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SYNOPSIS

An estimate of the spatial distribution and tempora variation d soil
moisture content in the top few metres of the eath’s wrface is important for
numerous environmental studies. Soil moisture content can be determined from:
() point measurements; (ii) soil moisture models; and (iii ) remote sensing. Only a
limited areacan be monitored with an adequate spatial and tempora resolution
using the point measurement technique, while estimates from distributed soil
moisture models are generaly poa. This is due to an incomplete knowledge of
model physics and the large spatial and temporal variation d soil moisture that
results from heterogeneity in soil properties, vegetation and predpitation. Remote
sensing can be used to colled spatial data over large aeas on a routine basis,
providing a caability to make frequent and spatidly comprehensive
measurements of the nea-surface soil moisture content. However thistedniqueis
limited by an infrequent satellite repeat time and the shallow depth o the soil
moisture measurements, consisting d the top few centimetres at most. These
upper few centimetres of the soil are the most exposed to the amosphere, and
their soil moisture cntent varies rapidly in resporse to rainfall and evaporation.

This thesis overcomes the limitations of the &owve approaches for
determining soil moisture, by linking a physicad model of soil moisture movement
in bah the verticd and haizontal directions, with a data assmilation technique
that uses nea-surface soil moisture measurements. In this way, the near-surface
soil moisture measurements are interpolated in space ad time between satellite
overpasses, and extrapolated over the soil profile depth. The point measurements
of soil moisture profiles are used for cdibration d the soil moisture forecasting
model, and ongang evaluation the soil moisture profile estimation from data
asgmil ation.

To address the poor resolution in time of remote sensing chta, a water
balance gproac is used to model soil moisture during the inter-observation
period. Using this approad, the soil moisture hydrologic model is forced using
estimates of evapotranspiration and predpitation from standard meteorologicd
data. As observations of the near-surface soil moisture mntent become avail able,
they are incorporated into the soil moisture mode using an assmilation
technique. This has required the development of a hydrologic model specificaly
designed to accept remote sensing chta asinpu.

In this thesis, a theoreticd model is developed for estimating the satellite
observation depth for adive microwave observations. Moreover, a procedure is
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proposed for inferring the soil moisture profile over the observation depth, from
adive microwave remote sensing olservations.

This thesis has compared the Dirichlet boundary condtion, hard-updating
and Kaman-filtering assmilation schemes for estimation d the soil moisture
profile. Conclusions are reached for the efficiency of these asgmil ation schemes,
the depth over which nea-surface soil moisture measurements are required, and
the dfed of updatinginterval on soil moisture profile estimation. These questions
are adres=d initialy by a one-dimensional Richards equation soil moisture
forecasting model using synthetic data. The study hes $iown that the Kalman-
filter is wperior to the hard-updating and Dirichlet boundary condtion
asgmil ation schemes. It is has also shown that the observation depth dd na have
a significant effed on improving the soil moisture profile estimation when using
the Kalman-filter assmilation scheme. Moreover, the Kaman-filter was less
susceptible to urstable updates if volumetric soil moisture was modelled as the
dependent state, rather than matric head.

While suitable for the one-dimensional problem, the Richards equation
model was too computationaly demanding for the distributed caichment
applicaion. Hence, a wmputationally efficient distributed soil moisture
forecasting model for both vertical and lateral redistribution o soil moisture
content, based on a @mnceptuaisation d the Buckingham-Darcy equation, was
developed. Moreover, the Kaman-filter assmilation scheme was too
computationally demanding for forecasting d the model covariance matrix in a
spatial applicaion. To overcome this computational burden, a Modified Kaman-
filter was developed, which forecast the mode covariance matrix using a
dynamics smplificaion approad.

Both the distributed soil moisture forecasting model and the Modified
Kaman-filter have been applied to a field application a the “Nerrigundah”
experimental catchment. While an application d the one-dimensional version o
this smplified soil moisture model has evaluated the vertical redistribution
comporent, the cachment application has evaluated the lateral redistribution
comporent. Moreover, the usefulnessof near-surface soil moisture measurements
for updating d soil moisture models to improve the prediction d soil moisture
content over the soil profile has been ill ustrated, showing that an improved
estimate of the soil moisture profil e was achieved.
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LIST OF ACRONYMS AND
ABBREVIATIONS

ABDOMEN1D

ABDOMENSD

AHD
AMI
AMG
AMSR
AP

AS
DEM
DGPS
EMAC 94
EMI
EMSL
ERS
ESTAR
FWM
GCM
GOM
GPS
hh

hv

IEM
JERS
KM
MIMR
MSS
NASA

Approximate Buckingham-Darcy equatiOn for Moisture
EstimatioN in 1 Dimension

Approximate Buckingham-Darcy equatiOn for Moisture
EstimatioN in 3Dimensions

Australian Height Datum

Active Microwave Instrument

Australian Map Grid

Advanced Microwave Scanning Radiometer

Antecalent Predpitation Index

Australian Standard

Digita Elevation Modedl

Differential Global Positioning System

European Muulti-sensor Airborne Campaign 1994
EledroMagnetic Induction

European Microwave Signature L aboratory

European Remote Sensing

Eledronicdly Scanned Thinned Array Radiometer

Full Wave Model

Global Climate Model

Geometrical Optics Model

Global Positioning System

transmitted and received waves are horizontally pdarised
transmitted wave is horizontally pdarised and received wave
isverticdly pdarised

Integral Equation Model

Japanese Earth Resources Satellite

Kirchhdf Model

Multi -frequency Imaging Microwave Radiometer

Multi Spedral Scanner

National Aeronauticd and Space Administration
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NDVI

NMM

PBMR

POM

PRV
PROXSIM1D
RADAR

rms

SAR

SIF

SAM
SHA.aSHWaTr

SROT
SVAT
SWATRE
TDAS
TDR

™
USDAHL

vh

‘'A%

Normalised DifferenceV egetation Index

Neutron Moisture Meter

Push-Broom Microwave Radiometer

Physicd Optics Model

Phase Perturbation Model

PROfile eXplicit SIMulationin 1 Dimension

RAdio Detedion And Ranging

roct mean square

Synthetic Aperture Radar

Sail Indicaion Functions

Small Perturbation Model

Simulation Program for Land-Surface Hea and Water
Transport

Systeme Pour I’ Observation celaTerre

Soil Vegetation Atmosphere Transfer

Soil Water Actual TRanspiration Extended

Terrain Data Acquisition System

Time Domain Refledometry

Thematic Mapper

United States Department of Agriculture Hydrograph
Laboratory

transmitted wave is vertically pdarised and received wave is
horizontally pdarised

transmitted and received waves are verticdly pdarised
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LIST OF SYMBOLS

A - vegetation structure parameter related to plant
geometry

A degrees asped angle

A cm wave anplitude for horizontal polarisationin
layer |

A, cm wave anplitude for horizontal polarisationin
layer |+1

A" matrix relating the system states at time n+1 to
the system states at time n

A state augmented A matrix

A autoregressve smoothed A matrix

a - empiricd regresson coefficient

a - amplitude atenuation factor

a, - amplitude datenuation factor of incident layer

a, - amplitude &tenuation factor of transmisson
layer

a, - reflectance & near infra-red wavelength

a, empiricd coefficient for transmisson at
polarisation p and reception at polarisationq

a,, empiricd coefficient for verticdly pdarised
transmisson and haizontally pdarised reception

a,, reflectance & visible wavelength

a, empiricd coefficient for verticdly pdarised
transmisson and \erticaly pdarised reception

B transformation matrix

B, cm wave anplitude for horizontal polarisationin
layer |

B., cm wave amplitude for horizontal poarisationin
layer [+1

b empiricd regresson coefficient

b vegetation parameter

b - Clapp and Hornberger soil texture parameter

b, empiricd coefficient for transmisgon at
polarisation p and reception at pdarisation g

b, empiricd coefficient for verticdly pdarised
transmisson and haizontally pdarised reception

b empiricd coefficient for verticdly pdarised
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000 o0

o0

n

Y1

ag
cd cm?®°C*

cd cm?®°C*

cd cm®°C*
cd cm?®°C*

cd cm®°C*
cd cm®°C*
cd cm®°C*
cd cm®°C*
cd cm®°C*

cd cm®°C*
cd cm®°C*

cm’
cm’
cm’

cm’
cm’
cm’
cms
cdg'°C’
cdg'°C’

cms'

transmissonand verticaly pdarised reception
clay massfradion

volumetric hed capacity of the dry soil

moisture transfer coefficient

volumetric hea capacity of theith soil
constituent

wave anplitude for vertical polarisationin layer
I

wave anplitude for vertical poarisationin layer
I+1

volumetric hed capacity of the bulk soil medium
volumetric heda capacity of the bulk soil medium
inlayeri

volumetric hed capacity of air

volumetric hed capacity of quartz

volumetric hed capacity of other minerals
volumetric hed capacity of organic matter
volumetric hed capacity of the bulk soil medium
at noce 2, time step n

volumetric hed capacity of the bulk soil medium
at nockj, timestepn

volumetric hed capacity of the bulk soil medium
at node N-1, timestep n

soil cepill ary cgpaaty, Cy = 96/dy

soil capill ary capadty 06/dy at node 1

soil capill ary capadty d0/dy at node N

soil capill ary capadty d6/dy at node 2, time step
n

soil capill ary capadty d6/dy at node j, time step
n

soil capill ary capadty d0/0y at node N-1, time
stepn

propagation velocity of an electromagnetic wave
Brooks and Corey soil texture parameter

spedfic heat cgpadty of moist air,

0.242cd g' °C*

spedfic heat cagpadty of liquid water,

1.0cd g* °C*

propagation velocity of an electromagnetic wave
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in avaauum, 2.997925x< 10°cm s*

(o cdg'°C’ spedfic heat cgpadty of water vapour at constant
pressure, 0.449cd g °C*

D cm total soil depth

D... cm®s’ moleaular diffusion coefficient of water vapour
inair

D, cm wave anplitude for vertical poarisationin layer
I

D., cm wave anplitude for vertical poarisationin layer
|+1

D; cm’s'°C? thermal moisture diffusivity, D, =D, + D,,

D, cm’s*°C* thermal liquid diffusivity

D,, cm’s*°C? thermal vapour diffusivity

Dy cms’ isothermal moisture diffusivity, Dy = Dy, + Dy,

Dy cms’ isothermal liquid hydaulic condictivity, Dy, = K

Dy, cms? isothermal vapour conductivity

D«le cns’ isothermal liquid hyd-aulic conductivity of node
1, timestepn

Du'j,% cms’ average isothermal liquid hydraulic conductivity
of nodes 1 and 2, time step n

Dlﬂz cns’ isothermal liquid hyd-aulic conductivity of node
2, timestep n

Dul cms? isothermal liquid hydaulic condctivity of node
3, timestep n

D(Zj_z cns’ isothermal liquid hyd-aulic conductivity of node
j—2, time step n

D£|j_1 cms’ isothermal liquid hydaulic condctivity of node
j—1, timestep n

D‘;J-}e cns’ average isothermal liquid hydaulic conductivity
of nodesj andj -1, time step n

Dlz,- cns’ isothermal liquid hyd-aulic conductivity of node
j, timestep n

thj% cms’ average isothermal liquid hydaulic condctivity
of nodesj andj+1, timestep n

Dl;,“1 cms? isothermal liquid hydaulic condctivity of node
j+1, timestep n

DLZM cms’ isothermal liquid hydaulic condctivity of node
j*+2, timestep n

D;AN_Z cns’ isothermal liquid hyd-aulic conductivity of node

N-2, time step n
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cms

cms’

cms’

cm
cm
cm

cm

cm

cm
cm
cm
cm
cm

cm
cm
cm
cm
cm
cm
cm
cm
cns’
cns’
kPa
kPa
kPa
kPa

isothermal liquid hydraulic condctivity of node
N-1, time step n

average isothermal liquid hydaulic condctivity
of nodesN and N -1, time

step n

isothermal liquid hydaulic conductivity of node
N, time step n

lateral distance between layer grid pants
perpendicul ar distance between layer grid pants
depth o soil to interface between layer | and
layer |+1, pasitive upwards

depth of soil to interface between layer -1 and
layer |, paositive upwards

depth of soil to interface between layer |+1 and
layer 1+2, pasitive upwards

representative soil particle size

depth o soil to layer n, pasitive upwards

zeo plane displacement of the wind profile
vegetation height

soil layer thickness

phasor form of the incident electromagnetic
wave

phasor form of the refleded eledromagnetic
wave

phasor form of the transmitted el ectromagnetic
wave

expedation

incident wave anplitude

reflected wave anplitude

reflected wave atenuated amplitude

returned wave anplitude

surface scatered wave amplitude

transmitted wave amplitude

transmitted wave dtenuated amplitude

volume scatered wave anplitude

adual evapatranspiration

potential evapotranspiration

partial water vapour presaure

saturation partial water vapour presaurein air
dew point partial water vapour pressurein air
saturation partial water vapour pressure in soil at



Preface

XXi

D

D

GRADjwz,kJ

GRAD

ke 172,

Hz

Hz

cm

the surface

smoath surface enissvity

smooth surface enissvity at horizontal
polarisation

smooth surface enissvity at poarisation p
roughsurface anissvity

roughsurface emissvity at polarisation p
smooth surface enissvity at verticd polarisation
complementary field coefficient for horizontally
polarised transmisson and haizontaly pdarised
reception

complementary field coefficient when
transmisgonis at polarisation p and receptionis
at poarisationq

complementary field coefficient for verticaly
polarised transmisson and ertically pdarised
reception

frequency, f =c/A

vegetation fradional cover

Kirchhdf coefficient for horizontally pdarised
transmisson and haizontally pdarised reception
fradional absorption d layer i a polarisationp
Kirchhdf coefficient when transmisgonisat
polarisation p and receptionis at pdarisationq
transiti on frequency

Kirchhdf coefficient for vertically pdarised
transmisson and \erticaly pdarised reception
average gradient parameter for grid elementsj k|
andj+1k|

average gradient parameter for grid elementsj k|
andj,k+1,

acceleration dieto gravity, 981cm s®

shape factor of the 2ndsoil constituent being air
shape factor of theith soil constituent

matrix relating the observation vedor Z to the
system state vedor X

H matrix at time n+1

state augmented H matrix

eff ective roughessfador

crop height
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I - identity matrix

Im() - imaginary part of ()

[ - imaginary number, -1

J,() Bess=l function o thefirst kind o order O

J.0) - Bes=l function d the second knd d order v
with the imaginary argument

K cms’ unsaturated hydaulic conductivity of soil

K cms’ unsaturated hydraulic conductivity of soil for
grid element j kI

Kz cms’ average unsaturated hydaulic conauctivity of
soil for grid elementsj,k,| and j+1 k|l

K cms’ unsaturated hydaulic conductivity of soil for
grid element j+1 k||

K ers cms’ average unsaturated hydaulic conauctivity of
soil for grid elementsj,k,| andj,k+1,

K, e, cms’ unsaturated hydaulic conductivity of soil for
grid element j,k+1,|

K, cns’ saturated hydaulic conductivity of soil

K™ Kaman-filter gain matrix at time n+1

k - von Karmen constant, 0.41
Kk cm wave number, k = 217\ = 21tfe(LLE)
k, - ratio of the average temperature gradient in the

soil li quid water to the average temperature
gradient of the bulk medium

k, - ratio of the average temperature gradient in the
soil air to the average temperature gradient of the
bulk medium

K, - ratio of the average temperature gradient in the

soil quartz to the average temperature gradient of
the bulk medium

K - ratio of the average temperature gradient in the
soil mineralsto the average temperature gradient
of the bulk medium

K, - ratio of the average temperature gradient in the
soil organic matter to the average temperature
gradient of the bulk medium

k - ratio of the average temperature gradient in the
ith soil constituent to the average temperature
gradient of the bulk medium

k, cm” wave number in incident layer

K, cm x comporent of wave number in incident layer,
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k,=ksind

k, cm® z comporent of wave number in incident layer,
k,= k.cosd

K, cm® wave number in transmisson layer

K, cm® x comporent of wave number in transmisson
layer, k,= k,sind

Kk, cm” z comporent of wave number in transmisson
layer, k= k,cosd

k cm’ wave number in layer |, k= 2rfe(u£)

K, cm” freespace wave number, k = 2172,

Ko, cm* freespace wave number at the transition
frequency

K, - propagation constant depending onthe dielectric
properties of the vegetation layer

K, cm’ x comporent of wave number, k = ksind

K, cm’ x comporent of free space wave number,
k,=ksind

K, cm’ z comporent of wave number, k = kcosd

K, cm* z comporent of wave number in layer |,
k,= 2rfe(i1£) cosd

Ky cm* z comporent of wave number in layer |+1

Kk, cm* red part of zcomporent of wave number in layer
I

K,” cm* imaginary part of zcomporent of wave number
inlayer |

K, cm* z comporent of freespace wave number,
k =k cosd

k,” cm* imaginary part of zcomporent of wave number
inregiont

L cm length o hill Slope

L cm length of transmissonline

L cd g* latent hea of vaporisation

L., cd g latent hea of vaporisation at the reference
temperature T, 591.6ca g* a 10°C

LAI - led areaindex

LDF - lateral distribution fador

I cm surface correlation length

M, - soil moisture avail ability

MGRAD cm,cmcm’™ maximum gradient parameter
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MGRAD
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QVj—Lk,I

QLj,k,I -1

QLj,k,I

Qn

cm, cmem’®
cm, cmem*t

cm,cmem’®

-1

cm

cm

cm

cdcm?°C's™

kPa
cms’
cm’st

cms'

cms

cms

cms'

cms

cms

maximum gradient parameter for grid element
J.K|l

maximum gradient parameter for grid element
jHLk|

maximum gradient parameter for grid element
jok+1,l

transition rate factor

van Genuchten soil texture parameter

Clapp and Hornberger parameter

normali sed dff erence vegetation index
maximum normali sed dfferencevegetation
index

minimum normalised dff erence vegetation
Index

number of layers

refradive index

van Genuchten soil texture parameter

Clapp and Hornberger parameter

cumulative precipitation

soil thermal inertia

atmospheric presaure

polarisation mixing faaor

volumetric flux of liquid water, +ve downwards
sub-surface discharge

volumetric flux of liquid water in the verticd
diredion, +ve downwards

volumetric flux of liquid water in the vertica
diredionfor grid element j -1 k||,

+ve downwards

volumetric flux of liquid water in the vertica
diredionfor grid element j kI, +ve downwards
volumetric flux of liquid water in the latera
diredion, +ve downwards

volumetric flux of liquid water in the |ateral
diregionfor grid element j k-1, +ve
downwards

volumetric flux of liquid water in the laterd
diredionfor grid element j kI, +ve downwards
covariance matrix of the system noise
covariancematrix of the system noise & time
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step n

Q, covariancematrix of the system noise of the
system states

Qu covariance matrix of the system noise of the
system parameters

Q covariance matrix of the system noise of the
state augmented system

cdcm”s soil hea flux om of soil column, +ve

ngt dcom?s’ il hea flux at bott f soil col
upwards

Qf)p cd cm®s’ soil hea flux at top d soil column, +ve upwards

Q. cms’ volume soil moisture flux at bottom of soil
column, +ve upwards

";p cns’ volume soil moisture flux at top d soil column,

+ve upwards

Js - spedfic humidity in the soil at the surface

a, - speafic humidity inthe ar at height z,

q, gcm®s? massflux into elemental areg +ve upwards

a, cd cm?s’ soil hea flux, +ve upwards

O, gcm®s’ soil hed flux entering the battom of the soil
layer i

ap,, gcm®s? soil hea flux leavingthe top o the soil layer i

q gem®s? liquid massflux, +ve upwards

q,”1 gcm?s? liqguid massflux a node 1, time step n

a. gcm?s? liqguid massflux a node 2, time step n

q gem®s’ liquid massflux at noce 3, time step n

ar, gem®s’ liquid massflux at node j—1, time step n

ql"j gcm?s? liqguid massflux a node j, time step n

q’., gcm?®s? liquid massflux at nocej+1, time step n

au., gem®s’ liquid massflux at node N-2, time step n

qr. gem’s’ liquid massflux at node N-1, time step n

qFN gcm?s? liqguid massflux a node N, time step n

q, gom’s’ total massflux, g,= g, + g,

Oy gem?’s’ massflux out of elemental area, +ve upwards

q, gcm?®s? vapou massflux

R cms? rainfall rate

R, - reflection coefficient at nadir

R, ergg'°C’ spedfic gas constant of dry air,
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2.8704x 10 erg g* °C*

R, - reflection coefficient for horizontal polarisation

R. cd cm® s’ net radiation flux at the soil surface

R, - reflection coefficient for polarisation p

R, - reflection coefficient at the transiti on frequency

R - reflection coefficient for vertical polarisation

R, ergg' °C’ gas constant of water vapour,
4.615x 10erg g* °C*

R - reflection coefficient for horizontal polarisation
between layer |+1 and layer |

R - reflection coefficient for vertical polarisation
between layer |+1 and layer |

Ry - reflection coefficient at incidence angle 3

RH,, - relative humidity in air at the reference height z.

RH, - relative humidity in the soil at the soil surface

RH_, - relative humidity in the soil

r, scm’ agodynamic resistance

r scm’ crop resistance

S degrees pixel slope

S gg' sand massfraction

S, cd cm® soil hea storage

S roughressparameter

S gcm?® soil moisture storage

S - soil stressindex

SLOPE cmcm® surface slope in maximum downslope direction

S - water saturation, S, = 6/¢@

S - spedfic storativity

321 - water saturation d nocde j, time step n

3;2 - water saturation d node 2, time step n

S - water saturation d node N-1, time step n

St?w,» - spedfic storativity of nodej, time step n

Sw, - spedfic storativity of node 2, time step n

ST - spedfic storativity of node N-1, time step n

S - 2k /m

T degrees flight track

T - reflectivity transitionfunction

T °C soil temperature

T, °C soil temperature & node |
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T, °C soil temperature & nocde 1

T, °C soil temperature & node 2

T °C soil temperature & node N-1

T, °C soil temperature & node N

T °C soil temperature & noce 1, time step n

T, °C soil temperature & noce 2, time step n

Ty °C soil temperature & node 3, time step n

T °C soil temperature & nocke 1, time step n+1

T2n+1 °C soil temperature & noce 2, time step n+1

T, °C air temperature & reference height z,

Tom K atmospheric radiometric temperature

T, K brightnesstemperature

pr K brightnesstemperature & pdarisation p

T, K brightnesstemperature & horizontal polarisation

Tbv K brightnesstemperature & verticd podarisation

T, K eff ective soil temperature

T, - transmisson coefficient for horizontal
polarisation

T °C soil temperature of ith soil | ayer, time step n

'|'in+l °C soil temperature of ith soil | ayer, time step n+1

T °C soil temperature & nodej—1, time step n

Tjn °C soil temperature & nock j, time step n

'|'j“+1 °C soil temperature & node j+1, time step n

L °C soil temperature & nodej, time step n-1

Tjn+1 °C soil temperature & nock j, time step n+1

T, K soil temperature in layer |

Too, °C soil temperature & node N-2, time step n

Ta-y °C soil temperature & node N-1, time step n

Ty °C soil temperature & noce N, time step n

T °C soil temperature & node N-1, time step n+1

T °C soil temperature & nock N, time step n+1

T °C referencetemperature

T, °C surface soil temperature

Ty, K sky radiometric temperature

T, K soil temperature

T, K surface temperature
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T, K
T, -
T K
To K

t S

t S
t, S
t" s
! S
™ S

t S

t, S
U cms
U

u"

U

VDF -
Vv cms
Y,

w

w cdg
W _
W, g
W, -
w

W, g
W

X cm
Xl

X

Xy

X

X

>‘(0/ 0

X n/n

)A( n+1/n

soil temperaturein layer t

transmisgon coefficient for verticd polarisation
vegetation temperature

deeo soil temperature

travel time

time

rainfall duration

simulationtime & time step n
simulationtime & time step n-1
simulationtime & time step n+1

time & commencement of recessonlimb of sub-
surface hydrograph

time taken to reach stealy state

wind spedd at reference height z,

vedor of forcing

vedor of forcing at time step n

state augmented vedor of forcing

verticd distribution fador

propagation speed of electromagnetic wave
vedor of observation error

roughress pedrum

differential heda of wetting

Clapp and Hornberger saturation ratio
weight of dry soil

Clapp and Hornberger saturationratio at air
entry saturation

roughress pedrum related to the nth power of
the correlation function bythe Fourier
transformation

weight of water in moist soil

vedor of model error at timen

distancein the lateral direction

element 1 of the system state vedor

element j of the system state vector

element N of the system state vector

system state vedor

best estimate of the system state vector

initial estimate of the system state vedor
estimate of the system state vector at time n
forecast estimate of the system state vedor at
time n+1 given the system stete vector estimate
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a timen

y /N updeted estimate of the system state vedor at
time n+1 given the forecast system state vedor
estimate & time n+1

X state aigmented system state vedor

Y transformed system state vedor

Z cm distancein the vertical direction

Z degrees zenith angle

4 vedor of observations

z" vedor of observations at time n+1

z cm elevationin soil, +ve upwards from soil surface

Z, cm elevationin soil of node 1

Z cm elevationin soil of node 2

zZ, cm elevationin soil of node 3

zZ cm elevationin soil at base of layer i

z-, cm elevationin soil at top d layer i

Z- cm elevationin soil of node j—1

Z-y, cm elevationin soil of nodej-1/2

z cm elevationin soil of node|j

2.1 cm elevationin soil of nodej+1/2

zZ, cm elevationin soil of nodej+1

Z,, cm elevationin soil of node N-2

zZ, cm elevationin soil of node N-1

A cm elevationin soil of node N

Z, cm momentum roughresslength

zZ, cm hea and water vapou roughesslength

zZ cm height of temperature and relative humidity
measurements

z, cm height of wind speed measurements

a attenuation constant

a cm” coefficient of compresshility of the soil solid
matrix

a single scatering albedo d vegetation

a - auto-regressve smoothing value

a, soil parameter 1

a ith soil parameter

a. mth soil parameter

a, approximationto I, for transmisson at
polarisation p and reception at pdarisation g

a., approximationto |, for horizontally pdarised
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éQ

VO™

”

!

<<

A

Af
(At)”
(An)™

cm
gcm®e°C!

oc-l

kPa°C*
kPa°C*
Hz

cm

farad m*
farad m*
farad m*

farad m™*
farad m*

transmisson and haizontally pdarised reception
approximationto | for vertically pdarised
transmisson and \erticaly pdarised reception
phase constant

coefficient of compressbility for water

dp/dT = 1.05x 10 gcm®°C* at 20°C
empiricdly determined soil type constant for red
comporent of the dielectric constant
empiricdly determined soil type @nstant for
imaginary comporent of the dieledric constant
reflectivity

Gammafunction

reflectivity at nadir

reflectivity for horizontal polarisation

i,jth element of the matrix I for estimating
correlations

reflectivity for pdarisationp

reflectivity for vertical poarisation

two-way attenuation by \egetation

surface rms dope, y=adll

temperature efficient of water surfacetension,
—-2.09%x 10°°C" at 20°C

psychometric constant

slope of vapour presaure curve

frequency change

time step sizefor time step n

time step sizefor time step n+1

penetration depth

ratio of moleaular weight of water vapou to
moleaular weight of dry air

complex dieledric constant, e= £ + ig”

red part of dielectric constant €

imaginary part of dieledric constant €

red part of relative dieledric constant of free
water

imaginary part of relative dieledric constant of
freewater

complex dieledric constant € for layer |
complex dieledric constant € for layer 1+1
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g” farad m* imaginary componrent of complex dielectric
constant € for layer |

£ farad m™ led dielectric constant

£, farad m* complex dieledric constant of free space,
8.85x 10" farad m*

£ - complex relative dieledric constant,

gE=¢lg=¢ +ig”
- relative dielectric constant of air, 1

& - complex infinity depth relative dielectric
constant value

£, - relative dielectric constant of the soil solids

el °C maximum change in soil temperature & time step
n

1 °C target change in soil temperature

g farad m* imaginary part of dieledric constant & for region

t
- relative vegetation deledric constant

g’ . - imagi ngry part of the relative vegetation
dieledric constant

£, - static relative dielectric constant of water

&, o0 - highfrequency limit of &~

gg A% target relative changein vaumetric soil moisture

gg vv' maximum relative change in vdumetric soil
moisture & time step n

£y - maximum relative dhange in soil matric potential
at timestep n

§4, - target relative dnange in soil matric potential

n - van Genuchten soil texture parameter

n, Q intrinsic impedence of free space, 376.7Q

n, Q intrinsic impedence of incident layer

n, Q intrinsic impedence of transmisgon layer

©] - van Genuchten saturation ratio

39 degrees angle of incidence

3 degrees angle of incidence

39, degrees soil transmisson angle

39, degrees angle of incidence

39, degrees transmissonangle

9 vv' volumetric soil moisture fragion
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0, VvV volumetric soil moisture fradion at field
cgpacity

0 vV volumetric soil moisture fradion d layer i

6., vv' volumetric soil moisture fradion o grid element
J.k|l

6.1 A% volumetric soil moisture fradion d grid element
jHLk|

6,00 vv' average volumetric soil moisture fradion o grid
elementsj .kl andj+1k,|l

61, A% volumetric soil moisture fradion d grid element
jok+1,l

6,10, vv' average volumetric soil moisture fradion o grid
elementsj,k,| andj,k+1,l

9].”’k‘| vV volumetric soil moisture fradion d grid element
j,k,I, time step n

0", A% volumetric soil moisture fradion d grid element
j.kI, time step n-1

el"f(ll vv' volumetric soil moisture fradion d grid element
j.kI, time step n+1

9 vv? liquid comporent of volumetric soil moisture
fradion

8, vV liquid comporent of volumetric soil moisture
fradionat node 1

6, vv? liquid comporent of volumetric soil moisture
fradion at node 2

9“_ vV liquid comporent of volumetric soil moisture
fradionat nodej

6, vv' liguid comporent of volumetric soil moisture
fradionat node N

9|2 AR liquid comporent of volumetric soil moisture
fradionat node 2, time step n

6, vv' liquid comporent of volumetric soil moisture
fradion at node 2, time step n—1

Hl? vv' liquid comporent of volumetric soil moisture
fradionat nodej, time step n

9{;‘1 vv' liquid comporent of volumetric soil moisture
fradionat nodej, time step n-1

6" . vv' liguid comporent of volumetric soil moisture
fradion at node N-1, time step n

6" vv' liquid comporent of volumetric soil moisture

IN—l

fradion at node N-1, time step n-1
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m;

D

)

k|l

rj+lk,|

DD ©

I k)

)

> > 0000000

vap

VvV
Vv

vV
vV
vV
vv?

-1

vV

kgm

-1

VV
vv?
vV
vV
vV
AR
cm

cdcm*s'°C*t

cdcm's'°C*t
cdcm*s'°C*t

cd cm*s*°C*
cd cm*s*°C*
cdcm's'°C*
cd cm*s*°C*
cd cm's'°C*

cdcm*s'°C*t

cm
cdcm*s'°Ct

cdcm's'°C*t

cdcm's'°Ct

soil mineral matter content volume fradion d
layer i

soil organic matter content volume fraction o
layer i

residual soil moisture

residual soil moisture for grid element j k||
residual soil moisture for grid element j+1,k,|
residual soil moisture for grid element j k+1,
vapou comporent of volumetric soil moisture
fradion

vegetation moisture

volumetric moisture fraction at field capacity
volumetric fraction o liquid water
volumetric fraction d air

volumetric fraction d quartz

volumetric fraction d other minerals
volumetric fraction d organic matter
wavelength, A = c/f

apparent thermal conductivity of bulk soil
medium

thermal conductivity of liquid water

apparent thermal conductivity of air-fill ed paes,
A2 = /\a + /\vap

thermal conductivity of quartz

thermal condctivity of other minerals
thermal conductivity of organic matter
thermal conductivity of dry air aone

thermal conductivity of ith soil constituent in
bulk soil medium

apparent thermal conductivity of an air-fill ed
pore dueto vapour diffusion

free-space wavelength

apparent thermal conductivity of bulk soil

medium at noce

apparent thermal conductivity of bulk soil
medium at node j-1

average goparent thermal conductivity of bulk
soil medium for nodesj and -1
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)\j+ % cdcm's'°C*t av_erage g)parent thermal conductivity of bulk
soil medium for nodesj andj+1

A cdcm'steC! apparent thermal conductivity of bulk soil
medium at node j+1

A7 cdcm's'°C? apparent thermal conductivity of bulk soil
medium at node 1, time step n

)‘:}’2 cd cm*s'°C! average gparent thermal conductivity of bulk
soil medium at nodes 1 and 2,time step n

A cdcm's'°C? apparent thermal conductivity of bulk soil
medium at node 2, time step n

A3 cdcm's'eC? apparent thermal conductivity of bulk soil
medium at node 3, time step n

}\']_’ cdcm's'°C? apparent thermal conductivity of bulk soil
medium at noce j, time step n

)\?_l cdcm*s'°C* apparent thermal conductivity of bulk soil
medium at node j—1, time step n

)\fj‘_ % cdcm*s'°C*t average gparent thermal conductivity of bulk
soil medium for nodesj andj—1, time step n

)\fj‘+ % cdcm's'°C*t av_erage g)parent thermal condJcti.vity of bulk
soil medium for nodesj and j+1, time step n

Al cd cm’s'°C* apparent thermal conductivity of bulk soil
medium at noce j+1, time step n

Ao cdcm's'ect apparent thermal conductivity of bulk soil
medium at node N-2, time step n

ANy cd cm’s'°C* apparent thermal conductivity of bulk soil
medium at node N-1, time step n

A % cdcm*s'°C*t average goparent thermal conductivity of bulk
soil medium for nodes N-1 and N, time step n

AN cdcm's'°C? apparent thermal conductivity of bulk soil
medium at node N, time step n

u gcem's’ fluid viscosity

u henry m™* magnetic permeability

L henry m* magnetic permeability of layer |

W., henry m* magnetic permeadbility of layer [+1

u, henry m* magnetic permeability of free space,
41tx 10" henry m*

U - relative magnetic permeability, u = p/y,

H, mean o ith system state variable

My transformed mean o ith system state variable

v - empiricdly determined constant
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¢ - tortuasity fador for diffusion d gasesin soils, =
0.67

o3 - single parameter surfaceautocorrelation function

p(€,) - two parameter surface autocorrelation function

0 gcm?® fluid density

0. gcm® air density

o, gcm?® soil bulk density

o gcm?® density of liquid water

o, gcem? density of saturated water vapour

o, gcm?® density of organic matter, 1.3 gecm®

p. gcm?® soil spedfic density, 2.65 gcm®

o, gcm?® density of water vapour

o, gcm® density of water

Py x, - correlation ketween the ith and jth system state
variables

Pxx, - correlation between the transformed ith and
transformed jth system state variables

Pyx, - correlation ketween the transformed ith and
untransformed jth system state variables

PIV covariance matrix of system states

300 initial covariance matrix of system states

z;‘(’ n estimated covariance matrix of system states at
timen

s+ forecast covariance matrix of system states at

time n+1 given the @mvariance matrix at timen

soriins updated covariance matrix of system states at
timen+1

z, transformed covariance matrix of system states

o cm rms roughressheight

a, sm* eff ective conductivity

Oy standard deviation d ith system state variable

Oy standard deviation d jth system state variable

gy standard deviation d ith transformed system
state variable

o, standard deviation d jth transformed system

| state variable
o - badkscattering coefficient
o’ - bare soil badkscatering coefficient

o’ - dired backscatering coefficient from the
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(o]

O-dB

(o]

O-dr

(o]

o

ground

o

hh

n+l
q)l

dB

daB

vegetation layer

badkscattering coefficient in decibels

dired refleaded badkscatering coefficient from
the vegetation layer

badkscattering coefficient from soil covered with
avegetation layer

badkscattering coefficient for horizontally
polarised transmisson and haizontaly pdarised
reception

ratio of hhto vv pdarisation badkscatering
coefficientsin dB

badscattering coefficient for horizontally
polarised transmisson and vertically pdarised
reception

badkscattering coefficient when transmisson and
reception are & poarisationp

badkscattering coefficient when transmissonis
at pdarisation p andreceptionis at polarisationq
reflected backscatering from the vegetation
layer

total badkscatering from a soil -vegetation layer
badkscattering from the vegetation layer
badscattering coefficient for verticdly pdarised
transmissonand verticaly pdarised reception
atmospheric transmisson

opticd depth

relaxation time for water

transmissvity

transmissvity of vegetation layer

system state forecasting matrix at time step n
given the system state estimate & time step n
system state forecasting matrix at time step n+1
given the system state estimate & time step n+1
auto-regressve smoothed system state
forecasting matrix

auto-regressve smoacthed system state
forecasting matrix at time step n given the
system state estimate & timestep n
auto-regressve smoothed system state
forecasting matrix at time step n+1 given the
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system state estimate & time step n+1

o) system state forecasting matrix at time
step n given the system state estimate & time
step n

Ol system state forecasting matrix at time step n+1
given the system state estimate & time step n+1

52 auto-regressve smoacthed system state
forecasting matrix

@) auto-regressve smoothed system state

forecasting matrix at time step n given the
system state estimate & time step n

5;*1 auto-regressve smoacthed system state
forecasting matrix at time step n+1 given the
system state estimate & time step n+1

1) radians phase change of the dedromagnetic wave
® vv' soil porosity

® vv' eff ective soil porosity, @ = -6,

@, vV soil porosity of grid element j k|

Do vv' soil porosity of grid element j+1,k,|

Do, vV soil porosity of grid element j k+1,

¢ - Brooks and Corey pare size distribution index
1] cm soil matric potential

Y, cm bubHing soil matric potentia

Y, cm soil matric potential at the observation depth
17} cm soil matric potential at air entry

W, cm saturated soil matric potential

1/ cm soil matric potential at node |

Y- cm soil matric potential at node j—1

W, cm soil matric potential at node j+1

Y, cm soil matric potential at node N

Y-, cm soil matric potential at node N-1

Y-, cm soil matric potential at node N-2

Y, cm saturated soil matric potential at node 1

W, cm saturated soil matric potential at node 2
Wiy cm soil matric potential at nodej-1, time step n
Wi cm soil matric potential at node j, time step n
Wi cm soil matric potential at nodej+1, time step n

Yy cm soil matric potential at noce N, time step n
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Wy
W
QU J_n+1
Wi
(,U,Tl
W]
w;
Wi
l-,U {1+1
w2n+1
O
o™
do-gB
0

cm
cm
cm
cm
cm
cm
cm
cm
cm
cm

dB

soil matric potential at node N-1, time step n
soil matric potential at noce j, time step n—1
soil matric potential at noce j, time step n+1
soil matric potential at node N-1, time step n+1
soil matric potential at noce N, time step n+1
soil matric potential at noce 1, time step n
soil matric potential at node 2, time step n
soil matric potential at node 3, time step n
soil matric potential at node 1, time step n+1
soil matric potential at node 2, time step n+1
vedor of forcing at time step n

vedor of forcing a time step n+1
badkscattering sensiti vity

partial derivative operator

gradient operator
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