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CCHHAAPPTTEERR  EEIIGGHHTT

8. MODEL DEVELOPMENT: SIMPLIFIED
COVARIANCE ESTIMATION

Development of the implicit soil moisture model ABDOMEN in Chapter 7

provided computational efficiency both in terms of forecasting the soil moisture

states and forecasting of the soil moisture state covariances. However, the

computation time for forecasting of the system state covariance matrix using the

Kalman-filter in the three-dimensional field application (Chapter 11) was still

very large. The reasons for this were: (i) evaluation of A (7.15) required inversion

of Φ1 and then multiplication by Φ2, resulting in a non-symmetric non-sparse

matrix; and (ii ) forecasting of the covariances required a triple matrix product

with rather large (720 × 720) non-sparse, non-banded, non-symmetric matrices.

Hence, this chapter develops a computationally eff icient Modified Kalman-filter,

which estimates the system state covariances by dynamics simpli fication, for

updating of ABDOMEN3D in the three-dimensional field application presented in

Chapter 11.

8.1 COVARIANCE ESTIMATION SCHEMES

System state covariance forecasting is widely recognised as being the most

computationally expensive aspect of the Kalman-filter algorithm (Dee, 1991;

Todling and Cohn, 1994; Dee, 1995). Computational requirements of the updating

step of the Kalman-filter are less severe but non-trivial (Todling and Cohn, 1994),

with forecasting of the system state covariances using the Kalman-filter (3.2)

costing roughly 2N (where N is the number of system states) what it costs to

produce the system state forecast (3.1) (Dee, 1991). While covariance forecasting

is the central component of the Kalman-filter, implementation of the Kalman-

filter as a scheme for data assimilation by “brute-force” is recognised as being

unfeasible because of both its extensive computational requirements and a lack of

complete knowledge of its required statistical inputs (Todling and Cohn, 1994).
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Todling and Cohn (1994) noted that the lack of complete information

concerning statistics of model errors, and even observation errors, makes the

effort of evolving the complete forecast system state covariance matrix as dictated

by the Kalman-filter not worthwhile. Furthermore, as a consequence of the

assumptions in the Kalman-filter and the linearisation of state forecasting

equations, even a full -fledged application of the extended Kalman-filter can do no

better than to roughly approximate the actual forecast system state covariance

evolution in an operational setting (Dee, 1991; Dee, 1995).

Accordingly, the covariance forecasting equation (3.2) is simply a means

for representing the forecast system state covariances, which accounts in an

approximate manner for the effects of error propagation by the forecast model

(3.1) as well as for additional effects of model error. Hence, it follows that other

approximations can be legitimately introduced in the extended Kalman-filter

forecast system state covariance evolution, particularly in the computationally

expensive propagation term (Dee, 1995).

A number of schemes for estimating the forecast system state covariance

matrix have been presented in the literature and are reviewed by Todling and

Cohn (1994). These simpli fied covariance estimation schemes have been divided

into six main categories

i) The covariance modelli ng category includes those schemes that assume a

given form for the forecast system state covariance matrices, with no

dynamics of these matrices taken into account.

ii ) Dynamics simplifi cation encompasses those schemes using approximate but

non-trivial system state dynamics to evolve the forecast system state

covariances.

iii ) The reduced resolution approach decreases the dimensionality of the

problem by computing the forecast system state covariances with a coarser

resolution model than the model used to forecast the states. A hybrid of the

dynamics simpli fication and reduced resolution schemes may also be

considered.
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iv) Local approximation methods attempt to evolve the forecast system state

covariance structure only for points separated by reasonably small distances.

v) The limiting filtering approach computes a fixed gain matrix and an

asymptotic system state covariance structure.

vi) Monte Carlo methods attempt to estimate the forecast system state

covariance matrix by integrating an ensemble of states between observation

times.

In the Modified Kalman-filter developed in this chapter, the forecast

system state covariances are estimated using the dynamics simpli fication

approach.

8.2 COVARIANCE ESTIMATION BY DYNAMICS
SIMPLIFICATION

An example of forecast system state covariance estimation by dynamics

simpli fication is the Simplified Kalman-filter of Dee (1991). The basic idea

behind the Simpli fied Kalman-filter is to predict the forecast system state

covariance evolution by means of a simpli fied version of the forecast model itself,

unlike the Kalman-filter, in which the full forecast model is used for error

propagation. Moreover, the contribution to forecast system state covariance

evolution due to model error forcing is approximated only as a final step at the

end of the forecast cycle.

This thesis takes a slightly different tack for forecasting of the system state

covariances. As the magnitude of variances in the forecast system state covariance

matrix are controlled primarily by the system noise covariance matrix Q (see

section 3.3.2), which is generally poorly estimated, it is proposed to forecast only

the correlations between system states. With an estimate of the correlation

structure and an estimate of the forecast model system state variances (for

instance, a standard deviation equal to 5% of the state value), the forecast system

state covariance matrix can be easily assembled. This is termed the Modified

Kalman-filter. If the essential aspects of the forecast system state dynamics can be

captured by this simpli fied error model, the resulting loss of accuracy in

estimating the forecast system state covariances should be acceptable, in view of
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the many other approximations and lack of information associated with the

Kalman-filter (Dee, 1995).

Forecasting of the system state covariance matrix with the original

Kalman-filter is performed by AΣΣAT. Thus, the A matrix obviously contains

information regarding the temporal (and spatial) evolution of the forecast system

state covariance matrix. The A matrix itself is very noisy from one time step to the

next, thus an auto-regressive smoothed value of A has been used to account for

the smoothing effect of evaluating AΣΣAT.

Evaluating A at every time step using (7.15) is in itself computationally

demanding, as a result of the matrix inverse and multiplication operations. Hence,

a much more eff icient way of obtaining an auto-regressive smoothed value of A is

to evaluate auto-regressive smoothed values of Φ1 and Φ2 by

( ) 1
1

1 1
11

++ Φ−+Φ=Φ nnn αα (8.1a)

( ) 1
22

1
2 1 ++ Φ−+Φ=Φ nnn αα (8.1b),

where Φ  is the auto-regressive smoothed value of Φ and α is a smoothing value

close to 1. The auto-regressive smoothed value of A can then be evaluated when

required by

[ ] [ ]2

1

1 ΦΦ= −
A (8.2),

where A  is the auto-regressive smoothed value of A. The correlation between

states i and j are then estimated from

TAA ⋅=Γ (8.3)

after reducing Γ to a correlation matrix (ie. 1 on the diagonal) by

( )βρ exp, =
ji XX (8.4a),
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where

( ) b
a

ji

⋅










Γ
−=

,

1
1β (8.4b).

Γi,j is the i,jth element of Γ, while a and b are empirical coefficients. When Γi,j is 1

then β equals 0 and the correlation is 1. Likewise, when Γi,j is 0 then β equals –∞

and the correlation is 0.

8.2.1 ESTIMATION OF EMPIRICAL COEFFICIENTS

In order to estimate the correlations between the system states using the

dynamics simpli fication approach outlined above, it was necessary to evaluate

appropriate values for the coeff icients α, a and b. This was achieved by

calibrating predicted correlations from the dynamics simpli fication procedure to

the original Kalman-filter estimate of the correlations using NLFIT. This

calibration was performed for a synthetic situation.

Using the soil parameters for a typical uniform clay (Soil Type 1) and

initial soil moisture content (θI) given in Table 8.1, correlations between the near-

surface soil moisture state and deeper soil moisture states in a 1 m deep soil

column were estimated. These correlations were estimated from the forecast

system state covariance matrix from the original Kalman-filter with the simpli fied

one-dimensional soil moisture forecasting model ABDOMEN1D. The soil

moisture model was forced using a zero moisture flux boundary condition at the

soil base and a 510 day extract of rainfall and evapotranspiration data collected at

Table 8.1: Soil parameters and initial soil moisture values for soil moisture profile simulation of
Soil Type 1.

Layer Thickness
(mm)

θθI

(%v/v)
KS

(mm/h)
φφ

(%v/v)
θθr

(%v/v)
n MGRAD

1 10 25

2 90 27

3 200 29

4 300 32

5 400 35

10.5 54 20 10.5 280
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the Nerrigundah catchment, commencing from Julian day 130 1997 (Figure B.2

and Figure B.3 in Appendix B).

The coeff icients α, a and b were calibrated as 0.995, 0.1 and 0.01

respectively, to yield the good comparison given in Figure 8.1. The value of α

equal to 0.995 was chosen as a compromise between noise in the correlation

estimate during periods of lower correlation, correct modelli ng of the overall

shape of the time evolution of correlation, and correct estimation of correlation

during periods of high correlation.

The soil moisture time series associated with the correlation time series in

Figure 8.1 are given in Figure 8.2, where it can be seen that the correlation

between the near-surface soil l ayer and the deeper soil l ayers was high when the

soil profile was wet, and decreased as the soil profile dried. Moreover, this

decrease in correlation with the near-surface layer as a function of soil moisture

content increased with depth.

8.2.2 EVALUATION OF CORRELATION ESTIMATION
PROCEDURE

The good fit obtained for the forecast correlations using the dynamics

simpli fication with the original Kalman-filter estimate of correlations for Soil

Type 1, may not hold for the previously calibrated values of the empirical

coeff icients (ie. α = 0.995, a = 0.1 and b = 0.01), when the soil properties are

altered. To investigate this, correlations were estimated using both the dynamics
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Figure 8.1: Comparison of the predicted (p) correlations (open symbols) using the dynamics
simpli fication approach and the original Kalman-filter estimate of correlations (solid symbols)
between the near-surface soil l ayer (1) and soil l ayers 2 to 5 for Soil Type 1 (ie. p1-4 is the
predicted correlation between soil l ayers 1 and 4).
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Figure 8.2: Time series of simulated soil moisture content using Soil Type 1 for soil l ayer depths
shown.
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simpli fication approach and the original Kalman-filter for two different soil types

(Soil Types 2 and 3). Soil Type 2 has a varying soil texture, from a sandy loam

through to clay (Table 8.2), while Soil Type 3 is a clay with uniform hydraulic

conductivity, but varying soil porosity and residual soil moisture content

(Table 8.3).

The correlation time series associated with Soil Types 2 and 3 are given in

Figure 8.3 and Figure 8.4. The corresponding soil moisture time series show

similar characteristics to those in Figure 8.2, and are consequently not shown.

Figure 8.3 shows that the correlations from dynamics simpli fication are over-

predicted relative to the original Kalman-filter estimate by as much as about 0.2

for Soil Type 2, while Figure 8.4 shows that the correlations from dynamics

simpli fication are under-predicted relative to the original Kalman-filter estimate

by only as much as about 0.05 for Soil Type 3 (neglecting the few spurious

values).

Table 8.2: Soil parameters and initial soil moisture values for soil moisture profile simulation of
Soil Type 2.

Layer Thickness
(mm)

θθI

(%v/v)
KS

(mm/h)
φφ

(%v/v)
θθr

(%v/v)
n MGRAD

1 10 25 100 50 5 1.8 300

2 90 27 25 48 8 1.6 250

3 200 29 15 45 9 1.4 200

4 300 32 7 42 10 1.2 100

5 400 35 5 38 10 1.1 50
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Figure 8.3: Comparison of the predicted (p) correlations (open symbols) using the dynamics
simpli fication approach and the original Kalman-filter estimate of correlations (solid symbols)
between the near-surface soil l ayer (1) and soil l ayers 2 to 5 for Soil Type 2 (ie. p1-4 is the
predicted correlation between soil l ayers 1 and 4).
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Given that the correlation between the near-surface soil l ayer and the deep

soil l ayer during the dry period was so low (approximately 0.5) for Soil Type 2,

the fact that the correlation was over-predicted by about 0.2 was not as important

as it would be if the correlation was much closer to 1. The important point is, that

the dynamics simpli fication approach developed in this chapter for estimating the

correlations predicts the strong correlations very well , and at least qualitatively

tracks the decrease in correlation during the drying periods. Moreover, the

original Kalman-filter is itself only an estimate of the correlations, being

dependent on the initial correlations specified and the linearisation of the

forecasting model ABDOMEN1D. Hence a poor agreement between the

correlations from the dynamics simpli fication approach and the original Kalman-

filter does not necessarily mean that correlations estimated from dynamics

simpli fication approach are poor, only that it is a poor approximation of the

Kalman-filter and its assumptions.

Table 8.3: Soil parameters and initial soil moisture values for soil moisture profile simulation of
Soil Type 3.

Layer Thickness
(mm)

θθI

(%v/v)
KS

(mm/h)
φφ

(%v/v)
θθr

(%v/v)
n MGRAD

1 10 25 54 5

2 90 27 50 8

3 200 29 45 10

4 300 32 42 12

5 400 35

10.5

38 15

1.8 280
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Figure 8.4: Comparison of the predicted (p) correlations (open symbols) using the dynamics
simpli fication approach and the original Kalman-filter estimate of correlations (solid symbols)
between the near-surface soil l ayer (1) and soil l ayers 2 to 5 for Soil Type 3 (ie. p1-4 is the
predicted correlation between soil l ayers 1 and 4).
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While the dynamics simpli fication approach for approximating the

correlation between soil l ayers appeared adequate for a one-dimensional soil

column using ABDOMEN1D, its applicabilit y to estimating the spatial

correlations from the three-dimensional soil moisture forecasting model

ABDOMEN3D had not been verified. To verify that correlations resulting from

the lateral redistribution of soil moisture content, in addition to those from the

vertical redistribution of soil moisture content, were correctly identified, a

comparison of correlations from the dynamics simpli fication approach and the

original Kalman-filter was made (Figure 8.5). Due to the computational

constraints of the original Kalman-filter, this comparison was made for a two-

dimensional planar hill slope having uniform soil thickness and slope, using

ABDOMEN3D. The hypothetical planar hill slope catchment consisted of an

180 m long hill slope of 1% slope, with a 20 m grid resolution. The soil profile

was 1 m deep and had the soil parameters of Soil Type 2. Soil Type 2 parameters

were used, as these gave the worst comparison between the correlation forecasts

from the dynamics simpli fication approach and the original Kalman-filter, for the

one-dimensional soil profile. The system states and corresponding correlations

were forecast for the planar hill slope by subjecting the forecasting model

ABDOMEN3D to the same boundary conditions as for the one-dimensional

simulations.

Figure 8.5 shows a poor comparison between the forecasts of lateral

correlations using the dynamics simpli fication approach and the original Kalman-

filter. However, correlation forecasts from the dynamics simpli fication approach

compared well with correlation estimates from an analysis of the simulated soil

moisture contents. This suggested that the proposed method for estimating

correlations from ABDOMEN3D was adequate. Furthermore, the forecast

correlations from dynamics simpli fication agreed with intuition, showing both a

decrease in correlation with depth in the soil profile and separation from the

reference grid element.

As mentioned in the previous discussion of correlation forecasts using the

one-dimensional model, poor comparisons between the correlation forecasts using

the original Kalman-filter and the dynamics simpli fication approach only means

that the dynamics simpli fication approach is a poor representation of the original
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Kalman-filter and its assumptions. It does not mean that the correlation forecasts

using the dynamics simpli fication approach are incorrect. The poor comparison of

correlation forecasts from the dynamics simpli fication approach with those from

the original Kalman-filter are, in addition to errors in covariance forecasting from

model li nearisation and the application of model noise, a result of the original

Kalman-filter state covariance matrix initialisation.

In the above simulation, the initial system state covariance matrix for

system state covariance forecasting by the original Kalman-filter was initialised

with zero correlation between all l ayers and grid cells. Forecasting of system state

covariances with the original Kalman-filter was not as strong between grid cells as

it was between the layers of a grid element, as the lateral redistribution of soil

moisture was less dominant than the vertical redistribution. This was due to the

low slope angle and the application of an isotropic hydraulic conductivity in the

system state forecasting model. If the slope angle was greater and/or there was a

non-isotropic hydraulic conductivity, with hydraulic conductivities being greater

for the lateral direction than for the vertical direction, then the situation would be

different.

As a result of the soil moisture dynamics in these simulations being

dominated by the vertical redistribution of soil moisture, forecasts of system state

covariances using the original Kalman-filter were heavily influenced by the

system state covariance matrix initialisation. This indicates that initialisation of

the system state covariance matrix would be an important task for updating of the

forecast with the original Kalman-filter when using ABDOMEN3D. However,

initialisation of the system state covariance matrix for one-dimensional

simulations using ABDOMEN1D was relatively unimportant, as a result of the

stronger dependence of soil moisture at short length scales.

8.3 EVALUATION OF THE MODIFIED KALMAN-
FILTER

It has been shown in the previous section that the prediction of correlations

using the dynamics simpli fication approach and specification of a standard

deviation to construct the forecast system state covariance matrix (Modified
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Figure 8.5: Comparison of the predicted (p) correlations (open symbols) using the dynamics
simpli fication approach and the original Kalman-filter estimate of correlations (solid symbols)
between the near-surface soil l ayer (1) of uphill grid cell (1) for Soil Type 2, against layers of:
a) grid cell 2; b) grid cell 3; c) grid cell 4; and d) grid cell 5 (ie. p11-54 is the predicted correlation
between grid cell 1 layer 1 and grid cell 5 layer 4 using dynamics simpli fication).
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Figure 8.5 (con’ t): Comparison of the predicted (p) correlations (open symbols) using the
dynamics simpli fication approach and the original Kalman-filter estimate of correlations (solid
symbols) between the near-surface soil l ayer (1) of uphill grid cell (1) for Soil Type 2, against
layers of: e) grid element 6; f) grid element 7; g) grid element 8; and h) grid element 9 (ie. p11-83
is the predicted correlation between grid cell 1 layer 1 and grid cell 8 layer 3 using dynamics
simpli fication).
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Kalman-filter) resulted in a somewhat different covariance matrix than what the

original Kalman-filter would forecast. However, the important issue is the abilit y

to make improvements to the forecasting of soil moisture profiles using the

Modified Kalman-filter. To evaluate this, the Modified Kalman-filter was applied

to a synthetic one-dimensional soil column with Soil Types 1, 2 and 3, and

compared with “ true”, open loop and original Kalman-filter simulations.

The “true” soil moisture profiles are synthetic data generated from

ABDOMEN1D, while the open loop refers to the situation where no observations

were used to update the soil moisture model. Synthetic data has been used, so that

the Modified Kalman-filter could be evaluated against the original Kalman-filter

independent of the effects from model error on the retrieval of the “true” soil

moisture profile. The Modified Kalman-filter was only evaluated for a one-

dimensional soil column, due to the computational constraints of applying the

original Kalman-filter to the spatially distributed problem and the stronger

correlations between soil l ayers than between grid cells. Hence, the results from

this investigation should be indicative of those from application of the Modified

Kalman-filter to the spatially distributed problem. Evaluation of the Modified

Kalman-filter for the spatially distributed problem is left for the field application

in Chapter 11.

The “true” soil moisture profiles were produced from simulations with

ABDOMEN1D, subject to a zero flux boundary condition at the base of the 1 m

deep soil column and surface forcing data collected at Nerrigundah from Julian

day 130 1997 to Julian day 274 1998 (Figure B.2 and Figure B.3). This is same

surface forcing data used in the earlier sections of this chapter. The initial soil

moisture profile and soil parameters are given in Table 8.1 to Table 8.3. Open

loop and soil moisture profile estimation simulations were initialised with a poor

initial guess of the soil moisture profile of 50% v/v, 38% v/v and 38% v/v uniform

throughout the soil profile, for Soil Types 1, 2 and 3 respectively.

The original Kalman-filter was initiated with a diagonal covariance matrix

with zero correlation and 50% v/v standard deviations. The system noise

covariance matrix had zero correlation and variances of 5% of the system state per

half hour. The observations were taken from the “true” simulation of the top 1 cm
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soil l ayer, with a standard deviation of 2% of the observation used for the

observation noise. The Modified Kalman-filter used a forecast system state

standard deviation of 5% of the system state value for estimating the forecast

system state covariance matrix from the forecast correlations using the dynamics

simpli fication approach.

The results from these simulations are given in Figure 8.6, Figure 8.7 and

Figure 8.8 for Soil Types 1, 2 and 3 respectively. It can be seen from these

simulations that retrieval of the “true” soil moisture profile occurred very quickly

(within 10 days or 2 updates) for both the original and Modified Kalman-filter

assimilation schemes in all three cases. Once the “true” soil moisture profile was

retrieved, the soil moisture profile estimation algorithm continued to track the

“ true” soil moisture profile. This was expected as the same model and boundary

conditions were used to generate the “true” soil moisture profiles as were used to

estimate the soil moisture profile using the near-surface soil moisture

observations.

The simulations also show that the open loop simulation came on track

towards the end of the dry summer period for Soil Type 1, while the open loop

simulation came on track during the first wetting up period for Soil Types 2 and 3.

The reason why simulations for Soil Types 2 and 3 came on track so early was

that they had a lower soil porosity and hence lower total soil moisture storage.

Thus during the wetting up period, both “ true” and open loop simulations went to

saturation for Soil Types 2 and 3, while only the open loop simulation went to

saturation for Soil Type 1. This suggests that providing the soil porosity and

residual soil moisture content parameters are correctly identified in the soil

moisture model, then model estimates of soil moisture content may be correct

during very dry and very wet periods, without any assimilation. Moreover, it

supports the idea of re-setting model simulations of soil moisture content under

extreme conditions.

The soil moisture profile simulations presented above, have displayed a

good comparison between soil moisture profile estimation results when using the

Modified Kalman-filter and original Kalman-filter assimilation schemes.

However, the “true” soil moisture profile was retrieved during early updates,
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Figure 8.6: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme
with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 1,
standard deviations were 5% of the state values.
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Figure 8.7: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme
with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 2,
standard deviations were 5% of the state values.
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Figure 8.8: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme
with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 3,
standard deviations were 5% of the state values.
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where there was a good agreement between the correlation forecasts using both

the dynamics simpli fication approach and the original Kalman-filter (see

Figure 8.1, Figure 8.3 and Figure 8.4). As predictions of the correlation were

comparatively poor during the dry summer period, the above simulations were

repeated, starting from simulation day 250, with the Kalman-filter and open loop

simulations initialised with the same poor initial guess as before. The significance

of these simulations was to evaluate the Modified Kalman-filters abilit y to make

improvements to the soil moisture profile estimate, when the forecast correlations

differed most from those of the original Kalman-filter, and the initialisation of the

soil moisture profile was poor. The results from these simulations are given in

Figure 8.9, Figure 8.10 and Figure 8.11 for Soil Type 1, 2 and 3 respectively.

The simulation results have shown that both the original and Modified

Kalman-filter simulations retrieved the “true” soil moisture profile after only

1 update for Soil Type 1. Apart from the deeper layers, the soil moisture profile

estimation algorithm using both the original and Modified Kalman-filter

assimilation schemes continued to track the “true” soil moisture profile exactly,

with only a few percent discrepancy between the “true” and estimated soil

moisture values from the Modified Kalman-filter at deeper depths. In comparison,

the open loop profile did not align with the “true” soil moisture profile until both

the “true” and open loop simulations reached saturation.

Soil Type 2 results were much poorer than Soil Type 1, both in terms of

the abilit y to retrieve the soil moisture profile using the Modified Kalman-fil ter

and its comparison with the original Kalman-filter simulations. Given the poorer

comparison of forecast correlation using the dynamics simpli fication approach

with that from the original Kalman-filter for Soil Type 2 (Figure 8.3), it is not

surprising that there was a greater discrepancy between the Modified and original

Kalman-filter simulations than for Soil Type 1.

Simulations of the soil moisture profile for Soil Type 2 have shown a poor

estimation of the soil moisture content at deeper soil l ayers using both the

Modified and original Kalman-filter assimilation schemes. While the near-surface

soil l ayers came on track with the “true” soil moisture content after only 1 update,

the deeper soil l ayers were over-corrected in the first update, and did not come on
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Figure 8.9: Soil moisture profile estimation using the Modified Kalman-filter assimilation scheme
with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type 1,
standard deviations were 5% of the state values.
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Figure 8.10: Soil moisture profile estimation using the Modified Kalman-filter assimilation
scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type
2, standard deviations were 5% of the state values.
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Figure 8.11: Soil moisture profile estimation using the Modified Kalman-filter assimilation
scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type
3, standard deviations were 5% of state values.
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track until the wetting up period. The reason for this was that soil moisture

content in the observation layer followed the observed soil moisture content

almost exactly, even though the soil moisture content of deeper soil l ayers was

incorrect.

The reason why no improvement was made in the deeper soil l ayers when

the soil moisture model accurately forecast the near-surface soil moisture content

may be seen from the Kalman-filter update equation in (3.4). The Kalman-filter

update equation adjusts the system state forecast by adding a correction term,

which is the Kalman-filter gain multiplied by the difference between the

observations and the system state forecast. The Kalman-filter gain is evaluated as

a function of the observation and forecast system state covariance matrices.

Hence, if there is no discrepancy between the forecast system states and the

observations, then the Kalman-filter cannot make any adjustment to the state

forecast of deeper depths, irrespective of the assumptions made in evaluating the

observation and system state covariance matrices, and hence Kalman-filter gain.

The phenomenon of decoupling between the near-surface soil moisture

content and that of deeper soil l ayers has been observed in the field by Capehart

and Carlson (1997), as a result of divergence between the drying rates at the

surface and deeper levels. The significance of this is that when the near-surface

soil l ayer becomes decoupled from the deep soil l ayers, the near-surface soil l ayer

does not reflect the soil moisture status of deeper soil l ayers. Hence, under

decoupled conditions, there can be no updating of the soil moisture profile once

the near-surface soil l ayer correctly tracks the near-surface soil moisture content.

This decoupling is indicated in Figure 8.3 for simulations with Soil Type 2, by the

low correlation between deeper soil l ayers and the near-surface soil l ayer.

This suggests that if a system update is performed too soon after

initialisation of the forecasting model and the associated covariance matrix, then

the Kalman-filter will update the near-surface soil l ayer correctly, but incorrectly

for the deeper soil l ayers, as the forecast system state covariances are still affected

by the initial conditions. If the near-surface layer and deep soil l ayers are

decoupled, then estimation of the soil moisture profile will continue to be poor.
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Simulation results for Soil Type 3 have shown that retrieval of the “true”

soil moisture profile occurred after the first update with the original Kalman-filter,

while the Modified Kalman-filter over-corrected on the first update. The Modified

Kalman-filter then oscill ated around the “true” soil moisture at deeper soil l ayers

for a few updates, before settling on a soil moisture content that was

approximately 4% v/v too low in the deepest soil l ayer.

In these Modified Kalman-filter simulations, a standard deviation of 5% of the

current soil moisture value was used. The effect of this is that when the soil

moisture is high, the applied standard deviation is relatively high, and when the

soil moisture is low, the applied standard deviation is relatively low. It was felt

that this may be a contributing factor to the differences observed between the

original and Modified Kalman-filter simulations, particularly for Soil Types 2 and

3. To investigate this, the simulation for Soil Type 2 was re-run, but with a

constant standard deviation of 5% v/v. The results from this simulation are given

in Figure 8.12, showing a much closer agreement between the original and

Modified Kalman-filter simulations. This suggests that while some of the

discrepancies seen between the Modified and original Kalman-filter simulations

in Figure 8.10 and Figure 8.11 may be a result of the difference between forecasts

of the correlations using the dynamics simpli fication approach and the original

Kalman-filter, some of the discrepancy in simulation results was a result of

differences in the variances applied to the forecast system states.

These analyses suggest that the Modified Kalman-filter is a good

approximation to the original Kalman-filter, despite differences in the forecast

correlations. Moreover, when using the Modified Kalman-filter developed in this

chapter, standard deviations of the system state should be specified as a fixed

value rather than a percentage of the states.

8.4 CHAPTER SUMMARY

The single most diff icult operation in applying the original Kalman-filter

to the spatial assimilation problem is the computation time required for

forecasting of the model covariance matrix. Moreover, a full -fledged application

of the extended Kalman-filter is at best a crude approximation to the actual
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Figure 8.12: Soil moisture profile estimation using the Modified Kalman-filter assimilation
scheme with near-surface soil moisture observations over 1 cm depth once every 5 days. Soil Type
2, standard deviations were 5% v/v.
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forecast system state covariance matrix, as a result of model li nearisation errors,

lack of statistics concerning model error, and the initial system state covariances.

In overcoming this limitation of the Kalman-filter assimilation scheme, a

Modified Kalman-filter was developed, based on simpli fied covariance

forecasting techniques. The Modified Kalman-filter forecasts the system state

correlations through dynamics simpli fication, and assembles the forecast system

state covariance matrix at update times using a specified system state variance.

Simulations using both the Modified and original Kalman-filter system

state covariance forecasting have shown a good comparison between the

forecasting of correlations by the two filters. Despite differences in forecast

correlation of the system states, the forecasting of correlations using the dynamics

simpli fication procedure predicted the strong correlations well and qualitatively

tracked the decrease in correlation during drying periods, with a minimum amount

of computational effort. Furthermore, forecasting of the system state correlations

with the Modified Kalman-filter did not experience the initialisation problem

displayed by the original Kalman-filter.

Simulations of soil moisture profile estimation with the Modified Kalman-

filter assimilation scheme were found to perform as well as those from the

original Kalman-filter assimilation scheme, providing proper attention was paid to

specification of the system state variances. It was also found that a constant

system state variance performed better than a system state variance that was

dependent on the system state value.

The Kalman-filter only has information about the near-surface soil l ayer

and its correlation with deeper soil l ayers, and makes its adjustment of the soil

moisture profile by fitting the model predictions of soil moisture content to the

observed soil moisture content in the near-surface layer. Hence, when the

observed and model simulated near-surface soil moisture contents are close, the

Kalman-filter has no reason to believe there is any need for updating of the soil

moisture profile at deeper depths.

Simulations of soil moisture profile estimation using both the original and

Modified Kalman-filter assimilation schemes have shown that when the near-

surface soil l ayer becomes decoupled from the deep soil l ayer, there can be no
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further improvement in estimation of the soil moisture profile. This decoupling

occurs during extended drying periods as a result of a divergence between the

drying rates at the soil surface and deeper levels. Thus, during extreme drying

events, when there is a low correlation between the near-surface and deep soil

layers as a result of decoupling, the Kalman-filter is li kely to perform poorly.

These simulations have highlighted the importance of “warming up” the

original Kalman-filter to remove the effects of system state covariance

initialisation prior to making the first update. This should then prevent the

situation where a poor update is made of the soil moisture profile for the first

near-surface soil moisture observation, and preventing any further improvement in

the soil moisture profile estimation as a result of decoupling.


