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CHAPTER EIGHT

8. MODEL DEVELOPMENT: SIMPLIFIED
COVARIANCE ESTIMATION

Development of the implicit soil moisture model ABDOMEN in Chapter 7
provided computational efficiency bath in terms of forecasting the soil moisture
states and forecating o the soil moisture state @variances. However, the
computation time for forecasting d the system state @variance matrix using the
Kaman-filter in the threedimensional field applicaion (Chapter 11) was dill
very large. The reasons for thiswere: (i) evaluation d A (7.15 required inversion
of ®, and then multiplicaion by ®,, resulting in a non-symmetric nonsparse
matrix; and (ii) forecating d the @variances required a triple matrix product
with rather large (720 x 720 non-sparse, nonbanded, nonrsymmetric matrices.
Hence this chapter develops a computationally efficient Modified Kalman-filter,
which estimates the system state cvariances by dyramics smplificaion, for
updating d ABDOMENSD in the threedimensional field application presented in
Chapter 11.

8.1 COVARIANCE ESTIMATION SCHEMES

System state covarianceforecastingiswidely recgnised as being the most
computationally expensive aped of the Kaman-filter algorithm (Dee 199%
Todling and Cohn, 1994 Dee 1995. Computational requirements of the updating
step of the Kalman-filter are less ®vere but nontrivia (Toding and Cohn, 1994,
with forecasting d the system state cvariances using the Kalman-filter (3.2
costing rougHy 2N (where N is the number of system states) what it costs to
produce the system state forecast (3.1) (Deg 199]). While cvariance forecasting
is the centra component of the Kaman-filter, implementation d the Kalman-
filter as a scheme for data assmilation by “brute-force” is recognsed as being
unfeasible because of both its extensive computational requirements and a lack of
complete knowledge of itsrequired statistica inpus (Toding and Cohn, 1994.
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Toding and Cohn (1994 noted that the lack of complete information
concerning statistics of model errors, and even olservation errors, makes the
effort of evolving the complete forecast system state covariance matrix as dictated
by the Kaman-filter not worthwhile. Furthermore, as a @nsequence of the
asumptions in the Kaman-filter and the lineaisation d state forecasting
equations, even a full-fledged application d the extended Kaiman-filter can do no
better than to rougHy approximate the actual forecast system state cvariance
evolutionin an operational setting (Deg 1991 Dee, 1995.

Accordingly, the mvariance forecasting equation (3.2) is sSmply a means
for representing the forecast system state variances, which acourts in an
approximate manner for the dfeds of error propagation by the forecast model
(3.1 as well asfor additional effects of model error. Hence, it follows that other
approximations can be legitimately introduced in the extended Kaman-filter
forecast system state variance evolution, particularly in the computationally

expensive propagationterm (Deg 19%).

A number of schemes for estimating the forecast system state cvariance
matrix have been presented in the literature and are reviewed by Toding and
Cohn (1994. These simplified covariance estimation schemes have been dvided

into six main caegories

i) The covariance modelling category includes thase schemes that assume a
given form for the forecast system state @variance matrices, with no

dynamics of these matrices taken into acourt.

i) Dynamics smplifi cation encompasses those schemes using approximate but
nontrivial system state dynamics to evolve the forecast system state

covariances.

iii) The reduced resolution approach decreases the dimensionality of the
problem by computing the forecast system state wvariances with a @arser
resolution model than the model used to forecast the states. A hybrid dof the
dynamics smplificaion and reduced resolution schemes may also be

considered.
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iv) Local approximation methods attempt to evolve the forecast system state

covariance structure only for points separated by reasonably small distances.

v) The limiting filtering approach computes a fixed gain matrix and an

asymptotic system state @mvariance structure.

vi) Monte Carlo methods attempt to estimate the forecast system state
covariance matrix by integrating an ensemble of states between olservation

times.

In the Modified Kaman-filter developed in this chapter, the forecast
system state ovariances are estimated using the dynamics smplificaion

approach.

8.2 COVARIANCE ESTIMATION BY DYNAMICS
SIMPLIFICATION

An example of forecast system state wvariance etimation by dynamics
simplificaion is the Simplified Kalman-filter of Dee (1991). The basic idea
behind the Simplified Kalman-filter is to predict the forecast system state
covariance evolution bymeans of asimplified version d the forecast model itself,
unlike the Kaman-filter, in which the full forecast model is used for error
propagation. Moreover, the @ntribution to forecast system state @variance
evolution dwe to model error forcing is approximated ony as a final step at the

end d the forecast cycle.

Thisthesis takes a dlightly diff erent tack for forecasting d the system state
covariances. As the magnitude of variancesin the forecast system state cvariance
matrix are cntrolled primarily by the system noise @variance matrix Q (see
sedion 3.3.2, which is generaly poaly estimated, it is propaosed to forecast only
the rrelations between system states. With an estimate of the rrelation
structure and an estimate of the forecast model system state variances (for
instance a standard deviation equal to 5% of the state value), the forecast system
state cvariance matrix can be easily assembled. This is termed the Modified
Kaman-filter. If the essential aspects of the forecast system state dynamics can be
ceptured by this smplified error model, the resulting loss of acaracy in

estimating the forecast system state mvariances shoud be acceptable, in view of



Chaper 8 —Model Development: Smplifi ed Covariance Estimation Page 8-4

the many aher approximations and ladk of information assciated with the
Kaman-filter (Dee, 1995.

Forecating d the system state variance matrix with the original
Kaman-filter is performed by ASA'. Thus, the A matrix obviously contains
information regarding the temporal (and spatial) evolution d the forecast system
state covariance matrix. The A matrix itself is very naisy from onetime step to the
next, thus an auto-regressve smocthed value of A has been used to accourt for

the smoothing effed of evaluating AZA".

Evaluating A at every time step using (7.15 is in itself computationally
demanding, as aresult of the matrix inverse and multiplicaion operations. Hence,
amuch more dficient way of obtaining an auto-regressve smocthed value of A is

to evaluate auto-regressve smoothed values of @, and ®, by

O =ad" +(1-a)p (8.13)

Ot =a®) +(1-a)pit (8.1D,

where @ isthe auto-regressve smoothed value of @ and a is a smoothing value
close to 1. The aito-regressve smoothed value of A can then be evaluated when

required by
A=[o,["[o,] (8.2,

where A is the auto-regressve smoothed value of A. The rrelation between
statesi and| are then estimated from

r=AMA’ (8.3
after reducing ' to a correlation matrix (ie. 1 onthe diagoral) by

Py, x, =exdB) (8.4a),
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where

_H_ 1 f{
B—% Wﬂm (8.4D).

[, isthei,jth element of I', while a and b are empiricd coefficients. When ", is 1

then B equals 0 and the correlationis 1. Likewise, when T ; is O then 3 equals —o

andthe oorrelationisO.

8.2.1 ESTIMATION OF EMPIRICAL COEFFICIENTS

In order to estimate the wrrelations between the system states using the
dynamics smplificaion approach outlined abowe, it was necessary to evaluate
appropriate values for the wefficients a, a and b. This was achieved by
cdibrating predicted correlations from the dynamics smplificaion procedure to
the origina Kaman-filter estimate of the arrelations using NLFIT. This

cdibrationwas performed for a synthetic situation.

Using the soil parameters for a typica uniform clay (Soil Type 1) and
initial soil moisture cntent (6) given in Table 8.1, correlations between the near-
surface soil moisture state and deeper soil moisture states in a 1 m deep soil
column were estimated. These wrrelations were estimated from the forecast
system state avariance matrix from the original Kalman-filter with the smplified
one-dimensional soil moisture forecasting model ABDOMEN1D. The soil
moisture model was forced using a zero moisture flux boundry condtion at the

soil base and a 510 dhy extract of rainfall and evapotranspiration dita @lleded at

Table 8.1: Soil parameters and initial soil moisture values for soil moisture profile simulation of
Soil Type 1.

Layer Thl(frt(r?sss (%3/v) (mﬁslh) (%\?/v) (%3'/v) N MGRAD
T 10 25
2 90 27
3 200 29 105 54 20 105 280
4 300 32
5 400 35
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Figure 8.1: Comparison of the predicted (p) correlations (open symbals) using the dynamics
simplification approach and the originad Kalman-filter estimate of correlations (solid symbadls)
between the nea-surface soil layer (1) and soil layers 2 to 5 for Soil Type 1 (ie. p1-4 is the
predicted correlation between soil layers 1 and 4).

the Nerrigundah catcchment, commencing from Julian day 130 1997 (Figure B.2

and Figure B.3in Appendix B).

The oefficients a, a and b were caibrated as 0.995, 0.1and 0.01
respedively, to yield the good comparison gven in Figure 8.1. The value of a

equal to 0.995was chosen as a mwmpromise between ndse in the arrelation
estimate during periods of lower correlation, corred modelling d the overall
shape of the time evolution d correlation, and correct estimation d correlation

during periods of high correlation.

The soil moisture time series associated with the correlation time series in
Figure 8.1 are given in Figure 8.2, where it can be seen that the wrrelation
between the near-surface soil layer and the deeper soil | ayers was high when the
soil profile was wet, and decreased as the soil profile dried. Moreover, this
deaease in correlation with the nea-surfacelayer as a function d soil moisture
content increased with depth.

8.2.2 EVALUATION OF CORRELATION ESTIMATION
PROCEDURE

The good fit obtained for the forecast correlations using the dynamics
smplificaion with the original Kalman-filter estimate of correlations for Soil
Type 1, may na hod for the previously cdibrated values of the empirical
coefficients (ie. a = 0.995,a = 0.1 and b = 0.01), when the soil properties are
atered. To investigate this, correlations were estimated using bdh the dynamics
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Figure 8.2: Time series of smulated soil moisture content using Soil Type 1 for soil |ayer depths

shown.
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Table 8.2: Soil parameters and initial soil moisture values for soil moisture profile simulation of

Soil Type 2.
Layer Thl((r:rll(r?sss (%3/\/) (m ﬁs/h) (%VV) (%3/\/) N MGRAD
1 10 25 100 50 5 18 300
2 90 27 25 48 8 16 250
3 200 29 15 45 9 14 200
4 300 32 42 10 12 100
5 400 35 38 10 11 50

simplificaion approach and the origina Kaman-filter for two dfferent soil types
(Soil Types 2 and 3. Soil Type 2 has a varying soil texture, from a sandy loam
throughto clay (Table 8.2), while Soil Type 3 is a day with uniform hydraulic
conductivity, bu varying soil porosity and residua soil moisture ntent
(Table 8.3).

The @rrelation time series asciated with Soil Types 2 and 3are given in
Figure 8.3 and Figure 8.4. The wrrespondng soil moisture time series $ow
similar characteristics to those in Figure 8.2, and are @nsequently nat shown.
Figure 8.3 shows that the crrelations from dynamics smplificaion are over-
predicted relative to the original Kalman-filter estimate by as much as abou 0.2
for Soil Type 2, while Figure 8.4 shows that the rrelations from dynamics
smplificaion are under-predicted relative to the original Kalman-filter estimate
by orly as much as abou 0.05 for Soil Type 3 (neglecting the few spurious

values).
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Figure 8.3: Comparison of the predicted (p) correlations (open symbals) using the dynamics
simplificaion approach and the origina Kalman-filter estimate of correlations (solid symbals)
between the nea-surface soil layer (1) and soil layers 2 to 5 for Soil Type 2 (ie. p1-4 is the
predicted correlation between soil layers 1 and 4).
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Table 8.3: Soil parameters and initial soil moisture values for soil moisture profile simulation of
Soil Type 3.

Thickness 6 K [0} 0

Layer ) (viv)  (mmih)  eviv)  Ceviv) " MORAD
1 10 25 54 S
2 90 27 50 8
3 200 29 105 45 10 1.8 280
4 300 32 42 12
5 400 35 38 15

Given that the correlation between the nea-surfacesoil | ayer and the degp
soil layer during the dry period was © low (approximately 0.5 for Soil Type 2,
the fad that the @rrelation was over-predicted by abou 0.2 was not as important
asit would beif the correlation was much closer to 1. The important paint is, that
the dynamics smplification approach developed in this chapter for estimating the
correlations predicts the strong correlations very well, and at least qualitatively
tracks the decrease in correlation duing the drying periods. Moreover, the
original Kaman-filter is itself only an estimate of the rrelations, being
dependent on the initial correlations Pecified and the linearisation d the
forecasting model ABDOMEN1D. Hence a poa agreement between the
correlations from the dynamics smplificaion approadh and the original Kalman-
filter does not necessrily mean that correlations estimated from dynamics
simplificaion approach are poor, ony that it is a poa approximation d the

Kaman-filter and its assumptions.
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Figure 8.4: Comparison of the predicted (p) correlations (open symbals) using the dynamics
simplificaion approach and the original Kalman-filter estimate of correlations (solid symbals)
between the nea-surface soil layer (1) and soil layers 2 to 5 for Soil Type 3 (ie. p1-4 is the
predicted correlation between soil layers 1 and 4).
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While the dynamics gmplificaion approach for approximating the
correlation between soil layers appeaed adequate for a one-dimensional soil
column uwing ABDOMENID, its applicability to estimating the spatial
correlations from the three-dimensional soil moisture forecasting model
ABDOMENSD had na been verified. To verify that correlations resulting from
the lateral redistribution d soil moisture content, in addition to those from the
verticd redistribution d soil moisture cntent, were rredly identified, a
comparison d correlations from the dynamics smplificaion approach and the
original Kaman-filter was made (Figure 8.5). Due to the @mputational
constraints of the origina Kaman-filter, this comparison was made for a two-
dimensional planar hillsope having unform soil thickness and slope, using
ABDOMENSD. The hypahetical planar hillsSlope cdachment consisted of an
180 m long hll slope of 1% slope, with a 20 m grid resolution. The soil profile
was 1 m degp and had the soil parameters of Soil Type 2. Soil Type 2 parameters
were used, as these gave the worst comparison ketween the crrelation forecasts
from the dynamics smplification approach and the original Kalman-filter, for the
one-dimensional soil profile. The system states and correspondng correlations
were forecast for the planar hillSlope by subeding the forecasting model
ABDOMENS3D to the same bourdary condtions as for the one-dimensional

simulations.

Figure 8.5 shows a poa comparison bketween the forecasts of latera
correlations using the dynamics smplificaion approach and the origina Kaman-
filter. However, correlation forecasts from the dynamics smplificaion approach
compared well with correlation estimates from an analysis of the simulated soil
moisture ontents. This suggested that the proposed method for estimating
correlations from ABDOMENS3D was adequate. Furthermore, the forecast
correlations from dynamics smplificaion agreed with intuition, showing bah a
deaease in correlation with depth in the soil profile and separation from the

referencegrid element.

As mentioned in the previous discusson d correlation forecasts using the
one-dimensional model, poa comparisons between the rrelation forecasts using
the origina Kaman-filter and the dynamics smplificaion approach orly means

that the dynamics smplificaion approach is a poa representation d the original
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Kaman-filter and its assumptions. It does not mean that the correlation forecasts
using the dynamics smplification approach are incorred. The poor comparison o
correlation forecasts from the dynamics smplificaion approach with thase from
the original Kaman-filter are, in addition to errors in covariance forecasting from
model lineaisation and the gplication d model noise, a result of the original
Kaman-filter state avariance matrix initiali sation.

In the dowve simulation, the initial system state wvariance matrix for
system state cvariance forecasting by the original Kalman-filter was initiali sed
with zero correlation ketween all layers and gid cdls. Forecasting o system state
covariances with the original Kalman-filter was nat as grongbetween grid cdls as
it was between the layers of a grid element, as the latera redistribution d soil
moisture was less dominant than the verticd redistribution. This was due to the
low slope angle and the goplicaion d an isotropic hydraulic condictivity in the
system state forecasting model. If the slope angle was greater and/or there was a
nonrisotropic hydraulic conductivity, with hydaulic conductivities being geater
for the lateral direction than for the verticd diredion, then the situation would be

different.

As a result of the soil moisture dynamics in these simulations being
dominated by the vertical redistribution d soil moisture, forecasts of system state
covariances using the origina Kaman-filter were heavily influenced by the
system state @variance matrix initialisation. This indicaes that initialisation d
the system state @variance matrix would be an important task for upceting d the
forecast with the original Kaman-filter when using ABDOMEN3D. However,
initiglisation o the system state @variance matrix for one-dimensiona
simulations using ABDOMEN1D was relatively unmportant, as a result of the
stronger dependence of soil moisture & short length scales.

8.3 EVALUATION OF THE MODIFIED KALMAN-
FILTER

It has been shown in the previous sction that the prediction d correlations
using the dynamics smplificaion approach and specificaion o a standard
deviation to construct the forecast system state variance matrix (Modified
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Figure 8.5: Comparison of the predicted (p) correlations (open symbols) using the dynamics
simplificaion approach and the origina Kaman-filter estimate of correlations (solid symbals)
between the nea-surface soil layer (1) of uphill grid cdl (1) for Soil Type 2, against layers of:
a) grid cdl 2; b) grid cdl 3; ¢) grid cel 4; and d) grid cdl 5 (ie. p11-54 is the predicted correlation
between grid cdl 1 layer 1 and grid cdl 5 layer 4 using dyramics smplification).
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Figure 8.5 (con't): Comparison of the predicted (p) correlations (open symbols) using the
dynamics smplificaion approach and the original Kalman-filter estimate of correlations (solid
symbols) between the nea-surface soil layer (1) of uphill grid cdl (1) for Soil Type 2, against
layers of: €) grid element 6; f) grid element 7; g) grid element 8; and h) grid element 9 (ie. p11-83
is the predicted correlation between grid cdl 1 layer 1 and grid cdl 8 layer 3 using dynamics
simplificaion).
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Kaman-filter) resulted in a somewhat different covariance matrix than what the
original Kalman-filter would forecast. However, the important issue is the aility
to make improvements to the forecasting o soil moisture profiles using the
Modified Kaman-filter. To evauate this, the Modified Kaman-filter was applied
to a synthetic one-dimensional soil column with Soil Types 1, 2 and 3, and
compared with “true”, open loopand aigina Kaman-filter smulations.

The “true” soil moisture profiles are synthetic data generated from
ABDOMEN1D, while the open loop refers to the situation where no olservations
were used to updite the soil moisture model. Synthetic data has been used, so that
the Modified Kalman-filter could be evaluated against the original Kaman-filter
independent of the dfeds from model error on the retrieval of the “true” soil
moisture profile. The Modified Kaman-filter was only evaluated for a one-
dimensional soil column, dwe to the mmputational constraints of applying the
original Kaman-filter to the spatialy distributed problem and the stronger
correlations between soil |ayers than between grid cells. Hence, the results from
this investigation shoud be indicative of those from applicaion d the Modified
Kaman-filter to the spatialy distributed problem. Evauation d the Modified
Kaman-filter for the spatially distributed problem is left for the field applicaion
in Chapter 11.

The *“true” soil moisture profiles were produced from simulations with
ABDOMENI1D, subjed to a zeo flux boundry condtion at the base of the 1 m
deep soil column and surfaceforcing data @llected at Nerrigundah from Julian
day 130 1997to Julian day 274 1998(Figure B.2 and Figure B.3). Thisis same
surface forcing data used in the erlier sections of this chapter. The initial soil
moisture profile and soil parameters are given in Table 8.1 to Table 8.3. Open
loop and soil moisture profile estimation simulations were initiali sed with a poar
initial guessof the soil moisture profile of 50% v/v, 38% v/v and 3% v/v uniform

throughou the soil profile, for Soil Types 1, 2and 3respedively.

The original Kalman-filter was initi ated with a diagoral covariance matrix
with zero correlation and 506 v/v standard deviations. The system noise
covariancematrix had zero correlation and variances of 5% of the system state per

half hour. The observations were taken from the “true” simulation d the top 1cm
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soil layer, with a standard deviation d 2% of the observation wsed for the
observation nase. The Modified Kaman-filter used a forecat system state
standard deviation d 5% of the system state value for estimating the forecast
system state cvariance matrix from the forecast correlations using the dynamics

simplificaion approac.

The results from these simulations are given in Figure 8.6, Figure 8.7 and
Figure 8.8 for Soil Types 1, 2 and 3 respedively. It can be seen from these
simulations that retrieval of the “true” soil moisture profile occurred very quickly
(within 10 dbys or 2 updites) for both the origina and Modified Kalman-filter
assmilation schemes in all three cases. Once the “true” soil moisture profile was
retrieved, the soil moisture profile estimation algorithm continued to track the
“true” soil moisture profile. This was expeded as the same model and boundry
condtions were used to generate the “true” soil moisture profiles as were used to
estimate the soil moisture profile using the near-surface soil moisture
observations.

The simulations aso show that the open loop simulation came on track
towards the end of the dry summer period for Soil Type 1, while the open loop
simulation came ontradk during the first wetting up riod for Soil Types2 and 3.
The reason why simulations for Soil Types 2 and 3 came on track so early was
that they had a lower soil porosity and hence lower total soil moisture storage.
Thus during the wetting up @riod, badh “true” and gpen loop simulations went to
saturation for Soil Types 2 and 3, while only the open loop smulation went to
saturation for Soil Type 1. This suggests that providing the soil porosity and
residual soil moisture @ntent parameters are orredly identified in the soil
moisture model, then model estimates of soil moisture mntent may be @rred
during very dry and very wet periods, withou any assmilation. Moreover, it
suppats the ideaof re-setting model simulations of soil moisture content under

extreme ondtions.

The soil moisture profile smulations presented above, have displayed a
goodcomparison between soil moisture profile estimation results when using the
Modified Kaman-filter and aigina Kaman-filter assmilation schemes.

However, the “true” soil moisture profile was retrieved duing ealy updates,
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Figure 8.6: Soil moisture profile etimation using the Modified Kalman-filter assmil ation scheme
with nea-surface soil moisture observations over 1 cm depth orce every 5 days. Soil Type 1,

standard deviations were 5% of the state values.
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Figure 8.7: Soil moisture profile etimation wsing the Modified Kalman-filter assmil ation scheme
with nea-surface soil moisture observations over 1 cm depth orce every 5 days. Soil Type 2,
standard deviations were 5% of the state values.
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Figure 8.8: Soil moisture profile etimation using the Modified Kalman-filter assmil ation scheme
with nea-surface soil moisture observations over 1 cm depth orce every 5 days. Soil Type 3,
standard deviations were 5% of the state values.
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where there was a good agreement between the correlation forecasts using bah
the dynamics smplificaion approach and the original Kaman-filter (see
Figure 8.1, Figure 8.3 and Figure 8.4). As predictions of the rrelation were
comparatively poa during the dry summer period, the dove simulations were
repeated, starting from simulation day 250, with the Kalman-filter and open loop
simulations initiali sed with the same poa initia guessas before. The significance
of these simulations was to evaluate the Modified Kaman-filters ability to make
improvements to the soil moisture profile estimate, when the forecast correlations
differed most from those of the original Kalman-filter, and the initiali sation o the
soil moisture profile was poar. The results from these simulations are given in

Figure 8.9, Figure 8.10 and Figure 8.11 for Soil Type 1, 2and 3respedively.

The simulation results have shown that both the original and Modified
Kaman-filter simulations retrieved the “true” soil moisture profile dter only
1 updite for Soil Type 1. Apart from the deeper layers, the soil moisture profile
estimation agorithm using bdh the origind and Modified Kaman-filter
assmilation schemes continued to tradk the “true” soil moisture profile exadly,
with oy a few percent discrepancy between the “true” and estimated soil
moisture values from the Modified Kalman-filter at deeper depths. In comparison,
the open loop pofile did na align with the “true” soil moisture profile until both

the “true” and open loop simulations reached saturation.

Sail Type 2 results were much paorer than Soil Type 1, bah in terms of
the aility to retrieve the soil moisture profile using the Modified Kaman-filter
and its comparison with the origina Kalman-filter simulations. Given the poarer
comparison d forecast correlation wsing the dynamics smplification approach
with that from the origina Kaman-filter for Soil Type 2 (Figure 8.3), it is not
surprising that there was a greaer discrepancy between the Modified and aigind

Kaman-filter simulations than for Soil Type 1.

Simulations of the soil moisture profile for Soil Type 2 have shown a poor
estimation d the soil moisture content at deeper soil layers using bdh the
Modified and aiginal Kaman-filter assmil ation schemes. Whil e the near-surface
soil layers came on track with the “true” soil moisture content after only 1 updite,

the deeper soil | ayers were over-correded in the first update, and dd na come on
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Figure 8.9: Soil moisture profile etimation using the Modified Kalman-filter assmil ation scheme
with nea-surface soil moisture observations over 1 cm depth orce every 5 days. Soil Type 1,
standard deviations were 5% of the state values.
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Figure 8.10: Soil moisture profile estimation wing the Modified Kalman-filter assmilation
scheme with nea-surface soil moisture observations over 1 cm depth onceevery 5 days. Soil Type
2, standard deviations were 5% of the state values.
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Figure 8.11: Soil moisture profile estimation wing the Modified Kalman-filter assmilation
scheme with nea-surface soil moisture observations over 1 cm depth onceevery 5 days. Soil Type

3, standard deviations were 5% of state values.



Chaper 8 —Model Development: Smplifi ed Covariance Estimation  Page 8-23

tradk until the wetting up @riod. The reason for this was that soil moisture
content in the observation layer followed the observed soil moisture cntent
amost exadly, even thoughthe soil moisture content of degoer soil |ayers was

incorrect.

The reason why noimprovement was made in the degoer soil |ayers when
the soil moisture model acarately forecast the nea-surface soil moisture wntent
may be seen from the Kaman-filter update eguation in (3.4). The Kalman-filter
update eguation adjusts the system state forecast by adding a crredion term,
which is the Kaman-filter gain multiplied by the difference between the
observations and the system state forecast. The Kalman-filter gain is evaluated as
a function d the observation and forecast system state wvariance matrices.
Hence if there is no dscrepancy between the forecast system states and the
observations, then the Kaman-filter canna make any adjustment to the state
forecast of deeper depths, irrespedive of the asumptions made in evaluating the

observation and system state covariance matrices, and hence Kalman-filter gain.

The phenomenon d deougding ketween the nea-surface soil moisture
content and that of degoer soil layers has been olserved in the field by Capehart
and Carlson (1997, as a result of divergence between the drying rates at the
surface and degoer levels. The significance of this is that when the near-surface
soil layer beacomes decoupded from the deep soil | ayers, the nea-surfacesoil | ayer
does nat reflect the soil moisture status of deeper soil layers. Hence, under
dexuped condtions, there can be no upating d the soil moisture profile once
the nea-surfacesoil layer correctly tradks the nea-surfacesoil moisture @ntent.
Thisdeoougingisindcaed in Figure 8.3 for simulations with Soil Type 2, bythe
low correlation ketween degoer soil | ayers and the near-surface soil | ayer.

This suggests that if a system update is performed too soon after
initialisation d the forecasting model and the asciated covariance matrix, then
the Kalman-filter will update the near-surface soil |ayer corredly, bu incorredly
for the deeper soil | ayers, as the forecast system state wvariances are still aff ected
by the initial condtions. If the nea-surface layer and dceeg soil layers are

demuped, then estimation d the soil moisture profile will continueto be poa.
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Simulation results for Soil Type 3 have shown that retrieval of the “true”
soil moisture profile occurred after the first update with the original Kaman-filter,
whil e the Modified Kaman-filter over-corrected onthe first update. The Modified
Kaman-filter then oscill ated aroundthe “true” soil moisture & deeper soil layers
for a few updates, before setting on a soil moisture ntent that was
approximately 4% v/v too low in the degpest soil | ayer.

In these Modified Kaman-filter smulations, a standard deviation d 5% of the
current soil moisture value was used. The dfect of this is that when the soil
moisture is high, the gplied standard deviation is relatively high, and when the
soil moisture is low, the gplied standard deviation is relatively low. It was felt
that this may be a ontributing factor to the differences observed between the
original and Modified Kalman-filter ssmulations, particularly for Soil Types 2 and
3. To investigate this, the simulation for Soil Type 2 was re-run, bu with a
constant standard deviation o 5% v/v. The results from this smulation are given
in Figure 8.12, showing a much closer agreement between the original and
Modified Kaman-filter simulations. This suggests that while some of the
discrepancies ®en between the Modified and aiginal Kalman-filter simulations
in Figure 8.10 and Figure 8.11 may be aresult of the difference between forecasts
of the rrelations using the dynamics smplificaion approach and the origina
Kaman-filter, some of the discrepancy in simulation results was a result of

differencesin the variances applied to the forecast system states.

These analyses suggest that the Modified Kaman-filter is a good
approximation to the original Kalman-filter, despite differences in the forecast
correlations. Moreover, when using the Modified Kaman-filter developed in this
chapter, standard deviations of the system state shoud be specified as a fixed
value rather than a percentage of the states.

8.4 CHAPTER SUMMARY

The single most difficult operation in applying the original Kalman-filter
to the spatiad asgmilation problem is the computation time required for
forecasting d the model covariance matrix. Moreover, a full-fledged application
of the extended Kalman-filter is at best a qude gproximation to the actual
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Figure 8.12: Soil moisture profile estimation wing the Modified Kalman-filter assmilation
scheme with nea-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type
2, standard deviations were 5% vi/v.
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forecast system state @variance matrix, as a result of model li nearisation errors,
ladk of statistics concerning model error, and the initial system state @variances.
In owercoming this limitation d the Kaman-filter assmilation scheme, a
Modified Kaman-filter was developed, based on simplified covariance
forecasting techniques. The Modfied Kaman-filter forecasts the system state
correlations through dyramics smplificaion, and assembles the forecast system

state cvariance matrix at update times using a spedfied system state variance.

Simulations using loth the Modified and aigina Kaman-filter system
state @variance forecasting have shown a good comparison hketween the
forecasting d correlations by the two filters. Despite differences in forecast
correlation d the system states, the forecasting d correlations using the dynamics
smplificaion pocedure predicted the strong correlations well and qulitatively
tradked the decrease in correlation duing dying periods, with a minimum amourt
of computational effort. Furthermore, forecating o the system state crrelations
with the Modified Kaman-filter did na experience the initialisation poblem
displayed bythe original Kaman-filter.

Simulations of soil moisture profile estimation with the Modified Kaman-
filter assmilation scheme were found to perform as well as those from the
original Kaman-filter assmil ation scheme, providing proper attention was paid to
spedficaion d the system state variances. It was aso found that a constant
system state variance performed better than a system state variance that was

dependent on the system state value.

The Kaman-filter only has information abou the near-surface soil |ayer
and its correlation with deeper soil layers, and makes its adjustment of the soil
moisture profile by fitting the model predictions of soil moisture ntent to the
observed soil moisture cntent in the near-surface layer. Hence, when the
observed and model simulated nea-surface soil moisture ontents are dose, the
Kaman-filter has no reason to believe there is any nedad for updating d the soil

moisture profile & deeper depths.

Simulations of soil moisture profile estimation using badh the original and
Modified Kaman-filter asamilation schemes have shown that when the nea-

surface soil layer bemmes decouped from the deep soil layer, there can be no
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further improvement in estimation d the soil moisture profile. This decouging
occurs during extended drying periods as a result of a divergence between the
drying rates at the soil surface and ceeper levels. Thus, duing extreme drying
events, when there is a low correlation between the near-surface and deep soil

layers as aresult of decouping,the Kalman-filter islikely to perform poatly.

These simulations have highlighted the importance of “warming ug the
original Kaman-filter to remove the dfeds of system state @variance
initialisation prior to making the first update. This iodd then prevent the
situation where apoor updete is made of the soil moisture profile for the first
nea-surface soil moisture observation, and preventing any further improvement in

the soil moisture profile estimation as aresult of decouding.



