ESTIMATING SOIL MOISTURE PROFILE DYNAMICS FROM NEAR-SURFACE SOIL MOISTURE MEASUREMENTS AND STANDARD METEOROLOGICAL DATA

by

JEFFREY PHILLIP WALKER

B. Surv. (Hons. I) B. E. (Civil) (Hons. I)

A thesis submitted as part requirement for the Degree of Doctor of Philosophy in the field of Environmental Engineering,

to

The Department of Civil, Surveying and Environmental Engineering, The University of Newcastle, New South Wales, Australia.

June 1999

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution, and to the best of my knowledge this thesis does not contain any material previously published or written by another person, except where due reference is made in the text.

Jeffrey Walker

This work is dedicated

to my wife Wendy,

for her continual

love and support.

ACKNOWLEDGEMENTS

My dissertation committee deserves a special thanks for their guidance in this research endeavour. I must first thank my principal supervisor, Garry Willgoose, who has always encouraged me to pursue my ideas, offered innumerable creative insights and guided me with unmatched wisdom. I equally thank my co-supervisor, Jetse Kalma, for his support and encouragement of excellence in all phases of my research. I thank Phillip Binning for his expertise in ground water modelling that he most gratefully shared. Thanks are also due to Peter Troch, for his thoughtful insight and knowledge on remote sensing of soil moisture.

I would also like to thank all those who have contributed time and effort to make this research effort a reality. Special recognition is given to Andrew Western and Rodger Grayson of Melbourne University for making the Green Machine available, and Marco Mancini for making the EMSL data available.

Thanks are also due to the many people who helped during the intensive field campaign at the Nerrigundah catchment. The untiring help and support continuously offered by Greg Hancock and Jageth Hemantha throughout this period was gratefully appreciated, and the eddy correlation data collected by Scott Wooldridge during this period is gratefully acknowledged.

A very special thanks is given to John Russell, for allowing the use of his land in monitoring the Nerrigundah catchment. I also thank Grant Scanlan and Andre Kable for their efforts in creating a digital elevation model of the Nerrigundah catchment, as well as Craig Wood and Michael Kendall for the soil depth data collected. Thanks are also given to Andrew Krause, who looked after the loggers for a period of 3 months while I was overseas. Quartz determination using the method of X-Ray Diffraction by Richard Bale in the Department of Geology, The University of Newcastle, and fine particle size analysis using the method of Laser Diffraction by Neil Gardner in the Department of Chemical Engineering, The University of Newcastle, is acknowledged.

I wish to extend a special thanks to my family for their unwavering support and encouragement. I thank my parents, Phillip and Thirza, for instilling a sense of wonder and exploration in me. I would especially like to thank my wife Wendy, for her love, support, encouragement, and help with both field and laboratory work. I also thank Wendy's parents, John and Lorraine Clarke, for years of unquestioning devotion to my pursuits of this degree. Thanks are also given to John for his help in setting up the catchment.

The research described in this thesis was supported in part by an Australian Postgraduate Award scholarship and in part by the Hunter Water Corporation. This practical support is gratefully acknowledged.

TABLE OF CONTENTS

Acknowledgements iv
Table of Contentsv
Synopsis
List of Acronyms and Abbreviationsxv
List of Symbolsxvii
List of Figures
List of Tablesliii
Chapter One1. Introduction1-11.1Importance of Soil Moisture1-11.2Statement of Problem1-11.3Objectives and Scope1-11.4Outline of Approach1-11.5Organisation of Thesis1-1
Chapter Two 2 Literature Review: Soil Moisture Measurement 2.1
2. Literature Review: Soil Moisture Measurement
2.3.2.2Thematic Mapper2-12.3.2.3Thermal Infra-Red Linescanner2-12.3.2.4Microwave Radiometer2-12.3.2.5Synthetic Aperture Radar2-1
2.3.3Remote Sensing Satellites2-12.3.3.1Landsat2-12.3.3.2Systeme Pour l'Observation de la Terre2-12.3.3.3European Remote Sensing Satellite2-1

2.3.3.4 Japanese Earth Resources Satellite	2-1
2.3.3.5 RADARSAT	2-1
2.4 Remote Sensing Measurement of Near-Surface Soil Moisture	2-1
2.4.1 Visible Remote Sensing	2-1
2.4.2 I nermal Infra-Red Remote Sensing	2-1
2.4.5 Microwave Remote Sensing	2-1
2.4.4 Passive Microwave Remote Sensing	2-1
2.4.4.1 Brightness Temperature Models	2-1
2.4.4.2 Kouginess Effects	2-1
2.4.4.5 Vegetation Effects	2-1
2.4.4.4 Combined Roughness and Vegetation Effects	2-1
2.4.5 Active Microwave Remote Sensing	2-1
2.4.5.1 Optimum Saterine Configuration	2-1
2.4.5.2 Surface Scattering Models	2-1
2.4.5.2.1 Empirical DackScattering Models	2-1
2.4.5.2.2 Infeoretical Backscattering Models	2-1
2.4.5.2.5 Senti-Empirical Backscattering Models	2-1
2.4.5.4 Evaluation of Surface Scattering Models	2-1
2.4.5.5 Surface Doughness Effects	2-1
2.4.5.6 Vagatation Effects	2-1
2.4.5.7 Topographic Effects	2-1
2.4.5.7 Topographic Effects	2-1
2.4.5.6 Saturation and Flost Effects	2-1
2.4.0 Remote Sensing Observation Depth	2-1
2.5 Chapter Summary	
Chapter Three	
3. Literature Review: Soil Moisture Estimation	3-1
3.1 Soil Moisture Profile Estimation From Point Measurements	3-1
3.2 Soil Moisture Profile Estimation From Hydrological Models	3-1
3.3 Data Assimilation	3-1
3.3.1 Hard-Updating	3-1
3.3.2 Kalman-Filtering	3-1
3.4 Soil Moisture Profile Estimation From Near-Surface Measureme	
	nts
	3-1
3.4.1 Regression Approach	3-1 3-1
3.4.1 Regression Approach3.4.2 Knowledge-Based Approach	3-1 3-1 3-1
 3.4.1 Regression Approach 3.4.2 Knowledge-Based Approach 3.4.3 Inversion Approach 	3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach 3.4.2 Knowledge-Based Approach 3.4.3 Inversion Approach 3.4.4 Water Balance Approach 	3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
 3.4.1 Regression Approach	3-1 3-1
 3.4.1 Regression Approach	3-1 3-1
 3.4.1 Regression Approach	3-1 3-1

Chapter Four

4. Near-Surfa	ce Soil Moisture Profile Measurement	3-1
4.1 The	Modified Integral Equation Model	3-1
4.1.1	A Variable Transition Rate Factor	3-1
4.2 Rev	iew of Theoretical Radar Observation Depth Relationships	3-1
4.3 A N	lew Observation Depth Relationship	3-1
4.3.1	A Semi-Empirical Phase Change Model	3-1
4.3.2	A Theoretical Amplitude Attenuation Model	3-1
4.4 Apr	blication of the Models	3-1
4.4.1	European Microwave Signature Laboratory	3-1
4.4.2	Evaluation of the Radar Observation Depth Model	
4.4.3	Simulations Using the Modified Integral Equation Model	
4.5 Cha	pter Summary	
		1
Chapter Five		
5. Synthetic S	tudy: Soil Moisture Model PROXSIM	3-1
5.1 Soil	Moisture and Temperature Profile Estimation	3-1
5.2 One	e-Dimensional Soil Moisture and Heat Transfer Model	3-1
5.2.1	Moisture Equation	3-1
5.2.2	Heat Equation	3-1
5.3 Cor	stitutive Relations	3-1
5.3.1	Water Retention Relationship	3-1
5.3.1.1	Brooks and Corey	3-1
5.3.1.2	2 Clapp and Hornberger	3-1
5.3.1.3	3 Van Genuchten	3-1
5.3.2	Capillary Capacity Relationship	3-1
5.3.2.1	Brooks and Corey	3-1
5.3.2.2	2 Clapp and Hornberger	3-1
5.3.2.3	3 Van Genuchten	3-1
5.3.3	Isothermal Liquid Hydraulic Conductivity	3-1
5.3.3.1	Brooks and Corey	3-1
5.3.3.2	2 Clapp and Hornberger	3-1
5.3.3.3	3 Van Genuchten	3-1
5.3.4	Thermal Liquid Diffusivity	3-1
5.3.5	Isothermal Vapour Conductivity	3-1
5.3.6	Thermal Vapour Diffusivity	3-1
5.3.7	Heat Capacity	3-1
5.3.8	Thermal Conductivity	3-1
5.3.9	Compressibility Coefficients	3-1
5.4 Tim	e Stepping Procedure	3-1
5.5 Mo	del Evaluation	3-1
5.6 Cha	pter Summary	3-1
		_
Chapter Six		<i>c</i> 1
6. Synthetic	c Study: 1D Soil Moisture Profile Estimation	6-1
6.1 Syn	thetic Data	6-2
6.2 Kal	man-Filter Observation Equation	6-3
6.3 Init	ialisation Phase	6-4
6.4 Dyr	namic Phase	6-5
6.4.1	Continuous Dirichlet Boundary Condition	6-5
6.4.2	Updating Once Every Hour	6-9

6.4.2.1 Normal Simulation	6-10
6.4.2.1.1 Hard-Updating	6-10
6.4.2.1.2 Kalman-Filtering	6-13
6.4.2.2 Gravity Drainage and Heat Advection Simulation	6-16
6.4.2.2.1 Hard-Updating	6-17
6.4.2.2.2 Kalman-Filtering	6-19
6.4.2.3 Sensitivity Analysis of Kalman-Filtering	6-21
6.4.2.3.1 Sensitivity to Initial State Variances	6-23
6.4.2.3.2 Sensitivity to System Noise	6-24
6.4.2.3.3 Sensitivity to Observation Noise	6-26
6.4.2.3.4 Sensitivity to Model Discretisation	6-28
6.4.3 Updating Once Every Day	6-29
6.4.3.1 Hard-Updating	6-30
6.4.3.2 Hard-Opdating and Different Boundary Condition	0-32 6 34
6.4.4. Undating Once Every Five Dave	6 37
6441 Hard-Undating and Dirichlet Boundary Condition	6-37
64411 Dirichlet Boundary Condition for One Hour	6-38
64412 Dirichlet Boundary Condition for One Day	6-39
6.4.4.1.3 Sensitivity Analysis of the Dirichlet Boundary Co	ndition.
	6-41
6.4.4.2 Kalman-Filtering	6-42
6.4.4.2.1 Sensitivity Analysis of the Initial State Variance	6-44
6.4.4.2.2 Sensitivity Analysis of the Initial Update	6-45
6.4.4.2.3 Sensitivity Analysis of the System Noise	6-47
6.4.4.2.4 Quasi Observations in the Kalman-Filter	6-48
6.4.4.2.5 Log Transformation in the Kalman-Filter	6-55
6.4.4.2.6 Volumetric Moisture Transformation in the Kalma	an-
Filter	6-58
6.5 Chapter Summary	6-62
Chapter Seven	
7. Model Development: Soil Moisture Model ABDOMEN	7-1
7.1 Model Requirements	7-1
7.2 Applicability of Existing Models	7-2
7.3 ABDOMEN Model Development	7-5
7.3.1 Conceptual Soil Moisture Flux Equations	7-7
7.3.1.1 Version 1 Distribution Factors	7-8
7.3.1.2 Version 2 Distribution Factors	7-8
7.3.1.3 Version 3 Distribution Factors	7-9
7.3.1.4 Inhomogeneous Version 3 Distribution Factors	7-10
7.2.2 The Clobel Soil Meisture Equations	7.12
7.3.2 The Global Soll Molsture Equation	7-12
7.5.5 Application to the Kalillan-Filter	7 16
7.4 ABDOMEN Model Evaluation	7-16
7.4.1 One-Dimensional Soil Profile	7-16
7.4.1.1 Version 1 Distribution Factor	7-17
7.4.1.2 Version 2 Distribution Factor	7-18
7.4.1.3 Version 3 Distribution Factor	7-19
7.4.1.4 Kalman-Filtering	7-23

7.4.2 Planar Catchment	7-26
7.5 Chapter Summary	7-30
Chanter Fight	
8 Model Development: Simplified Covariance Estimation	8-1
8.1 Covariance Estimation Schemes	0-1 8_1
8.2 Covariance Estimation by Dynamics Simplification	0-1 8_3
8.2 Estimation of Empirical Coefficients	8-5 8-5
8.2.2 Evaluation of Correlation Estimation Procedure	0 8-6
8.3 Evaluation of the Modified Kalman-Filter	00 8_11
8.4 Chapter Summary	0-11 8-24
	0 21
Chapter Nine	0.1
9. The Nerrigundan Experimental Catchment	9-1
9.1 Field Site Selection	9-1
9.2 Digital Elevation Model	9-5
9.3 Catchment Monitoring and Instrumentation	9-10
9.3.1 Permanent Instrumentation	9-12
9.3.1.1 Meteorological Data	9-15
9.3.1.1.1 Precipitation	9-16
9.3.1.1.2 Soil Temperature Profile	9-19
9.3.1.1.3 Soil Moisture Profile	9-21
9.3.2 Spatial Distribution of Soil Moisture	9-35
9.3.2.1 Green Machine Data	9-37
9.3.2.2 Profile Soil Moisture Data	9-41
9.3.2.3 ERS-2 Data	9-42
9.4 Evapotranspiration	9-44
9.4.1 Soil Moisture Stress Index Method	9-45
9.4.1.1 Soil Moisture Stress Indices	9-46
9.4.1.2 Penman-Monteith Combination Equation	9-46
9.4.2 Bulk Transfer Method	9-48
9.4.3 Estimation of Actual Evapotranspiration	9-50
9.5 Soil Heat Flux	9-55
9.5.1 Calorimetric Method	9-55
9.5.2 Heat Flux Plate Method	9-57
9.5.3 Combination Method.	9-57
9.5.4 Null-Alignment Method	9-57
9.5.5 Estimation of Soil Heat Flux	9-58
9.6 Soll Characterisation	9-62
9.6.1 Soil Deptn	9-65
9.6.2 Soil Horizons	9-65
9.6.3 Soil Colour	9-6/
9.6.4 Soil Bulk Density and Porosity	9-70
9.6.5 Soil Organic Matter Content	
9.6.6 Soil Quartz Content	9-72
9.6./ Particle Size Analysis	9-72
9.6.8 Saturated Hydraulic Conductivity	9-74
9.6.9 Published Data	9-76
9.7 Chapter Summary	9-78

Chapter Ten

10. Field A	Application: 1D Soil Moisture Profile Estimation	10-1
10.1 Cali	bration of ABDOMEN1D	10-1
10.1.1	Observed Model Parameters	
10.1.2	Calibrated Model Parameters	10-3
10.1.2.	1 Calibration to Virrib Observations	10-4
10.1.2.	2 Calibration to Connector TDR Observations	10-7
10.1.2.	3 Calibration to Virrib and Connector TDR Observ	ations10-8
10.1.2.	4 Summary of Calibration Results	
10.2 Eva	luation of ABDOMEN1D Calibration	
10.3 Soil	Moisture Profile Estimation	
10.3.1	Updating Once Every Day	
10.3.2	Updating at Low Temporal Resolutions	
10.4 Cha	pter Summary	
Chapter Eleven		
11. Field A	Application: 3D Soil Moisture Profile Estimation	11-1
11.1 Cali	bration of ABDOMEN3D	11-1
11.1.1	Observed Model Parameters	11-2
11.1.2	Calibrated Model Parameters	11-5
11.2 Eval	luation of ABDOMEN3D Calibration	11-10
11.3 Soil	Moisture Profile Estimation	11-12
11.3.1	Initialisation Using Observed Profiles	11-13
11.3.1.	1 Updating With Original TDAS Observations	11-13
11.3.1.	2 Updating With Modified TDAS Observations	11-17
11.3.2	Initialisation Using a Poor Guess	11-20
11.3.3	A Single Update of the Soil Moisture Profile	11-23
11.4 Cha	pter Summary	11-25
Chanter Twelve	3	
12 Conclu	sions and Future Direction	12-1
12. Conen	clusions	12-1
12.1 Con	Research Context	12-1
12.1.1	Remote Sensing Observation Depth	12-2
12.1.2	Remote Sensing Measurement of Near-Surface Soil I	Moisture
12.1.5	Kemote Sensing Weasurement of Weat-Surface Son I	12-A
1214	One-Dimensional Synthetic Study	12-4
12.1.4	Simplified Soil Moisture Model	12-4
12.1.5	Simplified Covariance Estimation	12-0
12.1.0 12.1.7	One Dimensional Field Application	12-7
12.1.7	Three-Dimensional Field Application	12-0 17_10
12.1.0	Summary of Main Conclusions	12-10 17 11
12.1.7 100 Entry	Summary Of Main Conclusions	12-11 12 12
12.2 Full	Demote Songing Observation Dorth	12-12
12.2.1	Pamote Sonsing Measurement of Near Surface Soil	12-12
12.2.2	Kemole Sensing Measurement of Mear-Surface Soll I	101Stufe
1002	Simulified Soil Moisture Madal	12-12
12.2.3	Simplified Covariance Estimation	12-13
12.2.4	Simplified Covariance Estimation	12-13
12.2.5	Operational Soli Moisture Profile Estimation	12-14

References

Appendix A

Ă. S	State Augmentation of PROXSIM1D	A-1
A.1	Differentiation of Moisture Equation	A-2
A.1	.1 Derivatives of Moisture Equation	A-5
A.1	.2 Derivatives of Constitutive Relations	A-8
A	A.1.2.1 Volumetric Liquid Water Content	A-10
	A.1.2.1.1 Brooks and Corey	A-10
	A.1.2.1.2 Clapp and Hornberger	A-11
	A.1.2.1.3 Clapp and Hornberger	A-14
	A.1.2.1.4 Van Genuchten	A-15
A	A.1.2.2 Isothermal Liquid Hydraulic Conductivity	A-17
	A.1.2.2.1 Brooks and Corey	A-17
	A.1.2.2.2 Clapp and Hornberger	A-19
	A.1.2.2.3 Van Genuchten	A-20
A.2	Differentiation of Temperature Equation	A-22
A.2	2.1 Derivatives of Temperature Equation	A-25
A.2	2.2 Derivatives of Constitutive Relations	A-30
I	A.2.2.1 Volumetric Heat Capacity	A-30
I	A.2.2.2 Thermal Conductivity	A-31
Appendix	B	
B. N	Verrigundah Catchment Experimental Data	B-1
B.1	Julian Day of Year Calender	B-1
B.2	Meteorological Data	B-2
B.3	Soil Temperature Profile Data	B-14
B. 4	Soil Moisture Profile Data	B-18
B.5	Meteorological Data for Intensive Field Campaign	B-21
B.6	Spatial Distribution of Soil Moisture Profiles	B-26
B.7	ERS-2 Data	B-30
B.8	Soil Heat Flux	B-32
B.9	Soil Characterisation	B-32
B.10	Published Soils Data	B-40
Annondiv	C	
Appendix	C Near Surface Soil Moisture Mans	C 1
C_{1}	Raw TDR Soil Moisture Maps	C-1
C.1	Internolated TDR Soil Moisture Mans	C-1
C.2	Raw TDR Soil Moisture Difference Maps	
C.5	Interpolated TDR Soil Moisture Difference Maps	C-13 C-19
0.7	-	
Appendix		5.4
D. F	Roughness Measurements for Nerrigundah Catchment	D-1
Appendix	Ε	
E. Par	ticle Size Analysis for Nerrigundah Catchment	E-1
Annondiv	E C	
	r Multa Erom 2D Soil Moisture Drofile Estimation	E 1
г. кез Е 1	Colibration of APDOMEN2D	ר-1 ב י
Г.1 БЭ	Evaluation of ARDOMEN2D Calibration	Г-2 С 15
Г. <u>2</u> Е 2	Soil Moisture Profile Estimation	Т-13 с оо
Г.3 Е 2	1 Undefing With Original TDAS Observations	Г-20 Е 20
Г.Э Е 2	2 Comparison of Profile and TDAS Observations	1'-20 E /1
1.3	.2 Companson of Frome and FDAS Observations	1'-41

F.3.3	Updating With Modified TDAS Observations.	F-46
F.3.4	Initialisation Using a Poor Guess	F-59
F.3.5	A Single Update of the Soil Moisture Profile	F-72

SYNOPSIS

An estimate of the spatial distribution and temporal variation of soil moisture content in the top few metres of the earth's surface is important for numerous environmental studies. Soil moisture content can be determined from: (i) point measurements; (ii) soil moisture models; and (iii) remote sensing. Only a limited area can be monitored with an adequate spatial and temporal resolution using the point measurement technique, while estimates from distributed soil moisture models are generally poor. This is due to an incomplete knowledge of model physics and the large spatial and temporal variation of soil moisture that results from heterogeneity in soil properties, vegetation and precipitation. Remote sensing can be used to collect spatial data over large areas on a routine basis, providing a capability to make frequent and spatially comprehensive measurements of the near-surface soil moisture content. However this technique is limited by an infrequent satellite repeat time and the shallow depth of the soil moisture measurements, consisting of the top few centimetres at most. These upper few centimetres of the soil are the most exposed to the atmosphere, and their soil moisture content varies rapidly in response to rainfall and evaporation.

This thesis overcomes the limitations of the above approaches for determining soil moisture, by linking a physical model of soil moisture movement in both the vertical and horizontal directions, with a data assimilation technique that uses near-surface soil moisture measurements. In this way, the near-surface soil moisture measurements are interpolated in space and time between satellite overpasses, and extrapolated over the soil profile depth. The point measurements of soil moisture profiles are used for calibration of the soil moisture forecasting model, and ongoing evaluation the soil moisture profile estimation from data assimilation.

To address the poor resolution in time of remote sensing data, a water balance approach is used to model soil moisture during the inter-observation period. Using this approach, the soil moisture hydrologic model is forced using estimates of evapotranspiration and precipitation from standard meteorological data. As observations of the near-surface soil moisture content become available, they are incorporated into the soil moisture model using an assimilation technique. This has required the development of a hydrologic model specifically designed to accept remote sensing data as input.

In this thesis, a theoretical model is developed for estimating the satellite observation depth for active microwave observations. Moreover, a procedure is proposed for inferring the soil moisture profile over the observation depth, from active microwave remote sensing observations.

This thesis has compared the Dirichlet boundary condition, hard-updating and Kalman-filtering assimilation schemes for estimation of the soil moisture profile. Conclusions are reached for the efficiency of these assimilation schemes, the depth over which near-surface soil moisture measurements are required, and the effect of updating interval on soil moisture profile estimation. These questions are addressed initially by a one-dimensional Richards equation soil moisture forecasting model using synthetic data. The study has shown that the Kalmanfilter is superior to the hard-updating and Dirichlet boundary condition assimilation schemes. It is has also shown that the observation depth did not have a significant effect on improving the soil moisture profile estimation when using the Kalman-filter assimilation scheme. Moreover, the Kalman-filter was less susceptible to unstable updates if volumetric soil moisture was modelled as the dependent state, rather than matric head.

While suitable for the one-dimensional problem, the Richards equation model was too computationally demanding for the distributed catchment application. Hence, a computationally efficient distributed soil moisture forecasting model for both vertical and lateral redistribution of soil moisture content, based on a conceptualisation of the Buckingham-Darcy equation, was developed. Moreover, the Kalman-filter assimilation scheme was too computationally demanding for forecasting of the model covariance matrix in a spatial application. To overcome this computational burden, a Modified Kalmanfilter was developed, which forecast the model covariance matrix using a dynamics simplification approach.

Both the distributed soil moisture forecasting model and the Modified Kalman-filter have been applied to a field application at the "Nerrigundah" experimental catchment. While an application of the one-dimensional version of this simplified soil moisture model has evaluated the vertical redistribution component, the catchment application has evaluated the lateral redistribution component. Moreover, the usefulness of near-surface soil moisture measurements for updating of soil moisture models to improve the prediction of soil moisture content over the soil profile has been illustrated, showing that an improved estimate of the soil moisture profile was achieved.

LIST OF ACRONYMS AND ABBREVIATIONS

ABDOMEN1D	Approximate Buckingham-Darcy equatiOn for Moisture	
	EstimatioN in 1 Dimension	
ABDOMEN3D	Approximate Buckingham-Darcy equatiOn for Moisture	
	EstimatioN in 3 Dimensions	
AHD	Australian Height Datum	
AMI	Active Microwave Instrument	
AMG	Australian Map Grid	
AMSR	Advanced Microwave Scanning Radiometer	
API	Antecedent Precipitation Index	
AS	Australian Standard	
DEM	Digital Elevation Model	
DGPS	Differential Global Positioning System	
EMAC'94	European Multi-sensor Airborne Campaign 1994	
EMI	ElectroMagnetic Induction	
EMSL	European Microwave Signature Laboratory	
ERS	European Remote Sensing	
ESTAR	Electronically Scanned Thinned Array Radiometer	
FWM	Full Wave Model	
GCM	Global Climate Model	
GOM	Geometrical Optics Model	
GPS	Global Positioning System	
hh	transmitted and received waves are horizontally polarised	
hv	transmitted wave is horizontally polarised and received wave	
	is vertically polarised	
IEM	Integral Equation Model	
JERS	Japanese Earth Resources Satellite	
KM	Kirchhoff Model	
MIMR	Multi-frequency Imaging Microwave Radiometer	
MSS	Multi Spectral Scanner	
NASA	National Aeronautical and Space Administration	

NDVI	Normalised Difference Vegetation Index
NMM	Neutron Moisture Meter
PBMR	Push-Broom Microwave Radiometer
POM	Physical Optics Model
PPM	Phase Perturbation Model
PROXSIM1D	PROfile eXplicit SIMulation in 1 Dimension
RADAR	RAdio Detection And Ranging
rms	root mean square
SAR	Synthetic Aperture Radar
SIF	Soil Indication Functions
SPM	Small Perturbation Model
SPLaSHWaTr	Simulation Program for Land-Surface Heat and Water
	Transport
SPOT	Systeme Pour l'Observation de la Terre
SVAT	Soil Vegetation Atmosphere Transfer
SWATRE	Soil Water Actual TRanspiration Extended
TDAS	Terrain Data Acquisition System
TDR	Time Domain Reflectometry
ТМ	Thematic Mapper
USDAHL	
	United States Department of Agriculture Hydrograph
	United States Department of Agriculture Hydrograph Laboratory
vh	United States Department of Agriculture Hydrograph Laboratory transmitted wave is vertically polarised and received wave is
vh	United States Department of Agriculture Hydrograph Laboratory transmitted wave is vertically polarised and received wave is horizontally polarised

LIST OF SYMBOLS

Α	_	vegetation structure parameter related to plant
		geometry
Α	degrees	aspect angle
A_l	cm	wave amplitude for horizontal polarisation in
		layer <i>l</i>
A_{l+1}	cm	wave amplitude for horizontal polarisation in
		layer <i>l</i> +1
\mathbf{A}^n		matrix relating the system states at time $n+1$ to
		the system states at time <i>n</i>
<u>A</u>		state augmented A matrix
Ā		autoregressive smoothed A matrix
a	_	empirical regression coefficient
a	_	amplitude attenuation factor
a_1	_	amplitude attenuation factor of incident layer
a_2	_	amplitude attenuation factor of transmission
-		layer
$a_{_{nir}}$	_	reflectance at near infra-red wavelength
a_{pa}		empirical coefficient for transmission at
174		polarisation p and reception at polarisation q
$a_{_{vh}}$		empirical coefficient for vertically polarised
		transmission and horizontally polarised reception
a_{vis}		reflectance at visible wavelength
$a_{_{vv}}$		empirical coefficient for vertically polarised
		transmission and vertically polarised reception
В		transformation matrix
B_l	cm	wave amplitude for horizontal polarisation in
		layer <i>l</i>
B_{l+1}	cm	wave amplitude for horizontal polarisation in
		layer <i>l</i> +1
b		empirical regression coefficient
b		vegetation parameter
b	_	Clapp and Hornberger soil texture parameter
$b_{_{pq}}$		empirical coefficient for transmission at
		polarisation p and reception at polarisation q
$b_{_{vh}}$		empirical coefficient for vertically polarised
		transmission and horizontally polarised reception
$b_{_{vv}}$		empirical coefficient for vertically polarised

	transmission and vertically polarised reception
$g g^{-1}$	clay mass fraction
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of the dry soil
_	moisture transfer coefficient
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of the <i>i</i> th soil
	constituent
	wave amplitude for vertical polarisation in layer
	1
	wave amplitude for vertical polarisation in layer
2 1	<i>l</i> +1
cal cm ^{-3} °C ^{-1}	volumetric heat capacity of the bulk soil medium
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of the bulk soil medium
2 1	in layer i
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of air
cal cm ⁻³ $^{\circ}$ C ⁻¹	volumetric heat capacity of quartz
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of other minerals
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of organic matter
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of the bulk soil medium
	at node 2, time step <i>n</i>
cal cm ⁻³ °C ⁻¹	volumetric heat capacity of the bulk soil medium
	at node j , time step n
cal cm ⁻³ $^{\circ}$ C ⁻¹	volumetric heat capacity of the bulk soil medium
1	at node $N-1$, time step n
cm ⁻¹	soil capillary capacity, $C_{\psi} = \partial \theta / \partial \psi$
cm ⁻¹	soil capillary capacity $\partial \theta / \partial \psi$ at node 1
cm ⁻¹	soil capillary capacity $\partial heta / \partial \psi$ at node N
cm ⁻¹	soil capillary capacity $\partial \theta / \partial \psi$ at node 2, time step
	n
cm ⁻¹	soil capillary capacity $\partial \theta / \partial \psi$ at node <i>j</i> , time step
	n
cm ⁻¹	soil capillary capacity $\partial \theta / \partial \psi$ at node <i>N</i> -1, time
	step <i>n</i>
$\operatorname{cm s}^{-1}$	propagation velocity of an electromagnetic wave
_	Brooks and Corey soil texture parameter
cal g ⁻¹ °C ⁻¹	specific heat capacity of moist air,
	$0.242 \text{ cal } \text{g}^{-1} \circ \text{C}^{-1}$
cal g ⁻¹ °C ⁻¹	specific heat capacity of liquid water,
-	1.0 cal $g^{-1} \circ C^{-1}$
cm s ⁻¹	propagation velocity of an electromagnetic wave
	g g ⁻¹ cal cm ⁻³ °C ⁻¹ cal cm ⁻¹ °C ⁻¹ cm

		in a vacuum, $2.997925 \times 10^{10} \text{ cm s}^{-1}$
C_p	cal $g^{-1} \circ C^{-1}$	specific heat capacity of water vapour at constant
		pressure, 0.449 cal $g^{-1} \circ C^{-1}$
D	cm	total soil depth
$D_{_{atm}}$	$cm^{-2} s^{-1}$	molecular diffusion coefficient of water vapour
		in air
D_l	cm	wave amplitude for vertical polarisation in layer
		l
$D_{_{l+1}}$	cm	wave amplitude for vertical polarisation in layer
		<i>l</i> +1
$D_{\scriptscriptstyle T}$	$cm^{2} s^{-1} \circ C^{-1}$	thermal moisture diffusivity, $D_T = D_{TI} + D_{TV}$
$D_{_{Tl}}$	$cm^{2} s^{-1} \circ C^{-1}$	thermal liquid diffusivity
$D_{_{Tv}}$	$cm^{2} s^{-1} \circ C^{-1}$	thermal vapour diffusivity
D_{ψ}	$cm s^{-1}$	isothermal moisture diffusivity, $D_{\psi} = D_{\psi_l} + D_{\psi_{\psi_l}}$
D_{ψ_l}	$\mathrm{cm} \mathrm{s}^{-1}$	isothermal liquid hydraulic conductivity, $D_{W} = K$
$D_{W_{i}}$	$\mathrm{cm} \mathrm{s}^{-1}$	isothermal vapour conductivity
D^n .	$\mathrm{cm} \mathrm{s}^{-1}$	isothermal liquid hydraulic conductivity of node
$-\psi_{l_1}$		1, time step <i>n</i>
D_{wl}^n	$\mathrm{cm} \mathrm{s}^{-1}$	average isothermal liquid hydraulic conductivity
$\psi l_1 \gamma_2$		of nodes 1 and 2, time step n
D_{wl}^n	$cm s^{-1}$	isothermal liquid hydraulic conductivity of node
$\psi \iota_2$		2, time step <i>n</i>
$D_{ud_3}^n$	$cm s^{-1}$	isothermal liquid hydraulic conductivity of node
7 5		3, time step <i>n</i>
$D_{\psi l_{i-2}}^n$	$cm s^{-1}$	isothermal liquid hydraulic conductivity of node
1.9 2		j-2, time step n
$D^n_{\!\psi^l{}_{j\!-\!1}}$	$\mathrm{cm} \mathrm{s}^{-1}$	isothermal liquid hydraulic conductivity of node
		j-1, time step n
$D_{\psi l + \mu}^n$	$\mathrm{cm} \mathrm{s}^{-1}$	average isothermal liquid hydraulic conductivity
<i>i</i> - <i>j</i> - <i>j</i> ₂		of nodes j and $j-1$, time step n
D_{ud}^n	$cm s^{-1}$	isothermal liquid hydraulic conductivity of node
Ψ		<i>j</i> , time step <i>n</i>
$D_{\psi l + \mu}^n$	$\mathrm{cm} \mathrm{s}^{-1}$	average isothermal liquid hydraulic conductivity
<i>i j</i> + <i>j</i> ₂		of nodes j and $j+1$, time step n
$D^n_{\!\psi l_{j+\!1}}$	$\mathrm{cm \ s}^{-1}$	isothermal liquid hydraulic conductivity of node
		j+1, time step n
$D^n_{\!\psi\!l_{j+2}}$	$\mathrm{cm \ s}^{-1}$	isothermal liquid hydraulic conductivity of node
		j+2, time step n
$D_{\!\psi^{\!l_{N-2}}}^n$	$\mathrm{cm \ s}^{-1}$	isothermal liquid hydraulic conductivity of node
		N-2, time step n

$D^n_{\!$	cm s ⁻¹	isothermal liquid hydraulic conductivity of node
,		N-1, time step n
D_{ud}^n	cm s ⁻¹	average isothermal liquid hydraulic conductivity
φ_{N-2}		of nodes N and $N-1$, time
		step <i>n</i>
D^n .	$\mathrm{cm} \mathrm{s}^{-1}$	isothermal liquid hydraulic conductivity of node
$-\psi_{lN}$		N, time step n
DX	cm	lateral distance between layer grid points
DZ	cm	perpendicular distance between layer grid points
d_{i}	cm	depth of soil to interface between layer <i>l</i> and
		layer $l+1$, positive upwards
d_{l-1}	cm	depth of soil to interface between layer $l-1$ and
		layer <i>l</i> , positive upwards
d_{μ}	cm	depth of soil to interface between layer $l+1$ and
1+1		layer $l+2$, positive upwards
d_{m}	cm	representative soil particle size
d_{r}^{m}	cm	depth of soil to layer <i>n</i> , positive upwards
$d_{o}^{''}$	cm	zero plane displacement of the wind profile
$d_{_{veg}}$	cm	vegetation height
d_{z}	cm	soil layer thickness
$\tilde{\mathbf{E}}_{i}$		phasor form of the incident electromagnetic
·		wave
\mathbf{E}_{r}		phasor form of the reflected electromagnetic
		wave
\mathbf{E}_{t}		phasor form of the transmitted electromagnetic
		wave
Е		expectation
E_i	cm	incident wave amplitude
E_r	cm	reflected wave amplitude
E_r	cm	reflected wave attenuated amplitude
E_{R}	cm	returned wave amplitude
E_{s}	cm	surface scattered wave amplitude
E_{t}	cm	transmitted wave amplitude
E_t	cm	transmitted wave attenuated amplitude
$E_{_{v}}$	cm	volume scattered wave amplitude
ET_a	cm s ⁻¹	actual evapotranspiration
ET_p	$\mathrm{cm} \mathrm{s}^{-1}$	potential evapotranspiration
e	kPa	partial water vapour pressure
e _a	kPa	saturation partial water vapour pressure in air
e_{d}	kPa	dew point partial water vapour pressure in air
e _s	kPa	saturation partial water vapour pressure in soil at

		the surface
е	_	smooth surface emissivity
$e_{_h}$	_	smooth surface emissivity at horizontal
		polarisation
e_p	_	smooth surface emissivity at polarisation p
e_{R}	_	rough surface emissivity
e_{R_p}	_	rough surface emissivity at polarisation p
e_{v}	_	smooth surface emissivity at vertical polarisation
$F_{_{hh}}$		complementary field coefficient for horizontally
		polarised transmission and horizontally polarised
		reception
$F_{_{pq}}$		complementary field coefficient when
		transmission is at polarisation p and reception is
		at polarisation q
$F_{_{\nu\nu}}$		complementary field coefficient for vertically
		polarised transmission and vertically polarised
		reception
f	Hz	frequency, $f = c/\lambda$
fc	_	vegetation fractional cover
$f_{\scriptscriptstyle hh}$		Kirchhoff coefficient for horizontally polarised
		transmission and horizontally polarised reception
f_{p_i}		fractional absorption of layer i at polarisation p
$f_{_{pq}}$		Kirchhoff coefficient when transmission is at
		polarisation p and reception is at polarisation q
$f_{\scriptscriptstyle T}$	Hz	transition frequency
$f_{_{vv}}$		Kirchhoff coefficient for vertically polarised
		transmission and vertically polarised reception
$GRAD_{j+1/2,k,l}$	-	average gradient parameter for grid elements j,k,l
CRAD		and $j+1,k,l$
$GRAD_{j,k+1/2,l}$	_	average gradient parameter for grid elements j,k,l
_	- ²	and $j,k+1,l$
g	cm s	acceleration due to gravity, 981 cm s
8 ₂	_	shape factor of the <i>i</i> th soil constituent
g_i	_	shape factor of the <i>n</i> son constituent
п		matrix relating the observation vector \mathbf{L} to the system state vector \mathbf{V}
LT ⁿ⁺¹		H motrix at time $n + 1$
п u		If matrix at time $n+1$
<u>11</u> h		state augmented 11 mains
n h	_	error beight
n_{c}	cin	crop neight

Ι	_	identity matrix
Im()	_	imaginary part of ()
i	_	imaginary number, •–1
$J_{0}()$		Bessel function of the first kind of order 0
$J_{\nu}()$	_	Bessel function of the second kind of order v
r		with the imaginary argument
Κ	cm s ⁻¹	unsaturated hydraulic conductivity of soil
$K_{i,k,l}$	cm s ⁻¹	unsaturated hydraulic conductivity of soil for
		grid element <i>j</i> , <i>k</i> , <i>l</i>
$K_{_{i+1/2,k,l}}$	cm s ⁻¹	average unsaturated hydraulic conductivity of
		soil for grid elements j,k,l and $j+1,k,l$
$K_{i+1,k,l}$	cm s ⁻¹	unsaturated hydraulic conductivity of soil for
		grid element <i>j</i> +1, <i>k</i> , <i>l</i>
$K_{i,k+1/2,l}$	cm s ⁻¹	average unsaturated hydraulic conductivity of
		soil for grid elements <i>j</i> , <i>k</i> , <i>l</i> and <i>j</i> , <i>k</i> +1, <i>l</i>
$K_{i,k+1,l}$	cm s ⁻¹	unsaturated hydraulic conductivity of soil for
<u> </u>		grid element <i>j</i> , <i>k</i> +1, <i>l</i>
K_{s}	cm s ⁻¹	saturated hydraulic conductivity of soil
\mathbf{K}^{n+1}		Kalman-filter gain matrix at time $n+1$
k	_	von Karmen constant, 0.41
k	cm ⁻¹	wave number, $k = 2\pi/\lambda = 2\pi f \cdot (\mu \varepsilon)$
k_1	_	ratio of the average temperature gradient in the
-		soil liquid water to the average temperature
		gradient of the bulk medium
k_2	_	ratio of the average temperature gradient in the
		soil air to the average temperature gradient of the
		bulk medium
k_{3}	_	ratio of the average temperature gradient in the
		soil quartz to the average temperature gradient of
		the bulk medium
k_{4}	_	ratio of the average temperature gradient in the
		soil minerals to the average temperature gradient
		of the bulk medium
k_5	_	ratio of the average temperature gradient in the
		soil organic matter to the average temperature
		gradient of the bulk medium
k_i	_	ratio of the average temperature gradient in the
		<i>i</i> th soil constituent to the average temperature
		gradient of the bulk medium
k_{1}	cm ⁻¹	wave number in incident layer
k_{x1}	cm ⁻¹	x component of wave number in incident layer,

		$k_{x1} = k_1 \sin \vartheta$
k_{z1}	cm^{-1}	z component of wave number in incident layer,
		$k_{z1} = k_1 \cos \vartheta$
k_2	cm^{-1}	wave number in transmission layer
k_{x^2}	cm^{-1}	x component of wave number in transmission
		layer, $k_{2} = k_2 \sin \vartheta$
k_{z}	cm^{-1}	z component of wave number in transmission
~-		layer, $k_{2} = k_2 \cos \vartheta$
k_i	cm^{-1}	wave number in layer l, $k_i = 2\pi f(\mu_i \varepsilon)$
k,	cm ⁻¹	free space wave number, $k = 2\pi/\lambda$
k	cm^{-1}	free space wave number at the transition
O_T		frequency
k_{v}	_	propagation constant depending on the dielectric
		properties of the vegetation layer
k_{x}	cm^{-1}	x component of wave number, $k_x = k \sin \vartheta$
k_{xo}	cm^{-1}	x component of free space wave number,
		$k_{xo} = k_o \sin \vartheta$
k_z	cm^{-1}	<i>z</i> component of wave number, $k_z = k \cos \vartheta$
k_{zl}	cm^{-1}	z component of wave number in layer l,
		$k_{zl} = 2\pi f \bullet (\mu_l \varepsilon_l) \cos \vartheta$
$k_{_{z(l+1)}}$	cm^{-1}	z component of wave number in layer $l+1$
k_{zl}	cm^{-1}	real part of z component of wave number in layer
		l
k_{zl} "	cm^{-1}	imaginary part of <i>z</i> component of wave number
		in layer <i>l</i>
k_{zo}	cm	<i>z</i> component of free space wave number,
		$k_{zo} = k_o \cos \vartheta$
k_{zt} "	cm^{-1}	imaginary part of <i>z</i> component of wave number
		in region t
L	cm	length of hillslope
L	cm	length of transmission line
L	cal g	latent heat of vaporisation
L_{ref}	cal g	latent heat of vaporisation at the reference
		temperature T_{re} , 591.6 cal g ⁻¹ at 10 °C
LAI	_	leaf area index
LDF	_	lateral distribution factor
l	cm	surface correlation length
$M_{_o}$	_	soil moisture availability
MGRAD	cm, cm cm ⁻¹	maximum gradient parameter

MGRAD _{j,k,l}	cm, cm cm ^{-1}	maximum gradient parameter for grid element
MGRAD	$cm cm cm^{-1}$	maximum gradient parameter for grid element
j+1,k,l		j+1,k,l
$MGRAD_{j,k+1,l}$	cm, cm cm ⁻¹	maximum gradient parameter for grid element
		<i>j</i> , <i>k</i> +1, <i>l</i>
т	cm ⁻¹	transition rate factor
т	_	van Genuchten soil texture parameter
$m_{_{w}}$	cm	Clapp and Hornberger parameter
NDVI	-	normalised difference vegetation index
NDVI	_	maximum normalised difference vegetation
		index
NDVI _{min}	_	minimum normalised difference vegetation
		index
Ν	_	number of layers
n	_	refractive index
n	_	van Genuchten soil texture parameter
$n_{_{w}}$	_	Clapp and Hornberger parameter
Р	cm	cumulative precipitation
Р	cal cm ⁻² °C ⁻¹ s ^{-1/2}	soil thermal inertia
P_{atm}	kPa	atmospheric pressure
Q	_	polarisation mixing factor
Q	cm s ⁻¹	volumetric flux of liquid water, +ve downwards
Q_{ss}	$cm^{2} s^{-1}$	sub-surface discharge
Q_v	cm s ⁻¹	volumetric flux of liquid water in the vertical
		direction, +ve downwards
$Q_{V_{i-1,k,l}}$	cm s ⁻¹	volumetric flux of liquid water in the vertical
· J		direction for grid element $j - 1, k, l$,
		+ve downwards
$Q_{V_{i,k,l}}$	cm s ⁻¹	volumetric flux of liquid water in the vertical
· • • • • • •		direction for grid element j,k,l , +ve downwards
$Q_{\scriptscriptstyle L}$	$\mathrm{cm} \mathrm{s}^{-1}$	volumetric flux of liquid water in the lateral
		direction, +ve downwards
$Q_{L_{i,k,l-1}}$	$\mathrm{cm} \mathrm{s}^{-1}$	volumetric flux of liquid water in the lateral
• • •		direction for grid element $j,k,l-1, +ve$
		downwards
$Q_{Lj,k,l}$	cm s ⁻¹	volumetric flux of liquid water in the lateral
- ۲ - ۲-		direction for grid element j,k,l , +ve downwards
Q		covariance matrix of the system noise
\mathbf{Q}^n		covariance matrix of the system noise at time

		step n
Q _x		covariance matrix of the system noise of the
		system states
\mathbf{Q}_{α}		covariance matrix of the system noise of the
		system parameters
Q		covariance matrix of the system noise of the
Т	1 -2 -1	state augmented system
Q_{bot}^{\prime}	cal cm s	soil heat flux at bottom of soil column, +ve
O^T	cal $cm^{-2} s^{-1}$	soil heat flux at top of soil column, +ve upwards
\mathcal{Q}_{top}	-1	
$Q_{bot}^{_{arphi}}$	cm s	volume soil moisture flux at bottom of soil
Q ^ψ	$cm s^{-1}$	volume soil moisture flux at top of soil column
\mathcal{Q}_{top}	chi s	+ve upwards
q_s	_	specific humidity in the soil at the surface
$q_{\scriptscriptstyle T}$	_	specific humidity in the air at height z_r
\mathbf{q}_{in}	$g \text{ cm}^{-2} \text{ s}^{-1}$	mass flux into elemental area, +ve upwards
\mathbf{q}_h	cal cm ^{-2} s ^{-1}	soil heat flux, +ve upwards
\mathbf{q}_{h_i}	$g cm^{-2} s^{-1}$	soil heat flux entering the bottom of the soil
	2 1	layer i
$\mathbf{q}_{h_{i-1}}$	$g cm^{-2} s^{-1}$	soil heat flux leaving the top of the soil layer <i>i</i>
\mathbf{q}_{l}	$g cm^{-2} s^{-1}$	liquid mass flux, +ve upwards
$\mathbf{q}_{l_1}^n$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node 1, time step n
$\mathbf{q}_{l_2}^n$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node 2, time step n
$\mathbf{q}_{l_3}^n$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node 3, time step n
$\mathbf{q}_{l_{j-1}}^{n}$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node $j-1$, time step n
$\mathbf{q}_{l_j}^n$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node j , time step n
$\mathbf{q}_{l_{j+1}}^{n}$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node $j+1$, time step n
$\mathbf{q}_{l_{N-2}}^{n}$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node <i>N</i> –2, time step <i>n</i>
$\mathbf{q}_{l_{N-1}}^{n}$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node $N-1$, time step n
$\mathbf{q}_{l_N}^n$	$g \text{ cm}^{-2} \text{ s}^{-1}$	liquid mass flux at node N , time step n
\mathbf{q}_m	$g cm^{-2} s^{-1}$	total mass flux, $\mathbf{q}_m = \mathbf{q}_l + \mathbf{q}_v$
\mathbf{q}_{out}	$g cm^{-2} s^{-1}$	mass flux out of elemental area, +ve upwards
\mathbf{q}_{v}	$g \text{ cm}^{-2} \text{ s}^{-1}$	vapour mass flux
R	cm s ⁻¹	rainfall rate
R_0	-	reflection coefficient at nadir
R_{d}	$\operatorname{erg} \operatorname{g}^{-1} \operatorname{o} \operatorname{C}^{-1}$	specific gas constant of dry air,

		$2.8704 \times 10^{6} \text{ erg g}^{-1} {}^{\circ}\text{C}^{-1}$
R_{h}	_	reflection coefficient for horizontal polarisation
$R_{_{net}}$	cal cm ⁻² s ⁻¹	net radiation flux at the soil surface
R_p	_	reflection coefficient for polarisation p
R_{T}	_	reflection coefficient at the transition frequency
R_{v}	_	reflection coefficient for vertical polarisation
$R_{_V}$	$\operatorname{erg} \operatorname{g}^{-1} \circ \operatorname{C}^{-1}$	gas constant of water vapour,
		$4.615 \times 10^{6} \text{ erg g}^{-1} \text{ °C}^{-1}$
$R_{_{h(l+1)l}}$	_	reflection coefficient for horizontal polarisation
		between layer $l+1$ and layer l
$R_{_{v(l+1)l}}$	-	reflection coefficient for vertical polarisation
		between layer $l+1$ and layer l
R_{ϑ}	-	reflection coefficient at incidence angle ϑ
RH_{air}	-	relative humidity in air at the reference height z_{T}
RH_s	-	relative humidity in the soil at the soil surface
RH_{soil}	-	relative humidity in the soil
r _a	s cm ⁻¹	aerodynamic resistance
r _c	s cm ⁻¹	crop resistance
S	degrees	pixel slope
S	$g g^{-1}$	sand mass fraction
S_h	cal cm ⁻³	soil heat storage
S_{R}	2	roughness parameter
S_{θ}	g cm ⁻³	soil moisture storage
SI	_	soil stress index
SLOPE	$\operatorname{cm}\operatorname{cm}^{-1}$	surface slope in maximum downslope direction
$S_{_{W}}$	-	water saturation, $S_{w} = \theta/\phi$
$S_{_0\psi}$	-	specific storativity
$S_{w_j}^n$	-	water saturation of node j , time step n
$S_{w_2}^n$	_	water saturation of node 2, time step n
$S^n_{\scriptscriptstyle W_{N-1}}$	_	water saturation of node $N-1$, time step n
$S^n_{0\psi_j}$	-	specific storativity of node j , time step n
$S^n_{0\psi_2}$	-	specific storativity of node 2, time step n
$S^n_{0\psi_{N\dashv}}$	_	specific storativity of node $N-1$, time step n
S	-	$2k_{d}/m$
Т	degrees	flight track
Т	-	reflectivity transition function
Т	°C	soil temperature
T_{j}	°C	soil temperature at node <i>j</i>

T_1	°C	soil temperature at node 1
T_2	°C	soil temperature at node 2
$T_{N=1}$	°C	soil temperature at node <i>N</i> –1
$T_{_N}$	°C	soil temperature at node N
T_1^n	°C	soil temperature at node 1, time step n
T_2^n	°C	soil temperature at node 2, time step n
T_3^n	°C	soil temperature at node 3, time step n
T_1^{n+1}	°C	soil temperature at node 1, time step $n+1$
T_2^{n+1}	°C	soil temperature at node 2, time step $n+1$
$T_{_{air}}$	°C	air temperature at reference height z_T
T_{atm}	Κ	atmospheric radiometric temperature
T_{b}	K	brightness temperature
T_{b_p}	K	brightness temperature at polarisation <i>p</i>
T_{b_h}	Κ	brightness temperature at horizontal polarisation
T_{b_v}	Κ	brightness temperature at vertical polarisation
$T_{_{e\!f\!f}}$	Κ	effective soil temperature
T_{h}	_	transmission coefficient for horizontal polarisation
T_i^n	°C	soil temperature of i th soil layer, time step n
T_i^{n+1}	°C	soil temperature of <i>i</i> th soil layer, time step $n+1$
T_{j-1}^n	°C	soil temperature at node $j-1$, time step n
T_j^n	°C	soil temperature at node j , time step n
T_{j+1}^n	°C	soil temperature at node $j+1$, time step n
T_j^{n-1}	°C	soil temperature at node j , time step $n-1$
T_j^{n+1}	°C	soil temperature at node j , time step $n+1$
T_{l}	Κ	soil temperature in layer <i>l</i>
T_{N-2}^n	°C	soil temperature at node $N-2$, time step n
T_{N-1}^n	°C	soil temperature at node $N-1$, time step n
T_N^n	°C	soil temperature at node N , time step n
T_{N-1}^{n+1}	°C	soil temperature at node $N-1$, time step $n+1$
T_N^{n+1}	°C	soil temperature at node N , time step $n+1$
T_{ref}	°C	reference temperature
T_s	°C	surface soil temperature
$T_{_{sky}}$	Κ	sky radiometric temperature
$T_{_{soil}}$	Κ	soil temperature
T _{surf}	Κ	surface temperature

T_{t}	Κ	soil temperature in layer t
T_{ν}	_	transmission coefficient for vertical polarisation
$T_{_{veg}}$	Κ	vegetation temperature
T_{∞}	Κ	deep soil temperature
t	S	travel time
t	S	time
t_d	S	rainfall duration
t^n	S	simulation time at time step <i>n</i>
t^{n-1}	S	simulation time at time step $n-1$
t^{n+1}	S	simulation time at time step $n+1$
t_r	S	time at commencement of recession limb of sub-
		surface hydrograph
t_s	S	time taken to reach steady state
U	$\mathrm{cm} \mathrm{s}^{-1}$	wind speed at reference height z_U
U		vector of forcing
\mathbf{U}^n		vector of forcing at time step n
<u>U</u>		state augmented vector of forcing
VDF	_	vertical distribution factor
V	$\mathrm{cm} \mathrm{s}^{-1}$	propagation speed of electromagnetic wave
v		vector of observation error
W		roughness spectrum
W	cal g^{-1}	differential heat of wetting
W	_	Clapp and Hornberger saturation ratio
$W_{_d}$	g	weight of dry soil
$W_{_i}$	_	Clapp and Hornberger saturation ratio at air
		entry saturation
W^n		roughness spectrum related to the <i>n</i> th power of
		the correlation function by the Fourier
		transformation
$W_{_{W}}$	g	weight of water in moist soil
\mathbf{W}^{n}		vector of model error at time <i>n</i>
X	cm	distance in the lateral direction
$X_{_1}$		element 1 of the system state vector
$X_{_j}$		element j of the system state vector
$X_{_N}$		element N of the system state vector
X		system state vector
Â		best estimate of the system state vector
$\mathbf{\hat{X}}^{0/0}$		initial estimate of the system state vector
$\hat{\mathbf{X}}^{n \prime n}$		estimate of the system state vector at time <i>n</i>
$\mathbf{\hat{X}}^{n+1/n}$		forecast estimate of the system state vector at
		time $n+1$ given the system state vector estimate

		at time <i>n</i>
$\mathbf{\hat{X}}^{n+1/n+1}$		updated estimate of the system state vector at
		time $n+1$ given the forecast system state vector
		estimate at time <i>n</i> +1
<u>X</u>		state augmented system state vector
Y		transformed system state vector
Ζ	cm	distance in the vertical direction
Ζ	degrees	zenith angle
Ζ		vector of observations
\mathbf{Z}^n		vector of observations at time <i>n</i> +1
Ζ.	cm	elevation in soil, +ve upwards from soil surface
Z_1	cm	elevation in soil of node 1
Z_2	cm	elevation in soil of node 2
Z_3	cm	elevation in soil of node 3
Z_i	cm	elevation in soil at base of layer <i>i</i>
Z_{I-1}	cm	elevation in soil at top of layer <i>i</i>
Z_{j-1}	cm	elevation in soil of node <i>j</i> –1
$Z_{j=1/2}$	cm	elevation in soil of node $j-1/2$
Z_j	cm	elevation in soil of node <i>j</i>
$Z_{j+1/2}$	cm	elevation in soil of node $j+1/2$
Z_{j+1}	cm	elevation in soil of node <i>j</i> +1
Z_{N-2}	cm	elevation in soil of node N-2
Z_{N-1}	cm	elevation in soil of node N-1
Z_N	cm	elevation in soil of node N
Z_{om}	cm	momentum roughness length
Z_{ov}	cm	heat and water vapour roughness length
Z_T	cm	height of temperature and relative humidity
		measurements
Z_U	cm	height of wind speed measurements
α		attenuation constant
α	cm ⁻¹	coefficient of compressibility of the soil solid
		matrix
α		single scattering albedo of vegetation
α	_	auto-regressive smoothing value
$\alpha_{_1}$		soil parameter 1
$\alpha_{_i}$		<i>i</i> th soil parameter
$\alpha_{_{\rm III}}$		<i>m</i> th soil parameter
α		approximation to I_{pa} for transmission at
рq		polarisation p and reception at polarisation q
$lpha_{_{hh}}$		approximation to I_{hh} for horizontally polarised
nn		

		transmission and horizontally polarised reception
$lpha_{_{\!$		approximation to $I_{\nu\nu}$ for vertically polarised
		transmission and vertically polarised reception
eta		phase constant
β	cm^{-1}	coefficient of compressibility for water
β	$g \text{ cm}^{-3} \circ \mathbb{C}^{-1}$	$\partial \rho_{\prime} \partial T = 1.05 \times 10^6 \text{ g cm}^{-3} \text{ °C}^{-1} \text{ at } 20 \text{ °C}$
β´	_	empirically determined soil type constant for real
		component of the dielectric constant
β″	-	empirically determined soil type constant for
		imaginary component of the dielectric constant
Γ	_	reflectivity
Γ()		Gamma function
$\Gamma_{_0}$	_	reflectivity at nadir
Γ_{h}	-	reflectivity for horizontal polarisation
$\Gamma_{_{i,j}}$	-	<i>i</i> , <i>j</i> th element of the matrix Γ for estimating
		correlations
Γ_p	-	reflectivity for polarisation p
Γ_{v}	_	reflectivity for vertical polarisation
$\Gamma_{_{veg}}$	_	two-way attenuation by vegetation
γ	_	surface rms slope, $\gamma = \sigma/l$
γ	°C ⁻¹	temperature coefficient of water surface tension,
		$-2.09 \times 10^{-3} \text{ °C}^{-1}$ at 20°C
γ	kPa °C ⁻¹	psychometric constant
Δ	kPa °C⁻¹	slope of vapour pressure curve
Δf	Hz	frequency change
$(\Delta t)^n$	S	time step size for time step <i>n</i>
$(\Delta t)^{n+1}$	S	time step size for time step $n+1$
δ_{p}	cm	penetration depth
E	_	ratio of molecular weight of water vapour to
		molecular weight of dry air
ε	farad m ⁻¹	complex dielectric constant, $\varepsilon = \varepsilon' + i\varepsilon''$
έ	farad m^{-1}	real part of dielectric constant ε
ε''	farad m^{-1}	imaginary part of dielectric constant ε
\mathcal{E}_{fw}	-	real part of relative dielectric constant of free water
$\mathcal{E}_{fw}^{\ \prime\prime}$	_	imaginary part of relative dielectric constant of
-		free water
$\boldsymbol{\varepsilon}_{l}$	farad m ⁻¹	complex dielectric constant ε for layer l
\mathcal{E}_{l+1}	farad m ⁻¹	complex dielectric constant ε for layer $l+1$

$\boldsymbol{\varepsilon}_{l}^{\prime\prime}$	farad m^{-1}	imaginary component of complex dielectric
		constant ε for layer l
\mathcal{E}_{leaf}	farad m^{-1}	leaf dielectric constant
\mathcal{E}_{o}	farad m^{-1}	complex dielectric constant of free space,
		8.85×10^{-12} farad m ⁻¹
\mathcal{E}_{r}	_	complex relative dielectric constant,
		$\boldsymbol{\mathcal{E}}_{r} = \boldsymbol{\mathcal{E}} / \boldsymbol{\mathcal{E}}_{o} = \boldsymbol{\mathcal{E}}_{r} + i \boldsymbol{\mathcal{E}}_{r}''$
$\mathcal{E}_{r_{air}}$	_	relative dielectric constant of air, 1
$\mathcal{E}_{r_{\infty}}$	_	complex infinity depth relative dielectric
		constant value
\mathcal{E}_{s}	_	relative dielectric constant of the soil solids
$\boldsymbol{\varepsilon}_{T}^{n}$	°C	maximum change in soil temperature at time step
		n
$\hat{\boldsymbol{\varepsilon}}_{\scriptscriptstyle T}$	°C	target change in soil temperature
\mathcal{E}''_{t}	farad m^{-1}	imaginary part of dielectric constant ε for region
		t
\mathcal{E}_{veg}	_	relative vegetation dielectric constant
$\mathcal{E}_{veg}^{\prime\prime}$	_	imaginary part of the relative vegetation
		dielectric constant
$\mathcal{E}_{_{\!WO}}$	_	static relative dielectric constant of water
$\mathcal{E}_{w^{\infty}}$	_	high frequency limit of $\varepsilon_{_{fw}}$
$\hat{arepsilon}_{ heta}$	$\mathbf{v} \mathbf{v}^{-1}$	target relative change in volumetric soil moisture
\mathcal{E}_{0}^{n}	v v ⁻¹	maximum relative change in volumetric soil
0		moisture at time step <i>n</i>
$\boldsymbol{\mathcal{E}}_{\boldsymbol{\psi}}^{n}$	_	maximum relative change in soil matric potential
		at time step <i>n</i>
$\hat{arepsilon}_{\psi}$	_	target relative change in soil matric potential
η	_	van Genuchten soil texture parameter
$oldsymbol{\eta}_{_o}$	Ω	intrinsic impedence of free space, 376.7 Ω
$oldsymbol{\eta}_{\scriptscriptstyle 1}$	Ω	intrinsic impedence of incident layer
$\eta_{_2}$	Ω	intrinsic impedence of transmission layer
Θ	_	van Genuchten saturation ratio
θ	degrees	angle of incidence
$\vartheta_{_i}$	degrees	angle of incidence
ϑ_{s}	degrees	soil transmission angle
ϑ_1	degrees	angle of incidence
ϑ_2	degrees	transmission angle
θ	v v ⁻¹	volumetric soil moisture fraction

$ heta_{_{fc}}$	v v ⁻¹	volumetric soil moisture fraction at field capacity
θ_{i}	$\mathbf{v} \mathbf{v}^{-1}$	volumetric soil moisture fraction of layer <i>i</i>
$oldsymbol{ heta}_{_{j,k,l}}$	v v ⁻¹	volumetric soil moisture fraction of grid element <i>j</i> , <i>k</i> , <i>l</i>
$ heta_{_{j+1,k,l}}$	v v ⁻¹	volumetric soil moisture fraction of grid element $j+1,k,l$
$\theta_{_{j+1/2,k,l}}$	v v ⁻¹	average volumetric soil moisture fraction of grid elements j,k,l and $j+1,k,l$
$\boldsymbol{ heta}_{\!$	$\mathbf{v} \mathbf{v}^{-1}$	volumetric soil moisture fraction of grid element <i>j</i> , <i>k</i> +1, <i>l</i>
$\theta_{j,k+1/2,l}$	v v ⁻¹	average volumetric soil moisture fraction of grid elements <i>j</i> , <i>k</i> , <i>l</i> and <i>j</i> , <i>k</i> +1, <i>l</i>
${oldsymbol{ heta}}^n_{j,k,l}$	v v ⁻¹	volumetric soil moisture fraction of grid element <i>j</i> , <i>k</i> , <i>l</i> , time step <i>n</i>
$oldsymbol{ heta}_{j,k,l}^{n-1}$	v v ⁻¹	volumetric soil moisture fraction of grid element <i>j</i> , <i>k</i> , <i>l</i> , time step $n-1$
$\boldsymbol{\theta}_{j,k,l}^{^{n+1}}$	V V ⁻¹	volumetric soil moisture fraction of grid element j,k,l , time step $n+1$
$\boldsymbol{\theta}_{l}$	v v ⁻¹	liquid component of volumetric soil moisture fraction
$oldsymbol{ heta}_{l_1}$	v v ⁻¹	liquid component of volumetric soil moisture fraction at node 1
$oldsymbol{ heta}_{l_2}$	$\mathbf{v} \mathbf{v}^{-1}$	liquid component of volumetric soil moisture fraction at node 2
$oldsymbol{ heta}_{lj}$	$\mathbf{v} \mathbf{v}^{-1}$	liquid component of volumetric soil moisture fraction at node <i>j</i>
$oldsymbol{ heta}_{l_N}$	v v ⁻¹	liquid component of volumetric soil moisture fraction at node <i>N</i>
$oldsymbol{ heta}_{l_2}^n$	$\mathbf{v} \mathbf{v}^{-1}$	liquid component of volumetric soil moisture fraction at node 2, time step <i>n</i>
$oldsymbol{ heta}_{l_2}^{n-1}$	V V ⁻¹	liquid component of volumetric soil moisture fraction at node 2, time step $n-1$
$oldsymbol{ heta}_{l_j}^n$	$\mathbf{v} \ \mathbf{v}^{-1}$	liquid component of volumetric soil moisture fraction at node <i>j</i> , time step <i>n</i>
$oldsymbol{ heta}_{l_j}^{n-1}$	$\mathbf{v} \mathbf{v}^{-1}$	liquid component of volumetric soil moisture fraction at node j , time step $n-1$
$oldsymbol{ heta}_{l_{N-1}}^n$	v v ⁻¹	liquid component of volumetric soil moisture fraction at node $N-1$, time step n
$oldsymbol{ heta}_{l_{N-1}}^{n-1}$	V V ⁻¹	liquid component of volumetric soil moisture fraction at node $N-1$, time step $n-1$

θ_{m_i}	v v ⁻¹	soil mineral matter content volume fraction of layer <i>i</i>
$oldsymbol{ heta}_{_{oi}}$	v v ⁻¹	soil organic matter content volume fraction of
0		layer <i>i</i>
Θ_r	\mathbf{v} \mathbf{v}	residual soil moisture for grid element <i>i h l</i>
$O_{r_{j,k,l}}$	V V	residual son moisture for grid element <i>j</i> , <i>k</i> , <i>t</i>
$\boldsymbol{\theta}_{r_{j+1,k,l}}$	V V	residual soil moisture for grid element $j+1,k,l$
$\theta_{r_{j,k+1,l}}$	$\mathbf{v} \mathbf{v}^{-1}$	residual soil moisture for grid element $j,k+1,l$
θ_{ν}	v v ⁻¹	vapour component of volumetric soil moisture
		fraction
$ heta_{\scriptscriptstyle veg}$	kg m ⁻²	vegetation moisture
$ heta_{_{\!$	$\mathbf{v} \mathbf{v}^{-1}$	volumetric moisture fraction at field capacity
$\theta_{_1}$	v v ⁻¹	volumetric fraction of liquid water
θ_{2}	$\mathbf{v} \mathbf{v}^{-1}$	volumetric fraction of air
θ_{3}	$\mathbf{v} \mathbf{v}^{-1}$	volumetric fraction of quartz
$\theta_{_4}$	v v ⁻¹	volumetric fraction of other minerals
$\theta_{_5}$	v v ⁻¹	volumetric fraction of organic matter
λ	cm	wavelength, $\lambda = c/f$
λ	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium
$\lambda_{_1}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	thermal conductivity of liquid water
$\lambda_{_2}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of air-filled pores,
		$oldsymbol{\lambda}_2 = oldsymbol{\lambda}_a + oldsymbol{\lambda}_{vap}$
$\lambda_{_3}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	thermal conductivity of quartz
$\lambda_{_4}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	thermal conductivity of other minerals
λ_{5}	cal cm ⁻¹ s ⁻¹ °C ⁻¹	thermal conductivity of organic matter
$\lambda_{_a}$	cal cm ⁻¹ s ⁻¹ $^{\circ}C^{-1}$	thermal conductivity of dry air alone
λ_i	cal cm ⁻¹ s ⁻¹ °C ⁻¹	thermal conductivity of <i>i</i> th soil constituent in
		bulk soil medium
$\lambda_{_{vap}}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of an air-filled
		pore due to vapour diffusion
$\lambda_{_{o}}$	cm	free-space wavelength
λ_i	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
5		medium at node <i>j</i>
$\lambda_{_{j-1}}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node $j-1$
$\lambda_{j-\gamma_2}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
• 2		soil medium for nodes j and $j-1$

$\lambda_{j+\gamma_2}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
2	cal $cm^{-1} s^{-1} \circ C^{-1}$	apparent thermal conductivity of bulk soil
\mathcal{V}_{j+1}		medium at node $i+1$
λ_1^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node 1, time step n
λ_{11}^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
¹ 7 ₂		soil medium at nodes 1 and 2, time step n
λ_2^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
2		medium at node 2, time step n
λ_3^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node 3, time step n
λ_{i}^{n}	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node j , time step n
$\lambda_{j=1}^n$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node $j-1$, time step n
$\lambda_{j-\gamma_2}^n$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
- • 2		soil medium for nodes j and $j-1$, time step n
$\lambda_{j+\gamma_2}^n$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
2		soil medium for nodes j and $j+1$, time step n
λ_{j+1}^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node $j+1$, time step n
$\lambda_{N=2}^n$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node $N-2$, time step n
$\lambda_{\scriptscriptstyle N\!-\!1}^n$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
		medium at node $N-1$, time step n
$\lambda_{N-\frac{1}{2}}^{n}$	cal cm ⁻¹ s ⁻¹ °C ⁻¹	average apparent thermal conductivity of bulk
		soil medium for nodes $N-1$ and N , time step n
λ_N^n	cal cm ⁻¹ s ⁻¹ °C ⁻¹	apparent thermal conductivity of bulk soil
	1 1	medium at node N , time step n
μ	g cm ⁻¹ s ⁻¹	fluid viscosity
μ	henry m ⁻¹	magnetic permeability
μ_{l}	henry m ⁻¹	magnetic permeability of layer <i>l</i>
$\mu_{_{l+1}}$	henry m ⁻¹	magnetic permeability of layer $l+1$
$\mu_{_o}$	henry m ⁻¹	magnetic permeability of free space,
		$4\pi \times 10^{-7}$ henry m ⁻¹
μ_{r}	-	relative magnetic permeability, $\mu_r = \mu/\mu_o$
$\mu_{_{X_i}}$		mean of <i>i</i> th system state variable
$\mu_{x_i^{'}}$		transformed mean of <i>i</i> th system state variable
v	_	empirically determined constant

ξ	_	tortuosity factor for diffusion of gases in soils, \approx
$o(\xi)$		0.07 single parameter surface autocorrelation function
$p(\varsigma)$	_	two parameter surface autocorrelation function
$p(\varsigma,\varsigma)$	-	fluid density
p o	g cm ⁻³	air density
P_{air}	g cm ⁻³	soil bulk density
$ ho_{_b}$	g cm ⁻³	donsity of liquid water
ρ_i	$g \operatorname{cm}^{-3}$	density of acturated water vanour
$ ho_{_o}$	$g \operatorname{cm}^{-3}$	density of saturated water vapour density of organic matter 1.2 g sm^{-3}
$ ho_{\scriptscriptstyle om}$	g cm ⁻³	ceil anosifia dansity 2.65 a cm ⁻³
$ ho_{s}$	g cm	son specific density, 2.65 g cm
$ ho_{_{v}}$	g cm	density of water vapour
$ ho_w$	g cm	density of water
$ ho_{\scriptscriptstyle X_iX_j}$	_	correlation between the <i>i</i> th and <i>j</i> th system state variables
$ ho_{\scriptscriptstyle X_i^{'}X_i^{'}}$	_	correlation between the transformed <i>i</i> th and
. ,		transformed <i>j</i> th system state variables
$ ho_{X_i^{'}X_i^{'}}$	_	correlation between the transformed <i>i</i> th and
		untransformed <i>j</i> th system state variables
$\Sigma_{\mathbf{X}}$		covariance matrix of system states
$\Sigma_{\mathbf{X}}^{0/0}$		initial covariance matrix of system states
$\Sigma^{n/n}_{\mathbf{X}}$		estimated covariance matrix of system states at time <i>n</i>
$\sum_{m=1}^{n+1/n}$		forecast covariance matrix of system states at
- <u>x</u>		time $n+1$ given the covariance matrix at time n
$\sum_{\mathbf{v}}^{n+1/n+1}$		updated covariance matrix of system states at
		time <i>n</i> +1
$\Sigma_{\rm v}$		transformed covariance matrix of system states
σ	cm	rms roughness height
$\sigma_{_{\!\!\! m eff}}$	s m ⁻¹	effective conductivity
$\sigma_{_{X_i}}$		standard deviation of <i>i</i> th system state variable
$\sigma_{_{Xj}}$		standard deviation of <i>j</i> th system state variable
$\sigma_{_{X'_i}}$		standard deviation of <i>i</i> th transformed system state variable
$\sigma_{_{X_{j}}}$		standard deviation of <i>j</i> th transformed system
ć		backscattering coefficient
σ°	_	have soil backscattering coefficient
σ_{bare}	—	direct backscattering coefficient from the
σ_d	_	uneer backscattering coefficient from the

		vegetation layer
$\sigma^{^o}_{_{dB}}$	dB	backscattering coefficient in decibels
σ^{o}_{dr}	_	direct reflected backscattering coefficient from
		the vegetation layer
$\sigma^{\circ}_{_{ground}}$	_	backscattering coefficient from soil covered with
8		a vegetation layer
$\sigma'_{_{hh}}$	_	backscattering coefficient for horizontally
		polarised transmission and horizontally polarised
		reception
$\sigma^{o}_{_{hh/vv_{dB}}}$	dB	ratio of <i>hh</i> to <i>vv</i> polarisation backscattering
		coefficients in dB
σ'_{hv}	_	backscattering coefficient for horizontally
		polarised transmission and vertically polarised
		reception
${\pmb\sigma}_{_{pp}}$	_	backscattering coefficient when transmission and
		reception are at polarisation <i>p</i>
$\sigma'_{_{pq}}$	_	backscattering coefficient when transmission is
		at polarisation p and reception is at polarisation q
σ'_r	_	reflected backscattering from the vegetation
_		layer
$\sigma'_{_{total}}$	_	total backscattering from a soil-vegetation layer
$\sigma'_{_{veg}}$	_	backscattering from the vegetation layer
$\sigma'_{_{vv}}$	-	backscattering coefficient for vertically polarised
		transmission and vertically polarised reception
au		atmospheric transmission
au	Np	optical depth
$ au_{_{\!W}}$	S	relaxation time for water
Ϋ́	_	transmissivity
Υ_{veg}	_	transmissivity of vegetation layer
Φ_1^n		system state forecasting matrix at time step n
-		given the system state estimate at time step n
$\boldsymbol{\Phi}_1^{^{n+1}}$		system state forecasting matrix at time step $n+1$
		given the system state estimate at time step $n+1$
$\overline{\Phi}_{_{1}}$		auto-regressive smoothed system state
		forecasting matrix
$\overline{\mathbf{\Phi}}_{1}^{n}$		auto-regressive smoothed system state
		forecasting matrix at time step n given the
_		system state estimate at time step n
$\overline{\Phi}_{\!\!1}^{n+1}$		auto-regressive smoothed system state
		forecasting matrix at time step $n+1$ given the

		system state estimate at time step $n+1$
Φ_2^n		system state forecasting matrix at time
		step n given the system state estimate at time
		step n
Φ_2^{n+1}		system state forecasting matrix at time step $n+1$
_		given the system state estimate at time step $n+1$
$\overline{\Phi}_2$		auto-regressive smoothed system state
_		forecasting matrix
Φ_2^n		auto-regressive smoothed system state
		forecasting matrix at time step n given the
$\overline{\mathbf{x}}_{n+1}$		system state estimate at time step <i>n</i>
Φ_2^{n+1}		auto-regressive smootned system state
		Forecasting matrix at time step $n+1$ given the
<i>A</i>	radians	system state estimate at time step $n+1$
φ		soil perosity
ϕ	V V	
$\phi_{_e}$	\mathbf{v} \mathbf{v}	effective soil porosity, $\phi_e = \phi - \theta_{fc}$
$\phi_{_{j,k,l}}$	V V -1	son porosity of grid element <i>j</i> , <i>k</i> , <i>i</i>
$\phi_{_{j+1,k,l}}$	V V -1	soil porosity of grid element $j+1,k,l$
$\pmb{\phi}_{_{j,k+1,l}}$	V V	soil porosity of grid element $j,k+1,l$
ϕ	_	Brooks and Corey pore size distribution index
Ψ	cm	soil matric potential
$\psi_{\scriptscriptstyle b}$	cm	bubbling soil matric potential
ψ_{d}	cm	soil matric potential at the observation depth
ψ_i	cm	soil matric potential at air entry
ψ_{s}	cm	saturated soil matric potential
ψ_{j}	cm	soil matric potential at node <i>j</i>
$\psi_{j=1}$	cm	soil matric potential at node $j-1$
$\psi_{_{j+1}}$	cm	soil matric potential at node $j+1$
$\psi_{\scriptscriptstyle N}$	cm	soil matric potential at node N
$\psi_{N=1}$	cm	soil matric potential at node N-1
$\psi_{N=2}$	cm	soil matric potential at node N-2
$\psi_{_1}$	cm	saturated soil matric potential at node 1
ψ_2	cm	saturated soil matric potential at node 2
${oldsymbol{\psi}}_{j=1}^n$	cm	soil matric potential at node $j-1$, time step n
$\boldsymbol{\psi}_{j}^{n}$	cm	soil matric potential at node <i>j</i> , time step <i>n</i>
ψ_{j+1}^n	cm	soil matric potential at node $j+1$, time step n
$\boldsymbol{\psi}_N^n$	cm	soil matric potential at node N , time step n

$oldsymbol{\psi}_{N-1}^n$	cm	soil matric potential at node $N-1$, time step n
$\boldsymbol{\psi}_{j}^{n-1}$	cm	soil matric potential at node j , time step $n-1$
${oldsymbol{\psi}}_{j}^{n+1}$	cm	soil matric potential at node j , time step $n+1$
$\psi_{\scriptscriptstyle N-1}^{\scriptscriptstyle n+1}$	cm	soil matric potential at node N -1, time step n +1
${oldsymbol{\psi}}_N^{n+1}$	cm	soil matric potential at node N , time step $n+1$
ψ_1^n	cm	soil matric potential at node 1, time step n
ψ_2^n	cm	soil matric potential at node 2, time step n
ψ_3^n	cm	soil matric potential at node 3, time step n
ψ_1^{n+1}	cm	soil matric potential at node 1, time step $n+1$
ψ_2^{n+1}	cm	soil matric potential at node 2, time step $n+1$
$\mathbf{\Omega}^n$		vector of forcing at time step n
$\mathbf{\Omega}^{^{n+1}}$		vector of forcing at time step $n+1$
$\partial \sigma^{\scriptscriptstyle o}_{\scriptscriptstyle dB}$	dB	backscattering sensitivity
6		partial derivative operator
∇		gradient operator

LIST OF FIGURES

Figure 1.1: Schematic representation of the soil moisture estimation problem
Figure 2.1: Dielectric constant as a function of volumetric soil moisture content for five soil types at 1.4 GHz and a soil temperature of 23°C. Smooth curves were drawn through measured data points (Ulaby <i>et al.</i> , 1986)
Figure 2.2: Plot of the imaginary part of the relative dielectric constant for a volumetric soil moisture content of 5% v/v, using the effective conductivity given by (2.7a) and (2.7b) 2-1
Figure 2.3: Plot of the imaginary part of the relative dielectric constant for a volumetric soil moisture content of 40% v/v, using the effective conductivity given by (2.7a) and (2.7b) 2-1
Figure 2.4: Plot of real and imaginary components of the complex relative dielectric constant for a soil at 5% volumetric moisture content, with soil temperatures of 0, 10, 30 and 50°C 2-1
Figure 2.5: Plot of real and imaginary components of the complex relative dielectric constant for a soil at 40% volumetric moisture content, with soil temperatures of 0, 10, 30 and 50°C 2-1
Figure 2.6: An example of a ground-based system. The system comprises a "truck"-mounted radiometer, making observations of a sand target area. Data processing equipment is contained within the van (Njoku and Kong, 1977)
Figure 2.7: Landsat 5 satellite configuration (Lillesand and Kiefer, 1994)2-1
Figure 2.8: SPOT 3 satellite configuration (Lillesand and Kiefer, 1994)
Figure 2.9: ERS-2 satellite configuration (Bolognani and Altese, 1994)
Figure 2.10: JERS-1 satellite configuration (Bolognani and Altese, 1994)
Figure 2.11: RADARSAT satellite configuration (Ahmed et al., 1990)2-1
Figure 2.12: Normalised NDVI versus normalised temperature, with isopleths of near-surface soil moisture availability overlaid (Gillies and Carlson, 1995)
Figure 2.13: Schematic representation of the electromagnetic spectrum on a logarithmic scale. The bottom half of this figure shows atmospheric transmissivity as a function of frequency (Schmugge, 1985)
Figure 2.14: Geometrical configuration used for evaluation of brightness temperature from a coherent stratified medium (Tsang <i>et al.</i> , 1975)
Figure 2.15: Observed values of the effects of vegetation on model parameter <i>b</i> as a function of wavelength (Jackson, 1993)
Figure 2.16: Sensitivity of backscattering to dielectric constant at different frequencies: exponential correlation function, $\sigma = 1.4$ cm, $l = 10$ cm, $\theta = 35^{\circ}$, <i>vv</i> polarisation (Hoeben <i>et al.</i> , 1997)
Figure 2.17: Illustration of the effect of surface roughness on backscattering intensity (Schmugge, 1985)2-1
Figure 2.18: Illustration showing the effect of wavelength and surface roughness on the backscattering properties of a surface (Lillesand and Kiefer, 1994)
Figure 2.19: Illustration of a) surface scattering as modelled by the standard IEM, and b) surface and volume scattering as modelled by the modified IEM (Fung <i>et al.</i> , 1996)
Figure 2.20: Comparison of IEM estimate of backscattering coefficient with the observed backscattering coefficient from the smooth EMSL experiment at incidence angles of 11°, 23° and 35° (Mancini <i>et al.</i> , 1996)

Figure 2.21: Schematic illustration of backscattering mechanisms from a vegetated surface (Ulaby <i>et al.</i> , 1996)
Figure 3.1: Schematic representation of surface and sub-surface hillslope flow components (Kirkby, 1985)
Figure 3.2: Illustration of data assimilation schemes for soil moisture profile estimation. a) Hard- updating; and b) Kalman-filtering
Figure 3.3: a) Basic types of soil moisture profiles of real soils and b) corresponding dielectric profiles: (i) linear variation, (ii) piece-wise linear, (iii) exponential variation and (iv) parabolic variation (Reutov and Shutko, 1986)
Figure 4.1: Illustration of the dielectric profile imposed by the Modified IEM for the transition rate factor <i>m</i> of 12 cm ⁻¹ proposed by Fung <i>et al.</i> (1996) and for <i>m</i> with a value of 1 cm ⁻¹
Figure 4.2: Comparison of penetration depth as defined by Ulaby <i>et al.</i> (1982) for moisture contents of 5% v/v (dash-dot line) and 40% v/v (dashed line) with the empirical relationship of $d = \lambda_o/10$ (solid line)
Figure 4.3: Comparison of the penetration depth (dashed line) as defined by Ulaby <i>et al.</i> (1982) with the observation depth (solid line) as determined by Troch <i>et al.</i> (1996) (Troch <i>et al.</i> , 1996)
Figure 4.4: Schematic representation of the phase change for volume and surface scattering waves from a soil having: a) a drying profile; and b) a wetting profile
Figure 4.5: Comparison of observation depth as evaluated from the phase change model for $\phi = 2\pi$ at soil moisture contents of 5% v/v (open symbols) and 40% v/v (closed symbols) at incidence angles of 11° (circles), 23° (squares) and 35° (triangles), with the empirical relationship of $d = \lambda_0/10$ (crosses)
Figure 4.6: Comparison of observation depth as evaluated from the phase change model for $\phi = \pi$ at soil moisture contents of 5% v/v (open symbols) and 40% v/v (closed symbols) at incidence angles of 11° (circles), 23° (squares) and 35° (triangles), with the empirical relationship of $d = \lambda_0/10$ (crosses)
Figure 4.7: Schematic representation of incident, reflected and transmitted waves in: a) a single soil layer of varying thickness; and b) multiple soil layers of constant thickness
Figure 4.8: Schematic illustration of the single layer radar observation depth model
Figure 4.9: Regions for considering surfaces as specular, diffuse or lambertian with respect to observation frequency and root mean square height of surface variations
Figure 4.10: Exploded view of the EMSL (http://www.ei.it/landmines/landmines/sai/AT1.html) 3-1
Figure 4.11: Radar observation depths calculated from the theoretical amplitude attenuation model for a drying step of the very rough surface EMSL experiment
Figure 4.12: Comparison of backscattering simulations from the Modified IEM with variable transition rate factor against the Modified IEM with transition rate factor m equal to 12 cm ⁻¹ , standard IEM and EMSL data from a drying step of the very rough surface experiment 3-1
Figure 5.1: Discretisation and coordinate system for the one-dimensional finite difference model.
Figure 5.2: Comparison of soil moisture profile simulation results from PROXSIM1D and SPLaSHWaTr under six different boundary conditions
Figure 5.3: Comparison of soil temperature profile simulation results from PROXSIM1D and SPLaSHWaTr under six different boundary conditions
Figure 6.1: Surface boundary conditions: a) moisture flux boundary condition; and b) heat flux boundary condition
Figure 6.2: Initial profile conditions: a) soil moisture; and b) soil temperature

- Figure 6.7: Comparison of soil temperature profile simulation using the hard-update assimilation scheme for observations of the surface node (open circle) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot)..... 6-12

- Figure 6.14: Comparison of estimated soil temperature profiles using the Kalman-filter assimilation scheme for observations of the surface node (open symbols) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot). Estimated profiles correspond with soil moisture profile estimation for observation depths of 0 (open circle), 1 (open square), 4 (open triangle) and 10 (open diamond) cm. Gravity drainage and advection boundary conditions at base of soil column, initial state

- Figure 6.19: Comparison of soil moisture profile estimation using the Kalman-filter assimilation scheme for an observation depth of 1 cm with an observation noise of 0 (open circle), 2 (open square), 5 (open upward triangle), 10 (open diamond) and 20% (open downward triangle) of the observation with the "true" soil moisture profile (solid circle) and the open loop soil moisture profile (open circle with dot). Gravity drainage boundary condition at base of soil column, system noise of 5% of the change in system state during the time step and initial variances of 100.

- Figure 6.22: Comparison of soil temperature profile estimation using the Kalman-filter assimilation scheme for observations of the surface node (open circle) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot) for an increased number of near-surface nodes. Gravity drainage and advection boundary conditions at base of soil column, system noise of 5% of the change in system

- Figure 6.24: Comparison of soil temperature profile estimation using the hard-update assimilation scheme for observations of the surface node (open circle) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot)..... 6-31

- Figure 6.28: Comparison of soil temperature profile estimation using the Kalman-filter assimilation scheme for observations of the surface node (open symbols) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot). Estimated soil temperature profiles correspond with soil moisture profile estimation for observations of 0 (open circle), 1 (open square), 4 (open triangle) and 10 cm (open diamond); initial state variances of 1000000, 1000000, 10000 and 1000 respectively. Observation variances 2% of observations and system noise 5% of change in states. 6-36

- Figure 6.34: Comparison of soil moisture profile estimation using the hard-update assimilation scheme with a Dirichlet boundary condition over an observation depth of 4 cm (open

langic).

- Figure 6.37: Comparison of soil moisture profile estimation using the Kalman-filter assimilation scheme over depths of 1 (open circle), 4 (open square) and 10 cm (open triangle) with the "true" soil moisture profile (solid circle) and the open loop soil moisture profile (open circle with dot). Initial state variances for the estimated soil moisture profiles were 10, 5 and 15 respectively; system noise 5% of change in states and observation noise 2% of observation.
- Figure 6.38: Comparison of soil moisture profile estimation using the Kalman-filter assimilation scheme for an observation depth of 1 cm with the "true" soil moisture profile (solid circle) and the open loop soil moisture profile (open circle with dot). First update at time 0 hours (open circle), 1 hour (open square) and 1 day (open triangle); initial state variances 1000000, system noise 5% of change in states and observation variances 2% of observations....... 6-46

Figure 6.40: Illustration of the Kalman-filter assimilation scheme using quasi observations..... 6-49

Figure 6.44: Comparison of soil moisture profile estimation using the Kalman-filter assimilation
scheme for observation depths of 0 (open circle), 1 (open square), 4 (open triangle) and 10
cm (open diamond) with the "true" soil moisture profile (solid circle) and the open loop soil
moisture profile (open circle with dot); quasi observations were applied over the remainder
of the soil profile with variances varying from 20% to 400% of the lowest observation.
Initial state variances of 1000000, observation variances 2% of observations and system
noise 5% of states per hour

Figure 6.45: Comparison of soil temperature profile estimates using the Kalman-filter assimilation scheme for observations of the surface node (open symbols) with the "true" soil temperature profile (solid circle) and the open loop soil temperature profile (open circle with dot). Soil temperature profiles correspond with soil moisture profile estimation for observation depths of 0 (open circle), 1 (open square), 4 (open triangle) and 10 cm (open diamond); initial state variances of 1000000, observation variances 2% of observations and system noise 5% of the states per hour.

- Figure 6.49: Comparison of soil moisture profile estimation using the Kalman-filter assimilation scheme for observation depths of 1 (open circle), 4 (open square), and 10 cm (open triangle) with the "true" soil moisture profile (solid circle) and the open loop soil moisture profile (open circle with dot); moisture transformation of states and state covariances. Initial state variances of 1000000, 10000 and 10000 respectively, observation variances 2% of observations and system noise 5% of states per hour.
- Figure 7.1: Schematic representation of the catchment scale soil moisture model ABDOMEN3D..... 7-5

Figure 8.6: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 1, standard deviations were 5% of the state values
Figure 8.7: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 2, standard deviations were 5% of the state values
Figure 8.8: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 3, standard deviations were 5% of the state values.
Figure 8.9: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 1, standard deviations were 5% of the state values
Figure 8.10: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 2, standard deviations were 5% of the state values
Figure 8.11: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 3, standard deviations were 5% of state values
Figure 8.12: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 2, standard deviations were 5% v/v
Figure 9.1: Photograph of Nerrigundah catchment looking from east to west
Figure 9.2: Volumetric soil moisture content along the monitoring transect and cumulative rainfall during preliminary monitoring period: a) raw measurement soil moisture content image; b) interpolated soil moisture image content
Figure 9.3: Location of Bureau of Meteorology raingauges with respect to the Nerrigundah experimental catchment
Figure 9.4: Accurate DEM for the Nerrigundah catchment
Figure 9.5: Published DEM for the Nerrigundah catchment
Figure 9.6: Errors in the published DEM: a) elevations (m): b) slopes (m/m)
Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM9-11
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM
 Figure 9.7: Comparison of contours and drainage paths from: a) ground truth DEM; and b) published DEM

Figure 9.18: Comparison of Virrib, connector TDR, buriable TDR and CS615 reflectometer soil moisture measurements
Figure 9.19: Comparisons of soil moisture measurements for Virrib, buriable TDR and connector TDR, for soil layer depths indicated (cm)
Figure 9.20: Comparison of soil moisture measurements for Virrib, buriable TDR and connector TDR, to a soil depth of 40 cm
Figure 9.21: Comparison of cumulative change in soil moisture profile storage for Virrib, buriable TDR, connector TDR and a bucket water balance model
Figure 9.22: Transect soil moisture measurements, autocorrelation, and variogram for 25 m transect on 19/6/97
Figure 9.23: Transect soil moisture measurements, autocorrelation, and variogram for 25 m transect on 17/7/97. a) Down slope; and b) across slope
Figure 9.24: Transect soil moisture measurements, autocorrelation, and variogram for 5 m transect on 18/7/97. a) Down slope; and b) across slope
Figure 9.25: Comparison of Theta Probe, Virrib and CS615 reflectometer (Brian Loveys, Personal communication)
Figure 9.26: Terrain data acquisition system. a) The "Green Machine"; b) GPS base station 9-36
Figure 9.27: Soil moisture map of Nerrigundah catchment on Julian day 258 1997
Figure 9.28: Soil moisture difference plots: a) Julian day 260 to 262; b) Julian day 262 to 265.9-39
Figure 9.29: Soil moisture sampling strategy
Figure 9.30: a) Sub-grid variability; b) Inter-grid variability
Figure 9.31: Drop pin profiler used for surface roughness measurements
Figure 9.32: Example of roughness data with rms roughness height σ and correlation length <i>l</i> . 9-44
Figure 9.33: Comparison of Penman-Monteith potential evapotranspiration (ETp) with the three different soil stress indices (SI#1 to SI#3), three different water balance approaches (WB#1 to WB#3) and the bulk transfer approach (BT), using both Virrib and CS615 soil moisture data collected during the 1997 intensive field campaign
Figure 9.34: Comparison of evapotranspiration estimates in Figure 9.33 with eddy correlation (EC) measurements during the 1997 intensive field campaign
Figure 9.35: Comparison of Penman-Monteith potential evapotranspiration (ETp) with eddy correlation actual evapotranspiration (ETa)
Figure 9.36: Comparison of actual evapotranspiration estimates across the Nerrigundah catchment during the 1997 intensive field campaign using the second water balance approach with the 13 connector TDR (Con TDR) and the Virrib (WB#2) soil moisture measurements
Figure 9.37: Discretisation for estimation of soil heat flux
Figure 9.38: Comparison of soil heat flux plate measurements at 2 and 12 cm depth with null- alignment method estimates
Figure 9.39: Comparison of soil heat flux plate measurements at 2 cm depth with combination method estimates
Figure 9.40: Comparison of combination and null alignment method estimates of soil heat flux at the soil surface and soil base
Figure 9.41: Soil corer used by the TDAS (Western et al., 1996a)
Figure 9.42: The "Green Machine" in a) soil core retrieval and b) soil core extraction modes 9-63
Figure 9.43: Contour plan of the Nerrigundah catchment showing photographs of soil profiles at their location in the catchment
Figure 9.44: Spatial variation of total soil depth (mm) over the Nerrigundah catchment

Figure 9.45: Plots of spatial variation in horizon depth (mm) across the Nerrigundah catchment for: a) horizon A1; b) horizon A2; c) horizon B1; and d) horizon B2. Circles indicate the location of horizon depth observations
Figure 9.46: Proportion of total soil depth contained by horizons A1, A2, B1 and B2 for each soil profile. Mean and standard deviation are given on the figure
Figure 9.47: Plots of spatial variation in soil porosity (%) across the Nerrigundah catchment for:a) horizon A1; b) horizon A2; c) horizon B1; and d) horizon B2. Circles indicate sample locations
Figure 9.48: Spatial variation of: percentage a) clay; b) silt; c) sand; and d) gravel in the A1 horizon Throughout the Nerrigundah catchment. Circles show soil sample locations 9-73
Figure 9.49: Spatial variation of Kozeny-Carmen estimate of saturated hydraulic conductivity (mm h ⁻¹) throughout the Nerrigundah catchment for: a) A1 horizon; b) A2 horizon; c) B1 horizon; and d) B2 horizon
Figure 0.50: a) Illustration of the Gualph permanenter operation: b) Illustration of the saturation

- Figure 10.4: Comparison of Virrib soil moisture measurements (open circles) with calibration of the simplified one-dimensional soil moisture model ABDOMEN1D (solid line) to connector TDR soil moisture measurements at soil moisture profile number 2 from Julian day 167 to 267, 1997. The figure shows soil moisture content in a) layer 3, b) layer 4 and c) layer 5...... 10-9
- Figure 10.6: Calibration of the simplified one-dimensional soil moisture model ABDOMEN1D (solid line) jointly to Virrib and connector TDR (open circles) soil moisture measurements at soil moisture profile number 2 from Julian day 167 to 267, 1997. The figure shows the average soil moisture content over a) layers 1 to 3, b) layers 1 to 4 and c) layers 1 to 5. 10-11
- Figure 10.8: Evaluation of the simplified one-dimensional soil moisture model ABDOMEN1D (solid line) from Julian day 130 1997 to Julian day 274 1998 against Virrib (dashed line) and connector TDR (open circles) soil moisture measurements, with gravity drainage. Shaded

- Figure 10.11: Comparison of the estimated soil moisture profile (dash dot line) from updating with Virrib #1 soil moisture measurements in the top 123 mm soil layer against Virrib (dotted line) and connector TDR (open circle) soil moisture measurements and the open loop simulation (solid line). The simulations were initiated with a poor initial guess of the soil moisture profile, being the soil porosity; the soil moisture profile was updated once per day.

- Figure 11.1: Plan of the Nerrigundah catchment showing the 7 uniform soil type areas, 13 soil moisture profile monitoring sites, and the model grid cells used for comparison with soil moisture profile observations. 11-4
- Figure 11.2: Calibration results from soil moisture profile number 7, situated in uniform soil type number 7. Connector TDR observations (open circles) are compared against one-dimensional simulation results with calibrated parameters (solid line) and averaged parameters (short dashed line), and three-dimensional simulation results with averaged parameters (long dashed line). The difference between the solid line and the short dashed line is the effect of averaging calibrated soil parameters for the uniform soil type, while the difference between short dashed and long dashed lines is the effect of lateral redistribution.

- Figure 11.4: Evaluation of soil moisture profile estimation at soil moisture profile number 7. Connector TDR observations (open circles) are compared against the estimated soil moisture

LIST OF TABLES

Table 2.1: Summary of remote sensing techniques for measurement of near-surface soil moisture content (Schmugge <i>et al.</i> , 1979 and Engman, 1991). 2-1
Table 2.2: Microwave band designations (Lillesand and Kiefer, 1994)
Table 2.3: Comparison of passive and active microwave remote sensing (Engman, 1992)2-1
Table 4.1: Textural composition of the soil used in EMSL experiments 1 and 3 3-1
Table 5.1: Properties of soil constituents (Milly, 1984). 3-1
Table 5.2: Range of values of compressibility (Freeze and Cherry, 1979)
Table 5.3: Soil parameters used in evaluation of PROXSIM1D
Table 6.1: Soil parameters used in evaluation of the soil moisture and temperature profile estimation algorithm. 6-2
Table 6.2: Summary of soil moisture and temperature profile retrieval times from the synthetic study using hard-updating and Kalman-filtering, with various observation depths and update intervals
Table 7.1: Soil parameters used for evaluation of the version 3 vertical distribution factor and $\partial \psi / \partial Z$ in Figure 7.3
Table 8.1: Soil parameters and initial soil moisture values for soil moisture profile simulation of Soil Type 1
Table 8.2: Soil parameters and initial soil moisture values for soil moisture profile simulation of Soil Type 2
Table 8.3: Soil parameters and initial soil moisture values for soil moisture profile simulation of Soil Type 3
Table 9.1: Statistical results from comparison of the published DEM with the more accurate DEM from the ground survey. 9-9
Table 9.2: Soil composition for soil profile number 2
Table 9.3: Particle size ranges (AS1289.3.6.1-1995)
Table 10.1: Calibrated soil parameters for the simplified one-dimensional soil moisture model ABDOMEN1D, from Virrib and connector TDR soil moisture data collected at soil moisture profile number 2
Table 11.1: Soil horizon depths (mm) at soil moisture profile monitoring sites; connector TDR probe length measurements used for estimation of soil moisture content over that depth are given in parenthesis (mm)
Table 11.2: Calibrated soil parameters for the 13 monitored soil moisture profiles 11-6
Table 11.3: Soil properties used for the 7 uniform soil type areas
Table 11.4: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites during model evaluation. 11-12
Table 11.5: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites during estimation of the soil moisture profile using the observed initial soil moisture profile and original TDAS near-surface soil moisture observations
Table 11.6: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites during estimation of the soil moisture profile using the observed initial soil moisture profile and modified TDAS near-surface soil moisture observations

Table 11.7: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites for the open loop simulation with a poor initial guess of soil moisture11-20
Table 11.8: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites during soil moisture profile estimation using a poor initial guess of the soil moisture profile and the modified TDAS near-surface soil moisture observations11-22
Table 11.9: Comparison of rms errors (%v/v) of soil horizons at soil moisture profile monitoring sites during soil moisture profile estimation using a poor initial guess of soil moisture