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Abstract 
 
Among all cereal crops traded in international markets, wheat is the most important. Accurate 

production forecasts, as early as possible prior to the harvest, are critical for the market 

stability, as well as for farmers, grains companies and governments. Providing reliable, 

consistent and scalable crop yield data is one of the major challenges in monitoring food 

security. While early crop yield estimations may help to control food prices in the western 

world, they could also be used to prevent hunger crisis in third world countries, by giving local 

authorities and international organisations enough time to prepare. For years, scientists 

around the world have tried to assess yields from space using remote sensing and crop 

models, however with only limited success. One factor limiting success has been the trade-off 

between high spatial and temporal resolutions in remotely-sensed data, particularly in 

attempts to estimate crop yield at field and sub-field scales. Over the last decade, an 

increasing number of nano-satellites (known as CubeSats) were launched, which opens the 

door to a new era of crop monitoring from space.  

This study aims to improve in-season yield estimations by coupling crop modelling and satellite 

images, with a focus on wheat in Australia. In this thesis, I propose a new method named 

VeRsatile Crop Yield Estimator (VeRCYe), which seeks to overcome the limitation of missing 

data to estimate wheat yield at the field and pixel scales, by combining the advantages of both 

high spatio-temporal resolution remote sensing and crop model simulations. In this process, I 

have developed a satellites-based sowing date detection method at the field scale and fused 

PlanetScope images (with a spatial resolution of ~3 m) and Sentinel-2 images (with a spatial 

resolution of 10 m) to create daily Leaf Area Index (LAI) datasets at 3 m resolution. Finally, I 

have used the LAI datasets and the detected sowing dates with The Agricultural Production 

Systems sIMulator (APSIM)-Wheat model to predict wheat yield at the field and subfield 

scales. 

The sowing date detection method developed uses Planet’s PlanetScope data to detect 

changes on field surface caused by sowing. The method detected 85% of the sown fields with 

a very high correlation (R2 = 0.99) between actual and estimated dates. Time of sowing was 

detected with a median gap of 0 days while achieving RMSE of 0.9 and 1.9 days in a national 

set of data and in a representative commercial farm, respectively. I have also tested the ability 

of this method for detecting harvested area and its timing, resulting with 0-day gap for the 

median between the detected and the reported harvest dates (RMSE = 2.6 days). 
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The fusion method proposed in this study, fuses time series imagery sourced from Sentinel-2 

and Planets’ PlanetScope CubeSat constellation. This enabled daily Sentinel-2 consistent, 

cloud free, surface reflectance RGB-NIR images and crop Green-LAI to be generated at a 3 

m resolution. Overall, the results from the study demonstrated that the new fused time-series 

data combined the spatial, temporal and spectral advantages of both sensors, allowing wheat 

Green-LAI to be monitored on a daily basis with an RMSE = 0.35-0.63 and R2 of 0.92 in wheat. 

VeRCYe was tested over multiple wheat fields located in the Australian wheat-belt, covering 

a large range of environmental conditions and farm management practices across three 

growing seasons (2017 - 2019). VeRCYe not only successfully estimated field-scale yield with 

R2 = 0.88 (RMSE of 757 kg/ha), but was also found to be effective for generating yield maps 

at 3 m resolution (R2 = 0.32, RMSE of 1,213 kg/ha), up to four months before crop harvest. 

In contrast to most of the previous studies, my PhD project has developed a new approach to 

estimate yield without ground calibration data, which will make it applicable across different 

regions and environments. The advantages of VeRCYe is that it can be used to estimate yield 

without the need for ground calibration, theoretically can by applied for other crop types and 

with any remotely sensed LAI. Furthermore, VeRCYe can generate useful information which 

may help to identify yield gaps, understand yield variability, its causes and scale from the pixel-

level to a regional-level.  
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1. Chapter 1 – Introduction 

1.1. Background 

Accurate yield estimations, as early as possible prior to harvest, are critical for market stability, 

farm management, grain companies and governments. Wheat is the largest broadacre crop 

in Australia with 18 million tonnes harvested in 2018-19 (Australian Bureau of Statistics 2020). 

However, risks and uncertainties within the global food system are growing with the projected 

increase in extreme weather events due to climate change (Ray et al. 2015). These may affect 

the variability of food prices in both short and long-term future. 

Satellite-based remote sensing is considered a reliable, affordable, and timely source to 

improve crop yield prediction (Becker-Reshef et al. 2020), therefore many yield prediction 

methods using satellite data have been developed in the last few decades (e.g. Idso et al. 

1977; Ferencz et al. 2004; Prasad et al. 2006; Franch et al. 2015). Traditionally, these methods 

are based on the correlation between Vegetation Indices (VIs) and crop yield (e.g. Raun et al. 

2001; Labus et al. 2002; Becker-Reshef et al. 2010; Bognár et al. 2017). Many studies have 

shown a linear relationship between the photosynthetic capacity estimated from spectral 

responses and the crop phenology, which can be used to predict wheat yields using satellite 

remote sensing (e.g. Becker-Reshef et al. 2010; Franch et al. 2015; Bognár et al. 2017; Zhao 

et al. 2020). In recent years, methods which combine satellite images and machine learning 

techniques have become very popular (e.g. Cai et al. 2019; Jeffries et al. 2019; Feng et al. 

2020; Kamir et al. 2020). However, reliance upon a unique and local relationship is not ideal, 

especially when crops experience highly variable environmental conditions, as in Australia, 

where crops are frequently stressed by heat waves, frosts and droughts (Chenu et al. 2013). 

Crop production in Australia consists of two distinct cropping seasons, with wheat being the 

main winter crop across the whole grain belt. Wheat is traditionally planted from March to June 

and harvested from October to December of the same year (Potgieter et al. 2016).  In Australia 

wheat is grown mainly in water-limited environments, which can cause substantial variations 

in crop yield, especially when water stress occurs around flowering (Chenu et al. 2011; Chenu 

et al. 2013). Furthermore, considerable yield losses can result from frosts around flowering, 

which prevent farmers from sowing their fields early to minimize risk of heat and drought 

stresses later in the growing season (Zheng et al. 2015). These conditions make it very 

challenging to make within-season yield predictions in Australia.  
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Over the last decade, the number of companies developing nano-satellites (also known as 

CubeSats) has increased. These new satellites, such as Planet Labs' PlanetScope CubeSats 

(Planet Team 2020), are relatively inexpensive to build including mass production, enabling 

both high spatial (<5 m) and temporal resolution (<1 week) imagery at low cost (Jain et al. 

2016). However, in contrast to large expensive satellites such as Sentinel-2 or Landsat, 

CubeSat constellations frequently suffer from inconsistency in data collected by the different 

satellites in the constellation (Houborg and McCabe 2016). These inconsistencies limit the 

accuracy of surface reflectance-based applications such as estimation of VIs and hinder the 

use of these satellites to estimate leaf area index (LAI); defined as the total one-sided green 

leaf area per unit of soil area. Because photosynthesis takes place in the green parts of the 

plant, LAI is considered as an important plant characteristic. LAI has been found to be a good 

indicator of crop status and leaf abundance, as well as phenological stage, and can be used 

as an indicator of different farm management methods, or the impact of stresses and pests 

(Huang et al. 2019). Therefore, LAI also plays an important role in crop monitoring and can be 

used in crop growth models to better forecast yield (Clevers 1991; Bøgh et al. 2004; Lobell et 

al. 2015). 

Recent studies have shown that improvement in crop yield model forecasting can be expected 

by using more frequent high-spatial and high-temporal satellite images per growing season 

(Jain et al. 2016; Jin et al. 2017a; Waldner et al. 2019). Therefore, the ability to generate high 

spatio-temporal resolution images and LAI datasets by fusing images acquired by well-studied 

satellites such as MODIS, Landsat or Sentinel-2 with CubeSats is needed. 

Despite the growing availability of Earth observing data to monitor crop development and yield 

estimation, use of spaceborne sensors are limited by the type of data they can retrieve. 

Conversely, crop growth models can be used to simulate key physiological processes 

(Holzworth et al. 2014; Huang et al. 2019). Therefore, integrating the capabilities of remote 

sensing with crop model simulations has a great potential for improving capabilities in 

monitoring crop development and yield estimation through space and time. Two ways of 

merging the abilities of crop models and remotely sensed data are to either i) use data 

assimilation techniques, as assimilation of LAI into the models (Ines et al. 2013; Huang et al. 

2015; Huang et al. 2019; Pan et al. 2019) or ii) by using satellite data to extract key model 

parameters, such as sowing dates, and use them as model inputs.  

Sowing dates are a major input for crops models, which are commonly used to explore the 

expected yield effects of different management practices (Zheng et al. 2012; Holzworth et al. 

2014; Chenu et al. 2017; Flohr et al. 2017). However, sowing dates are a source of 
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considerable uncertainty for regional studies (Mathison et al. 2017). Therefore, accurate 

information about sowing dates at a farm scale can be used to reduce the uncertainty of crop 

model simulations (Mathison et al. 2017). 

While most studies have estimated crop yield at regional, county or state scales (e.g. Ines et 

al. 2013; Huang et al. 2015; Azzari et al. 2017; Jin et al. 2017b; Cai et al. 2019; Jin et al. 2019), 

few studies have attempted to estimate yields without calibration to ground data (e.g. Becker-

Reshef et al. 2010; Franch et al. 2015; Lobell et al. 2015; Azzari et al. 2017; Jin et al. 2019). 

Moreover, despite the extensive scientific effort to utilize remote sensing for crop yield 

forecasting, a relatively small number of studies tried to estimate yield at the field and to map 

its within-field variability (e.g. Donohue et al. 2018; Lai et al. 2018; Chen et al. 2020; 

Manivasagam et al. 2021; Sagan et al. 2021), and only very few attempted doing so without 

any ground-based data for calibration (e.g. Jain et al. 2016; Burke and Lobell 2017; Dado et 

al. 2020; Deines et al. 2021), achieving limited success. To overcome these limitations it is 

essential to develop new methods which combine earth observation data with data generated 

from crop growth models, to eliminate the need for in-situ yield measurement and to preform 

global yield monitoring (Waldner et al. 2019). 

1.2. Objectives and scope 

The principal objective of this research was to develop a method to predict wheat yield at the 

field and pixel (i.e. sub-field) scales using remote sensing without using ground-based data. 

While most of the common satellite-based yield estimation methods extensively rely on in-situ 

data for training their models, they typically provide only a local solution for the area they have 

been calibrated in. The idea behind the method proposed in this thesis was therefore to 

develop a scalable and flexible yield estimation method which combines the power of both, i) 

high resolution spaceborne remote sensing and ii) crop modelling. In this process, the 

remotely sensed data provide continuous information of the crop’s health, development and 

their spatial variability within the field, while the crop model simulates the crop growth 

processes and the farm management practices which can’t be observed from space. To 

minimise the uncertainty of the model simulations, this research developed a method to detect 

the fields’ sowing dates and to monitor the crop development using daily Leaf Area Index (LAI) 

at 3 m during the season, derived from fused remotely sensed data. This was later used as 

the link to APSIM crop model simulations. 

The expected result from this study was to create a robust method that can ultimately estimate 

crop yields from the pixel level to regional scales for different types of broadacre crops, which 

theoretically can be used anywhere around the globe. 
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To achieve this, the main objective was divided into three sub-objectives: 

 

I. Detect sowing dates at a field scale using daily Planet Labs’ PlanetScope images.  

II. Fuse PlanetScope and Sentinel-2 images to create a high spatio-temporal resolution 

LAI (Leaf Area Index) dataset.  

III. Couple remote sensing data and APSIM crop model simulations and to investigate the 

potential of using detected sowing dates and high spatio-temporal resolution LAI maps 

to predict wheat yields within Australia at the field and pixel scales. It is important to 

emphasise that the method employs no ground-based data. 

 

1.3. Research Significance 

This study illustrate that the method proposed in this thesis is capable of identifying when a 

field was sown, monitoring the crops performance and health daily at 3 m in form of VIs and 

LAI, estimating its field-scale yield, producing a yield map of the field at the pixel level months 

before the harvest and finally, detecting when the field is harvested. This section highlights 

the main findings and research significance of each chapter.  

Sowing date detection (Chapter 2) 

A. High-resolution CubeSats images were used to detect sowing dates at the field scale 

for the first time. 

B. The sowing detection method achieved an unprecedented accuracy with RMSE of 0.9 

and 1.9 days (R2 = 0.99). 

C. The study overcame signal inconsistences existing among the constellation’s sensors. 

Fusion of PlanetScope and Sentinel-2 into daily 3 m LAI (Chapter 3) 

A. A new method to fuse time series of images from two different satellite constellations 

was developed. 

B. The method combines the spatial, temporal and spectral advantages of both sensors. 

C. Daily Sentnel-2 consistent, surface reflectance RGB-NIR images generated at a 3 m. 

D. Daily monitoring of crop Leaf Area Index (LAI) at a 3 m resolution (R2 of 0.94, 86% 

relative accuracy and RMSE of 1.37). 
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Yield estimation at the field and pixel scales (Chapter 4) 

A. A new method to estimate crop yield at the field-scale, without ground calibration data, 

was developed. 

B. The new method is able to estimate wheat yield at the field-scale in high correlation 

with the reported yield on average two months before the harvest. 

C. The method is able to produce estimated yield maps at the pixel level two to four 

months before the harvest. 

1.4. Thesis Outline 

This thesis is organized into five chapters with Chapter 1 being an introductory chapter on the 

background, objectives and scope of the research. Chapter 2 focuses on the sowing date 

detection method developed to address sub-objective number 1. This chapter is a 

reproduction of the published paper:  

Sadeh, Y., Zhu, X., Chenu, K., & Dunkerley, D. (2019). Sowing date detection at the 

field scale using CubeSats remote sensing. Computers and electronics in 

agriculture, 157, 568-580. https://doi.org/10.1016/j.compag.2019.01.042 

Chapter 3 describes the data fusion method developed to address sub-objective number 2. 

This chapter is a reproduction of the published paper:  

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein, O., ... & 

Chenu, K. (2021) Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 

m surface reflectance and wheat LAI monitoring. International Journal of Applied 

Earth Observation and Geoinformation, 96, 102260. 

https://doi.org/10.1016/j.jag.2020.102260 

Chapter 4 presents the yield estimation method developed in this study along with a 

comprehensive accuracy evaluation of its ability to estimate wheat yield at the field scale and 

to produce yield maps at the pixel level. Chapter 5 summarizes the conclusions and the 

lessons learnt from this study, but also includes suggestions for future works that need to be 

addressed in order to take full advantage of the potential of the proposed yield estimation 

method. 

As each of the chapters 2 – 4 are written as a paper, which include their own introduction and 

conclusions, the background section in Chapter 1 has been kept relatively brief and is intended 

therefore to provide a general background on the main topic of the thesis. Similarly, Chapter 

5 summarizes only the main conclusions and the lessons learnt from this study. 

https://doi.org/10.1016/j.compag.2019.01.042
https://doi-org.ezproxy.lib.monash.edu.au/10.1016/j.jag.2020.102260
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2. Chapter 2 – Sowing date detection 

This Chapter is a reproduction of the paper: 

Sadeh, Y., Zhu, X., Chenu, K., & Dunkerley, D. (2019). Sowing date detection at the field scale 

using CubeSats remote sensing. Computers and electronics in agriculture, 157, 568-580. 

https://doi.org/10.1016/j.compag.2019.01.042, 

with section and figure numbers changed to fit the thesis structure. 

2.1. Abstract 

Sowing dates have a great influence on crop yields as they affect what environmental 

conditions the plants will experience. Therefore, sowing dates are important to many 

individuals and organizations on the food production chain, including food manufacturers and 

traders. Despite their importance, large-scale comprehensive data on sowing dates are 

currently rare and often available only as broad estimates at the state, county or district level. 

Continuously obtaining sowing dates at the field scale is expensive, time-consuming and 

prone to human errors. Remote sensing on the other hand has the potential of conducting 

rapid, cost-effective and continuous surveys of farm management practices over large scales. 

Over the last decade, a new era in Earth observation satellites began with the production and 

deployment of smaller, lighter and cheaper nano-satellites known as CubeSats. Images from 

these satellites can potentially be used to capture sowing dates over time. In this study, we 

developed an innovative semi-automated sowing date detection methodology, which uses 

high spatio-temporal resolution CubeSat images to detect sowing dates at the field scale. We 

identified the sowing dates by using Planet’s PlanetScope data to detect changes on the fields’ 

surface caused by no-tillage sowing. Our approach overcame the signal inconsistences 

existing among the numerous sensors in the constellation, and detected 85% of the sown 

fields with R2 = 0.99. We succeeded to identify the actual sowing dates of individual fields with 

a median gap of 0 days within an unparalleled RMSE of 0.9 and 1.9 days in a set of national 

trials and in fields of a commercial farm, respectively. The methodology presented in this study 

can be used to produce and update field level crop statistics on a near daily-basis at a low 

cost. It is robust and simple and can be applied over a wide range of soil types, atmospheric 

conditions, crop types and sensors, to detect sowing dates in regions where no-tillage sowing 

is practiced. 

 

 

https://doi.org/10.1016/j.compag.2019.01.042
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2.2. Introduction 

Sowing dates have a large impact on crop development and growth and ultimately crop yields 

as they affect what environmental conditions the plants will experience (Coventry et al. 1993; 

Flohr et al. 2017). Sowing dates are thus important to organizations and individuals who are 

interested in production, processing, marketing and trade of food and its products (Guo 2013). 

Sowing dates are one of the factors under the farmers’ control to influence the crop 

environment and thus the yield (Ortiz-Monasterio and Lobell 2007), as earlier or later sowing 

frequently decreases crop survival and grain yields (Ozturk et al. 2006; Flohr et al. 2017). For 

instance, sowing too early increases the risk of frost in crops like wheat (Triticum aestivum) 

grown in post-heading frost prone regions, such as Australia (Zheng et al. 2012; Flohr et al. 

2017). On the other hand, late sowing can result in a reduced growing season due to greater 

temperature (Duchemin et al. 2015) and greater risk of drought and heat stresses (e.g. Zheng 

et al. 2012; Chenu et al. 2013). Studies showed that the difference between ‘best’ the and 

‘worst’ sowing dates could affect wheat yields by more than 1 t/ha (Ortiz-Monasterio and Lobell 

2007) and even cause a crop failure, with a reduction of up to 100% of the yield (Zheng et al. 

2015). Knowing the actual time when farmers sowed their crop could be used to better 

understand and improve current sowing practices and potentially increase yields (Ortiz-

Monasterio and Lobell 2007). For instance, an analysis of sowing date records indicated that 

wheat farmers from the major cropping parts of Australia have shifted their sowing dates by 

around 1.5 days per annum over the last decade, and could still sow earlier to increase their 

yield (Flohr et al. 2018). Given the significance of sowing dates for crop production, detecting 

sowing dates would be valuable for different crops from a local to global scale (Manfron et al. 

2017; Urban et al. 2018).  

Sowing dates are major inputs for crops models, which are commonly used to explore the 

expected yield effects of different management practices (including sowing dates across a 

range of locations (Zheng et al. 2012; Holzworth et al. 2014; Chenu et al. 2017; Flohr et al. 

2017)). However, sowing dates are a source of considerable uncertainty for regional studies 

(Mathison et al. 2017). Accurate regional information about sowing dates at a farm scale can 

be used to reduce the uncertainty of crop simulations (Mathison et al. 2017), however, 

obtaining accurate sowing dates from ground reports is very difficult and time consuming 

(Sacks et al. 2010; Marinho et al. 2014). 

Traditionally, information associated with crop phenology (including sowing dates) is collected 

in farmers’ surveys and is used to produce cropping systems or agro-ecological zoning maps 

that can be found as a form of national census. Even though sowing dates at a field scale are 

very important agronomically, only a few census datasets contain this information or are made 
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publicly available (in both developed and developing countries) (Urban et al. 2018). 

Furthermore, most of these data when they exist, are often infrequent, not quantitative, and 

available at the national scale or at the sub-national scale such as the state, county or district 

level (Sacks et al. 2010; Guo 2013). Producing statistics at the field level may improve our 

understanding of the reasons of yield gaps (i.e. gaps between achieved and achievable yields) 

(Hochman et al. 2012). Moreover, such a database could assist to identify fields with low-

performing management where greater productivity could easily be achieved by adapting the 

sowing date (Jain et al. 2016). To overcome this issue, many studies have used satellite 

remote sensing to map sowing dates over large areas using different spatial and temporal 

resolutions (e.g. Lobell et al. 2003; Sakamoto et al. 2005; Ortiz-Monasterio and Lobell 2007; 

Lobell et al. 2013; Marinho et al. 2014; Jain et al. 2016; Manfron et al. 2017; Urban et al. 2018).  

The advantages of remote sensing over the traditional approaches to collecting data on crop 

management practices have long been recognised (Ortiz-Monasterio and Lobell 2007). 

However, a methodology for detecting sowing dates directly from remote sensing imagery has 

not yet been developed. That is mainly because there is a lag-time between the sowing date 

and the plant emergence. Jin et al. (2016) argued that it is impossible to detect the sowing 

dates directly. Most existing studies attempted first to detect the crop “green-up”, i.e. the 

earliest reliable evidence of vegetation that can be sensed on satellite images (Lobell et al. 

2013; Manfron et al. 2017), and then to backcast emergence and sowing dates by assuming 

the lag time between the sowing and the green-up detection to be constant (e.g. Lobell et al. 

2013; Marinho et al. 2014; Duchemin et al. 2015; Jin et al. 2016; Gao et al. 2017; Manfron et 

al. 2017). In India, Lobell et al. (2013) used time series of MODIS and SPOT satellite 

Vegetation Index (VI) products, both with a spatial resolution of 1 km, to estimate the green-

up date each year at a district level. This allowed them to infer sowing dates within two-day 

difference from reported dates at the district level. In China, Jin et al. (2016) estimated wheat 

sowing dates using Normalized Difference Vegetation Index (NDVI) time series derived from 

the Chinese satellite HJ-1A/B (with a spatial resolution of 30 m and 2 days revisit time). They 

estimated sowing dates based on the relationship between the green-up and the sowing dates 

following the method from Lobell et al. (2013), and found sowing-dates estimates differing by 

an average of 6 days from the ground-based estimates. In the U.S.A, Urban et al. (2018) 

compared three satellite-based sowing estimation methods applied for maize and soybean at 

a county-level by using three different sensors that cover a large range of the electromagnetic 

spectrum. They used MODIS (optical) Enhanced Vegetation Index (EVI), solar-induced 

fluorescence (SIF) from GOME-2 (fluorescence) and Ku-band backscattering (dB) from 

QuikSCAT (radar) to detect the initial green-up stage. In their case, both EVI and SIF based 

estimations of sowing dates reached 𝑅2 of 0.75 and RMSE < 10 days from their county-level 
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validation data, whereas the radar-based estimates were negatively correlated with observed 

dates for most counties. Although the green-up detection approach gained popularity in the 

last two decades, using a fixed lag-time limits this method to the regions where this constant 

is known or can be determined. Furthermore, this approach neglects the strong impact of the 

weather variability, such as the timing of rainfall, on crop emergence dates (Marais Sicre et al. 

2016). Another method estimated the fraction of absorbed photosynthetically active radiation 

(fAPAR) to estimate the sowing date. But using this method, Lobell et al. (2003) only managed 

to predict planting months at a high confidence (up to 50% of the mean). Ortiz-Monasterio and 

Lobell (2007) used estimated fAPAR together with measured daily temperature and radiation 

as inputs in a crop growth model to estimate sowing dates. They achieved a high level of 

agreement (𝑅2 = 0.85, RMSE = 6.5 days) between their estimated and reported sowing dates. 

In Japan, Sakamoto et al. (2005) detected paddy fields which were ploughed and flooded 

before the rice planting, by identification of the decreased VI values during this period, using 

time series of MODIS-based EVI. They achieved an RMSE of 12.1 days between their sowing-

date estimations and official regional statistics. 

Remote sensing has also been applied to monitor other agricultural operations such as tillage 

(ploughing and harrowing), irrigation and harvesting (Mc Nairn et al. 1998; Sakamoto et al. 

2005; Hadria et al. 2009; Pacheco et al. 2010; Guo 2013). In terms of sowing, sowing crops 

into untilled soil (also called ‘no-tillage’, ‘zero tillage’ farming or ‘conservation agriculture’ 

(Derpsch et al. 2010)) has increasingly been adopted around the world over the last decades 

(Hobbs et al. 2008). This technique presents a lot  of advantages such as fuel, time and labour 

conservation, soil improvement (e.g. increase in soil nitrogen, organic matter, and water 

infiltration; decrease in soil erosion), lower costs and potential for yield increase (Baker and 

Saxton 2006; Pacheco et al. 2010). Due to these benefits (Zheng et al. 2014), the cropland 

area under conservation tillage increased worldwide by 47% in four years only, i.e. from 106.5 

million ha in 2009 to 157 million ha in 2013 (Kassam et al. 2015). 

With the no-tillage farming practice, seeds are directly sown into the previous crop residue 

and stubble. Therefore, we can assume that sowing represents the first change on the surface 

at the field-scale since the last harvest. From a remote sensing perspective, this means a 

distinct contrast between the sown (‘disturbed’) and un-sown (untilled) soil. Theoretically, this 

change can be used to detect sowing dates at the field scale using time-series of satellite 

images. Remotely-sensed tillage-mapping approaches already exist. They are based on the 

assessment of two features that are strongly modified by tillage systems: residue cover and 

surface roughness. Previous studies used optical, multi or hyperspectral sensors for 

qualitative and quantitative estimations of residue cover (Bégué et al. 2018). Daughtry (2001) 

showed that crop residues and soils often have similar spectral signature. However, crop 
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residue has a unique absorption of electromagnetic radiation near 2100 nm, which is 

associated with cellulose and lignin. The understanding of this absorption feature lays the 

foundation for a number of tillage indices derived from optical remote sensing with shortwave 

infrared (SWIR) bands (1200-2500 nm), such as ASTER, Landsat and MODIS (Serbin et al. 

2009; Zheng et al. 2014).  

To accurately detect sowing dates at a field scale from space using a no-tillage detection 

approach, a new high spatial and temporal resolution remote sensing source is needed. While 

satellites such as Sentinel-2 and Landsat may have adequate spatial resolution for different 

applications in agriculture (e.g. Battude et al. 2016; Skakun et al. 2017; Bégué et al. 2018), 

their temporal resolution (5 and 16 days revisit time, respectively) is not ideal for sowing 

detection, as there may be weeks between the acquisition of two clear-sky images (McCabe 

et al. 2017). To overcome these spatio-temporal limitations constellations of micro or nano-

satellites known as CubeSats can be used (McCabe et al. 2017).  

Over the last decade, the number of companies developing CubeSat satellites has increased. 

These new satellites, such as Planet Labs (“Planet”) PlanetScope and Skybox imaging SkySat 

satellites, are relatively inexpensive to build and allow mass production which enables the 

creation of a collection of both high spatial (<5 m) and temporal resolution (<1 week) imagery 

at lower cost (Dash and Ogutu 2016; Jain et al. 2016). These satellites have the potential to 

monitor and detect rapidly changing environments on the Earth surface (McCabe et al. 2017) 

and to obtain multiple measures of the same field, including sowing and harvesting dates 

throughout a single growing season, as demonstrated by Jain et al. (2016) in India. These 

authors established and calibrated linear relationships between sowing date (and yield) and 

the Green Chlorophyll Vegetation Index (GCVI) derived from SkySat images, which allowed 

them to estimate sowing dates (and wheat yields) with an R2 of 0.41-0.62 and an RMSE of 

6.68-12.41 days. However, a downside of CubeSat constellations  is the frequent 

inconsistency in data collected by different satellites in the constellation (Houborg and McCabe 

2016). Such inconsistencies may limit the accuracy of surface reflectance-based applications 

such as estimation of vegetation indices, and could hinder the use of CubeSat satellites to 

monitor changes on the Earth surface.  

In this chapter, a new and robust method is proposed to use CubeSat satellites, which operate 

in the optical range of the electromagnetic spectrum, to estimate sowing dates at the field 

scale via detection of no-tillage operation. The methodology used Planet’s PlanetScope 

satellite images to detect sowing dates of (i) small experimental wheat fields sown across 

Australia in a wide range of soils and weather conditions, and (ii) in all fields of a typical 

commercial farm in Victoria. 
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2.3. Methodology 

Sowing dates were detected at a field scale through unsupervised change detection using 

Planet’s CubeSat data. Our approach is based on the widely-used no-tillage farming practices. 

When a farmer sows, the surface changes its color or spectral response, usually to a darker 

color depending on the soil type. These changes are mainly caused by the newly exposed 

soil, which was just uplifted to the surface and by the mixing of last season’s crop residues 

with the soil. After discussion with experts, we assumed that when no-tillage farming practices 

are implemented, the first detectable field-scale change in the surface after the harvest is the 

sowing. Based on this, a robust simple change detection method to detect sowing dates was 

developed, which can be applied over a wide range of soil types, atmospheric conditions and 

sensors, regardless of crop types.  

2.3.1. Study fields and regions 

Our approach to directly detecting sowing dates using high spatio-temporal resolution 

CubeSat data was first tested using the Australian National Variety Trials (NVT) testing fields. 

The NVT is an Australian national program (www.nvtonline.com.au). In order to evaluate the 

capability of the new approach to detect sowing dates in different conditions, 16 NVT fields 

located at eight sites were chosen across Australia from the 2017 growing season (Figure 1). 

The studied field trials were selected to be located in the different main Australian wheat 

growing regions, and have diverse management practices, soil types, and weather conditions 

(Table 1). The average size of the NVT fields analysed in this study was 0.27 ha (about 70 m 

X 40 m). 

 

 

http://www.nvtonline.com.au/


Chapter 2 – Sowing date detection 
 

 

 

12 
 

In the second stage, the methodology was tested for 50 fields of a commercial farm located 

near Birchip, Victoria (Figure 1, Table 1) in 2017. The farm corresponds to an average 

Victorian farm. It is 6,400 ha in size (the average field size is 116 ha), and grows a large variety 

of crops including wheat, barley (Hordeum vulgare), canola (Brassica napus), lentils (Lens 

culinaris), oats (Avena spp.), vetch (Vicia sativa) and peas (Pisum sativum) across 55 fields. 

The studied sowing period in this farm spanned from late-March to mid-June (Figure 2). 

 

 

 

 

 

 

Figure 1. The spatial distribution of the National Variety Trials (NVT) testing fields used in this study and the 

location of the Birchip farm. The dark grey area corresponds to the Australian wheatbelt (based on Chenu et al. 

2013).  
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2.3.2. Imagery 

Images were sourced from PlanetScope CubeSat satellites data. PlanetScope is a satellite 

constellation comprising multiple launches of groups of individual CubeSat 3U form factor (10 

cm by 10 cm by 30 cm) satellites (Planet Team 2018). A complete PlanetScope constellation 

consists of about 120 satellites, which have the capability to image all of the Earth’s land 

surface on a daily basis. The PlanetScope satellites have four spectral bands Blue (455 – 515 

nm), Green (500 – 590 nm), Red (590 – 670 nm) and NIR (780 – 860 nm) with a Ground 

Sampling Distance (GSD) of 3-4 m at the nadir and positional accuracy of <10 m RMSE 

(Planet Team 2018). Planet’s PlanetScope constellation operates in two different orbits, the 

International Space Station (ISS) orbit and in a Sun Synchronous Orbit (SSO). The 

PlanetScope satellites, which operate at ISS, are deployed at an orbit altitude of 400 km (51.6° 

inclination), have a variable equatorial crossing time and a limited lifetime of about 1 year. 

Those on the SSO are deployed at orbit altitude of 475 km (~98° inclination), with an equator 

crossing time of 9:30 – 11:30 am (at local time) and expected 2-3 years lifetime (Houborg and 

McCabe 2018b; Planet Team 2018). The PlanetScope analytic Ortho Scene Products (Level 

3B) are used in this study, which were provided at a spatial resolution of ~3 m and with sensor-

Table 1. Summary of the sowing dates, soil types and annual weather statistics of the sites analysed in this study. Soil types 

were sourced from the Digital Atlas of Australian Soils Science (2000) and climate characteristics from the Australian Bureau of 

Meteorology (BOM) (2018).     

Site State Sowing date Soil type 

Annual 

rainfall 

(mm) 

 Annual mean 

max/min temp 

(°C) 

Mean 

number of 

days of rain 

(≥ 1 mm) 

Annual mean number 

of clear days during 

the sowing season 

(Apr-Jun) 

Kilcummin Queensland 10/04/2017 Dark brown cracking clays 552 29.6 / 15.4 42 26 

Lundavra Queensland 23/05/2017 Hard alkaline brown soils 576 27.0 / 12.7 53 19 

Lake Grace Western 
Australia 

28/05/2017 Hard alkaline yellow soils 345 23.5 / 10.4 52 25 

Coonamble New South 

Wales 
29/05/2017 Grey clays 546 26.5 / 11.7 50 26 

Corrigin Western 
Australia 

1/06/2017 Loamy yellow earths 373 23.8 / 10.0 59 25 

Urania South 
Australia 

2/06/2017 Brown calcareous earths 506 21.8 / 11.3 79 24 

Minnipa South 
Australia 

16/06/2017 Calcareous loamy earths 279 24.7 / 11.2 51 24 

Warramboo South 
Australia 

19/06/2017 Calcareous loamy earths 313 25.2 / 9.3 60 34 

Birchip Victoria 
17/3/2017 - 

13/6/2017 
Calcareous loamy soils 374 22.9 / 9.3 59 37 
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specific conversions to at-sensor top of Atmosphere radiance based on limited pre-launch 

calibration coefficients (Houborg and McCabe 2018b; Planet Team 2018). 

This study used a total of 205 (78 for the NVT analysis and 127 for the farm analysis) Planet 

CubeSat satellites scenes acquired by 78 different satellites (61 for the NVT analysis and 30 

for the farm analysis). For each NVT location, Planet CubeSat images were used, which 

covered a period of ten days before and ten days after the reported sowing dates (depending 

on image availability) (Table 2). On average, each field was covered by 9.5 satellite images 

throughout the testing period, with an average of two days gap between the images. For the 

farm analysis, images from 17/04/2017 to 20/06/2017 were used (Figure 2), with a five-day 

median gap between cloud-free CubeSat images (Table 2). The 2017 growing season was 

chosen since in the previous seasons, the PlanetScope constellation was not yet complete 

and the revisit time of each location was insufficient to accurately detect sowing dates. 

 

 

Figure 2. Number and timing of fields sown at the studied NVT (sub-figure A) trials and Birchip farm (sub-figure B) 

in 2017, together with the timing of available PlanetScope images (vertical grey lines). The crop type and number 

of fields sown each date for both NVT and Birchip farm.  
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2.3.3. Semi-automated sowing detection 

The semi-automated method developed to detect sowing dates based on spectral changes 

between successive CubeSat images of a field (Figure 3) requires three inputs: 1) two satellite 

images acquired on different dates (𝐼𝑚𝑎𝑔𝑒𝑡1
and 𝐼𝑚𝑎𝑔𝑒𝑡2

);  2) the field boundaries; and 3) a 

threshold value to detect changes between images, which has to be manually input for each 

set of images. This threshold corresponds to the percentage of values in the processed image 

histogram that will be used as a factor to determine a change in the image. First, the images 

from the same day (which may not necessarily be acquired by the same satellite) were 

mosaicked. Since PlanetScope satellites tend to have cross-sensor inconsistency (Houborg 

and McCabe 2016), the pixel values in the mosaicked image commonly suffer from the lack 

of uniformity. Next, each mosaicked image is clipped using the fields’ boundaries; in the 

following step, image-processing techniques used to detect the sowing dates. 

2.3.4. Change detection 

Many change-detection methods have been developed to identify changes on the Earth’s 

surface using remote sensing (e.g. Mas 1999; Bruzzone and Prieto 2000; Lu et al. 2004; Jin 

et al. 2013). Change detection using remote sensing images basically involves the comparison 

of  two images of the same area, which were acquired at different times (Byrne et al. 1980). 

Table 2. Number of images used to detect the sowing dates at each site and the median PlanetScope cover 

gap between the images over the period tested. The Birchip farm had 31 daily image mosaics, made out of 

127 PlanetScope scenes.   

Site 
Number of daily 

satellite images 

Median satellite cover gap 

(days) 

Kilcummin 8 3 

Lundavra 12 1 

Lake Grace 10 2 

Coonamble 13 1 

Corrigin 9 2 

Urania 9 1 

Minnipa 10 2 

Warramboo 7 3.5 

Birchip 31 (mosaics) 5 
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In this study, a Principal Component Analysis (PCA) was performed separately for each image 

to detect the change in the fields’ surface caused by no-tillage sowing (Figure 3).  PCA is 

useful for detecting decorrelations between images (Du and Fowler 2007) and also for 

separating an underlying systematic data structure from noise (Wold et al. 1987). Four 

principal components (𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3 and 𝑃𝐶4) were output from all the pixels of the mosaic 

 

Figure 3. Explanatory diagram of the sowing-detection workflow 
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that intersected with the fields’ polygons. In this study, 𝑃𝐶1 was systematically the best PC to 

represent the variance in the soils, while 𝑃𝐶2 tended to represent variations in the vegetation, 

𝑃𝐶3 represented clouds and shades variance, if they were present, and 𝑃𝐶4 mainly contained 

noise (Figure 4). 

Afterwards, 𝑃𝐶1s from two consecutive images (𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1  (early image) and 𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1  (later 

image)) were used to detect whether any new sowing occurred between these two dates by 

using the following equation: 

Equation 1 

𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1

𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1
                                                                    

where 𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1  is the first principal component of the earlier satellite image and 𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1  is 

the first principal component of the later satellite image. The ratio of the two resulted in a one-

band raster that represents the magnitude of change between the two images at the pixel level 

(Figure 5B). A pixel value closer to 1 indicates no change. The histogram of the ratio image 

generally exhibits a normal distribution (bell-shaped) around the value of 1 if there is no 

change across the image. When changes occur, the histogram would show a multimodal 

distribution, with several distributions combined, i.e. would have multiple peaks and valleys. 

RGB PC1 PC2 

PC3 PC4 
Figure 4. Example of Principal 

Component Analysis (PCA) of a 

PlanetScope RGB-NIR image. This 

figure shows the original image in RGB 

and the first four Principal Component 

(PC) received from the analysis. 𝑃𝐶1 

represented better the variance in the 

soils, while 𝑃𝐶2 tended to represent 

variations in the vegetation and 𝑃𝐶4 

manly contained noise. Among all the 

PCs, 𝑃𝐶1 contained the highest 

contrast between the newly sown field 

and the other fields.   
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By examining the distributions rather than the one representing “no change”, a threshold pixel 

(ratio) value to identify changes were determined. For example, in Figure 5C, there are two 

distributions of the pixel values: one is a normal distribution around 1 and the other is a normal 

distribution around about 2.8. The second distribution represents the changes. The left end of 

the second distribution is set as the threshold value. A pixel with a value equal to or greater 

than this threshold is considered as “change”. The threshold values may change from scene 

to scene due to cross-sensor inconsistencies among the different satellites in the constellation. 

In our case study, threshold values range between 1.2 and 3. 

The classified image at this stage (Figure 6D) contains a lot of noise, which was eliminated in 

two stages. First, a low-pass filtering method is used (Figure 6E) to smooth and remove 

speckle noise from the image (Al-Amri et al. 2010). Second, only if the area detected as 

changed covers more than 25% of the field area, is considered sown. This second noise 

cleaning stage is used to filter other changes detected on the earth surface that could have 

 

Figure 5. Use of the image histogram to choose the threshold value for change detection. A) True colour Image 

of a NVT wheat field after sowing (the red rectangles are the experimental field boundaries). B) Image resulting 

from dividing  𝐼𝑚𝑎𝑔𝑒
𝑡1

𝑃𝐶1 by 𝐼𝑚𝑎𝑔𝑒
𝑡2

𝑃𝐶1. C) Histogram of the image in B. D) Results of change detection based 

on a threshold set to 2.5 (as identified in C). 
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changed over time, e.g. manmade (e.g. infrastructure construction) or caused by a natural 

phenomenon (e.g. water ponding on the surface). Note that sowing large fields (e.g. more than 

250 ha) may take a few days, and it is common for farmers to not sow an entire field in a day. 

In such case, the latest date in which more than 25% of the field’s area detected as sown, 

assigned as the final sowing date for that field. Since the method identified which fields were 

sown between 𝐼𝑚𝑎𝑔𝑒𝑡1
and 𝐼𝑚𝑎𝑔𝑒𝑡2

, we know that the sowing date must be within this 

timeframe. Therefore, the middle date between the earlier and later images assigned as the 

final sowing date to each field. The final output of the semi-automated sowing detection 

technique is a shapefile that contains fields or parts of fields detected as sown (as shown in 

Figure 6), the estimated sowing date, the actual sown area and the percentage within each 

field that was sown in the time period between 𝐼𝑚𝑎𝑔𝑒𝑡1
and 𝐼𝑚𝑎𝑔𝑒𝑡2

. 

 

Figure 6. Example of sowing detection. This figure illustrates the sowing detection of two sown fields 

(boundaries in yellow) using a pair of images acquired on 6/5/2017 (𝐼𝑚𝑎𝑔𝑒𝑡1
) and 7/5/2017 (𝐼𝑚𝑎𝑔𝑒𝑡2

) 

(subfigures A & B). Subfigure C is the resulting image of dividing  𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1 by 𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1. A change between 

the images resulted in high values (red) and negligible changes resulted in low values (green). In subfigure D, 

the image is classified to identify pixels that changed (in white). A low-pass filter used to clean the image from 

noise (subfigure E). Finally, the semi-automated method outputs and exports the area sown between 𝐼𝑚𝑎𝑔𝑒𝑡1
 

and  𝐼𝑚𝑎𝑔𝑒𝑡2
 (in green) (subfigure F). 
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2.4. Results 

A very high correlation (𝑅2 = 0.99) was found between reported and detected sowing dates in 

both 16 NVT fields and the Birchip farm analysis (Figure 7), which span over a wide range of 

soil types, atmospheric conditions, crop types and PlanetScope sensors (Table 1, Figure 2).  

The proposed semi-automated methodology detected 100% of the sowings in NVT fields and 

80% in the farm fields (Table 3). There was only an average -0.6 day gap (0.0 day gap for the 

median) between the estimated and the actual sowing dates (RMSE = 0.9 days). For the 

Birchip farm, the average and median gaps were -0.1 and 0.0, respectively (RMSE = 1.9 days) 

for the fields detected as sown (Table 3). 

 

Figure 7. Correlation between the reported and detected sowing dates of the 16 NVT fields (A) and the 50 

farm fields (B). The dashed line marks the trend line. 

Table 3. Summary of the sowing detection analysis conducted over 16 NVT fields and 50 fields of the Birchip 

farm. This table shows the accuracy of the detection and the gap between the reported and the detected 

sowing dates. 

  NVT Birchip farm 

Total number of fields 16 50 

Sowing detected (No. of fields) 16 (100%) 40 (80%) 

Failed to detect (No. of fields) 0 (0%) 10 (20%) 

False detection  
(% of the detections) 

1.4% 9.1% 

RMSE (days) 0.9 1.9 

Mean error (days) -0.6 -0.1 

Median error (days) 0.0 0.0 

Standard deviation (days) 0.7 1.9 
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During the analysis, a few false detections were found (in only 5% of the algorithm 

implementations), where a field was incorrectly classified as sown by the sowing detection 

algorithm in the time period between 𝐼𝑚𝑎𝑔𝑒𝑡1
and 𝐼𝑚𝑎𝑔𝑒𝑡2

. Most of the sowing detection 

analyses (95%) ended with zero false detections, however in some cases the presence of 

clouds in the images was translated as a change that covers most of the field and therefore 

was determined as sown. In the NVT analysis, only 1.4% of the detections were false 

detections. False detection occurred more often in the Birchip farm, when 9.1% of the 

detections were false detections. This higher rate of false detection was mainly due to cloud 

contamination in the 23/04/17 image, which caused five false detections. When excluding this 

image from the analysis, only 6.1% of the detections were false detections. 

Detection failures, i.e. no detection of sowing, which occurred in 20% of the farm’s fields, were 

partly due to cloud cover (50% of the cases) and the large time gap between 𝐼𝑚𝑎𝑔𝑒𝑡1
 and 

𝐼𝑚𝑎𝑔𝑒𝑡2
 (33% of the cases). Most successful detections took place when the gap between the 

sowing and the satellite image date was under four days (Figure 8). In these conditions, the 

successful detection rate was 91% of the fields, however, when this gap is larger than five 

days the percentage of the successful detections drops to 62% (Figure 8). Although the 

distribution of the number of samples in Figure 8 is not constant along the X-axis, and the 

 

Figure 8. Distribution of the 56 successful (in green), 10 unsuccessful (in red) and 10 false (in yellow) 

detections of the sowing dates preformed in this study (left Y-axis).  This graph also show probability to 

achieve a successful detection (black points) relatively to the gap in days from the sowing date to the 

satellite cover (right Y-axis). As this gap increases, the likelihood to detect the sowing date decreases in 

addition to higher chances for false detections (black dashed line). 
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probability data points are scattered, the log probability curve shows a clear decreasing trend. 

The reason for a lower probability to achieve a successful detection when the gap in days from 

the sowing dates to the satellite cover is larger is due to the fading in contrast between the 

appearance of the unsown and the sown soil surfaces. These were caused mainly by the 

rainfall events, wind erosion and the loss of the moisture in the newly exposed soil, which 

makes this contrast fade with time.   

Although our semi-automatic sowing detection method was designed to determine the sowing 

date when a field was sown in more than 25% of its area, it has the capacity to identify sub-

field changes. For instance, sowing of a small proportion of the field was detected at the Birchip 

farm (Figure 9), as the grower did not have time to complete the sowing of the entire field at 

once, which is relatively common in this region. 

2.5. Discussion 

2.5.1.  Detecting no-tillage sowing with CubeSat satellites 

Remote sensing has the potential for mapping sowing dates across the globe. To our 

knowledge, no methodology has been published on how to detect sowing dates directly from 

satellite images. While, until recently, such detection could not happen due to technological 

limitations (low spatial resolution and revisit time of the satellites), our approach overcomes 

these limitations by using CubeSat images to detect no-tillage sowing, which is becoming the 

main sowing practice in major cropping regions worldwide (Kassam et al. 2015). When a 

farmer uses a no-tillage seeder without performing any pre-sowing cultivation, the surface 

 

Figure 9. Sub-field sowing detection. This figure illustrates the sub-field sowing detection capabilities. 

Subfigure A shows the RGB satellite image of a partly sown field (the area in brown). Subfigure B is the 

resulting image of dividing  𝐼𝑚𝑎𝑔𝑒
𝑡1

𝑃𝐶1 by 𝐼𝑚𝑎𝑔𝑒
𝑡2

𝑃𝐶1. A change between the images resulted in high values (red). 

Subfigure C shows the field’s area detected as sown (in green). 
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changes its color, usually to a darker color. These changes can sometimes appear as minor 

and they cannot always be seen with a naked eye (e.g. Figure 5A), given the similarity of the 

spectral signature of crop residues and soils in the visible and near infrared. Their spectra 

differ within the SWIR spectrum (Daughtry 2001), but CubeSat satellites like Planet’s 

PlanetScope, which are attractive given their high spatio-temporal coverage, commonly do 

not operate in such long wavelengths. Hence, they cannot be used to detect the changes 

caused by no-tillage practices using SWIR-based tillage indices.  

Satellite-based change detection is commonly based on the analysis of differences between 

two images using band-ratios or classifications derived from the original image bands. 

However, such approaches are very limited for CubeSats such as PlanetScope given (i) cross-

sensor inconsistencies, as the PlanetScope satellites are not identical, so that each CubeSat 

can have a unique spectral response (McCabe et al. 2017), and (ii) different atmospheric 

conditions during the acquisition. Different atmospheric conditions affect the amount of 

radiation that reaches the sensor, causing inter-band and inter-pixel differences within the two 

images (Byrne et al. 1980). Unlike sensors such as Landsat, MODIS or Sentinel-2, which 

traditionally developed and launched by space agencies, Planet’s CubeSats suffer from 

relatively low signal-to-noise ratio. As a result, any time-series data from those CubeSat 

satellites is likely to have inconsistent reflectance signals, even when applying atmospheric 

correction techniques (Houborg and McCabe 2018b). The main challenge when conducting 

change detection using these types of satellites is to separate the noise captured by the 

sensors, which causing dissimilarities among the different satellites in the constellation, from 

the actual change that happened on the Earth surface between the earlier and later images. 

Therefore, the reliability of detecting changes, while analysing images acquired by different 

CubeSat images such as PlanetScope constellation, is very limited when using the original 

bands (Houborg and McCabe 2016) and indices. That adds the challenges of addressing the 

varying atmospheric conditions to the change detection analysis. To overcome these 

limitations the PCA was implemented, which is a well-known statistical technique for 

multivariate data analysis (Wold et al. 1987; Pohl and Van Genderen 1998; Du and Fowler 

2007). PCA extracts the dominant patterns in the dataset (Wold et al. 1987) and expresses 

this information as a set of new variables called Principal Components (Abdi and Williams 

2010). The first Principal Component (PC) band in the image contains the largest fraction of 

data variance and the second PC band contains the second largest data variance, and so 

forth. The last 𝑃𝐶 bands seem noisy due to the very little variance they contain, which manly 

represent the noise in the original spectral data (Rajendran et al. 2016). PCA is useful for 

detecting decorrelations between images (Du and Fowler 2007) and also for separating an 

underlying systematic data structure from noise (Wold et al. 1987). In remote sensing PCA is 
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commonly used for land-cover/land-use change detection, classification and anomaly 

detection (e.g. Byrne et al. 1980; Du and Fowler 2007; Celik 2009; Abdi and Williams 2010; 

Dronova et al. 2015; Gil-Yepes et al. 2016). Furthermore, PCA-based change-detection is 

effective regardless of the differences in spectral, spatial, and radiometric resolutions of the 

multi-sensor satellite data (Deng et al. 2008). In this study, a PCA used to extract the dominant 

patterns in the images, and to conduct detection of changes between the main patterns in 

each pair of images. This method allowed us to have a comparable measure between the 

images to detect changes in the fields’ surface, even when images acquired by 78 different 

PlanetScope satellites with different atmospheric conditions were used. This study found that 

using 𝑃𝐶1 is consistently superior over the other 𝑃𝐶𝑠 to detect changes caused by sowing, 

even when processing images acquired by CubeSats with a limited pre-launch sensor-specific 

calibration (Houborg and McCabe 2018b; Planet Team 2018). 

2.5.2.  Unprecedented levels of sowing detection 

The semi-automated sowing detection methodology achieved high performances with 85% 

detection (56 out of 66) of the sown fields in both NVT and Birchip farm fields (Table 3). The 

estimated sowing dates were very highly correlated with the actual sowing dates (𝑅2 = 0.99; 

Figure 7), with a median gap of 0 days between the reported and estimated dates, and a low 

RMSE (0.9 and 1.9 days for the NVT fields and the Birchip farm, respectively; Table 3). The 

results of our semi-automated sowing detection methodology, thus exceeds the performance 

and accuracy of the methods used by previous studies, which used different spaceborne 

sensors with diverse resolutions and in various electromagnetic spectral regions (optical, 

fluorescence, and radar). Studies that used the green-up detection approach, succeeded in 

estimating sowing dates with a RMSE ranging from 6.68 to 12.41 days, and 𝑅2 ranging 

between 0.15 and 0.90 between their estimations and official regional statistics (e.g. Lobell et 

al. 2013; Jain et al. 2016; Urban et al. 2018). Their main limitation is to use a fixed period (days 

to weeks) to backcast the emergence of the crops, while this period varies in particular with 

crops species and weather conditions (Marais Sicre et al. 2016; Urban et al. 2018). Due to the 

spatial and temporal variability of the environmental and crop characteristics, such a linear 

relationship between sowing date and crop emergence are local and would be difficult to 

establish without prior knowledge. Our approach on the other hand, does not depend on local 

conditions (soil types, rainfall or crop types (Table 1, Figure 2)), does not require the 

identification of a fixed number of days to backcast the emergence and is therefore more 

suitable for diverse environments, as long as no-tillage is practiced.      

The chances for a successful sowing detection were higher in the first four days following the 

sowing (91% successful detections). In our study, nearly half of the detected sowing occurred 
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only one day after the sowing (Figure 8). Therefore, using satellites with a temporal resolution 

larger than four days such as Sentinel-2 or Landsat, may not achieve as high accuracy of 

detection as in this study. In addition, we expect that as the revisit time of CubeSat-based 

constellations will increase over the years, the probability for a successful detection using our 

approach will improve accordingly. 

Detecting sowing dates at the field level requires both high spatial and temporal resolution 

remote sensing data. Previous studies commonly worked at a region, county or state scale 

and did not directly detect the sowing dates, as they often used low spatial resolution satellite 

data such as MODIS (250 m – 1 km) to estimate sowing dates at aggregated-level scale of 

multiple fields (e.g. Sakamoto et al. 2005; Lobell et al. 2013; Urban et al. 2018). These limit 

the accuracy of the estimations and the applications derived from these data. Additionally 

these were unable to distinguish crops from natural vegetation (Urban et al. 2018). In contrast 

to MODIS, which also has daily revisit time, CubeSat satellites such as PlanetScope have the 

ability to map individual farms or fields and to represent the large heterogeneity of 

management practices within and across fields (Jain et al. 2016). Our methodology allowed 

the detection of field and even sub-field level changes caused by sowing (Figure 9). This 

capability can thus potentially be used to monitor progress in sowing even at the sub-field 

scale.  

Satellite-based studies on yield estimation traditionally used officially reported sowing dates 

(e.g. Sakamoto et al. 2005; Marinho et al. 2014; Jin et al. 2016) or sowing dates based on 

farmers’ surveys (e.g. Ortiz-Monasterio and Lobell 2007; Jain et al. 2016). High-resolution 

information of sowing dates in regional datasets could be used to reduce the uncertainty of 

regional yield prediction using crop simulations (Mathison et al. 2017). However, the existence 

of such datasets is currently scarce, since only few censuses collect this information or make 

it publically available. Furthermore, when released, this data is often shared at aggregated 

regional scales (Urban et al. 2018). Establishing a large-scale database of field/farm 

management practices is time consuming, expensive, relies heavily on manual labour and 

requires some training (Jain et al. 2016). The methodology presented in this study, can be 

used to produce low-cost field level statistics with unprecedented spatial coverage, which can 

be updated on a near-daily basis. In addition, statistics at the field-level may improve our 

understanding of the reasons of yield gaps, and could assist to identify low-performing fields 

that need to be treated in order to increase their productivity (Jain et al. 2016). Our CubeSats-

based change detection methodology also has the potential to be implemented to monitor 

rapidly changing environments in other disciplines such as for geomorphological and natural 

disaster/hazards studies. For example, assembling information on tillage is important for soil 
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erosion modelling, despite the impracticability of collecting such information using ground 

surveys (Mc Nairn et al. 1998). 

2.5.3.  Limitations and perspectives 

Despite its very high accuracy, our sowing detection methodology has limitations. Although 

the approach presented here can overcome the presence of a few small-scattered clouds in 

the scene as a field is considered as sown only if the area detected as changed exceeds 25% 

of the field’s area, most of the failed and false detections (50% of the failed detection and 60% 

of the false detections in the Birchip farm) were caused by the presence of clouds. The 

presence of cloud shadows in the images on the other hand was found to have less impact 

on results. This is due to the fact that the areas covered by cloud shadows produced low 

values in the histogram of the ratio image, which are not high enough to be considered as 

“changed”. I believe that it is possible to overcome some of the failed and false detections 

caused by the presence of clouds and cloud shadows in the images (depending on the 

percentage of the coverage in the image) by masking the clouds and cloud shadows out of 

the images (Kolecka et al. 2018). There are a number of automated cloud and cloud shadow 

detection methods presented in the literature, e.g. Fmask (Function of mask) (Zhu and 

Woodcock 2012; Frantz et al. 2015). However, these methods commonly use SWIR bands as 

they are offering a high contrast between cloudy and cloud free pixels (Sedano et al. 2011). 

PlanetScope satellites do not operate in the SWIR and therefore future studies will investigate 

how to adapt the existing cloud and cloud shadow detection methods to these new satellites. 

Another approach that should be investigated is to separate cloud-based changes and 

sowing-based changes by analysing the shape of their appearance in the image, as clouds 

ought to be quite different from the mostly straight-line edges of sowed areas. Another way to 

potentially overcome this limitation would be to integrate the Synthetic Aperture Radar (SAR) 

data into the change detection analysis. In contrast to optical sensing, SAR sensors have the 

advantages of all-weather capabilities, and are not affected by the presence of clouds in the 

imagery. While SAR data may facilitate change detection in cloudy conditions, most of the 

spaceborne SAR systems do not have both the required temporal resolution and the spatial 

resolution. There are few SAR systems that operate at a high spatio-temporal resolution, but 

the high costs of such SAR data will probably make an operational sowing detection 

application impractical. 

Another drawback is imposed by mosaicking of same-day images acquired by different 

satellites. This study noticed that when we mosaicked images from different CubeSats in the 

constellation, they provide a good visual coverage of the study area. However, using these 

mosaics to calculate the ratio-images prevented us from setting a constant value for histogram 
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thresholding, even when both images were acquired on the same day. Therefore, in the case 

of a field separated into two parts in two images, the same threshold cannot be used for both 

parts of the field. But it was very rare that a sown field was present in two images.  

Our method has been developed for the no-tillage sowing practice. While this sowing practice 

is now common worldwide for rainfed crops (Kassam et al. 2015), our method is currently 

limited to regions where no-tillage sowing is being implemented. Yet, I believe that this 

approach could also be valid for other types of sowing. This potentially can be done by 

detecting the last field scale change on the soil surface before the seedling emergence. Once 

the crops can be detected by a vegetation index (e.g. NDVI) similar to the green-up approach 

(Lobell et al. 2013), we can estimate the date when the last field scale change was detected, 

which is likely to be the sowing date.   

Currently our sowing detection method is still semi-automated, as users need to identify the 

pixel values that correspond to a change in the image histogram, in order to determine the 

threshold to classify pixels as ‘changed’ or ‘not changed’ (Figure 5). Additionally, our method 

uses the polygons to identify field locations, which were known in this study. In order to fully 

automate the process, the two inputs (pre-determined threshold and the polygons of the fields) 

need to be identified automatically. This potentially can be achieved by implementing machine-

learning techniques (Toulouse et al. 2016) to identify the pixels that represents change in the 

histogram. It is proposed that future studies should explore the ability to use clustering 

algorithms such as K-Means, Fuzzy K-Means and the self-organizing map (SOM) to perform 

automatic classification (Kanungo et al. 2002; Zhong et al. 2006; Gonçalves et al. 2008; Kussul 

et al. 2017). Automation of this process is necessary in order to turn this prototype into an 

operational application. The location and boundaries of the fields, expressed as geo-located 

polygons can be also identified using remote sensing by implementing classification and 

segmentation techniques (Van der Sande et al. 2003; McCarty et al. 2017). Previous studies 

showed that time-series images could successfully be used to identify crop fields, classify 

between irrigated and non-irrigated crops (Jin et al. 2016; Azzari and Lobell 2017; Zhang et 

al. 2018), classify crop types (Van Niel and McVicar 2004) and to preform cropland area 

segmentation (Gallego et al. 2014; McCarty et al. 2017). Perhaps the main difficulties in the 

context of our method will be the separation between rainfed crops from the natural vegetation 

and the accurate delineation of the field boundaries. However, as rainfed crop fields in 

developed countries commonly tend to be large in size (> 10 ha) and in a square shape, I 

believe that implementing existing methods will probably achieve high accuracy.     

Despite the inconsistency of spectral data, CubeSats are only starting to unleash their 

potential. I strongly believe that as more advanced CubeSat constellations are deployed into 
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space, the number of CubeSats-based applications at the field or farm level will increase and 

their efficacy for detecting sowing and harvesting dates will improve. 

2.6. Conclusions 

In this study, an innovative semi-automated sowing detection methodology was developed, 

based on Planet’s PlanetScope data to detect changes on field surface caused by sowing. 

The method detected 85% of the sown fields with a very high correlation (𝑅2 = 0.99) between 

actual and estimated dates. Time of sowing was detected with a median gap of 0 days while 

achieving RMSE of 0.9 and 1.9 days in a national set of data and in a representative 

commercial farm, respectively. The approach may be used to produce and update near-daily 

low-cost field level statistics in an unprecedented spatial coverage. To fully automate sowing 

detection at the field scale, machine-learning techniques could be explored to identify 

automatically parts of a histogram corresponding to a change in spectrum (due to soil 

disturbance). Automation will also require the integration of classification and segmentation 

techniques to detect the fields’ location and to extract their boundaries. Methods to account 

for clouds present in the images would also improve the applicability of the method. We can 

expect that in the future, the accuracy of this method will increase as more and more CubeSats 

constellations become operational. 
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3. Chapter 3 – Fusion of PlanetScope and Sentinel-2 

into daily 3 m LAI  

This chapter is a reproduction of the paper “Fusion of Sentinel-2 and PlanetScope time-series 

data into daily 3 m surface reflectance and wheat LAI monitoring” published in International 

Journal of Applied Earth Observation and Geoinformation by Sadeh et al. (2021), with section 

and figure numbers changed to fit the thesis structure. 

3.1. Abstract 

The dynamics of Leaf Area Index (LAI) from space is key to identify crop types and their 

phenology over large areas, and to characterize spatial variations within growers’ fields. 

However, for years remote-sensing applications have been constrained by a trade-off between 

the spatial and temporal resolutions. This study resolves this limitation. Over the past decade, 

the number of companies and organizations developing CubeSat constellations has 

increased. These new satellites make it possible to acquire large image collections at high 

spatial and temporal resolutions at a relatively low cost. However, the images obtained from 

CubeSat constellations frequently suffer from inconsistency in the data calibration between 

the different satellites within the constellation. To overcome these inconsistencies, a new 

method to fuse a time series of images sourced from two different satellite constellations is 

proposed, combining the advantages of both (i.e., the temporal, spatial and spectral 

resolution). This new technique was applied to fuse PlanetScope images with Sentinel-2 

images, to create spectrally-consistent daily images of wheat LAI at a 3 m resolution. The daily 

3 m LAI estimations were compared with 57 in-situ wheat LAI measurements taken in Australia 

and Israel. This approach was demonstrated to successfully estimate Green LAI (LAI before 

the major on-set of leaf senescence) with an R2 of 0.94 and 86% relative accuracy (RMSE of 

1.37) throughout the growing season without using any ground calibration. However, both the 

Sentinel-2 based estimates and the fused Green LAI were underestimated at high LAI values 

(LAI > 3). To account for this, regression models were developed, improving the relative 

accuracy of the Green LAI estimations by up to a further 47% (RMSE of 0.35-0.63) in 

comparison with field measured LAI. The new time series fusion method is an effective tool 

for continuous daily monitoring of crops at high-resolution over large scales, which opens up 

a range of new precision agriculture applications. These high spatio-temporal resolution time-

series are valuable for monitoring crop growth and health, and can improve the effectiveness 

of farming practices and enhance yield forecasts at the field and sub-field scales. 
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3.2. Introduction 

Improving the spatial and temporal estimation of Leaf Area Index (LAI) and monitoring of the 

crop developmental stage using remotely sensed imagery can inform service providers and 

growers to facilitate management decisions, formulate policies, and ultimately improve 

profitability (Pasqualotto et al. 2019; Sun et al. 2019). LAI also plays an important role in crop 

monitoring and can be used in crop growth models to better predict yield (Clevers 1991; Bøgh 

et al. 2004; Lobell et al. 2015). One of the common applications for LAI is to provide yield 

estimations (e.g. Ines et al. 2013; Lobell et al. 2015; Azzari et al. 2017; Sun et al. 2017; 

Waldner et al. 2019). 

LAI is defined as the ratio of one-sided leaf area per unit ground area (Watson 1947) and 

knowing the LAI of a crop has a wide range of applications. However, monitoring crop LAI by 

extensive in-situ sampling over large areas is expensive, time consuming and consequently 

impractical (Houborg and McCabe 2018c). Therefore, for decades scientists around the world 

have attempted to estimate LAI from space (e.g. Pollock and Kanemasu 1979; Wiegand et al. 

1979; Chen et al. 2002; Gitelson et al. 2003; Viña et al. 2011; Nguy-Robertson et al. 2014). 

However, the trade-off between the spatial and temporal resolution typically restricted the use 

of high spatial and temporal time-series of images for agricultural applications (Waldner et al. 

2019).  

As crop canopy reflectance is affected by the LAI, as well as by the chlorophyll distribution, 

canopy structure and the background soil (Gitelson et al. 2005), methods which rely on optical 

remote sensing to convert surface reflectance data into LAI estimations were developed 

(Delegido et al. 2015). These methods are commonly classified into two groups (Delegido et 

al. 2015; Fang et al. 2019; Pasqualotto et al. 2019; Kimm et al. 2020): (i) physically-based 

retrieval methods, which are based on radiative transfer models (RTM), when the LAI is 

estimated based on the inversion of these models (e.g. Houborg and McCabe 2018c), and (ii) 

an empirical approach using either linear or nonlinear regressions with vegetation indices (VIs) 

as independent variables (e.g. Herrmann et al. 2011; Nguy-Robertson et al. 2014). These two 

groups of methods have both advantages and disadvantages. The physically-based retrieval 

methods are more generally applicable, but they are often limited by the nature of canopy 

structure and thus suffer from the ill-posed problem that may end in an unstable solution and 

require an a priori knowledge of targeted canopies (Bsaibes et al. 2009; Delegido et al. 2015). 

The empirical methods are commonly based on pre-trained relationships between field 

measured LAI and VIs; they are simple and do not require intensive computation. However, 

these empirical relationships could only be useful in regions that are similar to those used for 
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calibration (Bsaibes et al. 2009; Kimm et al. 2020) and are less reliably applied for multiple 

vegetation types (Pasqualotto et al. 2019). 

The majority of these methods have been developed for retrieving LAI from green vegetation 

only (Delegido et al. 2015), which is often called the Green Leaf Area Index (Green LAI or LAI-

green). The Green LAI represents the leaves which are photosynthetically active (Daughtry et 

al. 1992). In contrast to the brown or senescing LAI (Delegido et al. 2015), remotely sensed 

Green LAI is more useful for agro-ecosystem monitoring (Pasqualotto et al. 2019), 

assessment of water logging damage in agriculture (Liu et al. 2018), estimating vegetation 

phenology (Verger et al. 2016), monitoring of deforestation (Valderrama-Landeros et al. 2016), 

crop modelling (El Hajj et al. 2016) and yield prediction (Lobell et al. 2015). 

Previous studies showed that LAI can be estimated using spaceborne sensors such as 

AVHRR (Franch et al. 2017), MODIS (Huang et al. 2015), Landsat (Gao et al. 2012), 

WorldView-2 (Psomiadis et al. 2017) and Sentinel-2 (S2) (Verrelst et al. 2015; Djamai et al. 

2019; Pasqualotto et al. 2019). Each of these sensors has their pros and cons, which mainly 

arise from their spatial, temporal and spectral resolutions or costs. Over the last decade, the 

number of companies developing CubeSats has increased. These new satellites, such as 

Planet Labs' PlanetScope (PS) CubeSat, can be the size of a milk carton, are relatively 

inexpensive to build and launch to a low Earth orbit, thereby making it possible to acquire large 

image collections at high spatial and temporal resolutions at a relatively low cost. However, 

one of the major challenges working with time series CubeSat imagery is the fact that unlike 

large and expensive satellites such as S2 or Landsat, the images obtained from CubeSat 

constellations, such as Planet’s PS, frequently suffer from radiometric inconsistencies in the 

data collected by the different satellites within the constellation, due to inter-calibration 

challenges and their low signal-to-noise ratio (Houborg and McCabe 2016; Houborg and 

McCabe 2018b; Leach et al. 2019; Sadeh et al. 2019).  

The lack of suitable combinations of both high spatial and temporal resolution time series from 

well calibrated satellite images (Waldner et al. 2019) motivated a few attempts to fuse CubeSat 

imagery with these other types of imagery into high spatio-temporal LAI datasets. For 

example, Houborg and McCabe (2018b) created Landsat-consistent LAI of an irrigated alfalfa 

field in Saudi Arabia by fusing PS, Landsat and MODIS images coupled with in-situ 

measurements, to spatially and temporally enhance Landsat-based LAI to the PlanetScope 

resolution. Li et al. (2019) generated red-edge bands at 3 m spatial resolution by fusing S2 

and PS images, by using the weight-and-unmixing algorithm as well as the SUPer-REsolution 

for multi-spectral Multi-resolution Estimation (Wu-SupReME) approach. However, their fusion 

method was tested with only a few individual images acquired on selected dates, and their 



Chapter 3 – Fusion of PlanetScope and Sentinel-2 into daily 3 m LAI 
 

 

 

32 
 

relationship between in-situ wheat LAI measurements and the VIs from fused images only 

applies to Jiangsu Province, China, where it was established. Kimm et al. (2020) used the 

Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat STAIR (SaTellite dAta 

IntegRation) fusion product (Luo et al. 2018) and fused it with PS data to produce daily LAI 

estimation of corn and soybean in the U.S. Corn Belt. The STAIR method uses an adaptive-

average correction that takes into account different land cover types through an automatic 

segmentation of the image (Luo et al. 2018). 

Motivated by the inconsistency issues of the data acquired by the different satellites within the 

constellation, this study: 1) proposed a new method to fuse time series of images sourced 

from two different satellites to overcome the inconsistencies between the different sensors 

within the CubeSat constellation, and combines the advantages of both data sources in terms 

of their temporal, spatial and spectral resolutions. In contrast to some other fusion methods 

(e.g. Gao et al. 2006; Li et al. 2019), which can take only one or two pairs of images as input 

at a time, this new method can process a time series from an unlimited number of images; 2) 

applied this new technique to fuse PS images (with a spatial resolution of ~3 m, and a daily 

revisit time) and S2 images (resolution of 10 m and five-day revisit time) to create daily, S2-

consistent surface reflectance blue, green, red (visible) and near-infrared (NIR) and crop 

Green LAI at a 3 m resolution; 3) tested the approach for improved wheat LAI estimation over 

wheat fields in Australia and Israel, so as to provide an assessment over different soil types, 

farm management, climates and crop varieties. The guideline for the development of the 

method was that the method should be simple, so it could be easily be replicated and applied 

elsewhere. Therefore, the reliable and well-studied Sentinel-2 LAI product was selected, which 

offer a global coverage of LAI estimates in a relatively high spatial resolution. Recently 

developed methods for LAI estimation tend to use sophisticated computing techniques such 

as machine learning, but they typically involve the use of ground-based training data specific 

to the study area.  This paper contends that a practical and robust method for LAI estimation 

should be simple, effective, repeatable and universal. Therefore, the Sentinel-2 LAI product 

was selected as the reference, having global coverage of LAI estimates at relatively high 

spatial resolution. By converting the fused VIs into Sentinel-2-like LAI estimates (as described 

in section 2.4), the need of having ground LAI data is unnecessary. The resulting daily 3 m 

LAI estimations were compared with in-situ wheat LAI measurements made using ground-

based methods. This new time series fusion method facilitates continuous daily high-

resolution monitoring of crops over large scales. 
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3.3. Methodology 

3.3.1.  Field trials and in-situ LAI measurements 

3.3.1.1. Cora Lynn trial 

Winter-wheat variety RGT Accroc was grown in a 76 x 74 m field 80 kilometres South-East of 

Melbourne, Victoria, Australia, at Cora Lynn (38.1336˚ S, 145.6324˚ W, average annual rainfall 

of 857 mm (Australian Bureau of Meteorology 2020)). The crop was sown in the silty loam at 

a 5 cm depth on Aug 7, 2018, with 100 kg ha-1 MAP (mono-ammonium phosphate) applied 

at sowing. The crop was grown under rainfed conditions, with only one irrigation (Nov 16, 

2018) of 50 m3 ha-1 with a linear shift irrigator, to avoid plant death. Four sets of above-ground 

plant parts were collected from the four sides of the field (at least 2 m from the edge) 16 times 

during the growing season, in a 0.5 x 0.5 m sampling area. For one or two of those four sets, 

leaf blades, stems and sheaths, and heads were portioned to measure their dry biomass and 

calculate the proportion of leaf material (i.e., dry weight of the blades divided by the total 

above-ground biomass). A subset of approximately 100 blades from the sampled leaves were 

then scanned using a Canon imageRUNNER ADVANCE C3330 scanner (Canon Inc) and 

weighed, after oven dry at 60oC for at least 48 hours, to measure the specific leaf area. LAI 

was calculated by multiplying specific leaf area, the proportion of leaf in the subsample and 

the average biomass of four samples, and by dividing by the sampling area. 

3.3.1.2. Birchip fields 

Five rainfed spring-wheat fields were studied in a farm located near Birchip, Victoria, Australia 

(Apr-Nov, 2018; 35.982˚ S, 142.916˚ W), representing an average Victorian farm in the 

Australian wheat belt. The Birchip farm, which, is 6,400 ha in size (average field size is 116 

ha), was chosen for this study as it represents a typical Australian rainfed crop farm. This site 

is located on fine sandy clay loam texture soil and receives an average annual rainfall of 374 

mm (Australian Bureau of Meteorology 2020).  The LAI measurements were conducted on the 

17th and 18th of September 2018 using a LAI-2000 Plant Canopy Analyzer (LI-COR). Ten 20 

m X 20 m plots located in five wheat fields were selected (two in each field). All plots were 

located at least 20 m away from the edges of the field and were representative of the crops’ 

conditions in their area. Field data were acquired following the measurement guidelines 

suggested by the instrument manual (LI-COR 1992). In total, 240 individual LAI measurements 

were sampled for the ten plots, with each plot containing 24 LAI measurements. 

3.3.1.3. Saad and Yavne fields 

LAI was measured over six rainfed spring-wheat fields, located in two commercial farms near 

Saad (four fields of ~39 ha in total; Feb-Apr, 2018; 31.477˚ N, 34.538˚ W) and Yavne (two 
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fields of ~13 ha in total; Jan-Apr, 2019; 31.809˚ S, 34.716˚ W) in Israel. The Saad fields are 

located over a clay soil and receive an average annual rainfall of 415 mm (Israel 

Meteorological Service 2020). The Yavne fields are located over a sandy loam soil and receive 

an average annual rainfall of 515 mm (Israel Meteorological Service 2020). LAI in these two 

sites was measured using the SunScan Canopy Analysis System (SS1-COM-R4 Complete 

System with Radio Link developed by Delta-T Company, Cambridge, United Kingdom). The 

four fields in Saad were close to each other with different sowing dates and irrigation regimes: 

Kitain cv sown on 20/11/2017 and grown under both rainfed (1) and with some irrigation (2); 

Amit cv was sown on 29/11/2017 and grown under rainfed conditions (3), and durum wheat 

cultivar C9 was sown on 19/11/2017 and grown under rainfed conditions. The two fields in 

Yavne were adjacent and sown on 16/11/2018. The measurements performed six times for 

the Saad farm fields and seven times for the Yavne farm fields during the growing season. 

Each LAI value used for the analyses was the average of LAI measured at 2 to 4 points, 

separated to each other by a distance of ~50 m. At each point, around 30 field measurements 

were taken every ~20 cm from each other, regardless of whether plants were present or not. 

3.3.2.  Imagery 

3.3.2.1. Sentinel-2 (surface reflectance and LAI) 

The European Space Agency (ESA) Copernicus Sentinel-2 (S2) includes a constellation of 

two polar-orbiting satellites positioned in the same sun-synchronous orbit, but phased at 180° 

to each other. S2 carries an optical sensor payload that samples 13 spectral bands: four bands 

at 10 m, six bands at 20 m and three bands at 60 m spatial resolution. It provides a revisit 

frequency of 5 days (at the Equator) with a 290 km swath width (Drusch et al. 2012; SUHET 

2015). S2 images can be freely downloaded at the Copernicus Open Access Hub website 

(https://scihub.copernicus.eu/dhus/#/home). In this study, clear-sky images downloaded via 

ESA’s application programming interface (API), using the field’s polygon to determine the 

region of interest (ROI) to be downloaded. S2 Level-2A Bottom Of Atmosphere (BOA) 

products were only available (and used) for Israel during the study period. For Australia, we 

thus used the Sen2Cor module (Louis et al. 2016) within ESA’s Sentinel Application Platform 

(SNAP) software (version 7.0) to convert the Level-1C product (Top Of Atmosphere (TOA) 

reflectance) images from TOA to BOA, in order to minimize the influence of the atmospheric 

conditions present at the time of acquisition. Next, S2-based LAI data (from Israel and 

Australia) were generated using the Biophysical Processor module embedded in SNAP, which 

computes biophysical products from S2 BOA reflectance. This processor uses the top-of-

canopy reflectance data to estimate a number of biophysical variables including LAI (Weiss 

and Baret 2016).  

https://scihub.copernicus.eu/dhus/#/home
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3.3.2.2. PlanetScope 

PlanetScope (PS) is a CubeSat 3U form factor (10 cm x 10 cm x 30 cm) satellite constellation 

operated by Planet Labs, Inc. The PlanetScope constellation consists of about 120 satellites, 

with the capability to image all of the Earth’s land surface on a daily basis. The PlanetScope 

satellites have four spectral bands; Blue (455 – 515 nm), Green (500 – 590 nm), Red (590 – 

670 nm) and NIR (780 – 860 nm). These have a Ground Sampling Distance (GSD) of 3-4 m 

at nadir and a positional accuracy of <10 m RMSE (Planet Team 2018). This study used the 

Planet Surface Reflectance Product provided at a spatial resolution of ~3 m. These images 

are atmospherically corrected to BOA reflectance, which provides more consistency across 

time and location localized atmospheric conditions while minimizing uncertainty in the spectral 

response (Planet Team 2020). Despite the fact that both PS and S2 provide imagery in the 

visible and NIR regions, their bandwidths and spectral response are very different as shown 

in Figure 10. For each analysed field, cloud-free PlanetScope images were downloaded using 

Planet’s API, according to the field’s domain.  

3.3.3. Data fusion of reflectance 

In order to fuse images acquired by the PS CubeSats constellation and S2, we have 

developed a simple fusion method (Figure 11). The data fusion process required four inputs: 

(1) High spatio-temporal resolution images (e.g. PS); (2) lower spatial resolution, but with 

higher spectral resolution images (e.g. S2); (3) an index or product produced by input number 

2 (e.g. LAI); and 4) the ROI (i.e., a polygon of field’s domain). The outputs of this fusion method 

are daily fused surface reflectance images and daily images of the desired index or product, 

in the original pixel size of the high spatial resolution input. In this study, we tested our fusion 

method to produce S2-like visible-NIR bands and LAI images at the spatial and temporal 

resolution of PS (i.e., daily images in 3 m).   

 

Figure 10. The spectral response of Sentinel-2 and PlanetScope in the Blue, Green, Red and Infrared bands. 
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First, PS, S2 (bands 2, 3, 4 & 8) and S2-based LAI images were extracted by the field’s 

domain. Then, each type of consecutive pair of images acquired at two different dates are 

linearly interpolated to create a daily time-series of images. This results in three separate time-

series, (1) PS BOA (3 m), (2) S2 BOA (10 m), and (3) S2 LAI (10 m) made from both real as 

well as synthetic (interpolated) images. Next, the S2-based datasets (2 + 3) were resampled 

(using cubic interpolation) from 10 m to 3 m pixel size. Then, same-day PS and the resized 

S2 images are separated into their individual bands (Blue, Green, Red and NIR), and fused 

by averaging the pixel values between each pair of bands as follow:  

Equation 2 

Fused Bandi = (𝑃𝑙𝑎𝑛𝑒𝑡𝑆𝑐𝑜𝑝𝑒𝐵𝑂𝐴  𝐵𝑎𝑛𝑑𝑖 + 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙2𝐵𝑂𝐴  𝐵𝑎𝑛𝑑𝑖) /2 

Where, Bandi correspond to each of RGB visible and the NIR bands (Figure 10). After the 

fusion, the bands are recombined to form an RGB-NIR image. This stage yields in daily 3 m 

fused surface reflectance images. 

3.3.4.  Fused LAI in 3 m 

The new dataset is then used to calculate 13 selected vegetation indices shown in the 

literature to have a high correlation with LAI: SR, EVI2, NDVI, GCVI, MTVI2, MSAVI, WDRVI, 

Green-WDRVI, OSAVI, GSR, GNDVI, RDVI and TVI. Finally, the vegetation indices from the 

fused image (daily, 3 m) are converted to LAI using a linear regression between the different 

vegetation indices to the resized LAI time-series (daily, 3 m) from S2. A four-day moving 

window (𝑡0,  𝑡−1, 𝑡−2 , & 𝑡−3) with same day (𝑡0) pairs of S2-LAI and a fused vegetation index 

image, was used to calculate the average slopes and intercepts between all four pairs (i.e., 

S2-LAI and one of the fused-based vegetation indices at the time). In this process, the slope 

and intercept of LAI and VI for all pixels from the field was calculated for each day and each 

studied vegetation index, and then averaged across the four days of the moving-window. 

Hence for each vegetation index, the correction of each image is done using a different slope 

and intercept, calculated for each four-day window, thus operating as a moving average. This 

was done in order to minimise the signal inconsistency created by the PS sensors (daily 

measurements), which causes variability in the vegetation indices. The algorithm was 

designed to use the last four days so it can work in operational near real-time mode, as the 

future images are still not available. However, when processing an existing time series of 

images, the algorithm can be easily be modified to include the next images in the time series 

(e.g., 𝑡−2, 𝑡−1, 𝑡0 , 𝑡1, 𝑡2 ,).  



Chapter 3 – Fusion of PlanetScope and Sentinel-2 into daily 3 m LAI 
 

 

 

37 
 

The following equation is then used to correct and generate the daily high spatio-temporal LAI 

dataset:   

Equation 3 

Corrected image = Fused vegetation index * four-day window slopes average + four-day window 

intercepts average 

This method (Figure 11) enables daily 3 m LAI images to be generated at the same quality as 

the S2 LAI product. 

The remotely sensed LAI estimates were validated against the in-situ measurements. As the 

LAI was measured using different approaches over different study areas, the accuracy of the 

remotely sensed Green LAI was evaluated using a 23X23 square metre plot and a 65X65 

square metre plot for the Birchip and Cora Lynn sites respectively.  The fields in Israel were 

compared at the field level as each LAI measurement point was about 50 m apart from each 

other, and around 30 field measurements were taken at each of these points. The fields near 

Saad (four fields of ~39 ha in total) and Yavne (two fields of ~13 ha in total) are much smaller 

than the Australian commercial fields analysed in this study (the average field size is 116 ha) 

and the development of the crops in these fields has been far more homogeneous. 

 

Figure 11. The data fusion workflow of PlanetScope (with a spatial resolution of ~3 m) and Sentinel-2 (10 m) 

imagery into daily surface reflectance images, vegetation indices and LAI maps with a 3 m resolution. 
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3.3.5.  Adjustment of remotely-sensed Green LAI 

The Green LAI (representing a canopy mostly photosynthetically active) are difficult to 

measure from space when leaves shade each other. To account for this, the Green LAI 

estimations were tested for improvement by adjusting the generic S2-LAI product estimations, 

to better estimates wheat Green LAI. This was done by 'fine-tuning' the results received in the 

Table 4. Definition of the multispectral vegetation indices investigated in this study. 

Vegetation index Equation Reference 

Simple Ratio (SR) 
𝑁𝐼𝑅

𝑅𝑒𝑑
 

Jordan (1969) 

Enhanced Vegetation Index 2 

(EVI2) 

2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 2.4𝑅𝑒𝑑 + 1)
 

Jiang et al. (2008); Nguy-

Robertson et al. (2012) 

Green Chlorophyll Vegetation 

Index (GCVI) 
(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 1 

Gitelson et al. (2003); 

Gitelson et al. (2005) 

Normalized Difference 

Vegetation Index (NDVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Rouse et al. (1974) 

Modified Triangular Vegetation 

Index 2 (MTVI2) 

1.5 [1.2(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5(𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)]

√(2𝑁𝐼𝑅 + 1)2 − (6𝑁𝐼𝑅 − 5√𝑅𝑒𝑑) − 0.5

 
Haboudane et al. (2004) 

Modified Soil-Adjusted 

Vegetation Index (MSAVI) 
0.5 [2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅𝑒𝑑)] 

Qi et al. (1994); Haboudane 

et al. (2004) 

Wide Dynamic Range Vegetation 

Index (WDRVI) 

𝛼 ∙ 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝛼 ∙ 𝑁𝐼𝑅 + 𝑅𝑒𝑑
+

1 − 𝛼

1 + 𝛼
 

Gitelson (2004); Nguy-

Robertson et al. (2014) 

Green Wide Dynamic Range 

Vegetation Index (Green-

WDRVI) 

𝛼 ∙ 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝛼 ∙ 𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
+

1 − 𝛼

1 + 𝛼
 

Peng and Gitelson (2011); 

Nguy-Robertson et al. 

(2014) 

Optimized Soil-Adjusted 

Vegetation Index (OSAVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.16
 Rondeaux et al. (1996) 

Green Simple Ratio (GSR) 
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 Sripada et al. (2006) 

Green NDVI (GNDVI) 
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

Gitelson and Merzlyak 

(1994) 

Renormalized Difference 

Vegetation Index (RDVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Roujean and Breon (1995) 

Transformed Vegetative Index 

(TVI) 
√

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
+ 0.5 

Rouse et al. (1974) Haas et 

al. (1975) 

* 𝛼 in WDRVI and Green-WDRVI = 0.1 following Nguy-Robertson et al. (2014) 
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previous stage, using second-order polynomial regressions (Table 7), which was found to best 

represent the correlation between the in-situ and remotely estimated Green LAI for a 

considered vegetation index. The performance of this correction approach was tested using 

an independent dataset of Green LAI for two ~30 ha, rainfed-wheat fields located near Yanco, 

NSW, Australia (Apr-Nov, 2019; 34.716˚ S, 146.088˚ W). In this site, located more than 350 

km from the nearest field used for training (i.e., further than the distance between Paris and 

London), the LAI was measured weekly using LI-COR LAI-2200 sensor during one month 

around the peak LAI (Oct, 2019). The LAI measurements were taken at least 10 m away from 

the edges of the field and were representative of the crops’ conditions in their area. Owing to 

the high spatial variability of the vegetation development in these two fields, the validation 

between the in-situ and the remotely sensed LAI performed on the crops located around the 

actual location of the LAI measurements (using a 0.3 and 0.4 ha plots). The results of the 

corrected Green LAI were compared with the in-situ Green LAI measurements and the non-

corrected estimations, in order to validate the proposed correction method to better estimate 

wheat Green LAI from space. 

3.4. Results 

3.4.1.  Fused surface reflectance accuracy 

The implementation of the new fusion method to generate time series of images resulted in a 

new dataset, which maintained both the high spatial and temporal resolution of PS and the 

spectral quality of S2 (Figure 12 and Figure 13). Figure 12 illustrates how a 10 m image from 

S2 fails to provide information about objects smaller than 10 m such as buildings, trees, and 

roads. By contrast, the fused image enabled easy identification of objects that could not be 

 

Figure 12. An example of the Sentinel-2 and PlanetScope fusion outcome (in natural color composite image) for 

the Cora Lynn experimental field area. Both source images were acquired on the 29/9/18 and are in BOA 

reflectance values. (A) The original Sentinel-2 image (10 m), (B) the original PlanetScope image (3 m), and (C) 

the fused image (3m). 
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recognized in the S2 image while preserving the S2 reflectance information as shown in Figure 

13. 

The correlation between the BOA surface reflectance of S2, PS and the fused images was 

compared and evaluated at the pixel level, while excluding 15 m from the fields’ edges to avoid 

having mixed pixels with the surrounding objects.  The mean and median 𝑅2 across all bands 

for the studied PS and S2 images were only 0.6 and 0.7, respectively, (Table 5). The highest 

correlations were found in the NIR wavelength (0.75 and 0.81 mean and median, respectively), 

while the lowest correlation was found in the blue wavelength (0.46 and 0.53 mean and 

median, respectively). The fused images were found to be highly correlated with the S2 

images in all four bands (0.88 and 0.94 mean and median, respectively), being slightly higher 

than the correlation found between the fused images and PS images (0.84 and 0.9 mean and 

median, respectively). Sometimes when small objects such as scattered trees were located 

within the field, the analysis showed scattered pixels with lower correlation (Figure 13). This 

 

Figure 13. An example of the correlation between a same day pair of an original S2 image and a fused image (image 

date 23/7/18) for the field near Birchip, Victoria, Australia. Each scatterplot represents the comparison of a different 

spectral band, where band 1, 2, 3 and 4 represents the Blue, Green, Red and NIR wavelengths, respectively and 

the pixels values are in surface reflectance (BOA). The blue line in the figures is the trend line. The dotted line is 

the 1:1 line. 

Table 5. Comparison of the median and mean correlation (𝑅2) that was found between S2, PS and the fused 

images of all the images analysed across all sites (2,463 images in each dataset), for each band and all four 

bands together. 

Datasets 
Blue 

(band 1) 

Green 

(band 2) 

Red 

(band 3) 

NIR 

(band 4) 
All bands 

 median mean median mean median mean median mean median mean 

PS - S2 0.53 0.46 0.71 0.58 0.75 0.6 0.81 0.75 0.7 0.6 

Fused - PS 0.86 0.79 0.9 0.82 0.91 0.84 0.94 0.91 0.9 0.84 

Fused - S2 0.9 0.81 0.95 0.88 0.96 0.88 0.96 0.93 0.94 0.88 
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is often because the lower resolution of S2 tends to represent these objects as mixed pixels, 

while they can be clearly identified in the fused image. 

3.4.2. Fused vegetation indices 

The ability of the fused images to produce daily vegetation indices (VIs) time-series in values 

similar to S2-based time-series was tested and compared to both VIs derived from S2 and PS. 

Overall, it was found that PS-based VIs tended to have lower values than S2-based VIs except 

in the early stages of the growing season (e.g., on low VIs values) where PS-based VIs were 

slightly higher (e.g., Figure 14). Furthermore, a time-series of VIs generated based on PS 

images were noisier than the one generated based on S2 images or fused images (e.g., Figure 

14). 

After fusing the S2 and PS images and calculating the VIs, daily 3 m LAI maps were generated 

(Figure 15). These maps were compared to S2-based LAI maps at the pixel level and at the 

field level (Figure 16). Next, remotely-sensed LAI estimations from both S2 and fused images 

were compared with in-situ LAI measurements conducted in the field (Figure 16). 

 

Figure 14. Six-month time series of Sentinel-2 (black dashed line), PlanetScope (dot line) and the fused images 

(red line) NDVI calculated from atmospherically corrected bottom of atmosphere (BOA) reflectances. The data 

represent the daily mean NDVI for a 131-ha wheat field located near Birchip, Victoria, Australia. 
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Figure 15. Comparison between (A) S2-based LAI map (10 m) and (B) S2-PS fusion-based LAI (3 m) map 

(image date – 7/8/18) of an 88-ha wheat field near Birchip, Victoria, Australia. 

 

 

Figure 16. Comparison of the changes in LAI estimated over the growing season through in-situ point 

measurements (black dots, were the error bars represent the measurements standard deviation), S2 images 

(blue line) and the fused method (red line) of the 2018 Cora Lynn wheat trial. In this example, the fused-based 

Renormalized Difference Vegetation Index (RDVI) was used to calculate LAI using a linear regression modal. 

RMSE is presented (i) between the S2-based LAI to the fused-based LAI estimations at the pixel (Pixel level 

RMSE’) and the field levels (median daily error at the pixel level; ‘Field level RMSE’), (ii) between the S2-LAI 

and in-situ LAI measurements (‘S2 – In-situ RMSE’), (iii) between the Fused images-LAI and in-situ LAI 

measurements (‘Fused – In-situ RMSE’), (iv) between the S2-LAI and the Green LAI in-situ measurements 

only (‘S2 – In-situ Green LAI RMSE’), and between the Fused images-LAI and the Green LAI in-situ 

measurements only (‘Fused – In-situ Green LAI RMSE’). In this example, in-situ LAI measurement performed 

on the 29/10/18 were unusually high, and in any case, much higher than the estimated remotely-sensed LAI. 

This could be partly due to measurement error (the error bar was also big) combined with the known 

underestimation of S2-LAI for high LAI values. The grey color is the daily field-scale LAI standard deviation of 

the fused LAI dataset. 
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3.4.3. LAI estimations 

Overall, 57 in-situ LAI measurements conducted across 12 wheat fields, half located in 

Australia and the other half in Israel, were available to evaluate the accuracy of the remotely-

sensed LAI estimations. S2-based LAI was found to have an RMSE of 1.60 (𝑅2 = 0.84), while 

the RMSE for fused-based LAI estimations ranged from 1.73-1.78 depending on the VI 

considered (𝑅2 = 0.82-0.84; ). In general, both S2 and fused-based LAI estimations tended to 

underestimate the in-situ LAI values, especially in LAI values larger than 3 (Figure 17). In 

comparison with the in-situ measurements, S2-based LAI estimations generally had slightly 

better accuracy compared to VI-based LAI estimations. As optical remote sensing is mainly 

estimating the Green LAI (Haboudane et al. 2004), the results have been separated into two 

groups, the in-situ measurements conducted when the crops were at the Green LAI stage (-

B) and the measurements that were performed during the senescing stage (-C). The peak of 

the fusion-based LAI was used as the threshold to define these two groups. When analysing 

the Green LAI separately, the accuracy of the remotely sensed LAI estimations was found to 

be much higher (). Overall, remotely-sensed LAI estimations during the Green LAI phase were 

found to have an RMSE of 1.08 (𝑅2 = 0.95) for the S2-based LAI, and an RMSE of 1.37-1.4 

(𝑅2 = 0.92-0.94) for the fused-based LAI estimated from the different VIs (-B). S2-based LAI 

median error for the Green LAI was only -0.38 and the fused-based LAI from best performing 

VI, i.e., RDVI, had a median error of -0.73 (-B). Hence, estimating Green LAI using the new 

method, or with S2-based LAI estimations, was highly correlated to in-situ measurement when 

the crops were still mostly photosynthetically active. However, underestimations of high LAI 

values (> 3) was observed in all studied fields (Figure 17), probably due to increasing overlap 

of leaves with higher LAI. One of the main disadvantages of using normalized difference VIs 

(e.g., NDVI) to remotely estimate LAI is the fact that they tend to saturate asymptotically under 

conditions of medium-to-high aboveground biomass density (Gitelson 2004). To minimise 

these underestimations, a correction equation was sought for the different VI-based fused 

dataset and the S2-based LAI. Polynomial order two regression was found as the most 

suitable to fit the fused-based Green LAI estimates against in-situ LAI measurements (Figure 

17 and Table 7), with an 𝑅2of 0.95 (RMSE of 0.62) for the S2-based LAI , and an 𝑅2 ranging 

between 0.92 and 0.94 depending on the VI considered (RMSE of 0.67 - 0.78). Overall, the 

SR, MTVI2 and RDVI indices showed the best fits. 
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Table 6. Performance of remotely-sensed LAI estimations for both S2-based and the fused-based LAI 

compared to the in-situ LAI measurements. The best performing index from the VIs-based fusion is coloured 

in red. Indices of the S2-based LAI estimations are coloured in green when they performed better than the 

fused data. Table A presents the results for all of the LAI measurements conducted in the field (n = 57), table 

B refers only to in-situ measurements conducted when the crops were at the Green LAI stage (n = 25) and 

table C presents the results only for LAI measurements conducted in the field during the senescing stage of 

the crops (n = 32). Overall, the best accuracy was achieved during the Green LAI stage (table B). 

(A) All samples (n = 57) 

 
S2 

LAI 
EVI2 GCVI GNDVI 

Green-

WDRVI 
GSR MSAVI MTVI2 NDVI OSAVI RDVI TVI WDRVI SR 

RMSE 1.60 1.77 1.77 1.78 1.77 1.77 1.77 1.74 1.77 1.77 1.77 1.77 1.76 1.73 

𝑹𝟐 0.84 0.83 0.84 0.83 0.83 0.84 0.82 0.83 0.82 0.82 0.83 0.83 0.83 0.84 

Mean error -1.08 -1.24 -1.26 -1.26 -1.26 -1.26 -1.24 -1.22 -1.24 -1.24 -1.24 -1.25 -1.24 -1.23 

Median error -0.55 -0.85 -0.93 -0.91 -0.93 -0.93 -0.83 -0.86 -0.84 -0.84 -0.91 -0.84 -0.88 -0.88 

Mean accuracy % 79.52 76.13 75.02 75.26 75.11 75.03 76.25 76.88 76.18 76.18 77.11 76.16 75.98 75.96 

Median accuracy % 76.62 74.41 73.24 73.64 73.38 73.27 74.46 75.37 74.39 74.39 74.20 75.45 73.84 72.41 

               

(B) Green LAI only (n = 25) 

 
S2 

LAI 
EVI2 GCVI GNDVI 

Green-

WDRVI 
GSR MSAVI MTVI2 NDVI OSAVI RDVI TVI WDRVI SR 

RMSE 1.08 1.39 1.39 1.38 1.39 1.39 1.38 1.37 1.39 1.39 1.38 1.38 1.40 1.37 

𝑹𝟐 0.95 0.93 0.93 0.92 0.92 0.93 0.93 0.94 0.93 0.93 0.94 0.93 0.93 0.94 

Mean error -0.68 -0.95 -0.97 -0.95 -0.96 -0.97 -0.94 -0.93 -0.94 -0.94 -0.96 -0.94 -0.96 -0.95 

Median error -0.38 -0.83 -0.87 -0.80 -0.84 -0.87 -0.81 -0.74 -0.82 -0.82 -0.73 -0.82 -0.85 -0.87 

Mean accuracy % 90.85 84.84 83.74 84.12 83.86 83.76 85.08 85.58 84.92 84.92 86.49 85.81 84.60 84.65 

Median accuracy % 86.95 79.73 76.34 78.33 76.69 76.34 80.57 80.44 80.15 80.15 81.37 80.47 79.63 79.33 

               

(C) LAI of senescing canopy (n = 32) 

 
S2 

LAI 
EVI2 GCVI GNDVI 

Green-

WDRVI 
GSR MSAVI MTVI2 NDVI OSAVI RDVI TVI WDRVI SR 

RMSE 1.90 2.02 2.01 2.03 2.02 2.01 2.02 1.99 2.02 2.02 2.02 2.02 2.00 1.97 

𝑹𝟐 0.83 0.79 0.81 0.80 0.81 0.81 0.79 0.79 0.79 0.79 0.79 0.80 0.80 0.80 

Mean error -1.41 -1.51 -1.51 -1.52 -1.52 -1.51 -1.51 -1.49 -1.51 -1.51 -1.51 -1.52 -1.50 -1.48 

Median error -1.08 -1.16 -1.23 -1.25 -1.24 -1.23 -1.16 -1.11 -1.16 -1.16 -1.14 -1.16 -1.16 -1.13 

Mean accuracy % 70.66 69.32 68.21 68.33 68.27 68.22 69.35 70.09 69.35 69.35 69.78 68.63 69.24 69.18 

Median accuracy % 62.58 62.73 58.58 59.80 59.07 58.58 60.83 61.06 62.01 62.01 59.78 61.11 61.74 59.95 
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Figure 17. Example of in-situ vs. remotely sensed Green LAI: (A) Sentinel-2 based LAI (B) Enhanced 

Vegetation Index 2 (EVI2), (C) Green Chlorophyll Vegetation Index (GCVI), (D) Normalized Difference 

Vegetation Index (NDVI), (E) Modified Soil-Adjusted Vegetation Index (MSAVI), (F) Modified Triangular 

Vegetation Index 2 (MTVI2), (G) Simple Ratio (SR), (H) Renormalized Difference Vegetation Index (RDVI). In 

all plots, solid line is best-fit function, dashed line is the one-to-one line. Statistics relative to these fits are 

presented in Table 4. 
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3.4.4.  Adjustment of S2 LAI to estimate Green LAI in wheat 

The equations presented in Table 7 were used to correct, for the different fusion-based LAI 

and S2-based LAI, the underestimation of the remotely sensed Green LAI estimations (as 

illustrated in Error! Reference source not found.). The performance of the proposed correction m

ethod was tested using an independent LAI dataset that was collected in two wheat fields 

located near Yanco, NSW, Australia. The performance of this method was evaluated for 

estimating Green LAI with and without the proposed correction. 

 

 

Table 7. Best-fit functions of the relationships between Green LAI and VI’s obtained using a cross-validation 

procedure for wheat, when x = VI, y = Green LAI, and the RMSE is the root mean squared error of the Green 

LAI estimation. Fits were performed for data of all the studied trials and are presented in Figure 17. 

VI Equation R² RMSE 

Sentinel-2 LAI y = 0.0482x2 + 0.9161x + 0.0026 0.95 0.62 

SR y = 0.0658x2 + 0.9179x + 0.0614 0.94 0.67 

MTVI2 y = 0.0784x2 + 0.8443x + 0.0823 0.94 0.68 

RDVI y = 0.0475x2 + 1.0382x - 0.0452 0.94 0.70 

WDRVI y = 0.0502x2 + 1.0139x + 0.0005 0.93 0.74 

MSAVI y = 0.0493x2 + 1.006x + 0.0085 0.93 0.74 

TVI y = 0.0464x2 + 1.0279x - 0.0131 0.93 0.75 

OSAVI y = 0.0492x2 + 1.0102x + 0.0052 0.93 0.75 

NDVI y = 0.0492x2 + 1.0102x + 0.0051 0.93 0.75 

EVI2 y = 0.0489x2 + 1.015x + 0.0012 0.93 0.75 

GSR y = 0.0171x2 + 1.196x - 0.0743 0.93 0.77 

GCVI y = 0.0171x2 + 1.1961x - 0.074 0.93 0.77 

Green WDRVI y = 0.0164x2 + 1.1967x - 0.0726 0.92 0.78 

GNDVI y = 0.0183x2 + 1.1786x - 0.0599 0.92 0.78 
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The results of the Green LAI correction analysis showed that the estimations of the fused-

based LAI were improved by up to 47% compared with non-corrected Green LAI estimations 

(Table 8). The RMSE between the in-situ LAI and the fused-based LAI before the correction 

ranged between 0.53 and 0.87 (among the different indices), while the correction achieved 

higher accuracy with RMSE ranging between 0.35 and 0.63, as shown in Table 8. Even though 

the proposed correction aimed to adjust the Green LAI phase of the wheat, the results show 

that this method also adjusts LAI estimations at the senescing phase. In the conditions tested, 

the best pre-correction performing indices were for MSAVI, MTVI2 and GNDVI (all < 0.6 

RMSE) and the best post-correction performing indices were for GNDVI, Green WDRVI, 

GDVI, GSR, TVI, OSAVI and NDVI (all < 0.45 RMSE). Overall, the RMSE of Green LAI 

estimations improved by more than 25% for 10 out of the 13 indices analysed. As for the S2-

LAI estimations, in these fields, the S2-LAI underperformed the fused-based LAI estimations 

 

Figure 18. Change over time in LAI for pre- (A) and post- (B) corrected LAI values in a wheat field in Saad in 

2018. See caption of Figure 16 for details of the legend. (The field which presented in this figure was not used 

as part of the independent LAI dataset, it is used here as it illustrates best the adjustment concept). 
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having an RMSE of 1.38 (𝑅2 = 0.41). This stems from the fact that the in-situ LAI was 

measured along the edges of these fields. Therefore, the 10 m spatial resolution of S2 suffered 

from mixed pixels, representing not only the wheat LAI but also the road around the fields, 

while the 3 m fused LAI images overcame this limitation. 

3.5. Discussion 

Monitoring crop performance is essential to guarantee a high quality and profitable yield; 

however, it has always been a challenge, especially with the large fields that are common to 

modern agriculture. The large cultivated areas and the frequent monitoring requirement 

(Waldner et al. 2019), makes remote sensing a valuable tool for farmers and agronomists to 

achieve maximum yield (Raun et al. 2002). 

3.5.1.  The advantages of the proposed fusion approach 

CubeSats, such as Planet’s PS, are relatively cheap to build and can offer high spatio-

temporal imagery at lower costs than traditional satellites. However, CubeSat constellations 

tend to suffer from cross-sensor inconsistencies in radiometric quality and dissimilarity of their 

spectral responses among satellites in the constellation, contributing to the noise observed in 

time-series data acquired from these sensors (Houborg and McCabe 2016, 2018a). Such 

inconsistencies limit the accuracy of surface reflectance-based applications such as 

estimation of vegetation indices (Figure 14), hindering the use of CubeSat satellites to monitor 

changes on the Earth surface (Sadeh et al. 2019) and for land surface characterization 

(Houborg and McCabe 2018a). Fusion of CubeSat imagery with a consistent and reliable 

dataset, such as S2, can overcome this limitation and eliminate the noise that exists in 

Table 8. Performance of remotely-sensed Green LAI estimates compared to in-situ LAI measurement for pre 

and post Green LAI correction. This table presents the RMSE between the in-situ Green LAI measurements 

of an independent dataset (fields of Yanco) and the Green LAI estimated from the fused data and S2 images. 

Best performing index are coloured in red.     

Green LAI S2 LAI EVI2 GCVI GNDVI 
Green- 

WDRVI 
GSR MSAVI MTVI2 NDVI OSAVI RDVI TVI WDRVI SR 

RMSE 

(pre-correction) 
1.38 0.75 0.76 0.58 0.76 0.76 0.53 0.56 0.65 0.65 0.68 0.61 0.87 0.84 

RMSE 

(post-correction) 
1.38 0.50 0.43 0.35 0.40 0.43 0.45 0.57 0.44 0.44 0.54 0.44 0.62 0.63 

Improvement in 

RMSE 
0% 34% 43% 39% 47% 43% 14% -1% 31% 32% 21% 28% 29% 25% 

𝐑𝟐 

(pre-correction) 
0.412 0.767 0.921 0.584 0.761 0.921 0.272 0.024 0.439 0.481 0.519 0.365 0.906 0.748 

𝐑𝟐 

(post-correction) 
0.411 0.764 0.920 0.584 0.760 0.920 0.270 0.024 0.433 0.475 0.527 0.359 0.898 0.746 
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CubeSat data (Houborg and McCabe 2018a; Kimm et al. 2020). PS bands have different 

bandwidths and spectral responses from S2 (Figure 10). While S2 RGB-NIR bands have a 

clear spectral separation between the bands, PS’s RGB bands overlap each other. Such 

overlaps can cause contamination of the signals acquired by each band, with radiation 

belonging to neighbouring bands, limiting the accuracy of different applications such as VI 

calculations and classification.  

The fusion approach proposed in this study helps to resolve the challenges posed by PS 

spectral responses, producing time-series of images that preserve both the high spatial and 

temporal resolution of PS and the spectral quality of S2 (as shown in Figure 12 and Figure 

13). In practical terms this means that S2-consistent, surface reflectance RGB-NIR images 

and crop Green LAI could be generated at a 3 m resolution on a daily basis. 

The fusion method proposed here can process a time series from an unlimited number of 

images to generate a time series of images that covers the whole growing season. This make 

the method robust and flexible, and the user can theoretically fuse images acquired by a 

number of sensors.  The fleet of Earth observing satellites is increasing every year, offering 

unprecedented imagery in a range of spectral resolutions acquired across various bands. 

However, some previous image fusion methods are limited to a maximum of three input bands 

of a lower resolution at a time (Gašparović and Jogun 2018). This method is not limited by the 

number of bands to be fused, so long as the higher spatial-resolution bands covers the 

spectral range of the lower resolution bands. In order to reduce sampling gaps between 

images sourced from one dataset such as S2, the method can also use Landsat images for 

example, to increase the temporal resolution of these coarse images. In the same way, if a 

new CubeSat constellation that can provide data complimentary to PS becomes operational, 

it can be integrated as an additional high spatio-temporal imagery in the fusion process.    

The potential of spaceborne remote sensing to provide relevant information by monitoring crop 

performance has long been recognized. However, despite the technological and 

methodological progress over the past decades, remotely sensed data are still not as broadly 

and operationally used by farmers as they should be. This could be because of the cost of 

images with both high temporal (<5 days) and spatial resolutions (<5 m) (e.g. DigitalGlobe’s 

WorldView-2 and 3), which limit the profitability of the farm. Or it could be that agronomists 

and farmers do not have the knowledge and skills required to process and analyse the satellite 

data. This study has addressed the issue of availability for affordable high spatio-temporal 

data for crop monitoring at a field and sub-field scale. In addition, such new datasets can be 

used for precision agriculture applications, which until now couldn’t be implemented owing to 

the temporal or spatial limitation of the existing publicly available sources of satellite data.  
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Near real-time estimation of Green LAI can provide farmers with the tool to monitor the crop 

health and growth status, which may support farm management actions such as irrigation and 

fertilization (Pasqualotto et al. 2019). However, waiting for a cloud free image from the publicly 

available satellite imagery (e.g. S2 and Landsat), often results in an image that is too late to 

act in the field or will result in an incorrect interpretation (Khan et al. 2018). For example, the 

peak of the crop LAI, which has been found to be as an important parameter to provide early 

estimates of grain yield (Waldner et al. 2019), can be easily missed by the 16 and 5 day revisit 

times of Landsat (Jin et al. 2017b) and S2 (Clevers et al. 2017), respectively. Consequently, 

methods developed for yield estimation based on the peak of VIs (e.g. Franch et al. 2015) or 

LAI (e.g. Lobell et al. 2015) are not able to provide accurate yield estimates, or to target small 

farm holders fields. The proposed method allows time-series gaps due to clouds to be filled 

and improves the probability of identifying the peak LAI. However, it still faces some limitations 

in near real-time monitoring on cloudy days. 

3.5.2.  Estimating wheat Green LAI 

Similar to previous studies (e.g. Djamai and Fernandes 2018; Dhakar et al. 2019; Djamai et 

al. 2019; Pasqualotto et al. 2019), this study found S2 LAI products (created using the 

Biophysical Processor within ESA’s SNAP software (Weiss and Baret 2016)) are capable of 

estimating wheat Green LAI (R2 = 0.95 and 1.08 RMSE). However, the S2-LAI product was 

found to be less suitable for estimating wheat senescence-LAI (𝑅2 = 0.83 and 1.9 RMSE). 

One of the strengths of this new method for estimating LAI is the fact that it combines both 

methods, i.e., the physically-based retrieval method (e.g. RTM) and the empirical approach 

(e.g. using VIs), to convert surface reflectance data into LAI estimates. First, the method uses 

the RTM-based S2-LAI product as a benchmark and then uses the fused VI image pixel values 

within the defined region of interest, as an automatic “field-based” calibration to convert the 

fused VIs into S2-like LAI estimates, through a series of linear regression models. These 

regressions, which are automatically generated for each day in the time-series, are uniquely 

fitted to the area of interest (e.g. the analysed field). This approach enables the method to be 

more robust and valid across different soil types, crop types and varieties, farm managements 

and environmental conditions.   

In this study, 13 different VIs were tested (), having been indicated in the literature to be highly 

correlated with LAI, and evaluated their performance to estimate LAI in the new fusion method. 

It was found that overall this new method is not sensitive to a specific VI, with the fused Green 

LAI estimates from the various indices ranging from RMSE 1.37-1.4 (R2 = 0.92-0.94). The 

MTVI2, SR and the RDVI were found to be the best preforming VIs in this study. However, all 
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of these VI fuse-based estimates slightly underperformed the accuracy of S2 Green LAI 

estimations (Table 7) while also providing daily estimates at 3 m resolution.  

The S2-LAI product has a few limitations. As noted by previous studies, similar to other 

remotely sensed LAI estimation (e.g. Houborg et al. 2016; Djamai et al. 2019), S2-based 

Green LAI estimates also tend to underestimate high Green LAI values (LAI > ~3) (Herrmann 

et al. 2011; Verrelst et al. 2015; Dhakar et al. 2019; Djamai et al. 2019; Pasqualotto et al. 

2019). These underestimations are probably produced by the asymptotically saturation of the 

surface reflectance data caused by the high biomass density (Gitelson 2004). These 

underestimations become even more significant from LAI = 6 and higher (as shown in Figure 

17), which causes the uncertainties in estimating high LAI values (LAI > 6) using SNAP’s 

Biophysical Processor, as reported by Weiss and Baret (2016). The analysis of the new fused 

LAI time series showed similar underestimations as the S2-LAI, which is not surprising 

considering the fact that the fused-LAI was created using S2-LAI data. 

Similar to other LAI products such as MODIS LAI (Myneni and Park 2015) or Visible Infrared 

Imaging Radiometer Suite (VIIRS) LAI products (Knyazikhin and Myneni 2018), the S2-LAI 

product uses a generic method to estimate LAI for any type of vegetation (Weiss and Baret 

2016). Therefore, in order to have a better match for a specific crop type, a correction should 

be applied to calibrate the data (Weiss and Baret 2016). This study has developed regression 

models (Table 7) to adjust both the S2-based LAI and the fused-LAI estimates to provide more 

accurate wheat LAI estimates. The performance of the proposed correction, which was tested 

using an independent wheat LAI dataset measured in NSW, Australia, showed a clear 

improvement in the accuracy of the method to estimate wheat Green LAI. In 10 out of the 13 

indices tested, the RMSE of Green LAI estimates improved by more than 25%, while four 

improved by more than 39% (Green WDRVI improved in 47%) in comparison with non-

corrected Green LAI estimations (Table 8), with RMSE ranging between 0.35-0.63. The S2-

LAI data was also tested, however the comparison between the pre-correction and the post-

correction Green LAI estimates showed that S2-LAI underperformed the fused-based LAI 

estimates with 1.38 RMSE (R2 = 0.41). The reason that the S2-LAI data was not able to 

reproduce the accuracy achieved by the fused data to estimate the Green LAI is due to the 

fact that the in-situ LAI in these fields was measured along the fields’ boundaries, and 

therefore, the S2 data suffered from mixed pixels that lowered the Green LAI estimates. The 

mixed pixel effect has long been recognised as a main drawback to monitor crop performance 

and characterization from space, especially when using low and medium spatial resolution 

data such as the imagery acquired by MODIS and Landsat (Gao et al. 2006; Gao et al. 2012; 

Jain et al. 2016; Khan et al. 2018; Li et al. 2019). While LAI information driven from low to 

medium resolution satellite images may be lost for certain surface types that appear only at 
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smaller spatial scales (Gao et al. 2012), the 3 m fused LAI data presented in this study 

overcome these limitations.  

Despite the fact that the proposed correction aimed to adjust the Green LAI phase of the 

wheat, the results shows that the accuracy of the LAI estimations of the senescing phase has 

also improved after applying the correction. Future study should attempt to develop an 

adjustment method that will target the crop’s senescing phase only. As demonstrated in Figure 

15, the new high-resolution dataset was able to better describe the spatial patterns of the 

crops and to identify vegetation with less active growth within the sub-field scale. Moreover, 

the new high spatio-temporal LAI estimates can be potentially used to monitor crops grown 

on small holder (<2 ha) farms in developing countries (Jain et al. 2016). Nevertheless, it is 

expected that the regression models proposed here to correct S2 Green LAI estimations will 

exceed those of the non-corrected wheat Green LAI estimates, when overcoming the mixed 

pixel effect. However, this should be further tested in future studies. 

3.5.3.  Limitations and prospects 

Even with the promising results presented here, there are some limitations that should be 

noted. The fused daily 3 m LAI data was evaluated across two countries in four different 

geographic locations, over 12 wheat fields with diverse farm management practices, soil types, 

climates and varieties. However, the correction method presented in this study to adjust the 

S2 and fused Green LAI was tested in one geo-location only. Therefore, future studies should 

explore the performance of the proposed correction over a larger number of fields and 

environments.  

While some previous studies have suggested that red-edge based VIs may help to mitigate 

the saturation problem encountered when estimating high LAI values using traditional VIs 

based on visible reflectance, such as NDVI (Nguy-Robertson et al. 2012; Dong et al. 2019). 

Nguy-Robertson et al. (2014) have shown that this is not universally true. Moreover, current 

PlanetScope imagery does not provide red-edge data and so was not applied in this study. 

Even though it is one of the cheapest commercial high-resolution image products currently 

available in the market, Planet’s PS images are not free like S2. Farmers and others, who may 

want to use such high spatio-temporal LAI and VIs data, should consider the cost effectiveness 

of this data. It is expected that high-performing farmers will find it very beneficial while 

individual farmers in developing countries may find the costs too high. As more CubeSat 

constellations come on line in coming years, prices of their imagery will likely be reduced. 
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The uncertainty of the PlanetScope data in terms of its geo-location accuracy has been 

reported as less than 10 m RMSE (Planet Team 2018). This uncertainty may affect the utility 

of the PlanetScope data when carrying out detailed time-series analyses (Houborg and 

McCabe 2018b).  Implementing a co-registration practice to reduce the cross-scene co-

registration error, similar to the co-registration technique proposed by Houborg and McCabe 

(2018b), is likely to increase the spatial correlation between consecutive scenes. 

This study used a simple linear interpolation to fill data gaps between the cloud free images 

for both PS and S2 images to create evenly spaced time series. Despite the simplicity of this 

approach, previous studies showed that linear interpolation is an effective way to interpolate 

between periods with valid data to assign values to the periods of missing satellite 

observations with considerable accuracy (Sakamoto et al. 2010; Zhu et al. 2011; Pan et al. 

2015; Maynard et al. 2016). Importantly, this study implemented a fusion method to monitor 

field crops, which commonly do not change over a single day. This method can therefore be 

used for other disciplines that also have a slow temporal evolution, such as forestry, land cover 

classification (Gašparović et al. 2018), geomorphological and environmental studies, or to 

monitor urban development over time. Nevertheless, the utility of its implementation for 

monitoring rapidly changing environments or phenomena such as flash floods or fires, should 

be further investigated and evaluated compared to change detection techniques (e.g. Sadeh 

et al. 2019).  

As a prospect for future improvements and research directions, it is suggested that future 

studies should test the proposed fusion method over other crops types, explore the possibility 

of adding more sensors in the fusion process (e.g. Landsat) and examine the suitability of this 

fusion method to fuse other sensor data (other than S2 and PS). Although this study attempted 

to generate high resolution LAI, this method can potentially be useful to produce high spatio-

temporal time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), 

Fraction of vegetation cover (FCOVER), Chlorophyll content in the leaf (Cab) and Canopy 

Water Content (CWC). Furthermore, future studies should explore the suitability of the 

proposed fusion method for improving the spatial and temporal data obtained from sensors 

operated in the shortwave infrared (SWIR) and the thermal wavelengths, such as those on-

board Landsat and S2. 

3.6. Conclusions 

With the increasing number of CubeSat constellations expected to become operational in the 

coming years, a new era of Earth observing satellite-based applications has begun. This paper 

presents the first study to fuse time series imagery sourced from Sentinel-2 (S2) and Planets’ 
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PlanetScope (PS) CubeSat constellation. The fusion method proposed in this study enabled 

S2-consistent, cloud free, surface reflectance RGB-NIR images and crop Green LAI to be 

generated at a 3 m resolution. Overall, the results from the study demonstrated that the new 

fused time-series data combined the spatial, temporal and spectral advantages of both 

sensors, allowing wheat Green LAI to be monitored on a daily basis with an RMSE of 1.37 

and R2 of 0.94 in wheat.  

Furthermore, this study proposed a correction method to compensate the underestimations in 

high LAI values (> 3) between the remotely sensed LAI estimations and the in-situ 

measurements. With the implementation of the correction method, the accuracy of the Green 

LAI estimations improved by up to 47% (RMSE = 0.35-0.63).  

Although tested to fuse S2 and PS data for LAI estimations, this new time series fusion method 

can be used to fuse other sources of imagery with different spectral, spatial and temporal 

resolutions. Furthermore, it may be used to estimate indices or parameters other than LAI. 

The proposed method is not limited to a specific number of bands, wavelengths or images, 

and can integrate numerous sources of imagery. This new time series fusion method can be 

used for continuous daily high-resolution monitoring of crops over large scales, and can 

potentially be used for a range of new precision agriculture applications. Such time-series are 

critical for crop health and growth status monitoring, and will improve the effectiveness of 

farming practices such as water management and fertilization, as well as improve yield 

forecasts. 
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4. Chapter 4 – The Versatile Crop Yield Estimator 

4.1. Abstract 

One of the major challenges in monitoring and managing food security is to provide reliable, 

consistent and scalable crop yield projections. Accurate production forecasts, as early as 

possible prior to the harvest, are critical for market stability, as well as for farmers, grains 

companies and governments. For decades, methods have been developed for using Earth 

observing satellite data to monitor crop conditions and their production across different spatial 

and temporal scales. These methods typically rely heavily on detailed official crop statistics or 

used ground-based data to develop empirical forecasting models, which limit their application 

to the regions where they were calibrated. Accordingly, this study proposed a new method 

named the VeRsatile Crop Yield Estimator (VeRCYe), which aimed to overcome the above 

limitation for wheat yield estimation at the field and pixel scales, by combining the advantages 

of both high spatio-temporal resolution remote sensing and crop model simulations. In this 

process, the sowing and harvest dates of each field were detected (RMSE = 2.6 – 2.7 days) 

using PlanetScope imagery. In addition, Sentinel-2 and PlanetScope data were fused into a 

daily 3 m LAI dataset. Finally, the detected sowing dates and the LAI datasets were coupled 

with the APSIM-Wheat crop model to estimate wheat yield at the field and pixel scales. This 

study tested the method over multiple wheat fields located in the Australian wheat-belt, 

covering a large range of pedo-climatic conditions and farm management practices across 

three growing seasons (2017 - 2019). VeRCYe estimated field-scale yield with R2 = 0.88 

(RMSE of 757 kg/ha, 15% error), and produced yield maps at 3 m resolution up to four months 

before crop harvest (R2 = 0.32, RMSE of 1,213 kg/ha). The advantages of VeRCYe are that 

(1) it can be used to estimate yield without the need for ground calibration, (2) it can 

theoretically be applied to other crop types, and (3) it can be used with any remotely sensed 

LAI. Furthermore, VeRCYe can help to identify yield gaps, understand yield variability and its 

causes from the pixel-level to a regional-level.  

 

4.2. Introduction 

One of the major challenges in monitoring and managing food security is to provide reliable, 

consistent and scalable crop yield projections (Nakalembe et al. 2021). Therefore, accurate 

production forecasts as early as possible prior to harvest are critical for market stability, as 

well as for farmers, grains companies and governments (Hammer et al. 2001; Becker-Reshef 
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et al. 2020; Benami et al. 2021). Importantly, climate variability and extreme weather events 

are projected to increasingly affect future crop yields, potentially leading to severe food crises, 

risks and uncertainties within the global food system (Hammer et al. 2001; Ray et al. 2015; 

Feng et al. 2020). Spaceborne remote sensing is considered a reliable, affordable, large-scale,  

and timely source to improve crop yield prediction (Becker-Reshef et al. 2020), therefore many 

yield prediction methods using satellite data have been developed in the last few decades 

(e.g. Idso et al. 1977; Ferencz et al. 2004; Prasad et al. 2006; Franch et al. 2015). Traditionally, 

these methods are based on the correlation between Vegetation Indices (VIs) and crop yield 

(e.g. Raun et al. 2001; Labus et al. 2002; Becker-Reshef et al. 2010; Bognár et al. 2017). 

However, reliance upon a unique and local relationship is not ideal, especially when crops 

experience highly variable environmental conditions through space and time. 

In the last decade, methods which combine satellite images and machine learning techniques 

have become very popular (e.g. Cai et al. 2019; Jeffries et al. 2019; Feng et al. 2020; Kamir 

et al. 2020). However, these methods often require a large amount of ground data from 

different sources, including yield, sowing dates, soil properties, cultivars, farm management 

practices and weather for training and calibrating the model. Such data is rarely available for 

yield estimation over large scales such as at the district or country level (Feng et al. 2020), 

and therefore these models are calibrated locally. While locally calibrated yield estimation 

methods may achieve good accuracy of yield estimation (Donohue et al. 2018; Chen et al. 

2020), the use of these methods is usually limited to the area in which they were calibrated.  

Despite the growing availability of Earth observing data to monitor crop development and yield 

estimation, use of spaceborne sensors is limited by the type of data they can retrieve. Optical 

remote sensing cannot see though the crop canopy or the soil surface but it can, for example, 

provide valid information about canopy chlorophyll content (Gitelson et al. 2005). Synthetic 

Aperture Radar (SAR) may provide complementary data on the surface’s roughness, slope, 

geometry and the soil moisture (Walker et al. 2004; Sadeh et al. 2018). Conversely, crop 

growth models can be used to simulate key physiological processes including phenology, 

organ (such as leaf and grain) development, water and nutrient uptake, biomass, and 

response to abiotic stresses (Holzworth et al. 2014; Huang et al. 2019). Therefore, merging 

the capabilities of remote sensing with crop model simulations has a great potential for 

improving capabilities in monitoring crop development and yield estimation through space and 

time. 

One of the ways to blend the abilities of crop models and remotely sensed data is by using 

data assimilation techniques, and many of these studies have focused on the assimilation of 

Leaf Area Index (LAI) into the models (Ines et al. 2013; Huang et al. 2015; Huang et al. 2019; 
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Pan et al. 2019). LAI has been found to be a good indicator of crop status and leaf abundance, 

as well as phenological stage, and can be used as an indicator of different farm management 

practices, or the impact of biotic and abiotic stresses (Huang et al. 2019). However, often 

these data assimilation techniques required local calibration through field measurements (Pan 

et al. 2019; Beyene et al. 2021; Manivasagam et al. 2021), which limit their ability to estimate 

crop yield over large areas or in environments different from where the calibration data was 

collected. 

In order to bypass the need for ground calibration data, Lobell et al. (2015) developed a new 

approach named the scalable satellite-based crop yield mapper (SCYM), which uses crop 

model simulations to train a regression that relates final crop yield to observed values of VIs 

for available satellite images during the growing season (Lobell et al. 2015; Azzari et al. 2017). 

In the process, Lobell et al. (2015) used the Agricultural Production Systems sIMulator 

(APSIM) (Holzworth et al. 2014) to generate a large number of crop model simulations that 

span a realistic range of soil, climate, and management settings for a specified region. The 

advantage of using APSIM is that each individual simulation provides output on daily crop 

attributes, such as LAI and yield (Lobell et al. 2015). SCYM uses published equations to 

convert the LAI to optical based VIs, providing per pixel yield predictions by applying a 

regression to Landsat-based VI and gridded weather data (Lobell et al. 2015; Azzari et al. 

2017). Despite the potential of this innovative approach, the accuracy of the method was 

limited. Moreover, its operational capability in predicting crop yields was also reported at 

limited, particularly in smallholder farms due to limitations in the spatial resolution and temporal 

frequency of satellite images (Azzari et al. 2017; Nakalembe et al. 2021). 

For years, the trade-off between high spatial and temporal resolution coverage has limited 

remotely-sensed applications such as crop yield estimation at the field and sub-field scales 

(Waldner et al. 2019). In order to fill that gap, a number of companies developed and launched 

Earth observing CubeSats to a low Earth orbit. These new satellites, such as Planet Labs' 

PlanetScope (PS) CubeSat, are relatively inexpensive to build, thereby making it possible to 

acquire large image collections at high spatial and temporal resolutions at a relatively low cost. 

However, images obtained from CubeSat constellations, such as Planet’s PS, frequently 

suffer from radiometric inconsistencies in the data collected by the different satellites within 

the constellation, due to inter-calibration challenges and their low signal-to-noise ratio. 

(Houborg and McCabe 2016; Houborg and McCabe 2018b; Leach et al. 2019; Sadeh et al. 

2019). To overcome this issues, some methods have been developed to fuse CubeSat data 

with other satellite images such as Sentinel-2 (S2) or Landsat to produce consistent high 

spatio-temporal LAI datasets (Houborg and McCabe 2018a; Kimm et al. 2020; Sadeh et al. 

2021).  While recent studies have shown that improvement in crop yield estimations can be 
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expected by using more frequent high-spatial and high-temporal satellite images per growing 

season (Jain et al. 2016; Jin et al. 2017a; Waldner et al. 2019; Manivasagam et al. 2021), the 

potential of using such a unique high spatio-temporal LAI dataset to improve yield estimations 

has yet to be fully evaluated. 

While most studies attempted to estimate crop yield at regional, state or national scales (e.g. 

Ines et al. 2013; Huang et al. 2015; Azzari et al. 2017; Jin et al. 2017b; Cai et al. 2019; Jin et 

al. 2019), few studies have attempted to estimate yields without calibration through ground 

data (e.g. Becker-Reshef et al. 2010; Franch et al. 2015; Lobell et al. 2015; Azzari et al. 2017; 

Jin et al. 2019). In addition, a relatively small number of studies tried to estimate yield at the 

pixel and field scales (e.g. Donohue et al. 2018; Lai et al. 2018; Chen et al. 2020; 

Manivasagam et al. 2021; Sagan et al. 2021), but only very few attempted doing so without 

any ground-based data for calibration (e.g. Jain et al. 2016; Burke and Lobell 2017; Dado et 

al. 2020; Deines et al. 2021), achieving limited success. To overcome these limitations, it 

appears promising to develop new methods that combine earth observation data with data 

generated from crop growth models, and thus eliminate the need for in-situ yield measurement 

and to preform global yield monitoring (Lobell et al. 2015; Waldner et al. 2019). 

The objective of this study was therefore to develop a new approach for estimating crop yield 

at the field and pixel scales, without relying on ground data for calibration. The proposed 

method was tested on estimating wheat yield, as wheat is an agricultural commodity which 

has an important place in the global food production. However, since it is typically grown in 

relatively arid regions of the world, it is particularly vulnerable to climate variability (Hammer 

et al. 2001), hence the importance of the success of the method. First, a CubeSat-based 

sowing date detection method (Chapter 2) was used to identify cultivated fields and the date 

when they were sown. Second, PS images and S2 images were fused to create daily LAI 

datasets at 3 m resolution (Chapter 3). Finally, the detected sowing dates and the field’s LAI 

datasets were coupled with the APSIM-Wheat crop model (Holzworth et al. 2014) to estimate 

wheat yield 2-3 months before the harvest at the field scale and at 3 m pixel size within the 

field. 

Lastly to identify where and when the estimated yield has been harvested and become 

available to be trade in the market, this study tested the ability of the sowing date detection 

method to also detect the timing of the harvest for the studied fields.  
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4.3. Methodology 

This study developed a new method named VeRCYe – VeRsatile Crop Yield Estimator 

(pronounced as “versi”) for estimating crop yield at the field and pixel scales. VeRCYe uses 

the LAI as the linking parameter between the remotely sensed (RS) data and APSIM’s plant 

development and yield estimation. It includes four main steps: 

1. A CubeSat-based sowing date detection method developed to identify cultivated fields 

and the date when they were sown (Chapter 2).  

2. Fusion of PlanetScope (PS) images and Sentinel-2 (S2) images to create daily LAI 

datasets at 3 m resolution (Chapter 3).  

3. Coupling of the sowing dates and Leaf Area Index (LAI) datasets with The Agricultural 

Production Systems sIMulator (APSIM)-Wheat crop model to estimate wheat yield at 

the field scale.  

4. Detection of the harvest date for each field using the same methodology as for the 

sowing date detection in step 1 but at the end of the season. 

The accuracy of the estimated yield was evaluated against the reported yield from 27 farmers’ 

fields (Table 9), including 21 fields sourced from the National Paddock Survey (Lawes et al. 

2018). Fields were located across five Australian states. Reported data spanned three growing 

seasons (2017 – 2019) and corresponded to various weather conditions, soils, farm 

management practices and wheat cultivars. It is important to note that at no stage ground-

based data (included yield) was used in this study for training or calibration purposes.  

 

Figure 19. VeRCYe’s field-scale yield prediction workflow 
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4.3.1. Sowing and harvest date detection 

In order to extract the sowing dates for each field, the semi-automated sowing date detection 

proposed in Chapter 2 was implemented. By contrast to Sadeh et al. (2019) who used 

Equation 1 (Change =  
Imaget1

PC1

Imaget2

PC1
, Page 17) to identify the change between two consecutive 

images, the current chapter used the following as it provided improved performance: 

Change =  Imaget2

PC1  − Imaget1

PC1                               Equation 4 

where 𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1  is the first principal component of the earlier satellite image and 𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1  is 

the first principal component of the later satellite image. 

This study also tested the ability of the sowing date detection method to detect the harvest 

dates and the field area that had been harvested between two consecutive images. It was 

found that the sowing date detection method was effective in detecting the harvested area of 

the field, after modifying the “change” equation (Equation 4) to: 

Change =  Imaget1

PC1  − Imaget2

PC1                                     Equation 5 

where here the 𝐼𝑚𝑎𝑔𝑒𝑡1

𝑃𝐶1  is the first principal component of the earlier satellite image and 

𝐼𝑚𝑎𝑔𝑒𝑡2

𝑃𝐶1  is the first principal component of the later satellite image. This modification was 

required, as sowing often corresponds to a change in color from bright to dark, while at harvest, 

the field changes from dark brown to the light brown-yellow color of the crop residue. 

The accuracy of the detection of both sowing and harvest dates was evaluated against the 

dates reported by farmers. Out of all 27 fields used in this Chapter, only 22 had reported 

sowing dates and 20 had reported harvest dates. 

4.3.2. APSIM model simulations 

APSIM Next Generation crop model (Holzworth et al. 2018) allows the running of numerous 

possible scenarios that represent a realistic range of environmental conditions and farm 

Table 9. This table summarizes the field-scale reference data used in this study to evaluate the performance 

of the proposed method. Overall, 27 fields were analysed, however, the sowing and harvest dates were not 

reported for all fields and for some the harvester data was missing. 

 Field-scale 
yield data 

Yield map 
(harvester data) 

Sowing dates Harvest dates 

Number of fields 27 22 22 20 
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management practices. This helps to overcome the gaps in knowledge of the farm 

management practices used in specific fields. As part of this process, ~2,000 simulations of 

APSIM are generated for each field (Figure 19). The weather data were taken from the nearest 

weather station (www.bom.gov.au/) and the soil properties from the four nearest soils available 

in the APSoil database (www.apsim.info/apsim-model/apsoil/). Each APSIM simulation 

outputs daily crop characteristics including LAI as well as a grain yield estimation (kg/ha). 

Simulations that best reflect the LAI evolution selected using an automatic rule-based 

algorithm (to be described below) to estimate the likely final yield.  

To simulate the range of plausible scenarios for each studied crop, the following information 

was used (see summary in Table 10):   

Weather data - The weather records were downloaded from the nearest weather station to 

the field from the SILO database. SILO is a database of historical climate data for Australia 

(Jeffrey et al. 2001). It is maintained by the Queensland Government and the datasets are 

constructed using observed data provided by the Australian Bureau of Meteorology (SILO 

2018). The weather data file includes daily radiation (MJ/m2), min and max temperature, rain 

and evapotranspiration (mm). 

Sowing date – the sowing dates used in APSIM were the dates detected using the adapted 

sowing date detection method from Chapter 2, as described above. These sowing dates were 

also used as the start date for APSIM simulations. 

Soil characteristics – Australian wheat crops are mostly grown under rain-fed conditions and 

so heavily rely on water available in the soil profile. Therefore, choosing an appropriate soil to 

represent the field is important to obtain reliable results. Soil characteristics were sourced from 

the APSoil database, which is a repository of soils developed for use by the APSIM cropping 

systems model (Holzworth et al. 2014). APSoil is focused on the physical and chemical soil 

characteristics that drive crop production, particularly soil water and crop nutrition (Dalgliesh 

et al. 2016). In this study, the nearest 4 soil types were used alternatively to generate the 

simulations. This increased the likelihood to consider a soil with similar properties as the soil 

from the field of interest.  

Cultivars – For each field, three cultivars were chosen to represent early, mid, and late 

maturing cultivars from each region, as proposed by Zheng et al. (2015) and by analysing the 

popular cultivars used by farmers in each region as reported in the National Paddock Survey. 

The cultivars used for each region in the Australian wheat-belt were: South-East: Axe, Mace, 

Gregory, South-West: Mace, Scepter, Yitpi and East: Suntop, Baxter, Lancer. 

http://www.bom.gov.au/
http://www.apsim.info/apsim-model/apsoil/
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Initial soil water – The soil water at the start of the simulation was set as 20%, 50% or 100% 

of the plant available soil water capacity (PAWC) of the soil, with the soil profile filled from the 

top (typically due to rainfall refilling the soil during the intercropping season). 

Fertilization at sowing – Farmers commonly fertilize the soil at sowing, however the rate of 

fertilizers used typically varies across regions. Three different rates were used to cover the 

range from current common practice in Australia (Chenu et al. 2013). Those were 30, 50 or 

100 kg/ha of nitrogen, in the form of NO3. 

Fertilization during the season – Similar to the fertilization at sowing, the rate of fertilizers 

used by farmers during the growing season typically vary across regions of the wheat-belt but 

also depending on seasonal rainfall. As the actual dates of the fertilization are unknown for 

the studied fields, different optional rates were applied in the simulations to cover common 

practice in Australia following Chenu et al. (2013). These rates were 0, 30 or 60 kg/ha of NO3 

at the stage ‘stem elongation’ (also referred to as Zadoks’ growth stage 31 (Zadoks et al. 

1974)) and 0 or 30 kg/ha of NO3 at the ‘booting’ stage (i.e. Zadoks’ growth stage 40). 

Plant population – The number of plants per m2, or plant ‘density’, was set at 50, 100 & 150 

plants per m2, based on common practices reported in Chenu et al. (2013) and in the National 

Paddock Survey. 
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4.3.3.  Remotely sensed LAI 

The newly developed method to fuse PlanetScope and Sentinel-2 imagery into daily 3 m LAI 

(Sadeh et al. 2021) was used to generate a times-series of LAI for each of the fields analysed. 

This Chapter tested the ability of using both the original remotely sensed LAI time-series, being 

equivalent to the generic S2-LAI product (but in 3 m daily datasets) and the modified remotely 

sensed LAI dataset, which adjusted the generic S2-LAI product estimations to better estimate 

wheat Green LAI (Sadeh et al. 2021). 

4.3.4. Coupling APSIM model simulation with remotely sensed LAI for 

field scale yield estimations 

For each field, ~2,000 different simulations of APSIM were generated spanning a realistic 

range of possible environmental and on-farm variables (as described above). Simulations 

most likely to accurately predict the yield of the field of interest were selected using the 

Table 10. Inputs used to run APSIM simulations at each studied field. 

Parameters Inputs / Rules 

Constant parameters 

Sowing date The detected sowing date 

Sowing depth (mm)  30 

Row spacing (cm)  25 

Duration of rainfall accumulation (days)  7 

Changing parameters (factorials) 

Weather data 
From the nearest weather 

station 

Cultivars 
Early, mid, and late 

maturing local cultivars 

Plant population (plants per m2) 50, 100, 150 

Soil characteristics 
The nearest 4 APSOIL 

soils 

Initial soil water 
20%, 50%, 100% of the 

plant available water 
capacity from the soil 

Fertilization at sowing (NO3 kg/ha) 30, 50, 100 

Fertilization at Zadok Stage – 31 (Stem elongation stage) (NO3 kg/ha) 0, 30, 60 

Fertilization at Zadok Stage – 40 (Booting stage) (NO3 kg/ha) 0, 30 
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following steps. The selection steps all focused on LAI data around the field’s peak LAI, within 

a target time window when the Remotely Sensed (RS) LAI values were ≥ 60% of the RS max 

LAI (LAImax) (Figure 20). 

Step 1. Find the highest 40% of the remotely sensed LAI values during the season and 

their timing. The threshold 40% was chosen following sensitivity tests which showed that 

there is no need of using the entire season data to produce and accurate yield estimation. 

This criterion is commonly reached about two months before harvest on average.  

Step 2. For each APSIM simulation, extract only the simulated LAI that fall within the 

duration of the highest 40% of the remotely sensed LAI values. 

Step 3. Calculate the following variables for each APSIM simulation: 

A. The gap in LAI between the max simulated and RS LAI (e.g. on the Y axis). 

B. The gap in days between the timing of max simulated LAI and max RS LAI (e.g. 

on the X axis). 

C. RMSE between simulated and RS LAI (for the highest 40% of the remotely 

sensed LAI values), assuming that low RMSE represents a good match between 

the RS and the simulated LAI. 

D. RMSE between simulated and RS Green LAI, representing the stages when the 

leaves are photosynthetically active (Daughtry et al. 1992), in the range of 1 to 

maximum RS LAI. 

E. RMSE between simulated and RS Senescence LAI, representing the stages 

when the leaves are not photosynthetically active (Delegido et al. 2015), in the 

range between the maximum RS LAI and 1. 

 

Figure 20. An example of ~2,000 different simulations of APSIM that were generated for a field, spanning a 

realistic range of possible environmental and on-farm variables. The green lines represent the simulated LAI 

and the blue lines represent the associated yield predictions. The remotely sensed LAI in black and the dashed 

red line illustrates the field’s highset 40% of the remotely sensed LAI values during the growing season. These 

were used to select APSIM simulation with most-similar LAI patterns, and estimate the range of plausible yields. 
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Step 4. Selecting only the simulations with the lowest 20% gap in LAI between the 

maximum (peak) simulated and RS (Figure 22). 

Step 5. From the simulations selected in Step 4, select only the simulations with a gap 

in days between the timing of the max simulated and RS LAI that is within a range of +- 5 

days. If none of the simulation answers this rule, then the selection range will increase to 

+- 10 days gap between the timing of the max simulated and RS LAI. If still none of the 

simulations meets this rule then it will increase to +- 15, 20, 25 and eventually 30 days 

(Figure 21). 

 

Figure 22. Illustration of the selection process of the lowest 20% gaps between the season’s maximum (peak) 

of simulated LAI and the maximum RS LAI. This figure shows the histogram of all the gaps calculated for a 

specific field, when the yellow box represents the simulations which has the lowest 20% values, while the red 

line represents a perfect match between the maximum simulated LAI and the maximum RS LAI (i.e. gap = 0 

LAI). 

 
 

Figure 21. This figure shows the histogram of the gap in days between simulated and RS LAI of all simulations 

selected in the previous step. This histogram illustrates the selection rule of the simulations in which their gap 

in days between the timing of the max simulated and RS LAI is within the range of +- 5 days gap (the yellow 

box). The red line represents a perfect match between the timing of the maximum simulated LAI and the 

maximum RS LAI (i.e. gap = 0 days). 
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Step 6. An attempt to estimate the yield of a field by identifying the best fit simulated 

LAI to the remotely sensed LAI constantly resulted in underestimation of the forecasted 

yield. This study found that the simulations which ended with high accuracy of yield 

estimations (in comparison to the reported yield) frequently had higher simulated LAI 

during the senescence period than the RS Senescence LAI. This aligned with the finding 

of Chapter 3, in which the S2-LAI product was found less suitable for estimating wheat 

Senescence LAI than Green LAI. An illustration of the underestimation of the RS 

Senescence LAI is shown in Figure 23.  

In order to overcome the underestimation of the remotely sensed Senescence LAI, the 

simulations that will continue for the next step must be simulations with the highest 20% 

of the average Senescence LAI (of the simulations selected in the last step). The 

threshold of 20% resulted from sensitivity tests conducted to evaluate which percentage 

would best perform in this process. The sensitivity tests aimed to identify the 

smallest possible percentage in order to minimize the sample size of the data analysed 

to save processing time. A breakdown of the simulated LAI and their associated estimated 

yield is shown in Figure 24. In this figure the remaining 389 APSIM simulations (out of 

 

Figure 23. An illustration of the underestimation of the RS Senescence LAI (blue and red lines) in 

comparison to the in-situ Senescence LAI (dashed black line). See caption of Figure 16 for details of the 

legend. 

 

Figure 24. A breakdown of the simulated LAI and their associated estimated yield after applying the gap in 

max LAI value and timing filters, which resulted in 389 selected simulations (out of ~2,000). The simulations 

whose estimated yield ended above the average of all ~2,000 simulations are colored in a darker color 

(dark green for simulated LAI and dark blue for its associated estimated yield) then the simulations which 

their estimated yield ended to be below the average (light green for simulated LAI and light blue for its 

associated estimated yield). The simulation that resulted in the lowest yield is highlighted in orange while 

the simulation that resulted in the highest yield is highlighted in red while the remotely sensed LAI is in 

black. 
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~2,000 initial simulations), which resulted from the gap in max LAI value and timing filters 

(steps 4 & 5 above) are plotted. In Figure 24, the simulations for which their estimated 

yield ended to be above the average of all ~2,000 simulations are colored in a darker color 

(dark green for simulated LAI and dark blue for its associated estimated yield) than the 

simulations which their estimated yield ended to be below the average (light green for 

simulated LAI and light blue for its associated estimated yield). The simulation that 

resulted in the lowest yield is highlighted in orange while the simulation that resulted in 

the highest yield is highlighted in red. Figure 24 shows that there is no clear trend which 

simulation will result in a higher, and therefore more accurate yield estimation, when 

looking only at the Green LAI stage. However, at the senescence stage a clear trend was 

found with the simulations having a low Senescence LAI likely to result in lower yield 

estimation, while no clear correlation could be seen for Green LAI and yield. The result of 

this rule (Step 6) is presented in Figure 25. 

 

Step 7. Finally, the estimated field-scale yield is set to be the average of the simulations 

with the lowest 20% RMSE between simulated and RS Green LAI (low RMSE represents 

a good match between the simulated and RS LAI). An example of the output of the field-

scale yield estimation is shown in Figure 26. In order to cover different scenarios, if step 

6 results with less than 10 simulations, then the estimated yield is set to be the average 

 

Figure 25. This figure shows the simulations who met all the conditions in the previous steps. In this example 

78 simulations were selected out of 389 in the previous step. 
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of all these simulations, i.e. without applying Step 7. In the scenario of an extremely low 

yield, such as during a severe drought, the ability to accurately estimate LAI using 

satellites is very limited.  While crop models will still simulate crops with very low LAI in 

such scenarios, the extreme under-developed crop surrounded by bare soil is typically 

associated with a reduced RS LAI dramatically owing to the mixed pixel effect (Gao et al. 

2012). Such crops typically have a very low yield and therefore should be addressed as 

a worst-case-scenario. Consequently, in case that the maximum RS LAI was lower than 

0.9, the estimated yield is set to be the average of the three simulations with lowest yield 

estimation. 

4.3.5. Generating yield maps at 3 m spatial resolution  

This study also predicted yield at the pixel scale two months before the harvest. This was done 

using the 3 m daily LAI maps produced from the fusion between PS and S2 (Sadeh et al. 

2021), which was converted to yield at the pixel level.  In this process, a Conversion Factor 

(CF) (Equation 7) was used to convert LAI maps to yield maps (kg/ha). The CF was calculated 

as: 

 

Figure 26. An example of the output of field-scale yield prediction of a wheat field located near Mallala in South 

Australia. 
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Conversion Factor =  
Estimated Yield 

Remotely Sensed LAImax
                           Equation 6 

where Estimated Yield is the estimated field-scale yield, as described in section 4.3.4 and 

Remotely Sensed LAImax corresponds to the season’s maximum field-scale median LAI value 

from the RS LAI map, for the day when RS LAI was detected as being the maximum, within 

that field, during the growing season. Next, each pixel of the LAI map (of the Remotely Sensed 

LAImax) was multiplied with the CF, which converted the LAI values into yield (kg/ha) at the 

pixel level. This process resulted in a yield map at a spatial resolution of 3 m. 

Combine harvesters equipped with yield monitors collect geolocated point yield data during 

the harvest (Fulton et al. 2018). In this study the harvesters’ raw point measurements 

(commonly provided at a density of 10 m) were interpolated to a grid using the Inverse 

Distance Weighting (IDW) interpolation (Bartier and Keller 1996) into standardized 5 m yield 

maps, after removing outlier measurements of less than 100 kg/ha or above 10,000 kg/ha, as 

well as data points located within 5 m of the field boundaries. Finally, the generated yield maps 

were smoothed by using a low pass filter (3 by 3 pixels kernel) and used to assess the 

accuracy of yield maps estimated based on the RS LAI map and APSIM simulations. 
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4.4. Results 

4.4.1.  Sowing and harvest date detection accuracy 

Implementing the sowing date detection method resulted in the accurate detection of sowing 

in 20 out of the 22 (90.9%) fields analysed (Table 11). There was only an average 0.95-day 

gap (0.5-day gap for the median) between the detected and reported sowing dates (RMSE = 

2.7 days). 

When using this method to detect harvest dates, this study showed that after making the small 

adjustments for harvest detection the method was also suitable for detecting harvested area 

and its timing (Figure 27). Implementation of the method resulted in the detection of harvest 

dates for all 20 analysed fields. Furthermore, there was only an average -0.1-day gap (0-day 

gap for the median) between the detected and the reported harvest dates (RMSE = 2.6 days). 

A summary of these results is presented in Table 11. 

 

Figure 27. Example of harvest detection. This figure illustrates the harvest detection of a farm land 1,400 ha in 

size, near Mullewa, Western Australia, using four PS images taken over eight days. In (A) the pre-harvested 

wheat can be seen in a dark brown color, while the harvested area has bright yellow/grey colors. In (B), resulting 

images of subtracting 𝐼𝑚𝑎𝑔𝑒
𝑡1

𝑃𝐶1 from 𝐼𝑚𝑎𝑔𝑒
𝑡2

𝑃𝐶1, where a change between the images resulted in high values 

(green) and negligible changes resulted in low values (red). The area classified as harvested is shown in white 

(C) and the grey areas classified as noise. 
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4.4.2.  Field-scale yield estimations accuracy 

The ability of VeRCYe to estimate yield at the field-scale was tested over 27 fields, using (i) 

the fused 3 m daily LAI time-series which is equivalent to the generic S2-LAI (original) as well 

as (ii) the fused LAI time-series which was adjusted to better estimate wheat Green LAI 

(corrected). In addition, for each of these datasets, this study investigated which of the 13 

different vegetation indices (VIs) tested by Sadeh et al. (2021) to fuse PS and S2 into high 

spatio-temporal resolution LAI, resulted in best performances for the VeRCYe approach.  

The results, as shown in Table 12, indicate that when using the fused-LAI equivalent to the 

original generic S2-LAI, VeRCYe was able to estimate field-scale yield with an RMSE of 971 

kg/ha, and an average and median error of -740 kg/ha and -573 kg/ha respectively (for the 

best preforming VI). The R2 between the yield estimates using this dataset and the reported 

Table 11. The performance of the sowing date detection method (Sadeh et al. 2019) in detecting the sowing 

and harvest dates of fields analysed.  

 Sowing date detection Harvest date detection 

Average error (days) 0.95 -0.1 

Median error (days) 0.5 0 

RMSE (days) 2.7 2.6 

Detected fields 90.9% (20/22) 100% (20/20) 

 

Table 12. Performance of VeRCYe field-scale yield estimations (n=27) using either (i) the fused-based LAI 

dataset equivalent to the generic S2-LAI (original) or (ii) the adjusted fused-based LAI that correct for 

underestimation of high LAI values (LAI > 3). This table shows which of the 13 different vegetation indices (VI’s) 

used in Sadeh et al. (2021) to fuse PS and S2 into high spatio-temporal resolution LAI, resulted with the most 

accurate yield estimation. The best performances in each performance metric is coloured in red.  

VI NDVI EVI2 MTVI2 MSAVI WDRVI 
GREEN 
WDRVI 

GCVI OSAVI GSR GNDVI RDVI TVI SR 

Original LAI 

Average error 
(kg/ha) 

-845 -856 -740 -807 -847 -833 -827 -851 -826 -835 -774 -819 -835 

Median error 
(kg/ha) 

-868 -868 -573 -573 -868 -898 -870 -868 -870 -868 -653 -675 -833 

RMSE (kg/ha) 1049 1059 971 1031 1044 1006 993 1053 993 1017 1002 1025 1038 

R2 0.85 0.85 0.85 0.84 0.86 0.88 0.89 0.85 0.89 0.87 0.84 0.86 0.86 

Adjusted LAI 

Average error 
(kg/ha) 

-545 -558 -550 -572 -594 -563 -561 -538 -575 -556 -519 -579 -627 

Median error 
(kg/ha) 

-378 -378 -511 -488 -488 -525 -380 -378 -488 -525 -438 -488 -554 

RMSE (kg/ha) 817 850 817 834 887 845 854 809 866 832 757 829 913 

R2 0.86 0.84 0.86 0.86 0.83 0.85 0.84 0.86 0.84 0.85 0.88 0.86 0.83 
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yield ranged between 0.84 and 0.89 for all VIs tested, while overall the MTVI2-based fused 

LAI outperformed the other VIs for most of the performance metrics. 

Using the adjusted LAI improved the accuracy of the field-scale yield estimation substantially 

with an RMSE of 757 kg/ha, and an average and median error of -519 kg/ha and -438 kg/ha 

respectively (for the best preforming VI). The R2 between the estimated and the reported yield 

ranged between 0.83 and 0.88 for all VIs tested, while overall the RDVI-based fused LAI 

outperformed the other VIs for most of the performance metrics. Therefore, RDVI was chosen 

as the preference VI to be used in VeRCYe. 

Overall, this study found that VeRCYe was not very sensitive to the VI used to generate the 

fused LAI as shown in Table 12. However, overall the results highlight that using the fused-

LAI equivalent to the original generic S2-LAI underperformed the field-scale yield estimations, 

resulting from using the adjusted LAI dataset. This study found that the adjusted RS LAI based 

on the RDVI resulted in the best yield estimation accuracy with R2 = 0.88 and RMSE = 757 

kg/ha (average of -15%) between the reported and estimated yield (Figure 28). In addition, 

this method was able to estimate both the lowest (under 1,050 kg/ha) and highest yields 

(above 6,500 kg/ha) with satisfying accuracy, with a RMSE of 178 kg/ha (average error of 1 

kg/ha, -1%) and 522 kg/ha (average error of 468 kg/ha, -7%), respectively. Despite these 

satisfying results, VeRCYe tended to underestimate the reported yield in the tested conditions 

as shown in Figure 28. When using the 40% of the sessions’ highest LAI values, the yield 

 

Figure 28. A comparison between wheat yield reported by farmers and estimated yield at the field-scale 

estimated by VeRCYe, when using the adjusted RS LAI based on the RDVI. In the figure each red square 

represents of the in 27 fields for which yield was reported by farmers; the whiskers represent the standard 

deviations of the estimated yield; the black line represents the 1:1 line and the blue line represent the trendline. 
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estimation was conducted 2 months before the harvest on average, and therefore can be 

considered as the forecasting period tested in this study (Figure 29). 

 

Figure 29. A histogram that how long before the harvest the forecasting conducted. This was determent on the 

data what the highest 40% of the sessions’ LAI was achieved. 

4.4.3. Yield map accuracy 

The ability of VeRCYe to estimate yield at the pixel level was tested for 22 fields. The results, 

as shown in Table 13, indicate that when using the fused-LAI which was equivalent to the 

original generic S2-LAI, the proposed yield estimation method was able to produce estimated 

yield maps with an RMSE of 1,108 kg/ha, and an average and median error of -467 kg/ha and 

-534 kg/ha respectively (for the best preforming VIs) at the pixel level (for all pixels of all maps). 

The R2 between the yield estimates using this dataset and the reported yield ranged between 

0.28 and 0.32 for all VIs tested, while overall the RDVI-based fused LAI slightly outperformed 

the other VIs. In contrast to the improvement achieved by using the adjusted LAI dataset in 

Table 13. The performance of VeRCYe to accurately generate sub-field scale yield estimations by creating 3 

m yield maps (n=22). This table shows a comparison of the accuracy of the yield maps which were based either 

on (i) the fused-based LAI dataset equivalent to the generic S2-LAI (original) or (ii) the adjusted fused-based 

LAI. This table shows which of the 13 different vegetation indices (VI’s) tested by Sadeh et al. (2021) to fused 

PS and S2 into high spatio-temporal resolution LAI, resulted with the most accurate yield maps estimation. The 

best performances in each performance metric is coloured in red. 

VI NDVI EVI2 MTVI2 MSAVI WDRVI 
GREEN 
WDRVI 

GCVI OSAVI GSR GNDVI RDVI TVI SR 

Original LAI 

Average error 
(kg/ha) 

-604 -625 -572 -652 -665 -644 -606 -605 -605 -660 -467 -660 -652 

Median error 
(kg/ha) 

-627 -607 -677 -681 -690 -646 -600 -627 -601 -654 -534 -683 -672 

RMSE (kg/ha) 1108 1133 1215 1145 1184 1165 1148 1109 1147 1156 1199 1146 1183 

R2 0.30 0.31 0.28 0.30 0.32 0.31 0.32 0.30 0.32 0.31 0.30 0.30 0.32 

Adjusted LAI 

Average error 
(kg/ha) 

-894 -911 -687 -839 -886 -845 -813 -895 -812 -872 -668 -852 -856 

Median error 
(kg/ha) 

-999 -999 -855 -845 -966 -944 -926 -999 -927 -966 -819 -851 -976 

RMSE (kg/ha) 1288 1303 1281 1258 1285 1235 1214 1289 1213 1250 1299 1261 1272 

R2 0.30 0.31 0.27 0.29 0.32 0.31 0.32 0.30 0.32 0.31 0.30 0.30 0.32 
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estimating field-scale yield, using it to generate yield maps did not result in improved accuracy. 

Using the adjusted LAI resulted with an RMSE of 1,213 kg/ha, and an average and median 

error of -668 kg/ha and -819 kg/ha respectively (for the best preforming VIs) at the pixel level. 

The R2 between the estimated yield maps and the harvesters’ yield maps ranged between 

0.27 and 0.32 on average for all VIs tested, while overall the RDVI and the GSR-based fused 

LAI outperformed the other VIs in most of the parameters. It is important to note that in some 

cases the correlation at the pixel level between the harvester and the estimated yield maps 

was higher than R2 = 0.81 (RMSE > 525 kg/ha) as shown in Figure 30. As VeRCYe uses the 

peak of the field’s LAI (the day with the highest field-scale median LAI of the season) to 

generate the yield maps, it enabled the creation of yield map estimation at 3 m pixel size on 

the day the crops reached their sessional peak of LAI, which was observed in this study to be 

between 2 and 4 months before the harvest. Yield maps produced in this study enabled the 

estimation of yield at the pixel level on average of 2 months before the reported harvest. 

 

 

 

Figure 30. Yield map generated by the harvester (A) and yield map generated three months before harvest 

using the proposed methodology (B) and their comparison (C) for a wheat field near Birchip, Victoria, Australia. 

In (B) the estimated 3 m pixel size yield map was generated on the 18.8.2018 which was three months before 

the harvest (17.11.2018), while the crop was at the Flag Leaf growth stage (Zadoks growth stage 36.68). In (C) 

the correlation between the two yield maps is presented in the form of a scatterplot, where the black line 

represents the 1:1 line and the blue line represents the trend line. The correlation analysis between these maps 

found a RMSE = 525 kg/ha and R2 = 0.81. 
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4.5. Discussion 

This study presented the new VeRCYe method to estimate crop yield at the field and pixel 

scales which do not rely on detailed official crop statistics or in-situ measurements, by coupling 

the capabilities of remote sensing and crop models. Many studies have shown a linear 

relationship between the photosynthetic capacity estimated from spectral responses and the 

crop phenology, which can be used to predict wheat yields using satellite remote sensing (e.g. 

Becker-Reshef et al. 2010; Franch et al. 2015; Bognár et al. 2017). However, reliance upon a 

unique linear relationship is not ideal, especially when crops experience highly variable 

environmental conditions, as in Australia, where crops are frequently stressed by heat waves, 

frosts and droughts (Chenu et al. 2013; Zheng et al. 2015; Ababaei and Chenu 2020).  

4.5.1.  Wheat yield estimation at the field-scale  

Despite the extensive research on yield estimation via remote sensing, it is still difficult to 

directly compare the results of this study with other studies that have attempted to estimate 

field-scale yield, mainly owing to differences in crop type and the spatial and temporal extent 

of these estimations (Dado et al. 2020).  

In this study, VeRCYe was able to estimate wheat yield on average two months before the 

harvest with a satisfactory accuracy. The results suggest that using the wheat adjusted LAI 

(Chapter 3) improves the accuracy of field-scale yield estimations substantially in comparison 

to using the fused-LAI, which is equivalent to the original generic S2-LAI. Implementing 

VeRCYe using the adjusted LAI resulted in an RMSE of 757 kg/ha (R2 = 0.88) across the 27 

studied fields, while implementation with the original LAI achieved an RMSE of 971 kg/ha (R2 

= 0.89). The best preforming VI fusion-based LAI for the original LAI was MTVI2 and for the 

adjusted LAI, RDVI was found to achieve the best accuracy with an RMSE of 757 kg/ha (R2 = 

0.88). These two VIs were reported by Sadeh et al. (2021) to be among the best preforming 

VIs to estimate wheat Green-LAI using their proposed fusion method. 

VeRCYe was found as a scalable approach for estimating wheat yield without the need for 

calibration, performing almost as well (and sometimes even better) than approaches that use 

field data for calibration. For example, Feng et al. (2020) estimated plot-scale wheat yield in 

the south-eastern Australian wheat belt, using daily MODIS NDVI data (500 m spatial 

resolution), one month prior to harvest (R2 = 0.72, RMSE = 700 kg/ha), and at two months 

before harvest (R2 = 0.38, RMSE = 1,101 kg/ha). Donohue et al. (2018) developed a field-

scale regional crop yield model called C-Crop, which has been locally calibrated using yield 

data collected by the farmers’ harvesters. They estimated wheat yield for fields across 
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Australia with an RMSE of 730 kg/ha and mean R2 = 0.68. Chen et al. (2020) developed a 

semi-empirical model called Crop-SI to estimate the yield of the three major crops in the 

dryland Australian wheat belt, achieving an RMSE of 540 kg/ha and R2 = 0.74 from the 

observed field-scale wheat yield. Both the C-Crop and Crop-SI methods used MODIS time-

series NDVI at 250 m resolution (provided at 16-day intervals). Filippi et al. (2019) reported 

RMSE = 360 kg/ha in their study to predict wheat, barley, and canola crop yield for several 

large farms in Western Australia using only on-farm data and the MODIS 16-day Enhanced 

Vegetation Index (EVI) at 250 m resolution through machine learning techniques. Zhao et al. 

(2020) linked S2-based VI time-series with field-scale wheat yield using a linear regression 

model in Northern New South Wales, Australia. In their study they managed to achieve an 

RMSE of 640 kg/ha and R2 = 0.93 when validating their models on an independent set of 

fields.  

Cai et al. (2019) compared the performance of one linear regression method and three 

machine learning models to estimate wheat yield in Australia, at the statistical division level, 

using the MODIS 16-day EVI dataset and climate data, achieving R2 = 0.73 up to two months 

before the harvest. However, all of these studies required the collection of an extensive and 

unique dataset measured in-situ to train or calibrate their models. These kinds of datasets are 

rare, expensive to obtain and very time consuming to perform. Furthermore, these methods, 

which require ground calibration data, are typically limited in applicability to the regions from 

which the in-situ data were derived. In addition, most methods provide yield estimations at a 

low resolution, and often cannot be used for field and pixel scales yield predictions. One of the 

reasons why many of these studies have estimated yield at the regional scale is the difficulty 

to predict yields at a smaller scale, owing to the variability of the environmental conditions and 

farm practices within even the same region (Feng et al. 2020). The development of VeRCYe 

was motivated to overcome these limitations, with its great advantage being that it uses agro-

physiological knowledge embedded in a crop model (APSIM) which can be directly related to 

crop performance monitored by satellite through space and time. In addition, VeRCYe can 

theoretically be applied to different crop types across different regions, without the need for 

local calibration, but also applicable for a rapid changing environment  (e.g. Ababaei and 

Chenu 2020) to which farmers are already adapting (e.g. Flohr et al. 2018).  

The SCYM approach, which provides yield estimates at the pixel level by applying regression 

to satellite images and gridded weather data, had some promising results when first tested in 

estimating yield at the field-scale for maize (R2 = 0.35) and soybean (R2 = 0.32) in the 

Midwestern United States (Lobell et al. 2015). However, later studies that tested the method 

for wheat yield estimation achieved limited success. Jain et al. (2016) mapped yields of 

smallholder wheat fields in Bihar, India using the SCYM approach achieving R2 = 0.27 – 0.33 



Chapter 4 – The Versatile Crop Yield Estimator 
 

 

 

77 
 

and RMSE of 557 – 606 kg/ha for the two growing seasons studied. Shen and Evans (2021) 

used SCYM for estimating wheat yields over 10 growing seasons between 2003 – 2017 for 

two nearby fields in Western Australia. Their results showed R2 = 0.49 and RMSE = 620 kg/ha 

against yield maps created from harvester yield monitoring data. The attempt to use SCYM to 

estimate village-level wheat yields In Nepal at 10-meter resolution using S2 images by 

Campolo et al. (2021) resulted with R2 = 0.24 in comparison to crop cuts (in-situ yield samples).  

Azzari et al. (2017) compared the performance of SCYM and the PEAKVI method (Becker-

Reshef et al. 2010; Franch et al. 2015) in estimating the yield of maize in the United States, 

wheat in India, and maize in Zambia using Landsat and MODIS observations. Their 

comparison of these two approaches, which can theoretically be applied anywhere in the 

world, showed that overall both methods had similar performance in monitoring spatial 

variability at the county and district scales. In their attempt to estimate wheat yield in India, 

Azzari et al. (2017) found the performance of SCYM and MODIS-based PEAKVI resulted with 

R2 > 0.45 in most years, while the best combination was the MODIS-based SCYM, which had 

an average RMSE of 560 kg/ha. These results support the conclusions of Waldner et al. 

(2019), which illustrated the importance of the LAI’s temporal resolution for accurate yield 

estimation.  

Despite the several attempts to use SCYM for wheat yield estimation with a range of different 

satellites having different spatial and temporal resolutions (e.g. Jain et al. 2016; Azzari et al. 

2017; Jain et al. 2017; Campolo et al. 2021; Shen and Evans 2021), none of these attempts 

resulted in better performance than the proposed VeRCYe approach as demonstrated in this 

study. Despite the ability to generate yield estimations at the pixel level with Landsat (30 m 

and 16-day revisit time) or S2 (10 m and 5-day revisit time) using SCYM, the temporal 

resolution of these satellites is a significant drawback. While using the MODIS dataset (250 m 

and daily revisit time) may improve SCYM’s performance (Azzari et al. 2017; Waldner et al. 

2019), it will not be able to reveal the spatial variability within the field or be used for yield 

estimation over smallholder farms. The approach presented in this study, which used a daily 

3 m LAI dataset, has the advantage of having both high spatial and temporal resolutions, 

which is one of the reasons it was able to accurately estimate yield at the field and sub field 

scales. 

Around the world millions of people are highly dependent on agriculture for their livelihoods, 

with low yield harvests directly correlated to high levels of food insecurity (Becker-Reshef et 

al. 2020). Therefore, when crop conditions are extremely poor, yield prediction methods 

require being able to flag these failures early. Methods that use ground-based data for 

calibration and training of their models (as those using machine learning techniques) typically 
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do not have the required ground reference data to represent the yield heterogeneity of the 

region of interest over space and time (Benami et al. 2021). Not having training data which 

reflects extremely low yield scenarios may prevent these methods from producing accurate 

and reliable yield estimations. Dado et al. (2020) found that SCYM tended to under-predict 

high soybean yields and overpredict low yields. They concluded that SCYM was unable to 

differentiate fields which achieved high LAIs and average yields from fields with high LAIs and 

outstanding yields. Deines et al. (2021) reported that in their study on maize yield estimation 

using SCYM, 47% of outlier under-estimations occurred in a year with a severe drought 

(Deines et al 2020). VeRCYe on the other hand managed to estimate such extreme low-yield 

fields (Figure 28), despite being tested over wheat fields heavily impacted by one of the worst 

droughts in Australia in the last decade (Tian et al. 2020). This was achieved by identifying a 

field-scale failure, which was determined as a worst-case-scenario when the field’s maximum 

RS LAI of the season was lower than 0.9. In such a worst-case-scenario the estimated yield 

was set to be the average of the three simulations with the lowest yield estimation. 

Despite its popularity, use of the peak LAI to estimate yield is likely to achieve poor estimations 

(Waldner et al. 2019). LAI by itself is limited as a linear indicator for the crop’s yield as this 

may be due to failure of plant development, biotic or abiotic stresses (Huang et al. 2019; 

Beyene et al. 2021). That also applies for the limited linear relationship between the VIs peak 

and the final yields (Kamir et al. 2020). However, it has been indicated by Dado et al. (2020), 

that using the peak GCVI and a window of 30 days after the peak allowed a slightly better 

yield estimation to be achieved than by using the GCVI peak alone. 

While most VIs works well when crop is still green, they are less affective during reproductive 

growth when crop colour starts to change from green to yellow-brown. This limitation also 

applies to remotely sensed LAI estimated using optical remote sensing (See Chapter 3). 

Accordingly, the current study highlights the need to also match the Senescence LAI owing to 

its important role in grain development. Figure 24 also shows that while the simulated LAI 

peaks resulting from ~2,000 different combinations of possible scenarios may be similar in 

their timing and magnitude, only during the Senescence LAI could the pattern that better 

represented the final yield be identified. As optical remote sensing mainly represents the 

Green LAI (Haboudane et al. 2004), identifying a simulated LAI with identical pattern to the 

entire remotely-sensed LAI time-series very likely results in an underestimation of the final 

yield. For that reason, VeRCYe includes a step Step 6) which divides the remotely-sensed LAI 

series into two, Green LAI and Senescence LAI, and analyses each of them separately. 
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4.5.1. The potential of generating 3 m yield maps 

A final goal of this study was to generate yield maps at the pixel level months before the 

harvest. Yield maps can help with estimating profitability, assessing the impacts of treatments 

used, establishing management zones, estimating the amount of nutrients removed by the 

harvested crop, improving farmers skills, reducing yield gaps and identifying areas which have 

predominantly large continuous gaps (Lobell et al. 2015; Fulton et al. 2018; Zhao et al. 2020). 

However, the first step towards reducing yield gaps is to attain accurate estimates of their 

magnitude, which represents their spatial and temporal variability (Hochman et al. 2012). The 

3 m yield maps produced by VeRCYe can help to address these challenges, especially in 

regions where reliable geolocated yield data obtained from harvesters is not available (such 

as in many developing countries).  

The accuracy of the yield maps generated by VeRCYe resulted in R2 = 0.32 (RMSE of 1,213 

kg/ha) using the best performing VI (RDVI). These results are equivalent to the accuracy of 

other yield mapping methods reported in the literature. For example, Manivasagam et al. 

(2021) evaluated the assimilation of LAI derived from S2 and LAI derived from fused S2-PS 

images into Simple Algorithm For Yield estimate (SAFY) to assess the within-field crop yield 

on spring wheat grown in Israel. Their results showed that the LAI derived from PS-S2 fused 

images had higher accuracy for yield estimation (RMSE = 690 kg/ha (69 g/m2), R2 = 0.45) than 

did S2 images alone (RMSE = 880 kg/ha, R2 = 0.35). However, the method used by 

Manivasagam et al. (2021) requires calibration through field-measured LAI in a few points in 

time, which is rarely available. Sagan et al. (2021) utilized raw satellite imagery for field-scale 

soybean (R2 = 0.87) and corn (R2 = 0.57) yield prediction using deep learning with hand-

crafted features and WorldView-3 and PS imagery. Yet this method required in-situ yield data 

for training the model. Kamir et al. (2020) used a large training data set of yield maps obtained 

from harvesters to predict wheat yields in Australia using machine learning based on climate 

records and NDVI time series data obtained from MODIS. Their method produced pixel-level 

yield estimates at 250 m resolution with an R2 of 0.77 and an RMSE of 550 kg/ha and an R2 

of 0.66 at the level of statistical units. 

Dado et al. (2020), for example, used machine learning (random forest) for training their model 

using a unique ground-truth dataset of soybean yield maps generated from combine harvester 

yield monitor data across the Midwestern United States. Their harvester-trained model 

resulted in R2 = 0.43 to 0.32. Dado et al. (2020) also evaluated SCYM performance using the 

same ground-truth soybean yield maps achieving an R2 = 0.27. Deines et al. (2021) 

implemented SCYM for estimating maize yield across the United States Corn Belt at 30 m 

pixels and evaluated their results against harvester-based yield monitor data. First, they used 
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a baseline SCYM model (Jin et al. 2017b) applied to Landsat data, which resulted in R2 = 0.31 

(RMSE = 2,630 kg/ha). Second, Deines et al. (2021) tested an alternative SCYM model that 

increased the accuracy to R2 = 0.4 (RMSE = 2,450 kg/ha), while Jeffries et al. (2019) tested a 

variation of SCYM for mapping sub‑field maize yields in Nebraska, USA, which resulted in R2 

average value of 0.12 (R2 ranged 0.003 to 0.37). However, in contrast to these studies which 

implemented the SCYM approach, which commonly provides yield estimations at 30 m pixel 

size, the yield maps produced in this current study provided a ten times higher spatial 

resolution with the same overall accuracy. 

4.5.2. Sowing dates as model inputs  

Sowing dates are major inputs for crop models, which are commonly used to explore the 

expected yield effects of different management practices (Zheng et al. 2012; Holzworth et al. 

2014; Chenu et al. 2017; Flohr et al. 2017). However, sowing dates are a source of 

considerable uncertainty for regional studies (Mathison et al. 2017). Accurate regional 

information about sowing dates at farm scale can be used to reduce the uncertainty of crop 

simulations (Mathison et al. 2017), however, obtaining accurate sowing dates from ground 

reports is very difficult and time consuming (Sacks et al. 2010; Marinho et al. 2014). Satellite-

based studies on yield estimation traditionally used officially reported sowing dates (e.g. 

Sakamoto et al. 2005; Marinho et al. 2014; Jin et al. 2016) or sowing dates based on farmers’ 

reporting and surveys (e.g. Ortiz-Monasterio and Lobell 2007; Jain et al. 2016; Manivasagam 

et al. 2021), while other methods use a sowing date window (e.g. Lobell et al. 2015; Azzari et 

al. 2017). Deines et al. (2021) found that the three sowing dates used in their study, which 

represent the 10th, 50th, and 90th percentiles in their study area, failed to capture the full 

variation present within that region. Therefore, they tested a SCYM implementation with three 

additional sowing dates in their APSIM simulations, increasing the number of simulations per 

site-year from 50 to 100. 

The approach used in this study was to minimize the uncertainty associated with an unknown 

important model input, i.e. the field’s sowing date, by detecting the actual date the farmer 

sowed the field and using it as an input to the crop model simulation. Here the sowing dates 

for the analysed fields were detected using the approach presented in Chapter 2, which 

resulted in RMSE = 2.7 days and 0.5-day gap for the median between the reported and 

detected sowing dates. 

To evaluate the contribution of using the detected sowing dates as model inputs, this study 

used a sowing window approach adopted from Waldner et al. (2019). The sowing criteria 

initiate the crop sowing if rain ≥12 mm over 3 days regardless of soil moisture from 26 April to 
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15 July (this study used ≥12 mm instead of ≥15 mm originally used by Waldner et al. (2019)). 

In case the sowing criteria were not met during the sowing window, the crop was automatically 

sown on the 15th of July. The result of the analysis shows a significate improvement in the 

accuracy of the yield estimation when using the detect sowing dates as inputs to the model 

instead of a rule-based sowing window. As shown in Figure 31, using the sowing window with 

the adjusted fused-based LAI, the R2 and RMSE between the yield estimates and the reported 

yield was 0.71 and 1,271 kg/ha respectively. While using the detected sowing dates resulted 

in R2 = 0.88 and RMSE of 757 kg/ha. 

 

 

 

Figure 31. A comparison between accuracy of VeRCYe’s yield estimations when using the detected sowing 

dates for each field and its accuracy when a rule-based sowing window used to determine the fields’ sowing 

dates for APSIM simulations. (A) shows the outcome of VeRCYe using the adjusted fused-based LAI with the 

detected sowing dates, (B) is VeRCYe’s results using the fused-based LAI dataset equivalent to the generic 

S2-LAI (original) with the detected sowing dates, (C) shows VeRCYe’s results using the adjusted fused-based 

LAI with a sowing window and (D) is VeRCYe’s results using the fused-based generic S2-LAI with a sowing 

window. In the figure each red square represents of the in 27 fields for which yield was reported by farmers; 

the whiskers represent the standard deviation of the estimated yield; the black line represents the 1:1 line and 

the blue line represent the trendline. 
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4.5.3. Limitations and prospects 

Even with the promising results presented here, there are some limitations that should be 

noted.  

The assumption that yields and LAI can be accurately simulated by crop growth models, such 

as APSIM, is the basis of VeRCYe. Despite its international reputation, the APSIM wheat 

model is not perfect. Brown et al. (2018), who evaluated the model’s performance, found the 

APSIM wheat model to estimate wheat yield with R2 = 0.84 and RMSE = 100.5 kg/ha. In 

addition, there is a less than perfect agreement between APSIM simulated LAI values and the 

remotely sensed LAI (Waldner et al. 2019), even without the imbedded noise in the satellites 

data (Sadeh et al. 2021). For example, Ahmed et al. (2016) reported that APSIM tends to 

slightly overestimate LAI. Despite the decision to use APSIM in this study, VeRCYe could 

theoretically be implemented using other crop growth models. Future studies should evaluate 

its performance with other crop models, such as WOFOST (Van Diepen et al. 1989; Ma et al. 

2013). It is possible that some models will be more relevant for the crop and environment 

targeted. 

Skakun et al. (2021) assessed within-field corn and soybean yield variability while comparing 

imagery from several sensors with a range of spatial resolutions. They showed that imagery 

with spatial resolution of 3 m, such as PS, is critical to explaining the within-field yield 

variability, while moving to coarser resolution data of 10 m, 20 m, and 30 m reduced the 

explained variability. As VeRCYe managed to achieve higher accuracy than SCYM in 

predicting wheat yields (compared to other studies) at the field-level, one could expect that 

using its pixel-level the accuracy will be better. However, VeRCYe’s performance in pixel-level 

yield estimation was overall equivalent to the pixel-level yield estimations reported in the 

literature for SCYM (Dado et al. 2020; Deines et al. 2021). For the question what is causing 

the difference between the accuracy at the field-level V.S. the pixel-level. It is known in the 

literature that as the yield estimation is aggregated, for example from the field to the farm and 

county, the error of the estimation declines. This is probably owing to the compensation of the 

error by the large sample size. The same mechanism works when comparing pixel-level to 

field-level yield data. However, one thing that can affect this difference here is the use of the 

Conversion Factor (CF) in its current form. Future studies should test different approaches to 

improve the accuracy of VeRCYe’s yield maps. One way to approach this is instead of using 

one Conversion Factor (CF) (Equation 7) applied over the whole field, zones with low, average 

and high LAI values should be treated with modified CF. 
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Currently VeRCYe uses the Remotely Sensed LAImax (the day when RS LAI was detected as 

being the maximum during the growing season at the field scale) to convert the LAI values 

into yield at the pixel level. However, use if LAI by itself is limited as a linear indicator for yield 

as it is not possible to tell if low LAI was caused by plant development, biotic or abiotic stress 

(Huang et al. 2019). 

A yield estimation at the field-scale or its associated yield map (accurate as they can be) only 

provides information about yield, and the map itself cannot identify the yield impacting factors. 

By contrast to most other yield estimation methods, VeRCYe identifies the best representing 

model simulations out of a couple of thousands of simulations that span a realistic range of 

possible environments and on-farm management practices. This can theoretically enable the 

on-farm management practices used in the selected best-fit simulations to be extracted for 

investigation. For example, when analysing field-scale yields over a specific region, the 

practises resulting in the highest or lowest yields can be identified and management practices 

that may help farmers to improve their productivity recommended. Having said that, it is 

possible that the method produces accurate yield estimations but for the wrong reasons. 

Having multiple changing parameters may end up with more knobs that can be turned, which 

can increase the chance of getting right-looking answers from an incorrect set of parameters. 

Therefore, further research is needed to verify if the optimal APSIM parameters actually reflect 

the conditions on the ground, which requires a very detailed record of farm management 

practises used by the farmers. However, such an analysis was beyond the scope of this study. 

This study used weather data covering the whole growing season, while in real-time 

forecasting such data will not be available. In such operational mode, VeRCYe can use the 

season forecasted weather or the average daily weather from the past (e.g. last 30 years). In 

addition, the method can provide yield estimations as soon as the duration 40% of the top LAI 

is finished. Theoretically, this can be reduced even to 5% that will enable earlier estimation, 

however this is likely to reduce the accuracy of the yield estimations. Future study will explore 

what will be the best timepoint to estimate yield using the proposed method. 

Future studies should also explore different methods (such as machine learning) to select the 

best fit model simulated LAI to the remotely sensed LAI, and to test the ability of the method 

to provide accurate field and pixel scale yield forecasting prior to the harvest using projected 

weather data. Although the proposed method was tested to estimate wheat yield, it is very 

likely that it will also be useful to estimate the yield of other crop types as well. However, the 

results of this study indicate that adjustment of generic S2-LAI data to better estimate the 

wheat Green LAI as proposed in Chapter 3 (Sadeh et al. 2021), is needed in order to achieve 
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better yield estimation. Moreover, it is likely that such an adjustment will also be needed when 

implementing VeRCYe with other crop types. 

While this method relies on the availability of LAI data from optical sensors, these are highly 

sensitive to the presence of clouds and shadows in the imagery, which is likely to limit the 

ability to perform at its best over certain regions. In contrast to optical sensing, SAR sensors 

have the advantages of all-weather capabilities, and therefore a potential improvement to 

VeRCYe should include the use of SAR-based LAI or SAR-optical fused LAI.  

The advantage of being able to estimate field and farm productivity remotely without the need 

of having “boots on the ground” has been magnified by the outbreak of COVID-19. While 

lockdowns and prolonged COVID-19 quarantine measures delay/limit supply of essential 

products such as fertilizers, herbicides, machinery or even the availability of seasonal workers, 

affecting the farmers performance, it has also decreased feed wheat and wheat-based product 

demand (FAO 2021). VeRCYe can potentially help to monitor these influences remotely 

across different regions without the need to risk surveyors in collecting ground data.   

 

4.6. Conclusions 

The VeRCYe method proposed in this study overcame the limitation with previous studies 

relying on ground data to estimate wheat yield by combining the advantages of both high 

spatio-temporal remote sensing and crop model simulations. This not only enables model 

inputs in the form of sowing dates to be detected from space, but also overcame the historical 

trade-off between high spatial and temporal resolutions for remotely sensed estimation of crop 

yield at the field and pixel scales. As any requirement for ground calibration data typically limits 

model applicability to the regions from which the in-situ data were collected, this new approach 

which does not rely on such data is needed. Accordingly, VeRCYe does not require any crop 

statistics or in-situ measurements, making it broadly applicable across regions, including 

where ground calibration data are not available. This method was found to be effective for not 

only producing field-scale yield estimations, but also to generate yield maps at 3 m resolution 

up to four months before crop harvest. Despite being tested for wheat, VeRCYe can potentially 

be used to estimate the yield of other crop types as well, with minimum adaptation only. This 

study outlines an innovative approach to monitor the farmer’s management practices at 3 m, 

from sowing through monitoring the crops performance throughout the season until the farmer 

decides to harvest and the yield becomes available to be trayed as a food product. 

Furthermore, the information generated using this method can be used to understand yield 
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variability from a regional scale to the pixel scale and may provide insights on the causes and 

their spatial distribution.  
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5. Chapter 5 – Conclusions and future directions  

 

While most of the common satellite-based yield estimation methods rely extensively on in-situ 

data for model training and calibration, they typically provide a local solution for the area where 

they have been calibrated. Accordingly, this thesis has presented an innovative, scalable and 

flexible yield estimation method named VeRsatile Crop Yield Estimator (VeRCYe) to 

overcome these issues. VeRCYe combines the power of both high resolution spaceborne 

remote sensing and crop modelling, to predict wheat yield at the field and pixel scales using 

remote sensing without using ground-based data. 

This chapter briefly summarizes the main conclusions of the thesis. It also includes some of 

the future directions which forthcoming studies should explore. In summary, this thesis 

consists of three components (i) sowing date detection, (ii) creation of daily 3 m LAI data and 

(iii) yield estimation at field and pixel scales. These components are combined to achieve the 

main goal of creating a robust method for crop yield estimation with global applicability from 

the pixel level to regional scale for different types of broadacre crops. Each component of this 

study has a range of potential applications, as well as limitations. 

5.1. Sowing date detection 

The method to detect sowing dates, as outlined in Chapter 2, may be used to produce and 

update near-daily low-cost field level statistics with a large spatial coverage (with an RMSE of 

1.9 days). The method was also proven effective for detecting harvested areas at the field and 

sub-field scales with very high accuracy (RMSE of 2.6 days). Moreover, it was shown that 

sowing dates detected using this method could be used as a model input to estimate yield. 

Currently the sowing detection method is still semi-automated, as users need to identify the 

pixel values that correspond to a change in the image histogram, in order to determine the 

threshold to classify pixels as ‘changed’ or ‘not changed’ (Figure 5). In order to fully automate 

the process this threshold needs to be identified automatically. This potentially can be 

achieved by implementing machine-learning techniques to identify the pixels that represent 

change in the histogram. Furthermore, while the no-tillage sowing practice is now common 

worldwide for rainfed crops, this method is currently limited to regions where no-tillage sowing 

is being implemented. 

Perhaps the most important question of this contribution in the context of the main objective 

of this thesis is, how much if any improvement can be achieved in yield estimation using the 
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detected sowing dates as a model input? The answer for that was supposed to come through 

sensitivity analysis, which although planned, were not able to be completed within the 

constraints of completing this thesis. Therefore, future studies should compare the effect of 

using VeRCYe with either the detected dates (as performed in this study) or a sowing window. 

Moreover, additional sensitivity tests should be performed to determine the maximum error 

(expressed as RMSE) in days, from which using detected sowing dates will no longer minimise 

the uncertainty of the estimated yield. 

5.2. Data fusion into high-resolution LAI  

The fusion methodology outlined in Chapter 3 helped to resolve the challenges posed by 

inconsistency in PlanetScope (PS) signals and poor spatio-temporal resolution of Sentinel-2 

(S2), producing a time-series of LAI images that preserved both the high spatial and temporal 

resolution of PS and the spectral quality of S2. In practical terms, S2 consistent surface 

reflectance RGB-NIR images and crop LAI were generated at 3 m resolution on a daily basis 

with an RMSE = 0.35-0.63 and R2 of 0.92. These high spatio-temporal resolution time-series 

are valuable for monitoring crop growth and health, and can improve the effectiveness of 

farming practices. While using the fused high-resolution LAI enhanced the yield estimation 

using VeRCYe at the field and pixel scales, the S2-based Green LAI estimates tended to 

underestimate high Green LAI values (LAI > ~3), similarly to other remotely sensed LAI 

estimations. These underestimations are likely due to asymptotic saturation of the surface 

reflectance data caused by the high biomass density, which cannot be assessed fully without 

3D information on canopy structure. As such data cannot be obtained from space, this thesis 

introduced an adjustment that successfully overcame the underestimation of high Green LAI 

values. 

It is proposed that generic LAI products, such as the S2-LAI product, should be adjusted to 

the crop of interest in order to achieve better yield estimation. As a prospect for future 

improvements and research directions, it is suggested that future studies should test the 

proposed fusion method over other crop types and evaluate the LAI adjustment in other crops. 

Furthermore, future studies should explore the possibility of adding more sensors in the fusion 

process (e.g. Landsat, SPOT or SkySat) and examine the suitability of this method to fuse 

sensor data other than S2 and PS. An interesting research direction would be to explore how 

feasible it will be to fuse satellite imagery with imagery acquired from drones. Succeeding in 

this would remove the need for costly and time-consuming aircraft flights, which would be very 

beneficial for many applications. In addition, only four spectral bands were fused here in the 

RGB-NIR range. Suitability of the method for improving the spatial and temporal resolution of 
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data obtained from sensors operated in the shortwave infrared (SWIR) and the thermal 

infrared (TIR) wavelengths should also be explored. 

5.3. VeRCYe 

VeRCYe is an innovative approach that leverages the power of high-resolution remote sensing 

and crop models to estimate and map crop yield at the field (R2 = 0.88, RMSE of 757 kg/ha) 

and pixel (R2 = 0.32, RMSE of 1,213 kg/ha) scales. Compared with the results from other 

studies, it is found that VeRCYe performed as well or better, with the added advantage that it 

does not need the in-situ calibration or training data required by other methods. 

The promising results of VeRCYe in this study indicate that it can potentially be implemented 

globally, so long as the crop type, the field’s location and its boundaries are provided, as well 

as basic knowledge of the common local farm management practices. Using the fused S2-PS 

LAI dataset as input to VeRCYe enabled yield estimation over very small fields (<0.1 ha), 

which could be ideal for estimating crop yield of smallholders in developing countries. 

However, if the focus is on yield forecasting over developed countries such as Australia and 

the USA, where the size of the fields is typically very large, future studies should explore using 

adjusted S2-LAI data alone as the remotely-sensed LAI input to VeRCYe. However, owing to 

its temporal resolution, such dataset is likely to achieve limited accuracy. According to 

previous studies, it is likely that the high temporal resolution LAI data used in this study had 

the most substantial influence on VeRCYe’s accuracy and not its spatial resolution.  

As the chances for having cloud-free images every five days using the S2-LAI data alone is 

unlikely, a future study should explore the possibility of using Synthetic-Aperture Radar (SAR) 

as a means of estimating crop LAI, either solely using SAR imagery or by fusing it with optical 

sensors. For example, fusing SAR data from Sentinel-1 (S1) with optical data from S2, or by 

training S1 to estimate S2-LAI using machine learning techniques. Furthermore, it is 

reasonable to assume that owing to the sensitivity of SAR to the geometry and roughness of 

the surface will be more suitable for estimating the LAI of the senescent leaves and its 

accuracy would not be limited only for actively photosynthesising leaves. In addition, using 

SAR-based LAI will also solve the problem of having clouds in the optical image, which highly 

affects the estimated LAI values.   

As VeRCYe was designed to identify the simulations in which their simulated LAI best matched 

the remotely sensed LAI, this enables farm management practices used as inputs in these 

selected simulations to be identified. Future work should examine whether the modelled 

practices actually correspond to what was done on the ground. An interesting future direction 

of study would also be looking into these practices and analysing them to identify which 
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practices ended up with the highest yield in certain regions. This can potentially be used to 

close the yield gap in areas where farm management practices and crop statistics are 

unavailable, such as in developing countries. However, it is possible that the method produces 

accurate yield estimations for the wrong reasons. Another aspect is validating the 

representation of the model parameters against the actual practices used by the farmer, which 

will be very challenging as many farmers do not keep records of such data (e.g. dates and 

amount of fertilizer applied, sowing and harvest dates, sowing depth, cultivar used etc.).   

Another potential feature of VeRCYe which should be further explored is the possibility of 

using this method to map important agronomic properties other than crop yield. At the base of 

VeRCYe’s yield map production lays the assumption that LAI is highly correlated with yield. 

However, APSIM can also simulate and plot other crop parameters such as the biomass, 

nutrient conditions and plant available water as well as the soil’s nutrient status (e.g. carbon, 

NH4 and NO3). The method is currently designed to use field-scale yield to calculate a 

Conversion Factor, which is used to convert the LAI map to a yield map at the pixel level. 

Accordingly, the spatial distribution of these other parameters of interest can also be estimated 

so long as they are highly correlated with the crop LAI and the model is capable of accurately 

simulating them. Having the ability to map these parameters at such a high resolution without 

the need for expensive and time-consuming ground samples, may open the door for a wide 

range of applications. 

To conclude, this study illustrated that the method proposed in this thesis is capable of (1) 

identifying when a field was sown, (2) monitoring the crops performance and health daily at a 

3 m resolution in form of VIs and LAI, (3) estimating its field-scale yield, (4) producing a yield 

map of the field at the pixel level months before the harvest and finally, (5) detecting when the 

field is harvested. Therefore, the methods developed during this study have many different 

applications as well as challenges that need to be addressed towards an operational use in 

the near future. 

 

 

  



References 
 

 

 

90 
 

6. References 

Ababaei, B., & Chenu, K. (2020). Heat shocks increasingly impede grain filling but have little effect on 
grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology, 284, 107889. 

Abdi, H., & Williams, L.J. (2010). Principal component analysis. Wiley interdisciplinary reviews: 
computational statistics, 2(4), 433-459. 

Ahmed, M., Akram, M.N., Asim, M., Aslam, M., Hassan, F.-u., Higgins, S., et al. (2016). Calibration and 
validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models 
evaluation and application. Computers and Electronics in Agriculture, 123, 384-401. 

Al-Amri, S.S., Kalyankar, N.V., & Khamitkar, S.D. (2010). A comparative study of removal noise from 
remote sensing image. arXiv preprint arXiv:1002.1148 

Australian Bureau of Meteorology. 2020. "Australian Bureau of Meteorology." Bureau of Meteorology, 
Accessed 12/8/2020. http://www.bom.gov.au/climate/data/?ref=ftr. 

Australian Bureau of Statistics. 2021. "Agricultural Commodities, Australia, 2018-19." Australian Bureau 
of Statistics (ABS), Accessed 7.2.2021. 
https://www.abs.gov.au/statistics/industry/agriculture/agricultural-commodities-australia/latest-
release#broadacre-crops. 

Azzari, G., Jain, M., & Lobell, D.B. (2017). Towards fine resolution global maps of crop yields: Testing 
multiple methods and satellites in three countries. Remote Sensing of Environment, 202, 129-141. 

Azzari, G., & Lobell, D.B. (2017). Landsat-based classification in the cloud: An opportunity for a 
paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64-74. 

Baker, C.J., & Saxton, K.E. (2006). The 'what' and 'why' of no-tillage farming. No-Tillage Seeding in 
Conservation Agriculture: Second Edition (pp. 1-10) 

Bartier, P.M., & Keller, C.P. (1996). Multivariate interpolation to incorporate thematic surface data using 
inverse distance weighting (IDW). Computers & Geosciences, 22(7), 795-799. 

Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Sicre, C.M., et al. (2016). Estimating maize 
biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote 
sensing data. Remote Sensing of Environment, 184, 668-681. 

Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold, F., Bonifacio, R., et al. (2020). 
Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor 
for Early Warning. Remote Sensing of Environment, 237, 111553. 

Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based 
model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing 
of Environment, 114(6), 1312-1323. 

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., de Abelleyra, D., Ferraz, R.P.D., et al. (2018). Remote 
sensing and cropping practices: A review. Remote Sensing, 10(1) 

Benami, E., Jin, Z., Carter, M.R., Ghosh, A., Hijmans, R.J., Hobbs, A., et al. (2021). Uniting remote 
sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & 
Environment, 2(2), 140-159. 

Beyene, A.N., Zeng, H., Wu, B., Zhu, L., Gebremicael, T.G., Zhang, M., et al. (2021). Coupling remote 
sensing and crop growth model to estimate national wheat yield in Ethiopia. Big Earth Data, 1-18. 

http://www.bom.gov.au/climate/data/?ref=ftr
https://www.abs.gov.au/statistics/industry/agriculture/agricultural-commodities-australia/latest-release#broadacre-crops
https://www.abs.gov.au/statistics/industry/agriculture/agricultural-commodities-australia/latest-release#broadacre-crops


References 
 

 

 

91 
 

Bøgh, E., Thorsen, M., Butts, M., Hansen, S., Christiansen, J., Abrahamsen, P., et al. (2004). 
Incorporating remote sensing data in physically based distributed agro-hydrological modelling. Journal 
of Hydrology, 287(1-4), 279-299. 

Bognár, P., Kern, A., Pásztor, S., Lichtenberger, J., Koronczay, D., & Ferencz, C. (2017). Yield 
estimation and forecasting for winter wheat in Hungary using time series of MODIS data. International 
Journal of Remote Sensing, 38(11), 3394-3414. 

Brown, H., Huth, N., & Holzworth, D. (2018). Crop model improvement in APSIM: using wheat as a 
case study. European Journal of Agronomy, 100, 141-150. 

Bruzzone, L., & Prieto, D.F. (2000). Automatic analysis of the difference image for unsupervised change 
detection. IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1171-1182. 

Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., et al. (2009). Albedo and LAI 
estimates from FORMOSAT-2 data for crop monitoring. Remote Sensing of Environment, 113(4), 716-
729. 

Burke, M., & Lobell, D.B. (2017). Satellite-based assessment of yield variation and its determinants in 
smallholder African systems. Proceedings of the National Academy of Sciences, 114(9), 2189-2194. 

Byrne, G.F., Crapper, P.F., & Mayo, K.K. (1980). Monitoring land-cover change by principal component 
analysis of multitemporal landsat data. Remote Sensing of Environment, 10(3), 175-184. 

Cai, Y., Guan, K., Lobell, D., Potgieter, A.B., Wang, S., Peng, J., et al. (2019). Integrating satellite and 
climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and 
Forest Meteorology, 274, 144-159. 

Campolo, J., Güereña, D., Maharjan, S., & Lobell, D.B. (2021). Evaluation of soil-dependent crop yield 
outcomes in Nepal using ground and satellite-based approaches. Field Crops Research, 260, 107987. 

Celik, T. (2009). Unsupervised change detection in satellite images using principal component analysis 
and k-means clustering. IEEE Geoscience and Remote Sensing Letters, 6(4), 772-776. 

Chen, J.M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S.G., White, H.P., et al. (2002). Derivation and 
validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite 
imagery and ground measurements. Remote Sensing of Environment, 80(1), 165-184. 

Chen, Y., Donohue, R.J., McVicar, T.R., Waldner, F., Mata, G., Ota, N., et al. (2020). Nationwide crop 
yield estimation based on photosynthesis and meteorological stress indices. Agricultural and Forest 
Meteorology, 284, 107872. 

Chenu, K., Cooper, M., Hammer, G., Mathews, K.L., Dreccer, M., & Chapman, S.C. (2011). 
Environment characterization as an aid to wheat improvement: interpreting genotype–environment 
interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of experimental 
botany, 62(6), 1743-1755. 

Chenu, K., Deihimfard, R., & Chapman, S.C. (2013). Large‑scale characterization of drought pattern: a 
continent‑wide modelling approach applied to the Australian wheatbelt–spatial and temporal trends. 
New Phytologist, 198(3), 801-820. 

Chenu, K., Porter, J.R., Martre, P., Basso, B., Chapman, S.C., Ewert, F., et al. (2017). Contribution of 
Crop Models to Adaptation in Wheat. Trends in Plant Science, 22(6), 472-490. 

Clevers, J.G.P.W. (1991). Application of the WDVI in estimating LAI at the generative stage of barley. 
ISPRS Journal of Photogrammetry and Remote Sensing, 46(1), 37-47. 

Clevers, J.G.P.W., Kooistra, L., & van den Brande, M.M.M. (2017). Using Sentinel-2 data for retrieving 
LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 9(5) 



References 
 

 

 

92 
 

Coventry, D., Reeves, T., Brooke, H., & Cann, D. (1993). Influence of genotype, sowing date, and 
seeding rate on wheat development and yield. Australian Journal of Experimental Agriculture, 33(6), 
751-757. 

Dado, W.T., Deines, J.M., Patel, R., Liang, S.-Z., & Lobell, D.B. (2020). High-Resolution Soybean Yield 
Mapping Across the US Midwest Using Subfield Harvester Data. Remote Sensing, 12(21), 3471. 

Dalgliesh, N., Hochman, Z., Huth, N., & Holzworth, D. (2016). Field Protocol to APSoil characterisations. 
In. Australia: CSIRO. 

Dash, J., & Ogutu, B.O. (2016). Recent advances in space-borne optical remote sensing systems for 
monitoring global terrestrial ecosystems. Progress in Physical Geography, 40(2), 322-351. 

Daughtry, C., Gallo, K., Goward, S., Prince, S., & Kustas, W. (1992). Spectral estimates of absorbed 
radiation and phytomass production in corn and soybean canopies. Remote Sensing of Environment, 
39(2), 141-152. 

Daughtry, C.S.T. (2001). Discriminating crop residues from soil by shortwave infrared reflectance. 
Agronomy Journal, 93(1), 125-131. 

Deines, J.M., Patel, R., Liang, S.-Z., Dado, W., & Lobell, D.B. (2021). A million kernels of truth: insights 
into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in 
the US Corn Belt. Remote Sensing of Environment, 253, 112174. 

Delegido, J., Verrelst, J., Rivera, J.P., Ruiz-Verdú, A., & Moreno, J. (2015). Brown and green LAI 
mapping through spectral indices. International Journal of Applied Earth Observation and 
Geoinformation, 35, 350-358. 

Deng, J.S., Wang, K., Deng, Y.H., & Qi, G.J. (2008). PCA-based land-use change detection and 
analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing, 
29(16), 4823-4838. 

Derpsch, R., Friedrich, T., Kassam, A., & Li, H. (2010). Current status of adoption of no-till farming in 
the world and some of its main benefits. International Journal of Agricultural and Biological Engineering, 
3(1), 1-25. 

Dhakar, R., Sehgal, V.K., Chakraborty, D., Sahoo, R.N., & Mukherjee, J. (2019). Field scale wheat LAI 
retrieval from multispectral Sentinel 2A-MSI and LandSat 8-OLI imagery: effect of atmospheric 
correction, image resolutions and inversion techniques. Geocarto International, 1-21. 

Djamai, N., & Fernandes, R. (2018). Comparison of SNAP-derived Sentinel-2A L2A product to ESA 
product over Europe. Remote Sensing, 10(6), 926. 

Djamai, N., Fernandes, R., Weiss, M., McNairn, H., & Goïta, K. (2019). Validation of the Sentinel 
Simplified Level 2 Product Prototype Processor (SL2P) for mapping cropland biophysical variables 
using Sentinel-2/MSI and Landsat-8/OLI data. Remote Sensing of Environment, 225, 416-430. 

Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J.M., et al. (2019). Assessment of red-edge 
vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 222, 133-143. 

Donohue, R.J., Lawes, R.A., Mata, G., Gobbett, D., & Ouzman, J. (2018). Towards a national, remote-
sensing-based model for predicting field-scale crop yield. Field Crops Research, 227, 79-90. 

Dronova, I., Gong, P., Wang, L., & Zhong, L. (2015). Mapping dynamic cover types in a large seasonally 
flooded wetland using extended principal component analysis and object-based classification. Remote 
Sensing of Environment, 158, 193-206. 



References 
 

 

 

93 
 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: 
ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 
120, 25-36. 

Du, Q., & Fowler, J.E. (2007). Hyperspectral image compression using JPEG2000 and principal 
component analysis. IEEE Geoscience and Remote Sensing Letters, 4(2), 201-205. 

Duchemin, B., Fieuzal, R., Rivera, M.A., Ezzahar, J., Jarlan, L., Rodriguez, J.C., et al. (2015). Impact 
of sowing date on yield and water use efficiency of wheat analyzed through spatial modeling and 
FORMOSAT-2 images. Remote Sensing, 7(5), 5951-5979. 

El Hajj, M., Baghdadi, N., Cheviron, B., Belaud, G., & Zribi, M. (2016). Integration of remote sensing 
derived parameters in crop models: Application to the PILOTE model for hay production. Agricultural 
Water Management, 176, 67-79. 

Fang, H., Baret, F., Plummer, S., & Schaepman‑Strub, G. (2019). An overview of global leaf area index 
(LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739-799. 

FAO (2021). Monthly news report on grains - June 2021. In, FAO Markets and Trade Division: FAO 
Markets and Trade Division. 

Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., et al. (2020). Dynamic wheat yield forecasts 
are improved by a hybrid approach using a biophysical model and machine learning technique. 
Agricultural and Forest Meteorology, 285, 107922. 

Ferencz, C., Bognar, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., et al. (2004). Crop yield 
estimation by satellite remote sensing. International Journal of Remote Sensing, 25(20), 4113-4149. 

Filippi, P., Jones, E.J., Wimalathunge, N.S., Somarathna, P.D., Pozza, L.E., Ugbaje, S.U., et al. (2019). 
An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. 
Precision Agriculture, 20(5), 1015-1029. 

Flohr, B.M., Hunt, J.R., Kirkegaard, J.A., & Evans, J.R. (2017). Water and temperature stress define 
the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 209, 108-119. 

Flohr, B.M., Hunt, J.R., Kirkegaard, J.A., Evans, J.R., Trevaskis, B., Zwart, A., et al. (2018). Fast winter 
wheat phenology can stabilise flowering date and maximise grain yield in semi-arid Mediterranean and 
temperate environments. Field Crops Research, 223, 12-25. 

Franch, B., Vermote, E., Roger, J.-C., Murphy, E., Becker-Reshef, I., Justice, C., et al. (2017). A 30+ 
Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield 
Monitoring. Remote Sensing, 9(3) 

Franch, B., Vermote, E.F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., et al. (2015). Improving 
the timeliness of winter wheat production forecast in the United States of America, Ukraine and China 
using MODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment, 161, 
131-148. 

Frantz, D., Röder, A., Udelhoven, T., & Schmidt, M. (2015). Enhancing the Detectability of Clouds and 
Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geoscience and 
Remote Sensing Letters, 12(6), 1242-1246. 

Fulton, J., Hawkins, E., Taylor, R., & Franzen, A. (2018). Yield monitoring and mapping. Precision 
agriculture basics, 63-77. 

Gallego, F.J., Kussul, N., Skakun, S., Kravchenko, O., Shelestov, A., & Kussul, O. (2014). Efficiency 
assessment of using satellite data for crop area estimation in Ukraine. International Journal of Applied 
Earth Observation and Geoinformation, 29, 22-30. 



References 
 

 

 

94 
 

Gao, F., Anderson, M.C., Kustas, W.P., & Wang, Y. (2012). Simple method for retrieving leaf area index 
from Landsat using MODIS leaf area index products as reference. Journal of Applied Remote Sensing, 
6(1), 063554. 

Gao, F., Anderson, M.C., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., et al. (2017). Toward mapping 
crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of 
Environment, 188, 9-25. 

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface 
reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and 
Remote Sensing, 44(8), 2207-2218. 

Gašparović, M., & Jogun, T. (2018). The effect of fusing Sentinel-2 bands on land-cover classification. 
International Journal of Remote Sensing, 39(3), 822-841. 

Gašparović, M., Medak, D., Pilaš, I., Jurjević, L., & Balenović, I. (2018). Fusion of Sentinel-2 and 
PlanetScope Imagery for Vegetation Detection and Monitorin. In, Volumes ISPRS TC I Mid-term 
Symposium Innovative Sensing-From Sensors to Methods and Applications 

Gil-Yepes, J.L., Ruiz, L.A., Recio, J.A., Balaguer-Beser, Á., & Hermosilla, T. (2016). Description and 
validation of a new set of object-based temporal geostatistical features for land-use/land-cover change 
detection. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 77-91. 

Gitelson, A., & Merzlyak, M.N. (1994). Spectral reflectance changes associated with autumn 
senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and 
relation to chlorophyll estimation. Journal of plant physiology, 143(3), 286-292. 

Gitelson, A.A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical 
characteristics of vegetation. Journal of plant physiology, 161(2), 165-173. 

Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., & Leavitt, B. (2003). Remote 
estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 
30(5), n/a-n/a. 

Gitelson, A.A., Vina, A., Ciganda, V., Rundquist, D.C., & Arkebauer, T.J. (2005). Remote estimation of 
canopy chlorophyll content in crops. Geophysical Research Letters, 32(8) 

Gonçalves, M.L., Netto, M.L.A., Costa, J.A.F., & Zullo Junior, J. (2008). An unsupervised method of 
classifying remotely sensed images using Kohonen self-organizing maps and agglomerative 
hierarchical clustering methods. International Journal of Remote Sensing, 29(11), 3171-3207. 

Guo, Z. (2013). Mapping the planting dates: An effort to retrive crop phenology information from MODIS 
NDVI time series in Africa. In, International Geoscience and Remote Sensing Symposium (IGARSS) 
(pp. 3281-3284) 

Haas, R., Deering, D., Rouse Jr, J., & Schell, J. (1975). Monitoring vegetation conditions from 
LANDSAT for use in range management. In, NASA Earth Resources Survey Symposium (pp. 43-52). 
NASA. Lyndon B. Johnson Space Center: United States. 

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., & Strachan, I.B. (2004). Hyperspectral 
vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and 
validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337-352. 

Hadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., et al. (2009). Combined use 
of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in 
Central Morocco. Agricultural Water Management, 96(7), 1120-1127. 

Hammer, G., Hansen, J., Phillips, J., Mjelde, J., Hill, H., Love, A., et al. (2001). Advances in application 
of climate prediction in agriculture. Agricultural Systems, 70(2), 515-553. 



References 
 

 

 

95 
 

Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., & Bonfil, D.J. (2011). LAI assessment 
of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment, 115(8), 
2141-2151. 

Hobbs, P.R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable 
agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-
555. 

Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., et al. (2012). 
Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia. Field Crops 
Research, 136, 85-96. 

Holzworth, D., Huth, N.I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., et al. (2018). APSIM Next 
Generation: Overcoming challenges in modernising a farming systems model. Environmental Modelling 
& Software, 103, 43-51. 

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., et al. (2014). 
APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental 
Modelling & Software, 62, 327-350. 

Houborg, R., & McCabe, M. (2016). High-Resolution NDVI from Planet’s Constellation of Earth 
Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sensing, 8(9) 

Houborg, R., & McCabe, M. (2018a). Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion 
of CubeSat, Landsat, and MODIS Data. Remote Sensing, 10(6), 890. 

Houborg, R., & McCabe, M.F. (2018b). A Cubesat Enabled Spatio-Temporal Enhancement Method 
(CESTEM) Utilizing Planet, Landsat and MODIS Data. Remote Sensing of Environment, 209, 211-226. 

Houborg, R., & McCabe, M.F. (2018c). A hybrid training approach for leaf area index estimation via 
Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 
135, 173-188. 

Houborg, R., McCabe, M.F., & Gao, F. (2016). A Spatio-Temporal Enhancement Method for medium 
resolution LAI (STEM-LAI). International Journal of Applied Earth Observation and Geoinformation, 47, 
15-29. 

Huang, J., Gómez-Dans, J.L., Huang, H., Ma, H., Wu, Q., Lewis, P.E., et al. (2019). Assimilation of 
remote sensing into crop growth models: Current status and perspectives. Agricultural and Forest 
Meteorology, 276, 107609. 

Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., et al. (2015). Jointly Assimilating MODIS LAI 
and et Products into the SWAP Model for Winter Wheat Yield Estimation. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 8(8), 4060-4071. 

Idso, S.B., Jackson, R.D., & Reginato, R.J. (1977). Remote-sensing of crop yields. Science, 196(4285), 
19-25. 

Ines, A.V., Das, N.N., Hansen, J.W., & Njoku, E.G. (2013). Assimilation of remotely sensed soil moisture 
and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment, 
138, 149-164. 

Israel Meteorological Service. 2020. Accessed 18.08.2020. https://ims.gov.il/en/climateAtlas. 

Jain, M., Singh, B., Srivastava, A.A.K., Malik, R.K., McDonald, A.J., & Lobell, D.B. (2017). Using satellite 
data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt. Environmental 
Research Letters, 12(9) 

https://ims.gov.il/en/climateAtlas


References 
 

 

 

96 
 

Jain, M., Srivastava, A., Balwinder, S., Joon, R., McDonald, A., Royal, K., et al. (2016). Mapping 
Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data. Remote Sensing, 8(10), 860-
878. 

Jeffrey, S.J., Carter, J.O., Moodie, K.B., & Beswick, A.R. (2001). Using spatial interpolation to construct 
a comprehensive archive of Australian climate data. Environmental Modelling & Software, 16(4), 309-
330. 

Jeffries, G.R., Griffin, T.S., Fleisher, D.H., Naumova, E.N., Koch, M., & Wardlow, B.D. (2019). Mapping 
sub-field maize yields in Nebraska, USA by combining remote sensing imagery, crop simulation models, 
and machine learning. Precision Agriculture, 1-17. 

Jiang, Z., Huete, A.R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation 
index without a blue band. Remote Sensing of Environment, 112(10), 3833-3845. 

Jin, N., Tao, B., Ren, W., Feng, M., Sun, R., He, L., et al. (2016). Mapping Irrigated and Rainfed Wheat 
Areas Using Multi-Temporal Satellite Data. Remote Sensing, 8(3), 207. 

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive change 
detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of 
Environment, 132, 159-175. 

Jin, Z., Azzari, G., Burke, M., Aston, S., & Lobell, D.B. (2017a). Mapping Smallholder Yield 
Heterogeneity at Multiple Scales in Eastern Africa. Remote Sensing, 9(9), 931. 

Jin, Z., Azzari, G., & Lobell, D.B. (2017b). Improving the accuracy of satellite-based high-resolution 
yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 247, 207-
220. 

Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., et al. (2019). Smallholder maize area 
and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 228, 
115-128. 

Jordan, C.F. (1969). Derivation of leaf‑area index from quality of light on the forest floor. Ecology, 50(4), 
663-666. 

Kamir, E., Waldner, F., & Hochman, Z. (2020). Estimating wheat yields in Australia using climate 
records, satellite image time series and machine learning methods. ISPRS Journal of Photogrammetry 
and Remote Sensing, 160, 124-135. 

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., & Wu, A.Y. (2002). An efficient 
k-means clustering algorithms: Analysis and implementation. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 24(7), 881-892. 

Kassam, A., Friedrich, T., Derpsch, R., & Kienzle, J. (2015). Overview of the worldwide spread of 
conservation agriculture. Field Actions Science Report, 8 

Khan, A., Hansen, M.C., Potapov, P.V., Adusei, B., Pickens, A., Krylov, A., et al. (2018). Evaluating 
landsat and rapideye data for winter wheat mapping and area estimation in punjab, pakistan. Remote 
Sensing, 10(4), 489. 

Kimm, H., Guan, K., Jiang, C., Peng, B., Gentry, L.F., Wilkin, S.C., et al. (2020). Deriving high-
spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs 
CubeSat and STAIR fusion data. Remote Sensing of Environment, 239, 111615. 

Knyazikhin, Y., & Myneni, R. (2018). VIIRS Leaf Area Index (LAI) and Fraction of Photosynthetically 
Active Radiation Absorbed by Vegetation (FPAR) User Guide 



References 
 

 

 

97 
 

Kolecka, N., Ginzler, C., Pazur, R., Price, B., & Verburg, P.H. (2018). Regional scale mapping of 
grassland mowing frequency with Sentinel-2 time series. Remote Sensing, 10(8) 

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep Learning Classification of Land 
Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 
14(5), 778-782. 

Labus, M., Nielsen, G., Lawrence, R., Engel, R., & Long, D. (2002). Wheat yield estimates using multi-
temporal NDVI satellite imagery. International Journal of Remote Sensing, 23(20), 4169-4180. 

Lai, Y., Pringle, M., Kopittke, P.M., Menzies, N.W., Orton, T.G., & Dang, Y.P. (2018). An empirical model 
for prediction of wheat yield, using time-integrated Landsat NDVI. International Journal of Applied Earth 
Observation and Geoinformation, 72, 99-108. 

Lawes, R., Chen, C., & van Rees, H. (2018). The National Paddock Survey–What causes the yield gap 
across Australian paddocks? In, GRDC Update, Perth, Western Australia, February 2018: GRDC. 

Leach, N., Coops, N.C., & Obrknezev, N. (2019). Normalization method for multi-sensor high spatial 
and temporal resolution satellite imagery with radiometric inconsistencies. Computers and Electronics 
in Agriculture, 164, 104893. 

LI-COR, I. (1992). LAI-2000 Plant Canopy Analyzer. In, Operating Manual 

Li, W., Jiang, J., Guo, T., Zhou, M., Tang, Y., Wang, Y., et al. (2019). Generating Red-Edge Images at 
3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sensing, 11(12), 
1422. 

Liu, W., Huang, J., Wei, C., Wang, X., Mansaray, L.R., Han, J., et al. (2018). Mapping water-logging 
damage on winter wheat at parcel level using high spatial resolution satellite data. ISPRS Journal of 
Photogrammetry and Remote Sensing, 142, 243-256. 

Lobell, D.B., Asner, G.P., Ortiz-Monasterio, J.I., & Benning, T.L. (2003). Remote sensing of regional 
crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agriculture, Ecosystems and 
Environment, 94(2), 205-220. 

Lobell, D.B., Ortiz-Monasterio, J.I., Sibley, A.M., & Sohu, V.S. (2013). Satellite detection of earlier wheat 
sowing in India and implications for yield trends. Agricultural Systems, 115, 137-143. 

Lobell, D.B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield 
mapper. Remote Sensing of Environment, 164, 324-333. 

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., et al. (2016). 
Sentinel-2 SEN2COR: L2A processor for users. In, Proceedings of the Living Planet Symposium, 
Prague, Czech Republic (pp. 9-13) 

Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International 
Journal of Remote Sensing, 25(12), 2365-2407. 

Luo, Y., Guan, K., & Peng, J. (2018). STAIR: A generic and fully-automated method to fuse multiple 
sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface 
reflectance product. Remote Sensing of Environment, 214, 87-99. 

Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., & Wu, S. (2013). Assimilation of MODIS-LAI into the 
WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 
58(3-4), 634-643. 

Manfron, G., Delmotte, S., Busetto, L., Hossard, L., Ranghetti, L., Brivio, P.A., et al. (2017). Estimating 
inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France. 
International Journal of Applied Earth Observation and Geoinformation, 57, 190-201. 



References 
 

 

 

98 
 

Manivasagam, V., Sadeh, Y., Kaplan, G., Bonfil, D.J., & Rozenstein, O. (2021). Studying the Feasibility 
of Assimilating Sentinel-2 and PlanetScope Imagery into the SAFY Crop Model to Predict Within-Field 
Wheat Yield. Remote Sensing, 13(12), 2395. 

Marais Sicre, C., Inglada, J., Fieuzal, R., Baup, F., Valero, S., Cros, J., et al. (2016). Early Detection of 
Summer Crops Using High Spatial Resolution Optical Image Time Series. Remote Sensing, 8(7) 

Marinho, E., Vancutsem, C., Fasbender, D., Kayitakire, F., Pini, G., & Pekel, J.F. (2014). From remotely 
sensed vegetation onset to sowing dates: Aggregating pixel-level detections into village-level sowing 
probabilities. Remote Sensing, 6(11), 10947-10965. 

Mas, J.F. (1999). Monitoring land-cover changes: A comparison of change detection techniques. 
International Journal of Remote Sensing, 20(1), 139-152. 

Mathison, C., Deva, C., Falloon, P., & Challinor, A.J. (2017). Defining sowing and harvest dates based 
on the Asian Summer Monsoon. Earth System Dynamics Discussions, 1-39. 

Maynard, J.J., Karl, J.W., & Browning, D.M. (2016). Effect of spatial image support in detecting long-
term vegetation change from satellite time-series. Landscape ecology, 31(9), 2045-2062. 

Mc Nairn, H., Wood, D., Gwyn, Q.H.J., Brown, R.J., & Charbonneau, F. (1998). Mapping tillage and 
crop residue management practices with RADARSAT. Canadian Journal of Remote Sensing, 24(1), 
28-35. 

McCabe, M.F., Aragon, B., Houborg, R., & Mascaro, J. (2017). CubeSats in Hydrology: Ultrahigh-
Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation. Water Resources Research, 
53(12), 10017-10024. 

McCarty, J.L., Neigh, C.S.R., Carroll, M.L., & Wooten, M.R. (2017). Extracting smallholder cropped area 
in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. 
Remote Sensing of Environment 

Myneni, R., & Park, Y. (2015). MODIS collection 6 (C6) LAI/FPAR product user’s guide. In: Feb. 

Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M.L., Justice, C.J., et al. (2021). A 
review of satellite-based global agricultural monitoring systems available for Africa. Global Food 
Security, 29, 100543. 

Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf 
area index estimation in maize and soybean: Combining vegetation indices to achieve maximal 
sensitivity. Agronomy Journal, 104(5), 1336-1347. 

Nguy-Robertson, A.L., Peng, Y., Gitelson, A.A., Arkebauer, T.J., Pimstein, A., Herrmann, I., et al. 
(2014). Estimating green LAI in four crops: Potential of determining optimal spectral bands for a 
universal algorithm. Agricultural and Forest Meteorology, 192, 140-148. 

Ortiz-Monasterio, J.I., & Lobell, D.B. (2007). Remote sensing assessment of regional yield losses due 
to sub-optimal planting dates and fallow period weed management. Field Crops Research, 101(1), 80-
87. 

Ozturk, A., Caglar, O., & Bulut, S. (2006). Growth and yield response of facultative wheat to winter 
sowing, freezing sowing and spring sowing at different seeding rates. Journal of Agronomy and Crop 
Science, 192(1), 10-16. 

Pacheco, A.M., McNairn, H., & Merzouki, A. (2010). Evaluating TerraSAR-X for the identification of 
tillage occurrence over an agricultural area in Canada. In, Proceedings of SPIE - The International 
Society for Optical Engineering 



References 
 

 

 

99 
 

Pan, H., Chen, Z., de Wit, A., & Ren, J. (2019). Joint assimilation of leaf area index and soil moisture 
from Sentinel-1 and Sentinel-2 data into the WOFOST model for winter wheat yield estimation. Sensors, 
19(14), 3161. 

Pan, Z., Huang, J., Zhou, Q., Wang, L., Cheng, Y., Zhang, H., et al. (2015). Mapping crop phenology 
using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observation 
and Geoinformation, 34, 188-197. 

Pasqualotto, N., Delegido, J., Van Wittenberghe, S., Rinaldi, M., & Moreno, J. (2019). Multi-Crop Green 
LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors, 19(4), 904. 

Peng, Y., & Gitelson, A.A. (2011). Application of chlorophyll-related vegetation indices for remote 
estimation of maize productivity. Agricultural and Forest Meteorology, 151(9), 1267-1276. 

Planet Team. 2018. "Planet imagery product specifications." Planet Labs Inc, Accessed 12/04/2018. 
https://www.planet.com/products/satellite-
imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf. 

Planet Team. 2020. "Planet Surface Reflectance Product v2." Planet Labs, Inc, Accessed 18.08.2020. 
https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf. 

Pohl, C., & Van Genderen, J.L. (1998). Review article multisensor image fusion in remote sensing: 
concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823-854. 

Pollock, R., & Kanemasu, E. (1979). Estimating leaf-area index of wheat with Landsat data. Remote 
Sensing of Environment, 8(4), 307-312. 

Potgieter, A.B., Lobell, D.B., Hammer, G.L., Jordan, D.R., Davis, P., & Brider, J. (2016). Yield trends 
under varying environmental conditions for sorghum and wheat across Australia. Agricultural and Forest 
Meteorology, 228-229, 276-285. 

Prasad, A.K., Chai, L., Singh, R.P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using 
remote sensing and surface parameters. International Journal of Applied Earth Observation and 
Geoinformation, 8(1), 26-33. 

Psomiadis, E., Dercas, N., Dalezios, N.R., & Spyropoulos, N.V. (2017). Evaluation and cross-
comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images. In, 
Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX (p. 104211B): International Society 
for Optics and Photonics. 

Qi, J., Chehbouni, A., Huete, A., Kerr, Y., & Sorooshian, S. (1994). A modified soil adjusted vegetation 
index. Remote Sensing of Environment, 48(2), 119-126. 

Rajendran, S., Al-Sayigh, A.R., & Al-Awadhi, T. (2016). Vegetation analysis study in and around Sultan 
Qaboos University, Oman, using Geoeye-1 satellite data. Egyptian Journal of Remote Sensing and 
Space Science, 19(2), 297-311. 

Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Lukina, E.V., Thomason, W.E., et al. (2001). In-
season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 
93(1), 131-138. 

Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Mullen, R.W., Freeman, K.W., et al. (2002). 
Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate 
application. Agronomy Journal, 94(4), 815-820. 

Ray, D.K., Gerber, J.S., MacDonald, G.K., & West, P.C. (2015). Climate variation explains a third of 
global crop yield variability. Nature communications, 6(1), 1-9. 

https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf
https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf
https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf


References 
 

 

 

100 
 

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote 
Sensing of Environment, 55(2), 95-107. 

Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional 
reflectance measurements. Remote Sensing of Environment, 51(3), 375-384. 

Rouse, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains 
with ERTS. In, Washington, DC (pp. 309–317): NASA SP-351. 

Sacks, W.J., Deryng, D., Foley, J.A., & Ramankutty, N. (2010). Crop planting dates: An analysis of 
global patterns. Global Ecology and Biogeography, 19(5), 607-620. 

Sadeh, Y., Cohen, H., Maman, S., & Blumberg, D.G. (2018). Evaluation of Manning’sn roughness 
coefficient in arid environments by using SAR backscatter. Remote Sensing, 10(10), 1505. 

Sadeh, Y., Zhu, X., Chenu, K., & Dunkerley, D. (2019). Sowing date detection at the field scale using 
CubeSats remote sensing. Computers and Electronics in Agriculture, 157, 568-580. 

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J.P., Zhang, Y., Rozenstein, O., et al. (2021). Fusion of 
Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI 
monitoring. International Journal of Applied Earth Observation and Geoinformation, 96, 102260. 

Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D.R., Sidike, P., et al. (2021). 
Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and 
deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 265-281. 

Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Verma, S.B., Suyker, A.E., & Arkebauer, T.J. (2010). A 
two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. 
Remote Sensing of Environment, 114(10), 2146-2159. 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A crop 
phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3-4), 
366-374. 

Sedano, F., Kempeneers, P., Strobl, P., Kucera, J., Vogt, P., Seebach, L., et al. (2011). A cloud mask 
methodology for high resolution remote sensing data combining information from high and medium 
resolution optical sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 588-596. 

Serbin, G., Daughtry, C.S.T., Hunt Jr, E.R., Brown, D.J., & McCarty, G.W. (2009). Effect of soil spectral 
properties on remote sensing of crop residue cover. Soil Science Society of America Journal, 73(5), 
1545-1558. 

Shen, J., & Evans, F.H. (2021). The potential of Landsat NDVI sequences to explain wheat yield 
variation in fields in Western Australia. Remote Sensing, 13(11), 2202. 

SILO (2018). SILO – Getting started guide. In Science Information Services (Ed.). Brisbane: The State 
of Queensland (Department of Environment and Science). 

Skakun, S., Kalecinski, N.I., Brown, M.G., Johnson, D.M., Vermote, E.F., Roger, J.-C., et al. (2021). 
Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and 
Landsat 8 Satellite Imagery. Remote Sensing, 13(5), 872. 

Skakun, S., Vermote, E., Roger, J.-C., & Franch, B. (2017). Combined Use of Landsat-8 and Sentinel-
2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale. AIMS 
Geosciences, 3(2), 163-186. 

Sripada, R.P., Heiniger, R.W., White, J.G., & Meijer, A.D. (2006). Aerial color infrared photography for 
determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968-977. 



References 
 

 

 

101 
 

SUHET (2015). Sentinel-2 User Handbook. In  (p. 64): The European Space Agency (ESA). 

Sun, L., Gao, F., Anderson, M., Kustas, W., Alsina, M., Sanchez, L., et al. (2017). Daily Mapping of 30 
m LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sensing, 9(4) 

Sun, R., Chen, S., Su, H., Mi, C., & Jin, N. (2019). The Effect of NDVI Time Series Density Derived from 
Spatiotemporal Fusion of Multisource Remote Sensing Data on Crop Classification Accuracy. ISPRS 
International Journal of Geo-Information, 8(11), 502. 

Tian, F., Wu, J., Liu, L., Leng, S., Yang, J., Zhao, W., et al. (2020). Exceptional drought across 
southeastern Australia caused by extreme lack of precipitation and its impacts on NDVI and SIF in 
2018. Remote Sensing, 12(1), 54. 

Toulouse, T., Rossi, L., Celik, T., & Akhloufi, M. (2016). Automatic fire pixel detection using image 
processing: a comparative analysis of rule-based and machine learning-based methods. Signal, Image 
and Video Processing, 10(4), 647-654. 

Urban, D., Guan, K., & Jain, M. (2018). Estimating sowing dates from satellite data over the US Midwest: 
A comparison of multiple sensors and metrics. Remote Sensing of Environment, 211, 400-412. 

Valderrama-Landeros, L.H., España-Boquera, M.L., & Baret, F. (2016). Deforestation in Michoacan, 
Mexico, from CYCLOPES-LAI time series (2000–2006). IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 9(12), 5398-5405. 

Van der Sande, C., De Jong, S., & De Roo, A. (2003). A segmentation and classification approach of 
IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. 
International Journal of Applied Earth Observation and Geoinformation, 4(3), 217-229. 

Van Diepen, C.v., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of 
crop production. Soil use and management, 5(1), 16-24. 

Van Niel, T.G., & McVicar, T.R. (2004). Determining temporal windows for crop discrimination with 
remote sensing: A case study in south-eastern Australia. Computers and Electronics in Agriculture, 
45(1-3), 91-108. 

Verger, A., Filella, I., Baret, F., & Peñuelas, J. (2016). Vegetation baseline phenology from kilometric 
global LAI satellite products. Remote Sensing of Environment, 178, 1-14. 

Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G.P.W., Camps-Valls, G., et al. 
(2015). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval 
methods - A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260-272. 

Viña, A., Gitelson, A.A., Nguy-Robertson, A.L., & Peng, Y. (2011). Comparison of different vegetation 
indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 
115(12), 3468-3478. 

Waldner, F., Horan, H., Chen, Y., & Hochman, Z. (2019). High temporal resolution of leaf area data 
improves empirical estimation of grain yield. Scientific reports, 9(1), 1-14. 

Walker, J.P., Houser, P.R., & Willgoose, G.R. (2004). Active microwave remote sensing for soil moisture 
measurement: a field evaluation using ERS‑2. Hydrological processes, 18(11), 1975-1997. 

Watson, D.J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net 
assimilation rate and leaf area between species and varieties, and within and between years. Annals 
of botany, 11(41), 41-76. 

Weiss, M., & Baret, F. (2016). S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER, Version 1.1. ESA 
Contract n° 4000110612/14/I-BG (p. 52): INRA Avignon, France. 



References 
 

 

 

102 
 

Wiegand, C., Richardson, A., & Kanemasu, E. (1979). Leaf Area Index Estimates for Wheat from 
LANDSAT and Their Implications for Evapotranspiration and Crop Modeling 1. Agronomy Journal, 
71(2), 336-342. 

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and 
Intelligent Laboratory Systems, 2(1-3), 37-52. 

Zadoks, J.C., Chang, T.T., & Konzak, C.F. (1974). A decimal code for the growth stages of cereals. 
Weed research, 14(6), 415-421. 

Zhang, L., Feng, H., Jin, N., & Zhang, T. (2018). Mapping irrigated and rainfed wheat areas using high 
spatial–temporal resolution data generated by Moderate Resolution Imaging Spectroradiometer and 
Landsat. Journal of Applied Remote Sensing, 12(4), 046023. 

Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B., & Hammer, G.L. (2020). Predicting wheat yield at the field 
scale by combining high-resolution Sentinel-2 satellite imagery and crop modelling. Remote Sensing, 
12(6), 1024. 

Zheng, B., Campbell, J.B., Serbin, G., & Galbraith, J.M. (2014). Remote sensing of crop residue and 
tillage practices: Present capabilities and future prospects. Soil and Tillage Research, 138, 26-34. 

Zheng, B., Chapman, S.C., Christopher, J.T., Frederiks, T.M., & Chenu, K. (2015). Frost trends and 
their estimated impact on yield in the Australian wheatbelt. J Exp Bot, 66(12), 3611-3623. 

Zheng, B., Chenu, K., Fernanda Dreccer, M., & Chapman, S.C. (2012). Breeding for the future: What 
are the potential impacts of future frost and heat events on sowing and flowering time requirements for 
Australian bread wheat (Triticum aestivium) varieties? Global change biology, 18(9), 2899-2914. 

Zhong, Y., Zhang, L., Huang, B., & Li, P. (2006). An unsupervised artificial immune classifier for 
multi/hyperspectral remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 
44(2), 420-431. 

Zhu, W., Pan, Y., He, H., Wang, L., Mou, M., & Liu, J. (2011). A changing-weight filter method for 
reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology. IEEE 
Transactions on Geoscience and Remote Sensing, 50(4), 1085-1094. 

Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. 
Remote Sensing of Environment, 118, 83-94. 

 


