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SSYYNNOOPPSSIISS
An estimate of the spatial distribution and temporal variation of soil

moisture content in the top few metres of the earth’s surface is important for

numerous environmental studies. Soil moisture content can be determined from:

(i) point measurements; (ii ) soil moisture models; and (iii ) remote sensing. Only a

limited area can be monitored with an adequate spatial and temporal resolution

using the point measurement technique, while estimates from distributed soil

moisture models are generally poor. This is due to an incomplete knowledge of

model physics and the large spatial and temporal variation of soil moisture that

results from heterogeneity in soil properties, vegetation and precipitation. Remote

sensing can be used to collect spatial data over large areas on a routine basis,

providing a capabilit y to make frequent and spatially comprehensive

measurements of the near-surface soil moisture content. However this technique is

limited by an infrequent satellit e repeat time and the shallow depth of the soil

moisture measurements, consisting of the top few centimetres at most. These

upper few centimetres of the soil are the most exposed to the atmosphere, and

their soil moisture content varies rapidly in response to rainfall and evaporation.

This thesis overcomes the limitations of the above approaches for

determining soil moisture, by linking a physical model of soil moisture movement

in both the vertical and horizontal directions, with a data assimilation technique

that uses near-surface soil moisture measurements. In this way, the near-surface

soil moisture measurements are interpolated in space and time between satellit e

overpasses, and extrapolated over the soil profile depth. The point measurements

of soil moisture profiles are used for calibration of the soil moisture forecasting

model, and ongoing evaluation the soil moisture profile estimation from data

assimilation.

To address the poor resolution in time of remote sensing data, a water

balance approach is used to model soil moisture during the inter-observation

period. Using this approach, the soil moisture hydrologic model is forced using

estimates of evapotranspiration and precipitation from standard meteorological

data. As observations of the near-surface soil moisture content become available,

they are incorporated into the soil moisture model using an assimilation

technique. This has required the development of a hydrologic model specifically

designed to accept remote sensing data as input.

In this thesis, a theoretical model is developed for estimating the satellit e

observation depth for active microwave observations. Moreover, a procedure is
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proposed for inferring the soil moisture profile over the observation depth, from

active microwave remote sensing observations.

This thesis has compared the Dirichlet boundary condition, hard-updating

and Kalman-filtering assimilation schemes for estimation of the soil moisture

profile. Conclusions are reached for the eff iciency of these assimilation schemes,

the depth over which near-surface soil moisture measurements are required, and

the effect of updating interval on soil moisture profile estimation. These questions

are addressed initially by a one-dimensional Richards equation soil moisture

forecasting model using synthetic data. The study has shown that the Kalman-

filter is superior to the hard-updating and Dirichlet boundary condition

assimilation schemes. It is has also shown that the observation depth did not have

a significant effect on improving the soil moisture profile estimation when using

the Kalman-filter assimilation scheme. Moreover, the Kalman-filter was less

susceptible to unstable updates if volumetric soil moisture was modelled as the

dependent state, rather than matric head.

While suitable for the one-dimensional problem, the Richards equation

model was too computationally demanding for the distributed catchment

application. Hence, a computationally eff icient distributed soil moisture

forecasting model for both vertical and lateral redistribution of soil moisture

content, based on a conceptualisation of the Buckingham-Darcy equation, was

developed. Moreover, the Kalman-filter assimilation scheme was too

computationally demanding for forecasting of the model covariance matrix in a

spatial application. To overcome this computational burden, a Modified Kalman-

filter was developed, which forecast the model covariance matrix using a

dynamics simpli fication approach.

Both the distributed soil moisture forecasting model and the Modified

Kalman-filter have been applied to a field application at the “Nerrigundah”

experimental catchment. While an application of the one-dimensional version of

this simpli fied soil moisture model has evaluated the vertical redistribution

component, the catchment application has evaluated the lateral redistribution

component. Moreover, the usefulness of near-surface soil moisture measurements

for updating of soil moisture models to improve the prediction of soil moisture

content over the soil profile has been ill ustrated, showing that an improved

estimate of the soil moisture profile was achieved.



Preface xv
                                                                                                                                                                                                   

LLIISSTT  OOFF  AACCRROONNYYMMSS  AANNDD
AABBBBRREEVVIIAATTIIOONNSS

ABDOMEN1D Approximate Buckingham-Darcy equatiOn for Moisture

EstimatioN in 1 Dimension

ABDOMEN3D Approximate Buckingham-Darcy equatiOn for Moisture

EstimatioN in 3 Dimensions

AHD Australian Height Datum

AMI Active Microwave Instrument

AMG Australian Map Grid

AMSR Advanced Microwave Scanning Radiometer

API Antecedent Precipitation Index

AS Australian Standard

DEM Digital Elevation Model

DGPS Differential Global Positioning System

EMAC’94 European Multi -sensor Airborne Campaign 1994

EMI ElectroMagnetic Induction

EMSL European Microwave Signature Laboratory

ERS European Remote Sensing

ESTAR Electronically Scanned Thinned Array Radiometer

FWM Full Wave Model

GCM Global Climate Model

GOM Geometrical Optics Model

GPS Global Positioning System

hh transmitted and received waves are horizontally polarised

hv transmitted wave is horizontally polarised and received wave

is vertically polarised

IEM Integral Equation Model

JERS Japanese Earth Resources Satellit e

KM Kirchhoff Model

MIMR Multi -frequency Imaging Microwave Radiometer

MSS Multi Spectral Scanner

NASA National Aeronautical and Space Administration
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NDVI Normalised Difference Vegetation Index

NMM Neutron Moisture Meter

PBMR Push-Broom Microwave Radiometer

POM Physical Optics Model

PPM Phase Perturbation Model

PROXSIM1D PROfile eXplicit SIMulation in 1 Dimension

RADAR RAdio Detection And Ranging

rms root mean square

SAR Synthetic Aperture Radar

SIF Soil Indication Functions

SPM Small Perturbation Model

SPLaSHWaTr Simulation Program for Land-Surface Heat and Water

Transport

SPOT Systeme Pour l’Observation de la Terre

SVAT Soil Vegetation Atmosphere Transfer

SWATRE Soil Water Actual TRanspiration Extended

TDAS Terrain Data Acquisition System

TDR Time Domain Reflectometry

TM Thematic Mapper

USDAHL United States Department of Agriculture Hydrograph

Laboratory

vh transmitted wave is vertically polarised and received wave is

horizontally polarised

vv transmitted and received waves are vertically polarised
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LLIISSTT  OOFF  SSYYMMBBOOLLSS
A − vegetation structure parameter related to plant

geometry

A degrees aspect angle
Al cm wave amplitude for horizontal polarisation in

layer l
Al+1 cm wave amplitude for horizontal polarisation in

layer l+1

An matrix relating the system states at time n+1 to

the system states at time n

A state augmented A matrix

A autoregressive smoothed A matrix

a − empirical regression coeff icient

a − amplitude attenuation factor

a1 − amplitude attenuation factor of incident layer

a2 − amplitude attenuation factor of transmission
layer

anir − reflectance at near infra-red wavelength

apq empirical coeff icient for transmission at
polarisation p and reception at polarisation q

avh empirical coeff icient for vertically polarised
transmission and horizontally polarised reception

avis reflectance at visible wavelength
avv empirical coeff icient for vertically polarised

transmission and vertically polarised reception

B transformation matrix

Bl cm wave amplitude for horizontal polarisation in

layer l
Bl+1 cm wave amplitude for horizontal polarisation in

layer l+1
b empirical regression coeff icient

b vegetation parameter
b − Clapp and Hornberger soil texture parameter

bpq empirical coeff icient for transmission at
polarisation p and reception at polarisation q

bvh empirical coeff icient for vertically polarised
transmission and horizontally polarised reception

bvv empirical coeff icient for vertically polarised
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transmission and vertically polarised reception

C g g-1 clay mass fraction
Cd cal cm-3 °C-1 volumetric heat capacity of the dry soil

CE − moisture transfer coeff icient

Ci cal cm-3 °C-1 volumetric heat capacity of the ith soil
constituent

Cl wave amplitude for vertical polarisation in layer
l

Cl+1 wave amplitude for vertical polarisation in layer

l+1

CT cal cm-3 °C-1 volumetric heat capacity of the bulk soil medium

CTi
cal cm-3 °C-1 volumetric heat capacity of the bulk soil medium

in layer i

C2 cal cm-3 °C-1 volumetric heat capacity of air

C3 cal cm-3 °C-1 volumetric heat capacity of quartz

C4 cal cm-3 °C-1 volumetric heat capacity of other minerals

C5 cal cm-3 °C-1 volumetric heat capacity of organic matter

CT2

n cal cm-3 °C-1 volumetric heat capacity of the bulk soil medium

at node 2, time step n

CTj

n cal cm-3 °C-1 volumetric heat capacity of the bulk soil medium

at node j, time step n

CTN−1

n cal cm-3 °C-1 volumetric heat capacity of the bulk soil medium

at node N−1, time step n

Cψ cm -1
soil capill ary capacity, Cψ = ∂θ/∂ψ

Cψ 1
cm -1

soil capill ary capacity ∂θ/∂ψ at node 1

Cψ N
cm -1

soil capill ary capacity ∂θ/∂ψ at node N

Cψ 2

n cm -1
soil capill ary capacity ∂θ/∂ψ at node 2, time step

n

Cψ j

n cm -1
soil capill ary capacity ∂θ/∂ψ at node j, time step

n

Cψ N−1

n cm -1
soil capill ary capacity ∂θ/∂ψ at node N−1, time

step n
c cm s-1 propagation velocity of an electromagnetic wave
c − Brooks and Corey soil texture parameter

ca cal g-1 °C-1 specific heat capacity of moist air,

0.242 cal g-1 °C-1

cl cal g-1 °C-1 specific heat capacity of liquid water,

1.0 cal g-1 °C-1

co cm s-1 propagation velocity of an electromagnetic wave
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in a vacuum, 2.997925 × 1010 cm s-1

cp cal g-1 °C-1 specific heat capacity of water vapour at constant

pressure, 0.449 cal g-1 °C-1

D cm total soil depth

Datm cm-2 s-1 molecular diffusion coeff icient of water vapour
in air

Dl cm wave amplitude for vertical polarisation in layer
l

Dl+1 cm wave amplitude for vertical polarisation in layer

l+1

DT cm2 s-1 °C-1 thermal moisture diffusivity, DT = DTl + DTv

DTl cm2 s-1 °C-1 thermal li quid diffusivity

DTv cm2 s-1 °C-1 thermal vapour diffusivity

Dψ cm s-1
isothermal moisture diffusivity, Dψ = Dψl + Dψv

Dψl
cm s-1

isothermal li quid hydraulic conductivity, Dψl = K

Dψv
cm s-1 isothermal vapour conductivity

Dψl1
n cm s-1 isothermal li quid hydraulic conductivity of node

1, time step n

Dψl112

n cm s-1 average isothermal li quid hydraulic conductivity

of nodes 1 and 2, time step n

Dψl2

n cm s-1 isothermal li quid hydraulic conductivity of node

2, time step n

Dψl3

n cm s-1 isothermal li quid hydraulic conductivity of node

3, time step n

Dψl j −2

n cm s-1 isothermal li quid hydraulic conductivity of node

j−2, time step n

Dψl j −1

n cm s-1 isothermal li quid hydraulic conductivity of node

j−1, time step n

Dψl j −1
2

n cm s-1 average isothermal li quid hydraulic conductivity

of nodes j and j −1, time step n

Dψl j

n cm s-1 isothermal li quid hydraulic conductivity of node

j, time step n

Dψl j +1
2

n cm s-1 average isothermal li quid hydraulic conductivity

of nodes j and j+1, time step n

Dψl j +1

n cm s-1 isothermal li quid hydraulic conductivity of node

j+1, time step n

Dψl j +2

n cm s-1 isothermal li quid hydraulic conductivity of node

j+2, time step n

DψlN−2

n cm s-1 isothermal li quid hydraulic conductivity of node

N−2, time step n



Preface xx
                                                                                                                                                                                                   

DψlN−1

n cm s-1 isothermal li quid hydraulic conductivity of node

N−1, time step n

Dψl
N−1

2

n cm s-1 average isothermal li quid hydraulic conductivity

of nodes N and N −1, time

step n

DψlN
n cm s-1 isothermal li quid hydraulic conductivity of node

N, time step n
DX cm lateral distance between layer grid points
DZ cm perpendicular distance between layer grid points
dl cm depth of soil to interface between layer l and

layer l+1, positive upwards

dl-1 cm depth of soil to interface between layer l−1 and

layer l, positive upwards

dl+1 cm depth of soil to interface between layer l+1 and
layer l+2, positive upwards

dm cm representative soil particle size
dn cm depth of soil to layer n, positive upwards
do cm zero plane displacement of the wind profile
dveg cm vegetation height
dz cm soil l ayer thickness

Ei
phasor form of the incident electromagnetic

wave

Er
phasor form of the reflected electromagnetic

wave

Et
phasor form of the transmitted electromagnetic

wave
E expectation
Ei cm incident wave amplitude
Er cm reflected wave amplitude
Er

´ cm reflected wave attenuated amplitude
ER cm returned wave amplitude
Es cm surface scattered wave amplitude
Et cm transmitted wave amplitude
Et

´ cm transmitted wave attenuated amplitude
Ev cm volume scattered wave amplitude
ETa cm s-1 actual evapotranspiration
ETp cm s-1 potential evapotranspiration

e kPa partial water vapour pressure
ea kPa saturation partial water vapour pressure in air

ed kPa dew point partial water vapour pressure in air
eS kPa saturation partial water vapour pressure in soil at
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the surface

e − smooth surface emissivity

eh − smooth surface emissivity at horizontal
polarisation

ep − smooth surface emissivity at polarisation p

eR − rough surface emissivity

eR p − rough surface emissivity at polarisation p

ev − smooth surface emissivity at vertical polarisation

Fhh complementary field coefficient for horizontally

polarised transmission and horizontally polarised
reception

Fpq complementary field coefficient when
transmission is at polarisation p and reception is

at polarisation q
Fvv complementary field coefficient for vertically

polarised transmission and vertically polarised
reception

f Hz frequency, f = c/λ
fc − vegetation fractional cover

fhh Kirchhoff coefficient for horizontally polarised
transmission and horizontally polarised reception

fpi fractional absorption of layer i at polarisation p

fpq Kirchhoff coefficient when transmission is at
polarisation p and reception is at polarisation q

fT Hz transition frequency
fvv Kirchhoff coefficient for vertically polarised

transmission and vertically polarised reception
GRADj+1/2,k,l − average gradient parameter for grid elements j,k,l

and j+1,k,l
GRADj,k+1/2,l − average gradient parameter for grid elements j,k,l

and j,k+1,l
g cm s-2 acceleration due to gravity, 981 cm s-2

g2 − shape factor of the 2nd soil constituent being air

gi − shape factor of the ith soil constituent

H matrix relating the observation vector Z to the

system state vector X
Hn+1 H matrix at time n+1

H state augmented H matrix

h − effective roughness factor

hc cm crop height
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I − identity matrix

Im( ) − imaginary part of ( )

i − imaginary number, •−1

J0( ) Bessel function of the first kind of order 0

J-v( ) − Bessel function of the second kind of order v
with the imaginary argument

K cm s-1 unsaturated hydraulic conductivity of soil

Kj,k,l cm s-1 unsaturated hydraulic conductivity of soil for
grid element j,k,l

Kj+1/2,k,l cm s-1 average unsaturated hydraulic conductivity of
soil for grid elements j,k,l and j+1,k,l

Kj+1,k,l cm s-1 unsaturated hydraulic conductivity of soil for
grid element j+1,k,l

Kj,k+1/2,l cm s-1 average unsaturated hydraulic conductivity of
soil for grid elements j,k,l and j,k+1,l

Kj,k+1,l cm s-1 unsaturated hydraulic conductivity of soil for
grid element j,k+1,l

Ks cm s-1 saturated hydraulic conductivity of soil

Kn+1 Kalman-filter gain matrix at time n+1

k − von Karmen constant, 0.41

k cm-1
wave number, k = 2π/λ = 2πf•(µε)

k1 − ratio of the average temperature gradient in the
soil li quid water to the average temperature

gradient of the bulk medium

k2 − ratio of the average temperature gradient in the

soil air to the average temperature gradient of the
bulk medium

k3 − ratio of the average temperature gradient in the
soil quartz to the average temperature gradient of

the bulk medium

k4 − ratio of the average temperature gradient in the

soil minerals to the average temperature gradient
of the bulk medium

k5 − ratio of the average temperature gradient in the
soil organic matter to the average temperature
gradient of the bulk medium

ki − ratio of the average temperature gradient in the

ith soil constituent to the average temperature

gradient of the bulk medium

k1 cm-1 wave number in incident layer

kx1 cm-1 x component of wave number in incident layer,
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kx1 = k1sinϑ
kz1 cm-1 z component of wave number in incident layer,

kz1 = k1cosϑ
k2 cm-1 wave number in transmission layer

kx2 cm-1 x component of wave number in transmission

layer, kx2 = k2sinϑ
kz2 cm-1 z component of wave number in transmission

layer, kz2 = k2cosϑ
kl cm-1

wave number in layer l, kl = 2πf•(µlεl)

ko cm-1
free space wave number, ko = 2π/λo

koT
cm-1 free space wave number at the transition

frequency

kv − propagation constant depending on the dielectric
properties of the vegetation layer

kx cm-1
x component of wave number, kx = ksinϑ

kxo cm-1 x component of free space wave number,

kxo = kosinϑ
kz cm-1

z component of wave number, kz = kcosϑ
kzl cm-1 z component of wave number in layer l,

kzl = 2πf•(µlεl) cosϑ
kz(l+1) cm-1 z component of wave number in layer l+1

kzl´ cm-1 real part of z component of wave number in layer
l

kzl″ cm-1 imaginary part of z component of wave number
in layer l

kzo cm-1 z component of free space wave number,

kzo = kocosϑ
kzt″ cm-1 imaginary part of z component of wave number

in region t
L cm length of hill slope

L cm length of transmission line
L cal g-1 latent heat of vaporisation

Lref cal g-1 latent heat of vaporisation at the reference

temperature Tref, 591.6 cal g-1 at 10 °C
LAI − leaf area index

LDF − lateral distribution factor

l cm surface correlation length
Mo − soil moisture availabilit y

MGRAD cm, cm cm-1 maximum gradient parameter
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MGRADj,k,l cm, cm cm-1 maximum gradient parameter for grid element

j,k,l
MGRADj+1,k,l cm, cm cm-1 maximum gradient parameter for grid element

j+1,k,l
MGRADj,k+1,l cm, cm cm-1 maximum gradient parameter for grid element

j,k+1,l
m cm-1 transition rate factor

m − van Genuchten soil texture parameter

mw cm Clapp and Hornberger parameter
NDVI − normalised difference vegetation index

NDVImax − maximum normalised difference vegetation
index

NDVImin − minimum normalised difference vegetation
index

N − number of layers

n − refractive index

n − van Genuchten soil texture parameter

nw − Clapp and Hornberger parameter

P cm cumulative precipitation

P cal cm-2 °C-1 s-1/2 soil thermal inertia

Patm kPa atmospheric pressure
Q − polarisation mixing factor

Q cm s-1 volumetric flux of liquid water, +ve downwards

Qss cm2 s-1 sub-surface discharge
QV cm s-1 volumetric flux of liquid water in the vertical

direction, +ve downwards

QV j −1, k, l
cm s-1 volumetric flux of liquid water in the vertical

direction for grid element j −1,k,l,

+ve downwards

QV j ,k,l
cm s-1 volumetric flux of liquid water in the vertical

direction for grid element j,k,l, +ve downwards
QL cm s-1 volumetric flux of liquid water in the lateral

direction, +ve downwards

QL j,k,l −1
cm s-1 volumetric flux of liquid water in the lateral

direction for grid element j,k,l−1, +ve

downwards

QL j, k,l
cm s-1 volumetric flux of liquid water in the lateral

direction for grid element j,k,l, +ve downwards

Q covariance matrix of the system noise

Qn covariance matrix of the system noise at time
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step n

QX
covariance matrix of the system noise of the
system states

Qα covariance matrix of the system noise of the
system parameters

Q covariance matrix of the system noise of the
state augmented system

Qbot
T cal cm-2 s-1 soil heat flux at bottom of soil column, +ve

upwards

Qtop
T cal cm-2 s-1 soil heat flux at top of soil column, +ve upwards

Qbot
ψ cm s-1 volume soil moisture flux at bottom of soil

column, +ve upwards

Qtop
ψ cm s-1 volume soil moisture flux at top of soil column,

+ve upwards

qS − specific humidity in the soil at the surface

qT − specific humidity in the air at height zT

qin g cm-2 s-1 mass flux into elemental area, +ve upwards
qh cal cm-2 s-1 soil heat flux, +ve upwards

qhi
g cm-2 s-1 soil heat flux entering the bottom of the soil

layer i

qhi−1
g cm-2 s-1 soil heat flux leaving the top of the soil l ayer i

ql g cm-2 s-1 liquid mass flux, +ve upwards

ql1

n g cm-2 s-1 liquid mass flux at node 1, time step n

ql2
n g cm-2 s-1 liquid mass flux at node 2, time step n

ql3

n g cm-2 s-1 liquid mass flux at node 3, time step n

ql j −1

n g cm-2 s-1
liquid mass flux at node j−1, time step n

ql j

n g cm-2 s-1 liquid mass flux at node j, time step n

ql j +1

n g cm-2 s-1 liquid mass flux at node j+1, time step n

qlN−2

n g cm-2 s-1
liquid mass flux at node N−2, time step n

qlN−1

n g cm-2 s-1
liquid mass flux at node N−1, time step n

qlN

n g cm-2 s-1 liquid mass flux at node N, time step n

qm g cm-2 s-1
total mass flux, qm = ql + qv

qout g cm-2 s-1 mass flux out of elemental area, +ve upwards

qv g cm-2 s-1 vapour mass flux
R cm s-1 rainfall rate

R0 − reflection coefficient at nadir

Rd erg g-1 °C-1 specific gas constant of dry air,
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2.8704 × 106 erg g-1 °C-1

Rh − reflection coefficient for horizontal polarisation

Rnet cal cm-2 s-1 net radiation flux at the soil surface
Rp − reflection coefficient for polarisation p

RT − reflection coefficient at the transition frequency

Rv − reflection coefficient for vertical polarisation

RV erg g-1 °C-1 gas constant of water vapour,

4.615 × 106 erg g-1 °C-1

Rh(l+1)l − reflection coefficient for horizontal polarisation

between layer l+1 and layer l
Rv(l+1)l − reflection coefficient for vertical polarisation

between layer l+1 and layer l

Rϑ − reflection coefficient at incidence angle ϑ
RHair − relative humidity in air at the reference height zT

RHS − relative humidity in the soil at the soil surface

RHsoil − relative humidity in the soil

ra s cm-1 aerodynamic resistance
rc s cm-1 crop resistance

S degrees pixel slope
S g g-1 sand mass fraction

Sh cal cm-3 soil heat storage
SR roughness parameter

Sθ g cm-3 soil moisture storage

SI − soil stress index

SLOPE cm cm-1 surface slope in maximum downslope direction
Sw − water saturation, Sw = θ/φ
S0ψ − specific storativity

Sw j

n − water saturation of node j, time step n

Sw2

n − water saturation of node 2, time step n

SwN−1

n − water saturation of node N−1, time step n

S0ψ j

n − specific storativity of node j, time step n

S0ψ 2

n − specific storativity of node 2, time step n

S0ψ N−1

n − specific storativity of node N−1, time step n

s − 2ko/m

T degrees flight track

T − reflectivity transition function

T °C soil temperature

Tj °C soil temperature at node j
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T1 °C soil temperature at node 1

T2 °C soil temperature at node 2

TN−1 °C soil temperature at node N−1

TN °C soil temperature at node N

T1
n °C soil temperature at node 1, time step n

T2
n °C soil temperature at node 2, time step n

T3
n °C soil temperature at node 3, time step n

T1
n+1 °C soil temperature at node 1, time step n+1

T2
n+1 °C soil temperature at node 2, time step n+1

Tair °C air temperature at reference height zT

Tatm K atmospheric radiometric temperature
Tb K brightness temperature

Tb p
K brightness temperature at polarisation p

Tbh
K brightness temperature at horizontal polarisation

Tbv
K brightness temperature at vertical polarisation

Teff K effective soil temperature
Th − transmission coeff icient for horizontal

polarisation

Ti
n °C soil temperature of ith soil l ayer, time step n

Ti
n+1 °C soil temperature of ith soil l ayer, time step n+1

Tj −1
n °C soil temperature at node j−1, time step n

Tj
n °C soil temperature at node j, time step n

Tj +1
n °C soil temperature at node j+1, time step n

Tj
n−1 °C soil temperature at node j, time step n−1

Tj
n+1 °C soil temperature at node j, time step n+1

Tl K soil temperature in layer l

TN−2
n °C soil temperature at node N−2, time step n

TN−1
n °C soil temperature at node N−1, time step n

TN
n °C soil temperature at node N, time step n

TN−1
n+1 °C soil temperature at node N−1, time step n+1

TN
n+1 °C soil temperature at node N, time step n+1

Tref °C reference temperature

TS °C surface soil temperature

Tsky K sky radiometric temperature

Tsoil K soil temperature
Tsurf K surface temperature
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Tt K soil temperature in layer t
Tv − transmission coeff icient for vertical polarisation

Tveg K vegetation temperature

T∞ K deep soil temperature

t s travel time
t s time

td s rainfall duration
tn s simulation time at time step n

tn−1 s simulation time at time step n−1

tn+1 s simulation time at time step n+1
tr s time at commencement of recession limb of sub-

surface hydrograph
ts s time taken to reach steady state

U cm s-1 wind speed at reference height zU

U vector of forcing

Un vector of forcing at time step n

U state augmented vector of forcing

VDF − vertical distribution factor

v cm s-1 propagation speed of electromagnetic wave

v vector of observation error

W roughness spectrum

W cal g-1 differential heat of wetting
W − Clapp and Hornberger saturation ratio

Wd g weight of dry soil

Wi − Clapp and Hornberger saturation ratio at air
entry saturation

Wn roughness spectrum related to the nth power of
the correlation function by the Fourier

transformation
Ww g weight of water in moist soil

wn vector of model error at time n

X cm distance in the lateral direction

X1 element 1 of the system state vector
Xj element j of the system state vector

XN element N of the system state vector

X system state vector
ˆ X best estimate of the system state vector
ˆ X 

0 / 0 initial estimate of the system state vector
ˆ X n / n estimate of the system state vector at time n
ˆ X n +1/ n forecast estimate of the system state vector at

time n+1 given the system state vector estimate
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at time n
ˆ X n +1/ n +1 updated estimate of the system state vector at

time n+1 given the forecast system state vector

estimate at time n+1

X state augmented system state vector

Y transformed system state vector

Z cm distance in the vertical direction

Z degrees zenith angle

Z vector of observations

Zn vector of observations at time n+1

z cm elevation in soil , +ve upwards from soil surface

z1 cm elevation in soil of node 1

z2 cm elevation in soil of node 2

z3 cm elevation in soil of node 3

zi cm elevation in soil at base of layer i

zI−1
cm elevation in soil at top of layer i

zj−1
cm elevation in soil of node j−1

zj−1/2
cm elevation in soil of node j−1/2

zj cm elevation in soil of node j
zj+1/2 cm elevation in soil of node j+1/2

zj+1 cm elevation in soil of node j+1

zN-2 cm elevation in soil of node N−2

zN-1 cm elevation in soil of node N−1

zN cm elevation in soil of node N
zom cm momentum roughness length
zov cm heat and water vapour roughness length

zT cm height of temperature and relative humidity
measurements

zU cm height of wind speed measurements

α attenuation constant

α cm-1 coeff icient of compressibilit y of the soil solid
matrix

α single scattering albedo of vegetation

α − auto-regressive smoothing value

α1
soil parameter 1

αi
ith soil parameter

αm
mth soil parameter

αpq
approximation to Ipq for transmission at

polarisation p and reception at polarisation q

αhh
approximation to Ihh for horizontally polarised



Preface xxx
                                                                                                                                                                                                   

transmission and horizontally polarised reception

αvv
approximation to Ivv for vertically polarised
transmission and vertically polarised reception

β phase constant

β cm-1 coeff icient of compressibilit y for water

β g cm-3 °C-1 ∂ρo/∂T = 1.05 × 106 g cm-3 °C-1 at 20 °C
β ´ − empirically determined soil type constant for real

component of the dielectric constant

β ″ − empirically determined soil type constant for

imaginary component of the dielectric constant

Γ − reflectivity

Γ( ) Gamma function

Γ0 − reflectivity at nadir

Γh − reflectivity for horizontal polarisation

Γi,j − i,jth element of the matrix Γ for estimating

correlations

Γp − reflectivity for polarisation p

Γv − reflectivity for vertical polarisation

Γveg − two-way attenuation by vegetation

γ − surface rms slope, γ =σ/l

γ °C-1 temperature coeff icient of water surface tension,

−2.09 × 10-3 °C-1 at 20°C
γ kPa °C-1 psychometric constant

∆ kPa °C-1 slope of vapour pressure curve

∆f Hz frequency change

(∆t)n s time step size for time step n

(∆t)n+1 s time step size for time step n+1

δp
cm penetration depth

∈ − ratio of molecular weight of water vapour to

molecular weight of dry air

ε farad m-1
complex dielectric constant, ε = ε´ + iε″

ε´ farad m-1
real part of dielectric constant ε

ε″ farad m-1
imaginary part of dielectric constant ε

εfw´ − real part of relative dielectric constant of free
water

εfw″ − imaginary part of relative dielectric constant of
free water

εl
farad m-1

complex dielectric constant ε for layer l

εl+1
farad m-1

complex dielectric constant ε for layer l+1
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εl″ farad m-1 imaginary component of complex dielectric

constant ε for layer l

εleaf
farad m-1 leaf dielectric constant

εo
farad m-1 complex dielectric constant of free space,

8.85 × 10-12 farad m-1

εr − complex relative dielectric constant,

εr = ε /εo = εr´ + iεr″
ε rair − relative dielectric constant of air, 1

ε r∞ − complex infinity depth relative dielectric

constant value

εs − relative dielectric constant of the soil solids

ε T
n °C maximum change in soil temperature at time step

n
ˆ ε T °C target change in soil temperature

ε″t
farad m-1

imaginary part of dielectric constant ε for region

t

εveg − relative vegetation dielectric constant

′ ′ ε veg
− imaginary part of the relative vegetation

dielectric constant

εwo − static relative dielectric constant of water

εw∞ − high frequency limit of εfw″
ˆ ε θ v v-1 target relative change in volumetric soil moisture

εθ
n v v-1 maximum relative change in volumetric soil

moisture at time step n

εψ
n − maximum relative change in soil matric potential

at time step n
ˆ ε ψ − target relative change in soil matric potential

η − van Genuchten soil texture parameter

ηo Ω intrinsic impedence of free space, 376.7 Ω
η1 Ω intrinsic impedence of incident layer

η2 Ω intrinsic impedence of transmission layer

Θ − van Genuchten saturation ratio

ϑ degrees angle of incidence

ϑi
degrees angle of incidence

ϑs
degrees soil transmission angle

ϑ1
degrees angle of incidence

ϑ2
degrees transmission angle

θ v v-1 volumetric soil moisture fraction
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θfc
v v-1 volumetric soil moisture fraction at field

capacity

θi
v v-1 volumetric soil moisture fraction of layer i

θj,k,l
v v-1 volumetric soil moisture fraction of grid element

j,k,l

θj+1,k,l
v v-1 volumetric soil moisture fraction of grid element

j+1,k,l

θj+1/2,k,l
v v-1 average volumetric soil moisture fraction of grid

elements j,k,l and j+1,k,l

θj,k+1,l
v v-1 volumetric soil moisture fraction of grid element

j,k+1,l

θj,k+1/2,l
v v-1 average volumetric soil moisture fraction of grid

elements j,k,l and j,k+1,l

θ j ,k,l
n v v-1 volumetric soil moisture fraction of grid element

j,k,l, time step n

θ j ,k,l
n-1 v v-1 volumetric soil moisture fraction of grid element

j,k,l, time step n−1

θ j ,k,l
n+1 v v-1 volumetric soil moisture fraction of grid element

j,k,l, time step n+1

θl
v v-1 liquid component of volumetric soil moisture

fraction

θ l1
v v-1 liquid component of volumetric soil moisture

fraction at node 1

θ l2
v v-1 liquid component of volumetric soil moisture

fraction at node 2

θ lj
v v-1 liquid component of volumetric soil moisture

fraction at node j

θ lN
v v-1 liquid component of volumetric soil moisture

fraction at node N

θ l2

n v v-1 liquid component of volumetric soil moisture
fraction at node 2, time step n

θ l2

n−1 v v-1 liquid component of volumetric soil moisture

fraction at node 2, time step n−1

θ l j

n v v-1 liquid component of volumetric soil moisture
fraction at node j, time step n

θ l j

n−1 v v-1 liquid component of volumetric soil moisture

fraction at node j, time step n−1

θ lN−1

n v v-1 liquid component of volumetric soil moisture

fraction at node N−1, time step n

θ lN−1

n−1 v v-1 liquid component of volumetric soil moisture

fraction at node N−1, time step n−1
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θmi
v v-1 soil mineral matter content volume fraction of

layer i
θoi

v v-1 soil organic matter content volume fraction of

layer i

θr
v v-1 residual soil moisture

θ r j ,k ,l v v-1 residual soil moisture for grid element j,k,l

θ r j +1,k ,l
v v-1 residual soil moisture for grid element j+1,k,l

θ r j ,k+1,l
v v-1 residual soil moisture for grid element j,k+1,l

θv
v v-1 vapour component of volumetric soil moisture

fraction

θveg
kg m-2 vegetation moisture

θwp
v v-1 volumetric moisture fraction at field capacity

θ1
v v-1 volumetric fraction of liquid water

θ2
v v-1 volumetric fraction of air

θ3
v v-1 volumetric fraction of quartz

θ4
v v-1 volumetric fraction of other minerals

θ5
v v-1 volumetric fraction of organic matter

λ cm wavelength, λ = c/f

λ cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil
medium

λ1 cal cm-1 s-1 °C-1 thermal conductivity of liquid water

λ2 cal cm-1 s-1 °C-1 apparent thermal conductivity of air-fill ed pores,

λ2  = λa + λvap

λ3 cal cm-1 s-1 °C-1 thermal conductivity of quartz

λ4 cal cm-1 s-1 °C-1 thermal conductivity of other minerals

λ5 cal cm-1 s-1 °C-1 thermal conductivity of organic matter

λa cal cm-1 s-1 °C-1 thermal conductivity of dry air alone

λi cal cm-1 s-1 °C-1 thermal conductivity of ith soil constituent in

bulk soil medium

λvap cal cm-1 s-1 °C-1 apparent thermal conductivity of an air-fill ed

pore due to vapour diffusion

λo
cm free-space wavelength

λ j
cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j

λ j −1 cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j−1

λ
j − 1

2
cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium for nodes j and j−1
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λ
j + 1

2
cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium for nodes j and j+1

λ j +1 cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j+1

λ1
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node 1, time step n

λ112

n
cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium at nodes 1 and 2, time step n

λ 2
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node 2, time step n
λ3

n
cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node 3, time step n

λ j
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j, time step n

λ j −1
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j−1, time step n

λ
j − 1

2

n cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium for nodes j and j−1, time step n

λ
j + 1

2

n cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium for nodes j and j+1, time step n

λ j +1
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node j+1, time step n

λ N−2
n

cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node N−2, time step n

λ N−1
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node N−1, time step n

λN− 1
2

n cal cm-1 s-1 °C-1 average apparent thermal conductivity of bulk

soil medium for nodes N−1 and N, time step n

λ N
n cal cm-1 s-1 °C-1 apparent thermal conductivity of bulk soil

medium at node N, time step n

µ g cm-1 s-1 fluid viscosity

µ henry m-1 magnetic permeabilit y

µl
henry m-1 magnetic permeabilit y of layer l

µl+1
henry m-1 magnetic permeabilit y of layer l+1

µo
henry m-1 magnetic permeabilit y of free space,

4π × 10-7 henry m-1

µr − relative magnetic permeabilit y, µr = µ/µo

µX i
mean of ith system state variable

µ
X

i
' transformed mean of ith system state variable

ν − empirically determined constant
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ξ − tortuosity factor for diffusion of gases in soils, ≈
0.67

ρ(ξ) − single parameter surface autocorrelation function

ρ(ξ,ζ) − two parameter surface autocorrelation function

ρ g cm-3 fluid density

ρair
g cm-3 air density

ρb
g cm-3 soil bulk density

ρl
g cm-3 density of liquid water

ρo
g cm-3 density of saturated water vapour

ρom
g cm-3 density of organic matter, 1.3 g cm-3

ρs
g cm-3 soil specific density, 2.65 g cm-3

ρv
g cm-3 density of water vapour

ρw
g cm-3 density of water

ρXi Xj − correlation between the ith and jth system state

variables
ρ

Xi
' X j

' − correlation between the transformed ith and

transformed jth system state variables
ρ

Xi
' X j

− correlation between the transformed ith and

untransformed jth system state variables

ΣX covariance matrix of system states

ΣX
0 / 0 initial covariance matrix of system states

ΣX
n / n estimated covariance matrix of system states at

time n

ΣX
n +1/ n forecast covariance matrix of system states at

time n+1 given the covariance matrix at time n

ΣX
n +1/ n +1 updated covariance matrix of system states at

time n+1

ΣY
transformed covariance matrix of system states

σ cm rms roughness height

σeff
s m-1 effective conductivity

σ Xi
standard deviation of ith system state variable

σ Xj standard deviation of jth system state variable

σ
Xi

' standard deviation of ith transformed system
state variable

σ
X j

' standard deviation of jth transformed system
state variable

σo − backscattering coeff icient

σ o

bare − bare soil backscattering coefficient

σ o

d − direct backscattering coefficient from the
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vegetation layer

σ o

dB
dB backscattering coeff icient in decibels

σ o

dr − direct reflected backscattering coefficient from
the vegetation layer

σ o

ground − backscattering coeff icient from soil covered with
a vegetation layer

σo

hh − backscattering coeff icient for horizontally
polarised transmission and horizontally polarised

reception

σ hh / vvdB

o dB ratio of hh to vv polarisation backscattering

coeff icients in dB

σo

hv − backscattering coeff icient for horizontally

polarised transmission and vertically polarised
reception

σo

pp − backscattering coeff icient when transmission and
reception are at polarisation p

σo

pq − backscattering coeff icient when transmission is
at polarisation p and reception is at polarisation q

σo

r − reflected backscattering from the vegetation
layer

σo

total − total backscattering from a soil -vegetation layer

σo

veg − backscattering from the vegetation layer

σo

vv − backscattering coeff icient for vertically polarised

transmission and vertically polarised reception

τ atmospheric transmission

τ Np optical depth

τw
s relaxation time for water

ϒ − transmissivity

ϒveg − transmissivity of vegetation layer

Φ1
n system state forecasting matrix at time step n

given the system state estimate at time step n

Φ1
n+1 system state forecasting matrix at time step n+1

given the system state estimate at time step n+1

Φ 1 auto-regressive smoothed system state

forecasting matrix

Φ 1
n auto-regressive smoothed system state

forecasting matrix at time step n given the
system state estimate at time step n

Φ 1
n +1 auto-regressive smoothed system state

forecasting matrix at time step n+1 given the
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system state estimate at time step n+1

Φ2
n system state forecasting matrix at time

step n given the system state estimate at time

step n

Φ2
n+1 system state forecasting matrix at time step n+1

given the system state estimate at time step n+1

Φ 2 auto-regressive smoothed system state

forecasting matrix

Φ 2
n auto-regressive smoothed system state

forecasting matrix at time step n given the
system state estimate at time step n

Φ 2
n +1 auto-regressive smoothed system state

forecasting matrix at time step n+1 given the

system state estimate at time step n+1

φ radians phase change of the electromagnetic wave

φ v v-1 soil porosity

φe
v v-1

effective soil porosity, φe = φ−θfc

φj,k,l
v v-1 soil porosity of grid element j,k,l

φj+1,k,l
v v-1 soil porosity of grid element j+1,k,l

φj,k+1,l
v v-1 soil porosity of grid element j,k+1,l

ϕ − Brooks and Corey pore size distribution index

ψ cm soil matric potential

ψb
cm bubbling soil matric potential

ψd
cm soil matric potential at the observation depth

ψi
cm soil matric potential at air entry

ψs
cm saturated soil matric potential

ψj
cm soil matric potential at node j

ψj−1
cm soil matric potential at node j−1

ψj+1
cm soil matric potential at node j+1

ψN
cm soil matric potential at node N

ψN−1
cm soil matric potential at node N−1

ψN−2
cm soil matric potential at node N−2

ψ1
cm saturated soil matric potential at node 1

ψ2
cm saturated soil matric potential at node 2

ψ j−1
n cm soil matric potential at node j−1, time step n

ψ j
n cm soil matric potential at node j, time step n

ψ j+1
n cm soil matric potential at node j+1, time step n

ψ N
n cm soil matric potential at node N, time step n
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ψ N−1
n cm soil matric potential at node N−1, time step n

ψ j
n−1 cm soil matric potential at node j, time step n−1

ψ j
n+1 cm soil matric potential at node j, time step n+1

ψ N−1
n+1 cm soil matric potential at node N-1, time step n+1

ψ N
n+1 cm soil matric potential at node N, time step n+1

ψ 1
n cm soil matric potential at node 1, time step n

ψ 2
n cm soil matric potential at node 2, time step n

ψ 3
n cm soil matric potential at node 3, time step n

ψ 1
n+1 cm soil matric potential at node 1, time step n+1

ψ 2
n+1 cm soil matric potential at node 2, time step n+1

Ωn vector of forcing at time step n

Ωn+1 vector of forcing at time step n+1

∂σdB
o dB backscattering sensitivity

∂ partial derivative operator

∇ gradient operator
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