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Abstract

Predicting crop yield in response to the spatial and temporary variability within the field

provides essential information for field management to improve productivity and reduce

input.

Compared to solely using either the remotely sensed data or the crop models, which can

only handle one aspect between the spatial and temporal variability, the data assimilation

techniques provide an approach to assimilate remotely sensed data into the crop models. The

assimilation of remotely sensed data and crop modelling for yield prediction was expected to

integrate the advantages of the remote sensing that provides spatial variability and coverage,

and the crop modelling that provides temporal variability and insights of the causes of such

variability. Moreover, the data assimilation could reduce the uncertainties sourced from

input and parameters to address an improved yield estimation.

Existing studies of crop model data assimilation are often limited to regional scale that

cannot provide sufficient information for field management, based on simple assumptions on

uncertainties, and with limited types of remote sensing observations been assimilated. The

main contribution of this research was to comprehensively and systematically explore the

assimilation of all potential state variables into the crop model APSIM-Wheat. The research

aim was addressed through three data assimilation studies.

First, the APSIM-Wheat model was tested for its sensitivity to all input variables and

prognostic state variables. Simultaneously, a data assimilation framework was developed

for the APSIM-Wheat model, using the Ensemble Kalman filter algorithm and can be easily

extended to other crop types and state-updating data assimilation method.

The first data assimilation study used a synthetically-created dataset to assimilate all

vii



wheat and soil states into the APSIM-Wheat. This study confirmed the potential that the

assimilation of wheat and soil state variables could provide an improved estimation in wheat

states and yield when using the leaf area index, biomass, plant nitrogen, soil moisture and

soil nitrogen.

The second data assimilation study used a dataset collected in a wheat season to as-

similate all measurable state variables by ground measurements into the APSIM-Wheat.

This study showed that the wheat states and yield were better estimated by assimilating

wheat states (leaf area index, biomass) only, while the soil states (soil moisture and nitro-

gen) showed no improvement, given the soil water and nitrogen modules in the model well

calibrated against these soil states. Moreover, the assimilation of wheat states improved the

yield estimation even when the model parameters were uncalibrated.

The third data assimilation study used the same ground dataset as the second study,

but with the assimilated observations obtained from remote sensing. This study confirmed

the results of the previous study that the leaf area index was capable of improving yield

estimation whenever the model was calibrated or not, while the soil moisture showed no

improvement. Moreover, this study showed that the spatial information provided by the

fine-resolution LAI has the potential to provide sub-field spatial variation to the model. 
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Chapter 1

Introduction

This thesis presents a crop model-data assimilation framework for improved wheat yield

estimation. The principle of the proposed method is to integrate the observations of wheat

and soil states into a wheat simulation model using an advanced data assimilation technique.

The main novelty of this work is the comprehensive exploration of all prognostic wheat and

soil states that are observable with either ground measurements or current remote sensing

techniques for their impact on yield prediction when assimilated. This crop model-data as-

similation framework was evaluated with field experiment data collected by the candidate

during a whole wheat growing season specifically for this thesis. While the current frame-

work is specific to wheat, it can be extended to other crop types available in the simulation

model with only minor modification to the source code. Although the application of remote

sensing data is limited to the point scale in this work, the assimilation of two-dimensional

remote sensing images is a potential direction for future research that can be easily adapted

from the work presented here.

1.1 Statement of the problem

With increased human population comes a demand for more food, but optimised crop

productivity of farms requires management in response to the spatial and temporal variab-

ility of yield. The spatial variability is primarily caused by soil characteristics (Whelan,

2006; Maestrini & Basso, 2018), while temporal variability caused by season-to-season cli-

mate variations (Robertson, 2006; Basso et al. , 2007). Predicting within-farm crop yield
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variation in response to the spatial and temporal variability is the key to improved field

management (Batchelor et al. , 2002) for achieving increased farm productivity, reduced

cost and a reduced impact on the environment (Panda et al. , 2010; Noori & Panda, 2016;

Shaw et al. , 2016; Paustian & Theuvsen, 2017).

While crop simulation models provide an understanding of crop growth in a time-continuous

manner, and can be run at fine temporal and spatial resolutions, the data required for accurate

simulations across spatial scales are not usually available (Batchelor et al. , 2002; Mosleh

et al. , 2015). Remote sensing is now providing observations for crucial wheat and soil states

with high-resolution remote sensing (e.g., Sentinel-2) data that meets the requirements for

agricultural application. Examples of such states include leaf area index (LAI) that strongly

impacts crop interception of solar radiation, and is therefore considered a crucial indicator

for photosynthesis productivity and grain yield (Huang et al. , 2016); and soil moisture

(SM) that is directly related to plant water stress. In contrast to crop modelling, remote

sensing data provide information on spatial variability, but the current methods to make use

of them does not account for temporal variability (Basso et al. , 2007; Mosleh et al. , 2015)

or provide insights on the interaction of the crop with the environment for management pur-

poses (Mosleh et al. , 2015). Combination of crop simulation models and remote sensing

data therefore provides a potential pathway for providing spatially variable information on

crop status and expected yield.

The approach of combining crop simulation models and remotely sensed data has been

summarized by many researchers (Wiegand et al. , 1986; Maas, 1988b; Bouman, 1995;

Jin et al. , 2018). These strategies include using remotely sensed data: (1) as model input

(e.g., Maas, 1988b); (2) for direct-insertion to substitute model simulated states (e.g., Maas,

1988b); (3) for calibration whereby model initial conditions and/or parameters are optimized

by comparing modelled and remotely sensed states (e.g., Launay & Guerif, 2005; Thorp et al.

, 2012; Jin et al. , 2016b; Novelli et al. , 2019); and, (4) state-updating data assimilation

techniques that sequentially update the model states (e.g., Curnel et al. , 2011; Nearing et al.

, 2012; Ines et al. , 2013; Li et al. , 2017a). Strategies (3) and (4) are the most commonly

used in current practice.

Re-calibration approaches usually do not account for errors from remote sensing data

(Delécolle et al. , 1992; Jin et al. , 2018; Kang & Özdoğan, 2019), and therefore the model
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states and parameters can be inaccurate. Moreover, the re-calibration process requires a lot

of optimization iterations, which is computationally expensive for complex model systems

(Jin et al. , 2018). The optimization process is also unsuitable for real-time applications,

where the iteration needs to be repeated whenever a new observation is obtained. State-

updating algorithms allow the model states to be corrected in real-time without iteration at

the instant when the observation is obtained (Jamet & Loisel, 2013). Moreover, advanced

data assimilation techniques account for the uncertainties of both the model and the obser-

vations (Houser et al. , 2010), allowing yield to be estimated together with its uncertainty.

The existing practice of data assimilation has often been focused at a regional scale to

monitor food security, with the results evaluated using official statistics to support policy-

making (e.g., Ines et al. , 2013; Zhao et al. , 2013; Huang et al. , 2016). However, limited

types of remote sensing observations have been assimilated. Moreover, the application of

crop modelling and data assimilation to support agricultural decision-making requires stud-

ies to be undertaken at the field or sub-field scale with the integration of fine-resolution

remote sensing data to provide spatial information at sub-paddock scale. A comprehensive

and systematical exploration of assimilating all potential state variables into crop models is

also lacking, due to the difficulties of measuring the state variables.

Based on the review of the literature (further specified in Chapter 2), three research

questions were proposed in this thesis as:

1. Does the assimilation of all prognostic wheat and/or soil state variables in a synthetic

study results in any improvement for yield estimation of APSIM-Wheat?

2. By making use of in-situ observations of wheat and soil states, does the assimilation

of state variables in a case study results in any improvement for yield estimation of

APSIM-Wheat?

3. By making use of available remote sensing optical and passive microwave data, does

the assimilation of state variables in a case study results in any improvement for yield

estimation of APSIM-Wheat?
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1.2 Objective and scope

The Agricultural Production Systems sIMulator (APSIM, https://www.apsim.info/apsim-

model), a highly advanced simulator of the agricultural system, has been selected for this

study. A range of wheat and soil states in APSIM can be linked with external observations,

including (1) remotely sensed LAI and surface soil moisture; (2) in-situ measured soil mois-

ture for each soil layer, and ammonium and nitrate in the top two layers; and (3) destructively

sampled weight of above-ground wheat organs (including leaf and stem and the total bio-

mass). The primary purpose of this research was to assimilate observations of wheat and

soil states into the APSIM-Wheat for predicting yield at farm scale. The Ensemble Kalman

Filter (EnKF) data assimilation algorithm has been developed for non-linear models such as

APSIM, and thus was the assimilation approach in this study.

1.3 Outline of the approach

The philosophy taken in developing the APSIM-EnKF framework was to start from a

sensitivity analysis to understand the importance of all the model inputs, parameters and state

variables in impacting yield estimation. The project was divided into three main stages to

progressively develop and test the proposed yield forecasting framework through a series of

data assimilation experiments as outlined in Figure 1.1. Importantly, this research involved

developing the code that integrates APSIM with the EnKF, called APSIM-EnKF herein, and

in collecting an extensive field dataset for testing purposes.

Based on the results of the sensitivity analysis, a synthetic study was undertaken to ex-

plore the yield forecast impact of assimilating the variables shown to be most sensitive in

the synthetic study. Subsequently, a case study assimilated the ground-measured observa-

tions of wheat and soil states into the APSIM-Wheat model found most effective from the

synthetic study. Finally, a second case study assimilated available remotely sensed observa-

tions of wheat and soil states into the APSIM-Wheat model based on the findings of the first

case study. The remote sensing data included a fine spatio-temporal resolution LAI dataset

and a tower-based soil moisture dataset.
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General info
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be�er yield predic�on?
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experiments
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development

Research 
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Figure 1.1: Research questions and experimental design of this project.

1.3.1 The sensitivity analysis and data assimilation studies

The sensitivity analysis was undertaken through the aspects below:

1. Which are the parameters most likely to have an impact on yield and which need to

be carefully calibrated or measured?

2. Which are the model states most likely to have an impact on yield and which need to

be well known?

3. Which are the weather forcing, states or variables that have the most impact on model

prediction and thus need careful perturbation; and,

4. At which phenology stage, the perturbation of states have the most impact on model

prediction?

The synthetic study was undertaken to answer the first research question through the

aspects below:

1. The assimilation of which state variables whose observations are available from cur-

rent remote sensing techniques (e.g., LAI, surface soil moisture, biomass) contribute

to a better yield estimation?

2. Given observations of state variables that are easily obtained, is it possible that the
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model gains any further improvement in yield estimation by assimilating state vari-

ables that are not currently available from remote sensing (e.g., phenology, soil nitro-

gen, root-zone soil moisture)?

3. Does the impact of particular state variable assimilation become important for partic-

ular phenology conditions?

4. What is the minimum requirement for observation data regarding repeat time, growing

stage and accuracy to achieve better yield prediction?

The case studies were undertaken to answer the second and third research questions

through the aspects below:

1. The assimilation of which state variables whose observations were collected in the

field experiment contributes to a better yield estimation? Do they still provide an

improved yield estimation by being replaced by the remotely sensed observations?

2. Does the impact of a particular state variable assimilation become important for par-

ticular phenology conditions?

3. Does the assimilation of these state variables further contribute to a better yield es-

timation by constraining the wheat phenology with the field observations?

4. Does the assimilation of these state variables into an uncalibrated APSIM model

provide a comparative accuracy in yield estimation relative to a calibrated model, so

that the observation of state variables can compensate the lack of some model para-

meters that are usually difficult to measure?

1.3.2 The APSIM model

The APSIM-Wheat model (version: APSIMX, known as the APSIM next generation)

was selected for this study for several reasons:

• Localized to Australia: A wide range of crop simulation models are available, among

which only several have been coupled with data assimilation algorithms. Although

these models are widely applied in Europe, America and China, they require long-

term and extensive experiments for calibration and validation before they can be used
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in Australia. APSIM has been developed and used in Australia for more than 20 years

(Probert et al. , 1998; Asseng et al. , 1998, 2000; Keating et al. , 2001, 2003; Holzworth

et al. , 2014), making it among the most suitable crop simulation models in Australia.

Moreover, it is preferable for Australian farmers, researchers and companies to use a

model that is more familiar to them.

• Reliable: APSIM is an advanced crop simulation model. The accuracy and reliabil-

ity of APSIM in crop simulation have been confirmed in several model comparison

articles. More than 100 articles have been published with APSIM, simulating diverse

crop types and under stressed conditions (e.g., Asseng et al. , 1998, 2000; Thorburn

et al. , 2001; Asseng et al. , 2002; Farré et al. , 2002; Van Ittersum et al. , 2003; Zhang

et al. , 2012; Zhao et al. , 2014; Ahmed et al. , 2016; Thorburn et al. , 2010; Robertson

et al. , 2002).

• Flexible and user friendly: APSIM is a crop simulation system that integrates a range

of crop and soil modules. Thus, skilled users can assemble model components based

on their own need with maximum flexibility. For general users, a user interface and a

detailed user manual are provided (Zheng et al. , 2014).

• Well-designed: APSIM was coded with parallel programming, which allows the pro-

gram to run on advanced parallel research computers. The architecture of APSIM

makes it easy to be coupled with the EnKF or any other state-updating algorithms.

Moreover, the new version APSIMX is under re-design, with wheat module been

completed at the start of this study. This new version was expected to be faster and

can be used in multi-platform.

1.4 Organization of the thesis

The research embodied in this thesis is divided into nine chapters that describe a series

of synthetic and realistic experiments. An outline of the thesis is presented below:

• Chapter 2 presents a review of the literature relevant to yield monitoring techniques,

data assimilation algorithms and recent data assimilation experiments on crop model-

ling.
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• Chapter 3 describes the APSIM-Wheat model, the EnKF data assimilation algorithm,

and the coupled APSIM-EnKF framework.

• Chapter 4 presents a field experiment conducted in the Cora Lynn area to provide a

dataset for evaluating this data assimilation method in real case studies.

• Chapter 5 presents the sensitivity analysis of the APSIM-Wheat model.

• Chapter 6 presents the results of a synthetic study to assimilate prognostic state vari-

ables of APSIM-Wheat with the EnKF.

• Chapter 7 presents the results of a case study to assimilate observations of APSIM-

Wheat state variables collected from field observations.

• Chapter 8 presents the results of a case study to assimilate observations of APSIM-

Wheat state variables obtained from remote sensing.

• Chapter 9 outlines the overall conclusions of this study and a perspective for further

study.
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Chapter 2

Literature review

The topic of applying remote sensing and data assimilation techniques to agricultural

modelling for improved crop yield prediction has attracted attention in recent years. This

chapter aims to present a clear understanding of the current status of remote sensing and

model in agriculture for the purpose of improving crop monitoring and yield prediction.

This chapter is divided into four sections. The first section presents the current status of

food production and the requirement for understanding yield variability at field scale in the

framework of precision agriculture. The second section describes current yield estimation

methods and highlights the need for merging remote sensing information with crop models

for the purpose of yield estimation and in understanding yield variability at field scale. The

third section critically reviews the current practices of using data assimilation methods in

crop modelling. Finally, based on the knowledge gaps identified, the research questions of

this project are presented in the fourth section.

2.1 Background

Wheat is one of the largest harvest crops in the world. According to the statistics reported

by the Food and Agriculture Organization (FAO) of the United Nations, wheat production

contributes to more than 8% of the world crop production, taking account of over 12% of the

harvest area. More than half of the world’s wheat production originates from China, India,

the Russian Federation and the United States of America, with Australia also being one of

the top 10 wheat producers in the world. Wheat produces 70% of the total cereal production
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in Western Australia and generates 2 to 3 billion dollars of the state revenue every year.

With increasing population comes a demand for more food, but the total food productiv-

ity of a farm is limited by the spatial and temporal variability of yield. Numerous factors

contribute to yield variability. Temporally, crop yield varies as a result of season-to-season

climate variability in terms of rainfall, temperature and solar radiation (Robertson, 2006).

Variability and extreme events in climate strongly impact the crop growth and the timing

of management events (e.g. sowing, fertilizer use, etc.) (Robertson, 2006). Spatially, yield

variability is mostly attributed to variations in the soil chemical and physical characteristics,

including soil water availability, soil texture, soil structure, soil depth, organic matter, nutri-

ents and pH (Batchelor et al. , 2002; Whelan & Palmer, 2006). Biotic factors (e.g., weeds,

pest and diseases) and past management also influence the spatial variability (Whelan, 2006).

Therefore, understanding within-farm crop yield variation in response to these factors is the

key to improved field management, for increasing farm productivity, and for reducing the

impact on the environment (Batchelor et al. , 2002).

Driven by increased crop demand, precision agriculture, also called site-specific man-

agement (Plant, 2001), has attracted great attention in recent decades. One of the main

purposes of precision agriculture is to maximize production efficiency (Panda et al. , 2010;

Noori & Panda, 2016) by optimizing field management “at a spatial scale smaller than the

field” (Plant, 2001) using information techniques. With an understanding of crop yield vari-

ability, growers can make better decisions on when and where to sow, irrigate and fertilize,

and by how much. Growers can thus manage farms based on the actual need of the crop

to achieve the best profit from minimum input, rather than simply applying the same water

and fertilizer amount for the entire paddock. Therefore, predicting crop yield with expli-

cit accounting of variability and understanding of the yield variability factors is of great

significance in field management for precision agriculture.

2.2 Yield estimation techniques

Techniques for crop monitoring and yield estimation are divided into three categories:

(1) modelling crop growth through agrometeorological crop models; (2) relating historical

yield with specific remote sensing indices through statistical methods; and (3) joining remote
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sensing and crop models with data assimilation methods. These yield estimation approaches

are introduced in this section.

2.2.1 Crop modelling

Agrometeorological crop models (referred to as crop models hereafter) have been de-

veloped as physics-based decision support tools to describe the development of plants and

their interaction with weather, atmosphere, soil and field management. A definition intro-

duced by Wiegand et al. (1986) stated that agrometeorological crop models are designed to

describe the crop behaviours from planting to maturity at field scale, by simulating various

plant processes (i.e., phenology, photosynthesis, respiration, evapotranspiration, dry matter

accumulation) driven by daily weather data and soil properties as input data.

Table 2.1 reproduced from Palosuo et al. (2011) was supplemented to include more

models, to list the main features of several popular crop simulation models/systems. The

classification of the main features is also based on the work of Palosuo et al. (2011). Most

models are generic, applied to several crop types, while a few are crop-specified (APSIM

and DSSAT). Crop models consider the light utilization process either based on detailed

photosynthesis-respiration processes, or a simple radiation use efficiency approach. The

leaf area development and light interception approaches could be detailed, accounting for

the leaf area dynamics under the impact of phenology stages, temperature or light; or simple,

estimating with the specific leaf area and biomass partitioning, or with a maximum leaf

area index (Palosuo et al. , 2011). Crop phenology is based on a temperature accumulation

concept, known as the growth degree-days or the thermal time, defined as the mean daily

temperature between certain lower/upper threshold) accumulated over a period of time. For

winter wheat, most of the models consider the impact of vernalization, a key process for

some winter crops that requires a period of low temperature to change from the vegetative

stage to the reproductive stage, in phenology development. Yield is determined by a fixed

harvest index multiplied with the above-ground biomass, or biomass partitioning during

the reproductive stages, and some consider the grain number per plant as a factor in yield

development. Soil water and nitrogen were usually considered the main stress factor for

crop modelling. Most models use a capacity model to estimate soil water dynamics, while

a few use a simplification or numerical solution of Richard’s equations. Evapotranspiration
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were estimated by several approaches, including Penman (Penman, 1956), Penman-FAO

(Doorenbos, 1975), Penman-Moteich (Monteith, 1986), Priestly-Talyer (Priestley & Taylor,

1972), Turc-Wendling (Wendling et al. , 1991), etc.

In the review of Jin et al. (2018), a timeline describing the evolution of several widely

applied crop models over the world was presented. An inter-comparison of crop models

can be found in several articles, including under drought (Jamieson et al. , 1998a), non-

limiting conditions (Porter et al. , 1993), and different conditions of soil (Eitzinger et al. ,

2004), climate (Palosuo et al. , 2011; Rötter et al. , 2012), climate change (Wolf et al. , 1996;

Semenov et al. , 1996) and nitrogen (Olesen et al. , 2002; Salo et al. , 2016) scenarios.

Crop model simulation methods focus on the monitoring of crop growth in a time-

continuous manner, providing the simulation of crop growth in temporal variability. These

models provide an understanding of the causes of variability by accounting for the inter-

action of the crop with environmental factors, and thus widely applied in estimating yield

in response to stress from water (Chapman, 2008), nitrogen (Lisson & Cotching, 2011),

diseases (Rouse, 1988), and climate change (Luo & Kathuria, 2013).

The accuracy of crop models has been validated in a range of experiments. For example,

Otter & Ritchie (1985) reported a coefficient of determination (R2) of 0.81 of CERES-

Wheat, using a dataset including 245 measured yields from 25 sites. A review by Timsina &

Humphreys (2006) has reported the grain yield estimation with CERES-Wheat showed the

RMSE between 0.11 and 0.53 t/ha and NRMSE between 2% to 16% in seven experiments

with a total of 137 data pairs. More validation experiments were presented in Table 2.2.

Overall, these process-based models were reported a high accuracy in yield estimation with

sufficient input data provided.

Despite the many benefits of crop models above, there are several drawbacks of crop

models that limit their application in crop growth and yield estimation. These models are

driven by a range of weather data and require soil properties and field management informa-

tion to run. Although weather data are usually available from weather stations, field manage-

ment information needs to be provided by the grower, and soil properties require long-term

calibration over several growing seasons or in-situ measurements that are labour-intensive

and time-consuming to collect (Batchelor et al. , 2002; Mosleh et al. , 2015). The require-

ment for multiple types of data hinders the extensive application of crop models in new fields
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Table 2.2: Yield estimation accuracy reported by validation experiments for crop simulation
models.

Experiment(s) in
literature

Model
Statistic criteriaa

RMSE
(t/ha)

NRMSE
(%)

d-index R2

Ahmed et al. (2016) APSIM-Wheat 0.15 to 0.40 1.30 to 2.98 NA 0.92 to 0.97
Asseng et al. (1998) APSIM-Wheat 0.4 NA NA NA
Zhang et al. (2012) APSIM-Wheat 0.53 to 0.91 7 to 22 NA NA
Ahmed et al. (2016) CERES-Wheat 0.08 to 0.12 0.94 to 2.01 NA 0.93 to 0.98
Xiong et al. (2008) CERES-Wheat NA 22.8 0.85 NA
Timsina & Humphreys
(2006) (review)

CERES-Wheat 0.11 to 0.53 2 to 16 0.86 to 1 .00 NA

Patel et al. (2010) CERES-Wheat 0.05 to 0.36 NA -0.03 to 1.00 NA
Otter & Ritchie (1985) CERES-Wheat NA NA NA 0.81
Zhang et al. (2013) AquaCrop 0.50 to 1.44 NA 0.95 to 0.98 NA
Pannkuk et al. (1998) CropSyst 0.23 to 0.51 NA NA NA
Singh et al. (2013) CropSyst 0.33 NA NA 0.84

a RMSE: root mean square error. NRMSE: normalized (relative) RMSE. d-index: Wilmott index of agree-
ment. R2: coefficient of determination. NA: not available.

without adequate field information available.

Due to the difficulties of collecting input data, crop models are unsuitable for the growth

and yield estimation across a variety of fields or locations, or at scales smaller than a field to

address the spatial variability. Crop models usually aim to simulate crop growth on a point

basis, and thus assume that all the inputs are uniform over the paddock (Batchelor et al. ,

2002). To handle the yield spatial variability, simulations can be implemented with a group

of point-based models, using the dense measurements of soil properties specific to the site

(Batchelor et al. , 2002). Thus, accurate simulation at high spatial resolution is usually not

available due to the limitation of spatial inputs.

2.2.2 Remote sensing observations

With the development of earth-observing satellites, remote sensing techniques now provide

a large range of observations from airborne and space-borne sensors, with broad spatial cov-

erage, long-term observation, and high spatial and temporal resolution. Remote sensing data

provide information on the soil and vegetation canopy from three main sources: solar re-

flectance from the vegetation for optical sensors (Table 2.3), microwave emission from the

soil for radiometers, and microwave scattering from the soil for radar (Table 2.4).
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Table 2.3: Current multispectral remote sensing missions for agriculture purpose.

Mission
Bands includeda Launched

year
Resolution (multispectral)

Pan VIS NIR SWIR TIR Spatial (m)
Temporal

(days)

ASTER × × × × 1999 15 16
IKONOS × × × 1999 3.28 3
Landsat 7 ETM+ × × × × × 1999 30 16
GeoEye-1 × × × 2008 1.84 2.1 to 8.3
RapidEye × × 2008 5 1 to 5.5

Quickbird × × × 2001 2.62
Sub-daily

to 3.5
SPOT-5 × × × × 2011 10 2 to 3

Pleiades-1A/B × × ×
2011 to
2012

2 1

SPOT-6/7 × × × 2012 6 1
Landsat 8 OLI × × × × × 2013 30 16
SkySat × × × 2013 1 sub-daily
WorldView-3 × × × × 2014 1.24 1 to 4.5
KOMPSAT-3A × × × × 2015 2.2 1.4
Gaofen-2 × × × 2014 3.2 5
TripleSat × × × 2015 3.2 4

Sentinel-2A/B × × ×
2015 to
2016

10 5

SuperView-1 × × × 2018 2 2
a Pan: Panchromatic. VIS: visible. NIR: near-infrared. SWIR: short-wavelength infrared. TIR: thermal
infrared.

Table 2.4: Current microwave remote sensing missions.
Mission Typea Band(s) Launched year Spatial resolution Revisit (days)

TerraSAR-X A X 2007 1 to 18.5 m 11
ALOS-2/PALSAR-
2

A L 2014 1 to 100 m 14

Radarsat-1 A C 1995 8 to 100 m 24
Radarsat-2 A C 2007 3 to 100 m 24
ALOS/PALSAR A L 2005 7 to 100 m 46
COSMO-SkyMed A X 2017 - 2010 3 to 15 m 5
Sentinel-1A/B A C 2014, 2016 5 to 40 m 12
AMSR2 P C, X 2012 24 to 62 km 16
SMOS P L 2009 35 to 50 km 2 to 3
SMAP A/P L 2014 36 (P), 3(A), 9 (A-P) 3

a Sensor type: A=active, P=passive.
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Optical data are observed by detecting the energy reflected and transmitted by the object

in the channels of visible and infrared, usually with multi-spectral instruments. Optical data

have been used as a variety of indices calculated as a combination of reflectance in mul-

tiple bands, as indicators of vegetation health and crop production potentials (Kayad et al.

, 2016), or as input of process-based radiative transfer models (RTM). Spectral reflectance

in the visible to infrared bands, particularly the near-infrared and the red bands, are widely

used to estimate important vegetation canopies such as LAI, photosynthetically active radi-

ation, canopy cover, biomass, and canopy water content because plant leaves have a high

reflectance in the near-infrared band and high absorption in the red band (Guyot, 1990).

Radiometer and radar systems measure vegetation canopy and soil properties in the mi-

crowave bands. The differences between the two systems are that radiometers measure the

brightness temperature of the object by passively receiving the microwave emission from

the ground surface, in contrast of the radar systems that measure by actively sending and

receiving microwave energy in different wavelengths and polarization. Microwave data are

sensitive to water and thus commonly used in detecting soil and vegetation water conditions.

Owing to the ability of microwave that can penetrate objects, observation in with radiomet-

ers and radars can be used to retrieve near-surface soil moisture of bare soil of depth 1 to

5 cm (usually in the L-\C-\X- bands), and is suitable for cloudy weather conditions, where

spectral bands are often blocked by the cloud cover.

The initial attempts of using remote sensing information to estimate crop yield used

a statistical basis (Delécolle et al. , 1992). The VIs were related to ground-observed yield

with approaches ranging from multiple linear correlations to advanced non-linear techniques

(Kayad et al. , 2016). For example, models that are based on linear and quadratic functions

were employed by Son et al. (2013), searching for the best-fit relationship of rice yield

with the composite of MODIS EVI and LAI. In recent years, machine learning techniques

have been applied in yield estimation for precision agriculture, with successful techniques

including Artificial Neural Networks, Support Vector Regression, M5-Prime Regression

Trees, and k-nearest neighbour (Chlingaryan et al. , 2018).

Studies using statistical methods have demonstrated the potential of remote sensing data

for providing spatial variability of soil and vegetation canopy information related to yield

with the information provided by remote sensing data. However, statistical methods, such as
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empirically-based methods have several disadvantages in yield estimation. The relationship

between VIs and yield is usually established at certain growing stages. Thus the estim-

ation does not allow for real-time yield monitoring. These methods lack an understand-

ing of the causes underlying variability, especially when more than one factor is affecting

the yield (Plant, 2001). Therefore, they cannot account for variability caused by extreme

weather events and temporal variability without long-term observations (Mosleh et al. ,

2015). Moreover, the statistical relationship is only valid to specific crop and location.

When estimating the yield of a different crop or at a different location, either calibration of

parameters or a new empirical relationship is needed.

2.2.3 Crop modelling and remote sensing observation

Compared to solely using remote sensing data or crop models in crop monitoring and

yield estimation, numerous benefits can be found in integrating remote sensing data with

crop simulation models. While crop simulation models can be run at fine temporal and

spatial resolutions, the data required for accurate simulation at a spatial scale are usually

unavailable. In contrast, remote sensing data provide information on spatial variability, but

the way statistical methods make use of them does not account for temporal variability or

provide insights on the interaction of the crop with the environmental factors for forecasting

purposes. The combination of crop simulation models and remote sensing data therefore

provides a potential pathway for providing spatially variable information on current crop

status together with expected yield.

Early studies on integrating remote sensing data with crop simulation models arose in

the 1980s, with three principal approaches: the “driving” method, the “direct insertion” and

the “re-calibration” (Wiegand et al. , 1986; Bouman, 1995; Bouman et al. , 1997). The

driving method uses remote sensing data as an alternative source of input weather data such

as precipitation that drive the model. The direct insertion method replaces and resets the state

variables such as LAI estimated by the model with the estimates from remote sensing data.

With the re-calibration approaches, sometimes known as “simulation steering” (Bouman,

1995; Bouman et al. , 1997), an objective function representing the mismatch between model

states and the relevant remote sensing observations are optimized by adjusting model initial

conditions and parameters (known as re-initialization and re-parametrization), to “steer” the
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model to give a best estimation of state variables that close to the remote sensing data.

Pioneering attempts to apply these strategies have been reported Maas (1988a,b); Bou-

man (1995); Kergoat et al. (1995); Clevers & Van Leeuwen (1996); Guérif & Duke (1998).

For instance, Maas (1988b) re-initialized green leaf area index (GLAI) and above-ground dry

biomass at emergence by fitting model-derived GLAI to remote sensing with an interactive

method, showing remote sensing data is a labour-saving alternative of in-situ observations.

In their following work (Maas, 1988a), remotely-sensed LAI was used in four methods: (1)

as input data of a simple model for simulating the growth and yield of grain sorghum, and as

an external data source of (2) direct insertion, (3) re-initialization and (4) re-parameterization

methods. It was reported that re-calibration methods were more computationally expensive

but more attractive than direct insertion in cancelling errors of data. Early studies have been

mentioned in several good reviews (Wiegand et al. , 1986; Delécolle et al. , 1992; Fischer

et al. , 1997; Moulin et al. , 1998; Plummer, 2000; Dorigo et al. , 2007). These studies have

demonstrated the potential to predict crop yield by integrating crop simulation models with

discrete remote sensing data in order to reduce the demand for expensive in-situ observa-

tions. The re-initialized timing of sowing or emergence can also be used as complementary

information where those data are not recorded. Whilst the strategies of integrating remote

sensing data been explored by early studies, the accuracy of these methods are often limited

by the simple structure of the empirical models, the simple assumption that remote sensing

observations are accurate, and the coarse resolution of early remote sensing data.

The development of crop models and fine spatial and temporal resolution land surface

remote sensing observations in the recent two decades has provided the possibility of daily,

time-continuous crop monitoring using process-based modelling and within-field spatial in-

formation for crop and soil states, and eventually more accurate and site-specific yield pre-

diction. Techniques of merging remote sensing data with crop simulation models in the

recent ten years were divided into two groups. The first group follows the early studies on

re-calibration approaches, and explore various cost functions and optimization algorithms.

The other group put efforts on using remote sensing information in crop modelling with ad-

vanced data assimilation methods that allow the model states to be updated according to the

error characteristics of both the model and the observation (Reichle, 2008). These methods

are further elaborated in the next section.
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2.3 Techniques of integrating RS data with crop models

As a broad concept, data assimilation is the process of updating dynamic models with the

observation data from an external source (Reichle, 2008; Stuart & Zygalakis, 2015). Data

assimilation techniques have been extensively applied in improving the predictive perform-

ance of meteorology (e.g., Kanamitsu, 1989), land surface (e.g., Rodell et al. , 2004) and

hydrologic (e.g., Reichle et al. , 2002) models using remote sensing data with great success.

Although the term data assimilation can be used for any processes of model updating,

including input, state and parameter updating, and error correction (Houser et al. , 2010),

the state updating, in a narrow sense, is usually what has been meant for data assimilation in

meteorology, land surface and hydrology data assimilation research. In the remainder of this

review, the discussion to data assimilation is limited to state updating. Therefore, although

many researchers working on crop model data assimilation accept the broad concept of data

assimilation to include the approaches that optimize cost functions through the re-estimation

of initial conditions or parameters, this technique is a part of parameter updating and is

termed “re-calibration” hereafter.

2.3.1 Re-calibration techniques

The re-calibration approaches are important and widely-used in integrating remote sens-

ing data with crop models. These approaches are based on the assumption that external ob-

servations of model state variables are valid and the model can be steered to approach the

observations by adjusting initial conditions or model parameters. Under this assumption, ob-

servations are completely trusted without querying any observational uncertainties possibly

caused by instruments, observing techniques, or spatial resolution. The primary process of

this technique is to construct and minimize a cost function representing the mismatch of

model state variables between model estimates and remote sensing techniques.

Numerous re-calibration experiments have been conducted for wheat, maize, rice, sugar

beet and cotton crops, using models and remote sensing information from a variety of sources.

These experiments are summarized in Table 2.5, with cost functions usually constructed by

the root mean squared deviation between the state variables of model estimates and remote

sensing observations, and minimized by adjusting management parameters, crop establish-
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ment parameters or initial state variables. Optimization algorithms or software involved in

these studies to minimize the cost function includes Price search algorithm (Price, 1977),

Parameter ESTimation (PEST, Doherty, 1994; Doherty et al. , 1994), Shuffled Complex

Evolution method developed at The University of Arizona (SCE-UA, Duan et al. , 1993)

and Particle Swarm Optimization (PSO, Eberhart & Kennedy, 1995; Kennedy & Eberhart,

1995). These experiments have confirmed the potential of using remote sensing data to cal-

ibrate crop models to provide the estimation of crop yield with an accuracy usually less than

1 t/ha (Table 2.5).

LAI is one of the predominant state variables that links the crop model with remote

sensing information. The usage of remote sensing LAI products can be found in Fang et al.

(2008); Thorp et al. (2012); Ma et al. (2013a); Huang et al. (2015b,a); Bai et al. (2019);

Ban et al. (2019); Novelli et al. (2019). Other experiments have established links between

crop model states and remote sensing data using a radiative transfer or microwave model, to

allow predicted and observed spectral reflectance (usually red and near-infrared bands) or

radar backscatter information to be directly compared. For instance, Launay & Guerif (2005)

minimized the differences between estimated and remote sensing observations of TSAVI by

re-calibrating parameters related to crop establishment and water use in a coupled SUCROS

sugar beet model. In their experiment, SUCROS was coupled with a SAIL reflectance model

to computed TSAVI. Thorp et al. (2012) linked DSSAT-CSM crop model with two radiative

transfer models, PROSAIL and Choudhury, through NDVI and LAI, respectively. They

adopted PEST estimation algorithm to optimize the objective function by adjusting the leaf

area growth parameters. The strategies of integrating remote sensing data with crop models

are further discussed in Section 2.4.2.

There is a variety of cost functions applied in these experiments. Although the main-

stream technique is to use a cost function constructed by the sum or mean of the squared

differences, or the sum of absolute differences between model estimates and remote sens-

ing observations, attempts of using more complex cost functions appeared in the work of

Huang et al. (2015a,b); Li et al. (2015b); Jin et al. (2016a). Huang et al. (2015b) compared

the yield estimation of a traditional sum of squared difference cost function and a new cost

function constructed by the sum of the generalized vector angles from the LAI and ET time

series, and concluded that the new cost function gave a better yield estimation. However,
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Table 2.5: Re-calibration experiments for yield improvement.

Ref. Model
Re-calibrated
paras or initsb

Remotely
sensed data

Crop
type

Accuracyc

Launay &
Guerif
(2005)

SUCROS a Crop and water
use paras

TSAVI
Sugar
beet

Yield RMSE reduced in one
of the two scenarios.

Fang et al.
(2008)

CERES-
Maizea

Management
paras

LAI Maize
Yield RD was 3.1-17.9% in
the six scenarios.

Ma et al.
(2008)

WOFOSTa Management
paras

SAVI Wheat
Estimates of the aggregate
weights of storage organ
closer to the official data.

Thorp et al.
(2012)

DSSAT-
CSMa Crop paras

LAI,
spectral
reflectance

Wheat
Yield NRMSE was 12.8%
and 10.0% in the two
scenarios.

Ma et al.
(2013a)

WOFOST
Emergence date,
initial states

LAI Wheat
Yield RMSE reduced from
0.98 to 0.47 and 0.669 in the
two scenarios.

Huang
et al.
(2015b)

SWAP
Management
paras

LAI, ET Wheat
Yield RMSE was 0.6-1.6 in
the three scenarios.

Huang
et al.
(2015a)

WOFOST
Management,
crop paras and
inits

LAI Wheat
Yield RMSE reduced from
0.37 to 0.15.

Li et al.
(2015b)

CERES-
Wheat

Cultivar and
management para

Canopy N
accumula-
tion

Wheat Yield RMSE was 0.63.

Dong et al.
(2016)

SAFY Phenology paras GreenLAI Wheat
Yield RMSE was 0.23 and
0.19 in the two scenarios.

Jin et al.
(2016a)

CERES-
Maizea

Management,
phenology and
RTM paras

Spectral
reflectance

Maize LAI accuracy was enhanced.

Jin et al.
(2016b)

AquaCrop Crop paras Biomass Wheat
Biomass RMSE was 1.80 and
0.55 in the two scenarios.

Silvestro
et al.
(2017)

AquaCrop
Management and
crop paras

Canopy
cover

Wheat Yield RMSE was 1.09.

Bai et al.
(2019)

WOFOST Crop para
LAI (single
observation)

Jujube
tree

Yield RMSE was 0.74 and
0.87 in the two years.

Ban et al.
(2019)

CERES-
Maize

Management and
crop paras

LAI Maize
Yield RMSE was between
0.75 and 3.00 in the twelve
scenarios.

Huang
et al.
(2019)

WOFOSTa Crop paras
Spectral
reflectance

Wheat
Yield RMSE was 0.60, 1.29,
and 0.60 in the three years.

Novelli
et al.
(2019)

EPIC Crop paras LAI Wheat
Yield RMSE was reduced
from 0.57 to 0.32.

a Crop model was coupled with a radiative transfer model or microwave model in these experiments.
b paras: parameters, inits: initial conditions.
c The unit of yield and biomass RMSE is t/ha.
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the efficiency of using various cost functions needs to be validated with more extensive

experiments.

Re-calibration techniques have the drawback that they usually do not account for er-

rors in the remote sensing data (Delécolle et al. , 1992; Jin et al. , 2018; Kang & Özdoğan,

2019). Model states and parameters can be inaccurately driven with poor-quality data (Delé-

colle et al. , 1992). With re-calibration methods, the application of the approaches to crop

prediction for any other area is limited. Moreover, in real-time simulation, the process of

re-parameterization will need to be repeated when a new observation is obtained, which

is computationally expensive for complex model systems with increasingly more data ob-

served over time. To overcome the drawbacks of the re-calibration methods, advanced data

assimilation methods have been introduced.

2.3.2 Data assimilation techniques

Data assimilation aims to seek the best estimation of states of a dynamic system, given a

model and external observations both with uncertainties (Houser et al. , 2010). There are two

basic types of data assimilation approaches: smoothing and filtering. In practice, smoothing

seeks to determine the best estimation of system states by minimizing an objective function

constructed by the initial state vector, observations and their uncertainties over a period

(known as the “data assimilation window”) (Stuart & Zygalakis, 2015). Typical smoother

algorithms include variational method (Var), Kalman smoother, etc.

Filtering sequentially updates the system states, given the probability distributions of

the prior state and external observation. Filter algorithms update model states and the error

covariance based on the background states from the previous timestep (Reichle, 2008), and

allows real-time and successive updating during the evolution of the system whenever ob-

servations are available (Jamet & Loisel, 2013). Such a sequential-updating process makes

filter algorithms popular in crop simulation processes, as crop modelling requires in-season

prediction of yield to guide field management.

The filtering method was established to account for random noise, but errors in the model

and data are often systematic (Dee, 2005; Li et al. , 2009). Systematic errors are unavoid-

able and difficult to attribute to the model or the observations, making a proper treatment of

biases critical for the success of data assimilation systems (Dee & Da Silva, 1998; Kumar
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et al. , 2012). For example, off-line bias correction schemes (e.g., a priori scaling approach,

Dee, 2005) estimate biases from model predictions and observations prior to data assimil-

ation (De Lannoy et al. , 2007). “Bias aware” (as opposed to “bias blind” methods where

systematic errors are ignored, Dee, 2005) data assimilation methods to dynamically update

parameters simultaneously with the model states to correct model errors (De Lannoy et al. ,

2007, e.g., augmented-state approach, Evensen, 2003). Different from the off-line scheme,

bias aware data assimilation is an on-line scheme designed to estimate errors in the model

parameters and based on the assumption that observations are unbiased.

The Kalman filter (KF) is a typical filtering algorithm based on the hypothesis that the

state in one timestep is transferred to the next timestep with a linear operator, and the probab-

ility distribution of uncertainties are Gaussian. The Kalman filter is only applicable to linear

predictive models, but the crop growth processes are complex and are usually modelled by

non-linear models. The Extended Kalman filter (EKF), Ensemble Kalman filter (EnKF) and

Particle filter (PF) are two approaches designed to solve filtering problems in non-linear sys-

tems, popularly applied in the field of crop model data assimilation. Compared to the KF

that was initially developed for linear models, the EnKF is a popular DA algorithm designed

for non-linear models, being easy to code and implement (Li et al. , 2009), and therefore se-

lected for this study. The practices of data assimilation (in the narrow sense) in crop yield

estimation is further discussed in the next section.

2.4 Practices of data assimilation in yield estimation

Involvement of data assimilation techniques for the purpose of yield prediction has been

initiated in the simulation of the land surface process, as crop yield is usually one of the

model outputs; however, the main focus of land surface modelling is typically the water

and energy exchange between the land surface and the atmosphere. For instance, Pellenq

& Boulet (2004) presented synthetic experiments that apply EnKF to a coupled crop-SVAT

model. Numerous studies of assimilating remote sensing data into coupled crop models

with land surface models or hydrology models have been conducted (Olioso et al. , 2005;

Pauwels et al. , 2007). However, instead of crop outputs, they concentrated on improving

the estimation of water conditions such as evaporation and soil moisture.
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The application of data assimilation in crop monitoring and yield prediction was initiated

when De Wit & Van Diepen (2007) developed an EnKF data assimilation framework for the

WOFOST crop simulation model, and assimilated the soil water index that derived from

coarse resolution surface soil moisture. The results showed that the relationship between

simulated yield and actual crop yield could be improved by the assimilation of a soil water

index only 33 out of the 88 regions studied. The poor assimilation results were possibly

caused by the irrigation in the study area, which was not considered by the model.

Curnel et al. (2011) compared the assimilation efficiency of two assimilation strategies,

EnKF and the re-calibration method, in assimilating LAI into the WOFOST model in an Ob-

serving System Simulation Experiment (OSSE) (Arnold Jr & Dey, 1986). Results demon-

strated a worse performance for the EnKF, which was attributed to the discrepancy in phen-

ology stage of different ensemble members when the state variable LAIs of each ensemble

was updated.

Another OSSE conducted by Nearing et al. (2012) explored the performance of two

sequential data assimilation algorithms, EnKF and sequential importance resampling filter

(SIRF), in assimilating synthetic observation of LAI and SM respectively, using a CERES-

Wheat model. They concluded that state-updating algorithms were unable to improve yield

estimation under realistic uncertainty conditions because the link between estimated yield

and LAI was weak due to the model structure, while yield was strongly impacted by cultivar

parameters. Besides, the surface soil moisture did not fully demonstrate water availability

conditions.

Although the EnKF failed to improve end-of-season yield prediction in some OSSEs,

the poor assimilation performance caused by model structure can possibly be cancelled by

using more appropriate crop prediction models. It should be noted that synthetic studies

were based on a series of assumptions and limitations, as a simplification of reality. In

contrast to synthetic studies, realistic experiments have been conducted with some success

(Table 2.6). The EnKF has been employed at the regional scale (Ines et al. , 2013; Zhao

et al. , 2013; Huang et al. , 2016) and the results were validated with official yield statistics.

In these experiments, improvements in simulated yield were observed, demonstrating the

potential of EnKF in yield prediction in realistic conditions at the aggregate scale.
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2.4.1 Existing crop model data assimilation frameworks

Data assimilation frameworks have been established for several widely-used crop mod-

els. A list of the combination of crop model and data assimilation algorithms is presented

in Table 2.7.

The EnKF is the predominant data assimilation algorithm coupled with crop models,

being designed for non-linear models and so could be easily coupled with the structure of

crop models. The success of EnKF data assimilation greatly depends on the estimation

of background and observation uncertainties (Pellenq & Boulet, 2004; Ines et al. , 2013).

Background uncertainties are those generated during model prediction and caused by sev-

eral resources: weather forcing, parameters, initial state variables and model physics (Li

et al. , 2014). Observational uncertainties are caused by the errors of instruments, sensing

techniques and retrieval algorithms.

Existing studies of EnKF data assimilation are usually based on the background and

observations error on simplistic assumptions. Table 2.8 presents the assumptions of these

EnKF data assimilation experiments. Most experiments assumed that the model uncertain-

ties were only caused by model parameters, management parameters and initial state vari-

ables (e.g., biomass and leaf area), and thus initialized the model ensembles by perturbing

crop parameters and initial leaf area or biomass. For instance, Ines et al. (2013) made the as-

sumption that uncertainties were from several model parameters, and error values of ±10%

were assumed. Zhao et al. (2013) simply assumed model uncertainties are from model

parameters that control target accumulated thermal time, and mentioned that observational

errors were difficult to assess because of the lack of validation. While the weather forcing

such as precipitation being one of the most sensitive input data affecting the simulation res-

ult of crop growth of crop models (further specified in the sensitivity analysis in Chapter 5),

only a few studies (De Wit & Van Diepen, 2007; Nagarajan et al. , 2012; Nearing et al. ,

2012; Liu et al. , 2016) considered the uncertainties of weather forcing.

The state vectors of the EnKF are constructed of the prognostic state variables of the crop

model that are to be updated at each timestep when external observations are available. The

state vectors involved in existing EnKF data assimilation experiments were usually construc-

ted of the specific crop state variable(s) being assimilated, with only a few state variables
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Table 2.7: Existing data assimilation frameworks for crop models.
Model DA algorithm

WOFOST EnKF (De Wit & Van Diepen, 2007; Curnel et al. , 2011; Zhao et al. ,
2013; Huang et al. , 2015b), EnKF coupled with an RTM (Ma et al. ,
2013b), KF (Huang et al. , 2016)

DSSAT-CERES-Wheat EnKF (Nearing et al. , 2012), SIRF (Nearing et al. , 2012), Var (Dente
et al. , 2008), PF (Xie et al. , 2017)

DSSAT-CERES-Maize EnKF (Ines et al. , 2013; Liu et al. , 2019)
DSSAT-CROPGRO-Soybean EnKF coupled with a microwave model (Liu et al. , 2016)
SVAT EnKF coupled with a microwave model (Nagarajan et al. , 2012)
WheatGrow EnKF coupled with an RTM (Guo et al. , 2019)
SAFY EnKF (Silvestro et al. , 2017)
SWAP EnKF (Huang et al. , 2016)
AquaCrop ExKF (Linker & Ioslovich, 2017)
MCWLA-Wheat Constant gain KF (Chen et al. , 2018)

updated at timesteps when external observations are available. The only exception is the

synthetic study of Nearing et al. (2012), where 33 prognostic state variables of WOFOST

were updated to account for the correlations among all state variables by assimilating the

observations of several state variables.

Several data assimilation experiments explored the use of the variational method (Dente

et al. , 2008), KF (Vazifedoust et al. , 2009; Huang et al. , 2016), EKF (Linker & Ioslovich,

2017), and PF (Li et al. , 2015a; Xie et al. , 2017; Li et al. , 2017b). Dente et al. (2008) em-

ployed a variational method to minimize the differences between prior LAI state estimated

by CERES-Wheat model and remotely sensed LAI, by tuning three parameter values rather

than solving the initial state of the assimilation window, while seeking values of the latter is

a common practice of the variational method. Vazifedoust et al. (2009) updated LAI and re-

lative evapotranspiration states in the SWAP model, using a Best Linear Unbiased Estimate

(BLUE) approach to estimate the Kalman gain as a constant calculated from the background

and observational error covariance. Linker & Ioslovich (2017) tested two different data as-

similation strategies with the AquaCrop model for potato and cotton, by assimilating canopy

cover and biomass individually and together: in the first data assimilation strategy, the state

variables were updated with an EKF algorithm, while the second strategy performed a re-

calibration process to updated three model parameters after states were updated. A practice

of using the particle filter was found in Xie et al. (2017), in which LAI and soil moisture at

the first 20 cm derived from Landsat observations were assimilated into the CERES-Wheat
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Table 2.8: Assumptions of the experiments of EnKF data assimilation.

Ref. Model
Ensemble
size

Quantitiesa perturbed? State

vector b
Inflation
applied?

Crop
typeW Init Para States

De Wit &
Van Diepen
(2007)

WOFOST 50 × × SM Wheat

Curnel et al.
(2011)

WOFOST 50 ×
LAI,
SM

Wheat

Nagarajan
et al. (2012)

SVAT
(MB)

100 × ×
LSP,
RZSM

Maize

Nearing et al.
(2012)

CSRES-
Wheat

100 × × × 33 states Wheat

Ines et al.
(2013)

CERES-
Maize

40 ×
LAI,
SM

× Maize

Ma et al.
(2013b)

WOFOST
(ACRM)

70 × NDVI Wheat

Zhao et al.
(2013)

WOFOST 50 × LAI Wheat

Huang et al.
(2016)

SWAP 100 × LAI Wheat

Liu et al.
(2016)

DSSAT-
CROPGRO
(MB)

50 × ×
SSM,
RZSM

Soybean

Li et al.
(2017a)

CERES-
Wheat

100 × × LAI Wheat

Silvestro
et al. (2017)

SAFY 100 × × LAI Wheat

Guo et al.
(2019)

WheatGrow 70 × LAI Wheat

Kang &
Özdoğan
(2019)

SAFY 40 × × × LAI × Wheat

Liu et al.
(2019)

CERES-
Maize

30 × × × SSM × Maize

a Quantities perturbed: W=Weather, Init=Initial states, Para=Parameters.
b SM: soil moisture. SSM: surface SM. RZSM: root -zone SM. LSP: land surface.
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to produce the time series of LAI and soil moisture at a daily timestep with better accuracy.

However, rather than running the crop model whose states have been updated with the PF

until the harvesting season to obtain the yield, the wheat yield was estimated using a linear

regression model trained with the LAI and soil moisture produced by data assimilation and

field-measured yield. To further understand the performance of applying data assimilation

in crop simulation, more investigations using various models and assimilation strategies are

needed. There is also a lack of inter-comparison between re-calibration approaches and data

assimilation techniques, and among different data assimilation techniques.

2.4.2 Strategies of integrating RS data with predictive models

Remote sensing data have been linked to certain states of crop models according to

two strategies (Delécolle et al. , 1992): (1) converting radiation information to vegetation

properties that are direct states of the crop models with independent inversion of the radiative

transfer models (also known as retrieval models), and then assimilating those state variables;

and (2) coupling crop models with radiation transfer models to directly assimilate radiation

information from the satellite.

2.4.2.1 Using retrieved state variable products

Various variables can be retrieved from remote sensing data, including leaf area in-

dex (LAI), surface soil moisture (SSM), land surface temperature, vegetation water content

(VWC), biomass, canopy nitrogen status and phenology stages, etc. Among all the satellite

remote sensing products, the most prevailing observations integrated with crop simulation

models is LAI due to its strong impact on crop interception of solar radiation, making it a

crucial indicator for photosynthesis productivity and grain yield. Several assimilation stud-

ies that focused on LAI are found in Dente et al. (2008); Curnel et al. (2011); Zhao et al.

(2013); Huang et al. (2016); Li et al. (2017b).

Apart from the LAI, water condition is another key factor impacting crop yield, and is

likely to be more promising to be assimilated in crop modelling for yield estimation than

LAI. In order to compensate for the uncertainty caused by rainfall data, soil water index

(SWI) was assimilated into a distributed WOFOST model (De Wit & Van Diepen, 2007).

Curnel et al. (2011) suggested that the assimilation of soil moisture is likely to be less
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sensitive to phenology stages compared to the LAI assimilation. Moreover, Nearing et al.

(2012) compared the assimilation performance of LAI and SM in an OSSE, and reported a

better yield estimation performance of soil moisture than LAI. Joint assimilation of both LAI

and SM was performed by Ines et al. (2013); Xie et al. (2017), with better improvement in

simulated yield was observed when soil moisture and LAI were assimilated together (Ines

et al. , 2013).

2.4.2.2 Using radiative transfer or microwave model

Apart from using state variables retrieved from remote sensing, another way to link re-

mote sensing information to the models is through radiative transfer models or microwave

models, to allow the direct use of optical reflectance and microwave data. Such coupled

crop-radiative transfer or -microwave models were initially employed in re-calibration pro-

cesses. Bouman (1995) re-calibrated the SUCROS crop model using optical reflectance and

X-band radar backscatter, showing that the errors in canopy biomass estimation were de-

creased with optical information. In the study of Prévot et al. (2003), the STICS crop model

was coupled with a first-order radiative transfer model to assimilate radar information, and

a “multi-layer and multi-element” version of the turbid model SAIL was coupled with PRO-

SPECT to assimilate optical information. Thorp et al. (2012) coupled the DSSAT-CSM with

two radiative transfer models, Choudhury (Wiegand et al. , 1986) and a PROSAIL radiative

transfer model (Jacquemoud & Baret, 1990), and employed a model inversion approach to

improve wheat yield estimation.

Coupling models were also used in advanced data assimilation attempts. Vazifedoust

et al. (2009) coupled the SUCROS crop model with the SAIL radiation transfer model,

and assimilated LAI and relative evapotranspiration with the Kalman Filter. Ma et al.

(2013b) assimilated fine resolution NDVI data from the Chinese HJ-1A/B into the WO-

FOST crop model, which was coupled with a two-layer canopy reflectance model (ACRM)

to capture the key spatial and temporal variability in the growing season. Active and passive

microwave observations were assimilated into the DSSAT model by Liu et al. (2016). In

this study, the microwave backscatters were assimilated to update the total dry biomass, and

the brightness temperature was assimilated to update soil moisture.
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2.4.3 Practices at the field and regional scales

While the majority of data assimilation studies illustrated the effectiveness of crop model

data assimilation in predicting yield at the regional scale, the performance of yield predic-

tion was only evaluated with the official total yield over counties and not for the individual

value of each pixel. The pixels in coarse-resolution remote sensing images usually con-

tain a mixture of different vegetation types, or vegetation and bare soil. When it comes

to the field scale, information with a higher spatial resolution is required for application in

individual paddocks. However, assimilation studies using fine-resolution satellite data are

rarely found. The requirements of precision agriculture for estimating the spatial variability

of yield at field scale and fine resolution is not addressed. Thus it is necessary to make use

of fine-resolution remote sensing data and simulated crop growth to estimate yield at the

field scale.

2.5 Knowledge gaps and research questions

In reviewing the literature, knowledge gaps were identified as:

1. Various remote sensing observations of crop state variables (such as LAI, SM, VWC

and phenological stages) can be assimilated into a crop simulation model with a se-

quential data assimilation method, while only LAI and SM have been explored in

existing studies. A complete understanding of the assimilation performance of vari-

ous crop states is lacking.

2. Most assimilation studies have focused on predicting total crop yield in regional scale

over the area. To meet the requirement of precision agriculture, it is necessary to make

use of fine-resolution remote sensing data and simulate crop growth and estimate yield

at the field scale.

Based on the knowledge gaps presented above, three research questions were proposed�

1. Does the assimilation of all prognostic wheat and/or soil state variables in a synthetic

study results in any improvement for yield estimation of APSIM-Wheat?

2. By making use of in-situ observations of wheat and soil states, does the assimilation
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of state variables in a case study results in any improvement for yield estimation of

APSIM-Wheat?

3. By making use of available remote sensing optical and passive microwave data, does

the assimilation of state variables in a case study results in any improvement for yield

estimation of APSIM-Wheat?

The hypothesis behind the research questions are listed below:

1. The data assimilation of observations of wheat and/or soil state variables in the syn-

thetic study can help understand the constraint to which model state variable poten-

tially benefits APSIM-Wheat yield prediction.

2. The uncertainty of APSIM-Wheat yield prediction is primarily caused by weather

input and model parameters, and the uncertainties from model and field observations

could be well estimated.

3. By replacing field observation of wheat and soil state variables with remote sensing

data, it brings additional challenges and opportunities to the implementation of data

assimilation.

2.6 Chapter summary

This chapter introduced the background and current progress in the literature related to

this thesis. Against a background of growing world food demand, reliable crop monitoring,

and yield prediction is necessary as it plays a vital role in guiding field management. Ac-

cordingly, crop modelling and remote sensing data must be merged with data assimilation

techniques so as to provide a spatial and temporal understanding of crop growth for farm-

ers in order to meet the increased demand. Based on the review of existing literature, three

research questions were proposed to be answered at the completion of this research.
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Chapter 3

APSIM model and the EnKF

algorithm

This chapter describes the methodology of this thesis. A wheat modelling-data assimil-

ation framework was built to allow external field and remote sensing observations of wheat

and soil sates to be assimilated into the APSIM wheat model system. APSIM is a well-

performing and widely-used and validated Australian model that is ideal for modelling ex-

periments in Australia. The model is under active development, and the latest version in-

volves more than 20 types of crop and considers the weather, soil water and chemical dy-

namics, and management factors to help growers to monitor and predict the in-season crop

growth with maximum flexibility. The Ensemble Kalman filter is a widely-used data as-

similation algorithm designed for nonlinear systems. Consequently, this chapter gives an

introduction to the structure and key features of the APSIM-Wheat model, the EnKF data

assimilation algorithm, and the development of the coupled APSIM-EnKF framework.

3.1 APSIM wheat modelling

APSIM is a software framework that integrates a range of crop modules and allows

coupling with other modules Keating et al. (2003). This study uses a version equivlent to

APSIM 7.5, but was newly transplanted to the APSIMX (APSIM Next Generation) platform

without any changes to the model physics when this study began. The architecture of the

new platform is suitable to be coupled with any state-updating data assimilation algorithm.
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The APSIM-Wheat model simulates crop growth at a daily time step. Weather data are

input to the model, including precipitation, solar radiation, daily maximum and minimum

air temperature, vapour pressure and wind speed. Several fundamental modules are required

to assemble a crop simulation model, including:

1. one or more crop modules to simulate the crop development on a daily time step;

2. soil modules to simulate the soil water and nitrogen balance and exchange with the

plant and the atmosphere;

3. weather and management modules;

4. a set of infrastructure modules controlling the sequence of simulations and the read-

ing/writing of input/output files.

This study uses a default assembly for wheat modelling, with main modules of Wheat, Soil-

Wat (the default soil water module), SoilN and other supporting modules. A schematic

diagram of the APSIM structure is shown in Figure 3.1.

3.1.1 Wheat module

The description of the Wheat module in this section was adapted according to the APSIM-

Wheat documentation (Zheng et al. , 2014). In the Wheat module, plant organs are simulated

individually through the partitioning of the daily income biomass. The concept of wheat or-

gans is defined by:

1. the root (the underground part of the plant);

2. the leaf (accounts for leaf blades only);

3. the stem (stem and leaf sheaths);

4. the pod (wheat spike without the grain); and,

5. the grain (meal part of wheat spike only).

In addition to the individual names of each organ, the wheat spike is the combination of

the pod and grain, called the head in the model. The above-ground part of the plant is the
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Figure 3.1: The APSIM structure.

combination of the leaf, stem and head, while the below-ground part is the root only. The

Wheat module simulates the development of phenology, the accumulation and partitioning

of biomass, leaf development, grain development processes under the effect of stress factors

and the substance and energy exchanges between the plant and other modules.

3.1.1.1 Phenology

The development of wheat phenology is driven by thermal time (TT), similar to a more

widely-used concept growing degree-day, and defined as the accumulation of temperature

over time. A simple prognostic equation is:

TTt+1 = TTt +△TT, (3.1)

with subscripts representing the states at timestep (in days) t and t + 1, respectively. The

daily increment of thermal time (△TT) is calculated as a function of the crown temperature
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Table 3.1: Wheat phenology phases and stages in APSIM and Zadoks scale. The phenology
stage represents the period between two phenology phases.

APSIM phase APSIM stage Phenology phase and
description in Zadoks scale

Typical target
TT (°C · day)

1 Sowing 1 Sowing to germination 00 Dry seed. -
2 Germination 2 Germination to emergence 05 Radicle emerged from

caryopsis.
-

3 Emergence 3 Emergence to end of juvenile 10 First leaf trough
coleoptile.

-

4 End of juvenile 4 End of juvenile to floral
initiation

10 First leaf trough
coleoptile.

380-410

5 Floral initiation 5 Floral initiation to flowing 39 Flag leaf ligule visible to
40 booting.

520-630

6 Flowering 6 Flowering to start of grain
filling

65 Anthesis half-way. 120-125

7 Start of grain
filling

7 Grain filling (or start of grain
filling to end of grain filling)

71 Caryopsis water ripe. 580-610

8 End of grain
filling

End of grain filling to maturity 87 Hard dough. -

9 Maturity 9 Maturity to harvest 90 Ripening. -
10 Harvest - - -

Tc (calculated as the average of the daily maximum and minimum air temperature) as:

△TTp =


Tc, 0 < Tc < 26

26/8× (34− Tc), 26 < Tc < 34

0, Tc < 0, or Tc > 34

, (3.2)

and modified by photoperiod, vernalization and environmental factors as:

△TT = △TTp × factor(photoperiod, vernalization, environment). (3.3)

In the wheat module, 10 phenology phases (9 stages) are defined from sowing to har-

vest. The wheat phenology stages in APSIM can be linearly mapped to the more widely-used

Zadoks phenology scale (Zadoks et al. , 1974) according to Table 3.1. In each phenology

stage, a certain threshold (target thermal time) of in-phase accumulated thermal time is re-

quired to be reached, to allow the plant in one phase to transfer to the next phase. The target

thermal time required for each stage varies among wheat cultivars with typical values shown

in Table 3.1.

36



3.1.1.2 Light utilization and biomass partition

While some models use a physically-based photosynthesis-respiration approach (i.g.,

APES, DAISY, MONICA, WOFOST, etc.), APSIM-Wheat uses a simple radiation use ef-

ficiency approach to calculate incoming biomass accumulation (Zheng et al. , 2014). The

above-ground dry biomass (hereafter referred to as “biomass” Q) is accumulated on a daily

basis through photosynthesis. The daily biomass increment is calculated from the intercep-

ted radiation (I) and the radiation use efficiency (RUE) under stress factors according to:

△Q = I × RUE × factor(T, N, CO2), (3.4)

where the actual biomass increment is reduced by stress factors of temperature (T), nitro-

gen (N), carbon dioxide (CO2) concentration and water, and the intercepted radiation is a

function of the LAI.

The daily incoming biomass is partitioned into the above-ground part to meet the demand

of wheat organs in the sequence of grain, pod, leaf and stem. Specifically, the biomass is

firstly partitioned to meet the demand of the head as:

△Qhead = min(△Qhead, Dhead) , (3.5)

and the biomass partitioned to the head is further allocated to grain and pod proportional

to their individual demand, where Dhead is the biomass demand of the head. A proportion

of the remaining biomass is partitioned to the leaves by a phenology-dependent proportion

Fleaf as:

△Qleaf = (△Q −△Qhead)× Fleaf , (3.6)

after which the remaining biomass is allocated to the stem as:

△Qstem = △Q −△Qhead −△Qleaf . (3.7)

The daily root biomass increment is simply computed separately as a fixed proportion

of the daily above-ground biomass. Re-translocation happens during the grain filling stage;

when the daily biomass is insufficient to meet the grain demand, a proportion of biomass in
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the pod and stem is re-translocated to the grain.

3.1.1.3 Grain demand

The incoming biomass is allocated to the grain during the grain filling stage to meed the

grain demand. The grain demand is determined by the estimated grain number:

Dgrain = Ng × Rp × factor(T, N), (3.8)

where Rp is the potential rate of grain filling specified as a cultivar parameter, and Ng is the

number of grains per plant calculated as:

Ng = RgWs , (3.9)

where Rg is the number of grain per gram stem, specified as a cultivar parameter, and Ws is

the dry weight of stem at anthesis.

3.1.1.4 Leaf development

The estimation of the leaf area index (LAI) in the wheat module is governed by the

prognostic equation:

LAIt+1 = LAIt +△LAI , (3.10)

where the daily increment of LAI is taken from the minimum increment from two ap-

proaches: a carbon-limited LAIc, and a stressed LAIs:

△LAI = min(△LAIc, △LAIs) , (3.11)

where the carbon-limited LAI increment is computed by the increment of the dry leaf weight

(△Qleaf, computed by Equation 3.6) and a maximum specific leaf area (SLAmax), calculated

as:

△LAIc = △Qleaf × SLAmax . (3.12)

The stressed LAI increment (△LAIs) is determined by a leaf-node development ap-

proach considering the water and nitrogen stress.
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3.1.1.5 Stress factors

APSIM considers stress factors in terms of water and nitrogen, mainly applied to the

phenology, photosynthesis, leaf and grain development processes. The computation of these

factors is described in the sections below.

Water stress: The water stress of the phenology is calculated as:

factorW,pheno = hW,pheno(
eswa
eswp

) , (3.13)

where eswa and eswp are the actual and potential extractable soil water, respectively, and

hW,pheno(�) is a function relating soil water availability to the soil water stress of the pheno-

logy. The water stress of the photosynthesis is calculated as:

factorW,photo =
Wu
Wd

, (3.14)

where Wu is the total daily water update from the root, and the Wd is the soil water demand

of leaf and head. The water stress of the leaf expansion is determined by:

factorW,expan = hW,expan(
Wu
Wd

) , (3.15)

where hW,expan(�) is a function relating soil water availability to the soil water stress of leaf

expansion.

Nitrogen stress: The nitrogen stress of the phenology is calculated as:

factorN,pheno = hN,pheno ×
∑

stem, leaf

CN − CN,min
CN,crit × fc,N − CN,min

, (3.16)

where hN,pheno is a multiplier for the nitrogen deficit effect on the phenology, CN is the nitro-

gen concentration of the stem and the leaf, CN,crit and CN,min are the nitrogen concentration

critical and minimum values for the plant parts, respectively, and fc,N is a factor for CO2
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effects on the leaf. The nitrogen stress of photosynthesis is calculated as:

factorN,photo = hN,photo ×
∑
leaf

CN − CN,min
CN,crit × fc,N − CN,min

, (3.17)

where hN,photo is a multiplier for nitrogen deficit effect on photosynthesis. The nitrogen

stress of leaf appearance and development is calculated as:

factorN,expan = hN,expan ×
∑
leaf

CN − CN,min
CN,crit × fc,N − CN,min

, (3.18)

where hN,expan is a multiplier for nitrogen deficit effect on photosynthesis. The nitrogen

stress of grain filling is calculated as:

factorN,grain =
hN,poten

hN,min
× hN,grain ×

∑
stem, leaf

CN − CN,min
CN,crit × fc,N − CN,min

, (3.19)

where hN,grain is a multiplier for nitrogen deficit effect on photosynthesis, while hN,poten and

hN,min are the potential and minimum rate of grain filling, respectively.

3.1.2 Soil modules

The crop module is coupled with soil modules that account for the dynamics of soil

water, carbon, nitrogen, organic matter and temperature in multiple layers (7 layers by de-

fault). SoilWat, SoilN and SoilTemp are the main soil modules in the APSIM model and are

described below according to the APSIM model documentation.

3.1.2.1 SoilWat

SoilWat is a cascading water balance model of APSIM developed from CERES (Jones

et al. , 1986) and PERFECT (Littleboy et al. , 1992). This model calculates infiltration,

evapotranspiration, soil evaporation, saturated and unsaturated flow, drainage, backwater

and surface ponding in the vertical direction and runon/runoff, and lateral inflow/outflow in

the horizontal direction when invoked by APSIM at a daily time step. The soil water scheme

balance is shown in Figure 3.2.
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Figure 3.2: The APSIM soil water scheme for an instance of 3 soil layers.

Runoff: Runoff is simulated using the curve number technique of the USDA Soil Conser-

vation Service (Soil Conservation Service, 2004) procedure. This technique estimates the

surface runoff of bare soil as a function of daily rainfall using a group of runoff response

curves numbered between 0 (no runoff) and 100 (all runoff). The interception is considered

by the reduction of curve number with the increase of canopy cover throughout the plant

growing process.

Potential evapotranspiration and soil evaporation: The potential evapotranspiration

(PET) uses the equilibrium evaporation concept of Priestley & Taylor (1972). Soil evap-

oration is simulated in two stages, as a combination of two processes described in two crop

models, CERES and PERFECT, respectively. In the first stage (the constant stage when

t ≤ t1,), the soil is assumed sufficiently wet to supply the evaporation rate to be equal to the

PET. The second stage (the falling rate stage when t > t1) starts when the soil moisture de-

creases to a certain threshold value, and the evaporation rate is slower than the PET. The two

processes are described by two parameters U (from CERES) and ConA (from PERFECT):

∑
Es =


U × t, t ≤ t1,

U × t+ ConA×
√
t− t1, t > t1

, (3.20)

where the parameter U is the amount of cumulative evaporation before soil supply decreases

below the atmospheric demand (Jones et al. , 1986), and the parameter ConA is a regression

coefficient that specifies the change of cumulative evaporation in the second stage (Littleboy
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et al. , 1992). Different soil evaporation parameters can be specified to summer and winter

days switching on a user-specific date.

Saturated water flow: The saturated water flow occurs when the soil water content (SW),

or soil moisture (SM), is below the saturated (Sat) soil moisture and above the drained upper

limit (DUL). A fraction (specified by SWCON) of the water is allowed to drain into the next

deeper layer:

Flowsat = SWCON × (SW − DUL) . (3.21)

Unsaturated water flow: The unsaturated water flow occurs when the soil water content

is below the DUL. The movement of soil water depends on the water content gradient

between adjacent layers and the diffusivity. The diffusivity is given by:

Diffusivity = DiffusConst × exp(DiffusSlope × θav) , (3.22)

where the DiffusConst and the DiffusSlope are two parameters, and θav is the average of

extractable soil water (the difference between the SW and the permanent wilting point LL)

across the two layers. The unsaturated water flow is then calculated by:

Flowunsat = Diffusivity × volumetric soil water gradient . (3.23)

Lateral outflow: Lateral outflow is the horizontal flow that occurs when the soil water

exceeds DUL, with the soil being on a slope. The lateral outflow is calculated as:

Flowlat = Klat×d × s√
1 + s2

× L
A

, (3.24)

where Klat is the lateral conductivity, d is the depth of saturation in the layer (mm), s is the

slope (m/m), L is the catchment discharge length (m), and A is the catchment area (m2).

3.1.2.2 SoilN

The movement of soil organic matter, nitrogen and solute is simulated by a combination

of closely linked soil sub-modules (SoilN, SoilOM, Residue, Solute, etc.) that are collect-
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ively called the SoilN module in this chapter hereafter. The key features of the SoilN module

are described below with a full module description available from Probert et al. (1998).

As shown in the SoilN scheme (Figure 3.3), soil organic matter (organic carbon and

nitrogen) is simulated as two pools: biom and hum. The biom pool represents the micro-

bial biomass in soil, while the hum pool contains the humic organic matter. Simulation of

soil organic matter is based on the carbon flux between pools, while the nitrogen flux is

calculated as a proportion of the carbon flux by the carbon-nitrogen ratio of the receiving

pool.

Organicmatter residue: The residue produced by the plant can be burnt, joined into fresh

organic matter (the fom pool) by tillage, or be decomposed into the biom and the hum pools.

The scheme of soil organic matter dynamics is shown in Figure 3.3. To initialize the organic

matter pools, the initial total carbon is calculated in kg/ha as:

total carbon = fomc + oc , (3.25)

where the fomc is the fresh organic matter carbon that is initialized at the beginning of the

simulation, and the oc is the organic carbon, calculated as:

oc = biomc + humc . (3.26)

Figure 3.3: APSIM soil organic matter and nitrogen scheme (source: figure reproduced from
Probert et al. , 1998).
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To simulate the slower rate of decomposition of soil organic matter in the deeper soil

layer, a part of the biom and hum pool is considered to be non-susceptible to decomposition,

determined by two multipliers Fbiom and Finert, respectively. They are calculated as:

inertc = Finert × oc . (3.27)

Since humc = oc − biomc, the biomc is determined by:

biomc = Fbiom × oc − inertc
1 + Fbiom

. (3.28)

Decomposition: Soil organic matter in all pools are decomposed, and the products of de-

composition are received by the biom and the hum pools, as shown in the left panel of Figure

3.3. Generally, the decomposition of each pool is determined by the decay rate and stress

factor:

Decompositionpool = substancepool × decay ratepool × factorpool, (3.29)

where the subscript pool represents the fom, biom and hum pool, respectively. For the

fom pool, the substances are carbohydrate, cellulose or lignin fractions, the stress factor

ffom is a function of soil water (W), soil temperature (T) and carbon:nitrogen ratio (CNR),

expressed as factorfom(W,T,CNR). For the biom and the hum pools, the substance is the

organic carbon and nitrogen to be decomposed, and the stress factor is a function of soil

water and soil temperature expressed as factorbiom or hum(W,T). The decomposition rate is

individually specified for each pool and substance.

Mineralization and immobilization: Mineralization transforms N in organic matter into

mineral N (i.e., ammonium N (NH+
4 ), and nitrate N (NO−

3 )), while immobilization is the re-

verse of mineralization. Mineralization and immobilization occur in all pools, depending on

the balance of mineral N released in decomposition and immobilized in microbial synthesis

and humidification (Probert et al. , 1998). When the availability of mineral N is adequate to

supply the N demand for immobilization, the rate of decomposition is slowed.

Nitrification: Nitrification transfers ammonia into nitrates. Nitrification follows Michaelis-

Menton kinetics (Godwin & Jones, 1991), depending on NH+
4 concentration and affected
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by sub-optimal water, temperature and pH conditions. Nitrous oxide (N2O) is emitted as a

product of nitrification and is proportional to the nitrided N.

Denitrification: The rate of denitrification is determined by the concentration of NO−
3 and

the active carbon in the soil. Nitrous oxide is also the product of denitrification, calculated

by the by combining predictions of denitrification with the ratio of N2 to N2O emitted during

denitrification, according to the model of Del Grosso et al. (2000).

3.1.2.3 SoilTemp

The SoilTemp module estimate soil temperature based on the CERES soil temperature

model, with the latter developed from EPIC (Williams et al. , 1983). Based on simple empir-

ical assumptions, this approach calculates soil temperature with only two additional inputs

required: the annual average ambient temperature (TAV) and the annual amplitude in mean

monthly temperature (AMP).

The profile of subsurface soil temperature is determined by the change in soil temperat-

ure since the hottest day of the year, and a factor that is derived from the depth at which no

diurnal variation in temperature is experienced (known as damping depth). For each given

layer i, the average soil temperature is governed by:

ST(i) = TAV + (
AMP

2
× cos(ALX + DepthLag) + TempChange × exp(DepthLag)) ,

(3.30)

where ALX is a variable to relate the current day of the year to the time of the hottest day of

the year, TempChange is the change in soil temperature since the hottest day of the year, and

DepthLag is a depth lag factor that is determined by the accumulated depth of soil layer, and

a damping depth, which is further a function of soil bulk density and soil water availability.

3.1.3 State variables and parameters

The state variables of APSIM-Wheat are presented in Table 3.2, while the key parameters

and initial conditions of APSIM-Wheat are presented in Tables 3.3 - 3.4.
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Table 3.2: Wheat and soil states in the APSIM-Wheat model.
State variable Unit

P/Da ? Measurements
Field observation Remote sensing

Canopy height m P Tape measure,
Ground-based Lidar

Lidar

Canopy cover - D Visual estimation,
photographic method

Spectral reflectance

Accumulated thermal
time

oC · d P NAb NA

Phenological stages - D Direct observation Spectral reflectance
Leaf area index m2/m2 P Leaf area meter, link to dry

biomass
Spectral reflectance

Leaf Wt

g/m2 P Sampling NA
StemWt
Pod Wt
GrainWt
RootWt
LeafN

g/m2 P Sampling NA
StemN
PodN
GrainN
RootN
Yield kg/ha D Sampling at harvest NA
Grain size g D Sampling at harvest NA
Plant N concentration
(stem, leaf, pod, grain)

g/g
(N/Wt)

D Sampling NA

Grain protein % D Sampling at harvest NA
Number of nodes - P Direct observation NA
Number of leaves - P Direct observation NA
Root length m P NA NA
Root depth m P Sampling NA
Soil moisture (surface) m3/m3 P Sampling Spectral reflectance,

radiometer, radar
Soil moisture
(root-zone)

m3/m3 P Sampling NA

Soil nitrate kg/ha P Sampling NA
Soil ammonium kg/ha P Sampling NA

a P/D: the state variable is prognostic (P) or diagnostic (D).
b NA: not available.
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Table 3.3: Key parameters in the Wheat module and management information.

Parameter Description Unit
Typical
values

Wheat module (cultivar parameters)
VernSens Sensitivity to vernalization. - 1.5-5
PhotopSens Sensitivity to photoperiod. - 1.4-5
TT4 (stage 4) Target TT from End of Juvenile to

Floral Initiation.

oC · days 380-400

TT5 (stage 5) Target TT from Floral Initiation to
Flowering.

oC · days 520-630

TT6 (stage 6) Target TT from Flowering to Start of
Grain Filling.

oC · days 80-180

TT7 (stage 7) Target TT from Start of Grain Filling to
End of Grain Filling.

oC · days 580-600

Grains Per Gram Stem Grain number per gram stem. grain/g 20-27
Max Grain Size Maximum grain size. 10−3g 39-65
Potential Grain Filling
Rate

Potential grain filling rate. 10−3grain/g/d 1-2.8

Potential Grain Growth
Rate

Potential grain growth rate. 10−3grain/g/d 1

Potential Grain N
Filling Rate

Potential grain Nitrogen filling rate. 10−5grain/g/d 5.5

Sowing depth Sowing depth. mm 30
Row spacing Row spacing. mm 250
Population Plant population. m−2 120
Fertiliser Fertiliser amount applied when sowing. kg/ha 160
Management information
Sowing depth Sowing depth. mm 30
Row spacing Row spacing. mm 250
Population Plant population. m−2 120
Fertiliser Fertiliser amount applied when sowing. kg/ha 160
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Table 3.4: Key parameters and initial conditions in the SoilWat and the SoilN modules.

Parameter Description Unit
Typical
values

SoilWat module
InitialSW Initial soil water % full relative to the

WheatLL.
% 0-100

BD Bulk density. g/cm3 0.8-1.2
LL15 15 bar lower limit of soil moisture. m3/m3 0.25-0.28
AirDry Soil moisture of air-dry soil. m3/m3 0.13-0.28
DUL Drained upper limit of soil moisture. m3/m3 0.45-0.52
SAT Saturated soil moisture. m3/m3 0.52-0.59
WheatLL Lower limit of wheat extractable soil

moisture.
m3/m3 0.26-0.45

ConA
(summer/winter)

Drying coefficient for stage 2 soil water
evaporation.

- 5

U (summer/winter) Cumulative soil water evaporation to reach
the end of stage 1 soil water evaporation.

mm 5

DiffusConst Constant in the soil water diffusivity
calculation.

mm2/d 40

DiffusSlope Effect of soil water storage above the lower
limit on soil water diffusivity.

mm−1 16

Salb The fraction of incoming radiation
reflected from bare soil (soil albedo).

- 0.12

CN2Bare Runoff Curve Number for bare soil with
average moisture.

- 73

SWCON Fractional amount of water above DUL
that can drain under gravity per day

d−1 0.3

SoilN module
RootWt Initial root weight. kg/ha 1000
RootCN Root C:N ratio. - 40
SoilCN Soil C:N ratio. - 12
EnrACoeff Erosion enrichment coefficient A. - 7.4
EnrBCoeff Erosion enrichment coefficient B. - 0.2
OCTotal Total organic matter. % 1.2-0.12
Fbiom (Fbiom) The biom pool carbon as a fraction of the

hum carbon that is subject to
decomposition (0-1).

- 0.01-0.04

Finert (Finert) The fraction of the hum pool that is
considered to be non-susceptible to
decomposition (0-1).

- 0.4-1

pH pH from either a sample or from analysis
(1:5 water).

- 8

SurfaceResidue Mass of surface residue. kg/ha 500
ResidueCN C:N ratio of surface residue. g/g 100
InitialNO3 Initial soil nitrate nitrogen. ppm 1
InitialNH4 Initial soil ammonium nitrogen. ppm 0.1
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3.2 Data assimilation and EnKF algorithm

A brief description of the Kalman filter (KF) and the Ensemble Kalman filter (EnKF) al-

gorithms was presented in this section according to Stuart & Zygalakis (2015); Marc (2014).

3.2.1 Filtering problem and Kalman filter

For a dynamic system, a Markov chain passes the state of the system at time step k − 1

into the next step k according to:

xk = M(xk−1), (3.31)

where, M(�) and x are the state transfer function and the true states of the system, respect-

ively. At any timestep, the observation of the model states y, and the observation are related

to the state vector with an observation operator H(x), expressed by:

y = H(x). (3.32)

In a real situation, the true states and transfer function are unknown and so a model is

used to approximate the true state and transfer function, with an additional term representing

model uncertainty wk:

x̂k = M(x̂k−1) + wk, (3.33)

where M(�) is a nonlinear model to forecast the state, and x̂ is the estimated state of the

system. The observation operator is estimated by function H(�) and an additional term rep-

resenting observation uncertainty v:

y = H(x) + v. (3.34)

The purpose of a filtering problem is to solve the probability distribution of x̂ given

the external observation of the system y to the states so that the estimation of the state x̂

approaches the truth x. The Kalman filter (KF) approach uses a series of linear and Gaussian

assumptions for the model and uncertainties, respectively. In the KF, a linear forecasting
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model and observation operator is assumed such that:

xk = Mkxk−1 + wk, (3.35)

y = Hx+ v, (3.36)

where M and H are the known state transfer and the observation matrices, respectively. The

model and observational uncertainties are assumed unbiased, independent and Gaussian,

with the error covariances of model and observation Qk and Rk:


E(wk) = 0, E(wk � wT

l ) = Qk, (k, l = 1, 2, ..., and k ̸= l)

E(vk) = 0, E(vk � vTl ) = Rk, (k, l = 1, 2, ..., and k ̸= l).
(3.37)

Implementation of the KF consists of a forecast and an analysis step. The forecast step

is a model forecast that maps the analysis state from the previous timestep k − 1 to the next

step k. This background state is used as the input to the analysis step, otherwise known

as the data assimilation step, where external observations are assimilated into the system.

The terms “analysis” and “background” are sometimes denoted by “posterior” and “prior”,

meaning that the state or error covariance is obtained posterior or prior to the analysis step.

The forecast step estimates the background states as a direct model estimation based on the

analysis states from the previous step, calculated by:

xb
k = Mkxa

k−1, (3.38)

where the superscripts b and a denote background and analysis quantities, respectively. The

error between model estimation and the truth is assumed independent, with the error covari-

ance matrix denoted by P. The background error covariance is forecast forward by:

Pb
k = MkPa

k−1MT
k +Qk. (3.39)

The analysis states are calculated by:

xa
k = xb

k +Kk(yk −Hkxb
k), (3.40)
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where the K is known as the Kalman gain, which is solved by minimizing the analysis error

covariance. When optimized, the analysis error covariance Pa
k is:

Pa
k= (I−K∗

kH) · Pb
k, (3.41)

with the Kalman gain K∗
k given by:

K∗
k = (Pb

kH
T) · (HPb

kH
T + Rk)

−1. (3.42)

In summary, equation 3.38 and 3.39 are the forecasting equations of the KF algorithm

for states and error covariance, and Equation 3.40 and 3.41 are the analysis equations, with

the Kalman gain calculated by Equation 3.42.

3.2.2 Ensemble Kalman filter (EnKF)

The Ensemble Kalman filter (EnKF) is a generalized approach of the Kalman filter,

developed to address nonlinear models. The EnKF data assimilation algorithm is based on

a Monte Carlo assumption, where an ensemble of stochastic models running can be used to

approximate the probability distribution of the state. In the forecast stage, the background

state of each ensemble i is calculated as:

xi,b
k = M(xi,a

k−1). (3.43)

The ensemble of model state variables with an ensemble size of N is written as a matrix:

X = [x1, x2, ..., xN]. (3.44)

The background and analysis state of the ensemble are taken as the background and

analysis ensemble means µa
k and µb

k in timestep k, expressed by:


µb
k = E[xi,bk ] = 1

N

∑N
i=1 x

i,b
k

µa
k = E[xi,ak ] = 1

N

∑N
i=1 x

i,a
k

, (3.45)
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for background and analysis states of the ith ensemble xi
k, respectively.

In the analysis step, the background error covariance is calculated by the equation:

P b
k =

1
N − 1

Db
kD

bT
k , (3.46)

where Dk is calculated by all x as background states in timestep k:

Db
k = [x1,b − µb

k, x
2,b − µb

k, · · · , xN,b − µb
k]. (3.47)

The analysis state of the ith ensemble is calculated by:

xi,a
k = xi,b

k +Kk(yk + vi
k −Hxi,b

k ), (3.48)

where vi
k is the observation error randomly draw from a known Gaussian distribution N(0,Rk)

and the Kalman gain obtained as:

Kk = Pb
kH

T(HPb
kH

T + Rk)
−1. (3.49)

In summary, the EnKF algorithm uses Equation 3.43 and 3.46 in the forecast step and

Equation 3.48 in the analysis step.

3.2.3 Evaluation of data assimilation results

The outcomes of the data assimilation were evaluated with the root mean square error

(RMSE) of the state variables and the relative difference of yield (RDyield, note that the yield

refers to the grain weight at harvest). They are expressed as:

RMSE =
1
L

L∑
k=1

(xest
k − xobs

k ), (3.50)

RDyield =
yieldest − yieldobs

yieldobs
, (3.51)

where L is the total time step. The estimated states xest
k is the analysis ensemble mean for the

assimilation run, and the model estimates for the open-loop run. The xobs
k is the observed (or

true in the synthetic study) states at time step k. The yieldest and yieldobs are the estimated
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and observed (or true in the synthetic study) grain weight in kg/ha at the date of harvest,

respectively. The value of RDyield close to zero means that the yield was close the truth.

An RDyield from a data assimilation experiment less than that from the open-loop indicates

that the data assimilation of external observations contributed to a better yield estimation,

compared to no observations assimilated. A negative value indicates that the errors of yield

estimation were over-corrected.

3.2.4 Coupling the EnKF with APSIM

The data assimilation framework developed for this project is based on the version AP-

SIMX (APSIM Next Generation, https://www.apsim.info/apsim-next-generation/) under de-

velopment on GitHub in 2016, when the version APSIM 7.8 was migrated to the new version

but the core code for the model physics remained unchanged. This EnKF framework is de-

veloped as a built-in module of the model, working cooperatively with an external program

to generate and perturb input files for the EnKF. This data assimilation framework is extend-

able to all future plant modules and can be switched to other state updating data assimilation

algorithms with minor modification to the source code. A schematic diagram of the EnKF

framework is shown in Figure 3.4.

The APSIM-Wheat model simulates the wheat development processes using a set of

inputs and parameters, which contribute to the majority of the background uncertainties.

The forecasting equation of APSIM-Wheat can be written as:

xk = M(xk−1, fk, θ), (3.52)

where the state vector x consists of 31 wheat and soil states, fk is the time-dependent driving

force (weather input for the case of APSIM), and θ is a set of cultivar and soil parameters

uniform throughout the simulation window. To start an EnKF data assimilation process, first

an ensemble of models are generated. In this study, ensembles were generated by adding

Gaussian errors to weather, model parameters and initial conditions. The initialization of

the ensembles was prepared with a script exterior the model (Figure 3.4, a set of weather,

parameter and initial condition data were perturbed to generate three sets of input data for

three ensembles) and is read as input data at the beginning of the model simulation.
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After initialization, the ensemble of models are run in parallel and looped at a daily

timestep. At the end of each daily simulation, all models are synchronized to make sure that

the ensemble of simulations are in the same timestep, after which an observation availability

check is performed: if the external observation of the model state is available, the EnKF

module is invoked. With the forecast step finished by the daily model simulation, the EnKF

module gathers the model state from all ensemble members to construct the background state

matrix Xb
k, calculates the background error covariance Pb

k (Equation 3.46) and the Kalman

gain Kk (Equation 3.49), perturbs observations and calculates the analysis state matrix Xa
k

(Equation 3.48). Once the calculation of the analysis state matrix is finished, the background

state variables of all ensemble members are replaced by the analysis state variables. When

the state updating process is finished, or external observation is not available, the daily

simulation finishes and the model clock moves to the next day.

3.3 Chapter summary

This chapter provided a description of the structure of APSIM wheat and soil modules

and an introduction to the EnKF algorithm. Basic characteristics for the estimation of wheat

growth is presented, including phenology, photosynthesis, stress factors of water and N, and

dynamics of water and organic matter in the soil. For a further understanding of APSIM, it is

essential to perform a sensitivity analysis, which is presented in the next chapter. A data as-

similation framework for the APSIM model was developed for APSIM-Wheat sub-module

using the EnKF data assimilation algorithm, to allow the wheat and soil state variables of

the model to be updated by assimilating any external observation to the model system.

55



56



Chapter 4

Field experiment and dataset

With the previous chapter introduced the physics of APSIM-Wheat model and summar-

ized the model inputs, wheat and soil states, and outputs, this chapter introduces the dataset

collected for this thesis. Input and validation data for APSIM-Wheat were collected in a

field experiment from August 2018 to the February 2019 wheat growing season. Weather,

soil characteristics and wheat management information were collected as the input data re-

quired for APSIM-Wheat. Wheat states and soil variables were collected from both ground

and remote sensing measurements throughout the growing season for assimilation into the

APSIM model as state variables for improving yield prediction and as validation. Total yield

at harvest was also recorded for evaluation of the assimilation results.

4.1 Study site

The site used for this study is located 80 kilometres from Melbourne at Cora Lynn,

consisting of an approximately 75×75 m square field with an Antenna Mast Unit (referred

to as “AMU tower” or “tower” hereafter, Figure 4.2-a) installed at the south-west corner.

The location and layout of the study site is shown in Figure 4.1. The tower consisted of a

P-band passive microwave radiometer, TIR, VIS, NIR and SWIR sensors. A weather station

(Figure 4.2-b) was installed at the north-west corner of the field. Soil moisture/temperature

stations and raingauges were also installed at the site.
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Figure 4.1: Location (a) and layout (b) of the Cora Lynn study site and related data. Field
imagery sourced from NearMap (www.nearmap.com).

4.2 Field experiment

Winter wheat seeds (variety: RGT Accroc, produced by Australian Grain & Forage

Seeds) were drilled at a 5-cm depth on August 7, 2019 after tillage. Mono-ammonium

phosphate (MAP) was evenly applied at 100 kg/ha together with sowing. Emergence was

observed on Aug 14. No extra management was applied apart from an irrigation (approx-
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a b c d

e

Figure 4.2: In-situ AMU tower (a), Eddy Covariance tower (b), soil moisture station (c),
camera (d) and four experimental plots (e).

imately 5 mm) on Nov 16 to maintain wheat growth under unusually dry weather. Four

1×1 m square monitoring areas (plots, labelled A-D, Figure 4.2-e) were marked and circled

by pins and tapes, with each plot enclosing 5 rows of wheat at a row spacing 0.2 m. The

location of plots (Figure 4.1-b) was carefully selected to ensure that they are uniform with

the surrounding area and have no missing plants so that they are representative of the entire

paddock, and also to avoid any manual perturbation to the conditions inside the footprint

of the tower-based radiometers. A camera (model: Swift 3C High Speed Motion Camera,

Figure 4.2-d) was installed 1 m west to the edge of Plot A at the height of 1 m, automatic-

ally taking photos of wheat in plot A every 3 hours. Field inspections were scheduled on

a weekly basis to obtain wheat height, biomass, LAI, soil moisture and soil nitrogen, and a

field investigation conducted to obtain soil properties.

4.2.1 Site characterization

The soil property investigation included the soil texture, permeability, soil water reten-

tion curve, bulk density and chemical components of the soil. Table 4.1 provides a summary

of the soil characterization from the field investigation.

4.2.1.1 Soil texture and chemical analysis

An intensive soil characterization test was conducted on Sep 21, 2018. Samples were

collected at five locations (Figure 4.1-b), each at 6 layers at depths of 0-5, 5-15, 15-25, 25-35,
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35-45, 45-55 cm, respectively. To prepare the samples for the texture and chemical analysis,

soil samples were dried at room temperature (approx. 25°C) immediately after having been

transported to the laboratory. Clay lumps in the soil samples were broken up with pestle and

mortar and then separated with a 1.4 mm sieve. Soil particle greater than 1.4 mm was ana-

lyzed using a dry sieving method following the procedures of AS 1289.3.6.1:2009 (Stand-

ard, 2009), with the fine particle smaller than 1.4 mm analyzed with a diffraction particle

size analyzer (model: LS 13 320 Laser Diffraction Particle Size Analyzer) by an external

laboratory at the University of Melbourne. To prepare the soil samples for the chemical

analysis, a representative sub-sample of approximately 15 grams was separated from each

dry soil sample with riffle boxes customized according to AS 1141.2:2015 (Standard, 2015),

and then ground with pestle and mortar to pass the 1.4 mm sieve. A full chemical analysis

for agricultural soil was conducted by Environmental Analysis Laboratory, Southern Cross

University. Key analysis results are shown in Table 4.1.

4.2.1.2 Permeability

Saturated hydraulic conductivity (permeability) was measured in the field with a Guelph

permeameter (model: 2800K1 Guelph Permeameter). Measurements were taken on several

locations at depths from 10 cm to 50 cm. Surface permeability was measured with a double-

ring infiltrometer. The scatter plot of logarithmic permeability to depth was manually fitted

to an exponential equation to obtain the permeability in depths 0-5, 5-15, 15-25, 25-35,

35-45, 45-55 cm. The permeability in each layer is shown in Table 4.1.

4.2.1.3 Soil water characteristics curve and bulk density

Undisturbed soil samples were collected to measure bulk density and soil water charac-

teristics (soil moisture at saturation and air-dry, field capacity and permanent wilting point).

Samples were collected at depths of 0-5, 5-15, 15-25 cm in the wheat field with a steel

ring. Saturated and air-dry soil moisture were obtained by measuring the soil water content

of saturated and air-dry soil, respectively. The field capacity and permanent wilting point

were estimated by measuring soil water content at suctions of 33 and 1500 kPa (Pollacco,

2008), respectively. The suction at the wet end was measured with a pressure transducer ten-

siometer (model: T5 Pressure Transducer Tensiometer) connecting to a data logger (model:
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Data Logger 6); at the dry end, suction was measured with a WP4C water potential meter

(model: WP4C Dew Point Potential Meter). Bulk density was measured by oven drying soil

samples of known volume at 105 °C for at least 24 hours. Soil water properties are shown

in Table 4.1.

Table 4.1: List of soil properties.

Property Unit
Depth

0-5 cm
5-15
cm

15-25
cm

25-35
cm

35-45
cm

45-55
cm

Soil texture -
Silty
loam

Silty
loam

Silty
loam

Silty
loam

Silty
loam

Silty
loam

Average weight% of
clay/silt/sand

Wt% 18/71/11 21/69/10 18/70/12 20/69/11 16/67/17 17/62/21

Bulk density g/cm3 0.72 0.79 0.83 - - -
Saturated soil moisture m3/m3 67.32 64.21 64.29 - - -
Field capacity m3/m3 33.25 36.57 35.97 - - -
Permanent wilting
point

m3/m3 19.42 19.77 20.69 - - -

Air-dry soil moisture m3/m3 5.19 6.21 5.52 - - -
Permeability mm/day 20000 500 53 32 27.7 24
pH - 5.91 5.798 5.508 5.244 5.248 5.276
Electrical Conductivity dS/m 0.193 0.166 0.1482 0.1084 0.0826 0.0742
Phosphorus mg/kg 338.8 360 212.6 60 33.4 32.6
Nitrate Nitrogen mg/kg 41.3 23.52 17.1 10.2 5.44 4.16
Ammonium Nitrogen mg/kg 7.5 8.18 5.28 3.3 2.7 2.4
Sulfur mg/kg 177.96 206.48 123.48 46.44 32.4 34.66
Calcium mg/kg 61.96 60.42 53.04 37.44 26.54 23.34
Magnesium mg/kg 19.96 18.66 15.18 12.38 13.22 16.02
Potassium mg/kg 68.76 61.82 55 50 50 52.4
Sodium mg/kg 39.96 38.5 35.94 38.6 36.22 37.3
Aluminum mg/kg 3.05 2.85 1.75 1 1 1
Zinc mg/kg 3.28 2.68 1.26 0.62 0.64 0.52
Manganese mg/kg 3.08 2.34 1.42 0.8 0.52 0.32
Iron mg/kg 188.2 182.6 171.6 153.6 210 131.8
Copper mg/kg 1.18 1.12 0.9 0.76 1.2 1.14
Boron mg/kg 0.664 0.706 0.58 0.466 0.382 0.374
Silicon mg/kg 47.8 50.8 47.8 46 41.6 39.2

Chloride Estimate
equiv.
mg/kg

123.4 106.2 95 69.2 52.8 47.6

Total Carbon % 4.966 4.884 3.854 2.31 1.698 1.13
Total Nitrogen % 0.476 0.47 0.36 0.184 0.108 0.064
Carbon/Nitrogen Ratio - 10.6 10.58 11.02 14.22 17.08 18.42
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4.2.2 Station measurements

Station measurements include weather data, tower-based optical data and passive mi-

crowave data, continuous soil moisture and temperature data and wheat photos.

4.2.2.1 Daily weather dataset

The in-situ weather station (Figure 4.2-b) measures onsite rainfall, incoming radiation,

air temperature, evapotranspiration and wind speed. Due to the gaps in the onsite weather

data, they were only used for the validation of the online weather station data and selection

of the representative stations for Cora Lynn.

The daily weather dataset used in this study was created from the average of several

selected weather stations and is shown in Figure 4.3. The weather dataset includes daily

rainfall, solar radiation, maximum/minimum temperature, pan evaporation, wind speed and

vapour pressure obtained from nearby weather observation stations sourced from the Bur-

eau of Meteorology (BoM) and a personal weather station network through Weather Un-

derground (WU). The BoM stations located within 40 km (except for two air temperature

stations) from the study site and three WU stations providing rainfall data that matches the

in-situ measurements were marked on the map in Figure 4.1.

4.2.2.2 Tower-based remote sensing data

The tower was specially manufactured by Australian Engineering Solutions and installed

at the corner of the Cora Lynn study site. The tower consists of a small shipping container on

the ground containing the power and control system, a frame with the instrument housings at

the top, and an extendable mast that can lift the instruments to 10 meters. The mast is upright

during operating status and hinged at the bottom to allow for lowering for calibrating and

loading the instruments from the ground. The top frame rotates in a horizontal and vertical

plane such that the instruments can observe the ground with zenith ranging from 0 to 270°.

The Polarimetric P-band Multibeam Radiometer (PPMR) provided the passive microwave

observations for this study at both vertical (V) and horizontal (H) polarizations. The PPMR

has 4 beams with incidence angles of ±15°, and ±45° when in the horizontal plane, provid-

ing the observations at the frequency of 742-752 MHz.
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a

b

c

d

e

f

Figure 4.3: Time series of daily weather data in the simulation time period from the in-
situ and external weather stations, a: rainfall; b: solar radiation; c: maximum/minimum
air temperature; d: pan evaporation; e: vapour pressure, f: wind speed. The shaded area
represents the growing season.

4.2.2.3 Continuous soil moisture and temperature

Hydra Probe soil sensors were installed at each soil moisture/temperature stations (Fig-

ure 4.2-c) at every 5 cm from the soil surface to 60 cm depth (12 sensors in total), providing

continuous measurements of soil moisture and temperature every 15 minutes. The time

series of surface soil moisture from the station and weekly sampling is shown in Figure 4.4.

4.2.3 Weekly measurements

Wheat and soil samples were collected weekly. Wheat height and surface soil moisture

were measured directly in the field. Biomass, vegetation water content (VWC), LAI and

soil nitrogen were measured in the laboratory through destructive sampling.
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b

a

Figure 4.4: HDAS soil moisture in box plot and station 0-5 cm soil moisture at 20-minute
time step (a), and station soil moisture of all 12 layers in daily time step (b).

4.2.3.1 Wheat sampling

The overall condition of wheat growth is reflected by wheat height and phenology as

shown in Figure 4.5. The phenology was determined according to the Zadoks scale (Zadoks

et al. , 1974) and subsequently converted to APSIM phenology according to a phenology

lookup table in the APSIM documentation (Zheng et al. , 2014). Wheat height was estimated

with a measuring board (Figure 4.6-a).

Wheat samples were collected weekly from 4 locations by cutting from the base in a

0.5 × 0.5 m square sampling quadrant. It should be noted that the quadrant was placed to

include 3 rows of wheat. Therefore, the actual sampling area is 0.3 m 2 and not the area

of the sampling quadrant. The location of the samples is marked by S1 to S4 in Figure 4.1.

Wheat samples were stored in waterproof bags and sealed with elastic bands immediately

after cutting, to stop vapour loss during transportation.
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a

b

c

e

d

f

Figure 4.5: Time series of wheat height (a), biomass (b), biomass percent (c), VWC (d),
LAI (e), and soil moisture in the growing period.
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a b c

Figure 4.6: Photo illustration of measurements for wheat height (a), biomass of organs (b),
and leaf area (c).

Wheat samples were weighed in the bags after transferring to the laboratory, and the

weight of a clean, dry bag was then deducted. The samples were then divided by wheat

organs (leaf, stem, spike and dead leaf) to determine the biomass percent of each organ

(Figure 4.6-b). Approximately 100 leaves were scanned with a scanner to measure the leaf

area (Figure 4.6-c, the two red squares are 20 cm away from each other). Samples were dried

in an oven at 60 °C for at least 72 hours. The dry weight of samples, wheat organs cutting

from whole plants, and leaves passing scanners were measured with a mass balance. Dry

biomass (biomass hereafter) was immediately calculated by dividing the dry plant weight

by the sampling area:

biomassorgan = dry weightorgan/area, (4.1)

where, the subscript organ represents leaf, stem, head, and dead leaf, respectively. The area

is the sampling area and equals to 0.3 m2. LAI was calculated by:

LAI = biomassleaf × SLA, (4.2)

where biomassleaf is the leaf biomass in kg/ha. SLA is the specific leaf area in cm2/g,

calculated by dividing the total leaf area of approximately 100 leave blades passing the

scanner by their total weight:

SLA = leaf area/leaf weight. (4.3)
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4.2.3.2 Soil sampling

Soil samples were collected at five locations close to the monitoring plots (Figure 4.1-

b) for soil nitrogen analysis. Two samples were collected from depths of 0-5 cm and 5-15

cm at each location with an auger and shovel. Careful attention was paid to ensure the soil

columns were uniformly taken from the specific depth. These soil samples were prepared

and analyzed with the same procedure as the chemical analysis but only with the nitrogen

and ammonium analyzed. The time series of soil nitrogen is shown in Figure 4.7.

4.2.3.3 HDAS surface soil moisture

Surface soil moisture was measured with Hydraprobe Data Acquisition System (HDAS)

at multiple locations in and around the wheat field. HDAS is a hand-held soil moisture meas-

urement system allowing measuring point-based soil moisture at a depth of 5 cm. HDAS

consists of a Hydra Probe sensor and a hand-held computer with built-in GPS. Surface soil

moisture data were collected at 37 locations (Figure 4.1-b), with the average of three meas-

urements taken at each location. The HDAS surface soil moisture data is plotted as boxplot

together with the 15-min station soil moisture time series in Figure 4.4-a.

a

b

Figure 4.7: Time series of soil nitrogen in the nitrate (a) and ammonium (b) forms.
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4.3 Remote sensing dataset

4.3.1 Leaf area index

Leaf area index (LAI) images were obtained from a fused high spatio-temporal resol-

ution remote sensing dataset (Sadeh, 2020). This dataset provides daily vegetation indices

and LAI products with 3 m spatial resolution and daily temporal resolution estimated from

fused PlanetScope (daily, ~3 m) and Sentinel-2 (5-day, 10 m) spectral reflectance data in

visible to near-infrared. The LAI dataset has been validated with in-situ LAI measured from

57 wheat fields (including the Cora Lynn study site) in Australia and Israel, and was found to

have good consistency in Green LAI estimation with a coefficient of determination (R2) of

0.94 and root mean square error (RMSE) of 1.37 throughout the growing season. The fused

remote sensing LAI of the field average is shown in Figure 4.5-e. The LAI specific to each

experimental plot (A-D, Figure 4.1-b) was obtained by extracting and averaging the remote

sensing LAI from several pixels that is close to the plot. The time series of plot-specific

LAI in the four experimental plots is shown in Figure 4.8, plotted together with the field

LAI measured from the nearest wheat sample (S1, S3, and S4, Figure 4.1-b).

a b

c d

Figure 4.8: Time series of plot-specific remote sensing LAI (RS LAI) and LAI measured
from the nearest wheat sample (field LAI) for experimental plots A-D (a-d, respectively).
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4.3.2 Near-surface soil moisture

Near-surface soil moisture data was retrieved from the tower-based P-band microwave

brightness temperature. The microwave data were obtained from a soil moisture retrieval

research team (Boopathi et al. , 2018) working synchronously in the study site. This remote

sensing surface soil moisture dataset is daily and treats the Cora Lynn wheat field as one

pixel, with an R2 of 0.59 and RMSE of 0.036 m3/m3. The soil moisture was retrieved using

a linear regression model fitted with the multi-polarization difference index (MPDI) and the

0-5 cm depth soil moisture from the in-situ soil moisture/temperature station. The MPDI

calculated is by:

MPDI = (Tbv − Tbh)/(Tbv + Tbh), (4.4)

where the Tbv and Tbh are the P-band brightness temperature (in K) in the vertical and the

horizontal polarization directions. Only the brightness temperature and station soil moisture

measured at approximately 6 am every day were used to fit the regression model to reduce

the impact of soil temperature during the day. The retrieved remote sensing and the station

surface soil moisture is shown in Figure 4.9.

a b

Figure 4.9: Near-surface soil moisture data as: (a) time series from the in-situ station (every
20 mins) and retrieved P-band soil moisture (daily), and, (b) in-situ station data versus re-
trieved P-band soil moisture data, both collected at 6 am daily.
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4.4 Chapter summary

This chapter has provided a brief description of the study site where ground-based and

remotely sensed observation of wheat and soil were collected. The dataset includes (1) daily

weather data from nearby stations; (2) site characteristics; (3) wheat states including height,

biomass of leaf, stem and head from weekly sampling; (4) soil states including soil moisture

data from in-situ stations and soil nitrogen from weekly sampling; and (5) remote sensing

optical brightness temperature and LAI data.

The weather and site characteristics data were used as input in two case studies (Chapters

7-8 ). Wheat and soil states collected from ground measurement were used for the assim-

ilation experiments in the ground-based case study (Chapter 7). Remote sensing data were

used for the assimilation experiments in the remote sensing-based case study (Chapter 8).
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Chapter 5

Sensitivity analysis

In Chapter 3, the structure and physics of the APSIM-Wheat model have been intro-

duced. In the practice of data assimilation, the errors in the estimation of model states and

yield usually arise from errors in the weather data, parameters and external observations of

wheat and soil states. To further understand these quantities in the APSIM that are most

likely to have an impact on yield and thus need to be carefully measured, calibrated, or per-

turbed in the subsequent data assimilation practice, a sensitivity analysis was performed in

this chapter.

5.1 Methodology

5.1.1 Model response to input data

The APSIM-Wheat was coupled with a soil water module (SoilWat), and a soil nitrogen

(SoilN) module, with seven soil layers by default. The simulation window is from January

1, 1996 to December 30, 1996, with the sowing date on the day of year (DoY) 131. The

dataset used in this sensitivity analysis is a dataset collected in the Dalby area provided by

the APSIM model as an example dataset. This dataset includes weather, cultivar parameters,

soil parameters, initial states as input data to drive the model. The model state variables are

the prognostic variables sequentially estimated by the model. In this sensitivity analysis,

each input and state variable data type were tested through a group of simulations by solely

change the data with a range of different values (Tables 5.1 - 5.5), with each different value

used in one of the simulations, respectively. The range of different values used for the
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Table 5.1: Multiplicative factors applied in the variation of weather data. The Sim2 and
Sim4 were assumed to be the normal weather conditions, with the Sim1 and Sim5 assumed
the extreme weather conditions. For each weather data type, four factors presented in this
table were used to run four simulations, respectively, with the time series of each data type
multiplied by one factor in each simulation.

Weather data Unit
Typical inter-annual
coef. of variation

Multiplicative factors used in
each simulation
Sim1 Sim2 Sim3 Sim4 Sim5

Rainfall mm/day 24% 0.5 0.75 1 1.25 1.5
Radiation MJ/m2 22% 0.5 0.75 1 1.25 1.5
Temperature oC 15% 0.7 0.85 1 1.15 1.3
Vapour
pressure

hPa 25% 0.5 0.75 1 1.25 1.5

test of each data type was within the variation of these data in historical records or their

typical ranges. The sensitivity of the model response to the variation of each data type was

evaluated by variation of model output regarding the date of anthesis and maturity, maximum

LAI (mLAI), biomass yield (mBiomass) and grain yield (referred to as yield hereafter). The

determination of input and state variable values used in each simulation is further specified

in the remained of this section.

The group of weather variable used in this sensitivity analysis was generated by multiplying

each weather data by a range of factors shown in Table 5.1. Two factors assumed to be the

variation of weather data under normal conditions were estimated from the typical inter-

annual coefficient of variation from 100-year historical records of the dataset. Particularly,

another two factors estimated by doubling the variation under the normal condition were

used to represent the possible variation in extreme weather conditions.

Cultivar and soil parameters, initial conditions and management information under test

are shown in Tables 5.2 - 5.4. The values for cultivar parameters selected to run the model

were within the typical range of 12 pre-defined wheat cultivars and existing literature (Ahmed

et al. , 2016). Soil parameters were selected according to their typical values.

5.1.2 Model response to state variables

The essential requirement that the state variables are worth being measured and assim-

ilated is that the change of their values during the evolution of the model can impact the

model outputs. From the perspectively of data assimilation, it is essential to understand how
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Table 5.2: Values selected to represent the variation of cultivar parameters and manage-
ment information. For each parameter type, five values were used to run five simulations,
respectively. See Table 3.3 in Chapter 3 for parameter descriptions.

Parameter Unit
Typical
values

Values used in each simulation
Sim1 Sim2 Sim3 Sim4 Sim5

VernSens - 1.5-5 2.5 3 3.5 4 4.5
PhotopSens - 1.4-5 2.5 3 3.5 4 4.5
TT4 (stage 4) oC · days 380-400 370 380 390 400 410
TT5 (stage 5) oC · days 520-630 520 540 560 580 600
TT6 (stage 6) oC · days 80-180 80 100 120 140 180
TT7 (stage 7) oC · days 580-600 570 580 590 600 610
Grains Per Gram Stem grain/g 20-27 22 23 24 25 26
Max Grain Size 10−3g 39-65 40 45 50 55 60
Potential Grain Filling
Rate

10−3grain/g/d 1-2.8 1 1.5 2. 2.5 3

Potential Grain Growth
Rate

10−3grain/g/d 1 0.8 1 1.2 1.4 1.6

Potential Grain N
Filling Rate

10−5grain/g/d 5.5 5 5.2 5.4 5.6 5.8

Sowing depth mm 30 25 28 30 32 35
Row spacing mm 250 80 120 160 200 240
Population m−2 120 80 100 120 140 160
Fertilizer kg/ha 160 80 120 160 200 240

Table 5.3: Values selected to represent the variation of soil water parameters. For each
parameter type, five values were used to run five simulations, respectively. See Table 3.4 in
Chapter 3 for parameter descriptions.

Parameter Unit
Typical
values

Values used in each simulation
Sim1 Sim2 Sim3 Sim4 Sim5

InitialSW % 0-100 30 40 50 60 70
BD g/cm3 0.8-1.2 0.8 0.9 1 1.1 1.2
LL15 m3/m3 0.25-0.28 0.2 0.26 0.28 0.3 0.32
AirDry m3/m3 0.13-0.28 0.2 0.26 0.28 0.3 0.32
DUL m3/m3 0.45-0.52 0.46 0.48 0.5 0.52 0.54
SAT m3/m3 0.52-0.59 0.52 0.54 0.56 0.58 0.6

WheatLL m3/m3 0.26-0.45 0.16-
0.35

0.22-
0.35

0.26-
0.45

0.36-
0.45

0.36-
0.55

ConA (summer/winter) - 5 4 4.5 5 5.5 6
U (summer/winter) mm 5 4 4.5 5 5.5 6
DiffusConst mm2/d 40 30 35 40 45 50
DiffusSlope mm−1 16 8 12 16 20 24
Salb - 0.12 0.08 0.1 0.12 0.14 0.16
CN2Bare - 73 50 60 70 80 90

SWCON d−1 0.3 0.2
0.2-
0.3

0.3
0.3-
0.4

0.4
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Table 5.4: Values selected to represent the variation of soil nitrogen parameters. For each
parameter type, five values were used to run five simulations, respectively. See Table 3.4 in
Chapter 3 for parameter descriptions.

Parameter Unit
Typical
values

Values used in each simulation
Sim1 Sim2 Sim3 Sim4 Sim5

RootWt kg/ha 1000 600 800 1000 1200 1400
RootCN - 40 20 30 40 50 60
SoilCN - 12 8 10 12 14 16
EnrACoeff - 7.4 5 6 7 8 9
EnrBCoeff - 0.2 0.1 0.15 0.2 0.25 0.3

OCTotal % 1.2-0.12
0.08-
0.05

1-0.1
1.2-
0.1

1.4-
0.1

1.6-
0.15

Fbiom - 0.01-0.04
0.02-
0.005-

0.01-
0.02

0.04-
0.01

0.06-
0.01

0.06-
0.015

Finert - 0.4-1
0.2-
0.5

0.2-1 0.4-1 0.6-1 1

pH - 8 5 6 7 8 9
SurfaceResidue kg/ha 500 300 400 500 600 700
ResidueCN g/g 100 60 80 100 120 140
InitialNO3 ppm 1 0.2 0.6 1 1.4 1.8
InitialNH4 ppm 0.1 0.1 0.3 0.5 0.7 0.9

the perturbation of a specific state variable may impact the model outputs, and at which

growing stage the influence was maximized. According to state variables listed in Table 3.2

(Chapter 3), prognostic state variables that have the potential to be observed (either from

field measurement or remote sensing) and assimilated into APSIM models were explored.

The sensitivity of model response to the state variables was tested by adding small offsets

during the simulation in each major phenology stage (stage 4, 5, 6, and 7, being the end of

juvenile to floral initiation, floral initiation to flowering, flowering to start of grain filling,

and the grain filling stages, respectively). These state variables included 1) wheat states -

leaf area index (LAI), dry weight and nitrogen amount of each plant organ (i.e., leaf, stem,

root, pod and grain), canopy height, and root depth; and 2) soil states - soil moisture, nitrate

nitrogen and ammonium nitrogen. The state variables were added by a range of offsets,

being multiplicatively or additively to the values of the state variables (Table 5.5). In each

simulation, one offset was added to a state variable type in a day among DoY 161, 216, 249,

and 266, with each in the middle of the major phenology stages, respectively.
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Table 5.5: Offset added to modify the state variables during the simulation of the model.
For each state variable, a total of sixteen simulations were run, each by adding one of the
four offset values to the state variable in a day among the four different stages, respectively.

State variable Unit
Offset values Offset

typebSim1 Sim2 Sim3

Wheat states
Leaf area index (LAI) m2/m2 -0.2 0 0.2 M
Weight of plant organsa g/m2 -0.2 0 0.2 M
Nitrogen amount of plant organsa kg/ha -0.2 0 0.2 M
Canopy height m -0.2 0 0.2 M
Root depth m -0.2 0 0.2 M
Accumulative thermal time (TT) oC · days -50 0 50 A
Soil states
Soil moisture in the surface layer(SM1) m3/m3 -0.05 0 0.05 A
Soil moisture in the first two layers
(SM1-SM2)

m3/m3 -0.05 0 0.05 A

Soil moisture in all seven layers
(SM1-SM7)

m3/m3 -0.05 0 0.05 A

Soil nitrate nitrogen (NO3N) kg/ha -0.2 0 0.2 M
Soil ammonium nitrogen (NH4N) kg/ha -0.2 0 0.2 M

a Plant organs include leaf, stem, pod, grain and root.
b Offset type: M=multiplicative, A=additive.

5.2 Results

Table 5.6 illustrated the model predicted DoY of flowering (or more generally known

as anthesis) and maturity, the mLAI, mBiomass and yield as a result of variations applied to

weather. Values presented in these tables are the differences compared to a “reference” sim-

ulation, to which no variation was applied. The Normalized Root Mean Square Differences

(NRMSD) compared to the reference were calculated for the time series of grain weight

(GrainWt), LAI, biomass and surface soil moisture during the growing season. The changes

of the flowering and maturity, mLAI, mBiomass and yield in each simulation by applying

uncertainties to cultivar, soil parameters, management information and state variables were

presented in Figures 5.1 - 5.5.

5.2.1 Impact on phenology

Figure 5.1 shows the date of flowering and maturity as a result of variations applied to

the inputs against the simulation labels (Sim 1 to Sim5). All weather input, and only the
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Figure 5.1: Change of the flowering and maturity dates in response to the variation of
weather and cultivar parameters. Gridlines are the flowering (grey) and maturity (black)
dates of the reference simulation.

cultivar parameters found to impact the phenology development were shown in this chapter,

with an extended figure including all input and state variables shown in Figures A.1 - A.4

(Appendix A).

Among the weather inputs, only temperature impacts the development of phenology

stages (Table 5.6 and Figure 5.1). The model predicted DoY of anthesis and maturity were

impacted by cultivar parameters VernSens, PhotopSens and target thermal time of phenology

stages 4 to 7 (Figure 5.1). Soil parameters, and management factors, and state variables were

found to have no impact on the model prediction in terms of phenology development.

5.2.2 Impact on mLAI

Figure 5.2 shows the mLAI as a result of variations applied to the inputs against the

simulation labels (Sim 1 to Sim5). Only the inputs, parameters and states found to impact

the LAI development were shown in this chapter, with an extended figure including all input

and state variables shown in Figures A.5 - A.8 (Appendix A).

Radiation influences the mLAI strongly, particularly when the radiation tends to be lower

than normal (Table 5.6 and Figure 5.2). The model predicted mLAI is sensitive to changes

of cultivar parameters: PhotopSens, TT4 and TT5, as well as soil parameters: InitialSW,

DUL, LL15 and WheatLL. As the LAI reaches the maximum on the first few days after the

beginning of stages 5, the value of mLAI is most likely to be affected by variations applied

on stage 4, and to state variables of LAI and SW1.
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Figure 5.2: Change of the mLAI in response to the variation of input and state variables.
The grey gridline is the mLAI of the reference simulation.

5.2.3 Impact on yield and mBiomass

The prediction of yield and mBiomass are impacted by all the weather factors, partic-

ularly by rainfall, radiation and temperature (Figure 5.3). High rainfall and relatively low

temperature are favourable to the accumulation of yield and biomass, while solar radiation

is found to hinder the accumulation of yield and biomass at both extreme weather conditions

when it is excessively higher or lower than normal (Table 5.6). It should be noted that the

negative impact caused by some disadvantageous weather conditions is stronger than the

benefits gained from those advantageous conditions. For instance, rainfall and vapour pres-

sure have a stronger negative impact on yield and biomass when they are lower than normal,

comparing to the benefits gained from higher-than-normal conditions (Table 5.6).

PhotopSens, VernsSens, TT4, TT5, TT7 and the Potential Grain Filling Rate are most
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Figure 5.3: Change of the yield and mBiomass in response to the variation of weather and
cultivar parameters. Gridlines are the yield (grey) and mBiomass (black) of the reference
simulation.

influential on yield and biomass among all cultivar parameters, while the TT6, the Potential

Grain Growth Rate and the Potential Grain N Filling Rate have a slight impact on the model

estimation (Figure 5.3). These parameters are classified as two groups by the way they

impact the development of the plant. One group, including PhotopSens, VernSens and the

target thermal time of phenology stages 4 to 7, impact the time length that allows biomass

to accumulate by affecting the phenology development of wheat. Another group are those

who directly influence the rate of grain development, involving Potential Grain Filling and

Growth rate and Potential Grain N Filling Rate.

According to Figure 5.4, the biomass and yield estimation is highly sensitive to para-

meters related to soil water conditions, particularly the initial soil moisture conditions (Ini-

tialSW) and those controlling the wheat extractable water (DUL, LL15 and WheatLL). Man-

agement information such as plant row spacing and fertilizer amount applied with sowing

also impact the biomass and yield estimation.

The change of state variables have an impact on yield and mBiomass, and this impact

varies with the multiplicative factors been applied to, as well as the phenology stage at

which the state variable was changed. According to Figures 5.5 - 5.6, among all states under

discussion, the variation of the soil moisture has the strongest impact on the development
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of yield and biomass. This impact caused by the soil water of sub-surface outweighs that of

the surface, and is maximized when changes were applied at stages 4 to 5. The reduction

of LAI at stage 5 was found to decrease yield and biomass, while no significant increase in

yield and biomass was found when LAI was raised.

Figure 5.4: Change of the yield and mBiomass in response to the variation of soil parameters
and management information. See Figure 5.3 for legend.
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Figure 5.5: Change of the yield and mBiomass in response to the wheat and soil states in
different phenology states. See Figure 5.3 for legend.
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Figure 5.6: Change of the yield and mBiomass in response to the wheat states in different
phenology states. See Figure 5.3 for legend.
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Figure 5.6 shows that the estimation of yield and mBiomass were also sensitive to

changes of weight and nitrogen amount of leaf and stem. More specifically, the estima-

tion was sensitive to the weight of leaf on stage 5 and stem on stages 5 to 7, and the nitrogen

of leaf on stages 5 to 6 and stem on stages 5 to 7.

5.3 Discussions

5.3.1 Uncertainties of APSIM yield estimation

While it is well acknowledged in the context of hydrological modelling that the primary

uncertainties are originated from weather forcing, parameters and model physics (or some-

times referred as model structure) (Turner et al. , 2008; Di Baldassarre & Montanari, 2009;

McMillan et al. , 2012; Li et al. , 2014), there exist slight differences for APSIM crop mod-

elling. The results of the analysis show that the uncertainty of an APSIM simulation is

primarily sourced from some of the weather forcing (including rainfall, radiation and tem-

perature), cultivar parameters (including VernSens, PhotopSens and target thermal time of

stage 4-7), soil properties (including InitialSW, DUL, LL15 and WheatLL) and management

factors (fertilizer and row spacing). The imperfection of model structure is another source of

error but is not considered in this analysis. Thus, in the implementation of data assimilation

using Ensemble Kalman filter (EnKF), they are recommended to be carefully perturbed for

ensemble generation. As the overall impact on model estimation resulted from the variations

of weather forcing is more significant than that from parameters, indicating that the accuracy

of model estimation is more likely to be affected by the uncertainties sourced from weather

forcing than the characteristics of wheat cultivars, particular attention should be given to

weather forcing for ensemble generation.

5.3.2 Impact of thermal accumulation

Temperature is the primary driving force of phenology development, as the development

of phenology is controlled by the accumulation of temperature over time. Thus, the vari-

ation of temperature affects LAI, biomass and yield in a way by changing the time length that

allows them to accumulate. To illustrate this, cues can be found from the analysis of tem-

perature and some cultivar parameters: under the condition that air temperature is relatively
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low (multiplied by factors 0.8 and 0.5), the plant spends longer time in each growing stages,

leading to significantly higher estimates of LAI, biomass and yield (Table 5.6). The change

of thermal accumulation also explains the impact on the accumulation of matters caused by

some cultivar parameters, whose variation either impacts the accumulation of thermal time,

or determines whether the demand for accumulated thermal is met for the plant to transient

to the next growing stage (Figure 5.3).

5.3.3 Impact of soil water availability

As of result of soil water deficit being a key source of environmental stress acting on

phenology, photosynthesis and leaf development through a multiplicative factor ranges from

0 to 1, the lack of water produces heavy stress on plant growth, while the surplus amount of

soil water has limited benefits to yield and biomass. When the same amount of variation is

applied to soil water content at different layers, a more significant influence on mLAI, yield

and biomass is produced by the variation of bottom layers. This is caused by the nature of

soil water content at different depths, that soil water content is less dynamic in deep layers

than in surface layers. Thus, even a tiny variation of soil water on bottom layers forces the

model to act differently. Therefore, the accuracy of soil water in bottom layers are more

important than those of the top layers.

The high sensitivity of model estimation to soil water also indicated that the model is

likely to be affected by water-related parameters, including initial soil water, DUL, LL15,

and WheatLL. This also corresponds to the result that yield and biomass were changed when

variations were applied to these parameters (Table 5.4). Therefore, water-related soil para-

meters are necessary to be carefully measured (if available) or calibrated before using the

model.

5.3.4 Cultivar parameters

It should be noted that the values of cultivar parameters are more likely to be acquired

from calibration rather than measured through long-term sampling and laboratory tests from

field experiments. In this case, although yield and biomass are affected by cultivar paramet-

ers strongly, the sensitivity of the model to cultivar parameters should be considered in two

aspects, through both the differences of parameters among varies cultivars and the possible
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variation among different plant individuals of the same cultivar. This is because paramet-

ers may vary greatly between different cultivars, but they differ less among plants of the

same cultivar, which is the case in reality, where usually only one cultivar is planted in an

area. As an outcome of such consideration, the sensitivity analysis should reveal which para-

meter should be carefully calibrated by testing possible parameter values taken from a range

of cultivars, as well as indicating which parameters, if well-calibrated, should be carefully

perturbed through applying variations that are limited to the possible uncertainties of plant

individuals of a certain cultivar. As the values of cultivar parameters were selected accord-

ing to a range of different cultivars, this analysis discusses more the sensitivity of APSIM to

different cultivars, indicating those parameters which play a vital role in the development of

yield and thus should be carefully calibrated. The assessment of the uncertainties of these

parameters is further discussed in the synthetic study in Chapter 6.

This analysis found that the model predicted yield is most likely to be affected by Vern-

Sens, PhotopSens, target thermal time, and Potential Grain Filling Rate out of eleven para-

meters. However, this result is, to some extent, against the conclusion of existing sensitivity

analysis in literature, where Zhao et al. (2014) applied variations of 50% to the cultivar

parameter of APSIM-Wheat and concluded that Grains Per Gram Stem, Max Grain Size

and Potential Grain Filling Rate are most important among the eleven cultivar parameters.

This discrepancy can be explained by the assumption that the variations of cultivar para-

meters were limited to the range of a group of cultivars whose cultivar parameters were

already known, and thus more realistic to represent the possible variations among cultivars.

For example, an intuitive conclusion can be made that the yield is greatly improved when

increasing the number of grain per gram stem by 50%, while, however, such difference in

terms of the grain number is much smaller among realistic cultivars.

5.3.5 Field management

The management information that necessary for crop modelling in APSIM includes plant

spacing, population and the applied fertilizer amount. It is worth noting that the plant spacing

and population may affect the yield differently. For example, it is more likely to harvest more

products per unit area with a higher plant density, which explain the significant difference

caused by the variation of plant row spacing and plant population.
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5.3.6 An exception of mLAI prediction

While the date selected for state variables to be changed in stage 5 was a couple of days

after LAI reaches the peak, the mLAI is supposed to be affected only when state variable

was changed on the date selected at stage 4. However, an exception was observed when

the modification of LAI at stages 5 increased the mLAI. This is explained by the fact that

although LAI was deceasing on the date, it was modified at stage 5, the difference between

the LAI and the peak was still small. When LAI on that day was multiplied with a factor

1.2, the modified LAI value exceeded the peak and thus became the new maximum.

5.4 Chapter summary

The sensitivity analysis presented in this chapter explored the response of APSIM model

results to variations of weather forcing, cultivar parameters, soil parameters and state vari-

ables. Table 5.7 gives an overview of the results given by this analysis. A table of import

state variables and how they can be measured is shown in Table 5.8. This chapter lay the

foundation for experiments of data assimilation of state variables into APSIM.

Table 5.7: Major and minor factors impacting the key APSIM-Wheat model outputs found
in the sensitivity analysis.

Data type Impact on the key model outputsa

Major Minor

Weather Rainfall, temperature, solar
radiation

Vapour pressure

Cultivar parameters VernSens, PhotopSens, TT4, TT5,
TT7, Potential Grain Filling Rate

TT6, Grains Per Gram Stem, Max
Grain Size, Potential Grain Growth
Rate, Potential Grain N Filling Rate

Soil parameters and
initial conditions

InitialSW, DUL, LL15, WheatLL All other parameters.

Management Row spacing, fertilizer applied at
sowing

Population

a The division of major and minor impact is based on the range of yield and maturity date in the sensitivity
analysis. For weather input, range(Yield) > 1,500 kg/ha is considered to have a major impact. For para-
meters and management information, range(Yield) > 500 kg/ha or range(Maturity) > 10 days is considered
major.
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Table 5.8: Sensitivity of the APSIM-Wheat model to the wheat and soil states.

State variable Unit P/Da?
Measurements Sensitivityc

Field observation Remote sensing

Canopy height m P Tape measure,
Ground-based Lidar

Lidar Little

Canopy cover - D Visual estimation,
photographic method

Spectral
reflectance

-

Accumulated
thermal time

oC · d P NAb NA Medium

Phenological
stages

- D Direct observation
Spectral
reflectance

-

Leaf area index m2/m2 P Leaf area meter, link to
dry biomass

Spectral
reflectance

Medium

LeafWt

g/m2 P Sampling NA

Medium
StemWt Medium
PodWt Low
GrainWt Medium
RootWt Low
LeafN

g/m2 P Sampling NA

Medium
StemN Medium
PodN Medium
GrainN Little
RootN Low
Yield kg/ha D Sampling at harvest NA -
Grain size g D Sampling at harvest NA -
Plant N
concentration
(stem, leaf, pod,
grain)

g/g
(N/Wt)

D Sampling NA -

Grain protein % D Sampling at harvest NA -
Number of nodes - P Direct observation NA Little
Number of leaves - P Direct observation NA Little
Root length m P NA NA -
Root depth m P Sampling NA Little

Soil moisture
(surface)

m3/m3 P Sampling
Spectral
reflectance,
radiometer, radar

Medium

Soil moisture
(root-zone)

m3/m3 P Sampling NA High

Soil nitrate kg/ha P Sampling NA Little
Soil ammonium kg/ha P Sampling NA Little

a P/D: the state variable is prognostic (P) or diagnostic (D).
b NA: not available.
c The division of sensitivity levels is based on the values of the range of yield fall in the most sensitive stages
(except the GrainWt in the grain filling stage that directly determines the yield). High: more than 500 kg/ha;
Medium: 100 - 500 kg/ha; Low: 10 - 100 kg/ha; Little: less than 10 kg/ha.
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Chapter 6

Synthetic study

The previous chapter presented a sensitivity analysis on the response of APSIM-Wheat

modelling to a range of small disturbances applied to weather input, cultivar parameters,

soil parameters and state variables. The sensitivity analysis provided information on which

weather data, parameters and initial conditions of the APSIM-Wheat model need to be care-

fully perturbed in the implementation of data assimilation experiments, and which state vari-

able have the potential to be assimilated to help the model to make a better estimation on

other state variables and thus crop yield. To give a well-rounded illustration of the potential

for improving APSIM-Wheat yield estimation using data assimilation techniques, the assim-

ilation performance of all possible prognostic state variables is tested here. As some of these

state variables are difficult to observe, a synthetic study is used to gain this understanding.

6.1 Methodology

6.1.1 Experimental set-up

A typical synthetic experiment consists of three components: a “truth” generation run,

an open-loop run, and a data assimilation run (Curnel et al. , 2011) whereby the synthetic true

states and observations, the stochastic model simulation without assimilating observations

as a reference, and the simulation with assimilating observations are created, respectively.

The procedure is shown in Figure 6.1 and described further below.

89



Degrade 

(add observation errors)

Observations

EnKF data 

assimilation

Degrade 

(add errors)

Background states (1)

Background states (2)

Background states (…)

Background states (N)

Background states

True input 

(weather, parameters and 

initial conditions data)

True input

Degraded input

True input + errors

Degraded  input + errors (1)

Degraded  input + errors (2)

Degraded  input + errors (…)

Degraded  input + errors (N)

Ensemble of inputs

(N=ensemble size)

Analysis states (1)

Analysis states (2)

Analysis states (...)

Analysis states (N)

Analysis states

Observation (1)

Observation (2)

Observation (...)

Observation (N)

Ensemble of 

observations

1 Control run

2 Open-loop run

3 Assimilation run

True states

Estimated states

Analysis mean states 

and error covariance

Perturb 

(add model errors)

Perturb 

(add observation errors)

day = day + 1

APSIM
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Figure 6.1: Schematic of synthetic study.

6.1.1.1 Truth generation run

The truth generation run aims to provide “error-free” state estimation for use as 1) ob-

servations to assimilate and 2) to validate model outputs. This is achieved by running the

APSIM model under an ideal scenario where the input data are accurately known (“true”

input) and the model is assumed to perfectly represent the real physics of crop growth. The

true input is therefore a collection of weather, parameter and initial condition data which

is assumed to be the truth, although not known perfectly in reality. Model state variables

obtained by running the perfect model with true input is denoted “truth”. Same as the sens-

itivity analysis, the simulation window is taken as a whole year from January 1, 1996 to

December 30, 1996 in this synthetic study, using a set of APSIM example weather data and

parameters. The example weather input is provided in the APSIM software package as an

example dataset, including rainfall, temperature, solar radiation, and vapour pressure. The

date of sowing was set to day of year (DoY) 131 (May 10) after a 5-day rainfall event. The

cultivar parameters, soil parameters and initial conditions used as model input are presented

in Tables 6.1 and 6.2.
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Table 6.2: Cultivar parameters used as model input.

Cultivar parameter Unit
Selected values used in

Truth Open-loop
Data assimilation

(std.)a

VernSens (vernalization sensitivity) - 2 2.1 0.1
PhotopSens (photoperiod sensitivity) - 3.5 3.6 0.1
TT4 (target thermal time in stage 4) °C · day 400 410 20
TT5 (target thermal time in stage 5) °C · day 580 600 30
TT6 (target thermal time in stage 6) °C · day 120 125 6
TT7 (target thermal time in stage 7) °C · day 590 610 30
Potential Grain Filling Rate 10−3 · grain/g/d 2 2.1 0.2
Potential Grain Growth Rate grain/g/d 1 1.1 0.1
Potential Grain N (nitrogen) Filling
Rate

10−5 · grain/g/d 5.5 5 0.5

a The value presented is the standard deviation (std.) of the random term added to the respective
variable of the open-loop run in producing the ensemble for the data assimilation run.

6.1.1.2 Open-loop run

It should be noted that the term “open-loop” is in contrast to a “closed-loop” data as-

similation scenario, meaning that there is no external constraint on the simulation results. In

a typical synthetic study, both the open- and the closed-loop scenarios describe a situation

where the uncertainties of weather data, parameters, initial conditions and imperfection of

the model physics are considered to contribute to the uncertainties of the model states.

The simulation of both scenarios is based on the same single “degraded” input dataset

generated from the truth to mimic a realistic situation, where all model input and parameters

are not known accurately. The degradation of weather data was performed by drawing a

single sample from a Gaussian distribution characterized by weather and parameter values

as the mean and their uncertainties as the standard deviation. The values of soil and cul-

tivar parameters were selected to have a discrepancy with the truth representing uncertainty

(Tables 6.1 and 6.2). Starting from the single degraded input dataset, the open-loop run was

performed as an ensemble of stochastic simulations with different perturbed input datasets

generated by adding random noise to the degraded input. The approach for ensemble gen-

eration is described in Section 6.1.2.1 in detail. The ensemble of perturbed simulations was

run in parallel, with the resultant model states and output taken as the mean of all ensemble

members. As a result of degradation, a discrepancy in the model state was produced by the

open-loop run relative to the truth.
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6.1.1.3 Data assimilation run

The open-loop run gives an imitation of a realistic situation where input data suffers

from uncertainties. It also gives the errors in the estimated model state and output compared

to the truth. The data assimilation scenario uses the same ensemble of simulations with the

same input data as the open-loop, but with the synthetic observations of model state variables

assimilated during the model evolution. Successful implementation of data assimilation can

be inferred if the estimation error from the open-loop is reduced with the assimilation of

external observations. This synthetic study primarily focused on the performance of wheat

yield estimation.

The synthetic observations were generated by applying observational uncertainties to

the true model states. In the implementation of the EnKF data assimilation run, model en-

sembles were perturbed using the same approach as for the open-loop, while observations

were additionally perturbed. The EnKF algorithm plays the role of updating state variables

at each observation time step by merging the model simulation (known as the background

or prior states) with the external observations to deliver a set of posterior states. This updat-

ing process accounts for the ensemble error covariance given by the probability distribution

of both model simulated states (background uncertainties) and their observations (observa-

tional uncertainties). The estimation of the background and observational uncertainties is

specified in Section 6.1.2.

6.1.2 Ensemble generation

Accurate estimation of background and observational uncertainties is vital for the suc-

cessful implementation of data assimilation (Pellenq & Boulet, 2004; Ines et al. , 2013).

While it is well acknowledged in hydrology that the primary source of uncertainty is weather

forcing, parameters and model physics (sometimes referred as model structure), it is slightly

different for crop modelling: being the weather forcing, cultivar parameters, soil properties

and field management for the case of APSIM-Wheat modelling according to the sensitiv-

ity analysis in Chapter 5. The estimation of uncertainty sourced from the model structure

usually requires an ensemble of models (Li et al. , 2014), however only one model was em-

ployed in this thesis, and so this uncertainty was neglected throughout. Particularly, in this
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specific synthetic study, the model was assumed perfect and used to generate the truth. Field

management factors, including plant density, irrigation and fertilization, were assumed to

be well-known with little variation across a field, and so their uncertainties were neglected.

To summary, the quantities that were perturbed are:

1. weather forcing, including rainfall, radiation, and temperature;

2. cultivar parameters, including sensitivity to photoperiod and vernalization, target ac-

cumulative thermal time for phenology stages 4-7, potential rate of grain filling, grain

growth and nitrogen filling; and,

3. soil parameters, including initial soil moisture, drain upper limit, and permanent wilt-

ing point.

The determination of corresponding uncertainties is discussed in the remainder of this sub-

section.

6.1.2.1 Weather forcing uncertainties

The weather forcing was perturbed with the method described by Turner et al. (2008).

This method avoids the bias caused by constraining the value randomly drawn from the

Gaussian distribution not to exceed the range where they are physically realistic. Accord-

ing to Turner et al. (2008), weather data can be classified into three types: “unrestricted”,

“restricted”, and “semi-restricted”, according to whether the range of data is unrestricted,

restricted at both ends, or only restricted by an upper or lower bound. The forcing vector at

time step k for the ith ensemble is generated by:

fi
k = fk + ζi

k + βi, (6.1)

where fk is the observed point forcing data at time step k, ζi
k is a Gaussian error with zero

mean and standard deviation of σ1, and βi represents an offset taken as a single sample from

the Gaussian distribution with zero mean and standard deviation of σ2. Unrestricted means

that the data is not physically constrained and therefore will not be beyond its normal range

when the perturbation is applied. For the unrestricted data type (e.g., air temperature), the
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standard deviation σ1 and σ2 are calculated by:

σ1 = ξ, (6.2)

σ2 = χ. (6.3)

The semi-restricted data type has a lower boundary fmin to constrain the minimum value,

including rainfall, radiation and evaporation that must be larger than or equal to zero. The

standard deviations are calculated by:

σ1 = (fk − fmin)ξ, (6.4)

σ2 = (fk − fmin)χ, (6.5)

where ξ and χ are constants. The values of ξ and χ used in this study were taken from Turner

et al. (2008) as presented in Table 6.3.

6.1.2.2 Parameter and initial condition uncertainties

A discussion about the uncertainty of APSIM cultivar parameters is rarely found in the

literature (Zhao et al. , 2014). Therefore, the parameters are assumed well-known or well-

calibrated and their uncertainties were limited to around 5% of the parameter values (Tables

6.2), so that the ensemble spread produced by the perturbation of parameters is large enough

but not excessively large. Initial soil moisture has a strong impact on model state and yield

estimation as concluded in the sensitivity analysis, and should therefore be carefully per-

turbed. The soil moisture was initialized on the first day of simulation (DoY 1), and a 4-

month warm-up period was given to allow the soil moisture reach an equilibrium state before

the sowing date (DoY 131). By the date of sowing, suitable ensemble spread was generated

for soil moisture, and therefore further perturbation of initial soil moisture at sowing was

not required.

6.1.2.3 Observational uncertainties

Observational uncertainties are the result of instrument inaccuracy and imperfect re-

trieval algorithms. The techniques for measuring LAI and surface soil moisture from remote
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Table 6.3: Uncertainty estimation of weather forcing according to Turner et al. (2008).
Data Unit Restriction type ξ χ

Rainfall mm Semi-restricted with lower bound 0.25 0.25
Radiation MJ/m2 Semi-restricted with lower bound 0.864 0.864
Temperature °C Unrestricted 1.4 0.6

sensing are mature, and so their observational uncertainties (Table 6.4) were aligned with

those for remote sensing products and based on several validation experiments in the liter-

ature. For example, the MODIS LAI product was reported to have an uncertainty of 0.38

m2/m2 in grass and cereal crop areas (Tan et al. , 2005), and SMOS soil moisture products

were reported to have an accuracy of 0.04 m3/m3 (Kerr et al. , 2012). The observational un-

certainties of other state variables, including nitrogen amount of leaf, stem and pod, and dry

weight of leaf and stem whose measurements currently require field sampling and laboratory

analysis, were assumed to be proportional to their estimated values from the model.

In realistic situations, the measurement of observations is usually not always available

at the same time. For example, LAI observations from satellite missions are available every

8 or 16 days (e.g., MODIS and Landsat) and can depend on cloud cover, while surface soil

moisture is usually available every 2 to 4 days (e.g., SMOS and SMAP), depending on the

latitude. Thus, the synthetic observation data used here were assumed to be available at a

specified time interval, by sampling the observations from a continuous daily time series

with specified acquisition intervals.

6.1.3 Data assimilation

The performance of data assimilation can depend on the assimilation set-up. For ex-

ample, the EnKF outcome is affected by the assimilated state variables, ensemble size, as-

similation frequency, and the timing of phenology stage when observations are available.

The data assimilation experiments presented in this chapter include ensemble size determ-

ination, the assimilation of single and multiple state variable types, the assimilation of state

variables in different observation availability scenarios, and assimilation when the pheno-

logy is constrained.
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Table 6.4: Wheat and soil state variables of APSIM included in the synthetic data assimila-
tion.

State variable(s) Description Unit Frequency Uncertainty

Wheat states
LAI Leaf area index m2/m2 8 days 0.4
LeafWt Leaf weight g/cm2 7 days 5% of the state values
LeafN Leaf nitrogen g/cm2 7 days 5% of the state values
StemWt Stem weight g/cm2 7 days 5% of the state values
StemN Stem nitrogen g/cm2 7 days 5% of the state values
PodN Pod nitrogen g/cm2 7 days 5% of the state values
Soil states
SM1, SM2, …,
SM7

Volumetric soil moisture in
layer 1, 2, …, 7

m3/m3 3 days 0.03

NO3N1, NO3N2,
…, NO3N7

Soil nitrogen in the form of
nitrate in layer 1, 2, …, 7

kg/ha 7 days 5% of the state values

NH4N1, NH4N2,
…, NH4N7

Soil nitrogen in the form of
ammonium in layer 1, 2, …, 7

kg/ha 7 days 5% of the state values

6.1.3.1 Ensemble size determination

The ensemble size is the number of ensemble members, which is ideally as large as

possible to accurately represent the probability distribution of model states. However, a large

ensemble size results in a high computational cost, particularly when the model accounts for

spatial variability with multiple pixels. The determination of ensemble size is therefore a

trade-off between more statistical samples and computational efficiency. This experiment

aimed to determine the minimum ensemble size required for assimilation experiments with

APSIM-Wheat. Six open-loop runs were tested, having ensemble sizes of 10, 20, 50, 100,

200 and 400, respectively.

6.1.3.2 Assimilation of single and multiple state variables

This experiment aimed to explore the potential of improving yield estimation by con-

straining all prognostic wheat and soil state variables in APSIM. The sensitivity analysis in

Chapter 5 has demonstrated that the accuracy of several state variables in APSIM-Wheat

may have an impact on APSIM-Wheat yield estimation. Based on the sensitivity analysis,

the wheat and soil states focused on in this synthetic data assimilation experiment are presen-

ted in Table 6.4.

Wheat and soil are two separate modules in APSIM, and the impact of assimilating state
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variables is therefore discussed according to those two separate groups. The assimilation

of single wheat states included LAI, LeafWt and LeafN, StemWt, StemN, and PodN, while

soil states included soil moisture, ammonium and nitrites in the top, medium and bottom

layers (layers 1, 4, and 7, respectively) and all 7 soil layers. The combined data assimilation

was conducted by assimilating several wheat and soil states together. The frequency and

uncertainties of state variables presented in Table 6.4 apply to all assimilation experiments

in this chapter, and is referred to as the “reference” configuration for observation availability

hereafter. The reference availability of soil states is during the whole simulation period,

while wheat states were only taken to be available during phenology phase 4 (end of juvenile)

to phase 7 (end of grain filling), because the assimilation of wheat states in early stages can

cause the model failure when the wheat states were accidentally updated to a value close to

zero.

6.1.3.3 Assimilation of observations with different repeat interval and accuracy

The availability of state observations usually varies in different wheat phenology stages,

with different frequency and accuracy depending on the measurement schedule and tech-

niques. This experiment aimed to explore the minimum requirement of observation avail-

ability with regard to interval, stages and accuracy such that the data assimilation resulted

in a more correct yield estimation.

The discussion of phenology stages is limited to the three long stages: stage 4, the stage

from the end of juvenile to floral initiation, stage 5, the stage of floral initiation to flowering

(or anthesis), and stage 6-7 (discussed as a composite because stage 6 is very short), the stage

from flowering to the end of grain filling. The state variables observations were assumed

to be available for a range of frequencies and phenology stages, being every 4, 8, 12, and

16 days, and stages 4, 5, and 6-7, respectively. Particularly, the assimilation of soil states

before the sowing date was also tested.

The observation accuracy impact was tested by assimilating a group of synthetic obser-

vations degraded to have a set of uncertainty levels ranging from 0 to 7, with the uncertainty

values defined in Table 6.5. The degraded observations of LAI and SM1 were generated

by adding Gaussian errors with fixed standard deviation to the truth (i.e., the random noise

was additive), while the uncertainties of other state variables were assumed multiplicative,
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Table 6.5: Uncertainty values applied to wheat and soil state variables in each uncertainty
level.

 State
variable(s)

Additive/
Multiplicative?

Uncertainty level
0 1 2 3 4 5 6 7

LAI A 0 0.1 0.3 0.5 1 1.5 2 2.5
SM1 A 0 0.01 0.02 0.05 0.1 0.15 0.2 0.25
Other states M 0 2% 5% 10% 15% 20% 30% 50%

generated as Gaussian errors with the standard deviation values proportional to the value of

the true state variables at each time step.

6.1.3.4 Assimilation when phenology is constrained

This experiment was based on a simple assumption that all phenology stages are ob-

servable and accurately measured, to provide an understanding of the role of phenology in

APSIM-Wheat modelling. While the model internally simulates the development of pheno-

logy stages, this approach was disabled for this assimilation experiment. Instead, the phen-

ology dates of all ensembles were uniformly set to the observations obtained from the truth

run.

6.2 Results and discussion

6.2.1 Ensemble size

Figure 6.2 shows the standard deviation (std.) of the ensemble for LAI and soil mois-

ture in the surface layer (SM1) from open-loop simulations with different ensemble size.

With the increase in ensemble size, the standard deviation of ensembles tended to become

more stable. The standard deviation of LAI became stable when the ensemble reached 50

members. Although the difference of standard deviation estimated for SM1 from different

ensemble sizes was generally small, the standard deviation of soil moisture was also found

to become more stable when the ensemble size reached 50. This indicates that the ensemble

size can be reduced to 50 without significantly degrading the representation of model un-

certainty distribution using a finite number of ensembles. Therefore, an ensemble size of

50 was selected as being adequate to represent the probability distribution of the stochastic

APSIM-Wheat model, and was selected for the following data assimilation experiments.
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Figure 6.2: Ensemble standard deviation of LAI (a) and SM1 (b) estimation from open-loop
simulations with different ensemble size.

6.2.2 Assimilation of state variable types

6.2.2.1 Correlation between wheat and soil states

A strong correlation was found to exist within each group of state variables. The assim-

ilation of any of the states in the wheat or soil group was able to correct the estimation errors

of other states in the same group, but the impact on states in the other group was negligible.

This is found from the root mean square error (RMSE) of all state variables (Tables 6.6 and

6.7) as a result of assimilating a single state variable type, respectively. With the assimilation

of a single wheat state type, the RMSE of all wheat state variables were reduced compared

to the open-loop simulation, but no distinct reduction was found in the RMSE of soil states.

Correspondingly, the assimilation of any of the soil moisture, ammonium and nitrate state

variables were able to give a better estimation of the rest of the soil state types and in all 7

layers, but with little impact on the wheat state variables.

The same phenomenon was found in the time series of GrainWt, LAI and SM1 shown

in Figures 6.3 - 6.4, where the assimilation results of LAI and SM1 were presented, as two

representative state variables among each group. In the LAI assimilation experiment, the

time series of LAI were updated to approach the truth with the introduction of external LAI

observations into the model (Figure 6.3-b), but the values of soil moisture (Figure 6.3-c/-d,

SM1 in the near-surface and SM2 in the root-zone) were only slightly changed at the grain-

filling stage (phenology stage 7). In the SM1 assimilation experiment, the posterior LAI

was only slightly different from the prior values at each time step the SM1 observations

were assimilated (Figure 6.4). As a result, LAI was slightly better estimated during the leaf

growth stage, but was over-estimated afterwards when the leaves withered.

The weak correlation between wheat and soil states can be explained by the weak link
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a b

c

d

Figure 6.3: Evolution of GrainWt (a), LAI (b), SM1 (c) and SM2 (d) in the LAI-assimilation
experiment. Legend applies to all subsequent figures in this chapter.

between the wheat and soil modules. The two modules were primarily linked by extractable

water and nutrients, and the mechanism of water and nutrients to impact wheat growth is

accumulative and slow. Thus the abrupt change of states in one module does not immediately

affect the value of states in the other module. The sensitivity analysis also showed that the

change of states either in the wheat or the soil group only affect the other group in stage

6-7, giving a weak correlation of errors between the two groups. Therefore, the states in one

group are not significantly affected when assimilating states in the other group.

6.2.2.2 Impact on soil states among layers

The assimilation of soil states in one of the soil layers can correct errors of the same states

in other soil layers through the correlation of errors. As shown in Table 6.6, the RMSE of

soil moisture, ammonium and nitrite in the layer where the observation was assimilated is

significantly less than the open-loop, with adjacent layers receiving stronger impact than
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a b

c

Figure 6.4: Evolution of GrainWt (a), LAI (b) and soil moisture in all soil layers (c) in the
SM1-assimilation experiment. See Figure 6.3 for legend.

those far from the layer where observations were assimilated. For an instance of SM1 as-

similation, SM1 was well fitted to the truth over the whole simulation time span (Figure

6.5). This improvement of soil moisture estimation was found in all layers and at nearly all

stages, with deeper layers receiving a smaller less correction of soil moisture than top layers

(Figure 6.4).

6.2.2.3 Impact on GrainWt and yield estimation

By assimilating wheat and soil states over the whole growing season, LAI, LeafWt and

StemWt among wheat states were found in Table 6.5 to improve yield estimation. The error

of the estimated yield caused by uncertainties was partially corrected by the assimilation of

these states, as found in the relative difference of yield reduced from 10.1% in the open-loop

to 0.8%, -2.6% and 1.7%, respectively (Table 6.6).
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The assimilation of any soil state contributed to a better yield estimation, and the as-

similation of soil states in top layers was more effective than bottom layers in improving

yield estimation. Nearly all relative difference (RD) of yield given by the assimilation of

soil states in the different soil layers was found to be less than the open-loop result, indicat-

ing a better yield estimation with data assimilation. It is intuitive to understand that errors

of yield estimation caused by the rainfall uncertainty could be corrected by updating soil

moisture. The better yield estimation caused by assimilating soil nitrogen states is likely to

be associated with the soil moisture, which is the key state variable to affect APSIM yield

estimation according to the previous sensitivity analysis, and is also better estimated due to

the strong association among state variables in the soil group.

A better time series of GrainWt is not necessarily linked to a better yield at harvest,

and vice versa. An example is in the assimilation of some wheat state types (e.g. GrainWt,

StemN, PodN) which were found to give a better time series of estimated GrainWt. How-

ever, the yield at harvest remained nearly unchanged from the open-loop. Another clue is

found in the soil moisture assimilation: although the yield at harvest was well-fitted to the

truth, no direct update of GrainWt was found with the assimilation of those soil states during

the grain filling stages. This phenomenon is likely due to the mechanism of how APSIM

models the grain filling. The grain demand is determined by StemWt at flowering, cultivar

parameters and stress factors affected by temperature and nitrogen, and that once it is ful-

filled, the daily incoming biomass is not allocated to grain but to other organs. Therefore,

even if GrainWt is accumulated daily, the yield at harvest is constrained by a maximum

GrainWt under the impact of other factors.

6.2.2.4 Assimilation of combined states

The combined assimilation of multiple wheat state types improved the estimation of all

wheat states and gave a more correct yield at harvest. This was found in the assimilation of

the combination of LAI, LeafWt and StemWt, were the RMSE of all wheat states and the RD

of yield were lower than the open-loop (Table 6.7), indicating a better-estimated wheat state

combination and a partially corrected yield. Similar to the combination of wheat states, the

assimilation of multiple soil state types improved the estimation of all soil states and gave a

more correct yield at harvest, as the RMSE of all soil states were reduced, and the yield was
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c

Figure 6.5: As for Figure 6.3 but for the combined LAI/SM1 assimilation experiment. See
Figure 6.3 for legend.

more close to the truth (Table 6.7).

The combined assimilation of mixed wheat and soil state types improved the estimation

of almost all the wheat and soil states, but the yield was sometimes over-corrected. For in-

stance, the combined assimilation of LAI and SM1 on the same date resulted in the RMSE

of all state variables being smaller than the open-loop, but the RD of yield resulting from

the combined assimilation was lower than zero (Table 6.7). This over-correction indicates a

conflict between the state variables in the wheat and soil groups: when the assimilation of

one group of states impacts the estimated yield, but the states in the other group almost re-

mained unchanged. Therefore, solely assimilating either wheat or soil states led to a lowered

yield estimation that approached the truth, while the combined assimilation seemed to amp-

lify this reduction and give an underestimated yield at harvest. The cause of this conflict

is probably twofold. Firstly, when LAI was assimilated while other wheat states were not

constrained, the assimilation of LAI may push other wheat states in a wrong direction that

leads to worse yield estimation. Secondly, although data assimilation was able to constrain

and better estimate some states, the uncertainties caused by some cultivar parameters can-

not be cancelled because their parameters directly control the grain filling process that is not

affected by state variables.
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6.2.3 Impact of observation availability

6.2.3.1 Impact of observation availability in various growth stages

The wheat phenology stage when observations are assimilated is critical for the assimil-

ation of wheat states. Table 6.8 shows the relative difference of yield by assimilating single

state variable types at different frequencies and stages. It is found that the assimilation of

wheat states, including LAI, GrainWt, LeafWt, StemWt, LeafN and StemN contributed to

better yield estimation when they were assimilated in specific stages. Generally, stage 6-7

is the optimal stage for the assimilation of wheat states, second to which is stage 5, while

the assimilation of wheat states in stage 4 had nearly no improvement for yield estimation.

This is further discussed below.

Assimilating wheat states in early stages (stage 4) neither corrected wheat state variables

in late stages nor improved yield estimation. All the wheat states assimilation experiments

failed when assimilated in stage 4 only, as indicated by the RD of yield being higher than

the open-loop. The reason for poorer yield estimation is that the assimilation at a very early

stage was not able to give correct state variables in medium stages (at around stage 5) and

thus had no benefit to the late stages where the grain starts to develop.

Observation of LAI, LeafWt, LeafN and StemN benefited yield estimation when as-

similated in stage 5, the only stage where assimilation of StemN was successful. The RD

of yield given by assimilating these wheat states in stage 5 was slightly lower than for the

open-loop, with the time series of soil states remaining unchanged. This indicates that the

discrepancy of yield in each ensemble caused by uncertainties before the grain filling stage

can be reduced by constraining the wheat states. It can be concluded that more correct wheat

states before flowering and grain filling stage can improve the yield estimation.

Stage 6-7 (flowering to the end of grain filling) was the optimal stage for the assimilation

of LAI, LeafWt, and StemWt. Significantly lower RD of yield was found when these state

variables were assimilated in stage 6-7, compared to the open-loop and the data assimilation

in stage 5. Both stages 5 and 6-7 are optimal for LeafN. However, PodN, and StemN when

assimilated every 4 days did not benefit yield estimation in stage 6-7.

Soil states were less sensitive to phenology states and could be assimilated anytime

during the whole growing stages after sowing, with observations in stages close to grain
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filling giving the better yield estimation. Table 6.8 suggests that assimilating SM1 in stage

6-7 gives the lowest RD of yield, followed by assimilating in stage 5 and 4, respectively.

Nevertheless, the observations of soil ammonium and nitrate in the first layer (NH4N1 and

NO3N1) were more useful in stage 5, compared to stage 4 and 6-7

The RD of yield values given by assimilation of soil states before sowing showed no

difference from the open-loop. This is due to the fertilization activity and continuous rainfall

at around the sowing date. The soil nitrogen before sowing was small and sharply increased

at sowing because of fertilization, and the continuous rainfall led to a nearly saturated soil

profile, and thus the uncertainties of soil moisture after saturation depended only on the

uncertainties of rainfall and the soil water retention properties in this case. Although the soil

moisture was in a more correct state after updating with its observations, the states are reset

after being extremely wet or dry, and thus, the effect of SM assimilation is minimalized.

6.2.3.2 Impact of observation availability in various repeat interval

The influence of data assimilation frequency was not as critical when observations were

assimilated in the optimal stage. Table 6.8 shows the RD of yield when the observation

was available at different frequencies at the optimal stages. Overall, an interval of 16 days

provided an improved yield estimation when states were assimilated in the optimal stage.

According to Table 6.8, when GrainWt, LeafWt, and StemWt were individually assimilated

in stage 6-7, yield was clearly better estimated when the frequency of observations changed

from 16 to 4 days. This suggested that the more frequent the observations in this stage, the

better the yield estimated. Nevertheless, there is no point in collect intensive observations

of wheat states in stage 5 as the assimilation of LAI, LeafWt, LeafN and StemN are not

likely to affect the yield forecast by the assimilation frequencies at this stage. However, the

assimilation frequency was found to have a clear impact on SM1 assimilation through all

the growing stages, as a shorter observation interval gave a lower RD of yield for SM1 in

all stages in Table 6.8. The assimilation of GrainWt was found to benefit yield estimation

in stage 6-7, only if the observations were available at least every 4 days.
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Table 6.9: Relative difference of yield with the assimilation of state variables in various
uncertainty levels (defined in Table 6.5) in the optimal stage.

Assimilated
state

Assimilated
stage
(optimal)

Observational uncertainty level (when assimilated
in the optimal stage)

0 1 2 3 4 5 6 7
RD of yield (% )

Open-loop 10.1
LAI Stage 6-7 -2.6 5 1.2 2.6 5.8 7.5 8.7 10
LeafWt Stage 6-7 -8.4 -6.2 -4.2 1.9 -2.2 1.1 -11.4 7.1
StemWt Stage 6-7 -3.6 -0.2 -6.5 3.8 7.6 8.6 6.7 10.1
LeafN Stage 5a 8 8.2 9 3.8 8.9 - - -
StemN Stage 5 10.4 8 10.5 10.8 10.2 - - -
SM1 Stage 6-7 3.1 2 3.5 5.8 6.6 6.4 10.3 10.6
NH4N1 Stage 5 -0.8 0.1 0.4 1.1 -0.6 - - -
NO3N1 Stage 5 6.5 6.5 9 8.7 9.4 - - -

a Both stage 5 and 6-7 are optimal for LeafN. Here an exampling of assimilating LeafN in stage 5 was presen-
ted.

6.2.3.3 Impact of data quality

Large uncertainties in observation did not have a negative impact on data assimilation

if they were correctly estimated in the error covariances. As presented in Table 6.9, when

the uncertainty level increased (changed from level 0 to 7), no distinct deterioration was

found in the performance of yield estimation, with the RD of yield estimated by assimilat-

ing LeafWt, LeafN, StemN, NO4N1 and NO3N1 being lower than the open-loop (10.1%).

However, LAI and soil moisture were found to benefit the yield estimation when the un-

certainty increased to 2 m2/m2, and 0.15 m3/m3, respectively. The StemWt improved the

yield estimation when the relative uncertainty increased to 30%. This is explained by how

the EnKF algorithm deals with uncertainties, with less weight given to observations when

the observational uncertainties are larger than the ensemble spread, and thus the posterior

states are more close to the model estimation at each step the state variables are updated.

Therefore, observations with larger uncertainties are trusted less and thus have less impact

on the posterior states.

6.2.4 Assimilation when phenology is constrained

By direct-insertion of known phenology dates into the model, the uncertainties of all

wheat state variables and yield were reduced. As shown in Figure 6.6, the spread of LAI
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a b

Figure 6.6: The GrainWt estimated in open-loop with: (a) phenology unknown, and (b)
phenology constrained. See Figure 6.3 for legend.

and GrainWt of the open-loop from known phenology was clearly smaller than that from an

unknown phenology. This significant reduction of ensemble spread in wheat states was due

to the mechanism of the APSIM modelling phenology. As described in Chapter 3, the phen-

ology shifts when the thermal time (the accumulation of temperature over time), reaches a

target value, with the fraction of daily biomass increment partitioned to each wheat organ

depending on the phenology stage. Thus, uncertainty in the temperature leads to a discrep-

ancy of phenology among ensembles, with the different time length of each phenology stage

determining the timespan of organs to develop and accumulate biomass. This effect is elim-

inated when the errors of phenology are completely corrected by the direct insertion of true

phenology dates. Therefore, the assimilation of phenology was found to significantly reduce

the errors of estimated state variables and yield caused by the uncertainties of temperature.

6.2.5 Data availability from remote sensing

This synthetic study demonstrated the potential of assimilating LAI, wheat organ weight,

and soil moisture in improving yield estimation of APSIM-Wheat. Table 6.10 summarized

the key state variables that improved yield estimation in this study, with the assimilation

interval and observation accuracy. The observations of these wheat and soil states in the

APSIM-Wheat model can be obtained from remote sensing, field sampling, and laborat-

ories analysis. LAI and surface soil moisture can easily be obtained from current remote

sensing techniques (e.g., Landsat, MODIS), while sub-surface soil moisture and phenology

111



Table 6.10: Summary of the key assimilated states, with minimum assimilation interval and
observation accuracy that improved yield estimation.

State
Assimilation stages Minimum assimilation interval and observation

accuracy
Optimal Sub-optimal Internal Accuracy

LAI Stage 6-7 Stage 5 16 days 2 m2/m2

GrainWt Stage 6-7 None 4 days -
LeafWt Stage 6-7 Stage 5 16 days -
LeafN Stage 5, 6-7 None 16 days -

StemWt Stage 6-7 None 16 days 30% (relative)
StemN Stage 5 None 16 days -
SM1 Stage 6-7 Stage 4 & 5 16 days 0.15 m3/m3

NH4N1 Stage 5 Stage 4 16 days -
NO3N1 Stage 5 Stage 6-7 16 days -

currently requires direct observation in the field. Techniques to detect crop phenology from

remote sensing only focuses on the dates of green-up, peak LAI and senescence, based on

the photosynthesis of plant leaves, with the detection of booting and anthesis date in the re-

productive stage unavailable (e.g., Reed et al. , 1994; Zhang et al. , 2003; Vina et al. , 2004;

Sakamoto et al. , 2005; Boschetti et al. , 2009; You et al. , 2013). To obtain nitrogen and

biomass amount of plant organs, field sampling and laboratory analysis currently need to be

employed.

The existing remote sensing LAI products from satellites satisfy the requirement of LAI

assimilation for APSIM. Several studies validating LAI products with ground measurements

reported the uncertainties of LAI products from a range of satellites. For instance, MODIS

LAI products have been reported in several studies to have an uncertainty (RMSE) of 0.38

m2/m2 in grass and cereal crop areas (Tan et al. , 2005), 0.63 m2/m2 in broadleaf forest

(Serbin et al. , 2013), 0.66 m2/m2 in biomes including grass, crop, shrubs, savannas and

forest (Yang et al. , 2006), and 1.14 m2/m2 at global scale (Weiss et al. , 2007), respectively.

These uncertainties are in the range of 0-2 m2/m2, beyond which nearly no correction was

found in the APSIM yield estimation by updating LAI. Clear improvement of yield estima-

tion was found when the uncertainty of LAI was below 1 m2/m2, which is satisfied by the

MODIS observational uncertainties according to validation experiments (Tan et al. , 2005;

Serbin et al. , 2013; Fensholt et al. , 2004). Therefore, the existing remote sensing techno-

logy can provide LAI remote sensing data with sufficient quality for the success of LAI data
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assimilation for the APSIM model.

The existing remote sensing surface soil moisture products from satellites satisfies the

requirement of SM1 assimilation for APSIM. The goals of the Soil Moisture and Ocean

Salinity (SMOS) mission was to deliver soil moisture maps with accuracy (unbiased RMSE)

of 0.04 m3/m3 (Kerr et al. , 2012), and the soil moisture product has been validated to meet

the mission requirement (Jackson et al. , 2012; Sanchez et al. , 2012; Al Bitar et al. , 2012).

The Soil Moisture Active Passive (SMAP) mission was found to meet the designed accuracy

of 0.04 m3/m3 for the passive and 0.06 m3/m3 for the active product (Colliander et al. , 2017;

Chen et al. , 2017). According to Table 6.9, soil moisture uncertainty less than 0.15 m3/m3

had an improvement on yield estimation. Thus, the existing remote sensing technology can

provide surface soil moisture remote sensing data with sufficient quality for the success of

SM1 data assimilation for the APSIM model.

6.3 Chapter summary

This chapter presented a synthetic study exploring the potential of assimilating all wheat

and soil state variables found to be important from a sensitivity analysis into APSIM for an

improved wheat growth and yield estimation. The state variables that improved yield estim-

ation included LAI, GrainWt, LeafWt, StemWt, LeafN, and StemN and all soil states. Phen-

ology stage 6-7 was found to be the optimal assimilation stage for LAI, LeafWt, StemWt,

LeafN, and soil moisture, and stage 5 was optimal for LeafN, StemN and soil nitrogen.

Among these state variables, the observation requirements of LAI and near-surface soil

moisture are satisfied by the current remote sensing techniques. Accordingly, these res-

ults support the hypothesis of this thesis, that assimilation of APSIM state variables has

the potential to improve wheat monitoring and yield estimation, laying the foundation for

assimilating real-world data into APSIM in the subsequent two chapters.
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Chapter 7

Case study 1 - assimilation with

ground measurements

The previous chapter has demonstrated the potential of assimilating all prognostic wheat

and soil states into APSIM-Wheat in a synthetic study, identifying several states that have the

potential to improve yield estimation. In the synthetic study, the uncertainties in the system

were assumed from specific known sources, being Gaussian and unbiased. However, in

realistic situations, the uncertainties in the model and observations may not follow such

assumption, sometimes being difficult to identity and estimate. Therefore, the performance

of data assimilation in the APSIM model needs to be further validated with realistic datasets.

This chapter further assimilates observations of wheat and soil observations that have been

directly obtained from field measurement into the APSIM-Wheat model, including variables

that can be remotely sensed and those that can only be observed in the field or laboratory.

The outcome of this study informs what is included in the remote sensing case study of

Chapter 8.

7.1 Study site and dataset

The study site is the 75×75 m square wheat field located in Cora Lynn, Victoria, Aus-

tralia, as described in detail in Chapter 4. This case study uses the weather and soil properties

as the model input, and field-observed wheat and soil information as the external state ob-

servations and validation data.
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Weather and soil parameters are the basic input data for APSIM. The weather forcing in-

cludes daily rainfall, solar radiation, daily maximum and minimum air temperature, vapour

pressure, pan evaporation and wind speed. The uncertainties of rainfall, radiation and tem-

perature estimated from several nearby weather stations were used to perturb the weather

forcing. Soil properties and chemical composition were from the field measurements de-

scribed in Chapter 4.

Field-observed wheat and soil data including ground measured LAI, biomass (total and

separately for leaf and stem), soil moisture of each layer, soil nitrogen in the form of nitrate

(NO3N) in the top two layers were the state variable observations assimilated into APSIM.

The model output was evaluated with independent observations including phenology and

average yield collected from four experimental plots.

7.2 Methodology

7.2.1 Model setup and calibration

The physically-based APSIM-Wheat model was used to simulate wheat growth with a

daily time step, accounting for the interaction of the plant with the environment. The wheat

module considers winter wheat phenology by ten phases (or nine stages, noting that the

phenology stage is the period between two adjacent phases) as described in Chapter 3, con-

trolled by the temperature and day length, and affected by vernalization and stress factors.

The biomass accumulation is based on a simple radiation use efficiency light utilization ap-

proach. Total daily incoming biomass is allocated to the wheat organs (leaf, stem, pod and

grain) with a proportion that varies with the phenology stage. The model considers plant

extractable water and soil nitrogen as two stress factors to the growth of wheat. A water bal-

ance model is coupled with the wheat module to simulate soil water movement and estimate

plant extractable water. The model considers rainfall-runoff, evapotranspiration, infiltra-

tion, unsaturated flow, saturated flow, and lateral flow processes. The soil nitrogen module

uses three organic matter pools (fresh, hum and biom pools) to simulate the soil carbon and

nitrogen transformation in the processes of decomposition, nitrification/denitrification, and

mineralization/immobilization.

In this case study, the simulation window was set from June 1, 2018 to March 1, 2019,
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Table 7.1: The calibrated soil parameters in the SoilWat and SoilN modules.
Parameter Description Layer Default

value
Calibrated

value

SoilWat module

ConA summer
(ConAsummer)

A regression coefficient that specifies the
change of cumulative evaporation in the
second stage of soil evaporation calculation.
Applied to summer days.

- 5 3.8

U summer
(Usummer)

Amount of cumulative evaporation before soil
supply decreases below the atmospheric
demand. Applied to summer days.

- 5 3.8

ConA winter
(ConAwinter)

Same as the ConAsummer but for winter days. - 5 1.5

U winter (Uwinter) Same as the Usummer but for winter days. - 5 1.5

SummerDate
Start date for switching to summer parameters
for soil water evaporation.

- 1-Nov 19-Nov

DiffusConst
Parameter in the soil water diffusivity
calculation.

- 40 400

SWCON
Fractional amount of water above drain upper
limit that can dry under gravity per day.

1 0.3 0.02
2 0.3 0.1
3 0.3 0.1
4 0.3 0.1
5 0.3 0.3
6 0.3 0.3

SoilN module

Fbiom (Fbiom)
The biom pool carbon as a fraction of the hum
carbon that is subject to decomposition.

1 0.04 0.1
2 0.04 0.05
3 0.02 0.03
4 0.02 0.02
5 0.02 0.01
6 0.02 0.01

with sowing date on August 7, 2018. Seed was drilled to 5 cm depth with 100 kg/ha mono-

ammonium phosphate (MAP, containing10% ammonium nitrogen) fertilizer applied. The

row spacing was 0.2 m and the population was 251 plants/m2.

The soil was described by 6 layers, with depths of 0-5, 5-15, 15-25, 25-35, 35-45, 45-55

cm. Several parameters were calibrated (Table 7.1) due to the high sensitivity of the model

to soil states: several parameters in the SoilWat module were calibrated manually to fit the

station soil moisture data in all six layers, and a parameter in the SoilN module controlling

soil nitrogen dynamics was calibrated manually to fit the variation trend of ground measured

soil nitrate in the first two layers. The retained parameters were set to measured values in

the first four layers, with deeper layers assumed to be the same as those in the fourth layer.
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7.2.2 Data assimilation setup

The Ensemble Kalman filter (EnKF) data assimilation algorithm was coupled with AP-

SIM. The algorithm is described in Chapter 3 so only the specifics for this case study are

included here. With x being the state vector of APSIM, it consists of 31 state variables and

is expressed by:

x = [LAI, SM1, ..., SM6, LeafWt, StemWt, GrainWt, PodWt, RootWt, LeafN, StemN,

GrainN, PodN, RootN, Height, RootDepth, NO3N1, ..., NO3N6, ..., NH4N1, ..., NH4N6]T,

(7.1)

where, LAI is the leaf area index, SM is the soil moisture (volumetric soil water content),

and NO3N and NH4N are the soil nitrogen in the form of nitrate (NO3) and ammonium

(NH4), respectively, with numbers 1-6 denoting the number of soil layers. The Wt and N

are the dry weight and nitrogen of the wheat leaf, stem, grain and pod, respectively. The

state matrix consists of state vectors of ensemble members expressed by:

X = [x1, x2, ..., xN],

where N is the ensemble size (50 in this study), and the superscripts 1, 2, ..., N refer to

the ith ensemble member. Ensembles were generated by perturbing weather inputs, model

parameters and observations. In this study, the model forecast was stochastic, with the un-

derestimation of wheat states and yield caused by the uncertainties of weather and parameter

inputs and the model physics. The forecasting equation is a Markov chain that transits the

states from step k − 1 to k, expressed by:

xb
k = M(xa

k−1, fk + wk, θ), (7.2)

where the superscript b and a denotes that the quantity is prior or posterior to the analysis

step, with the corresponding states and error covariance known as “background” and “ana-

lysis” quantities, respectively. The wk is the weather uncertainties, assumed independent

and non-biased, randomly drawn from a Gaussian distribution with the mean of zero and

the standard deviation as listed in Table 7.2. Uncertainties of the model physics were not
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considered in this study. In this study, the observation vector y was taken as:

y = [LAI, SM1, ..., SM6, LeafWt, StemWt, NO3N1, NO3N2, NH4N1, NH4N2]T.

(7.3)

The observation is linked to model states with a linear observation operator H according

to:

yk = Hxk + vk, (7.4)

where, H is a matrix mapping the state vector to the observation vector with elements of

0 and 1 because the observations are the state directly, and the vk is the observational un-

certainties following the Gaussian distribution N(0, R). The observational error covariance

R is a diagonal matrix with each element on the main diagonal being the variance of each

observation uncertainty (Table 7.2) and the off-diagonal elements being zero. It should be

noted that only the key weather data, parameters and observations listed in Table 7.2 were

perturbed, selected by their impact on model output according to the sensitivity analysis in

Chapter 5.

Filter divergence is a common problem with the implementation of EnKF data assim-

ilation. The prior error covariance could be underestimated due to the approximations un-

derlying the algorithm, with the new observations given less weight to impact the analysis

result, which therefore diverges from the observations (Anderson & Anderson, 1999). This

is usually addressed by appending a term of model uncertainties in Equation 7.2, or by mul-

tiplying the background error covariance by an inflation factor greater than 1. In this study, a

covariance inflation factor λ was applied to inflate the ensemble spread, with a value tuned

to avoid filter divergence while keeping the ensemble spread small. Explanation of this

inflation factor is described further in a later section.

7.2.3 Data assimilation scenarios

State variables were assimilated into APSIM-Wheat in three scenarios according to the

state types: 1) a baseline scenario applied to the soil states where only a single type of

observation was assimilated at the frequency of data availability; 2) an interpolation scenario

applied to the wheat states where the field-observed state variables were interpolated to every
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Table 7.2: Uncertainties of weather, parameters and observations.

Data type Unit
Uncertainty

Data type Unit
Uncertainty

typea std. typea std.

Weather (daily) Observations
Rainfall mm M 0.160 LAI m2/m2 M 0.15
Radiation mm A 1.254 LeafWt g/m2 M 0.2
Max/min
temperature

mm A 0.882 StemWt g/m2 M 0.2

Wind speed mm A 0.679 Biomass g/m2 M 0.2
Parameters SM1 m3/m3 A 0.03
DUL m3/m3 A 0.03 SM2, ..., SM6 m3/m3 A 0.01

LL m3/m3 A 0.01
NO3N1,
NO3N2

kg/ha M 0.1

a Uncertainty: M=multiplicative, A=additive.
b NA: not available.

3 days before being assimilated; and, 3) a combined scenario where multiple observation

types were assimilated together. Moreover, assimilation of the single type of state variables

was tested with observations in different phenology stages and frequencies.

For each scenario, the assimilation of observations stopped at before the grain-filling

stage (stage 7) for two reasons. First, the development of GrainWt is strongly impacted

by the assimilation of wheat states, which causes an immediate update due to the strong

correlation among wheat states (further discussed in the results of wheat states assimilation),

making the validity of yield estimation strongly reliant on the accuracy of just a few wheat

state observations that have been assimilated in the grain-filling stage. However, the field

measurement of some states (e.g., LAI and LeafWt) are less accurate at this stage when

leaves are withering and the LAI is close to zero. Second, from the perspective of guiding

field management, it is favourable to understand the yield variability at early growing stages.

Using data collected at a late growing stage does not help farmers to improve profit when

the opportunity to alter inputs such as irrigation and fertilization has already passed.

7.3 Results and discussion

7.3.1 Model calibration and inflation factor selection

The soil parameters in the SoilWat and SoilN modules were calibrated manually, using

the field observation of daily station soil moisture data in all 6 layers and the weekly soil
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Figure 7.1: Examples of the estimated soil moisture in the surface layer (a) and root-zone
(c), and soil nitrogen in the top two layers (b, d) by the calibrated (Cal) and uncalibrated
(Uncal) model, respectively. Numbers and gridlines in grey and green are the observed and
estimated phenology, respectively.

nitrate-nitrogen data in the top two layers. For the calibration of SoilWat module, with the

soil water characteristics (DUL, LL, Sat, AirDry) estimated by the maximum and minimum

soil moisture through the growing season and applied to both the calibrated and uncalibrated

models, only the parameters controlling the rate of infiltration and evapotranspiration were

calibrated. In the SoilN module, only one parameter Fbiom, the fraction controlling the biom

pool carbon as a fraction of the hum carbon that is subject to decomposition, were calibrated.

The parameter values before (by default) and after the calibration are shown in Table 7.1.

An example of the outcome of soil modules calibration is shown in Figure 7.1, as the

time series of the estimated soil moisture and ammonium nitrogen before and after the model

calibration. After a basic calibration, the soil moisture and nitrogen followed the measured

field data with a reduced RMSE of soil moisture in the surface layer (layer 1) and the root-

zone (layer 2-6). The parameter Fbiom in the SoilN module was adjusted to fit the soil nitrogen

(as the sum of nitrogen in the ammonium and nitrate) dynamics. However, the estimation

of soil nitrogen only fitted the observations in the late growing season due to a delay of the

LAI growing period (further discussed in results of soil nitrate assimilation).

The inflation factor used in this study was tuned by a trial-and-error to ensure that the

ensemble maintains an error covariance representative of the background uncertainties, and

may vary with the assimilation frequency and the state variable type. The inflation factor
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was 5 in the assimilation of wheat states, except for the biomass assimilation, where a smaller

inflation factor of 4 was used. The inflation factor was 2 in the assimilation of soil states,

because the inflation factor was applied only when observations were assimilated, and the

observations of soil states (primarily soil moisture observed daily) were more frequently

assimilated than the wheat states (every 3 days). In the joint assimilation of mixed wheat

and soil states, an inflation factor of 5 was used.

It should be noted that while the inflation factor of 5 is very large relative to the com-

monly used inflation factor values that are usually slightly greater than 1 (Petrie & Dance,

2010) in the domain of meteorology data assimilation, where the numerical weather predic-

tion models are chaotic and more complex, considering two or three dimensions. However,

the crop models are relatively simple and simulate one or two dimensional at a daily time

step. In this case, the ensemble spread cannot be maintained with a small inflation factor.

For example, Figure 7.2 shows an example of LAI assimilation using the selected inflation

factor compared to smaller and larger inflation factors. A smaller inflation factor caused little

overlap between the observation and the model ensembles, as found in the ensembles of the

5 successively assimilated LAI observations starting from day after start (DaS) 119 (Figure

7.2-b), while a larger inflation factor brought in unnecessary noise, making the model less

trusted by the data assimilation algorithm (Figure 7.2-c). The EnKF works sub-optimally

with a large inflation because the Kamlan Gain is driven to minimize the model error without

accounting for the inflation factor. An alternative method is to add noise to the model states

at each time step, but this approach sometimes causes model failure when errors are added

in the growth stage, accidentally driving the wheat states to be near zero, and is also less

computational effective.

7.3.2 Assimilation of wheat states

LAI, LeafWt, and StemWt are direct observations of model states, and thus their ob-

servation are linked with the model states with a value of 1 in the observation operator

H. Biomass (total above-ground dry biomass in g/m3) is the sum of above-ground organ

weight (LeafWt, StemWt, PodWt and GrainWt). Therefore, the organ weight is mapped to

the biomass observations through:
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Inflation factor 5
Interpolated to 3 days

Inflation factor 3
Interpolated to 3 days

Inflation factor 7
Interpolated to 3 days

Inflation factor 5
No interpolation

Figure 7.2: Example of assimilating LAI using a variety of inflation factor values under
the interpolation scenario (a-c) and using the selected inflation factor under the baseline
scenarios (d). See Figure 7.3 for legend.

[biomass] = [1, 1, 1, 1][LeafWt, StemWt, PodWt, GrainWt]T + vbiomass
k , (7.5)

where the matrix [1, 1, 1, 1] is a sub-matrix of the observation operator H in regard to

biomass and organ weight.

The interpolation scenario (scenario 2) was applied to the wheat state assimilation to

avoid filter divergence due to the sharp increase of biomass and LAI during DaS 70 and 130

makes the observations differ greatly from the model estimation. In the case of the baseline

assimilation scenario (scenario 1), little overlap was found between the probability distribu-

tions of the model states and observations represented by their respective ensembles (Figure

7.2-d), suggesting that the value of the observations is in the tail of the Gaussian probability

distribution of the model states with a close-to-zero probability, which is unrealistic.

7.3.2.1 Assimilation of LAI

The growing season of this study was drier than average, resulting in heavy water stress

in the vegetative stages (i.e. before the floral initiation phase in stage 5). Even with the model

calibrated to the station soil moisture time series, the open-loop failed to correctly represent

the growing trend of the LAI and the organ weight, giving a significant underestimation of
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Figure 7.3: Evolution of GrainWt (a), LAI (b) and SM1 (c) with the assimilation of LAI.
The open-loop is the ensembles mean of the open-loop states, and data assimilation is the
ensemble mean of the analysis states. Numbers and gridlines in grey and green are the field-
observed and open-loop estimated phenology, respectively. Legend applies to all subsequent
figures in this chapter.

the yield at harvest (the underestimated yield under drought was also reported in Asseng

et al. , 1998). However, with the interpolated 3-day LAI assimilated into the model, wheat

states (e.g., LAI in Figure 7.3-b) were clearly increased relative to the open-loop to close

to the field observations. Consequently, with the LAI updated in the vegetative stages, the

development of grain weight in the grain-filling stage (stage 7) became slightly faster with a

steeper slope, increasing the yield (grain weight at harvest) from 1,716 kg/ha to 1,871 kg/ha

and reducing the RD of the yield compared to the observed amount from -38.3% to -32.7

% (Figure 7.3-a). Therefore, by giving a more correct LAI state in the vegetative stages,

the development of grain weight in the reproductive stages (i.e. floral initiation to maturity,

stage 5-9) was affected, giving a more correct yield estimation at harvest. Noting that no LAI

data were assimilated in the grain filling stage, this result demonstrated that assimilation of

LAI state was able to push the model to provide a more accurate estimation in the other state

variables (indicated by a reduced RMSE of wheat states in Table 7.3), leading to a better

yield estimation.

The assimilation of LAI showed little impact on soil moisture in the surface layer. As

found in 7.3-c, clear update in the soil moisture were only found on DaS 83, 106 and 116 to

122. This concurs with the results from the synthetic study, showing that the assimilation of
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state variables in either the wheat or the soil group alone had little effect on updating states

in the other group, because states in these two groups are not directly associated.

7.3.2.2 Assimilation of biomass

Two schemes were applied to the assimilation of biomass: 1) the assimilation of biomass

individually as an observation of the sum of above-ground organ weight (Equation 7.5),

and, 2) the assimilation of each wheat organ (i.e., LeafWt and StemWt) independently. The

evolution of the time series of wheat states from the schemes is shown in Figures 7.4 and

7.5.

Both assimilation schemes were able to provide a more accurate model estimation for

wheat states and yield at harvest. Compared to the open-loop, better LAI and biomass es-

timation were found in the RMSE of all wheat organs (Table 7.3) in both data assimilation

scenarios. The wheat states estimated from the total biomass assimilation gave a better es-

timation for wheat states and yield.

The yield was also better estimated by both biomass assimilation scenarios. The RD of

the yield from the two scenarios was -9.4% and -17.7 % respectively, both being closer to

zero than the open-loop. However, the result showed that the assimilation of total biomass

gave a better yield estimation than that of organ weight.

The scheme of assimilating total biomass was found to be more applicable than the organ

weight for several reasons. First, the assimilation of organ weight did not provide a more

accurate estimation than using total biomass. Second, the observations are time-consuming

to make as the plant needs to be cut manually in the laboratory. Third, although total biomass

in this case was measured by drying and weighing the destructive sampling, it can also be

measurable from remote sensing data. Fourth, solely constraining the biomass of one of the

wheat organs may lead the other biomass states to be wrong (particularly in the grain-filling

stage). For example, increasing the stem biomass by state updating can lead to increased

biomass in other organs because the error covariance shows a positive association among

all the organ weight states. However, in the process of wheat development, leaf withering

happens when the stem starts to grow quickly, so the increased StemWt should imply a

decreased LeafWt in the real situation, which could be opposite to the state updating result.
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Figure 7.4: Evolution of GrainWt (a) and biomass (b) with the assimilation of biomass. See
Figure 7.3 for legend.

a b

c d

Figure 7.5: Evolution of GrainWt (a), LeafWt (b), PodWt (c), and StemWt (d) with the joint
assimilation of LeafWt and StemWt. See Figure 7.3 for legend.

Table 7.3: Statistics of yield and wheat states from the assimilation of wheat states.
Assimilated
state(s)

Phenologya Yield
(kg/ha)

RD%
of yield

RMSE
LAI LeafWt StemWt Biomass

Open-loop Est 1,716 -38.3 0.91 49.5 93.5 150.4
LAI Est 1,871 -32.7 0.40 29.2 83.0 114.5
Total biomass Est 2,520 -9.4 0.75 44.7 34.1 78.4
Organ weight
(leaf and stem)

Est 2,289 -17.7 0.69 40.5 35.7 98.0

Open-loop Obs 1,931 -30.6 0.86 47.4 85.1 149.4
LAI Obs 2,232 -19.7 0.40 28.6 63.9 108.5
Total biomass Obs 2,779 -0.1 0.82 43.3 38.2 73.4
Organ weight
(leaf and stem)

Obs 2,224 -20.0 0.52 33.0 32.4 108.4

a Phenology is estimated by the model (Est) or constrained by the field observations (Obs).
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7.3.3 Assimilation of soil states

Although the soil states are weakly linked to the wheat states, any bias existing in the

soil moisture caused by the EnKF approximation that using a limited number of ensembles

can change the wheat state through the error covariance matrix due to the model’s high

sensitivity to the soil moisture. Therefore, the assimilation of soil states sometimes causing

a distinct difference between the posterior and prior wheat states and making the model go

wrong (e.g., LAI could be reduced to zero and the plant is thus considered dead). To avoid

such problem, the assimilation of soil sates should not be updating wheat states directly when

no wheat states are constrained by observations. Therefore, in the experiments of soil states

assimilation, only soil states were included in the assimilation state vector x, expressed by:

x = [SM1, ..., SM6, NO3N1, ..., NO3N6, ..., NH4N1, ..., NH4N6]T. (7.6)

7.3.3.1 Assimilation of SM1

According to the time series of SM across the soil profile (Figure 7.6), the assimilation of

SM1 (soil moisture in the first layer) pushed only the estimated SM1 to approach the station

observation. However, this effect only remains a few timesteps: when the soil moisture

becomes very wet (or dry) and the soil moisture is at the upper (or lower) boundary of

soil moisture determined by the soil moisture characteristics, the soil cannot get wetter (or

dryer) with any water increment flowing into (or out) the system. Therefore, even if the

soil moisture is updated by data assimilation in a timestep, the soil moisture is reset once it

reaches the upper or lower boundary, and the effect of data assimilation is thus cancelled.

Knowledge or a basic calibration for soil properties is essential before the model can be

used, as the model is highly sensitive to soil moisture. According to the sensitivity analysis

in Chapter 5, the model gives a significant difference in the estimation of yield when the

soil moisture is constrained by a different set of soil water parameters, due to the different

level of soil moisture estimation. With a basic calibration of soil properties, the assimilation

of SM1 showed a slightly better soil moisture estimation in the top two layers (Figure 7.6)

with reduced RMSE from 0.041 to 0.025 and 0.026 to 0.021, respectively. No correction
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Figure 7.6: Evolution of GrainWt (a), LAI (b), and soil moisture profile (c) with the assim-
ilation of SM1. See Figure 7.3 for legend.

was found in the soil moisture of the bottom layers (3 to 6): when the soil moisture in those

layers was updated, the posterior state values quickly returned to the prior values after a few

timesteps (e.g., DaS 76 and 89).

Compared to the open-loop, the assimilation of SM1 gave a slightly worse estimation

in wheat states and yield, with a reduced SM1 level caused by the assimilation of lower

SM1 observations (Figure 7.6). The RMSE of LAI and total biomass increased from 0.74

(open-loop) to 0.87, with the underestimation of yield increased from 38.3% to 49.4%. This

result was also found in the assimilation of SM into other soil layers (Table 7.4). Thus, it

can be concluded that the assimilation of SM1 did not give an improvement in wheat states

128



Table 7.4: Relative difference (RD) and root mean square error (RMSE) of yield and soil
states from the assimilation of soil moisture in layer 1, layers 1-2 and layers 1-6, respectively
with soil parameter calibration.

Assimilated
state(s)

Model
calibrated?

Yield
(kg/ha)

RD%
of yield

RMSE
LAI SM1 SM1 SM3 SM4 SM5 SM6

Open-loop Yes 1,716 -38.3 0.91 0.041 0.026 0.024 0.026 0.016 0.018
SM1 Yes 1,660 -40.3 1.04 0.039 0.026 0.036 0.023 0.015 0.018
SM1-2 Yes 2,016 -27.5 0.95 0.040 0.027 0.028 0.026 0.016 0.019
SM1-6 Yes 2,061 -25.9 0.97 0.041 0.025 0.031 0.031 0.020 0.020
Open-loop No 2,226 -20.0 0.87 0.106 0.058 0.036 0.036 0.029 0.020
SM1 No 2,018 -27.4 0.80 0.074 0.048 0.033 0.032 0.022 0.008
SM1-2 No 1,939 -30.3 0.83 0.074 0.049 0.034 0.032 0.020 0.010
SM1-6 No 2,006 -27.8 0.89 0.075 0.039 0.021 0.028 0.020 0.011

or yield estimation in over and above that from using a calibrated model.

It should be noted that the errors of the estimated SM caused by wrong soil water para-

meters in an uncalibrated model could not be cancelled even when the SM was assimilated

on a daily basis. According to Table 7.4, although the uncalibrated soil parameters seem-

ingly provided a higher (thus more correct) yield estimation due to a higher level of soil

moisture, the assimilation of SM in an uncalibrated model did not give a more correct soil

moisture state compared to the open-loop from using a calibrated model. Furthermore, SM

observation best improved model performance in terms of SM state estimation and yield

prediction when they are used to obtain a calibrated soil water parameter set for the model,

rather than being assimilated as external observations to update model states.

7.3.3.2 Assimilation of soil nitrate

Measurements of soil nitrate in the first two layers were assimilated individually and

collectively into the model. With a higher level of soil nitrate observation in the first two

layers assimilated into the model, a higher plant nitrogen level was found in the organs (Fig-

ure 7.7-c and -e). A higher level of plant organ nitrogen was also found in the individual

assimilation of soil nitrate in each layer. A higher yield estimation was given by the indi-

vidual assimilation of soil nitrate in layer 2 and collective assimilation of soil nitrate in the

first two layers, but the grain-fill rate remained unchanged from the open-loop. This shows

that the increased yield was not because of a higher grain-fill rate caused by a higher plant

biomass, but by the relief of nitrogen stress because of a higher plant nitrogen level.
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Figure 7.7: Evolution of GrainWt and grain nitrogen (a, c), soil nitrate in layer 1 and 2 (b,
d), and total plant nitrogen (e) with the assimilation of soil nitrate in top two layers. See
Figure 7.3 for legend.

7.3.4 Data assimilation when observations are limited

7.3.4.1 Impact of assimilation in different phenology stages

This experiment explored the assimilation of state variables at different intervals and

phenology stages. In each assimilation experiment, the state variables were assimilated in

three long stages 4 (end of juvenile to floral initiation), 5 (floral initiation to flowering), 4-5,

6-7 (flowering to end of grain filling) and all stages, respectively. The RD of yield from

each experiment is shown in Figure 7.8, with the result showing that the assimilation of LAI

and biomass observations in the vegetative stage gave more accurate yield estimation than

assimilation in the other stages. The observations of SM did not benefit yield estimation

when assimilated in any individual phenology stages. The optimal stage for soil nitrate

assimilation was found to be stages 4 and 5.
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Figure 7.8: Relative difference of yield estimate by assimilating various state variables in
different phenology stages relative to the open-loop scenario. Stage 4: end of juvenile to
floral initiation; stage 5: floral initiation to flowering; stage 6: flowering to start of grain-
filling; stage 7: start to end of grain-filling.

7.3.4.2 Constraining model phenology to observation

This experiment explored the assimilation of phenology through a simple direct-insertion

data assimilation approach by setting the model phenology date to the observed value. The

date of wheat phenology was determined from the weekly field visit record and in-situ cam-

era photos in Zadoks phenology scale (Zadoks et al. , 1974), and mapped to the APSIM

wheat phenology scale through an in-built linear equation provided by the APSIM wheat

module documentation. Overall, the model showed good consistency in phenology estima-

tion with field observation for all but stage 5 (Figure 7.9). The observed delay in the begin-

ning date of stage 5 was not well-estimated by the model, probably because of the inadequate

vernalization due to a late sowing and water deficit in the early stages.

By directly inserting the observations of phenology date into the model, the underestim-

ation of yield was reduced from 38.3% to 30.6% according to Table 7.3 (open-loop when

phenology determined by observation), with a slightly reduced RMSE in all estimated wheat

states. When further assimilating wheat states (LAI, biomass and organ weight) into the

model together with the phenology, the underestimation of yield was further reduced. The

yield estimated by the LAI and biomass assimilation (Table 7.3 for RD of yield), and the

wheat state estimation (Table 7.3 for RMSE) by the LAI and the organ weight assimilation,

showed improved accuracy when the phenology was determined by observation compared

to that determined by model simulation.
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a b

Figure 7.9: Phenology stages of field observation and model estimation in days after start
(DaS): (a) the phenology of model simulation versus field observation, where a clear delay
of phenology phase 5 (floral initiation) was found in the observation; and (b) change of
phenology from model simulation and field observation over time.

7.3.4.3 Data assimilation when using an uncalibrated model

This experiment explored the assimilation of wheat states into an uncalibrated model

using properties of different soil types. Fourteen soil types from the APSIM soil library

(measured in Victoria, Australia) were used to replace the soil property measurements and

calibrated soil parameters (including those controlling soil water retention, evapotranspira-

tion, and the percent of active/inactive nitrogen pool shown in Tables B.1 - B.2 in Appendix

B) used in earlier parts of this study, while retaining the initial soil nitrogen consistent with

observations. The open-loop from 8 of the 14 uncalibrated models showed a significant un-

derestimation of yield, being even lower than that from the calibrated model (Figure 7.10

grey bars). With the assimilation of LAI (yellow bars) and biomass (green bars) into the

uncalibrated models individually, the underestimation of yield was reduced in 10 and 14

out of the 14 models, respectively. This result showed that the assimilation of wheat states,

especially the biomass, is a practical way of improving APSIM-Wheat yield estimation even

in a wheat field where soil properties cannot be accurately measured or calibrated. The blue

bars in Figure 7.10 showed that the estimated yield from all 14 models was near zero when

the SM1-2 were assimilated, representing a model failure due to a distinct mismatch in soil

moisture between the observations and model estimation. Therefore, the assimilation of soil

moisture is not recommended for APSIM-Wheat if the soil module is uncalibrated.
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Figure 7.10: Relative difference of yield estimated by assimilating LAI, biomass or near-
surface soil moisture with an uncalibrated model using 14 types of soil properties, as com-
pared to using the calibrated model. Legend: Uncal and Cal represent that the data was as-
similated into an uncalibrated or a calibrated model. OL is the open-loop, and LAI, biomass
and SM1-2 are the assimilation of LAI, biomass, and SM in the top two layers, respectively.

7.4 Chapter summary

This chapter presented the data assimilation case study for the Cora Lynn area with

the dataset collected in the 2018 wheat season. Based on the knowledge gained from the

previous synthetic study, the ground-measured wheat and soil states assimilated in this ex-

periment include LAI, biomass, organ weight of leaf and stem, soil moisture in 6 soil layers

from depth 0 to 55 cm, and soil nitrogen in the top two layers from depth 0 to 15 cm. These

state variables were assimilated into the APSIM-Wheat model individually and collectively.

Assimilation of observations during different phenology stages was tested to provide an un-

derstanding of which stages have the greatest impact for improved yield prediction. In addi-

tion to the data assimilation process, a simple scenario of constraining the phenology stages

to real observations was tested.

The data assimilation experiments showed that both biomass and LAI provided im-

proved yield estimation through data assimilation and are observable from remote sensing,

making them promising for future practices of data assimilation. The assimilation of these

wheat states benefited yield estimation when the observations were collected before the an-

thesis completed (stage 4 and 5). Although a basic calibration to soil parameters is essential
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before the model can be used, the assimilation of these states is capable of correcting the er-

rors of yield estimation by uncalibrated models. By constraining phenology, the assimilation

of these variables was found to further reduce the underestimation of yield. However, the

assimilation of soil moisture did not improve yield estimation in this study. The state vari-

ables found to improve yield estimation in this chapter is the basis of the data assimilation

experiment with remote sensing data in Chapter 8.
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Chapter 8

Case study 2 - assimilation of

remotely sensed data

The results of the synthetic study in Chapter 6 and case study 1 in Chapter 7 have demon-

strated that assimilating direct field observations of LAI, total biomass, organ weight and

phenology into APSIM-Wheat had the greatest impact on improving model estimates of

wheat states and yield prediction compared to an open-loop simulation. The soil moisture

was found to have no impact on the yield estimation when assimilated in the case study 1.

This chapter extended that work to the assimilation of observations obtained only by optical

and microwave remote sensing methods. Among these state variables, remotely sensed LAI

and surface soil moisture were obtained specific to the study area, and were thus assimilated

into the APSIM-EnKF data assimilation framework in this case study.

8.1 Dataset, model and data assimilation setup

This case study uses the same base field dataset as the previous case study described in

Chapter 7. The key difference between case study 2 and case study 1 is the source of the

observational data that is assimilated. Further details are described below.

The remote sensing data assimilated herein include: (1) high spatio-temporal resolution

(3 m, daily) LAI images from a fused dataset, and (2) surface soil moisture (field scale

by treating the whole field as a single pixel, daily) retrieved from tower-based brightness

temperature. The time series of LAI, and retrieved surface soil moisture from the tower are
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those shown in Chapter 4.

The model settings remain unchanged from the previous study, including the composi-

tion of sub-modules, sowing windows, management rules, soil layers, initial conditions, and

calibrated model parameters. Among the data assimilation settings, state vectors, input and

parameter uncertainties and the ensemble generation methods remain unchanged. However,

the observations vector y was reduced to:

y = [LAI, SM1]T, (8.1)

with LAI and SM1 being the remotely sensed dataset described above, with estimated un-

certainties of 10% of LAI observation, and 0.036 m3/m3, respectively. The prior error

covariance was multiplied with an ensemble inflation factor to inflate the ensemble spread

using the same values as in the previous case study.

8.2 Data assimilation scenarios

The remote sensing data were assimilated into the APSIM-Wheat model according to

two strategies, by assimilating each type of remote sensing data (either LAI or SM1) indi-

vidually and jointly. Moreover, different data assimilation scenarios were applied to the as-

similation of each state type. Specifically, when solely assimilating the high spatio-temporal

resolution LAI images, the scenarios applied included:

1. field-averaged remotely sensed LAI was assimilated at an interval of 3 days by integ-

rally treating the paddock as a whole (baseline scenario);

2. a plot-specific scenario where the LAI extracted from the nearest pixels of the 4 spe-

cific experimental plots were assimilated to estimate the yield in each plot;

3. an observation-limited scenario, assuming that the availability of LAI observations is

limited to a single phenology stage (among stages 4, 5, and 6-7);

4. an uncalibrated scenario assuming that the model is uncalibrated due to the absence

of site-specific data so that all the soil properties were simply assumed with the soil

types previously measured in nearby locations provided by the model.
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In the experiments of solely assimilating SM1, or jointly assimilation LAI and SM1, only a

baseline scenario was applied, where LAI was assimilated every 3 days and SM1 assimilated

daily at the field scale.

8.3 Results and discussion

8.3.1 Assimilation of LAI

8.3.1.1 Baseline scenario

While the previous chapter demonstrated the yield improvement by assimilating ground-

measured LAI into the APSIM-Wheat model, it must be noted that the remotely sensed LAI

data used here underestimated the LAI compared to the field observations, but was less

noisy (Figure 4.5-e in Chapter 4). However, by assimilating the underestimated remotely

sensed LAI data, the estimated yield increased to 2570 kg/ha, with a relative difference

(RD) of yield improved from -38.3% to -7.6%. Accordingly, the estimation of LAI and

organ biomass were improved, with the RMSE values shown in Table 8.1. Therefore, this

baseline scenario has further confirmed the benefit of LAI assimilation into wheat modelling

for an improved yield estimation.

Table 8.1: Relative difference (RD) of yield and root mean square error (RMSE) of wheat
states from the data assimilation of remotely sensed LAI in the baseline and the plot-specific
scenarios, compared to the result of assimilating ground-measured LAI in the previous case
study in Chapter 7 .

Assimilated
observation(s) a

Yield
(kg/ha)

RD of yield
b (%)

RMSE
LAI LeafWt StemWt Biomass

Open-loop 1,716 -38.3 0.91 49.5 93.5 150.4
RSa LAI (field mean) 2,570 -7.6 0.56 34.8 81.7 75.5
RS LAI (plot A) 2,652 -4.6 0.50 29.3 93.6 76.3
RS LAI (plot B) 2,685 -3.5 0.56 30.9 105.2 80.2
RS LAI (plot C) 2,819 1.3 0.57 31.5 111.2 82.3
RS LAI (plot D) 2,574 -7.5 0.58 35.1 93.3 78.5
Field LAI 1,871 -32.7 0.40 29.2 83.0 114.5
RS SM1 1,618 -41.8 0.94 50.8 100.7 159.2
RS LAI and RS SM1 2,340 -15.9 0.56 34.6 68.7 84.4

a Observations assimilated: RS=remotely sensed, Field=Field-measured.
b The relative difference of yield was calculated against the plot-average yield.

By comparing the time series of GrainWt obtained from data assimilation using remotely
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sensed LAI (Figure 8.1-b) with that from assimilating ground-measured LAI (Figure 8.1-d),

it was found that the assimilation of remotely sensed LAI resulted in higher (thus more

accurate in this case) yield estimation than using field LAI data. The higher yield estimated

by the remotely sensed LAI could be explained by the StemWt, whose value at phenology

phase 6 (anthesis) directly determines the growing rate of grain weight in the subsequent

grain-filling stage according to the model physics: by comparing the time series of StemWt

the two experiments (Figure 8.1-c and -f, respectively), a higher StemWt value at phenology

phase 6 was found in the assimilation of remotely sensed LAI.

The reason why the assimilation of remotely sensed LAI had better improvement on

the model yield estimation than the field LAI is two-fold. First, the uncertainty used in

the remote sensing observations was smaller than the ground measurements: 10% for the

remotely sensed LAI and 15% for the field LAI, as the time series of remotely sensed LAI is

less noisy than the field LAI. Note that the data assimilation algorithm gives greater emphasis

to observations of smaller uncertainty. Second, although estimation of the LAI peak was

higher in the field LAI assimilation, the StemWt did not become higher than that in the

remotely sensed LAI assimilation, because the higher observational uncertainty in the field

LAI made the wheat states less impacted by the assimilation. Soon after the LAI peak, when

the ensemble spread of StemWt was more extensive, the field LAI observations showed a

quick reduction, causing the StemWt to be reduced by the assimilation of field LAI during

Day after Start (DaS) 140 and 150. Consequently, the StemWt in phase 6 showed a lower

estimation from the field LAI assimilation as compared to remotely sensed LAI assimilation.

8.3.1.2 Plot-specific scenario

This scenario compared the difference between assimilating remotely sensed LAI at the

field and plot scales. By assimilating remotely sensed LAI data at the plot-specific level, the

evolution of the estimated GrainWt for the four experimental plots was presented in Figure

8.2. The yield estimated at the plot-specific level was validated with the yield collected in

the four experimental plots, while that estimated at the field level was evaluated against the

averaged yield of the four plots.

Figure 8.3-a shows the yield estimated by the LAI assimilation versus the yield meas-

ured in each experimental plot. The mean yield at the plot-specific level was estimated by
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Figure 8.1: Evolution of LAI, GrainWt and StemWt with the assimilation of remotely sensed
LAI (a-c) and for comparison field LAI (d-f). The vertical lines display the field-observed
phenology in grey, and the simulated phenology of the open-loop in green. The legend
applies to all subsequent figures in this chapter.

assimilating the average LAI of the four plots, while that at the field level was estimated

by assimilating the average LAI of all pixels in the field. Figure 8.3-b shows the yield es-

timated by the assimilation of plot-specific LAI compared to the yield observations in each

plot, respectively.

Figure 8.3-a shows that the estimated yield in each plot was uniform when LAI was

assimilated at the field scale. With the plot-specific LAI assimilated into the model whose

settings and inputs were uniform for all four plots, the estimated yield specific to each plot

shows a spatial differentiation, with the plot-specific yield in plots C and D slightly closer

to the 1:1 line. This result indicates that the high spatial resolution LAI image could bring
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Figure 8.2: Evolution of GrainWt with the assimilation of pixel-specific remotely sensed
LAI at the four plots (A to D). The red dots represent the pixel-specific yield collected
in each plot, while the black dots with the error bar represent the average yield and the
maximum/minimum yield of all subsamples (note that each wheat sample collected at the
experimental plots contains 5 subsamples).
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Figure 8.3: (a) Yield estimates by assimilating LAI at the field and plot level. The black dots
represent the yield by the assimilation of LAI at the field scale, and pink crosses (linked with
arrows) represent that at the plot-specific scale. (b) Yield estimates by assimilating the plot-
specific LAI compared to the plot-specific yield observations.

spatial variation to the model even when the model inputs are assumed uniform across the

field.

The result of the plot-specific scenario implies that even when the available data only al-

lows the model to simulate at the field scale, high spatial resolution LAI images can provide

sub-field spatial variation to the model, allowing the yield to be estimated at pixel resolu-

tion. Therefore, although the usage of crop models are usually limited by the difficulties of

collecting input data, especially for estimating the spatial variation of yield at the sub-field

scale, a uniform model running at the field scale can likely provide an estimate of yield with

sub-field variation, given that the remote sensing data are sub-field resolution. Note that

this scenario was only evaluated with data collected at four experimental plots and in one
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growing season, meaning that more experiments are required to support the validity of this

conclusion.

8.3.1.3 Observation-limited scenario

This scenario explored the assimilation of LAI in different phenology stages. A group

of data assimilation experiments was conducted, by assimilating the LAI in stages 4, 5, 4-

5, 6-7 and all stages. The RD of yield from each experiment is shown in Figure 8.4 (grey

bars), compared to using field LAI measured from the previous data assimilation case study

(yellow bars), with a value closer to zero representing a more accurate yield estimation. The

results showed that the assimilation of remotely sensed LAI in stage 5 provided the most

accurate yield estimation compared to assimilating in other stages, and with comparable

accuracy to the assimilation over the whole growth stage. This result is consistent with the

result of the previous case study using ground LAI measurements.

8.3.1.4 Uncalibrated scenario

This scenario explored the assimilation of wheat states into an uncalibrated model using

different soil property types. This study used the same set of 14 uncalibrated models setup

in earlier parts of this thesis (Chapter 7) by replacing the measured and calibrated soil para-

meters with the properties of 14 soil types taken from the APSIM soil library. The RD of

yield is shown in Figure 8.5.

The open-loop from 8 out of the 14 uncalibrated models showed a substantial underes-

timation of yield. However, with the assimilation of remotely sensed LAI (Figure 8.5 green

bars) into the uncalibrated models the underestimation of yield was reduced in all 14 cases,

with two models been over-corrected. By comparing to the assimilation of field LAI (yellow

bars), the assimilation of remotely sensed LAI provided a more accurate yield estimation in

11 out of the 14 models. This result showed that the assimilation of both ground- and remote

sensing-based LAI improved APSIM-Wheat yield estimation, even in a wheat field where

soil properties cannot be accurately measured or calibrated.
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Figure 8.4: Relative difference of yield estimate by assimilating remotely sensed (RS) and
field-measured (Field) LAI in different phenology stages and relative to the open-loop. Stage
4: end of juvenile to floral initiation; stage 5: floral initiation to flowering; stage 6: flowering
to start of grain filling; stage 7: start to end of grain filling.
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Figure 8.5: Relative difference of yield estimated by assimilating LAI with an uncalibrated
model using 14 soil property types, as compared to using the calibrated model. Legend:
Uncal and Cal represent that the data were assimilated into an uncalibrated or a calibrated
model. OL is the open-loop.

8.3.2 Assimilation of SM1

Figure 8.6 shows the time series of GrainWt, LAI and soil moisture in the near-surface

and root-zone as a result of the joint assimilation of remotely sensed SM1. It was found

that the assimilation of SM1 had little impact on the development of GrainWt, LAI and

wheat biomass. Some correction was made to the estimation of soil moisture in the first

two layers, but a similar correction was not found in deeper layers, as shown in the RMSE

values of SM in each layer (Table 8.2). This result showed that the assimilation of SM1 did

not help improve yield estimation given a well-calibrated model, which is consistent with

the previous case study that assimilated in-situ SM1 observations.
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Table 8.2: Relative difference of yield and root mean square error of soil states from the data
assimilation of soil moisture in layer 1.

Assimilated
state(s)

Yield
(kg/ha)

RD of
yield (%)

RMSE
LAI SM1 SM2 SM3 SM4 SM5 SM6

Open-loop 1,716 -38.3 0.91 0.041 0.026 0.024 0.026 0.016 0.018
LAI
(baseline
scenario)

2,570 -7.6 0.56 0.044 0.027 0.032 0.029 0.021 0.022

SM1 1,618 -41.8 0.94 0.038 0.025 0.026 0.026 0.016 0.018
LAI and SM1 2,340 -15.9 0.56 0.047 0.028 0.025 0.032 0.019 0.021

8.3.3 Joint assimilation of LAI and SM1

Figure 8.7 shows the time series of GrainWt, LAI and soil moisture in the near-surface

and root-zone as a result of the joint assimilation of LAI and SM1. It was found that when

the LAI and SM1 were assimilated jointly, the yield and wheat states were better estimated

relative to the open-loop, but this improvement was not as distinct as solely assimilating

LAI (Table 8.1). The joint assimilation provided a more erroneous soil moisture estimation,

with a higher RMSE in all layers relative to the open-loop (Table 8.2). This is due to the

assimilation of LAI that increased the soil moisture values during DaS 95 to 120 (Figure

8.7-c), making it further overestimated.

8.4 Chapter summary

This chapter presented a data assimilation case study for the Cora Lynn study area us-

ing the dataset collected in the 2018 wheat season with only remotely sensed observation

assimilated. Based on the knowledge gained from the previous synthetic study and case

study 1 (assimilation with ground measurements), the remotely sensed data assimilated in

this experiment included high spatio-temporal resolution LAI images from a fused Sentinel-

2 and PlanetScope dataset, and surface soil moisture from a tower-based radiometer. These

state variables were assimilated into the APSIM-Wheat model under different scenarios, ac-

counting for different scales, availability of observations and model parameters. The results

have shown that the assimilation of remotely sensed LAI is promising in yield estimation,

particularly when assimilated in the phenology stage 5 (floral initiation to flowering). The

assimilation of remotely sensed LAI also helped improve yield estimation in uncalibrated
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Figure 8.6: Evolution of grain weight (a) LAI (b), SM1 (c) and root-zone soil moisture (d)
with the assimilation of SM1.
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Figure 8.7: Evolution of grain weight (a) LAI (b), SM1 (c) and root-zone soil moisture (d)
with the joint assimilation of LAI and SM1.
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models, introduce spatial information into a uniform model, and consequently reduce the

strong dependence of the APSIM-Wheat model on the soil information usually unavailable.

However, similar to the previous case study, the assimilation of remotely sensed SM1 did

not improve yield estimation. The joint assimilation of both LAI and SM1 did not per-

form better than solely assimilating LAI as a result of assimilating more erroneous remotely

sensed SM1.

While ultimately this case study used only LAI and SM, it was proceeded by a sensitivity

analysis (Chapter 5) and extensive assimilation study incorporating a wide range of possible

variables (Chapters 6 - 7). The possibility of data assimilation being applied in a spatially

distributed way was explored using a unique model to Australia.
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Chapter 9

Conclusions and future work

The main contribution of this research was to comprehensively and systematically ex-

plore the assimilation of all potential state variables into the crop model APSIM-Wheat.

Through a series of data assimilation experiments, progressive understanding of the poten-

tial to improve yield estimation by assimilating external observations into the model was

achieved. This chapter summarizes the main conclusions of this thesis and provides recom-

mendations for future research.

9.1 Conclusions

9.1.1 Sensitivity analysis

The sensitivity analysis tested the model response to any uncertainty in the weather input,

soil parameters, cultivar parameters, management information and state variables in each

phenology stage. The conclusions of the sensitivity analysis are listed below.

1. Weather input data, and soil parameters related to soil water and sowing information

were found to be the primary source of uncertainties in yield estimation for APSIM.

2. Among the weather inputs to APSIM, rainfall, radiation and temperature were found

to have vital impacts on the model simulation of wheat states and yield. The tem-

perature was found to strongly impact the phenology because it plays a vital role in

phenology development and photosynthesis.

3. Cultivar parameters that govern phenology development have a strong impact on the
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leaf and grain development by affecting the time length over which the biomass accu-

mulates, and the way that biomass is partitioned to each plant organs (which depends

on the growing stage). These parameters are VernSens, PhotopSens and target thermal

time of stage 4 to 7. Additional to the impact of phenology, the yield estimation is

also subject to parameters that directly control the rate of grain development. These

parameters are the Potential Grain Filling Rate, Potential Grain Growth Rate, and

Potential Grain N Filling Rate.

4. The wheat states and yield are highly sensitive to soil parameters controlling the soil

water dynamics. These parameters, including DUL, LL15, and WheatLL, need to be

carefully measured or calibrated before using the model.

5. LAI, soil moisture, plant weight and nitrogen, phenology, and soil nitrogen are im-

portant state variables. Their impact on model evolution varies with growth stage.

The accuracy of these state variables has the potential to result in accurate yield es-

timation. More specifically, the important state variables and the growth stage when

they become important are listed below:

(a) LAI in stage 4 and 5;

(b) LeafWt and LeafN in stage 5 and 6; with the impact in stage 6 outweighing that

in stage 5;

(c) StemWt and StemN in stage 5, 6, and 7, with the impact in stage 6 outweighing

that in stage 5 and 7;

(d) PodWt and PodN in stage 6;

(e) GrainWt in stage 7;

(f) RootWt in stage 5;

(g) Accumulative thermal time in all stages; and,

(h) SM in all stages, with the impact in stage 4 and 5 outweighing that in stage 6

and 7 and in root-zone outweighing that in the near-surface.
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9.1.2 Synthetic study

In the synthetic study, all prognostic model state variables were assimilated into the

APSIM-Wheat model for their impact on yield estimation using a synthetically created data-

set. The conclusions are listed below.

1. An ensemble size of 50 was satisfactory for the EnKF algorithm to assimilate wheat

and soil states into the APSIM-Wheat model.

2. The state variables that have the potential to improve yield estimation are: (i) wheat

states - LAI, GrainWt, LeafWt, StemWt, LeafN and StemN; and (ii) soil state - all wa-

ter and nitrogen states. There were certain wheat phenology stages where assimilating

theses state variables provided the greatest impact on improving yield estimation and

these are often where degradation in the open-loop simulation could occur. Specific-

ally:

(a) Phenology stage 5 (floral initiation to flowering) was found to be the optimal

assimilation stage for LeafN, StemN, soil nitrogen, and was sub-optimal for LAI,

LeafWt, and soil moisture.

(b) Phenology stage 6-7 (flowering to end of grain filling) was found to be the op-

timal assimilation stage for LAI, LeafWt, StemWt, LeafN, and was sub-optimal

for soil nitrate-nitrogen.

3. The direct insertion of phenology reduced the uncertainties of yield and state variables

and thus led to a better yield estimation.

4. Current remote sensing techniques provide LAI and SM1 with adequate accuracy for

these variables to have a positive impact when assimilated.

9.1.3 Case study 1 - assimilation with ground measurements

In the first case study, ground-measured wheat and soil states were assimilated into the

APSIM-Wheat model for improving yield estimation using an in-situ data set collected in

the field. The conclusions are listed below.
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1. The assimilation of wheat and soil states successfully improved the yield estimation

of APSIM-Wheat, using field observations of LAI, total biomass, and organ weight

of leaf and stem. However, little improvement was found when using in-situ soil

moisture and field observations of soil nitrate.

2. The assimilation of biomass provided the best yield estimation among the assimila-

tion of all individual wheat states. Both biomass and LAI provided improved yield

estimation through data assimilation and are observable from remote sensing. Thus

they are promising for future implementation of operational data assimilation.

3. Pcoor performance of assimilating soil moisture and soil nitrate was obtained. How-

ever, this does not imply that these data are not useful in wheat modelling and yield

estimation. On the contrary, they are essential in calibrating parameters related to soil

moisture and nitrogen estimation. With the wheat growth primarily subject to water

and nitrogen stress and the model highly sensitive to soil moisture and initial nitrogen,

a correct estimation of soil water and nitrogen states is essential for wheat modelling.

4. The assimilation of wheat states reduced uncertainties caused by unknown model

parameters (e.g. wheat cultivar type, soil properties). With the assimilation of wheat

states, a more accurate yield estimation was provided by the model even with uncal-

ibrated soil and cultivar parameters.

5. The assimilation of wheat states benefited yield estimation with the observations col-

lected before the phenology phase 6 (flowering). With the information of wheat states

collected in stages 4 and 5, the assimilation of wheat states helped the model to provide

an improved yield estimation even without any calibration.

9.1.4 Case study 2 - assimilation of remotely sensed data

In the second case study, remotely sensed wheat and soil states were assimilated into the

APSIM-Wheat model for improving yield estimation using remotely sensed observations in

place of in-situ LAI and surface soil moisture. The conclusions are listed below.

1. The assimilation of remotely sensed LAI improved the yield estimation of APSIM-

Wheat at both the field scale and the plot-specific scale, with the yield estimation
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outperforming that using field observations. The optimal phenology stage for assim-

ilating LAI was found to be stage 5.

2. The spatial information provided by the fine-resolution LAI has the potential to provide

sub-field spatial variation to the model.

3. Similarly to the previous case study, little improvement in yield estimation was found

when assimilating remotely sensed surface soil moisture.

4. The assimilation of remotely sensed LAI into an uncalibrated model reduced the un-

certainty caused by unknown model parameters and provided a more accurate yield

estimation.

9.2 Recommendations for future work

The perspectives for future research are listed below.

1. Application of the APSIM-EnKF framework is not only limited to the wheat yield

estimation tested in this case, but is also applicable for near real-time crop monitoring

for crop and soil status. Moreover, it can be extended to over 20 other crop types (i.g.,

maize, barley, sorghum, cotton, etc.) available in the APSIM model and adapted to

other state-updating algorithms (i.g., KF, PF, etc.) with only minor modification to the

source code. Consequently, the data assimilation framework can be used to monitor

over 20 crop types, with the flexibility of using different data assimilation algorithms.

2. The APSIM-EnKF data assimilation framework presented in this thesis is one-dimensional.

A two-dimensional data assimilation framework can be developed to assimilate fine-

resolution images to cover the spatial variability and provide precision wheat states

and yield estimation specific to pixels.

3. In the first case study (using field observation), biomass was found to provide better

yield estimation than LAI. This result was not further evaluated using remotely sensed

data due to the lack of a suitable dataset. Future research may focus on wheat biomass

retrieval from remote sensing and its subsequent assimilation.
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4. The first case study found that constraining wheat phenology could partially cancel

the errors caused by the uncertainty in model input and parameters (i.e., temperature

and the target thermal time) that control phenology development. Future efforts can

be put on the assimilation of remotely sensed phenology information.

5. The case studies have shown that the spatial information provided by the fine-resolution

LAI has the potential to provide sub-field spatial variation to the model. Neverthe-

less, limited by the datasets available for this study, it could not be conclusively shown

crop models uncertainty in estimating the spatial variation of wheat development can

be solved by assimilating remote sensing data into the model. Consequently, results

should be further evaluated using datasets for a range of geographic locations.

6. With more observations becoming available in the future, this work can be expanded

to an agricultural monitoring service platform to provide agricultural monitoring and

forecasting.
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Appendix A

Sensitivity analysis results

A.1 Impact on phenology

Figure A.1: Change of the flowering and maturity dates in response to the variation of
weather and cultivar parameters. Gridlines are the flowering (grey) and maturity (black)
dates of the reference simulation.
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Figure A.2: Change of the flowering and maturity dates in response to the variation of soil
parameters and management information. Gridlines are the flowering (grey) and maturity
(black) dates of the reference simulation.
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Figure A.3: Change of the flowering and maturity dates in response to the wheat states in
different phenology states. Gridlines are the flowering (grey) and maturity (black) dates of
the reference simulation.
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Figure A.4: Change of the flowering and maturity dates in response to the wheat and soil
states in different phenology states. Gridlines are the flowering (grey) and maturity (black)
dates of the reference simulation.
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A.2 Impact on mLAI

Figure A.5: Change of the mLAI in response to the variation of weather and cultivar para-
meters. The grey gridline is the mLAI of the reference simulation.
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Figure A.6: Change of the mLAI in response to the variation of soil parameters and man-
agement information. The grey gridline is the mLAI of the reference simulation.
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Figure A.7: Change of the mLAI in response to the wheat states in different phenology
states. The grey gridline is the mLAI of the reference simulation.
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Figure A.8: Change of the mLAI in response to the wheat and soil states in different phen-
ology states. The grey gridline is the mLAI of the reference simulation.
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Appendix B

Soil parameters used in the

uncalibrated model

Table B.1: Soil information and parameters of the fourteen soil types used in the case studies.
Data were collected in Victora, Australia, provided by the APSIM model.

Soil
No.

SoilType Site Latitude Longitude
Diffus-
Const

Diffus-
Slope

Salb CNBare

Soil1 Loam Smeaton -37.332 143.949 88 35 0.13 73
Soil2 Loam Clunes -37.291 143.787 88 35 0.13 73
Soil3 Clayey sand Inverleigh -38.098 144.058 88 35 0.12 73
Soil4 Clay Inverleigh -38.098 144.058 40 16 0.12 73

Soil5 Ironstone
Woolbrook
Homestead

-38.039 144.025 88 35 0.13 73

Soil6 Clay Little River -37.966 144.553 40 16 0.12 73
Soil7 Clay loam Lexton -37.273 143.514 88 35 0.13 73

Soil8
Sandy clay
loam

Yalla-Y-Poora -37.281 142.928 88 35 0.13 73

Soil9 Clay
Murdeduke
Homestead

-38.191 143.742 40 16 0.12 73

Soil10 Clay loam Lismore -37.915 143.335 88 35 0.13 73

Soil11
Brown
Sodosol

Lake Bolac -37.785 142.806 88 35 0.13 73

Soil12
Brown
Sodosol

Westmere -37.686 142.967 88 35 0.13 84

Soil13
Brown
Sodosol

Westmere -37.686 142.967 88 35 0.13 84

Soil14 Clay Dunkeld -37.649 142.342 88 35 0.13 73
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Table B.2: Soil parameters of the fourteen soil types used in the case studies. Data were
collected in Victora, Australia, provided by the APSIM model.

Soil
No.

Depth BD AirDry LL15 DUL SAT SWCON OCTotal Fbiom Finert
cm g/cm3 m3/m3 m3/m3 m3/m3 m3/m3 1/day % - -

Soil 1 0-5 1.47 0.09 0.17 0.35 0.41 0.5 0.77 0.04 0.4
5-15 1.59 0.14 0.17 0.29 0.37 0.5 0.62 0.02 0.5

15-25 1.59 0.14 0.17 0.29 0.37 0.5 0.62 0.02 0.5
25-35 1.59 0.14 0.17 0.29 0.37 0.5 0.62 0.02 0.5
35-45 1.62 0.17 0.17 0.31 0.36 0.3 0.38 0.02 0.7
45-55 1.62 0.17 0.17 0.31 0.36 0.3 0.38 0.02 0.7

Soil 2 0-5 1.36 0.1 0.2 0.41 0.46 0.5 0.77 0.04 0.4
5-15 1.38 0.18 0.22 0.38 0.45 0.5 0.62 0.02 0.5

15-25 1.38 0.18 0.22 0.38 0.45 0.5 0.62 0.02 0.5
25-35 1.38 0.18 0.22 0.38 0.45 0.5 0.62 0.02 0.5
35-45 1.32 0.22 0.22 0.42 0.47 0.3 0.38 0.02 0.7
45-55 1.32 0.22 0.22 0.42 0.47 0.3 0.38 0.02 0.7

Soil 3 0-5 1.42 0.06 0.12 0.24 0.44 0.5 1.55 0.04 0.4
5-15 1.32 0.17 0.21 0.35 0.47 0.3 1.24 0.02 0.5

15-25 1.32 0.17 0.21 0.35 0.47 0.3 1.24 0.02 0.5
25-35 1.32 0.17 0.21 0.35 0.47 0.3 1.24 0.02 0.5
35-45 1.39 0.21 0.21 0.4 0.45 0.3 0.78 0.02 0.7
45-55 1.39 0.21 0.21 0.4 0.45 0.3 0.78 0.02 0.7

Soil 4 0-5 1.26 0.11 0.22 0.45 0.5 0.3 3.23 0.04 0.4
5-15 1.29 0.24 0.3 0.44 0.49 0.3 2.58 0.02 0.5

15-25 1.29 0.24 0.3 0.44 0.49 0.3 2.58 0.02 0.5
25-35 1.29 0.24 0.3 0.44 0.49 0.3 2.58 0.02 0.5
35-45 1.27 0.3 0.3 0.44 0.49 0.3 1.62 0.02 0.7
45-55 1.27 0.3 0.3 0.44 0.49 0.3 1.62 0.02 0.7

Soil 5 0-5 1.58 0.09 0.17 0.21 0.37 0.6 1.2 0.04 0.4
5-15 1.58 0.09 0.17 0.21 0.37 0.6 1.2 0.04 0.4

15-25 1.79 0.11 0.14 0.19 0.3 0.4 0.96 0.02 0.5
25-35 1.79 0.11 0.14 0.19 0.3 0.4 0.96 0.02 0.5
35-45 1.33 0.21 0.21 0.36 0.47 0.3 0.6 0.02 0.7
45-55 1.33 0.21 0.21 0.36 0.47 0.3 0.6 0.02 0.7

Soil 6 0-5 1.21 0.1 0.2 0.33 0.51 0.3 0.77 0.04 0.4
5-15 1.21 0.1 0.2 0.33 0.51 0.3 0.62 0.02 0.5

15-25 1.31 0.2 0.25 0.4 0.48 0.3 0.62 0.02 0.5
25-35 1.31 0.2 0.25 0.4 0.48 0.3 0.62 0.02 0.5
35-45 1.23 0.28 0.28 0.45 0.5 0.3 0.38 0.02 0.7
45-55 1.23 0.28 0.28 0.45 0.5 0.3 0.38 0.02 0.7

Soil 7 0-5 1.2 0.13 0.25 0.44 0.52 0.5 0.77 0.04 0.4
5-15 1.05 0.21 0.26 0.4 0.57 0.3 0.62 0.02 0.5

15-25 1.05 0.21 0.26 0.4 0.57 0.3 0.62 0.02 0.5
25-35 1.05 0.21 0.26 0.4 0.57 0.3 0.62 0.02 0.5
35-45 1.14 0.25 0.25 0.49 0.54 0.3 0.38 0.02 0.7
45-55 1.14 0.25 0.25 0.49 0.54 0.3 0.38 0.02 0.7
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Table B.2: (Continue).
Soil
No.

Depth BD AirDry LL15 DUL SAT SWCON OCTotal Fbiom Finert
cm g/cm3 m3/m3 m3/m3 m3/m3 m3/m3 1/day % - -

Soil 8 0-5 1.02 0.08 0.15 0.31 0.58 0.5 3.31 0.04 0.4
5-15 1.06 0.19 0.24 0.31 0.57 0.3 2.65 0.02 0.5
15-25 1.06 0.19 0.24 0.31 0.57 0.3 2.65 0.02 0.5
25-35 1.06 0.19 0.24 0.31 0.57 0.3 2.65 0.02 0.5
35-45 1.3 0.33 0.33 0.43 0.48 0.3 1.65 0.02 0.7
45-55 1.3 0.33 0.33 0.43 0.48 0.3 1.65 0.02 0.7

Soil 9 0-5 1.23 0.1 0.2 0.37 0.51 0.3 1.2 0.04 0.4
5-15 1.23 0.1 0.2 0.37 0.51 0.3 1.2 0.04 0.4
15-25 1.17 0.16 0.2 0.38 0.53 0.3 0.96 0.02 0.5
25-35 1.17 0.16 0.2 0.38 0.53 0.3 0.96 0.02 0.5
35-45 1.11 0.2 0.2 0.41 0.55 0.3 0.6 0.02 0.7
45-55 1.11 0.2 0.2 0.41 0.55 0.3 0.6 0.02 0.7

Soil 10 0-5 1.32 0.09 0.17 0.3 0.47 0.5 1.2 0.04 0.4
5-15 1.32 0.09 0.17 0.3 0.47 0.5 1.2 0.04 0.4
15-25 1.35 0.14 0.17 0.31 0.46 0.5 0.96 0.02 0.5
25-35 1.35 0.14 0.17 0.31 0.46 0.5 0.96 0.02 0.5
35-45 1.35 0.18 0.18 0.41 0.46 0.3 0.6 0.02 0.7
45-55 1.35 0.18 0.18 0.41 0.46 0.3 0.6 0.02 0.7

Soil 11 0-5 1.45 0.11 0.22 0.33 0.38 0.5 0.65 0.04 0.4
5-15 1.45 0.11 0.22 0.33 0.38 0.5 0.65 0.04 0.4
15-25 1.35 0.22 0.27 0.41 0.46 0.5 0.65 0.02 0.5
25-35 1.35 0.22 0.27 0.41 0.46 0.5 0.65 0.02 0.5
35-45 1.16 0.34 0.34 0.48 0.53 0.5 0.33 0.02 0.7
45-55 1.16 0.34 0.34 0.48 0.53 0.5 0.33 0.02 0.7

Soil 12 0-5 1.6 0.07 0.13 0.26 0.36 0.5 1 0.03 0.4
5-15 1.5 0.11 0.14 0.3 0.4 0.3 0.5 0.02 0.6
15-25 1.5 0.11 0.14 0.3 0.4 0.3 0.5 0.02 0.6
25-35 1.5 0.11 0.14 0.3 0.4 0.3 0.5 0.02 0.6
35-45 1.3 0.22 0.22 0.4 0.48 0.2 0.25 0.01 0.9
45-55 1.3 0.22 0.22 0.4 0.48 0.2 0.25 0.01 0.9

Soil 13 0-5 1.45 0.11 0.22 0.37 0.42 0.5 0.5 0.02 0.6
5-15 1.45 0.11 0.22 0.37 0.42 0.5 0.5 0.02 0.6
15-25 1.45 0.11 0.22 0.37 0.42 0.5 0.5 0.02 0.6
25-35 1.3 0.18 0.23 0.4 0.48 0.3 0.25 0.01 0.9
35-45 1.3 0.18 0.23 0.4 0.48 0.3 0.25 0.01 0.9
45-55 1.3 0.18 0.23 0.4 0.48 0.3 0.25 0.01 0.9

Soil 14 0-5 0.93 0.04 0.07 0.25 0.62 0.4 1.05 0.04 0.4
5-15 1.3 0.16 0.2 0.4 0.48 0.4 0.45 0.04 0.4
15-25 1.28 0.2 0.2 0.44 0.49 0.3 0.3 0.02 0.6
25-35 1.28 0.2 0.2 0.44 0.49 0.3 0.3 0.02 0.6
35-45 1.33 0.2 0.2 0.4 0.47 0.3 0.3 0.02 0.7
45-55 1.33 0.2 0.2 0.4 0.47 0.3 0.3 0.02 0.7
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