∧ (Australian∨Chinese)”, where |DB[ws]|
is potentially very large, this may be very inefficient. Similarly,
to support boolean queries that do not fit the restriction
form ws ∧ φ(w1, . . . , wn), such as “Australian∨Chinese”,

CJJ+13 suggest to modify such queries into the supported
form “Person ∧ (Australian ∨ Chinese)”, where “Person”
is a keyword that matches all database records. Although this
allows CJJ+13 to support any booklean query, it is also very
inefficient, requiring the server to scan all database records
to process the query. We therefore wish to develop a more
general and more efficient boolean search algorithm to deal
with these problems.

Our Contributions. In this paper, we propose a trusted
boolean search on cloud using searchable symmetric encryp-
tion scheme which extends the scheme of CJJ+13 to support
more general boolean formulas, while also significantly im-
proving the efficiency over the scheme of CJJ+13 for many
of the queries that they do support. We also give a security
proof for our generalized scheme that specifies the information
leakage to the server. The main idea behind our generalized
and more efficient CJJ+13 scheme is an algorithm to optimize
the selection of ‘search tokens’ and ‘intersection tokens’ sent
by the client in order to minimize the server computation
time for processing a given query. For example, for processing
queries such as Male∧ (Australian∨Chinese)”, instead of
sending one ‘search token’ for ‘Male’ and two ‘intersection
tokens’ for ‘Australian’ and ‘Chinese’ as in CJJ+13, the client
also considers the alternative of sending two ‘search tokens’:
one for ‘Australian’ and one for ‘Chinese’, and ‘intersection
tokens’ for ’Male’ with respect to ‘Australian’ and ‘Chinese’.
Using this alternative choice of tokens, the server would
look up all documents containing ‘Australian’ and filter them
to those containing ‘Male’, and similarly look up all docu-
ments containing ‘Chinese’ and filter them to those containing
‘Male’, merging the results. With this alternative, the server
computation time is reduced to be proportional to the total
number of documents |DB[‘Australian′]|+|DB[‘Chinese′]|
containing ‘Australian’ or ‘Chinese’, which may be much
lower than the number of documents |DB[‘Male′]| containing
‘Male’ needed to be scanned in the first alternative. Our
scheme generalizes this idea, and gives an algorithm for the
client to find the optimal choice of tokens to minimize the
estimated number of documents retrieved by the server and
hence server computation time, for any given boolean query.
Therefore, server computation time in our scheme is expected
to be no worse, and often much lower, than in the scheme
of CJJ+13. Although the alternative choice of tokens in our
scheme may increase the information leakage due to the larger
number of stags sent by the client, this leakage is still of
a limited form similar to that in the scheme of CJJ+13, as
characterised in our security proof, and we believe is still
acceptable for many applications.

A. Related Works

Many Searchable Encryption (SE) schemes have been pro-
posed. They are reviewed here, with a focus on the schemes
that are the direct predecessors of our own.

1) Linear Search: In 2000, Song et al. proposed the first
SE scheme in [20]. In their scheme, the document’s cipher text
has a structure which allows the server to identify if a given

block is the queried keyword. This means the entire document
collection must be read to process a query, which is much less
efficient than the index based search schemes.

2) Index Based Search: Using reverse indexes allows key-
word searches to be performed in constant time and are
therefore highly efficient. A number of index based schemes
have been proposed, each more efficient than its predecessor.
The first secure encrypted indexes were proposed by [9]. In his
scheme, each document has a corresponding bloom filter. Each
word in a document is inserted into the document’s bloom
filter. To search a document for a word, it is a simple process
of checking if the document’s bloom filter has the search term.
This allows a single document to be searched in O(1) time but
still requires each document to be checked in turn, resulting in
a complexity of O(d) where d is the number of documents in
the collection. Later, Chang and Mitzenmacher [6] proposed a
scheme with similar complexity properties in which an index
is stored for each file.

Curtmola et al. [8] were the first to propose using an index
that operated on the whole document collection. They present
two schemes, called SSE-1 and SSE-2. They have slightly dif-
ferent security and performance characteristics. SSE-1 makes
use of an array A and a hashtable T . For each keyword, a
linked list of search results is generated. This list is then stored
in A such that each entry in A contains a single result and
the address in A of the next result. T is used to locate the
first entry in A for each keyword. This scheme is not secure
against adaptive adversaries and it is difficult to parallelise its
search routine. In contrast, SSE-2 is secure against adaptive
adversaries and is easily parallelised. SSE-2 only requires a
hash table T . The results for a keyword w are each given a
label derived from w and a counter. These labels are used as
the keys for T and the corresponding hash table values are
encrypted versions of the document ids. [8] have the client
send the complete set of hash table keys to the server e.g.
(Fk(“foo1”), Fk(“foo2”), . . .) where Fk is a hash function.
Later, CJJ+13 outline a similar scheme based on SSE-2 with
lower communication requirements that they call Single Key-
word Search (SKS). The client instead only sends the server a
hashed version of the search keyword e.g. stag = Fk(“foo”).
The hash table keys are derived from this token hashed
together with the counter e.g. (H(stag||1), H(stag||2), . . .)
where H is a hash function. This scheme is highly efficient
and so will form the basis of our own work.

3) Alternative Approaches: Oblivious RAM (ORAM) al-
lows for searchable encryption with no leakage and a com-
pletely general set of features (including boolean search)
[19], [10]. However, it is far less efficient than the SE
solutions considered so far. [10] present two solutions, one
with O(log3N) search complexity that requires O(logN)
rounds of communication and one that operates in only two
communication rounds but has O(

√
N) search complexity,

where N is the size of the database. The most efficient SSE
schemes take only a single round of communication and have
a search complexity of O(1).

SE has been studied extensively in the public key setting.

Schemes based on public key cryptography allow any user
with the public key to insert data but only allow the user
with the private key to search it. However, the use of public
key cryptography makes the schemes less efficient than SSE.
The first such scheme was proposed by [3]. A scheme which
hides the access pattern was proposed by [4], but it requires
O(
√
N) search time. Efficient searchable encryption (ESE) [2]

is a public key based system which has asymptotically ideal
search time but weaker security guarantees.

Private information retrieval (PIR) [11] allows search on un-
encrypted data without revealing the access pattern. However,
this is not appropriate for our use case where the data itself is
confidential. It is also generally less efficient since in order to
hide the access pattern, it must touch every document when
processing a query (or else the server would know only the
accessed documents were of interest).

II. DEFINITION

We use the definition of semantic security for SSE as
CJJ+13, as shown in Definition II.1.

Definition II.1. Let Π = (EDBSETUP, SEARCH) be an SSE
scheme and let L be an algorithm. For efficient algorithms
A and S, we define experiments (algorithms) RealΠA(λ) and
IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses DB and a list of queries q. The
experiment then runs (K,EDB) ← EDBSETUP(DB).
For each i ∈ q, it runs the SEARCH protocol with client
input (K,q[i]) and server input EDB and stores the
transcript and the client’s output in t[i]. Finally the game
gives EDB and t to A, which returns a bit that the game
uses as its own output.

IdealΠA,S(λ) : A(1λ) chooses DB and a list of queries q. The
experiment then runs S(L(DB,q)) and gives its output
to A, which returns a bit that the game uses as its own
output.

We say that Π is L-semantically-secure against non-adaptive
attacks if for all efficient adversaries A there exists an algo-
rithm S such that Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S(λ) =
1] ≤ negl(λ).

Now we give the definition of our XSet Data Structure in
Algorithm 1.

III. OUR CONSTRUCTION

Our proposal aims to develop an efficient general boolean
search protocol.The best existing scheme only supports queries
of the form w1∧φ(w2, . . . , wn) [5]. Due to lack of space, we
do not review the schemes SKS,BXT and OXT of [5] here, but
only describe our new generalized scheme. We refer the reader
to [5] for a description of the schemes SKS, BXT, OXT. In
this section, a new search scheme is presented which supports
a much larger class of queries and is also often more efficient
than the scheme of [5] even for the queries they do support.

Algorithm 1 Data structure setup code, including the oblivious
XSet. The singly boxed code is used in BBS and the doubly
boxed code is used in OBS

function SETUP(DB)
KS ,KME ,KX ,KI ,KZ

$←− {0, 1}λ

EDB← {}
XSet← ∅
(IDi,Wi)← DB
for w ∈W do

stag← F (KS , w)
KE ← F (KME , w)

xtrap← F (KX , w)
c← 1
EDB[l] = e

XSet← XSet ∪ {F (xtrap, ID)}
for ID ∈ DB[w] do

l← F (stag, c)
e← Enc(KE , ID)
c← c+ 1

xind← Fp(KI , ID)
z ← Fp(KZ , w||c)
y ← xind · z−1

xtag← gFp(KX ,w)·xind

EDB[l] = (e, y)
XSet← XSet ∪ {xtag}

end for
end for
return KS ,KME ,KX ,KI ,KZ to the client and

EDB and XSet to the server
end function

A. Boolean Search

The main innovation required to implement a more gen-
eral and efficient boolean algorithm is to allow multi-
ple stags to be sent with each query. Thus, for example,
with the query “Male ∧ (Australian ∨ Chinese)”, one
could send the stags for both “Australian” and “Chinese”
and the xtrap for “Male” which would then require only
|DB[“Australian”]|+ |DB[“Chinese”]| look ups, which is
likely less than the alternative of |DB[“Male”]|. The issue
then is choosing the optimal set of stags to send.

As boolean queries are processed, they pass through three
different representations: φ, btree and xbtree. φ(w) is the
boolean expression provided by the user, such as

φ(IT,Clayton,Caulfield) = IT ∧ (Clayton ∨ Caulfield)

Note that φ is parameterised by w in our notation. This is
important because the function φ is leaked to the server, but
not the actual words in the query.

In order to perform computation on the boolean query, the
client transforms it into a tree data structure: the btree. Since
the btree contains the actual search terms, the client cannot
send it to the server. Instead, it sends the xbtree which replaces

the leaves of the btree with xtraps or xtokens (for BXT/BBS
and OXT/OBS respectively). A leaf which previously con-
tained w[α] will now contain either xtrap[α] or xtoken[α, ·, ·].
We assume there is a function MAKE XBTREE(btree, xtoken)
which performs this transformation, but we do not specify it.

In a conjunction, any term can be chosen as the sterm since
all of the documents which match the conjunction must by
definition match each term in the conjunction. Thus, the stag
for any of the terms will produce a superset. This superset
is then filtered down using the xtraps. In BXT, since it only
supports conjunction, this is done simply be checking that each
document contains all of the xterms. This is can be extended
to the boolean case. However, it is more. Our formulation is
given as a recursive algorithm CHOOSE STAGS in Algorithm
2. The algorithm processes the boolean expression as a tree.

Algorithm 2 Function to choose stags. Used on the client in
BBS and OBS.

function CHOOSE STAGS(KS ,KE , node) // Returns the
keywords that should be used as stags and the heuristic
score for doing so

if node is a leaf then
return node.w, h(node.w)

else if node.op is NOT then
return nil, inf

else if node.op is AND then
stagsmin ← nil
KEsmin ← nil
costmin ← inf
for child ∈ node.children do

stags,KEs,
cost← Choose stags(KS ,KE , child)
if cost < costmin then

stagsmin ← stags
KEsmin ← KEs
costmin ← cost

end if
end for
return stagsmin,KEsmin, costmin

else if node.op is OR then
all stags← nil
all KEs← nil
all costs← 0
for c ∈ node.children do

stags,KEs, cost← Choose stags(KS ,KE , c)
append stags to all stags
append KEs to all KEs
all costs← all costs+ cost

end for
return all stags, all KEs, all costs

end if
end function

In a disjunction (OR), the final results could match any
of the disjoined terms. So for example, for an expression
such as “w1 OR w2 OR w3”, where each of the children are

keywords, the stags for each of the children must be sent to
the server. Similarly, when the children are themselves boolean
expressions, the stags allowing each child to be evaluated must
be sent to the server. So for an expression such as “(w1 AND
w2) OR (w3 AND w4)”, the stag for either w1 or w2 must
be sent, as well as the stag for either w3 or w4.

Evaluating logical negation (NOT) is not easy to do with
an index, since indexes only allow non-negated terms to be
looked up. However, if the NOT is a child of an AND, such
as in “(NOT w1) AND w2 AND w3”, then the expression
as a whole can still be evaluated since the AND allows us
to simply send stags for a different child. However, if the
NOT is the root of the tree, or else it does not have an
AND above it, such as “(NOT w1) OR w2 OR w3”, then
our algorithm cannot evaluate the expression using an index.
This is discussed further in section III-A1.

Once a document id has been retrieved from the EDB, the
server checks if it matches the entire boolean expression using
EVALUATE EXPR, shown as algorithm 3. EVALUATE EXPR
is a simple recursive algorithm the operates over the xbtree.
When it reaches a leaf node, it evaluates if the document
contains that term using the XSet. This is done differently
in the basic and oblivious versions of the protocol.

Algorithm 3 Server side function to evaluate if an expression
is true for a document. The singly boxed code is included in
BBS and the doubly boxed code is included in OBS.

function EVALUATE EXPR(node , ID , i, c, y)

if node is a leaf then
return F (node.xtrap, ID) ∈ XSet

return node.xtoken[i, c]y ∈ XSet

else if node.op is NOT then
return NOT Evaluate Expr(node.children[1], ID)

else if node.op is AND then
for child ∈ node.children do

if not Evaluate Expr(child, ID) then
return False

end if
end for
return True

else if node.op is OR then
for child ∈ node.children do

if Evaluate Expr(child, ID) then
return True

end if
end for
return False

end if
end function

1) Appropriate Heuristics: A heuristic function h(w) must
be defined for every keyword user may include in a search. It
should provide a score of the estimated cost of looking that
term up in the index. There are many approaches that could be

taken for designing such a heuristic. A simple one would be
to preprocess the DB during SETUP by counting the number
of occurrences of each word and then storing this data with
the client. We would then have h defined as h(w) = |DB[w]|.
Note that this definition still works if w /∈W , since this would
give |DB[w]| = 0 which is an appropriate score. Another
option would be to base the heuristic on the frequency of
words in English, or whichever language is relevant.

B. Basic Boolean Search (BBS) protocol

Basic Boolean Search (BBS) is an extension of BXT to
allow boolean search, following the design of section III-A. It
is specified in algorithm 4, with calls to algorithms 1, 2 and
3. The client sends the server multiple stags and an xbtree
based on the xtrap values, as discussed in section III-A. The
SERVER SEARCH function then proceeds as per BXT except
that EVALUATE EXPR is used to check if a document matches
the expression instead of performing the check with the xtraps
directly. As with BXT, the client must send the server the KE

values, allowing them to decrypt the document ids. This is
resolved in OBS.

Algorithm 4 Basic Boolean Search (BBS) Protocol

function CLIENT SEARCH(btree)
s, cost← CHOOSE STAGS(btree)
stags← ∅
for w ∈ s do stags← stags ∪ {F (KS , w)} end for
KEs← ∅
for w ∈ s do KEs← KEs ∪ {F (KME , w)} end for
w← leaves of btree
for α ∈ [|w|] do

xtrap[α]← F (KX ,w[α])
end for
xbtree← MAKE XBTREE(btree, xtrap)
return SERVER SEARCH(stags,KEs, xbtree)

end function

function SERVER SEARCH(stags,KEs, xbtree)
for stag,KE ∈ stags,KEs do

c← 0
l← F (stag, c)
while l ∈ EDB do

e← EDB[l]
ID ← Dec(KE , e)
if EVALUATE EXPR(xbtree, ID) then

output ID
end if
c← c+ 1
l← F (stag, c)

end while
end for

end function

Unlike in BXT, in BBS, xtraps are sent for every term,
including those for which stags are sent. Since the server can
retrieve every document matching one of the stags, it doesn’t

strictly require the xtrap to check which documents match
that term. However this would require it to keep all the stag
results in memory and perform checks against them. For ease
of implementation, we send the additional xtrap, despite it
slightly increasing leakage. This problem is entirely resolved
in LLOBS, where the minimum amount is leaked.

C. Oblivious Boolean Search (OBS) protocol

Oblivious Boolean Search (OBS) is an extension of OXT
to allow boolean search, following the design of section III-A.
It is specified in algorithm 5. The client calculates the xtoken
for every combination of stag and other search keyword in the
document. Again, as in BBS, this includes xtokens for terms
that have an stag sent. These unnecessary xtoken values are
eliminated in LLOBS. The rest of the search proceeds as in
BBS, except the server does not need to decrypt the document
ids to run EVALUATE EXPR and so returns them to the client
still encrypted. As in our presentation of OXT, we use have
the client send an upper bound Tc number of xtokens. Again,
we could instead have the server tell the client when to stop
sending xtokens.

D. Low Leakage Oblivious Boolean Search (LLOBS) protocol

For simplicity of implementation, OBS sends xtokens for
every combination of sterm and keyword. However, often
many of these xtokens will never be used and so constitute
unnecessary leakage to the server. For example, say in the
expression “IT ∧ (Clayton ∨ Caulfield)”, stags were sent
for “Clayton” and “Caulfield”. Then, for every document
id retrieved from the EDB using the stag for “Clayton”,
xtokens are only needed for “IT ”, since we already know
the document matches “Clayton∨Caulfield”. This similarly
applies to documents retrieved using “Caulfield”. In cases
like these, the unnecessary xtokens could be replaced with
random group elements without compromising functionality
or performance. Indeed, the performance would be improved
since we have decreased the number of XSet look ups that
must be performed.

The general rule for determining when an xtoken is not
needed is to observe a large expression tree. If the tree was
evaluated by starting at the sterm node and gradually propagat-
ing upwards, checking xterms only as needed, then the other
children of any OR nodes would not need to be evaluated.
If execution reaches an AND node, all its children need to
be evaluated for it to be judged TRUE. For an OR node, if
the child with the sterm is true, execution can immediately
proceed upwards without evaluating other children.

Say the child of an OR that contained the sterm evaluated
as false, such as in an expression of the form “(sterm AND
FALSE) OR TRUE”. Then it would seem that the xtokens
for its other children would be necessary in order to continue
execution. However, in this case, execution can stop once it is
determined the OR is false. This can be seen by considering
the class of trees which do not contain any NOTs. If, for a
given document, an OR node is found to be false, either the
document does not match the whole expression, or if it does,

Algorithm 5 Oblivious Boolean Search (OBS) Protocol. The
boxed code differs from BBS.

function CLIENT SEARCH(btree)
s, cost← Choose Stags(btree)
stags← ∅
for w ∈ s do stags← stags ∪ {F (KS , w)} end for
w← leaves of btree
for α ∈ [|w|] do

for i ∈ [|s|] do
for c ∈ [Tc] do

xtoken[α, i, c]
← gFp(KZ ,s[i]||c)·Fp(KX ,w[α])

end for
end for

end for
xbtree← MAKE XBTREE(btree, xtoken)
for e ∈ SERVER SEARCH(stags, xbtree) do

output Dec(KE , e)
end for

end function

function SERVER SEARCH(stags, xbtree)
i← 1

for stag ∈ stags do
c← 0
l← F (stag, c)
while l ∈ EDB do

(y , e)← EDB[l]

if EVALUATE EXPR(xbtree, i, c, y) then
output e

end if
c← c+ 1
l← F (stag, c)

end while
i← i+ 1

end for
end function

this will be found by retrieving it again using a different stag.
This may not hold if there are NOTs, but since stags are never
sent for subtrees below NOTs, this is not a problem.

Thus, in general, xtokens for xterm α are not needed for
sterm i if α and i have an OR as their common ancestor.
Conversely, xtokens are only needed when the common an-
cestor of the xterm and sterm is an AND node. This can be
implemented in CHOOSE STAGS by replacing xtokens with
random elements of G when they are not needed. It also
requires modifications to be made to EVALUATE EXPR to stop
execution in the above stated conditions. Namely, when an OR
with the sterm within its children is evaluated as FALSE.

IV. SECURITY ANALYSIS

A. Leakage Analysis

1) Basic Boolean Search (BBS) Protocol: The leakage
of BBS is a generalisation of the leakage of BXT. Most

components have additional dimensions added to account for
there being multiple search terms and sterms in each query. A
number of new leakage components are also added to allow
for boolean search.
• N =

∑d
i=1 |Wi| as defined for SKS

• s̄[t, i] ∈ NT×I is the same as in SKS, except we
generalize to two dimensions to match the generalisation
of s.

• x̄[t, i] ∈ NT×A is the same as in BXT, except we
generalize to two dimensions to match the generalisation
of w.

• SX[t1, i, t2, α] = DB[s[t1, i]]∩DB[x[t2, α]] is the same
as in BXT, but has increased dimensions to match s and
w.

• SRP[t, i] = DB[s[t, i]] is the same as in BXT, except we
generalize to two dimensions to match the generalisation
of s.

• XT[t] = |w[t]| is the number of terms in each query
• ST[t] = |s[t]| is the number of sterms in each query
• φ[t] is the form of the boolean expression, as discussed

in section III-A
2) Oblivious Boolean Search (OBS) Protocol: As in OXT,

this leakage function is larger than the true leakage for the
same reasons. In the actual protocol, the server never has
access to the unencrypted indices, so RP, SRP and IP
overstate the leakage that they represent. As for OXT, this does
not render the proof based on this leakage function invalid.
• N =

∑d
i=1 |Wi| is the same as in SKS.

• s̄[t, i] ∈ NT×I is the same as in SKS, except we
generalize to two dimensions to match the generalisation
of s.

• SP[σ] is the same as in SKS, except we index it by
the values of s̄, instead of the query number t. So
SP[̄s[t, i]] = |DB[s[t, i]]|.

• RP[t, i, α] = DB[s[t, i]]∩DB[w[t, α]] where we require
s[t, i] 6= w[t, α]. This is a generalisation of the Results
Pattern in OXT. It reveals the intersection of any sterm
with any other term in the same query, since xtokens are
sent for every stag.

• SRP[t, i] = DB[s[t, i]] represents the results correspond-
ing to any stag.

• IP[t1, t2, i, j, α, β] = DB[s[t1, i]] ∩ DB[s[t2, j]] if
s[t1, i] 6= s[t2, j] and w[t1, α] = w[t2, β]. Otherwise,
IP[t1, t2, i, j, α, β] = ∅ is a generalisation of the OXT
IP

• XT[t] = |w[t]| is the number of terms in each query
• ST[t] = |s[t]| is the number of sterms in each query
• φ[t] is the form of the boolean expression, as discussed

in section III-A
3) Low Leakage Oblivious Boolean Search (LLOBS) Proto-

col: The leakage of N, s̄,SP,SRP,XT,ST and φ are exactly
as in OBS. However, the leakage captured by RP and IP is
decreased. No information is leaked in the cases where the
xtoken values are replaced with random group elements. This
is specified precisely below.

• RP [t, i, α] = DB[s[t, i]] ∩ DB[w[t, α]] if LOW-
EST ANCESTOR(s[t, i],w[t, α]) = AND

• IP [t1, t2, i, j, α, β] = DB[s[t1, i]] ∩ DB[s[t2, j]]
if s[t1, i] 6= s[t2, j] and w[t1, α] =
w[t2, β] and LOWEST ANCESTOR(s[t1, i],w[t1, α]) =
AND and LOWEST ANCESTOR(s[t2, j],w[t2, β]) =
AND. Otherwise, IP [t1, t2, i, j, α, β] = ∅.

B. Security Proof

Theorem OBS is Lobs-semantically-secure against non-
adaptive attacks where Lobs is defined in section IV-A2,
assuming that the DDH assumption holds in G, that F and
Fp are secure PRFs, that (Enc,Dec) is an IND-CPA secure
symmetric encryption scheme.

Our proof is structured in a similar way to the one in [5]. A
series of games G0, . . . , G7 and a simulator S are described.
The first game G0 is designed to have the same distribution
as RealΠA(λ) (assuming no false positives). The simulator
S produces an output consistent with G7. By showing that
the distribution of each game is negligibly different from the
previous game, it can be shown that the simulator S meets the
requirements of Definition II.1, proving the theorem. Our proof
differs from that of [5] by not including a game equivalent to
their G6. This is because we use a dictionary instead of their
TSet data structure, which we handle in earlier games. Their
TSet is a specification of a hash table with an API designed
for their purposes. We use a standard dictionary instead for
familiarity to the reader and to save specifying additional data
structures and leakages.

Game 0: G0 is a slightly modified version of the real game.
Its code is derived from the actual OBS protocol, as shown in
Algorithms 1. INITIALIZE first runs code identical to SETUP
in Algorithm 1, except the XSet calculation is moved to a
separate function, XSET SETUP, to assist in the presentation
of changes in later games. INITIALIZE then generates the
transcript using the GEN TRANS function, which calculates
the client output in the same way as CLIENT SEARCH in
Algorithm 5 and then calls SERVER SEARCH to get the server
output. Finally, it directly calculates the results to the query
by looking up each each word using DB and taking set
unions and intersections according to φ (we use notation such
that φ(DB[w]) = φ(DB[w1], . . . ,DB[wn])). Since the input
vectors to GEN TRANS consist of data for only a single query,
we denote them as st = s[t, ·] and wt = w[t, ·].

Two minor bookkeeping changes are also made. First, the
order in which the document ids are used for each keyword
w are recorded in an array WPerms[w]. The order is chosen
as a random permutation, which matches the real game. The
second change is to record the stag values after they are first
computed and look them up on subsequent uses, rather than
recomputing them.

None of these changes alter the distribution of the game
from that of RealΠA(λ). However, we assume no false positives
occur. Thus, Pr[G0 = 1] ≤ Pr[RealΠA(λ) = 1] + negl(λ).

Game 1: Compared to G0, G1 replaces the PRFs F and Fp
with random functions. Since F (KS , ·) and F (KME , ·) are

only ever called on the same input once, they can be replaced
with random selections. Fp(KX , ·), Fp(KI , ·) and Fp(KZ , ·)
are replaced by fX , fI and fZ respectively. By a standard
hybrid argument, we can show that there exist adversaries
B1,1, B1,2 and B1,3 such that Pr[G1 = 1] − Pr[G0 = 1] ≤
2 ·Advprf

F,B1,1
(λ) + 3 ·Advprf

Fp,B1,2
(λ).

Game 2: Game 2 is the same with G1 except that G2

includes e ← Enc(KE , 0
λ). It replaces the encryption of the

document ids with the encryption of 0λ. Since the ciphertexts
are never decrypted, Enc is IND-CPA secure and encryption
is run with m = |W | different keys, there exists and adversary
B2 such that Pr[G2 = 1]−Pr[G1 = 1] ≤ m ·Advind−cpa

Σ,B2
(λ).

Game 3: Game G3 restructures the computation. The
XSet elements have the form XS ELEM(wx, ID) =
gFp(KX ,wx)·Fp(KI ,ID). In G3, all possible such values are
precomputed and stored in an array H . Then, when these
values are required, they are read from the array, instead of
being recomputed. Another array Y is used for xtoken values
that do not have a corresponding ID result. The values used
are the same as for Game G2. Since the computation is only
rearranged, Pr[G3 = 1] = Pr[G2 = 1].

Game 4: Game G4 is the same except that y values are
now drawn randomly from Z∗p . It is based on G3 with y

$←−
Z∗p . y depended on the random function fZ and, due to the
modifications made in Game G3, is only computed in one
location. So replacing it with random values does not change
the distribution and Pr[G4 = 1] = Pr[G3 = 1].

Game 5: Game G5 includes those two parts based on G4:
H[IDi, w]

$←− G and Y [w, u, c]
$←− G. The values used in H

and Y are now drawn randomly from G. By the DDH problem,
we have Pr[G5 = 1]− Pr[G4 = 1] ≤ Advddh

G,B5
(λ).

The values of the X array are the ga values. X values are
raised to the power of xind when computing H and the power
of fZ(w||c) when computing Y , so xind and fZ(w||c) will act
as the b values. So in Game G4, H and Y have values of the
form gab, while in Game G5 they are replaced with random
values. Differentiating between these is the DDH problem.

Game 6 and 7: Games G6 and G7 reduce the use of H
to cases where values will be used multiple times. Game
G6 modifies XSET SETUP to only include the members of
H that could actually be tested. xtokens are only provided
for sterms and xterms in s and w respectively, so it is only
possible to check for elements of the XSet XS ELEM(w, ID)
if ID ∈ DB[s[t, i]] and w = w[t, α] for some combination
of t,i and α. All other elements cannot be distinguished from
random group elements. Thus, XSET SETUP is modified to
only include members of H matching the above condition.
All other elements are drawn randomly from G. Therefore,
we have Pr[G6 = 1] = Pr[G5 = 1].

Game G7 modifies the way GEN TRANS computes the
xtokens to only include member of H that are used mul-
tiple times. Any member of H included in the XSet by
XSET SETUP must be used by GEN TRANS, and this is tested
for by the first if statement. It is also possible GEN TRANS
will use the same member twice, if it is used in two different

queries t1 and t2. The current query number is passed in as an
argument t1 and the second if statement checks if any other
query t2 will also use the same member of H . If neither of
these conditions apply, the xtoken is drawn at random from
G. Since all repeating values of H are still used, we have
Pr[G7 = 1] = Pr[G6 = 1].

The simulator S will take the leakage Lobs(DB, s,w) =
(N, s̄,SP,RP,SRP, IP,XT,ST, φ) and produce a simulated
EDB,XSet and transaction array t. By showing that the sim-
ulator produces the same distribution as G7 and combining the
relations between the games, we can show that the simulator
satisfies the theorem. Our simulator works similar to [5], due
to the space restriction, we omit here. (We refer reader to [5]
for more detail.)

C. Low Leakage Oblivious Boolean Search (LLOBS)
The security proof for LLOBS is a slight modification of

the one for OBS above. The only change to the games is
to send random group elements for certain xtoken values, as
specified for LLOBS. No change is made to the simulator,
except that the input leakage is slightly different as described
in section IV-A3. Notably, ŵ is also still defined and calculated
in the exact same way. However, the information it captures is
decreased. It is still defined such that ŵ[t1, α] = ŵ[t2, β] iff
∃i, j : IP [t1, t2, i, j, α, β] 6= ∅. However, in OBS, if we had
w[t1, α] = w[t2, β], then it would only be possible to have
IP [t1, t2, i, j, α, β] 6= ∅ for all i, j if ∀i, j : DB[s[t1, i]] ∩
DB[s[t2, j]] 6= ∅. However, in LLOBS, it is also possible to
have IP [t1, t2, i, j, α, β] 6= ∅ simply because valid xtokens
were not included for those sterms. Thus, it can be seen, less
information is revealed in IP and ŵ for LLOBS.

V. CONCLUSION

A novel Searchable Symmetric Encryption (SSE) scheme
has been proposed which which achieves a higher level of
efficiency for a large class of queries than any previous
scheme. We chose to extend the work of [5], which has good
security and performance properties but lacks support for most
boolean queries. Our scheme differs from theirs by looking up
multiple terms in the index data structure when evaluating a
query. Our scheme allows any of the search terms to be looked
up in the index which both increases the class of suppported
queries and allows many queries that are already supported
to be evaluated more efficiently, since a more optimal set
of terms can be chosen to be looked up in the index. This
optimal choice has been investigated thoroughly, as well as
the best manner to evaluate the rest of the query. We have
proposed three new search schemes: BBS, OBS and LLOBS.
BBS is the most efficient but also the least secure. OBS
solves the security problems of BBS but requires the use of
exponentiation operations. LLOBS is a modified form of OBS
which has better security and performance properties but is
harder to implement.

ACKNOWLEDGEMENT

This work is supported by National Natural Science Foun-
dation of China (61472083).

REFERENCES

[1] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang. A secure cloud
computing based framework for big data information management of
smart grid. IEEE Trans. Cloud Computing, 3(2):233–244, 2015.

[2] M. Bellare, A. Boldyreva, and A. O’Neill. Efficiently-searchable and
deterministic asymmetric encryption. Technical report, Citeseer, 2006.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Advances in Cryptology-Eurocrypt
2004, pages 506–522. Springer, 2004.

[4] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith III. Public key
encryption that allows pir queries. In Advances in Cryptology-CRYPTO
2007, pages 50–67. Springer, 2007.

[5] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner.
Highly-scalable searchable symmetric encryption with support for
boolean queries. In Advances in Cryptology–CRYPTO 2013, pages 353–
373. Springer, 2013.

[6] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In Applied Cryptography and Network
Security, pages 442–455. Springer, 2005.

[7] C. Chu, W. T. Zhu, J. Han, J. K. Liu, J. Xu, and J. Zhou. Security
concerns in popular cloud storage services. IEEE Pervasive Computing,
12(4):50–57, 2013.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In CCS, pages 79–88. ACM, 2006.

[9] E.-J. Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216,
2003.

[10] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[11] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In focs, page
364. IEEE, 1997.

[12] K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, T. V. X.
Phuong, and Q. Xie. A dfa-based functional proxy re-encryption scheme
for secure public cloud data sharing. IEEE Trans. Information Forensics
and Security, 9(10):1667–1680, 2014.

[13] K. Liang, J. K. Liu, D. S. Wong, and W. Susilo. An efficient cloud-based
revocable identity-based proxy re-encryption scheme for public clouds
data sharing. In ESORICS 2014, Part I, volume 8712 of Lecture Notes
in Computer Science, pages 257–272. Springer, 2014.

[14] K. Liang, C. Su, J. Chen, and J. K. Liu. Efficient multi-function data
sharing and searching mechanism for cloud-based encrypted data. In
AsiaCCS 2016, pages 83–94. ACM, 2016.

[15] J. Liu, X. Huang, and J. K. Liu. Secure sharing of personal health
records in cloud computing: Ciphertext-policy attribute-based signcryp-
tion. Future Generation Comp. Syst., 52:67–76, 2015.

[16] J. K. Liu, M. H. Au, X. Huang, R. Lu, and J. Li. Fine-grained two-
factor access control for web-based cloud computing services. IEEE
Trans. Information Forensics and Security, 11(3):484–497, 2016.

[17] J. K. Liu, M. H. Au, W. Susilo, K. Liang, R. Lu, and B. Srinivasan.
Secure sharing and searching for real-time video data in mobile cloud.
IEEE Network, 29(2):46–50, 2015.

[18] J. K. Liu, K. Liang, W. Susilo, J. Liu, and Y. Xiang. Two-factor data
security protection mechanism for cloud storage system. IEEE Trans.
Computers, 65(6):1992–2004, 2016.

[19] R. Ostrovsky. Efficient computation on oblivious rams. In Proceedings
of the twenty-second annual ACM symposium on Theory of computing,
pages 514–523. ACM, 1990.

[20] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on, pages 44–55. IEEE, 2000.

[21] S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie. Attribute-
based data sharing scheme revisited in cloud computing. IEEE Trans.
Information Forensics and Security, 11(8):1661–1673, 2016.

[22] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie. An efficient file
hierarchy attribute-based encryption scheme in cloud computing. IEEE
Trans. Information Forensics and Security, 11(6):1265–1277, 2016.

[23] F. Xhafa, J. Wang, X. Chen, J. K. Liu, J. Li, and P. Krause. An efficient
PHR service system supporting fuzzy keyword search and fine-grained
access control. Soft Comput., 18(9):1795–1802, 2014.

