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Synopsis  

Surface soil moisture is essential to global water cycle monitoring, weather 

forecasting, prediction of drought and flood, and modelling of evaporation. The 

European Space Agency (ESA) launched the Soil Moisture and Ocean Salinity 

(SMOS) satellite in 2009, as the first-ever soil moisture dedicated satellite. It uses the 

passive microwave (radiometer) remote sensing technology due to the direct 

relationship with soil moisture, but due to technical limitations the spatial resolution 

is approximately 40 km. This places limitations on hydro-meteorological applications 

such as regional weather forecasting, flood prediction, and agricultural activities that 

have a resolution requirement of better than 10 km.  

Active microwave (radar) remote sensing provides a much higher spatial resolution 

capability (better than 3 km), but it is less sensitive to changes in soil moisture due to 

the confounding effects of vegetation and surface roughness. Consequently, NASA 

has developed the Soil Moisture Active Passive (SMAP) mission, scheduled for 

launch in January 2015, which will merge passive and active observations to 

overcome their individual limitations, thus providing a soil moisture product with 

resolution better than 10 km at a target accuracy of 0.04 cm3/cm3. The rationale 

behind this mission is to use fine resolution (3 km) radar observations to disaggregate 

the coarse resolution (36 km) radiometer observations into a medium-resolution (9 

km) product.  

The downscaling algorithms for this purpose have so far undergone only limited 

testing with experimental data sets, and have therefore been tested mostly using 

synthetic data and a limited number of suitable experimental data sets mostly in the 

continental United States. Consequently, this thesis presents an extensive evaluation 

of soil moisture downscaling algorithms with an experimental data set collected from 

the Soil Moisture Active Passive Experiment (SMAPEx) field campaigns in south-

eastern Australia. This research affords a unique opportunity to undertake a 

comprehensive assessment of the various downscaling approaches proposed, having 

applicability to the forthcoming SMAP mission. In particular, each approach is 
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comprehensively assessed using a consistent data set collected over a diverse 

landscape exhibiting a range of conditions, and then inter-compared with the results 

from the others. A particular focus is placed on the SMAP baseline algorithm as this 

is currently the preferred algorithm and scheduled for implementation by NASA 

immediately upon launch.  

A preliminary study on the SMAP baseline algorithm was conducted by using 

existing satellite data; results from which suggested that a better representation of the 

SMAP data stream characteristics was required.  Consequently, a study was 

undertaken on how to prepare the simulated SMAP data stream from the airborne 

data set collected from the SMAPEx field campaigns in Australia. These data were 

processed in terms of spatial aggregation, incidence angle normalization and azimuth 

effect analysis so as to be in line with the characteristics of the SMAP observations. 

Results indicated that data from SMAPEx could be reliably processed to represent 

the characteristics of the SMAP observations.  

The baseline algorithm was then tested using the simulated SMAP data set. Results 

showed that the baseline downscaling algorithm had the ability to fulfil the error 

requirement of medium resolution (9 km) brightness temperature product of SMAP 

over relatively homogenous area, but it had greater error than the requirement over 

the heterogeneous cropping area. Consequently, the baseline algorithm was assessed 

at higher resolutions in order to study the effect of land cover type and surface 

heterogeneity on the resulting downscaling accuracy. The medium resolution (9 km) 

brightness temperatures obtained from the baseline algorithm were then converted 

to a medium resolution soil moisture product, and results compared with other linear 

methods including the optional downscaling algorithm and a change detection 

method, and with a non-linear Bayesian merging method. The comparison of these 

different soil moisture downscaling algorithms suggested that the optional algorithm 

and the Bayesian merging method had a similar performance in retrieving medium 

resolution soil moisture products, with the lowest error and highest correlation 

between downscaled and reference soil moisture, amongst the downscaling 

algorithms tested. However, unless further improvements can be achieved with the 

Bayesian merging method the optional algorithm is recommended for application in 
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SMAP due to its simplicity of approach and low computational requirement, thus 

making it simpler to apply in an operational context. 
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1 Introduction  

This thesis presents an extensive evaluation of soil moisture downscaling algorithms 

with applicability to NASA’s new satellite mission - Soil Moisture Active Passive 

(SMAP). The principle of these downscaling algorithms is to retrieve an accurate soil 

moisture product at medium-resolution (around 10 km) through the combination of 

passive and active microwave observations. Data used for assessing the feasibility of 

different downscaling algorithms were primarily collected from the Soil Moisture 

Active Passive Experiment (SMAPEx) field campaigns in south-eastern Australia, 

which have the ability to simulate the SMAP data stream using an airborne simulator. 

A series of studies are shown in this thesis, including simulation of SMAP prototype 

data stream from the airborne observations and subsequent evaluation of different 

downscaling approaches with those simulated data, with contribution to the 

development of pre-launch algorithms for the forthcoming SMAP mission. 

 

1.1 Statement of Problem 

The global measurement of soil moisture is vital to understanding the global water, 

energy and carbon cycles, which play an important role in agriculture, hydrology and 

meteorology (Wagner et al., 2003). However, ascertaining the spatial and temporal 

variation in soil moisture is hampered by a general inability to model accurately and a 

lack of in-situ soil moisture observations globally. Even when available, in-situ soil 

moisture measurements are often spatially and temporally too sparse to be used in 

such studies (Hain et al., 2011). Therefore, the general infeasibility of sustaining large 

in-situ soil moisture monitoring network and limitation of numerical model prediction 

has led to retrieval of soil moisture from satellite-based remote sensing. With the 

development of remote sensing technology (Jackson et al., 2002), soil moisture 

mapping over large areas is becoming a practical alternative when compared with 

traditional monitoring by in-situ networks. Moreover, methods are being developed to 

make use of this emerging soil moisture information to constrain numerical model 
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prediction of soil moisture (Shi et al., 2009), and hence improve the forecasting of 

weather, floods and agriculture-related applications.  

Over the past decade, passive microwave remote sensing has become generally 

accepted as the most accurate of the soil moisture remote sensing methods, due to its 

stronger and more direct connection between the observed brightness temperature 

(Tb) and the surface soil moisture (~5 cm), than with active microwave sensing (radar 

backscatter) or thermal (skin temperature) data (Kerr, 2007). The best results were 

found at low frequency (~1.4 GHz) due to reduced interference by the atmosphere, 

surface roughness and vegetation, and an increased observation depth (>5 cm). 

Consequently, the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 

2010) was launched by the European Space Agency in November 2009, as the first-

ever satellite dedicated to soil moisture measurement using L-band passive 

microwave measurements. However, the current spatial resolution remains a 

significant limitation of the passive microwave approach.  

Despite the high sensitivity of the passive microwave radiometer approach to near-

surface soil moisture monitoring, it suffers from being relatively low spatial 

resolution, on the order of 36km, which is a significant limitation for regional 

applications such as precipitation forecasting and flood prediction, that have a special 

resolution requirement of better than 10km. This resolution requirement is derived 

from hydro-meteorological applications such as precipitation forecast systems driven 

by thermal convection, as well as several applications in hydrologic and atmospheric 

science, which have distinguishing features or significant physical interactions at this 

scale (Das et al., 2011). Availability of such soil moisture product is expected to 

enhance our understanding and forecast capabilities of regional weather systems 

around the world. Moreover, it is expected to benefit agricultural applications and 

large watershed or river-basin management activities. While fine-scale soil moisture 

information can be retrieved by active microwave remote sensing, the observations 

are less sensitive to changes in soil moisture due to the confounding effects of 

vegetation conditions and surface roughness, meaning that the retrieved soil moisture 

estimates usually have a much larger uncertainty. 
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NASA’s Soil Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010), 

scheduled to be launched in January 2015 will attempt to overcome this scale issue by 

using fine scale (3 km) active microwave observations to downscale the coarse scale 

(36 km) passive microwave observation to medium (9 km) resolution. The rationale 

behind SMAP is that the synergy between active and passive observations can be 

used in a downscaling approach to overcome the individual limitations of each 

observation, ultimately providing soil moisture data at a resolution more suitable for 

hydro-meteorological applications. Figure 1-1 schematically illustrates the SMAP 

approach. 

In preparation for the SMAP launch, suitable algorithms and techniques need to be 

developed and validated to ensure that an accurate medium-resolution (~9 km) soil 

moisture product can be operationally produced from combined SMAP radiometer 

and radar observations. The currently proposed baseline downscaling method to be 

applied in the SMAP mission is based on an observed near-linear relationship 

between radar backscatter (σ) and the brightness temperature (Tb) at the same scale 

to downscale the brightness temperature to 9 km. The downscaled brightness 

temperature at 9 km will then be interpreted to soil moisture using the standard 

passive microwave retrieval model (Das et al., 2014, Entekhabi et al., 2012).  An 

optional method proposed for the SMAP mission would utilize the near-linear 

relationship between radar backscatter and volumetric soil moisture (rather than 

brightness temperature) and ultimately retrieve the medium-resolution soil moisture 

 

Figure 1-1: Overview of downscaling approach by merging radiometer and radar 

observation. 
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product directly (Das et al., 2011, Entekhabi et al., 2012). An important element of 

these two methods is that the relationship between the slope parameter and 

vegetation heterogeneity should be formulated to improve the accuracy of this 

algorithm. Other downscaling methods, such as the change detection method, which 

takes advantage of the approximately linear dependence of radar backscatter and 

brightness temperature change on soil moisture change (Piles et al., 2009, Narayan et 

al., 2006). A further candidate downscaling approach is based on the Bayesian 

merging algorithm (Zhan et al., 2006), use a totally different strategy which results in 

a downscaled soil moisture product directly through the synergy of the active and 

passive data in a Bayesian framework. 

While these methods have been presented elsewhere, they have been mostly tested 

with synthetic data (e.g. Observation System Simulation Experiment (OSSE) 

framework), and only very limited experimental data from field campaigns. Such 

campaigns include the Southern Great Plains experiment in Oklahoma in 1999 

(SGP99) (Njoku et al., 2002, Bolten et al., 2003), the Soil Moisture Experiment in 

Iowa in 2002 (SMEX02) (Narayan et al., 2004, Crosson et al., 2005, Narayan et al., 

2006), the Cloud and Land Surface Interaction Campaign in Oklahoma in 2007 

(CLASIC) (Bindlish et al., 2009, Yueh et al., 2008), the Canadian Experiment for Soil 

Moisture 2010 (CanEx-SM10) (Magagi et al., 2013), the Soil Moisture Active Passive 

Validation Experiment (SMAPVEX2008 and SMAPVEX2012) (Colliander et al., 

2012a, Bindlish et al., 2010, Yueh et al., 2009), and the Soil Moisture Active Passive 

Experiments (SMAPEx) in Australia in 2010 and 2011 (Panciera et al., 2014). 

Consequently, it is essential that field campaigns with coordinated satellite, airborne 

and ground-based data collection be undertaken, and algorithms tested giving careful 

consideration to the data requirements for simulating the SMAP mission and 

validating the subsequent soil moisture retrievals. Therefore, the algorithm studies in 

this thesis are based on the SMAPEx field campaign, conducted using active and 

passive microwave airborne observations to address the scientific requirements 

pertinent to SMAP. 
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1.2 Objectives and Scope 

Given that current downscaling algorithms are relatively immature and not widely 

tested using experimental data, the main objective of this thesis is to thoroughly 

evaluate the performance of proposed downscaling algorithms based on the synergy 

between active and passive microwave observations. The SMAP requirement is to 

retrieve near-surface soil moisture at medium-resolution (9 km) with a target 

accuracy of 0.04 cm3/cm3 (in fairly uniform areas with vegetation water content less 

than 5 kg/m2).  

This research evaluates proposed downscaling approaches using experimental data 

collected from the SMAPEx field campaigns undertaken in Australia. The SMAPEx 

field campaigns provide the opportunity to evaluate the SMAP Active-Passive 

baseline algorithms using data that represents different sets of moisture conditions 

and land covers. Data were collected from an airborne SMAP simulator consisting of 

the Polarimetric L-band Multi-beam Radiometer (PLMR) and the Polarimetric L-

band Imaging Synthetic aperture radar (PLIS), which provide brightness temperature 

observations and backscatter observations respectively.  These field campaigns are 

complementary to the other campaigns (as mentioned in Section 1.1) in addressing 

scientific requirements of the SMAP mission, therefore representing a significant 

contribution to the limited heritage of airborne experiments mentioned above. 

Available satellite data, e.g. brightness temperature data from SMOS satellite and 

backscatter data from ASAR (Advanced Synthetic Aperture Radar onboard 

ENVISAT satellite) are also assessed. Studies on four soil moisture downscaling 

methods are presented in this thesis, including the baseline downscaling algorithm 

and optional downscaling algorithm, change detection method and Bayesian merging 

method (Das et al., 2014, Das et al., 2011, Piles et al., 2009, Zhan et al., 2006). 

1.3 Outline of Approach 

The approach of this thesis includes two main parts: i) simulation of SMAP data set 

from field campaigns and other satellites; and ii) retrieval of medium-resolution (9 

km) soil moisture from the active and passive data through different downscaling 

algorithms. A schematic diagram of the approach can be found in Figure 1-2.   
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Prior to undertaking the downscaling, data collected from the airborne simulator 

(PLMR and PLIS) needed particularly to be processed in line with characteristics of 

the SMAP sensors, in terms of the incidence angle, resolution and azimuth direction 

of the observations; see details on the characteristics of different sensors in Table 1-

1.  

Upon preparation of the simulated SMAP data, four downscaling methods are tested 

in this research: baseline downscaling algorithm (Das et al., 2014), optional 

downscaling algorithm (Das et al., 2011), change detection method (Piles et al., 2009, 

Narayan et al., 2006) and Bayesian merging method (Zhan et al., 2006).  

The baseline downscaling algorithm is first tested for its ability to downscale 

brightness temperature from 36 km to 9 km using 3 km backscatter. A more 

extensive assessment of this baseline algorithm is also conducted in order to test the 

effect of land covers on the baseline downscaling algorithm at different resolution 

levels. Consequently, brightness temperature is also downscaled from 9 km to 3 km 

using 1 km backscatter, and brightness temperature is downscaled from 1 km to 250 

m using 100 m backscatter, keeping a similar resolution ratio between radiometer and 

 

Figure 1-2: Schematic of SMAP data simulation and retrieval of medium resolution 

soil moisture product. (SM=Soil Moisture; Tb=Brightness temperature; 

σ=Backscatter.) 
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radar observations and the downscaled product (i.e., approximately 9:1:3) as for 

SMAP. Using the correlation between brightness temperature and backscatter at 

coarse scale, the direct output of the baseline downscaling algorithm is the 

downscaled brightness temperature at medium resolution. According to this 

approach, it is the downscaled brightness temperature that is inverted to soil 

moisture, using the standard passive microwave retrieval model (Das et al., 2014, 

Jackson et al., 1982, Jackson and Schmugge, 1991). 

In contrast, the optional downscaling algorithm for SMAP derives the medium-

resolution soil moisture product directly from the coarse resolution soil moisture (36 

km) and fine resolution backscatter observations (3 km). The change detection 

method also directly retrieves a medium-resolution soil moisture product. This radar-

radiometer change detection algorithm uses the previous radiometer-scale soil 

moisture retrieval updated with the moisture change evident in the higher resolution 

radar backscatter change. 

The baseline, optional and change detection methods are all defined as linear 

approaches, based on the assumption of a linear relationship among brightness 

Table 1-1: Characteristics of the SMAP, PLMR and PLIS sensors. 

Sensor Frequency Polarizations 
Incidence 

angle 

Spatial 

resolution 

of 

product 

Revisit 

frequency 

SMAP 

radar 
1.26 GHz hh, vv & hv 40˚ 3 km 2-3 days 

SMAP 

radiometer 
1.4 GHz h & v 40˚ 36 km 2-3 days 

PLIS 1.26 GHz 
hh, vv, hv & 

vh 
15˚ - 45˚ 10 - 30 m* 2-3 days 

PLMR 1.4 GHz h & v 
17˚, 21.5˚ 

& 38.5˚ 
1 km* 2-3 days 

* when flown at 10,000ft AGL 



 
Introduction 

 

 

1-8 

temperature, backscatter and soil moisture. In contrast, the Bayesian algorithm is a 

non-linear approach that utilizes the Kalman filter update equations to combine the 

brightness temperature and backscatter observations (Zhan et al., 2006, Kalman, 

1960). This Bayesian method involves three main steps: i) background estimation 

using the passive microwave retrieval method from coarse resolution brightness 

temperature; ii) uncertainties of the background states and observations; and iii) 

observation functions using non-linear microwave emission and backscatter model at 

the background soil moisture. 

Downscaled brightness temperature and soil moisture products obtained from each 

downscaling algorithm are derived from the simulated SMAP data stream and 

validated against reference data. In this study, the reference data come from either 

observed PLMR brightness temperature data or PLMR derived soil moisture. 

1.4 Thesis Organization 

This thesis is divided into eleven chapters. Chapter 2 is an extensive review of 

literature pertaining to the different aspects of the proposed methodology. Chapter 

3 is a description of the key data sets, including the introduction of the study area of 

this research in the locality of Yanco, in the Murrumbidgee Catchment in Australia, 

and collection of airborne flights, together with the concurrent ground sampling. 

Chapter 4 presents preliminary research on the baseline downscaling algorithm using 

data from SMOS and ASAR, and points out the need for a more representative 

simulation of the SMAP data stream. Chapter 5 develops the process of simulating 

the SMAP prototype data from airborne sensors data. Based on the simulated SMAP 

data, the baseline downscaling algorithm for SMAP is tested in Chapter 6, and used 

to downscale the brightness temperature from 36 km resolution to 9 km resolution 

using backscatter at 3 km resolution. In order to check the effect of land cover on 

the baseline algorithm, Chapter 7 presents the application of this baseline algorithm 

on downscaling brightness temperature from 9 km to 3 km, keeping a similar 

resolution ratio as in Chapter 6. The baseline downscaling algorithm is further tested 

in Chapter 8 for land cover type heterogeneity impacts using 1 km brightness 

temperature downscaled to 250 m resolution. The baseline algorithm is then 

contrasted against a range of alternative algorithms after converting the 9 km 
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resolution brightness temperature from Chapter 6 to soil moisture. In Chapter 9, the 

results are compared with two other linear soil moisture downscaling methods, 

including the optional downscaling method and the change detection method. 

Chapter 10 demonstrates an alternative non-linear approach based on Bayesian 

merging. The conclusions and future work are discussed in Chapter 11. 

Some sections of this thesis are based on either all or part of the following 

publications: 

 X. Wu, J. P. Walker, C. Rüdiger, R. Panciera and D. Gray, “Simulation of the 

SMAP Data Stream from SMAPEx Field Campaigns in Australia,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 1921-1934, 2015. 

 X. Wu, J. P. Walker, N. N. Das, R. Panciera and C. Rüdiger, “Evaluation of 

the SMAP Brightness Temperature Downscaling Algorithm using Active-

Passive Microwave Observations,” Remote Sensing of Environment,  DOI: 

10.1016/j.rse.2014.08.021. In press. 

 X. Wu, J. P. Walker, C. Rüdiger and R. Panciera. “Effect of Land Cover 

Type on the SMAP Active-Passive Soil Moisture Downscaling Algorithm 

Performance,” Geoscience and Remote Sensing Letters, DOI: 

10.1109/LGRS.2014.2364049. In press. 

 X. Wu, J. P. Walker, C. Rüdiger and R. Panciera. “Comparison of Different 

Soil Moisture Downscaling Approaches using Active-Passive Microwave 

Observations,” IEEE Transactions on Geoscience and Remote Sensing. Under 

review. 

 X. Wu, J. P. Walker, C. Rüdiger and R. Panciera. “Evaluation of Bayesian 

merging method for retrieving medium-resolution soil moisture with 

SMAPEx data set,” IEEE Transactions on Geoscience and Remote Sensing. Under 

review. 

 X. Wu, J. P. Walker, C. Rüdiger, R. Panciera and N. N. Das, “Downscaling 

of coarse-resolution radiometer brightness temperature by high-resolution 

radar backscatter,” In Piantadosi, J., Anderssen, R.S. and Boland J. (eds). 20th 
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International Congress on Modelling and Simulation (MODSIM2013). Modelling and 

Simulation Society of Australia and New Zealand, December 2013, pp. 3127-

3133. ISBN: 978-0-9872143-3-1.  

 X. Wu, J. P. Walker, C. Rüdiger, R. Panciera, A. Monerris and N. N. Das, 

“Towards medium-resolution brightness temperature retrieval from active 

and passive microwave,” In Chan, F., Marinova, D. and Anderssen, R. S. 

(eds). The 19th International Congress on Modeling and Simulation (MODSIM2011). 

Modelling and Simulation Society of Australia and New Zealand, 12-16 

December 2011, pp. 2023-2029. ISBN: 978-0-9872143-1-7 

The following co-authored papers have also contributed to the work of this thesis. 

My main role was in soil moisture and vegetation samplings during the SMAPEx-3 

field campaign, angle normalization of radar observations from PLIS, and in 

archiving all the SMAPEx data to the web. 

 R. Panciera, J. P. Walker, T. J. Jackson, D. Gray, M. A. Tanase, D. Ryu, A. 

Monerris, H. Yardley, C. Rüdiger, X. Wu, Y. Gao and J. Hacker, “The Soil 

Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture 

Retrieval From the SMAP Mission,” IEEE Transactions on Geoscience and 

Remote Sensing, vol. 52, no. 1, pp. 490-507, 2014. 

 S. Elhassan, X. Wu, J. P. Walker,  “Standing water detection using radar,” In 

Piantadosi, J., Anderssen, R.S. and Boland J. (eds). 20th International Congress on 

Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of 

Australia and New Zealand, December 2013, pp. 3085-3091. ISBN: 978-0-

9872143-3-1 
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2 Literature Review  

This chapter presents the importance of soil moisture estimation and its influence on 

environmental applications, followed by a review of the theoretical and experimental 

background to soil moisture measurement using in-situ monitoring stations and 

remote sensing technology, with particular focus on the trade-off between the 

accuracy and spatial resolution by remote sensing means. Current active and passive 

microwave downscaling algorithms are then discussed with a focus on NASA’s 

SMAP mission, which is designed to provide a 9 km resolution downscaled soil 

moisture product by merging active and passive microwave observations. The 

knowledge gap in existing downscaling algorithms to be addressed by this thesis is 

then identified. A review of field campaigns for validation of the SMAP downscaling 

algorithm performance is also provided. 

 

2.1 Importance of Soil Moisture Estimation 

The availability of fine scale soil moisture will benefit many applications, including 

precipitation forecasting, flood prediction, drought monitoring and agriculture-

related applications (Entekhabi et al., 1999, Wagner, 2007). Soil moisture is the state 

variable of the water cycle over land, controlling water fluxes between the 

atmosphere, land surface and subsurface, through evaporation and plant 

transpiration (Hong and Kalnay, 2000, Koster et al., 2004, Trenberth, 1998). Because 

a large amount of heat is exchanged when water changes phase, the water cycle is 

fundamental to the dynamics of the earth’s energy cycle. Since water is the ultimate 

solvent in the earth system, biogeochemical cycles such as carbon, nitrogen and 

methane are embedded in the water cycle. Through these dynamics, soil moisture 

conditions the evolution of weather and climate over continental regions. Therefore, 

global measurement of soil moisture is crucial to improving our understanding of 

water cycle processes, ecosystem productivity, and the linkages between the earth’s 

water, energy and carbon cycles. Information on global soil moisture patterns will be 

transformational for the earth’s system science, as it will help characterize the 
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relationship between soil moisture, its freeze/thaw state, and associated 

environmental constraints to ecosystem processes such as land-atmosphere carbon, 

water and energy exchange, and vegetation productivity (Leese and Kermond, 2000, 

Timbal et al., 2001, Seneviratne et al., 2010). For example, numerous studies have 

shown that the initialization of global weather forecast models with accurate soil 

moisture information will enhance their prediction skill and extend their forecast 

lead-times (Shukla and Mintz, 1982, Delworth and Manabe, 1989, Brubaker and 

Entekhabi, 1996, Pielke, 2001). The quality of weather forecasts is significantly 

dependent on the availability of accurate initial states for key atmospheric variables, 

due to the chaotic nature of the atmosphere. While significant effort has been 

focused on measuring the initial states of temperature, air density, winds, and water 

vapour to improve weather forecasts, it is now recognized that the next significant 

advance in the quality of weather forecasts will come from constraining the soil 

moisture predictions over land. 

It has also been shown that soil moisture can be as important as precipitation for the 

prediction of floods and droughts (Fennessy and Shukla, 1999, Dirmeyer et al., 

2000). There is no global in-situ or current satellite capability to monitor and map soil 

moisture with fine resolution and high accuracy, and so estimations are mostly 

produced from models, with a high degree of uncertainty (Crow et al., 2005). 

Therefore, the assimilation of accurate soil moisture observations at the scale of 

severe weather phenomena is expected to improve both drought and flood 

forecasting, enabling more effective hazard monitoring and mitigation efforts 

(Douville, 2004).  

The use of accurate soil moisture products in agriculture-related applications, such as 

productivity forecasting, operational crop yield and moisture stress information 

systems, is also of benefit (Champagne et al., 2012, McGinn and Shepherd, 2003). 

Soil moisture information, despite the difficulties in quantifying it, is essential for 

monitoring agricultural landscapes. The impact of moisture stress on crop yield has 

been examined at various scales and in response to various adaptations and 

agricultural practices (Campbell et al., 1997, Champolivier and Merrien, 1996, 

Cutforth et al., 2007, Desjardins and Ouellet, 1980). In general, moisture deficits in 
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the root zone have the greatest impact on agricultural productivity when they occur 

during reproduction and seed development growth phases (Boken et al., 2005).  

Soil moisture information also plays an important role in public health through links 

to vector borne diseases (Schman, 2005). Moreover, soil moisture information will 

indirectly benefit human health applications through better weather forecast, leading 

to an improved prediction of virus spreading rates and heat stress; and floods, 

leading to an improved disaster preparation and response plan. Techniques for global 

soil moisture estimation are therefore urgently needed, with the potential to greatly 

benefit all of society. 

2.2 Techniques for Soil Moisture Estimation 

Various techniques for estimating soil moisture have been developed and evaluated, 

including in-situ measurements and remote sensing technology.  

2.2.1 In-situ soil moisture measurement 

The soil moisture can be measured in-situ either directly or indirectly. The more direct 

method is the Thermo-gravimetric measurement. According to this approach the 

amount of water is directly measured based on the weight measurement of a wet 

sample before and after oven drying at 105 °C for 24 hours (Evett et al., 2008). This 

thermo-gravimetric measurement is performed for calibration of other indirect soil 

moisture sensors. However, this direct measurement method is destructive since it 

requires that the soil sample be removed from the field and analysed in the 

laboratory. Moreover, it is a time-consuming and impractical way of measuring soil 

moisture over large areas, and it is not possible to make repetitive observations on 

the same soil sample or at the same location. Hence, to obtain a time-series of in-situ 

soil moisture at point scale, it is necessary to utilize non-destructive methods. 

Because of these limitations, a variety of indirect measurements have been 

developed. The majority of the commercial sensors are based on indirect methods.  

Indirect methods measure a proxy variable that is affected by the amount of soil 

water, and then relates the changes of this variable to the changes in soil moisture 

through physically based or empirical relationships called calibration curves. For 
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instance, dielectric sensors exploit the changes in soil dielectric properties as a 

function of soil moisture. These dielectric measurements take advantage of the 

differences in dielectric permittivity between different soil phases (solid, liquid, and 

gas). Liquid water has a dielectric permittivity of ~80 (depending on temperature, 

electrolyte solution, and frequency), air has a dielectric permittivity of ~1, and the 

solid phase of 4 to 16 (Hallikainen et al., 1985, Wraith and Or, 1999). This contrast 

makes the dielectric permittivity of soil very sensitive to variation in soil water 

content (SWC). The measurement of the bulk dielectric permittivity is then used to 

obtain the volumetric water content through calibration curves. Conversely, time-

domain reflectometry (TDR) derives the dielectric permittivity by measuring the 

travel time of an electromagnetic wave traveling back and forth on the probe, or by 

measuring the capacitance of the bulk soil (Evett and Parkin, 2005, Gardner et al., 

1998, Robinson et al., 1999, Robinson et al., 2003, Walker et al., 2004). Permanent 

installation of these sensors results in minimum destruction to the soil at the time of 

insertion. Consequently, the main advantage is that temporal soil moisture content 

changes can be monitored at the same site. 

Another indirect method uses electrical resistivity measurements on the basis that soil 

resistivity is affected by soil moisture. By this approach, a current is usually 

transferred into the soil by electrodes, and the value of soil resistivity obtained by 

measuring the changes in voltage (Walker and Houser, 2002, Samouëlian et al., 2005). 

The Neutron scattering method is an alternative indirect way of determining the 

moisture content of a soil based on the loss of high-energy neutrons as they collide 

with other atoms, in particular hydrogen contained in the water molecule. In this 

method, neutrons with high energy are emitted by a radioactive source into the soil 

and the number of slow neutrons returning to the detector per unit time counted. 

The soil moisture content is then estimated from a previously determined calibration 

curve of neutron count versus volumetric moisture content. Conversely, the gamma 

ray attenuation method, a radiation technique, can be used to determine the soil 

moisture contained within a 1 to 2 cm soil layer. The changes in wet density are 

measured and the soil moisture content determined by the density change (Walker et 

al., 2004, Zegelin, 1996). 
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Another common indirect method is the measurement of soil thermal properties, 

exploiting changes in soil thermal properties due to variation of soil moisture. The 

two main techniques are heat dissipation and heat pulse. The heat dissipation 

technique uses a heat source (usually a heated needle) and temperature sensors 

(thermocouples or thermistors), immersed into a porous ceramic that equilibrates 

with the surrounding soil at a given water content. The needle is heated, and the rate 

of heat dissipation measured by the temperature sensors. These changes are affected 

by the thermal conductivity, which depends on the ceramic water content. The 

thermal conductivity is then obtained through measuring the differential temperature 

before and after heating (Young et al., 2008). In the heat flux method, the pulse of 

heat is applied at one location and its arrival at another location determined by 

measuring the soil temperature at the other location. The time required for the pulse 

of heat to travel to the second location is a function of soil thermal conductivity, 

which is related to water content. The heat dissipation sensors are also used to 

estimate soil water potential, through calibration of the sensors at specific soil water 

potentials (Reece, 1996). 

Although the techniques described here are the most common for measuring in-situ 

soil moisture, other techniques are also being developed, such as acoustic wave 

methods (Adamo et al., 2004, Blum et al., 2004, Lu, 2007), optical methods (Selker et 

al., 2006) and gravity measurements (Leiriao et al., 2009). 

The major disadvantage of in-situ measurements is the relatively small volume of soils 

affecting the sensor measurement, generally limited to the region immediately 

adjacent to the probe. Hence, although such sensors can provide detailed and 

relatively accurate information on the vertical soil moisture profile at a point in space, 

in order to obtain information of the spatial distribution of soil moisture over large 

areas a dense network of sensors must be installed. However, these sensors are 

expensive to install and maintain and consequently soil moisture monitoring over 

large areas using in-situ sensors is neither economically nor logistically practical. 

Moreover, it should be also noted that in-situ sensor generally require soil type-

specific calibration to ensure that they are accurately interpreted and represent the 

volumetric water contents at different field sites (Blonquist Jr. et al., 2005, Kizito et 
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al., 2008, Western and Seyfried, 2005). This is because the calibration equations 

provided by the manufacturers are limited to a specific soil type under laboratory 

conditions, and normally cannot be applied to measurements taken in other types of 

soils (Rüdiger et al., 2010). 

2.2.2 Remote sensing of soil moisture 

Since accurate monitoring of soil moisture through in-situ measurements is 

complicated by the infeasibility of sustaining a large in-situ soil moisture monitoring 

network globally, and the problem of upscaling from point-scale measurements, 

extensive research has been conducted toward the retrieval of soil moisture using 

remote sensing techniques (Hain et al., 2011), particularly from Low-Earth orbit 

platforms which have the capability of providing the global coverage and frequent 

revisit time required by hydrological and meteorological applications. 

2.2.2.1 Passive microwave techniques 

Experimental and theoretical research has shown that passive microwave remote 

sensing at L-band is the most promising technique for global monitoring of soil 

moisture, due to its applicability to all-weather conditions, direct and strong 

relationship of the soil emissivity at microwave wavelengths with soil water content, 

and the limited impact of vegetation cover and surface roughness on the soil 

emissivity (Njoku et al., 2002). Passive microwave sensors measure the intensity of 

microwave emission from the soil, which is related to its moisture content through 

the large differences in the dielectric constant of dry soil (~3.5) and water (~80) 

(Schmugge et al., 1974). The microwave emission is thus proportional to the product 

of the surface temperature and surface emissivity, and commonly referred to as the 

brightness temperature.  

The relationship between soil moisture and brightness temperature varies according 

to differences in surface roughness, vegetation conditions, and soil texture. In the 

past decades, methods for retrieving soil moisture from passive observations have 

been developed and validated with field experiments using ground-based, airborne 

and satellite instruments  (Owe et al., 2001, Njoku et al., 2003, Rüdiger et al., 2009, 

Panciera et al., 2009). Results from these studies have led to the development of 
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different microwave radiative transfer models that are designed to retrieve soil 

moisture from passive microwave brightness temperature. For example, global 

measurements of soil moisture using passive microwave remote sensing are available 

from the SMOS mission, the Advanced Microwave Scanning Radiometer for EOS 

(AMSR-E), Special Sensor Microwave Imager (SSM/I) etc. SMOS is dedicated to the 

monitoring of soil moisture, vegetation biomass, and surface temperature using 

radiometer measurements at L-band (1.4 GHz) with h- and v- polarizations (“h” 

represents horizontal while “v” is the vertical), and provides a soil moisture product 

at ~40 km resolution. AMSR-E provides a soil moisture product and associated 

estimates of vegetation water and surface temperature at C-band and X-band at a 

spatial resolution of ~56 km. Even higher frequency bands are applied by SSM/I, 

which measure the brightness temperature at Ka- and Ku band.  

The potential for soil moisture retrieval using SSM/I brightness temperature at high-

frequency (19.4 GHz) was analysed and assessed using datasets from  SMEX02 (Wen 

et al., 2005). While SSM/I has the ability of providing soil moisture information with 

a long-term record, the accuracy is limited under high-level vegetation and cloud 

conditions due to its high frequency. It is therefore not optimal for soil moisture 

retrieval at higher frequency bands due to stronger vegetation masking and higher 

impacts by electro-magnetical roughness.  

Soil moisture remote sensing studies using passive microwave techniques conducted 

over several decades have demonstrated the superiority of low-frequency sensors 

over other remote sensing techniques (Schmugge et al., 1974, Jackson et al., 1993, 

Paloscia et al., 2001). These studies have also led to the conclusion that emission at 

1.4G Hz (L-band) is related to the moisture of a soil layer, the thickness of which 

depends on the soil characteristics and moisture profile. Although passive microwave 

sensors at L-band are the most promising for retrieving soil moisture globally, the 

spatial resolution that can be achieved from passive microwave observations is 

inherently coarse (currently ~40 km resolution) due to the inverse relationship 

between wavelength and antenna size and associated technological limitations in 

deploying large antennas in space. Consequently, soil moisture estimated from the 
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passive microwave remote sensing technique at L-band alone cannot meet the 10 km 

requirement for hydrological and hydro-meteorological applications. 

Products of passive microwave sensing face significant challenges in meeting the 

medium resolution (~10 km) requirements for hydrometeorology (at regional scale), 

such as precipitation forecasting and flood and drought predictions. The antenna size 

of the radiometer is the only factor that we can change to improve resolution. 

However, increasing the antenna size introduces extremely difficult engineering 

problems that cannot be solved using conventional technologies. This has been a 

major reason for looking at innovative approaches which can provide accurate and 

high resolution observations (Jackson et al., 1999). 

Alternatives to passive microwave remote sensing of soil moisture include the use of 

active (radar) microwave remote sensing (Paloscia et al., 2004, Giacomelli et al., 

1995), visible/near-infrared (NIR)/shortwave infrared (SWIR) (Muller and Décamps, 

2001) and/or thermal-infrared (TIR) sensing (Anderson et al., 1997, Hain et al., 

2009). Nonetheless, these individual approaches have some major drawbacks that 

hamper their applicability. 

2.2.2.2 Active microwave techniques 

Since passive microwave remote sensing is limited by its coarse spatial resolution, 

some other remote sensing techniques have been proposed to provide observations 

at higher resolution. For instance, active microwave remote sensing techniques can 

be used to retrieve soil moisture information from 10 m to 3 km resolution. There 

are primarily two types of radar currently being used for soil moisture retrieval: 

synthetic aperture radar (SAR) and scatterometers. SAR is coherent radar, where high 

resolution images are created from the backscatter signals using a synthetic antenna 

aperture formed by integrating the radar response in the azimuth domain. This allows 

very high resolution to be achieved, of the order of metres. For example, the 

European Space Agency (ESA) has used the Earth Remote Sensing (ERS-1 and 

ERS-2) satellites for soil moisture remote sensing with C-band SAR (Wagner et al., 

2003, 2007a). Other SAR observations are available from ENVISAT C-band ASAR 

(Desnos et al., 2000), C-band RADARSAT-1/2 (Cable et al., 2014, Niang et al., 

2012), L-band PALSAR (Carreiras et al., 2012, Shimada et al., 2009), X-band 
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TerraSAR (Werninghaus, 2004) and X-band COSMO-SkyMed (Covello et al., 2010). 

The radar sensor onboard SMAP will also use SAR measurements but at L-band and 

at 3 km resolution (Entekhabi et al., 2010).  

Differently than SAR sensors, scatterometers are microwave radar sensors that 

measure the backscatter of the surface using real aperture (as opposed to synthetic) 

(Dubois et al., 1995; Schmugge, 1998; Wagner and Scipal, 2000). They were primarily 

developed for measurement of near surface winds over the ocean, based on the fact 

that wind determines small scale changes of the sea surface roughness and therefore 

the backscattering properties. In addition to their original purpose, scatterometers are 

also used for polar ice studies, vegetation coverage, and SWC measurements. A 

variety of scatterometers have been launched on board satellites, such as the NASA 

scatterometer (NSCAT) and the advanced scatterometer (ASCAT) on board of the 

ESA meteorological operational satellite (MetOp-A) launched in 2006 (Wagner et al., 

2003, 2007a). As for active microwave, the magnitude of the signal (backscatter 

coefficient) is related to soil moisture through the contrast of soil and water dielectric 

constants. However, in the case of radar the soils signal is more heavily affected by 

surface roughness and the direct scattering from the vegetation canopy. Therefore, in 

contrast to the passive microwave remote sensing, the accuracy of active retrieved 

soil moisture is highly affected by the surface conditions. 

2.2.2.3 Optical remote sensing techniques 

Apart from the active microwave sensors, optical (visible/NIR/SWIR/TIR) remote 

sensors can also measure surface reflectance from the sun or surface thermal 

emission with high spatial resolution. Consequently, bare soil spectral information in 

visible, near-infrared, and shortwave infrared wavelengths is related to soil moisture 

as a function of spectral absorption features such as wavelength position, absorption 

feature depth, width etc. (Pu et al., 2003). However, the optical signal is only from 

the top millimetres or so of the surface, be it soil or vegetation, making it difficult to 

interpret. It also has limited ability to penetrate clouds and vegetation canopy, and is 

highly attenuated by the atmosphere requiring substantial atmospheric correction. In 

addition, soil reflectance measurements are strongly affected by the soil composition, 

physical structure and observation conditions, resulting in poor prediction of soil 
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moisture on combined soil type samples (Musick and Pelletier, 1988). Thus soil 

moisture estimates from visible/infrared sensors usually require surface micro-

meteorological and atmospheric information that is not routinely available (Zhang 

and Wegehenkel, 2006). Due to those constraints, efforts to directly relate reflectance 

to soil moisture have achieved success only when models have been fit to specific 

soil types in the absence of vegetation cover (Muller and Décamps, 2001), strongly 

limiting the applicability of such techniques for global soil moisture retrieval. 

Thermal infrared (TIR) remote sensing is based on the fact that soil temperatures are 

directly influenced by soil moisture with the increase of specific heat and thermal 

conductivity. The estimation of soil moisture from TIR is primarily related to the use 

of soil temperature measurements, either singularly or in combination with 

vegetation indexes. Some studies have indicated that variations in soil temperature 

are highly correlated with variations in soil moisture (Friedl and Davis, 1994, 

Chehbouni et al., 2001). Advanced applications of the combination of thermal 

imagery and spectral vegetation indices employ thermodynamic principles embodied 

in surface energy balance models to estimate surface evapotranspiration rates, and 

thus improve soil moisture estimation. Many such approaches based on the 

consistent negative correlation between soil temperature and vegetation indices such 

as normalized difference vegetation index (NDVI) have been verified to be powerful 

in soil moisture estimation (Carlson et al., 1995, Goward et al., 2002). However, like 

all optical techniques, they also suffer from the limited ability to penetrate clouds and 

vegetation, being attenuated by the earth’s atmosphere, and the strong perturbation 

by vegetation biomass. Moreover, they are often empirical and thus vary across time 

and land cover types (Czajkowski et al., 2000). 

2.3 Soil Moisture Downscaling 

Remote sensing has to confront the challenges of achieving medium resolution (~10 

km) combined with sufficient retrieval accuracy to benefit hydrological, 

meteorological and agricultural applications (0.04 cm3/cm3 for uniform areas with 

vegetation water content less than 5 kg/m2)(Entekhabi et al., 2012). Moreover, it is 

evident that fulfilling both such requirements using a single sensor is difficult. 

Therefore complementary downscaling using a range of observation types has been 
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proposed as an approach to overcome these scale and accuracy issues, by combining 

the merits from different sensors. Given the limitations of optical techniques with 

respect to cloud coverage, atmospheric disturbance and vegetation cover, the use of 

microwave sensors (active and passive) has the best potential to produce reliable 

global soil moisture products. Consequently, this section introduces the currently 

available downscaling approaches which have the potential to fulfil the stated 

requirements on resolution and accuracy. 

2.3.1 Approaches 

The retrieval accuracy of surface soil moisture is optimal using passive microwave 

remote sensing but is limited by its coarse resolution. The combination of these 

radiometric data at coarse spatial resolution with higher resolution data from other 

sensors offers a potential solution to decompose or disaggregate large pixels into 

smaller ones. Also, additional information on factors controlling soil moisture 

variability, such as soil properties, vegetation characteristics, or meteorological 

observations could be used to disaggregate the observations collected from low 

resolution passive microwave, given that adequate physical models or empirical 

relationships apply. 

During the past decade, a variety of methods have been proposed to disaggregate the 

coarse scale passive microwave observations using high resolution observations (Kim 

and Barros, 2002, Merlin et al., 2006, Merlin et al., 2008a, Panciera et al., 2008, Merlin 

et al., 2010, Piles et al., 2011, Narayan et al., 2006). The increased effort in this area is 

a reflection of the fact that L-band passive microwave measurements from space are 

just beginning to emerge, and high resolution remote sensing data that can be used in 

downscaling of the coarse resolution data are increasingly available.  

2.3.1.1 Optical and passive downscaling approaches 

Several downscaling algorithms using optical remote sensing data have been 

proposed, such as the combination of 1km Advanced Very High Resolution 

Radiometer (AVHRR) and 25 km Special Sensor Microwave/Image (SSM/I) data 

(Chauhan, 2003). Another method has used the 1km MODerate resolution Imaging 

Spectroradiometer (MODIS) data together with soil dependant parameters and wind 
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speed data to downscale ~40 km SMOS retrievals according to a deterministic 

relationship between near-surface soil moisture and optical-derived soil moisture 

indices (Merlin et al., 2008a). A physically-based algorithm has also been proposed, 

incorporating a complex land surface model and high resolution multispectral data 

and surface variables involved in a land surface atmosphere model (Merlin et al., 

2005). This approach combines the ~40 km brightness temperatures with 1 km 

resolution auxiliary data comprised of visible, near-infrared and thermal infrared 

remote sensing data, and all the surface variables involved in the modelling of land 

surface atmosphere interaction available at this scale (soil texture, atmospheric 

forcing, etc.). The main assumption relies on the relationship between the 

radiometric soil temperature inverted from the thermal infrared and the microwave 

soil moisture. An alternate disaggregation approach focuses on the use of 

topographic and surface properties to reconstruct spatial patterns. For instance, a 

radiative transfer model is coupled with a hydrological model in order to redistribute 

the soil water content as a function of topography and soil properties (Pellenq et al., 

2003). Similarly, another algorithm downscales coarse resolution soil moisture using 

empirical relationships between the spatial and temporal variability of soil moisture 

and patterns of auxiliary data such as topography, soil texture, vegetation water 

content (VWC), and rainfall (Kim and Barros, 2002). 

However, intermediate resolution (~10 km) soil moisture retrievals from the above 

mentioned downscaling algorithms are limited by the availability of the soil and 

vegetation properties required as inputs by the methods at global scale and high 

resolution. In addition, it should be noted that the use of optical data limits the use 

of these downscaling approaches to clear sky conditions, resulting in the following 

approaches that can be applied to all weather conditions. 

2.3.1.2 Active and passive downscaling approaches 

Due to the shortcomings identified with optical methods, downscaling approaches 

based on the synergy between active (radar) and passive (radiometer) retrievals are 

being developed, and this technique forms the basis of the forthcoming SMAP 

mission. Full details on the SMAP mission are discussed in the next section. The 

main objective of this satellite mission is to provide a downscaled soil moisture 
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product at 9 km spatial resolution, by merging 3 km resolution radar and 36 km 

resolution radiometer observations from the same platform. The existing algorithms 

to jointly handle active and passive microwave data at different resolutions include: i) 

SMAP baseline downscaling algorithm (Das et al., 2014), ii) SMAP optional 

downscaling algorithm (Das et al., 2011), iii) Bayesian merging method (Zhan et al., 

2006) and iv) change detection methods (Narayan et al., 2006, Piles et al., 2009, 

Njoku et al., 2002).  

NASA’s SMAP mission is planning to generate what is termed a Level-3 soil 

moisture data product at ~9 km spatial resolution, by merging the 3 km radar 

backscatter and 36 km radiometer observations. The baseline downscaling approach 

adopted by SMAP relies on the assumption of a linear relationship between the radar 

observations and the brightness temperature at the same resolution, and a vegetation 

dependent parameter which describes this linear relationship, assumed to be spatially 

homogeneous across individual SMAP radiometer pixels. Using this approach, the 36 

km resolution brightness temperatures are downscaled to 9 km brightness 

temperatures, after which a 9 km resolution soil moisture product is obtained using a 

passive microwave radiative transfer retrieval from this brightness temperature. 

Different to the baseline algorithm, the optional algorithm assumes a linear 

relationship between soil moisture and radar observations, and directly disaggregates 

the coarse resolution soil moisture to medium resolution. 

Both the baseline and optional algorithms have been tested and evaluated with 

synthetic OSSE datasets and some experimental data from airborne field campaigns 

collected by the Passive and Active L-band System (PALS) instrument over various 

regions of Continental United States (Das et al., 2011, Das et al., 2014, Njoku et al., 

2002), resulting in the Root Mean Square Error (RMSE) of downscaled soil moisture 

retrieval meeting the SMAP target accuracy of  0.04 cm3/cm3. However, there are 

some shortcomings of these two proposed algorithms:  

i) the linear relationship between radar backscatter and brightness temperature is 

influenced by the polarizations available from the radar and radiometer, with the best 

linear relationship expected to be between radar at vv-polarization and radiometer at 

v-polarization (Das et al., 2011) due to the higher degree of correlation observed 
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between them, indicating the effectiveness of this algorithm will be limited by the 

availability of vv-polarization radar data;  

ii) the accuracy will be affected by the assumption of homogeneous vegetation 

characteristics within the radiometer footprint, i.e. reflecting on the assumption of 

spatially uniform slope of the linear regression between Tb and σ (or between soil 

moisture and σ for optional algorithm); and  

iii) they have not been well tested using experimental data. In particular they have 

only used the data in some regions of U.S., meaning that various land conditions 

from around the world have not been tested, potentially impacting the robustness of 

the linear parameter estimation, and constraining its applicability in forthcoming 

application in the SMAP mission.  

Another downscaling approach is based on the linear relationship between changes 

in radar backscatter and changes in soil moisture over time. Using PALS data, it was 

observed that radar and radiometer data show similar sensitivities to soil moisture 

spatial distributions when observed as temporal changes. The feasibility of using 

change detection has been demonstrated in many studies such as (Njoku et al., 2002, 

Narayan et al., 2006). The estimated moderate scale (at 9 km resolution) soil moisture 

based on this approach had an RMSE of about 0.046 cm3/cm3. The theoretical basis 

and the assumptions behind the change detection algorithm were also used to 

develop an improved approach (Piles et al., 2009). The rationale behind this 

approach is that of considering the average surface soil moisture over a sample 9 km 

region to be composed of weighted averages of the available radar observations 

within that region and the radiometer retrieval within the radiometer footprint 

containing the 9 km region. The advantage of this approach is that as more radar 

retrievals are available within the 9 km region, more spatial structure within a 

radiometer footprint will become evident, and since the collection of 9 km pixels 

within the larger scale radiometer footprint are constrained to sum to the value 

indicated by the radiometer retrieval, the high resolution estimation maintains the 

overall accuracy of the radiometer retrieval. 

The Bayesian merging method, a totally different strategy, is instead based on the use 

of radiometer brightness temperature, radar backscatter observations and radiative 
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transfer models within a Bayesian probabilistic framework aimed at providing 

optimal estimates of soil moisture by weighting the various sources of uncertainty 

associated with the instrument and model (Zhan et al., 2006). This downscaling 

approach involves three main steps: i) preliminary “background” guess based on a 

direct inversion of the 36 km radiometer observation (Tb at h-pol) to soil moisture 

using passive microwave retrieval method; ii) Calculation of brightness temperature 

and backscatter estimates at the background soil moisture value using microwave 

emission and backscatter model; iii) error covariance of the background field and the 

observations; and iv) medium-resolution soil moisture retrieval by merging the high 

resolution radar, coarse resolution radiometer, and background state using an 

implementation of Bayes theorem. This approach was found to significantly reduce 

the RMSE of medium resolution soil moisture retrievals comparing to direct 

retrievals from coarse resolution passive microwave observations or from fine 

resolution active microwave observations, but has only been applied within the 

context of a synthetic Observing System Simulation Experiment (OSSE). 

Other approaches for downscaling passive microwave observations include the 

temporal interpolation method proposed to couple high and low spatial resolution 

images of mixed pixels (Cardot et al., 2005), and neural network which was proposed 

to downscale coarse resolution satellite microwave remote sensing using a coupled 

hydrologic/radiative transfer model as input for its training (Tsegaye et al., 2003).  

Spatial resolution is still a challenge for passive microwave remote sensing of land. 

Development of downscaling techniques for upcoming microwave remote sensors is 

of great importance and will considerably increase its range of applications. In 

particular, the SMAP baseline, optional and other candidate downscaling algorithms 

have not been widely tested with real data. 

2.3.2 SMAP mission 

NASA is going to launch the SMAP satellite in January 2015. It is expected that by 

combining SMAP radar and radiometer data, accurate soil moisture with an 

intermediate spatial resolution around ~10 km can be obtained. The SMAP mission 

was recommended by the National Research Council’s (NRC) Decadal Survey after a 



 
Literature Review 

 

 

2-16 

preliminary study commissioned by NASA, the National Oceanic and Atmospheric 

Administration (NOAA), and the U.S. Geological Survey (USGS), to provide Earth’s 

near surface soil moisture measurements at global scale and to distinguish frozen 

from thawed land surfaces (National-Research-Council, 2007).  

SMAP inherits concept of the NASA Hydros (Hydrosphere State) mission 

(Entekhabi et al., 2004) that progressed through Phase A development until it was 

put on hold in 2005 due to NASA budgetary constraints. Due to the expected 

accuracy, global coverage and spatial resolution, SMAP products are being 

anticipated across many science and application disciplines including hydrology, 

climate, carbon cycle, as well as the meteorological, environmental and ecological 

applications communities.  

The payload of SMAP consists of a conically scanning L-band radiometer and radar 

that share a deployable light-weight mesh antenna with a 6 m diameter so as to solve 

the size-mass issues of real aperture antennas working at L-band, as seen in Figure 2-

1. The first three Stokes parameters and backscatter at hh-, vv- and hv- polarizations 

will be collected using a radiometer and a radar system, over a footprint of 

approximately 36 km and 3 km size respectively. The SMAP radar and radiometer 

share a single feedhorn and parabolic mesh reflector to make coincident 

measurements of surface backscatter and emission. The reflector rotates about its 

nadir axis at 14.6 rpm, providing a conically scanning antenna beam with a surface 

 

Figure 2-1: Snapshot of SMAP mesh antenna and footprint on Earth 

(smap.jpl.nasa.gov). 
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incidence angle of approximately 40˚. The selected incidence angle was chosen as the 

optimal to retrieve soil moisture and vegetation water content simultaneously from 

the horizontally and vertically polarized brightness temperatures (Entekhabi et al., 

2010).  

The SMAP radiometer can only provide a resolution on the order of 36 km, which is 

much larger than the minimum science requirement of 10 km spatial resolution for 

hydrological modelling. In contrast, the SMAP radar will offer higher resolution 

observations around 1 km. As the direct soil moisture retrieval from radar 

observations is a more difficult problem than for microwave radiometer 

observations, mainly due to the strong impact of surface roughness and vegetation-

induced scattering, the objective of SMAP is to utilize the fine resolution yet noisy 

information provided by the radar to recover the spatial distribution of the soil 

moisture information provided by the radiometer at coarser resolution.  

SMAP aims to provide global soil moisture observations with a 2-3 day revisit time, 

with its key derived products provided in four levels:  

Level 1 products are divided into three categories:  

i) Level 1A products are raw data of radar backscatter and radiometer brightness 

temperature in time order;  

ii) Level 1B products are calibrated and geo-located instrument measurements of 

surface radar backscatter cross section and brightness temperatures derived from 

antenna temperatures in time order; and 

iii) Level 1C products are calibrated and geo-located instrument measurements of 

surface radar backscatter cross section and brightness temperatures derived from 

antenna temperatures on swath/Earth grid.  

Level 2 products are on half-orbit retrievals of soil moisture derived from radar, 

radiometer, and the conjunction of radar and radiometer data on a fixed Earth grid 

with resolutions of 3 km, 36 km, and 9 km respectively.  

Level 3 products are daily global composite Level 3 products are daily composites of 

Level 2 surface soil moisture and freeze/thaw state data.  
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Level 4 products are model-derived value-added surface and root zone soil moisture 

data as well as carbon net ecosystem exchange data. 

2.3.3 SMAP Calibration/Validation field campaigns 

In preparation of the SMAP launch, suitable algorithms and techniques need to be 

developed and validated to ensure that an accurate medium-resolution soil moisture 

product can be operationally produced from combined SMAP radiometer and radar 

observations, and that any remaining issues with the active-only and passive-only 

retrieval algorithm be addressed. To this end, it has been essential that field 

campaigns with coordinated satellite, airborne and ground-based data collection be 

undertaken, giving careful consideration to the diverse data requirements for the 

range of outstanding scientific questions. Therefore, field campaigns have been 

conducted using active and passive microwave airborne observations to address the 

scientific requirements pertinent to SMAP.  

These campaigns include the Southern Great Plains experiment in Oklahoma from 

July 8 to July 21 in 1999 (SGP99) (Njoku et al., 2002, Bolten et al., 2003), which used 

PALS to study remote sensing of soil moisture in low to moderate vegetated terrain 

using low-frequency microwave radiometer and radar measurements. Data acquired 

during SGP99 provided information on the sensitivities of multichannel low-

frequency passive and active measurements to soil moisture for vegetation conditions 

including bare, pasture and crop surface with field-averaged vegetation water 

contents mainly in the range of 0-2.5 kg/m2. 

The Soil Moisture Experiment 2002 (SMEX02) was conducted from June 25 to July 

8 in 2002 in Iowa (Narayan et al., 2004, Crosson et al., 2005, Narayan et al., 2006), 

with the aim to extend the soil moisture retrieval algorithm using passive and active 

measurements (from PALS) to areas under moderate to heavy vegetation water 

content conditions 4-8 kg/m2. The dominant vegetation types are corn and soybeans. 

The Cloud and Land Surface Interaction Campaign (CLASIC) was conducted in 

2007 in the Southern Great Plains Oklahoma (Bindlish et al., 2009, Yueh et al., 2008), 

covering a 3-week period from June 11 to July 6, a time when the Southern Great 

Plains region was in the process of harvesting the winter wheat and therefore large 



 
Chapter 2 

 

 

 
2-19 

changes occurred in the surface albedo, latent heat flux and sensible heat flux. The 

combined passive/active L-band PALS was also mounted to the airborne as part of 

this campaign, providing the opportunity to collect prototype SMAP data in 

conjunction with soil moisture measurement and therefore to explore combined 

algorithm concept for SMAP. 

The San Joaquin Valley field campaign (SJV10) was conducted in California USA in 

summer 2010, as part of an effort to integrate observations of vegetation water 

content, soil moisture and evapotranspiration into agricultural water management to 

better understand water balance and fluxes. Primary crop types included pistachios, 

wheat, cotton and almonds. NASA’s Uninhabited Aerial Vehicle Synthetic Aperture 

Radar (UAVSAR), implemented on the aircraft, provided the measurements required 

for algorithm development for the SMAP mission.  

The Canadian Experiment for Soil Moisture 2010 (CanEx-SM10) was conducted 

from May 31 to June 17 in 2010, Saskatchewan, Canada (Magagi et al., 2013), with 

aims to support development and validation of soil moisture algorithms and products 

from two satellite platforms, the ESA’s SMOS mission and NASA’s SMAP mission. 

During this campaign, the airborne measurements were collected from a Canadian L-

band radiometer and NASA’s L-band UAVSAR radar over an agricultural site and a 

forested site, so as to enable testing of soil moisture retrieval algorithms over very 

different soil and vegetation conditions. 

The Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX2008) was 

conducted from September 29 to October 13 in 2008 in Maryland USA (Colliander 

et al., 2012a, Bindlish et al., 2010, Yueh et al., 2009), and was designed to investigate 

the SMAP soil moisture algorithm development. The PALS instrument was flown 

over agricultural and forested sites on the Eastern Shore in Maryland and Delaware. 

The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX2012) was 

conducted from June 6 to July 19 in 2012 in an agricultural region south of Winnipeg 

Canada (Colliander et al., 2012b), which is one of the primary pre-launch field 

campaigns for the SMAP mission established to provide data for algorithm 

evaluation and testing and applications development. The measurements were 
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collected using active and passive instruments including NASA’s UAVSAR and the 

PALS onboard separate aircraft. 

Beside the above mentioned field campaigns, all of which were conducted in north 

America, a series of three field campaigns were undertaken in Australia - the Soil 

Moisture Active Passive Experiments (SMAPEx) in 2010 and 2011 (Panciera et al., 

2014). SMAPEx-1 was conducted from July 5-10, 2010 in the austral winter; 

SMAPEx-2 was carried out from December 4-8, 2010 in the austral summer; and 

SMAPEx-3 took place from September 4-23, 2011 in the austral spring, with two 

more campaigns SMAPEx-4 and SMAPEx-5 scheduled for 2015 after SMAP launch. 

The study area is a semi-arid agricultural and grazing area located in the 

Murrumbidgee River catchment. The SMAPEx field campaigns provide the 

opportunity to evaluate the SMAP Active-Passive baseline algorithms using data that 

presents with different sets of conditions and land covers. These field campaigns are 

complementary to the other campaigns in addressing scientific requirements of the 

SMAP mission, therefore representing a significant contribution to the limited 

heritage of airborne experiments mentioned above. During the SMAPEx 

experiments, airborne prototype SMAP data were collected from PLMR and the 

PLIS, together with ground observations of soil moisture and ancillary data over an 

area equivalent to a SMAP radiometer footprint (36 km), with the aim to provide 

SMAP-type data for the development and validation of algorithms and techniques to 

estimate near-surface soil moisture from the upcoming SMAP mission. More details 

on the SMAPEx can be found in Chapter 3. 

2.4 Proposed Methodology 

After reviewing the literature and identifying the strengths and weaknesses of 

currently existing downscaling algorithms, a methodology to retrieve a medium-

resolution soil moisture product from active and passive observations is proposed. 

As the near surface soil moisture retrieval is optimal in the microwave domain, as 

demonstrated through a number of field experiments using ground-based and 

aircraft-mounted radiometer and radar sensors, this thesis focuses on maturing the 

active and passive combination of observations to overcome the individual 

limitations of each observation type (i.e. the coarse resolution of radiometer and the 
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confounding effect of vegetation and surface roughness on radar retrieval) as will 

become available from SMAP, with the objective of providing accurate soil moisture 

information at a resolution more suitable for hydro-meteorological applications.  

Due to the limited tests that have been done on the active-passive downscaling 

algorithms, it is essential to extend the evaluation with more varied data sets collected 

from field campaigns, exhibiting a variety of land conditions not only found within 

North-America, but also within other locations, so as to demonstrate the robustness 

of these downscaling algorithms. Downscaling algorithms tested in this thesis include 

(i) SMAP baseline downscaling algorithm, (ii) SMAP optional downscaling algorithm, 

(iii) change detection method and (iv) Bayesian merging method. Data used to 

evaluate these algorithms were collected from the SMAPEx field campaigns in 

Australia, due to their different land conditions as compared to other studies. Prior 

to testing the algorithms, a series of analysis is conducted to address simulation of 

SMAP-type observation from airborne observations. In particular, differences in 

terms of incidence and azimuth angle and spatial resolution are carefully addressed. 

Consequently, the simulation of SMAP data from airborne observations is first 

studied in this thesis, followed by the demonstration of four different active and 

passive downscaling algorithms with these simulated data. 

2.5 Chapter Summary 

This chapter has provided an overview of the importance of soil moisture 

measurement, a description of the approaches for monitoring soil moisture using in-

situ and remote sensing technology, and a review of currently available algorithms to 

obtain soil moisture information from remote sensing at resolutions relevant to 

hydro-meteorological applications. 

Amongst the downscaling algorithms mentioned in this chapter, the one based on 

the synergy between passive (radiometer) and active (radar) microwave observations 

is the most promising approach, not only due to its all-weather capabilities, but also 

because microwave observation is becoming increasingly available from satellites at 

global scale and has much finer temporal resolution than optical sensors. Moreover, 

retrievals from radar and radiometer rely less on ancillary information such as 
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meteorological observations and land surface models. However, downscaling 

algorithms based on this sensor combination are still under development and have 

thus far received very limited testing using airborne and satellite data although they 

have been theoretically proven to be effective methods. Consequently, based on this 

review of available approaches for soil moisture measurement and their limitations, 

four promising downscaling algorithms using active and passive observations are 

tested in this PhD research and evaluated using airborne observations collected in 

semi-arid agricultural area, aggregated to provide SMAP-like data. Such data set 

represents a valuable test bed across a range of land conditions to demonstrate the 

relative advantages and limitations of existing downscaling methods for the 

forthcoming SMAP mission.  
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3 Data Set 

This chapter presents an overview of the Soil Moisture Active Passive Experiment 

(SMAPEx), including a description of the airborne simulator used to simulate SMAP 

brightness temperature and backscatter data, ground sampling and monitoring 

stations. The derived reference soil moisture from Polarimetric L-band Multibeam 

Radiometer (PLMR) has been previously validated against the ground truth from 

ground sampling and monitoring stations and so is only briefly referred to here. The 

observations from the airborne simulator are used to test the feasibility of different 

soil moisture downscaling algorithms for the forthcoming SMAP mission. In the 

absence of real SMAP data, SMOS and ASAR provide an alternative source of 

testing data, and are later used for preliminary research on the performance of the 

baseline downscaling algorithm. 

 

3.1 Existing Satellite Data 

Prior to the test of downscaling algorithm using the simulated SMAP data stream 

from the airborne simulator, data from other existing satellites such as SMOS and 

ASAR were also collected in order to provide some preliminary results on the 

performance of the downscaling algorithms, the baseline algorithm in particular.  

The reprocessed L-band Level 1C brightness temperature product of SMOS has an 

average resolution of ~40 km on a resampled 12.5 km grid spacing with both h- and 

v- polarizations and an incidence angle of 40˚, while the C-band backscatter dataset 

from ASAR in Global Monitoring mode is available at 1 km resolution but only at hh- 

polarization, with the incidence angle ranging from 15° to 45°. The ASAR data are 

often available for the same day as SMOS overpasses, and can therefore be used as 

input data to the downscaling procedures as a preliminary study. Details of the 

application of those satellite data are presented in Chapter 4. But since the results of 

downscaling using those satellite data were not good, presumably due to the 

inconsistent characteristics of ASAR data compared to SMAP (e.g. polarization and 
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incidence angle), and the high noise contained in the ASAR data, as well as the 

limited concurrent overpass of SMOS and ASAR over the study area. Therefore, 

other sources of data were sought as described in the next sections. 

3.2 The SMAPEx Campaign 

3.2.1 Overview 

SMAPEx comprises a series of three campaigns undertaken over an approximately 

one-year timeframe during 2010 and 2011, specifically designed to encompass the 

seasonal variation in soil moisture and vegetation: SMAPEx-1 was conducted from 

5-10 July 2010 in the austral winter; SMAPEx-2 was carried out from 4-8 December 

2010 in the austral summer; and SMAPEx-3 took place from 4-23 September 2011 in 

the austral spring. The SMAPEx project was specifically designed to contribute to 

the development of radar and radiometer soil moisture retrieval algorithms for the 

SMAP mission. The SMAPEx study site is within a semi-arid agricultural and grazing 

area located in the Murrumbidgee River catchment in south-eastern Australia (-

34.67˚N, -35.01˚N, 145.97˚E, 146.36˚E, see Figure 3-1), and forms part of the 

greater Murray-Darling basin. A general description of the SMAPEx study area and 

monitoring activities can be found in (Panciera et al., 2014), and full details of three 

experiments can be found in the Experiment plans on the SMAPEx website 

(www.smapex.monash.edu.au). 

While the 1-week long SMAPEx-1 and -2 campaigns, were focused on providing data 

for “snapshot” type algorithms, the 3-week long SMAPEx-3 campaign aimed at 

collecting a longer data record, covering at least part of the growing season, for the 

development of time-series and change-detection algorithms. SMAPEx-1 was 

conducted shortly after the sowing of winter crops, with only the emergent plant 

phase present in the fields under moderately wet soil moisture conditions. SMAPEx-

3 captured the intensive growth phase of winter crops in the study area (essentially 

wheat, barley and canola) under moderately dry conditions, while SMAPEx-2 was 

characterized by moist conditions and near-peak crop biomass. 

The SMAPEx field site was selected due to its relatively flat topography, widely 

distributed in-situ soil moisture monitoring stations, and representation of soil, 
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vegetation and land use conditions typical of semi-arid environments. The total area 

covered by the airborne observations corresponds in size to a SMAP-sized 

radiometer footprint (approximately 36 km × 38 km at such latitudes). More detailed 

and pertinent descriptions of the data are given in the later chapters as required. 

During the course of this PhD study, the author was involved in ground soil 

moisture sampling and vegetation sampling during the SMAPEx-3 field campaign, 

and was also responsible for ground sample processing, calibration and 

normalization of airborne radar observations. The author also archived all the data of 

 

Figure 3-1: Overview of the SMAPEx study area showing the location of the SMAP 

pixel sized study site in Australia, together with the ground focus areas, monitoring 

stations and different flights. 
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SMAPEx-1, -2 and -3 including the development of a website for data distribution at 

http://www.smapex.monash.edu.au/. 

3.2.2 Airborne simulator 

The airborne data were collected using a SMAP airborne simulator allowing the 

simultaneous acquisition of active and passive microwave remote sensing 

measurements at the same frequency as the SMAP satellite (L-band), but at a finer 

resolution and varying incidence angles. The airborne simulator as shown in Figure 

3-2 includes the PLMR and the PLIS, which when used together on the same 

aircraft, provide active and passive microwave observations akin to the expected 

 Table 3-1: Summary of SMAPEx flight types 

Flight Type Objectives Coverage 
Ground 

Resolution 

Altitude 

(AGL) 

Regional 

Active-Passive 

retrieval; 

Downscaling 

36 × 38 km 
1 km PLMR; 10 m 

PLIS 
10,000 ft 

Target 
Radar retrieval; 

Downscaling 
9 × 9 km 

100 m PLMR; 10 m 

PLIS 
1,000 ft 

Multi-angle 
Effect of incidence 

angle 
1 × 6 km 

1 km PLMR; 10 m 

PLIS 
10,000 ft 

Multi-

resolution 

Effect of 

resolution 
1 × 3.5 km 

10 m/50 m/150 m 

PLIS 
5,000 ft 

Multi-

azimuth 
Effect of azimuth 1 × 1 km 10 m PLIS 5,000 ft 

Transect 

Comparison of 

PLIS and 

PALSAR 

8 × 22 km 
1 km PLMR; 10 m 

PLIS 
10,000 ft 

 

 

http://www.smapex.monash.edu.au/
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SMAP data stream. The main characteristics of the SMAP sensors, PLMR, and PLIS, 

are listed in Table 1-1 (in Chapter 1), showing that the airborne sensors from 

SMAPEx have the same frequency band and the same polarization combinations as 

SMAP. However, as seen in Figure 3-3, PLIS antennas radiate mainly between 15˚ - 

45˚ from nadir, providing radar data over a swath of 2.2 km on each side of the 

aircraft, when operated at 10,000 ft flying height. However, PLMR observes the 

ground with six across-track beams (±7˚, ±21.5˚ and ±38.5˚ with 14˚ across-track 

beamwidth), providing a full swath coverage of 6 km from 10,000 ft flying height, 

equivalent to the total PLIS swath when including the nadir gap, but with pixels of 

approximately 1 km across-track.  

In order to closely replicate SMAP data, both the spatial resolution and incidence 

angle of the airborne observations need to be adapted. Therefore, the 1 km PLMR 

brightness temperatures and ~10 m PLIS backscatter need to be aggregated to 36 km 

and 1 km respectively. To achieve this, both PLMR and PLIS observations also need 

to be normalized to a fixed reference incidence angle (in this case 40˚, to resemble 

the SMAP acquisitions). In addition, since SMAP will make use of a rotating mesh 

 

Figure 3-2: PLMR and PLIS viewing configuration on the aircraft. 
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antenna to provide observations over the entire swath, both radar and radiometer 

observations have been collected over a range of azimuthal orientations. Therefore, it 

will be crucial to understand the potential impact on the observations due to the 

azimuth viewing angle, and how this changes depending on specific surface 

conditions (e.g., vegetation type and tillage conditions). Details on the simulation of 

SMAP data stream are presented in Chapter 5. 

As shown in Figure 3-1, four main types of flights were conducted during the three 

SMAPEx field campaigns for the following purposes (details of each flight type can 

be found in Table 3-1): 

1. Regional flights covered the 36 km × 38 km area equivalent to the size of a 

SMAP pixel in the EASE grid projection at 35 ̊ S latitude with a 2-3 days 

revisit time. The flying altitude was of 10,000 ft AGL, yielding active 

microwave observations at approximately 10 m spatial resolution and 

passive microwave, as well as supporting thermal infrared and spectral 

observations at 1km resolution. Such an altitude was chosen to allow 

coverage of the entire study area in a timely fashion without compromising 

the functionality of the airborne instruments and aircraft system, which is a 

risk at altitudes higher than 10,000 ft AGL. Aggregation of the active and 

passive microwave data collected during regional flights to the resolution 

of the SMAP grids provides prototype SMAP radar and radiometer data, 

for the development of active and passive microwave retrieval algorithms 

 

Figure 3-3: Airborne simulator including Polarimetric L-band Multibeam 

Radiometer (PLMR); and the Polarimetric L-band Imaging Synthetic aperture radar 

(PLIS). 
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and techniques to downscale the passive microwave information using the 

high resolution active microwave data. Application of data from the 

regional flights is presented in Chapter 6, Chapter 7, Chapter9, and 

Chapter 10; 

2. Target flights covered two 9 km × 9 km sub-areas (Yanco A, “YA” and 

Yanco B, “YB” areas) at a lower altitude of 1,000ft AGL, collecting active 

microwave observations at approximately 10 m spatial resolution and 

passive microwave, supporting thermal infrared and spectral observations 

at 100 m resolution. The target flights were conducted for the development 

of radar-only soil moisture retrieval, and investigation on the effect of land 

covers on the baseline active-passive downscaling algorithm at very high 

resolution. Application of very high resolution active-passive data from 

target flights is presented in Chapter 8; 

3. Special flights (multi-angle/multi-resolution/multi-azimuth flights) 

provided radar and radiometer data at multiple incidence angles, 

resolutions and azimuth angles over two focus areas (YA and YB). In order 

to closely replicate the SMAP data, every portion of the study area should 

be observed at the same incidence angle, resolution and azimuth viewing 

angle. However, this could not be achieved with an airborne instrument 

over an area as large as the SMAPEx study area. Those special flights were 

therefore designed to provide data for investigating the effect from 

incidence angle, resolution, and azimuth direction on the observations, and 

for demonstrating the reliability of the simulation of the SMAP data stream 

from airborne observations. Application of data from these special flights 

is presented in Chapter 5 when developing the simulated SMAP data 

stream; 

4. PALSAR transect flight provided data over a focus transect for cross-

comparison of the airborne active microwave data of PLIS with those of 

the Phased Array L-band Synthetic Aperture Radar (PALSAR) sensor 

onboard the Advanced Land Observing Satellite (ALOS). This part is out 

of the scope of this PhD study. 
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3.2.3 Ground monitoring network 

The OzNet hydrological monitoring network (www.oznet.org.au) (Smith et al., 2012) 

has been operational since 2001 and comprises a total of 62 stations throughout the 

entire Murrumbidgee River catchment, with 6 in the SMAPEx focus areas. The 

permanent network provides area-wide surface soil moisture measurements at 0-5 cm 

using a mix of CS615 water reflectometers and Steven water hydraprobes, with the 

majority of stations additionally collecting soil moisture profile data across three 

depths (0-30 cm, 30-60 cm and 60-90 cm). Supplementary parameters including i) 

rainfall using a tipping bucket rain gauge, ii) soil temperature (2.5 cm and 15 cm) and 

iii) soil suction are also recorded at many stations. 

Of these soil moisture stations, 24 were installed in late 2009 (SMAPEx semi-

permanent network) to support the SMAPEx project, continuously monitoring soil 

moisture at 0-5 cm with a Hydraprobe, and soil temperature at 1 cm, 2.5 cm and 5 

cm depths over a variety of land cover conditions. The 24 stations are concentrated 

on two 9 km × 9 km focus areas within the radiometer pixel (YA and YB), 

corresponding to two pixels of the SMAP grid at which the active and passive soil 

moisture product (SMAP L3_SM_A/P product) will be produced. Finally, 10 of the 

stations within each of areas YA and YB are concentrated on two “sub-areas” of 2.8 

km × 3.1 km (at least 4 stations in each sub-area), corresponding to SMAP radar 

pixels. 

The permanent and semi-permanent stations were supplemented by additional 4 

identical temporary monitoring stations, one at each of four of the six focus areas. 

These short-term stations were instrumented with a rain gauge, thermal infrared 

sensor (Apogee sensors), leaf wetness sensor (MEA LWS v1.1), two soil moisture 

sensors (Hydraprobes; 0-5 cm and 23-29 cm) and four soil temperature sensors 

(MEA6507A; 2.5 cm, 5 cm, 15 cm and 40 cm depths) in order to provide time series 

data during the sampling period. 

The distribution of monitoring stations within the SMAPEx study site can be found 

in Figure 3-1. 

http://www.oznet.org.au/
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3.2.4 Ground sampling 

Spatial ground sampling of soil moisture was undertaken concurrently with each 

flight during each SMAPEx field campaign. During regional flights, sampling was 

undertaken on a regular grid of 250 m-spaced locations in two 3 km × 3 km focus 

areas, one of which was characterized by cropping land use and the other by 

grassland. At each location three surface soil moisture measurements were taken. 

This allowed the effect of random and experimental errors in local scale soil moisture 

measurements to be minimized. Soil moisture measurements during SMAPEx were 

undertaken using the Hydraprobe Data Acquisition System (HDAS). This system 

allowed navigating to predefined sampling locations and collecting and storing in 

real-time a variety of spatial data, including the soil moisture, soil temperature 

and soil salinity provided by the probe as well as a variety of user-prompted 

observations (land cover type, vegetation canopy height, visual observation of dew 

presence, visual estimate of surface rock cover fraction, irrigation type). 

Vegetation sampling was also undertaken throughout the 3 km × 3 km focus areas. 

Within each area, the major vegetation types and phenological stages were 

characterized by making measurements at 5 locations distributed within 

homogeneous crops/paddocks. At each location, measurements consisted of one 

destructive sample, 54 LAI and 25 CROPSCAN readings. The LAI and 

CROPSCAN measurement were then averaged, after quality control, into a single 

LAI and CROPSCAN reading per location. Additional observations at each location 

included plant height as well as crop row spacing and direction, and plant spacing in 

crops.  

Intensive vegetation and forest samplings were also conducted during the SMAPEx-

3 campaign. The objective of the intensive vegetation sampling within a forested area 

was to collect detailed plant structural parameters for selected vegetation types 

(cropping and grassland) and to track the evolution of such parameters across the 

entire campaign period, for the purpose of radar algorithm development. The 

intensive forest sampling was conducted to characterize the forest properties such as 

specie composition, tree height, stem biomass, stem density, basal area etc., for the 
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development of algorithms for high resolution mapping of forest characteristics and 

soil moisture under forest canopy. 

Since the soil surface roughness affects both the radiometric and radar observations, 

sampling of surface roughness was also performed during SMAPEx-3 at 3 locations 

within each major land cover type in the 6 focus radar pixel areas and at the 50 sites 

in the forest sampling area.  

In addition to spatial soil moisture and vegetation measurements, other supporting 

data were also recorded including land cover type, vegetation canopy height, dew 

presence, gravimetric soil moisture samples, and etc., as the input to soil moisture 

retrieval algorithms. 

3.3 Reference Data 

The reference data used to determine the accuracy of each downscaling algorithm 

were collected from PLMR, including the brightness temperature at 1 km resolution 

and PLMR retrieved soil moisture at 1 km resolution using passive retrieval method. 

Retrieval of reference soil moisture at 1 km resolution has been done by Ying Gao 

(Gao et al., under review).  

The reference soil moisture data were inversed from 1 km PLMR brightness 

temperatures through the tau-omega model (Panciera et al., 2009, Merlin et al., 2009), 

with ancillary parameters on land cover, vegetation water content (VWC), and 

surface roughness. Due to the relatively short duration of the experiment period 

surface roughness and vegetation structural parameters were assumed constant 

through time, while the VWC was varied on a daily basis. Spatial distribution of the 

static surface roughness parameter h and vegetation parameter b, and an example of 

VWC on Day 5 are shown in Figure 3-4. According to the work by Gao, the 

roughness parameter h and vegetation parameter b were calibrated using high 

resolution brightness temperature data (at ~100 m resolution) and intensive ground 

SM sampling from SMAPEx campaigns. VWC map was developed from MODIS-

derived NDVI together with Landsat-derived land classification map. Other 

parameters relating to the soil moisture retrieval models are listed in Table 3-2 and 

Table 3-3, based on the assumption of the same surface conditions across the entire 
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site. The soil temperature was averaged up from sampled data and was varied on a 

daily basis, while the other parameters, i.e. canopy temperature, sand/clay fraction, 

soil bulk density, and single scattering albedo were obtained from averaging the point 

sampled data and assumed constant through time. The constant 40˚ was used for the 

incidence angle, as the airborne observations have been angle normalized to 40˚. 

Details on the incidence angle normalization can be found in Chapter 5. All these 

parameters have been used for estimating soil moisture at 1 km resolution as the 

reference by Ying Gao, and they are also used for medium resolution soil moisture 

retrieval as shown in Chapter 9 and Chapter 10. Also shown in Figure 3-4 is the 

map of static surface Root-Mean-Square (RMS) height (in cm), obtained from the 

direct interpolation of sampled RMS according to land cover type, and is used for 

soil moisture retrieval from radar backscatter as shown in Chapter 10.  

The derived reference soil moisture map has been validated against ground sampling 

data and data from permanent monitoring stations under different scales. The 

accuracy of the reference soil moisture at 1 km resolution was found to be around 

 

Figure 3-4: Spatial distribution of static surface vegetation parameter b, roughness 

parameter h and surface Root-Mean-Square height s; also shown is vegetation water 

content (VWC) map on D5 (15th September, 2011) 

 

 

 

Table 3-2: Soil temperature and canopy temperature for soil moisture retrieval. 

 

D1 D2 D3 D4 D5 D6 D7 D8 D9 

Soil temperature  Tsurf (K) 287 284 281 285 285 288 286 285 287 

Canopy temperature  Tveg (K) 300 300 300 300 300 300 300 300 300 
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0.08 cm3/cm3 for cropping area and 0.06 cm3/cm3 for grassland area, respectively. 

The main limitation for retrieving the reference soil moisture map lies in the 

calibration of ancillary parameters especially the surface roughness parameter and 

VWC, since only very limited sampled data were available for calibrating the derived 

parameters across the entire site. These derived soil moisture maps will be used as 

the basis for validation of active and passive retrieval and downscaling algorithms. 

Both the brightness temperature reference data and soil moisture reference data at 1 

km resolution are further linearly averaged to 3 km and 9 km resolution in order to 

evaluate downscaling algorithm performance at those resolutions. Those reference 

maps will be shown in later chapters. 

3.4 Chapter Summary 

Data for evaluating the downscaling algorithms in this thesis are primarily from the 

SMAPEx field campaign in Australia and partially from satellites SMOS and ASAR. 

Three SMAPEx field campaigns were conducted for the purpose of i) providing 

airborne observations of brightness temperature and backscatter to simulate the 

prototype SMAP brightness temperature and backscatter data stream; ii) evaluating 

the accuracy of brightness temperature downscaling algorithms at different resolution 

levels across a wide range of land cover types and weather conditions; iii) providing 

the ground truth for validating the expected performance of downscaled soil 

Table 3-3: Soil and vegetation parameters across 9 days of SMAPEx-3 field 

campaign for soil moisture retrieval. 

 

D1-D9 

Sand fraction 0.31 

Clay fraction 0.25 

Soil bulk density (g/cm3) 1.3 

Single scattering albedo ω 0.1 

Incidence angle (˚) 40 
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moisture from the SMAP mission. Due to the very limited experimental data from 

other campaigns, application of the SMAPEx data set provides an opportunity to 

study the downscaling algorithm with extensive land conditions that are typical of 

many landscapes. 
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4 Preliminary Research 

This chapter presents a preliminary evaluation of the baseline downscaling algorithm 

for the SMAP mission, using the data sets available from existing satellites, i.e. 

brightness temperature at ~40 km resolution from SMOS and backscatter at 1 km 

resolution from ASAR. The rationale is to downscale the low resolution (40 km) 

brightness temperature Tb to an intermediate resolution using high resolution (1 km) 

radar backscatter σ. The downscaled Tb are evaluated using airborne Tb collected at 1 

km resolution within the framework of the SMAPEx project over a ~36 km × 36 km 

area in south-eastern Australia. The work in this chapter has been published in a 

peer-reviewed paper at the Modelling and Simulation Conference (Wu et al., 2011). 

 

4.1 Background  

Given the importance of soil moisture for hydrological applications, including 

weather and flood forecasting (Wagner et al., 2003), the SMOS mission was launched 

by the European Space Agency in 2009 (Kerr et al., 2001). This first-ever dedicated 

global soil moisture mapping mission has a target accuracy of 0.04 cm3/cm3. The 

passive microwave remote sensing approach has been adopted for this mission due 

to its high sensitivity to near-surface soil moisture, applicability to all weather 

conditions, direct correlation with the soil dielectric constant, and reduced effects by 

vegetation and roughness (Kerr, 2007). However, passive microwave (radiometer) 

observations suffer from being relatively low spatial resolution, on the order of ~40 

km. It is proposed that this scale issue may be overcome by using fine resolution 

active microwave (radar) observations which is around 1 km resolution, despite being 

less sensitive to changes in soil moisture due to the confounding effects of vegetation 

and surface roughness. This is the approach being taken by NASA’s SMAP mission, 

with a scheduled launch in January 2015 (Entekhabi et al. 2010). The rationale behind 

SMAP is that the synergy between active and passive observations can be used in a 

downscaling approach to overcome the individual limitations of each observation 
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type, and ultimately provide a soil moisture data set at intermediate resolution (~9 

km).  

The baseline downscaling algorithm proposed for the SMAP mission is based on an 

assumed near-linear relationship between radar backscatter and radiometer 

brightness temperature. Using the airborne PALS instrument and associated data sets 

collected during the Soil Moisture Experiments (SMEX) 2002, have demonstrated 

that this is an effective method (Das et al., 2011, Das et al., 2014). But as there has 

thus far been very limited testing of this algorithm using airborne and/or satellite 

data beyond the SMEX field campaign, the objective of this chapter is to test the 

baseline downscaling approach for its viability of application under different 

conditions.  

4.2 Data Set  

The SMAPEx (Panciera et al., 2014) field site has been chosen for testing, with 

airborne brightness temperature data at 1 km resolution as the reference for testing 

the SMAP baseline downscaling performance. Detailed information on the SMAPEx 

field campaigns and related data set has been provided in Chapter 3, so only 

pertinent additional information is provided here. The 1 km resolution PLMR 

observations used in this study were collected from the first campaign SMAPEx-1 (5-

10 July in 2010).  

The reprocessed L-band Level 1C brightness temperature product of SMOS has an 

average resolution of 40 km on an approximately 12.5 km hexagonally spaced grid, 

while the C-band backscatter dataset from ASAR has 1 km resolution. The ASAR 

data are often available for the same day as SMOS overpasses, and are therefore used 

as input data for executing the downscaling procedure tested here. Subsequently, the 

airborne PLMR data from the SMAPEx field campaign are used as the reference Tb 

data at fine spatial resolution (1 km), having an accuracy estimated to be better than 1 

K at h-polarization and 2.5 K at v-polarization (Panciera 2009). The PLMR data are 

therefore used to evaluate the downscaled Tb and hence the effectiveness of the 

downscaling algorithm when using ASAR data together with data from SMOS data at 

40˚ incidence angle, thus testing the viability of this downscaling method in future 
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applications, both in the context of downscaling SMOS and in preparation for 

SMAP. 

As the radar and radiometer sensors are onboard different satellites, coincident 

overpasses of the SMAPEx study area for each satellite were first identified. For the 

purpose of establishing a linear regression between Tb and backscatter, all available 

data were searched for coincident SMOS and ASAR overpasses having full coverage 

over the SMAPEx study area (regardless of the presence of coincident PLMR 

validation data). However, for the sake of validating the downscaled Tb, only 

SMOS/ASAR overpasses coincident with PLMR flights could be used. 

Concurrent dates for the two satellites are listed in Table 4-1. The 6th July and 10th 

July are therefore the only dates that could be used to validate the viability of the 

downscaling algorithm. Any potential limitation due to the available dates will be 

discussed later. The standard deviation of SMOS observations with their centre point 

falling within the 40 km SMAPEx area at 40˚ incidence angle ranged from 1.1 to 6.9 

K depending on the date and polarization, while the standard deviation of aggregated 

ASAR data coincident with the SMOS pixels ranged from 0.07 to 0.27 dB. The mean 

and standard deviation for SMOS and ASAR data are shown in Figure 4-1. Since the 

values of PLMR are influenced by physical temperature and incidence angle 

variations across the flight, the PLMR data have been normalized to a 40˚ incidence 

angle and temperature corrected to the effective temperature of 20:30pm (in UTC; 

Table 4-1: Available coincident overpasses of SMOS and ASAR in 2010; dates in 

shade are additionally concurrent with PLMR 

Season Month Dates ( in UTC) 

Summer January 29 

February 11 14 17 

Winter July 06 10 23 26 28 

August 05 08 10 13 26 

September 15 20 
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average overpass time of SMOS) following the methodology of Jackson (2001). 

Moreover, there is a warm bias in SMOS as compared to PLMR data averaged over 

the same footprint, being approximately 11.5 K at h-pol and 8.5 K at v-pol when 

assessed over the Murrumbidgee catchment (Rüdiger et al. 2011). Consequently, 

SMOS data were de-biased with respect to PLMR data for the purpose of cross-

validating the downscaled Tb, and hence the de-biased SMOS data are used in this 

study for downscaling. 

4.3 Methodology 

The downscaling method used in this study is based on a linear relationship between 

active and passive observations at the same scale (Das et al. 2011), with a rationale of 

merging high-accuracy but coarse-resolution passive microwave observations of Tb 

with low accuracy but fine resolution active microwave observations of σ, to 

ultimately obtain the downscaled Tb both at h-pol and v-pol at a medium resolution. 

 

Figure 4-1: Scatter plot between ASAR σhh and SMOS Tbh/Tbv in the SMAPEx area 

in winter and in summer: four solid coloured lines are the fits in each season at 

each polarization; two dashed black lines are fits across a year at each 

polarization; two dashed coloured lines are calibrated fits in winter. 
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In the following the naming convention of ‘C’ (coarse), ‘F’ (fine), and ‘M’ (medium) 

is used for the SMOS L1C_Tb (40 km), ASAR backscatter σ (1 km), and downscaled 

Tb grid scales (1 to 10 km), respectively.  Implementation of this method first 

requires a linear regression of the available data to derive the coefficients of the 

relationship  

 Tbp(C)=A(C)+β(C) × σpp(C),       (4-1) 

where p indicates the polarization of Tb, including h- and v-pol; pp means co-

polarization of radar observations σ, including hh or vv-pol. Correlations between 4 

different combinations of Tbp and σpp have been analysed (Das et al., 2011). From that 

study σ at vv-pol is expected to correlate best with Tb at both h and v-pol than σ hh-

pol. However, ASAR backscatter is only available at hh-pol and is thus used to 

downscale SMOS data in this chapter. In addition, the study of Das et al. (2011) 

showed that Tb at v-pol rather than at h-pol is expected to have a higher degree of 

correlation with σhh. The influence of this polarization limitation from ASAR will be 

illustrated in the results. The value for σpp(C) is obtained by aggregating 1 km 

resolution ASAR observations within the coarse footprint C (in dB), with Tbp(C) 

directly from the SMOS L1C product (in K). At a given scale, parameters A(C) and 

β(C), which in reality depend on vegetation cover and type as well as surface 

roughness, are assumed time-invariant and homogenous over the entire SMAPEx 

area in this chapter. Therefore, those two parameters at scale C can be estimated by 

using SMOS L1C_Tb and ASAR σhh data time-series. 

In order to downscale to scale F, (4-1) can be written as 

Tbp(F)=A(F)+β(F) ×  σpp(F) ,      (4-2) 

where Tbp(F) is the brightness temperature value at a spatial scale of F for a particular 

pixel within C, and σpp, F is the corresponding backscatter value from the ASAR. 

While the default implementation of this algorithm assumes that A and β are 

homogeneous within C, in reality it is likely that they vary spatially as a result of 

different vegetation types and land management practices among others. In this case 

A(F) and β(F) have the same values as A(C) and β(C). By averaging both sides of (4-

2), one obtains 
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<Tbp(F)>=<A(F)>+<β(F)> × < σpp(F) > ,    (4-3) 

Here < > is used to indicate averaging across C, which yields <Tbp(F)>= Tbp(C), as 

each smaller pixel within C shares the same value of SMOS Tb at that scale. 

Subtracting Eq. (4-3) from (4-2), and considering A and β are homogeneous and 

therefore equal at each scale, the downscaled Tb at scale F can be obtained as 

Tbp(F)= Tbp(C) +β(C) × (σpp(F) – σpp(C)) ,    (4-4) 

Using (4-4) the downscaled Tb is obtained for each pixel in the SMAPEx area at 1 

km, 4 km and 10 km resolution, by averaging the ASAR data at 1 km resolution. 

Clearly, the downscaled Tb at fine resolution is heavily dependent on the quality of 

the SMOS Tb, the relative backscatter difference within the coarse grid, and the 

relationship with Tb as represented by the regression slope that are added to the 

background value. 

The downscaled results at different resolutions are evaluated by comparing them 

with PLMR Tb data at 1 km, 4 km, and 10 km resolution, respectively, in order to 

assess the merit of this downscaling method in preparation for SMAP and its 

potential application to SMOS and ASAR. However, it should be noted that this 

downscaling algorithm differs from that being developed for SMAP due to 

limitations in the ASAR data. Specifically, it does not make use of cross-polarized 

backscatter data that has been shown to account for land management variability 

(Das et al. 2011). 

4.4 Results and Discussion 

Given the hypothesis of a time-invariant and homogeneous β(C) across the SMAPEx 

area, the time series of SMOS Tb and ASAR σ were used to estimate β(C), using 4 

days from summer, together with 12 days from winter (see Table 4-1). The parameter 

β(C) (with the unit of K/dB) was determined to be -9.68 at h-pol and -9.43 at v-pol 

(dashed lines in Figure 4-1) and subsequently applied to the proposed downscaling 

algorithm for the SMOS and ASAR data on 6th and 10th July. When comparing with 

PLMR Tb, the RMSE of downscaled Tb at 1 km resolution is 22.1 K at h-pol, and 

19.7 K at v-pol on 6th July. Subsequently, β(C) was estimated separately for each 

season, thus reducing the time invariance assumption to a few weeks. In austral 
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summer, a 4-day time series of SMOS and ASAR data (29th Jan., 11th Feb., 14th Feb., 

17th Feb.) has been utilized to perform a linear regression, while in winter a 5-day 

time series (in July) has been used. In this case, β(C) was 3.11 at h-pol and 1.05 at v-

pol in winter, and 0.89 at h-pol and 0.62 at v-pol in summer, being significantly 

different from the previous estimates of β(C) when using data in summer and winter 

together, see Figure 4-1. Accordingly, applying β(C) obtained from the time series in 

winter to perform downscaling on days 6th and 10th July, resulted in a RMSE of 12.8 

K at h-pol and 10.5 K at v-pol on 6th July, being an improvement of ~10 K over the 

previous result. 

These results suggest that β(C) is time-variant with considerable difference according 

to season, and significant impact on the resultant retrieval of downscaled Tb. Further 

analysis of the parameter β is of great importance to control the accuracy of 

downscaled Tb. The variation of β in a smaller area than SMAPEx was therefore 

analysed. This was achieved by dividing the SMAPEx area into sixteen 10 km × 10 

km areas and retrieving β values from time-series SMOS (10 km) and ASAR (10 km) 

data over each area. According to the results in Figure 4-2, the ID of each pixel is 

labelled starting from the top left corner, and moving sequentially across the study 

 

Figure 4-2: Variation of the parameter β in 16 sub-areas with a 10 km×10 km size 

within SMAPEx 
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area from west to east, followed by north to south. The value of β clearly varies 

across study site, mainly because the left part of SMAPEx is dominated by cropping 

area , while the right part is mostly grazing (less irrigation), suggesting that the 

hypothesis of a constant β (dashed lines in Figure 4-2) over the radiometer pixel may 

result in poor estimates of downscaled Tb. A summary of the RMSE of downscaled 

Tb derived from de-biased SMOS and ASAR data is shown in Table 4-2, together 

with the comparison between de-biased SMOS Tb data and aggregated PLMR data 

(at 40 km resolution).  

In order to eliminate any residual bias or “noise/error” in the SMOS data as 

compared to PLMR over SMAPEx on the specific downscaling date, estimates of 

SMOS observations were then obtained from aggregating the 1 km PLMR data 

directly.  However, because only 2 days of coincident PLMR and ASAR data are 

available, the parameter β estimated previously using time-series de-biased SMOS Tb 

and ASAR σhh data were used in the analysis that follows. Consequently, the 

aggregated PLMR Tb at 40 km were only used as the value of Tbp(C) in Eq. (4-4), 

meaning that the PLMR Tb at 1 km resolution collected from 6th and 10th July are 

first aggregated to 40 km, and then downscaled by 1 km ASAR backscatter σhh to 1 

km, 4 km and 10 km respectively, using the SMOS derived estimates of β (3.11 at h-

pol and 1.05 at v-pol). Example of downscaled Tb at v-pol on 6th July is shown in 

Figure 4-3 at different resolutions. 

Table 4-2: Difference between de-biased SMOS and aggregated PLMR data, and 

RMSE of downscaled Tb 

Date Polarization 
PLMR Tb 

(K) 

De-biased 

SMOS Tb (K) 

Difference 

(K) 

RMSE of 

Downscaled Tb 

(K) 

July 

6th  

h-pol 196.5 202.0 -5.5 12.8 

v-pol 230.8 233.3 -2.5 10.5 

July 

10th  

h-pol 212.7 208.1 4.6 11.2 

v-pol 242.5 240.7 1.8 8.8 
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As mentioned before, PLMR and ASAR have different characteristics in frequency 

band, polarization and incidence angle, and their mappings over SMAPEx area on 6th 

July are shown in Figure 4-4. It can be found that in the up-right quarter of each 

figure, PLMR and  ASAR show similar pattern, while in the remaining area those two 

patterns turn out to be approximately flipped, indicating the downscaled Tb may be 

poor due to those inconsistent patterns no matter what estimates of β are.  

Comparing values of PLMR Tb at each polarization between the two days shows a 

clear increase in brightness temperature on 10th July (illustrated in Table 4-3), which 

implies a drying of the soil and/or increase in soil temperature. Meanwhile, ASAR 

data show a decrease in average backscatter on 10th July. With respect to the 

downscaled Tb, a similar drying tendency as PLMR Tb turns out from 6th to 10th July.  

 

Figure 4-3: PLMR Tb at v-pol and ASAR data on 6th July in the SMAPEx study area. 

 

 

Figure 4-4: Downscaled Tb at v-pol on 6th July in SMAPEx domain: at 1 km, 4 km 

and 10 km resolution. 
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Values of RMSE given in Table 4-3 show an improvement from 1 km to 10 km 

resolution for both days. Downscaled Tb data at 1-km resolution are the results from 

implementation of this downscaling method, while downscaled Tb data at 4 km and 

10 km resolution have used ASAR data averaged to 4 km or 10 km resolution, 

respectively.  

In comparison with the de-biased SMOS results (Table 4-2), the aggregated PLMR 

data used here have a better performance. For example, comparison of the results for 

6th July shows an RMSE improvement of approximately 2 K. Moreover, the 

downscaled results at v-pol are better than h-pol. Compared with the correlation of 

Tbh and σhh, Tbv and σhh have a better linear relationship, thus indicating it is more 

suitable for application in this downscaling algorithm. However, the accuracy of 

downscaled results still suffers from a single polarization of ASAR data, and results 

are expected to improve for application with vv-pol and cross-pol backscatter.  

All of the results above have been based on a β value derived from de-biased SMOS 

and ASAR data, which is 3.11 at h-pol and 1.05 at v-pol, respectively. In order to test 

Table 4-3: RMSE of downscaled Tb obtained by merging PLMR and ASAR data on 6th and 

10th July 

Date Pol. 

Aggregated 

PLMR (K) 

at 40 km 

resolution 

Aggregated 

ASAR (dB) 

at 40 km 

resolution 

Aggregated 

Downscaled 

Tb (K) at 40 

km 

resolution 

RMSE (K)                          

at 1 km 

resolution 

RMSE (K)                                                        

at 4 km 

resolution 

RMSE (K)                                                  

at 10 km 

resolution 

6th 

July 

h-

pol 
196.5 

-10.7 

196.4 11.7 9.6 7.8 

v-

pol 
230.8 230.8 10.3 8.5 6.9 

10th 

July 

h-

pol 
212.7 

-11.2 

212.4 10.0 7.6 6.1 

v-

pol 
242.5 242.4 8.6 6.7 5.2 
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the sensitivity to this parameter, the downscaling method is repeated with a 

“calibrated” β, obtained by minimising the RMSE between downscaled and observed 

Tb at 1 km resolution. The calibrated value of β, expected to obtain an optimal 

downscaled Tb, is estimated as 1.65 at h-pol and 1.05 at v-pol (dashed coloured lines 

in Figure 4-1). While the value at h-pol is obviously different to that determined 

earlier in Figure 4-1, the resultant RMSE is not considerably better: at 1 km the 

RMSE is 11.4 K at h-pol and 10.2 K at v-pol on 6th July, and 9.9 K at h-pol and 8.6 K 

at v-pol on 10th July. 

4.5 Chapter Summary 

This chapter presented a test of the feasibility of an existing downscaling approach, 

using operational SMOS and ASAR datasets. It is shown that the accuracy of the 

downscaling approach is primarily determined by the pattern agreement of the radar 

and radiometer observations. Moreover the C-band ASAR σhh data used in this study 

indicates little potential for downscaling, confirming earlier results that backscatter at 

hh-pol has poor correlation with Tb (vv-pol is expected to yield better results), greatly 

limiting the effectiveness of this downscaling algorithm. 

Consequently, this study demonstrates the requirement for a data set that more 

closely replicates the characteristics of SMAP in order to test the viability of the 

SMAP downscaling algorithm. This requires the experimental data to have similar 

frequencies, resolutions, polarizations and incidence angle to SMAP. For this 

purpose, simulation of the SMAP data stream from field campaigns is described in 

next chapter prior to further evaluation of downscaling algorithms. 
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5 Simulation of the SMAP Data Stream 

This chapter develops a simulation of the SMAP data stream using airborne 

observations from the SMAPEx field campaigns. Based on the findings from 

Chapter 4 using currently available satellite data sets, such a data stream is required 

for evaluation of the available downscaling algorithms for SMAP. In order replicate 

the characteristics of SMAP data, the airborne observations are processed in terms of 

spatial aggregation and incidence angle normalization, and assessed for potential 

azimuth effects. Moreover, the accuracy of these proposed methods for incidence 

angle normalization and azimuth effect are tested in this study. The work in this 

chapter has been published (Wu et al., 2015). 

 

5.1 Background  

In preparation for the SMAP launch, suitable algorithms and techniques need to be 

developed and validated to ensure that an accurate intermediate resolution (~10 km) 

soil moisture product can be operationally produced from combined SMAP 

radiometer and radar observations. To this end, it is essential that field campaigns 

with coordinated satellite, airborne and ground-based data collection be undertaken, 

giving careful consideration to the diverse data requirements for the range of 

scientific questions to be addressed. Therefore, some field campaigns have been 

conducted using active and passive microwave airborne observations to address the 

scientific requirements pertinent to SMAP. Details on such campaigns have been 

already described in Chapter 2, with most of those campaigns conducted in North 

America. The SMAPEx field campaigns, conducted in Australia in 2010 and 2011, 

provide an opportunity to rigorously evaluate the SMAP Active-Passive baseline 

algorithms using data that represents different sets of conditions and land covers. 

These SMAPEx field campaigns are complementary to other campaigns in 

addressing the scientific requirements of the SMAP mission, therefore representing a 

significant contribution to the limited heritage of airborne experiments mentioned 

previously. 
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During the SMAPEx campaigns, airborne observations were collected together with 

ground sampling of soil moisture and ancillary data over an area equivalent to a 

SMAP radiometer footprint (36 km), with the aim to provide SMAP-type data for the 

development and validation of algorithms and techniques to estimate near-surface 

soil moisture from the upcoming SMAP mission. Consequently, the main objective 

of this chapter is to assess the reliability of simulated SMAP data using aircraft 

observations from the SMAPEx field campaigns. In particular, this study makes use 

of flights specifically conducted to assesses the reliability of (i) incidence angle 

normalization of airborne data to the SMAP reference incidence angle of 40˚; (ii) 

spatial aggregation of airborne active and passive data to the resolutions of SMAP 

observations; and (iii) the impact of different azimuthal view angles on the airborne 

active and passive data. 

5.2 Data Set  

5.2.1 Experiment overview  

Description of the SMAPEx study area and monitoring activities can be found in 

Chapter 3, so only additional pertinent information is provided here. Three types of 

flights, including the (i) multi-angle flights, (ii) multi-azimuth flights and (iii) multi-

resolution flights, were conducted specifically to address the reliability of using 

SMAPEx airborne data as a proxy of future SMAP space-borne observations, which 

is the focus of this study. Apart from the airborne observations, spatial ground 

sampling activities were also conducted in 6 focus areas: YA4, YA7, YB5, YB7, YC 

and YD (“Y” refers to Yanco; each area has a size of 2.8 km × 3.1 km), which were 

distributed across the simulated SMAP radiometer pixel. In the following, YA4 and 

YA7 will be referred to as simply ‘YA’, YB5 and YB7 as ‘YB’. While YA and YD 

areas were mainly occupied by the irrigated crop, YB and YC were dominated by 

grass, so as to provide the opportunity to study the impact of azimuth and incidence 

angle of the specific flights on the resulting observations with respect to different 

land cover conditions. Data collected from ground sampling are used as the ground 

truth for algorithm calibration and validation.  
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The main characteristics of the SMAP sensors, PLMR, and PLIS, have been 

described in Table 1-1 in Chapter 1, from which it is noted that the airborne sensors 

from SMAPEx have the same frequency band as SMAP, and the same polarization 

combinations. PLMR has three fixed beams that record at three fixed angles, being 

7˚, 21.5˚ and 38.5˚, while the PLIS antennas radiate mainly between 15˚ to 45˚ 

continuously, providing data over a large number of incidence angles. In order to 

closely replicate SMAP data, both the spatial resolution and incidence angle of the 

airborne observations need to be adapted. Therefore, the 1 km PLMR brightness 

temperatures and ~10 m PLIS backscatter need to be aggregated to 36 km and 3 km 

respectively. Moreover, both PLMR and PLIS observations need to be normalized to 

a constant 40˚ incidence angle. In addition, since SMAP will make use of a rotating 

mesh antenna to provide observations over the entire swath, both the radar and 

radiometer observations will be observed at a range of azimuthal orientations. 

Therefore, it will be crucial to understand the potential impact on the observations 

due to the azimuth viewing angle, and how this changes depending on specific 

surface conditions (e.g., vegetation type and tillage conditions).The accuracy of the 

PLMR radiometer was assessed against hot (blackbody box) and cold (clear sky) 

calibration targets before and after each SMAPEx flight, as well with in-flight 

calibration by low altitude passes of a water body where water temperature and 

salinity were measured. The radiometer accuracy was estimated to be better than 0.7 

K for H-polarization and 2 K for V-polarization including system noise and in flight 

calibration drift. 

Calibration of the PLIS radar was performed using a combination of six trihedral 

Passive Radar Calibrators (PRC’s) deployed across-swath in a homogeneous grassy 

field, and a distributed forest target. The calibration targets were imaged each day at 

both the beginning and end of the scientific monitoring flights to check for a 

potential calibration drift (Panciera et al., 2014).  

After radiometric calibration, the difference between observed and theoretical PRC 

cross section was on average 0.93 dB (absolute radiometric accuracy) with a standard 

deviation of 0.8 dB relative radiometric accuracy (Panciera et al., 2014). The 

repeatability of PLIS flights was also calculated, by comparing the start overpass to 
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the end overpass and the resulting Root Mean Square Deviation (RMSD) was 

approximately 0.9 dB at co-polarization and 1.4 dB at cross-polarization. The 

possible influence of calibration accuracy during the SMAP data simulation will be 

described in the following sections. To this end, the accuracy of PLIS observations 

can meet the radar measurement accuracy requirement of the SMAP, which is 

around 1.0 dB at co-polarization and 1.5 dB at cross-polarization at 3 km resolution, 

including the calibration error, contamination terms, and speckle noise.  

5.2.2 Flight design  

In order to closely replicate SMAP data, every portion of the study area should be 

observed at the same incidence angle of SMAP (40˚). However, this is not easily 

achieved using a small experimental aircraft with airborne instrumentation over an 

area as large as the SMAPEx study area within the time constraints of the daily 

sampling. Therefore, multi-angle flights (see Figure 5-1(a)) were designed to provide 

data for characterizing the angular variation of brightness temperature and radar 

backscatter together with reference data observed at 40˚±2.5˚ over portions of the 

study area. For this testing, data were collected from the SMAPEx-1 and -2 field 

campaigns. During the SMAPEx-1 field campaign, multi-angle flights were 

conducted on 3 days: 6th, 8th and 10th of July 2010. During SMAPEx-2, multi-angle 

flights were performed on 7th December 2010 only, thus allowing evaluation of the 

normalization skill robustness under the increased biomass conditions of SMAPEx-2 

(full-grown crops). 

Areas selected as the focus of multi-angle flights were within the two SMAPEx target 

areas YA and YB (a cropping area and a grassland area, respectively), as shown in 

Figure 5-1(a). The flying altitude was around 3 km to collect multi-angle active 

microwave observations at approximately 10 m spatial resolution and passive 

microwave observations at 1 km resolution. For each flight, two ground strips of 

radar backscatter were imaged, due to the PLIS configuration, each of approximately 

2.2 km in width, together with a radiometer brightness temperature swath of 

approximately 6 km in width. Eight adjacent parallel flight lines separated by 

approximately 360 m were conducted in YA and YB, providing radar observations at 
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incidence angles ranging from 15˚-45˚, and radiometer observations at 7˚, 21.5˚ and 

38.5˚ to the left and right sides of the flight track.  

Special multi-resolution PLIS flights were conducted on one occasion during 

SMAPEx-2 over the YA area in order to understand the accuracy of PLIS spatial 

aggregation. During those flights, the backscatter from PLIS was observed at 1500 m 

altitude with 3 different slant-range resolutions (approximately 6 m, 60 m and 180 m 

respectively), which were then projected on the ground, and in turn resulted in a 

ground range resolution variable ranging from 4 m – 11 m (at 45˚- 15˚), 42 m – 115 

m, and 127 m – 347 m. The azimuth resolution was unchanged, which is around 1.0 

m. After multi-looking and re-sampling in range and azimuth, backscatter with 

resolutions of 10 m, 50 m and 150 m were eventually obtained. 

 

Figure 5-1: (a) Multi-angle flights conducted during SMAPEx-1 and SMAPEx-2 over 

cropping area YA and grassland YB, at 3,000 m altitude; and multi-azimuth flights 

conducted on one occasion during SMAPEx-2 over cropping area YA and 

grassland area YC respectively, at 1,500 m altitude; (b) aerial photos of two multi-

azimuth mapping areas (1 km × 1 km) within YA (left) and YC (right) area 

respectively, and layout of the land cover type within YA (1 - grass, 2 - cotton, 3 - 

maize and 4 - wheat), and land cover type within YC (5 - uniform grassland). 
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In order to understand the effect of the azimuth viewing angle on the brightness 

temperature and backscatter with respect to different land surface features, multi-

azimuth flights were taken on one occasion during SMAPEx-2 over two focus areas: 

a grassland site YC consisted of short (<5 cm) and tall (1-2 m) grasses, and a 

cropping site YA comprised of a mix of crop (maize, wheat and cotton), grass and 

bare soil (Figure 5-1). Site YC was selected as a control site, characterized by uniform 

conditions not expected to result in a detectable azimuthal signature. Conversely, at 

site YA azimuthal signatures were expected due to the asymmetric characteristics of 

crop fields (e.g., crop rows etc.). This is discussed in detail in the results section. 

Flights were performed at an intermediate altitude of 1,500 m in order to maximize 

the sensitivity of the PLIS radar to changes in backscatter due to the azimuth viewing 

angle. The ground spatial resolution for the active microwave observations was 

approximately 10 m, and for passive microwave observations around 500 m. Flights 

in YA were conducted at 5 different azimuth viewing angles: 30˚, 150˚, 180˚, -90˚, 

and -30˚; while flights on YC were carried out at 7 different azimuth viewing angles: 

30˚, 90˚, 150˚, 180˚, -120˚, -90˚, and -30˚ (the azimuth viewing angle is decided by the 

angle starting from the north to the looking direction of the flight, ranging from -

180˚ to 180˚). Observations were collected at multiple azimuth angles over an 

overlapping ground area with a size approximating 1 km × 1 km for PLIS, and 3 km 

× 3 km for PLMR, therefore allowing the investigation of the effect of azimuth 

viewing angle on a variety of land cover types.  

5.3 Methodology  

By comparing the characteristics of the SMAP sensors and the airborne sensors in 

the previous section, three methods are used in this study to produce the prototype 

SMAP data, including incidence-angle normalization, spatial aggregation and azimuth 

impact analysis. Details of each method are described in the following sections. 

5.3.1 Incidence angle normalization 

Due to the large overlap between adjacent swaths from those eight multi-angle 

flights, radar observations at 40˚±2.5˚ angles were combined from each flight to 

form two strips, with a size of approximately 2.5 km × 8 km for each. These 
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combined strips were used in this study as the reference to compare with the data 

normalized to 40˚. Similarly, radiometer observations at 38.5˚ incidence angle from 

each flight were combined as the reference data, with a total coverage of about 9 km 

× 10 km, in order to assess the accuracy of normalizing the original data to 40˚. 

Before carrying out the incidence angle normalization, it is necessary to point out 

that all observations from the aircraft will be angle normalized to 40˚ to be in 

accordance with the SMAP viewing angle, however, the reference data used to 

evaluate the accuracy of normalization were collected at 38.5˚ for PLMR and at 

40˚±2.5˚ for PLIS. Consequently, the difference in PLMR Tb between 40˚ and 38.5˚ 

will introduce a component of error to be considered when assessing the results of 

the normalization method. Analysis of PLMR data by Peischl et al (2012) indicates 

that the sensitivity of PLMR Tb to incidence angle (within the range of 37.5˚ to 42.5˚) 

is around 0.8 K/degree at v-polarization, and -0.6 K/degree at h-polarization, 

resulting in differences in Tb between 38.5˚ and 40˚ of ~1.2 K and 0.9 K at 

respectively at v- and h-pol (Peischl et al., 2012). Although such differences are not 

entirely negligible, and in the absence of direct PLMR observations at 40˚, in this 

study the PLMR observed Tb at 38.5˚ were taken as a proxy of the 40˚ reference for 

the purpose of testing the normalization method. The impact of the Tb differences 

between 40˚ and 38.5˚ will be duly considered and discussed in the text when 

analysing the results of the normalization method. The data from each flight line 

observed at the original range of incidence angles were then normalized to 40˚ 

through a Cumulative Distribution Function (CDF) based method (Ye et al., In 

Review). The CDF angle-normalization is a nonlinear method based on matching the 

cumulative frequency distribution of the observations at its original incidence angle 

to the cumulative frequency of the observations at a reference angle (40˚ in this case). 

Based on the assumption of identical heterogeneity under each beam across the 

entire study area, the value of the observation at a non-reference angle can be 

adjusted to the one that has the same cumulative frequency when observed at the 

reference angle. Therefore, observations at a variety of incidence angles can be 

normalized to the reference angle by searching the values with the same cumulative 

frequency. Compared to other normalization methods (eg. the Ratio-based method 

(Jackson, 2001) and the Histogram-based method (Mladenova et al., 2013); both of 
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which are linear methods) this CDF-based method has been shown to produce 

normalization results comparable to the Histogram-based method, and less 

noticeable stripe pattern and the higher normalization accuracy compared to the 

more traditional Ratio-based method. Consequently, this CDF-based method is 

applied in this study using the data collected from the multi-angle flights, in order to 

evaluate its performance on different land conditions, polarizations, as well as 

different resolutions, and in the end to apply to all regional flights from the three 

SMAPEx campaigns. 

5.3.2 Spatial aggregation 

The upscaling method utilized in this study is based on linear aggregation. Before 

aggregating the original 1 km PLMR and 10 m PLIS observations to the SMAP 

footprint resolutions, it is important to understand the accuracy of the upscaling 

approach that will be applied to the 38 km × 36 km regional data. Linear aggregation 

for PLMR has already been verified by (Panciera et al., 2006), showing that the 

differences in the average brightness temperature were less than 2 K when 

aggregating from 60 m to 1 km resolution, which is within the instrument error, 

suggesting that PLMR data from the aircraft could be reliably aggregated to simulate 

satellite footprint observations. 

Prior to the performance evaluation of this linear aggregation for the PLIS radar, the 

speckle noise of radar data observed at each resolution was analysed. The “observed” 

10 m, 50 m and 150 m data were “multi-looked” in range and azimuth direction by 

averaging all smaller pixels to the larger scales. For instance, the 10 m resolution pixel 

had 14 looks in azimuth and 2 looks in range, the 50 m resolution had 56 looks in 

azimuth and 1 look in range, and the 150 m resolution had 140 looks in azimuth and 

1 look in range. Since the speckle noise can be determined according to a square root 

function of the number of looks in both directions (Raney, 1998), the speckle noise 

for 10 m, 50 m and 150 m was found to be 0.75 dB, 0.55 dB and 0.35 dB, 

respectively. After linearly aggregating the observed 10 m data to 50 m and 150 m in 

power units, the speckle noise for the aggregated observations is reduced to 0.16 dB 

and 0.05 dB, respectively. Therefore, the speckle noise of the “observed” and 

“aggregated” data at 50 m and 150 m resolution can be expected to have little impact 
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on the assessment of the spatial aggregation method. It should also be noticed that 

the absolute and relative radar calibration accuracies are the same for the 10 m, 50 m 

and 150 m data sets. Indeed, the radar calibration performed using the Passive Radar 

Calibrators (PRC) depends only on the radar frequency and the physical size of the 

PRC’s, both of which are unaffected by the changes in PLIS configuration used to 

modify the spatial resolution of the radar. 

The observed data at 50 m and 150 m resolution were taken as the reference in this 

study when comparing with the aggregated 50 m and 150 m backscatters from the 

original 10 m resolution over the same area, thus analysing the reliability of upscaling 

PLIS to the SMAP footprint through linear aggregation.  

5.3.3 Azimuth impact 

Changes in radar backscatter and brightness temperature with azimuth angle are 

theoretically expected due to reflection symmetry of the surface or the Bragg 

scattering effect, or the combination of these two effects, especially at high spatial 

resolution. The effects are expected to be cancelled out when applied at coarse 

resolution such as SMAP resolution level (Yueh et al., 1994a, Yueh et al., 1994b, 

Schmidl Sobjaerg and Skou, 2003, Colliander et al., 2010). This study will analyse the 

azimuth effect for high resolution PLIS observations over different crop fields. 

However, due to the relatively low resolution of PLMR Tb (at 500 m), it is difficult to 

single out a specific row structured crop field with such large size. Instead, the 

combined fields with various directions of rows are used to analyse the azimuth 

dependency for PLMR. 

The overlapping area of the backscatter images from all azimuth directions was about 

1 km × 1 km in size. As displayed in Figure 5-1(b), the overlapping area YA 

consisted of four individual fields characterized by the following conditions: (1) 

Grassland field, a fairly uniform and flat field characterized by tall vegetation (160 cm 

plant height, 1.5 Kg/m2 water content) and 1 m-high irrigation bays running along 

the entire field in the east-west direction at intervals of approximately 100 m 

(remnants of rice fields bays); (2) Cotton field: this was largely bare soils, with sparse 

plants up to 15 cm in height, characterized by row structure in the north-south 
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direction (approximately 15 cm-deep, 1 m-wide rows); (3) Maize field, characterized 

by significant above-ground biomass (170 cm plant height, 3.9 Kg/m2 water content) 

and row structure in the north-south direction (approximately 20 cm-deep, 1 m-wide 

rows); and (4) Wheat field, which was fairly flat, with no row structure and senescent 

short vegetation (80 cm plant height, 0.2 Kg/m2 water content). Therefore, in YA, 

the analysis was done in two stages: first, azimuthal effect was analysed for the four 

individual fields, by calculating radar statistics for each azimuth viewing angle within 

the individual fields; then, the cumulated azimuthal effect for the four fields was 

considered. For YC the analysis was done only in the cumulated way since the entire 

YC area was dominated by the same land cover (i.e., grassland). Therefore, the field 

with distinct row structure (e.g. grassland, cotton and maize) is expected to have the 

azimuth signature, while the field without row structure (e.g. wheat field and YC 

area) is expected to have little variance in backscatter across different azimuth angles.    

5.4 Results and Discussion 

In this section, the applicability of the incidence angle normalization and linear 

aggregation methods will be studied, along with the impact of azimuth viewing angle 

on active and passive microwave observations. Finally, an example simulation of the 

anticipated SMAP data stream will be presented. 

5.4.1 Incidence angle normalization 

The CDF-based normalization method was tested with data collected over the focus 

areas YA and YB from across three days of SMAPEx-1 and one day from SMAPEx-

2. As mentioned in the last section, the reference data were obtained by combining 

all observations at 40˚(±2.5˚) from PLIS and at 38.5˚ from PLMR. These reference 

data were then used to compare with the incidence-angle normalized data of each 

flight. An example of un-normalized PLIS observations, CDF-normalized data, and 

the reference map (40˚±2.5˚) for the same field of view is displayed in Figure 5-2, 

while an example of PLMR is shown in Figure 5-3. 

The statistics of the PLIS normalization are shown in Table 5-1 and Table 5-2. In 

order to evaluate the effectiveness of the CDF-based normalization method, the 

RMSD was calculated for both the original observations (incidence angles 15˚- 45˚) 
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and the normalized data, against the reference 40˚ observed data. Results listed in 

Table 5-1 are the average RMSD of four days from SMAPEx-1 and SMAPEx-2, for 

YA and YB, respectively, and accordingly the standard deviation of the RMSDs, 

which in this circumstance can be considered as an index of the stability of this 

normalization skill across different days or seasons.  

As noted from Table 5-1, the normalized data had an improvement of ~2 dB in 

RMSD over the original data amongst the resolutions from 10 m to 1 km; RMSD in 

YA reduced from 3.6 dB at 10 m resolution to 0.8 dB at 1 km resolution, mainly 

because the speckle noise from PLIS was decreased during averaging, as well as the 

 

Figure 5-2: Example of incidence angle normalization of PLIS radar data at YA (a) 

and YB areas (b) at hh-polarization on 10th July, 2010, from left (left column) and 

right (right column) swath coverage. PLIS data are shown as originally observed at 

incidence angles between 15˚-45˚, normalized to 40˚ using the CFD-based method, 

and reference observations at 40˚±2.5˚. The gray strip in YA area is some missed 

data from one of the flights. 
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patchiness in vegetation. In addition, the standard deviation at different resolutions 

suggested a minor variation of normalization performance on the radar backscatter in 

response to four different days or two seasons’ surface conditions. It is also seen that 

for the YB area, characterized by grassland, the RMSD was generally slightly lower 

(~0.3 dB) than for the cropping area YA, indicating that the performance of the 

CDF normalization method was better on relatively homogeneous areas. Moreover, 

the RMSD of all three polarizations hh, vv and hv were very similar, with the hh-

polarization being ~0.2 dB higher than the others, suggesting that the CDF 

normalization method had fairly consistent performance in terms of polarization.  

  

Figure 5-3: Example of incidence-angle normalization of PLMR radiometer 

brightness temperatures at YA (a) and YB areas (b) at h-polarization on 10th July, 

2010. PLMR data are shown as originally observed at incidence angles of 7˚, 21.5˚ 

and 38.5˚ (left), normalized to 40˚ using the CDF-based method (middle), and 

reference observations at 40˚±2.5˚ (right) . 
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The relationship between original incidence angles and RMSD of normalized PLIS 

data was investigated to understand the normalization performance more thoroughly. 

The original observations were split into 7 subsets according to their incidence 

angles, from 15˚ to 45˚, with an increment of 5˚. Data in each subset were 

normalized to 40˚, and then compared with the data observed at 40˚±2.5˚ at the 

same locations. Results are shown in Table 5-2. The RMSD of original data with 

incidence angle of 40˚±2.5˚ was 0 as expected, due to the reference map being the 

data observed at 40˚±2.5˚. For the remaining data, the errors increased the larger the 

difference between the reference and original incidence angles became, which was to 

be expected given the change of the incidence angle. In contrast, the RMSD of 

normalized data at all incidence angles was similar, showing that the normalization 

introduces a somewhat constant error. It is noted that the RMSD of the data 

normalized to 40˚ was not equivalent to 0, but up to 0.4 dB. This negligible change 

was due to marginal backscatter changes within the 40˚±2.5˚ data taken as the truth 

Table 5-1: Accuracy of the CDF-based incidence angle normalization applied to 

PLIS radar data. Shown is the Root Mean Square Deviation (RMSD) between radar 

backscatter originally observed at incidence angles from 15˚ to 45˚ and normalized 

to 40˚, compared to those observed at 40˚±2.5˚. Each RMSD value shown is the 

average of the RMSDs calculated for each focus area on 4 occasions, with 

standard deviation of the RMSDs shown in the bottom row. Errors are presented at 

various aggregation resolutions (10 m, 100 m, 500 m and 1 km) and different 

polarizations (hh/vv/hv). All values are in dB. 
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40˚ reference data, caused by fitting the entire data set (including the reference data) 

to the CDF of the reference data. The 0.4 dB difference could also be due to the fact 

that the statistical method is known to modulate the output at 40˚. 

A similar assessment was made for the normalization of the PLMR observations. 

Results of applying the CDF-normalization method to the PLMR radiometer 

observations are shown in Table 5-3. The RMSD between observed and normalized 

Tb (40˚) reduced as the resolution became coarser, i.e. in YA area, from 2.8 K/2.4 K 

(h/v) at 1 km to 1.5 K/1.4 K (h/v) at 3 km resolution. The performance of the CDF 

normalization method was influenced by different land conditions and performed 

slightly better in the relatively homogeneous area YB. In YB area, RMSD was 2.1 

K/1.8 K (h/v) at 1 km resolution, and reduced to 1.3 K/1.1 K (h/v) at 3 km 

resolution. Similarly to PLIS, the relationship between the normalization 

performance and the incidence angles of the original data was also assessed. Results 

Table 5-2: Accuracy of the CDF-based incidence angle normalization applied to PLIS 

radar data (10 m resolution) for different incidence angles. Shown is the Root Mean 

Square Deviation (RMSD) between radar backscatters binned at 5˚ steps and 

normalized to 40˚ compared to those observed at 40˚±2.5˚. Each RMSD value shown is 

the average of the RMSDs calculated for each angle bin and focus area on four days, 

with standard deviation of the RMSDs shown in the bottom row. Errors are presented 

for different polarizations (hh/vv/hv). All values are in dB. 
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are presented in Table 5-4. In this case, data were observed at ±7˚, ±21.5˚, and 

±38.5˚ from PLMR due to its instrument configuration. Overall, in YA area, the 

RMSD of data normalized from 7˚ and 21.5˚ were similar, being around ~5.1 K/4.2 

K (h/v) at 1 km resolution and reducing to ~1.8 K/1 K (h/v) at 6 km. Results for the 

YB area were again better than YA at 7˚ and 21.5˚, with an improvement about 1.5 

K/1.8 K (h/v) at 1 km resolution. As noted from Table 5-4, results at 38.5˚ were not 

equivalent to 0, but up to 1.3 K at both polarizations at 1km resolution over the 

cropping area. This is again mainly due to the difference in Tb observed at 38.5˚ but 

taken as the truth 40˚ reference. Moreover, it should be noted that as the spatial 

resolution got coarser, the number of pixels available to calculate the RMSD reduced 

from ~100 at 1 km to only 2 pixels at 6 km, and therefore the results for 6 km 

resolution were not statistically representative of the performance of the method. 

In summary, the RMSD between observed and normalized PLIS data at 40˚ 

(calculated for each focus area on 4 occasions) was smaller than 3.6 dB (±0.4 dB 

standard deviation across the 4 dates) in the cropping area and 3.3 dB (±0.2 dB) in 

Table 5-3: Accuracy of the CDF-based incidence angle normalization applied to 

PLMR radiometer data. Shown is the Root Mean Square Deviation (RMSD) between 

radiometer brightness temperature originally observed at incidence angles 7˚, 21.5˚ 

and 38.5˚ and normalized to 40˚, compared to those observed at 40˚±2.5˚. Each 

RMSD value shown is the average of the RMSDs calculated for each focus area on 

4 occasions, with standard deviation of the RMSDs shown in the bottom row. 

Errors are presented at various aggregation resolutions (1 km, 3 km, and 6 km) and 

different polarizations (h/v). All values are in K. 
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grassland at 10m resolution with minimal differences between hh, vv and hv (an 

overall improvement of ~0.2 dB at vv-polarization). For PLMR the RMSD after 

normalization was found to be around 2.8 K (±0.3 K) in the cropping area and 2.1 K 

(±0.5 K) in grassland at 1km resolution and at h-polarization and an improvement of 

~0.4 K at v-polarization (as shown in Table 5-3). It should be noted that these values 

are in the order of the instrument’s measurement accuracy. Moreover, the 

normalization errors consistently decreased when aggregating to coarser spatial 

resolutions, down to 0.8 dB for PLIS at 1km resolution (see Table 5-1). Therefore, 

based on these results it is expected that angle-normalization of SMAPEx airborne 

data will have errors smaller than 0.8 dB when aggregating PLIS data to the SMAP 

radar resolution (3 km), and less than 1 K when aggregating PLMR data to 36 km 

resolution, which is within the target accuracy of SMAP. However, to some extent 

the verification of this normalization was hampered by comparing a limited number 

of pixels, especially at coarser scale. 

5.4.2 Spatial aggregation 

Multi-resolution flights were conducted on one occasion during SMAPEx-2 over five 

smaller focus areas within YA, in order to understand the influence of linear 

aggregation of PLIS 10 m resolution data to the resolution of the SMAP radar. Data 

used to verify the upscaling accuracy have been normalized to 40˚ using the CDF-

based method described above. Using the linear aggregation method with backscatter 

data in power units, the simulated pixels at 50 m and 150 m were produced from the 

10 m data as described in the previous section. These were then compared with the 

reference data observed at 50 m and 150 m resolutions, as shown in Figure 5-4. The 

reference data were observed directly with PLIS by changing the sensor 

configuration, which distinguishes this methodology from the previous section and 

allows estimating the aggregation error by comparing high and low resolution 

observations directly.   

Based on the backscatter observed over those five flight lines, the average RMSD of 

these areas was found to be ~3.4 dB (with a standard deviation of 0.2 dB) when 

upscaled to 50 m resolution, and ~2.7 dB (with a standard deviation of 0.3 dB) when 

upscaled to 150 m resolution, with the error clearly decreasing as the resolution was 
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reduced. It is important to note that it is difficult to separate the effect from the 

incidence-angle normalization from the change in scale. However, as the errors are 

consistent with those from the incidence-angle study, it is assumed that these errors 

are largely due to the incidence-angle normalization and not the spatial aggregation. 

Accordingly, no adverse errors are expected when upscaling the high resolution radar 

data to 3 km (the footprint of SMAP’s active sensor). In terms of polarization, 

similar performances were found at hh, vv and hv-polarization, with minor changes of 

approximately 0.2 dB.  

As mentioned before, the speckle noise for the original 50 m and 150 m and the 

aggregated 50 m and 150 m data is around 0.55 dB, 0.35 dB, 0.16 dB and 0.05 dB, 

Table 5-4: Accuracy of the CDF-based incidence angle normalization applied to 

PLMR radiometer data (1 km, 3 km and 6 km resolution) for different incidence 

angle of origin. Shown is the Root Mean Square Deviation (RMSD) between 

radiometer brightness temperatures at 7˚, 21.5˚ and 38.5˚ and normalized to 40˚ 

compared to those observed at 40˚. Each RMSD value shown is the average of the 

RMSDs calculated for each angle bin and focus area on 4 occasions, with standard 

deviation of the RMSDs shown in the bottom row. Errors are presented for different 

polarizations (h/v). All values are in K. 
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respectively, which may contribute to a portion of the RMSD of 3.4 dB and 2.7 dB at 

the different resolutions. Consequently, the linear aggregation method is appropriate 

for producing a simulated 3 km PLIS map in a good agreement with the direct lower 

resolution measurements. When compared to the expected absolute accuracy of 

SMAP with ~1.3 K for the radiometer at 36 km resolution, and ~1.0 dB (co-pol) or 

~1.5 dB (cross-pol) for the radar at 3 km resolution, it is concluded that data from 

the aircraft can be reliably averaged up to the satellite footprint resolutions by linear 

aggregation for the purpose of developing and validating the pre-launch algorithms. 

5.4.3 Azimuth impact 

Multi-azimuth flights were performed over the cropping area YA and the grassland 

area YC (see Figure 5-1) in order to investigate the influence of azimuth viewing 

direction on the radar and radiometer response. PLIS observed images are shown in 

Figure 5-5(a) at different angles “A” (“A” refers to Azimuth viewing angle).  

Data observed at different polarization were used for this azimuth analysis, but only 

at hh-pol for PLIS and h-pol for PLMR are shown in Figure 5-5 (can be found in the 

end of this chapter). Dependence of backscatter (average of each field) on the 

azimuth direction with respect to different land cover is shown in Figure 5-5(b). 

Additionally, the standard deviations (SD) of the values across the azimuthal 

 

Figure 5-4: Comparison between upscaled and original PLIS data at different 

resolutions (hh-polarization on 7th December, 2010). Data were collected from multi-

resolution flights at YA area. 
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directions were calculated to estimate the total variance of the measurement at each 

angle. Regarding the azimuthal effect for each field in YA, the strongest backscatters 

were observed at the azimuthal directions that were perpendicular to the row 

structure. For example, in the grassland field, the backscatter observed at 180˚ was 

the highest among all of the azimuth directions accordingly with the east-west 

direction of the irrigation bays; in the cotton field, azimuth enhancement was 

observed at -90˚ accordingly with the north-south direction of the row structure. 

These results are consistent with Bragg scattering effect which occurs in 

perpendicular direction from the row orientation. While in the wheat field, no 

distinct azimuth enhancement was observed and it had the least standard deviation 

(SD=1.2 dB) across the azimuth angles when compared to other fields, as it was 

characterized as a flat field without any row structure. As for the maize field, it did 

not show the azimuth enhancement at -90˚ as expected, probably due to the strong 

attenuation of the surface signal by the significant closed above-ground vegetation. 

Analysis of the combined fields was also done (SD=1.5 dB) and showed slightly less 

variance of azimuth effect than the individual grassland field (SD=1.7 dB) or the 

cotton field (SD=1.9 dB) with clear row structure. This indicates that although 

azimuthal changes in backscatter can be observed at the level of the individual fields 

as a consequence of surface asymmetries, when considering the mix of the four fields 

(as SMAP will do at coarse resolution), the impact of azimuthal differences will tend 

to smooth each other out. Results for the YC area indicate, as expected, no 

significant impact of azimuthal differences, with the SD (1.6 dB) of backscatters 

being smaller than the grassland field or the cotton field analysed in YA and similar 

to the cumulated backscatter over YA. This is consistent with theoretical 

consideration given the uniformity of the YA grassland area. Analysis for other 

polarizations, i.e. vv and hv were also done for YA and YC, and showed similar 

conclusion as hh-pol. 

Dependence of the average brightness temperature from PLMR on the azimuth 

direction with respect to different land cover is shown in Figure 5-5(c). In this case, 

azimuth signature was investigated over the combined YA fields or the combined YC 

fields due to the coarser resolution of PLMR (500 m). As a result, the brightness 
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temperature changes were found across a range of azimuth angles, with the standard 

deviation around 3.6 K for YC area and 4.0 K for YA area respectively. Again, results 

at h- and v-pol show little distinction. As shown in Figure 5-5(c), both YA and YC 

area had a large difference between the maximum and minimum brightness 

temperature, around 10 K. This difference was probably due to a water-body was 

included in the original ellipse footprint of PLMR at one looking direction but was 

not included at other looking direction, resulting in relatively large difference in 

brightness temperature.  

In summary, azimuthal signature was observed for PLIS and PLMR observations, 

mainly due to the existence of vegetation row orientations and the asymmetry of 

surface conditions especially at high spatial resolution, but this signature would be 

smoothed out at coarse spatial resolution.  

5.4.4 Simulated SMAP data stream 

Given that the SMAP mission will observe the earth with a constant 40˚ incidence 

angle and provide a data set at 3 km for the radar and 36 km resolution for the 

radiometer, the CDF based normalization approach and linear aggregation methods 

were applied to the observed PLIS and PLMR data from the regional flights over the 

entire SMAPEx site. In this way, the SMAP data stream was simulated for a single 

SMAP pixel for a number of dates, including a 3 week period with observations 

every 2-3 days. Accordingly, the active microwave observations from PLIS were 

aggregated from 10 m to 3 km, while the passive microwave observations from 

PLMR were aggregated from 1 km to 36 km, after being angle-normalized to 40˚.  

Apart from the 3 km radar and 36 km radiometer data stream simulated for SMAP, 1 

km resolution backscatter, and 1 km, 3 km and 9 km resolution brightness 

temperature data were also produced. This provides the opportunity to evaluate the 

SMAP soil moisture retrieval algorithms at different spatial resolutions.  

An example of the data is shown in Figure 5-6 for one day, in accordance with the 

configuration of the SMAP satellite. The error of angle normalization was 0.8 dB for 

backscatter and 2.4 K for brightness temperature observations at 1 km resolution, 

and this was found to be the largest contributor to the spatial aggregation error. 
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Given that the errors decreased when aggregated to a larger scale, the accuracy of 

these data can be considered comparable to the error budget for the SMAP data 

stream, which is anticipated to be 1.0 dB for backscatter at 3 km resolution and 1.3 K 

for brightness temperature at 36 km resolution.  

5.5 Chapter Summary 

Radar and radiometer data collected during the SMAPEx field experiments have 

been processed to replicate the configuration expected from the SMAP mission, in 

order to produce a SMAP prototype data set for testing of pre-launch algorithms and 

techniques. Data from SMAPEx were angle-normalized to 40˚ and aggregated to the 

spatial resolutions at which SMAP data will be provided. In this study, the CDF-

based normalization method and the linear aggregation approach have been shown 

to give simulated SMAP data from the airborne SMAP simulator flown during the 

SMAPEx experiments with an accuracy of approximately 1.0 dB for backscatter at 3 

km resolution and 1.3 K for brightness temperature at 36 km resolution. 

Consequently, the angle-normalization and aggregation techniques analysed in this 

study have been used to process the radar and radiometer observations collected by 

the SMAP airborne simulator during the SMAPEx regional flights (covering a 38 km 

× 36 km area) for the three SMAPEx experiments. These data provide the simulated 

SMAP data set (available at: www.smapex.monash.edu.au) to be used for pre-launch 

development of soil moisture retrieval and downscaling algorithms for the SMAP 

mission in the subsequent chapters.  
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Figure 5-5: (a) Multi-azimuth flights at 10 m resolution over the same field of view 

within YA and YC areas at a variety of azimuth viewing angles (A), flights at YA 

area at 90˚ and -120˚ azimuth angles were not conducted during the campaign; (b) 

dependence of the average backscatter of each field on azimuth direction; (c) 

dependence of the average brightness temperature on azimuth direction. 

(Backscatter at hh-polarization, brightness temperature at h-polarization; data 

were collected on 7th December, 2010). 
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Figure 5-6: An example of simulated SMAP data from SMAPEx-3 on 23rd September, 

2011: Brightness temperature (top row) at 1 km resolution (left), aggregated to 9 km 

resolution (middle), and aggregated to 36 km resolution (right), at h-pol; Backscatter 

(bottom row) at 10 m resolution (left), aggregated to 1 km resolution (middle), and 

aggregated to 3 km resolution (right), at hh-pol. 
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6 Evaluation of the SMAP Baseline 

Downscaling Algorithm 

This chapter presents an evaluation of the baseline downscaling algorithm proposed 

for the SMAP mission using the simulated SMAP data set derived in the previous 

chapter. While this algorithm has already been tested using experimental datasets 

from field campaigns in the United States., it is imperative that it be tested for a 

comprehensive range of land surface conditions (i.e. in different hydro-climatic 

regions) prior to global application. Consequently, this study evaluates the algorithm 

using data collected from the SMAPEx field campaign in south-eastern Australia, 

that closely simulate the SMAP data stream for a single SMAP radiometer pixel over 

a 3-week interval, with repeat coverage every 2-3 days. The work in this chapter has 

been accepted for publication (Wu et al., In Press-a).  

 

6.1 Background 

The baseline brightness temperature downscaling method for the SMAP mission 

(Das et al., 2014) is based on the assumption of a near-linear relationship between 

radar backscatter (σ) and radiometer brightness temperature (Tb). This method is 

tested using airborne passive and active microwave observations collected over a 

semi-arid landscape during the SMAPEx-3 conducted in Australia in 2011, allowing 

assessment of the robustness of this baseline downscaling algorithm over different 

land conditions. According to the approach, the linear regression parameters are 

estimated using SMAP-type passive and active microwave data at 36 km resolution. 

These parameters are then applied in the algorithm using aggregated radar data at 3 

km to derive downscaled passive microwave observations at 9 km resolution, with 

the objective to evaluate the accuracy of the brightness temperature downscaling 

method. Although the ultimate objective of the SMAP mission is to produce a 

downscaled soil moisture product, this can only be achieved once the assumption 

that the baseline brightness temperature downscaling procedure is sufficiently 
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accurate. Subsequent to this the standard and well-accepted passive microwave soil 

moisture retrieval algorithms are applied. Therefore, the purpose of this study is to 

challenge the baseline brightness temperature downscaling approach as proposed in 

the SMAP ATBD (Das et al., 2014, Entekhabi et al., 2012) and to test its robustness 

in terms of the downscaled brightness temperature values, according to the 

requirements set out in ATBD (Entekhabi et al., 2012). Testing of the final soil 

moisture retrieval accuracy following the downscaling of the brightness temperature 

is outside the scope of this chapter, but will be presented later in Chapter 9. 

6.2 Data Set 

Full details on the SMAPEx field campaigns can be found in Chapter 3, so only the 

pertinent details are presented here. As shown in Figure 6-1, the western part of the 

SMAPEx site is dominated by cropping areas, while the eastern half consists mostly 

of grassland areas, including a large water body in the north-eastern quarter 

(approximately 500 m × 5 km in size). Some woodlands along the south-to-north 

flowing Yanco River, as well as some small forest areas in the far east of the 

SMAPEx area are also present. This study site represents the heterogeneous land 

cover conditions that are typical of many landscapes, and thus required to evaluate 

the robustness of the SMAP active-passive baseline downscaling algorithm 

performance. 

In order to closely replicate the prototype SMAP data stream for development and 

testing of the downscaling techniques, data collected during the SMAPEx field 

campaigns have been processed in terms of resolution aggregation (36 km for passive 

and 3 km for active) and incidence angle normalization (to 40˚ reference angle), to be 

in line with the spatial resolutions of SMAP, as shown in the previous chapter. The 

accuracy of the simulated SMAP data stream used in this study has been determined 

as comparable to the error budget of the SMAP data stream, which is approximately 

1.0 dB for backscatter at 3 km resolution and 1.3 K for brightness temperature at 36 

km resolution. The original resolutions of the data sets are 1 km for the PLMR 

brightness temperatures and 10-30 m for the PLIS backscatter. Since they have been 

upscaled to 36 km and 3 km respectively for the purpose of application, the PLIS 

data were also aggregated to 1 km and 9 km to evaluate the performance of the 
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SMAP downscaling algorithm at different spatial resolutions (as the native resolution 

of the SMAP radar is actually 1 km). Moreover, the reference Tb data used for 

evaluation of the downscaling results come from the original 1 km PLMR, and were 

therefore aggregated to resolutions of 3 km and 9 km for use as reference at a range 

of scales.  

The radiometer and radar data used to test this baseline downscaling algorithm were 

from the third SMAPEx campaign (September 5-23, 2011), which was conducted 

during the spring vegetation growing season. This campaign was used since it 

comprised nine regional flights over a 3-week time period with the 2-3 day revisit 

time of SMAP. A sample of the simulated SMAP data stream used in this study is 

shown in Figure 6-2. 

 

Figure 6-1: Overview of the SMAPEx site showing the SMAP pixel sized study site, 

and the SMAP grid on which the 36 km resolution radiometer data, 3 km resolution 

radar data and 9 km resolution active-passive downscaled product will be 

provided, together with area R in the north-eastern corner where the rainfall 

events happened during the third SMAPEx field campaign. 
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Figure 6-2: Example of the simulated SMAP prototype data from PLMR and PLIS 

observations across 9 days of SMAPEx-3 experiment (D1 to D9), with incidence 

angle normalized to 40˚: (a) backscatter (σ) at vv-polarization and at 3 km resolution 

aggregated from PLIS; (b) brightness temperature (Tb) at v-polarization and at 36 

km resolution aggregated from PLMR; (c) Tb at v-polarization and at 3 km resolution 

aggregated from PLMR; (d) Tb at v-polarization and at 9 km resolution aggregated 

from PLMR. 

 



 
Chapter 6 

 

 

 
6-5 

6.3 Methodology 

The baseline downscaling algorithm has been tested using satellite data set in 

Chapter 4 as a preliminary study. However, due to radar observations were only 

available at hh-polarization from ASAR, this baseline algorithm was tested without 

taking into account the influence from vegetation conditions (see Eq. (4-4)), as 

backscatters at hv-pol are expected to reflect the vegetation characteristics to some 

degree according to Das et al (2014). Therefore, this study tests the complete baseline 

algorithm which includes backscatter at co- and cross-polarization. The algorithm is 

briefly described in the following paragraphs, while a complete description is 

available in Das et al. (2014).  

In the following the naming convention of ‘C’ (coarse), and ‘F’ (fine) represents the 

Tb and/or σ at 36 km and 3 km, respectively. Implementation of this method 

requires a background Tb at C resolution, with the variation of Tb imposed by the 

distribution of fine scale σ within C modulated by β(C) using the linear regression 

between Tb and σ at C resolution according to: 

  Tbp(Fj) = Tbp(C) + β(C) × {[σpp(Fj) - σpp(C)] + Γ× [σpq(C) - σpq(Fj)] } .  (6-1) 

where p indicates the polarization, including h- and v-pol; and pp means co-

polarization of radar observations σ, including hh or vv-pol. Correlations between four 

different combinations of Tbp and σpp have been analysed and will be presented in this 

chapter. Tbp(Fj) is the brightness temperature value of a particular pixel “j” of 

resolution F, and σpp(Fj) is the corresponding radar backscatter value of pixel “j”. In 

this study the value for σpp(C) (in the unit of dB) was obtained by aggregating 10m 

resolution PLIS data (in power units) within the coarse footprint C, with Tbp(C) 

aggregated from 1km resolution PLMR observations (in Kelvin). Consequently, β(C), 

which depends on vegetation cover and type as well as surface roughness, is assumed 

to be time-invariant and homogenous over the entire 36km pixel and that it can be 

obtained through the time-series of Tbp(C) and σpp(C). Since the radar also provides 

fine resolution cross-polarization (hv-pol) backscatter measurements at resolution F, 

which is mainly sensitive to vegetation and surface roughness, the sub-grid 

heterogeneity of vegetation/surface characteristics within resolution C can be 

captured as [σpq(C) - σpq(Fj)] by the radar, where pq represents hv-pol. This 
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heterogeneity indicator is then converted to variations in co-polarization pp 

backscatter by multiplying a sensitivity parameter Γ for each particular grid cell C and 

season defined as Γ = [δσpp(Fj) /δσpq(Fj)]C. In other words, the term Γ × [σpq(C) - 

σpq(Fj)] can be described as the projection of the cross-polarization sub-grid 

heterogeneity onto the co-polarization space, thus converting the information of 

vegetation and surface characteristics to the variation of co-polarization backscatter. 

This term is converted to brightness temperature through multiplication by β(C) in 

Eq. (6-1).  

Using Eq. (6-1) in this study, the 36 km resolution Tb are downscaled to 3 km 

resolution. The Tb at the intermediate resolution, i.e. 9 km, can be obtained by two 

methods: i) directly upscaling the 3 km downscaled Tb to 9 km through linear 

aggregation; or ii) first averaging the backscatter data (in power unit) from 3 km to 9 

km, and subsequently use it in place of the fine resolution backscatter data in Eq. (6-

1). Both methods are assessed in this study. Moreover, due to the high resolution 

backscatter provided by the SMAPEx airborne instruments, the 36 km resolution Tb 

can be downscaled to 1 km resolution using 1 km resolution σ, thus assessing the skill 

of this downscaling algorithm at three different scales: 1 km, 3 km and 9 km. 

The downscaled Tb at fine resolution is heavily dependent on the quality of the 

overall radiometer data at coarse scale, the relative backscatter difference within the 

coarse grid, and the relationship with Tb as represented by the regression slope that is 

added to the background value. The performance of the downscaling algorithm at 

different resolutions is evaluated by comparing the downscaled Tb with the PLMR 

Tb data at 1 km, 3 km and 9 km resolution (aggregated from its original 1 km 

resolution), respectively, in order to assess the merit of this downscaling method in 

preparation for SMAP.  

6.4 Results and Discussion 

6.4.1 Robustness of the linear active-passive relationship 

The robustness of the linear relationship between Tb and σ is tested in this section 

for the six possible polarization combinations (i.e. Tbh and σhh, Tbv and σhh, Tbh and σvv, 

Tbv and σvv, Tbh and σhv, Tbv and σhv), aiming to determine the best combination for 
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estimating the parameter β. Consequently, the brightness temperature and backscatter 

observations from PLMR and PLIS were spatially aggregated to 3 km resolution, 

resulting in a total of 144 pixels within the study area, presenting different levels of 

vegetation heterogeneity. Examples of those data are shown in Figure 6-2(a) and (c).  

The correlation coefficient R2, used to quantify the correlation between Tb and σ for 

each 3 km pixel, was calculated using the entire time series of Tb and σ of each 

individual pixel. Results for the different polarization combinations are shown in 

Figure 6-3. Out of those, σ at vv-polarization showed the best correlation with Tb at 

both h- and v-polarization; these results are in good agreement with those presented 

in Das et al. (2011). Therefore, the relationships of σvv and Tbv were used to estimate β 

at v-pol, while σvv and Tbh were used to estimate β at h-pol, thus retrieving the 

downscaled Tb at h- and v-pol, respectively.  

The influence of vegetation conditions on the correlation between Tb and σ was also 

investigated. The Radar Vegetation Index (RVI) was introduced as an indicator of the 

compound vegetation conditions (including vegetation water content, vegetation 

biomass etc.), which can be obtained directly from the radar observations using the 

different polarizations by  

                                           RVI = 8 × σhv/(σvv + σhh + 2 × σhv),          (6-2) 

where the radar backscatter values are in units of power (Kim and van Zyl, 2009). 

Figure 6-3 shows the average RVI values in each 3 km pixel calculated from the 9 

days of radar observations aggregated to 3 km, in order to characterize the vegetation 

conditions. This was done assuming that vegetation conditions (and thus their 

associated RVI values) did not change significantly across the 3-week period. For this 

experiment, the standard deviation (in time) of the RVI was found to be less than 0.1 

across the entire study area.  

While the R2 between Tb and σ was generally larger in the western two thirds than in 

the east of the SMAPEx area, the values of RVI were smaller in the west than in the 

east. Although it was expected that the highest correlation would be for low 

vegetation areas, the reason for the higher RVI in the east is due to some small 

forests in the area and trees along the Yanco River (see Figure 6-3). This indicates 
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that the downscaling algorithm performance will be poorer in areas with denser 

vegetation.  

The sensitivity of Tb to changes in σ was analysed using the slope of the linear 

regression (parameter β) as a measure of quality. The relationship between β and RVI 

is displayed in Figure 6-4 and Figure 6-5, with Figure 6-4 showing the relationship 

between Tbv and σvv anomalies under different vegetation conditions (i.e. different 

RVI), and the sensitivity parameter β estimated from observations of Tbv and σvv 

within the entire study area. Both RVI and β were aggregated to 3 km resolution. 

These scatter plots show that: 1) Tbv and σvv has a near-linear relationship; 2) the 

magnitude of β reduces as vegetation density increases, indicating that the sensitivity 

of brightness temperature to backscatter decreases, thus showing the dependence of 

sensitivity on the vegetation density. Figure 6-5 shows the parameter β and its 

associated Standard Deviation plotted as a function of the RVI. The Standard 

Deviation of β estimation is higher at the RVI extremes, mainly due to the limited 

counts of Tb and σ pairs for those values. According to the numbers of points in 

each plot, most of the points are within the range of RVI from 0.3 to 0.6, indicating 

 

Figure 6-3: (a) Correlation between brightness temperature (Tb) and backscatter (σ) 

at different polarizations as shown, and spatial distribution of average Radar 

Vegetation Index (RVI) across the 9 days (both correlation coefficient and RVI are 

displayed on a scale from 0-1) at 3 km spatial resolution; (b) plot of these correlation 

coefficient between Tb and σ at different polarizations according to RVI. 
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that vegetation with RVI 0.3-0.6 dominates this study area. Investigation of the 

relationship between RVI and the accuracy of the downscaling algorithm for a 

specific area is out of the scope of this study, but will possibly provide a direct 

method of estimating the downscaling performance globally from SMAP radar 

observations. 

Given that σvv showed the best correlation with Tbv, the sensitivity parameter β for 

performing the downscaling in this study has been estimated based on the 

combination of Tbv and σvv. In this particular downscaling algorithm, β was estimated 

from Tb and σ data both aggregated to 36 km resolution, in order to align with the 

resolutions of SMAP. As a result, using the 9-days’ time series of aggregated Tbv and 

σvv, β over the entire area has been estimated as approximately -2.2 K/dB, with the 

average RVI across the whole area being around 0.5, aligning with the correlation 

between β and RVI as shown in Figure 6-4 and Figure 6-5. The same approach was 

 

Figure 6-4: Relationship between brightness temperature at v-polarization (Tbv) and 

backscatter anomalies at vv-polarization (σvv) at 3 km resolution, for different 

vegetation characteristics according to the Radar Vegetation Index (RVI) calculated 

from 3 km radar observations. 
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applied to estimate β using Tbh and σvv, for the downscaling of Tb at h-pol. In this 

case, similar trends for β estimation and its standard error were found with respect to 

RVI, as shown in Figure 6-5. However, the magnitude of β at different RVI is on 

average 1.2 K/dB higher than that estimated from Tbv and σvv, implying that the 

sensitivity of Tbh to σvv is higher than the sensitivity of Tbv to σvv. Regardless of the 

actual variation of vegetation within the entire area, β was estimated as a single value 

across the 36 km area as outlined in the SMAP baseline active-passive algorithm. 

Based on this preliminary analysis of the relationship between RVI and β, it is 

suggested that a more detailed investigation of the spatial distribution of β within the 

36 km area should be undertaken, including an investigation of a potential spatially 

varying β implementation in the SMAP baseline algorithm. 

6.4.2 Estimation of Γ 

The parameter Γ, i.e. the sensitivity of σvv to σhv, can be estimated using snapshots of 

σvv and σhv values at each pixel within a certain area. Since radar backscatter σ at hv-pol 

 

Figure 6-5: Estimation of parameter Γ: (a) Γ plotted as a function of the Radar 

Vegetation Index (RVI) on different days; (b) standard deviation of Γ estimation; and 

(c) example of Γ distribution over the entire study area on Day 9; each pixel has a 

size of 9 km × 9 km. (low: 0.3; high: 0.6) 
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is more related to the vegetation canopy than to the soil, the distribution of σhv across 

the entire area can be used to characterize the heterogeneity of vegetation conditions 

in that area. Therefore, downscaling results can be improved by including the 

influence of vegetation on the backscatter observation, by converting the σhv variation 

within the entire area to σvv variation, by multiplying with the sensitivity Γ.  

In order to obtain an estimate for the parameter Γ, the study area was divided into 16 

sub-areas of 9 km by 9 km in size, and the value of Γ calculated using the snapshots 

of all σvv-σhv pairs at 1 km resolution contained within each of those sub-areas, 

allowing an analysis of the relationship between estimation of Γ and RVI. 

Accordingly, the day-to-day variation and average of Γ with respect to RVI is shown 

in Figure 6-6, together with an example of the distribution of Γ at each 9 km sub-

area across the entire study area on Day 9 (23rd September, 2011). It is shown that for 

RVI values ranging from 0.4 to 0.9 the estimation of Γ is similar, on the order of 

0.45, while for RVI values less than 0.4, Γ is much higher, indicating that the 

sensitivity of σvv to σhv increases when the vegetation cover reduces. Again, larger 

standard deviations were found for both extremes due to low counts of pixels. 

 

Figure 6-6: Dependency of regression parameter β (a) and associated Standard 

Deviation (b) of estimation from Radar Vegetation Index (RVI) at 3 km resolution. 

The β at h- and v-polarization was estimated using backscatter (σ) at vv-polarization 

for brightness temperature (Tb) at h- and v-polarization. 
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6.4.3 Accuracy of downscaling 

According to the baseline approach the downscaled brightness temperature at fine 

resolution are a function of the background Tb value plus a variation of Tb within the 

entire area derived from the variation of the backscatter from the mean. In this study, 

the background Tb is taken as the aggregated 36 km Tb from PLMR, and the 

variation of Tb at higher resolution is characterized by the variation of σvv from PLIS 

observations, aggregated to the downscaling resolution. The influence of vegetation 

is then deduced using σhv, due to its strong correlation with vegetation conditions. 

Consequently, the downscaled Tb results were retrieved at resolutions of 1km, 3 km 

and 9 km, either from aggregating the 1 km resolution downscaled Tb to 3 km and 9 

km resolution respectively, or from first aggregating the 1 km resolution radar 

observations to 3 km and 9 km before using them to disaggregate the 36 km Tb. 

Both methods were applied and showed similar results; results shown in this chapter 

are based on the former method. Prior to applying the downscaling algorithm, the 

main water body in the far north-eastern section of the area, and some irrigated 

cropping areas within the western part of the regional area, were removed (these 

areas collectively represented approximately 1% of the entire study region) to reduce 

the influence of surface water on the resulting downscaling accuracy.  

Based on the estimation of β at h- and v-polarization and the day to day matrix of Γ 

estimates derived in the previous sections, the baseline downscaling algorithm 

performance was evaluated for each of the nine days of SMAPEx airborne 

acquisitions. In order to analyse the influence of vegetation characteristics on the 

resulting downscaled Tb, the downscaling algorithm was applied in two scenarios: in 

scenario “A1”, the vegetation heterogeneity across the study area was ignored; in 

scenario “A2”, the vegetation heterogeneity across the study area was taken into 

account. In other words, A1 was characterized by setting Γ=0, while A2 used Γ≠0 in 

Eq. (6-1). In the following the results of the downscaling is compared amongst the 

two scenarios. 

Downscaling results on each day of SMAPEx-3 are shown in Table 6-1 for different 

resolutions and polarizations. It is noted from Table 6-1 that the downscaled results 

at v-polarization had relatively lower RMSE than those at h-polarization, likely due to 
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the better correlation between σvv and Tbv than between σvv and Tbh. Moreover, there is 

an obvious reduction of RMSE at both polarizations when applied to a larger scale, 

e.g. from 1 km to 3 km and 9 km respectively, which can be attributed to the 

reduction of random (white) noise following the aggregation of the backscatter data.  

Apart from resolution and polarization, the RMSE was further reduced when taking 

into account the variation of vegetation across the entire area, confirming that the Γ 

term in Eq. (6-1) can be used to compensate the influence of vegetation conditions 

to some degree, thus yielding a more accurate finer resolution brightness temperature 

product. Quantitative results are provided in Table 6-1, showing that the average 

RMSE of the 9 days at v-polarization was lower by 1-2 K than at h-polarization, and 

decreased by approximately 5 K when aggregating from 1 km to 9 km. As before, 

after considering the influence of vegetation heterogeneity (scenario A2 with Γ≠0), 

the RMSE of downscaled Tb had an improvement of 1.2 K at h-polarization and 0.5 

K at v-polarization over the results based on the assumption of a homogeneous 

Table 6-1: Downscaling algorithm performance in terms of Root Mean Square 

Error (RMSE) when using backscatter at hh- and vv-polarizations, together with 

the RMSE difference between these two polarizations. 

Downscaling 
resolution 

(km) 

σvv σhh Difference 

h v h v h v 

1 8.2 6.6 9.1 7.2 -0.9 -0.6 
3 5.5 4.5 6.2 5.0 -0.7 -0.5 
9 3.1 2.6 3.3 3.3 -0.2 -0.2 

 

Table 6-2: Accuracy of the SMAP baseline downscaling algorithm. Root Mean Square 

Error (RMSE) between downscaled brightness temperature (Tb) and reference Tb is 

shown for the entire study area across the 9-days (D1 to D9) with respect to 

polarization and resolution of the final downscaled product; results based on 

scenario A1 (Γ=0) and scenario A2 (Γ≠0) are shown. 
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vegetation (scenario A1, Γ=0). Moreover, during 5 out of 9 days the RMSE was 

found to be around 2.4 K at 9 km resolution, which is within the target error of the 

SMAP mission (2.4 K when the vegetation water content is less than 5 kg/m2), 

confirming that the baseline downscaling algorithm has the potential to retrieve 

medium-resolution brightness temperature with an error of around 2.4 K over 

heterogeneous areas. 

In order to confirm that the use of σvv is more efficient than σhh, as suggested from the 

correlation analysis between Tb and σ, an additional test was performed using coarse 

resolution Tb and fine resolution σhh to retrieve Tb at scales of 1 km, 3 km and 9 km. 

The performance levels of the algorithm using σvv and σhh are presented in Table 6-2, 

showing that the RMSE based on σvv is around 0.2 to 0.9 K lower than that based on 

σhh, confirming the results from Figure 6-3 where there was a stronger correlation of 

σvv to Tb than σhh. 

Examples of downscaled Tb maps are shown in Figure 6-7 for Day 9 at 1 km, 3 km 

and 9 km resolution, alongside the reference data from PLMR, and the pixel-by-pixel 

Tb difference between downscaled and reference values. It is noted that the 

downscaling errors are generally larger in the western part of the study area than the 

central section, which is mainly due to the western part being dominated by irrigated 

and dry-land cropping areas, while the central area is largely covered by grassland. A 

consequence of the large heterogeneity of the cropping areas was a relatively large 

RMSE in those areas, as highlighted by the RMSE behaviour from west to east of the 

entire region in Figure 6-8. Dependence of RMSE for the 36 strips (each with 1 km 

width when progressing from west to east and having 36 km length in the north-

south direction) covering the SMAPEx study area is displayed in Figure 6-8. Overall, 

the RMSE of the central area, the dominantly grassland area between distance 18 km 

to 28 km, is around 2 K lower than elsewhere.  

As shown in Figure 6-3 to 6-5, β estimation should be lower than -3 K/dB (at v-pol) 

and -4 K/dB (at h-pol) in the western area and should be higher than -2 K/dB (at h- 

& v-pol) in the eastern area due to the variation in RVI across the entire region. 

However, since the constant value of β from 36km Tb and σ is used in this study, 

which is -2.2 K/dB (at v-pol) and -3.4 K/dB (at h-pol), there is an under-estimation 
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in the west and over-estimation in the east, which is directly related to the magnitude 

of β variation from the nominal value used and therefore further influencing the 

accuracy of this downscaling algorithm. Moreover, the RMSE in the east is relatively 

high, due to the influence from the large areas of woodland along the river which 

runs approximately south to north in that part, and some other areas of dense forest.  

A further evaluation of the skill of this particular downscaling algorithm was through 

the correlation between downscaled and reference Tb at 9 km resolution (Figure 6-9 

and Figure 6-10). While these two black dashed lines represents RMSE less than 2.4 

K (the SMAP target), the outer two black solid lines represent RMSE less than 4 K 

(the SMOS target). It is noted from Figure 6-9 and 10 that more than 93% of the 

 

Figure 6-7: An example of downscaling results on SMAPEx-3 Day 9 (23rd Sept., 

2011): (a) Downscaled brightness temperature (Tb) at v-polarization for 1 km, 3 km 

& 9 km resolution; (b) Reference Tb at v-polarization for 1 km, 3 km & 9 km 

resolution; and (c) Absolute difference between downscaled Tb and reference Tb of 

each 1 km, 3 km & 9 km resolution pixel. 
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points from D3 (“D” represents “Day”) to D9 are within the SMOS target range, 

and five of them (from D5 to D9) have more than 90% of points within the SMAP 

target range, showing that the baseline downscaling algorithm can provide accurate 

Tb at 9 km.  

Nonetheless, the results of the first days i.e. D1 to D4 displayed relatively poor 

performance when compared to the later days. In particular, D1 and D2 contain 

significant noise levels. One possible reason is attributed to increased heterogeneity 

in near surface soil moisture due to the heavy rainfall events in the north-eastern part 

of the study area at the beginning of SMAPEx-3 as shown in Figure 6-1 and Figure 

6-2(c), subsequently resulting in more heterogeneous radiometer and radar 

observations. It is shown in Figure 6-9 and Figure 6-10 that D1 to D4 had a higher 

standard deviation of Tb (reference Tb) when compared to the other days. Since Tb is 

more sensitive to the immediate soil moisture changes due to the rain in this region, 

the value of Tb drop according to soil moisture increase is more significant than the 

radar backscatter changes, as the latter is more influenced by the vegetation cover 

and consequently less sensitive to the soil moisture changes. Consequently, the 

sensitivity of backscatter to Tb change decreases, resulting in an obvious difference in 

 

Figure 6-8: Downscaling Root Mean Square Error (RMSE) at 1 km resolution for 

each strip, having 36 km length in north-south direction and 1 km width in west-

east direction, starting from the west of the SMAPEx study area and progressing to 

the east, on Day 9 (23rd September, 2011); cropping area in the west, relatively 

homogeneous grassland area in the middle, and woodland along the river and 

some forest in the east. 
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β for the area subjected to rainfall when compared with the other drier areas, which 

would have dominated the derivation of the β value used. This is underlined by the 

RMSE in the north-eastern part (area R) of the study area being around 3 K higher 

than throughout the remaining area (at 3 km resolution), impacting the overall large 

RMSE for that day, as shown in Figure 6-11. In addition, the average RVI of area R 

is ~0.56, which is approximately 0.15 higher than the average RVI of the entire area, 

further affecting the correlation between Tb and σ in this particular area. The reason 

is that higher RVI is a consequence of denser vegetation and therefore more 

influence of the vegetation on the radar observations, and accordingly a higher error 

when downscaling due to the lower correlation between Tb and σ at higher RVI 

values (see Figure 6-3). Therefore, both denser vegetation and more heterogeneous 

wetness conditions associated to rainfall events have worked together to result in the 

higher errors on D1 to D4. The influence from the rain event reduced during the 

dry-down, especially after D4, as shown through the decrease in RMSE from D5 

onwards.  

A comparison between this downscaling algorithm and the minimum performance 

was also conducted. The minimum performance was defined as a uniform Tb 

according to the value of Tb at 36 km resolution. In this case, the average RMSE 

across all 9 days was around 4.8 K at h-pol and 4.2 K at v-pol at 9 km resolution, 

being approximately 1.6 K higher than for the baseline downscaling algorithm.  

The above analysis on the accuracy of the downscaling algorithm was done after 

removing the water-bodies and irrigated fields, which collectively represented 

approximately 1% of the entire SMAPEx study area. The downscaling performance 

was also evaluated when including the water bodies that had previously been masked 

out in the aggregation procedure, in order to simulate more realistic SMAP data (as 

many water bodies will not be reliably identified for masking). Consequently, this 

allowed the effect of relatively small water bodies on the accuracy of the downscaling 

approach to be quantified. Without removing the water-bodies, the average RMSE of 

all nine days at 9 km resolution increased to 3.6 K and 3.4 K at h- and v-polarization, 

respectively, which is approximately 0.7 K higher than results with the water-bodies 

accurately removed. Therefore, when applying the baseline downscaling algorithm to 
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an area that includes more than 1% of water-bodies the downscaling error would be 

even larger. 

To account for any day-to-day soil temperature variation, β was also estimated using 

the emissivity and σ, with emissivity calculated as Tb divided by soil temperature on 

that day. The new estimate of β was then multiplied by the soil temperature, before 

substituting for the previous value of β based on Tb and σ. However, the average 

RMSE of downscaling Tb based on this new estimation of β was 3.4 K at h-pol and 

2.7 K at v-pol at 9 km resolution, being only slightly different to previous results.  

 

Figure 6-9: Scatter plots of downscaled and reference brightness temperature (Tb) 

at 9 km resolution on each of SMAPEx-3 Day 1 to Day 9, at h-pol (open circles) and 

v-pol (solid circles); inner black solid line: RMSE is 0 K; two black dashed lines: 

RMSE=2.4 K (SMAP Tb target accuracy); outer two black solid lines: RMSE=4 K 

(SMOS Tb target accuracy). 
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6.4.4 Reliability of baseline downscaling algorithm 

In this study, the accuracy of downscaling results was primarily determined by the 

parameter β as shown in Eq. (6-1). The main limitation of the downscaling method 

introduced in Das et al, 2014 is the assumption of a constant β across the entire study 

 

Figure 6-10: Comparison between the Root Mean Square Error (RMSE) of the north-

eastern (area “R”) of the SMAPEx study area, and RMSE of the entire study area. 

Calculations are for 3 km resolution at both polarizations across 9 days. 

 

 

Figure 6-11: Scatter plots of downscaled and reference brightness temperature 

(Tb) at 9 km resolution for all SMAPEx-3 acquisitions (Day 1 to Day 9), at h-pol and 

v-pol. Solid circles and stars represent data from SMAPEx-3 Day 5 to Day 9, while 

the open circles and stars represent data from SMAPEx-3 Day 1 to Day 4. Inner 

black solid line: RMSE is 0 K; two black dashed lines: RMSE=2.4 K (SMAP Tb 

target accuracy); outer black solid lines: RMSE=4 K (SMOS Tb target accuracy). 
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area. The parameter β, used to denote the sensitivity of Tb to σ, in reality varies with 

respect to the land surface conditions, as shown in Figure 6-4 and Figure 6-5. 

Therefore, the assumption of a constant value of β could not represent the real 

distribution of β due to the heterogeneity of the study area. For example, if the study 

area was entirely covered by homogenous grassland, then the use of a single β would 

be more appropriate for use in downscaling. However, as shown in the above results, 

the variation on land cover types across the entire site, or soil moisture heterogeneity 

due to raining events in some particular areas, or some water-bodies, or surface 

roughness, or vegetation evolution due to different seasons would result in different 

value of β across the site. 

As β was estimated from time-series of Tb and σ at 36 km, more accurate regression 

could be obtained from a longer time period so as to make it statistically significant. 

However, the vegetation and roughness conditions are changing as time goes on, 

which will result in different β estimates through time. Therefore, a moving window 

of β estimation should be adopted when applying the downscaling algorithm to a 

long time period. This is not done in this study but should be acknowledged for 

future application.  

6.5 Chapter Summary 

The objective of this study was to test the robustness of the baseline downscaling 

approach proposed for the SMAP mission, using a simulated SMAP data stream 

from the SMAPEx field campaign in Australia. The errors associated with the 

downscaling algorithm were assessed for several resolutions of the final downscaled 

product and at both h- and v- polarizations. While it was shown that the baseline 

downscaling algorithm has the potential to fulfil the accuracy requirements of SMAP, 

it was also shown that the accuracy of the downscaling approach was primarily 

determined by the correlation between Tb and σ, which seemed to differ according to 

vegetation characteristics across the SMAP sized pixel. Moreover, it was found that 

an improvement in the parameterization of β and Γ may be obtained through use of 

the RVI. Consequently, the next two chapters undertake a more detailed exploration 

of the impact that homogeneity in land surface characteristics may have on the 

applicability of the baseline downscaling algorithm of SMAP. 
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7 Effect of Land Cover Type 

This chapter assesses the impact of land cover type on the baseline downscaling 

algorithm performance. The previous chapter found that downscaling error from the 

baseline algorithm was higher in the cropping areas than for the grassland areas. It 

was therefore hypothesised that this is due to both the more heterogeneous 

conditions in the cropping areas and a different physical relationship between radar 

backscatter and radiometer brightness temperature under these conditions. 

Consequently, this chapter breaks the single 36 × 36 km SMAPEx area into sixteen 9 

km × 9 km sub-areas and classifies them according to their dominant land cover type. 

The different relationships and baseline downscaling algorithm behaviour is then 

assessed according to the respective land cover type. The work in this chapter has 

been accepted for publication (Wu et al., In Press-b). 

 

7.1 Background 

The baseline downscaling algorithm for SMAP was studied in Chapter 6 using 

airborne observations from the SMAPEx-3 field campaign. This was by necessity 

applied to a single SMAP radiometer-sized site without differentiating the land cover 

types across the entire site. That study was found to yield mediocre results, believed 

to be due to the diversity in land cover. Thus a more extensive assessment of this 

baseline algorithm over a variety of land cover types was proposed in order to 

investigate the influence of different land cover on the resulting downscaling 

performance, and the possible downscaling algorithm improvement if a spatially 

variable β were to be implemented.  

The SMAPEx study area is composed of land covers including irrigated and non-

irrigated cropping fields, grasslands, small forests, riverside trees and some water 

bodies. Rather than applying the downscaling algorithm to the entire area as a single 

SMAP pixel, as done in (Wu et al., In Press-a), the objectives of this study are to: i) 

evaluate the accuracy of the SMAP baseline downscaling algorithm with respect to 
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different land cover types by dividing the entire SMAPEx site into distinct 9 km sub-

regions according to the dominant land cover; and ii) assess the assumed linear 

relationship between brightness temperature (Tb) and backscatter (σ) and how β 

varies with land cover type. Understanding the influence of surface heterogeneity on 

the resulting downscaling performance is important for its application to the 

forthcoming SMAP mission at global scale.  

7.2 Data Set 

Data used in this study were collected from the third field campaign (SMAPEx-3) 

which was conducted during 5-23rd September 2011. The regional flights provided a 

9-day time series of SMAP-like observations with a 2-3 days revisit time over a 36 km 

× 38 km area, equivalent to one pixel of the SMAP EASE grid at 35 ̊ S latitude; for 

application in this study data were processed to 1 km, 3 km and 9 km spatial 

resolution for Tb and 1km spatial resolution for σ. Full details of SMAPEx field 

campaign has been described in Chapter 3, and the airborne data processing to 

match SMAP observations are given in Chapter 5, so only the details pertinent to 

this study are reported here.  

Whereas in the case of SMAP the 36 km resolution Tb will be downscaled to 9 km 

resolution using 3 km resolution σ, in this study 9 km resolution Tb pixels aggregated 

from the original 1 km resolution PLMR data are downscaled to 3 km resolution 

using 1 km resolution σ. The reason for choosing 9 km focus areas with 9 km Tb and 

1 km σ was to test the downscaling algorithm over a larger variety of land cover than 

that possible when considering the whole SMAPEx site as a single SMAP pixel, as 

done in previous chapter. Moreover, the choice of 3 km as the final downscaling 

resolution was to maintain a similar resolution ratio between radiometer and radar 

observations and the downscaled product, i.e. approximately 9:1:3, as for SMAP. By 

distinguishing the land cover type of each 9 km × 9 km pixel, this study provides a 

more in-depth testing of the baseline downscaling algorithm, while also providing 

performance statistics of the baseline downscaling algorithm with respect to the 

different land covers of each 9 km pixel.  
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The various 9 km × 9 km areas and their dominant land cover type are shown in 

Figure 7-1 whereby: i) four pixels are mostly occupied by crops (a mix of bare soil, 

barley and wheat at intermediate growth stage and mature canola fields); ii) four 

pixels with grasslands; iii) seven pixels with mixed land cover types, approximately 

50% crop and 50% grassland; and iv) one pixel with a 5 km2-sized water-body, 

termed here as “wetland”. Before implementation of this algorithm, water-bodies 

were removed in all pixels except the wetland pixel, so as to analyse the downscaling 

performance according to different land cover types but without the influence from 

water-bodies. Additionally, inclusion of the wetland allows the water-body impact on 

the downscaling accuracy to be investigated. 

7.3 Methodology 

The baseline downscaling algorithm has been already described in Chapter 6, as 

shown in Eq. (6-1). The only difference is in this study ‘C’ and ‘F’ represents the 

 

Figure 7-1: Overview of the SMAPEx site showing the SMAP radiometer-pixel sized 

study area (approximately 36 km × 36 km), and the sixteen 9 km × 9 km areas used 

in this study, classified according to four dominant land cover types (crop, 

grassland, mixed crop/grassland, and wetland). 
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PLMR Tb (9 km) and PLIS σ (1 km) respectively. Consequently, β(C), which depends 

on vegetation cover and type as well as surface roughness, is assumed to be time-

invariant and homogenous over the each 9 km pixel and that it can be obtained 

through the time-series of Tb and σ at 9 km resolution. Using Eq. (6-1), downscaled 

Tb at 3 km resolution in this study can be obtained in two ways: (i) by aggregating Tb 

downscaled to 1 km to 3 km resolution, or (ii) by directly downscaling to 3 km 

resolution. Having been studied in (Wu et al., In Press-a), the two methods provide 

very similar results and also showed that σ at vv-pol has a better correlation with Tb 

than σ at hh-pol, and therefore σ at vv-pol was used in this study to estimate β and 

applied to Eq. (6-1).   

7.4 Results and Discussion 

7.4.1 Estimation of β and Γ 

The robustness of the linearity assumption between Tb and σ is tested in this section, 

as well as the spatial variation of the slope parameter β according to land cover type. 

It is assumed in the SMAP mission that the parameter β relating Tb and σ is constant 

across each 36 km pixel, while in this study the sensitivity parameter β is assumed 

constant across each 9 km pixel and estimated using the 9 day time series of Tb and σ 

at 9 km resolution. In terms of linearity between Tb and σ for different polarizations, 

it has been previously found that σ at vv-pol had the best correlation with Tb at h- and 

v-pol at 36km resolution (Wu et al., In Press-a). This was confirmed in this study by 

using Tb and σ at 9 km resolution, with respectively σ at hh-pol having a 0.1 lower 

correlation coefficient (R) and σ at hv-pol having a 0.25 lower R, than σ at vv-pol. 

Therefore, in accordance with the SMAP ATBD (Entekhabi et al., 2012)) and Das et 

al (Das et al., 2014) the σ at vv-pol was chosen to downscale Tb in this study.  

The parameter β and associated correlation coefficients between Tb and σ for the 

different land cover types are presented in Figure 7-2. The β (unit K/dB) for each 

land cover type was calculated by merging all sub-areas with the same land cover. 

The βh was estimated from Tbh and σvv while βv was estimated from Tbv and σvv. It is 

noted from Figure 7-2 that the sensitivity of Tb to σ was higher in the wetland (blue 

dots) than other land cover type, likely due to the higher scattering properties of the 
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water-body contained in the wetland. These β values, ranging from -8.6 to -2.3 at v-

pol and -11.4 to -3.0 at h-pol according to land cover type can be compared to the β 

value at 36km resolution that was estimated around -2.2 at v-pol and -3.4 at h-pol 

from (Wu et al., In Press-a). According to these results, the assumption of a constant 

β within an entire SMAP 36 km pixel may be a limitation when applying the 

downscaling algorithm to SMAP data because of the heterogeneity across SMAP 

sized pixels. For example, the different vegetation types, vegetation water content, 

and surface roughness etc., which impose a different sensitivity of Tb to σ, are all 

considered to have the same sensitivity (β) across each coarse resolution pixel.  

An important consideration in estimating β is the trade-off between robustness of the 

regression due to the number of data points used in the estimation, and the impact of 

seasonality due to the length of the data window that is used. It is expected that using 

more data would attribute to a more accurate linear regression, but the 2-3 day repeat 

would result in a longer window that could also introduce error due to the change of 

land cover condition. The value of β varies according to different seasons (Wu et al., 

 

Figure 7-2: Plot of β estimation using a 9 day time-series of Tb at h- and v-pol and σvv 

for the four different land covers. Also shown is the correlation coefficient (R). The β 

for each land cover was calculated by merging all the sub-areas with the same land 

cover type. 
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2011). Consequently, a temporal moving-window period was adopted over which 

vegetation phenology and surface characteristics can be considered constant (Das et 

al., 2014). In this study, data over a 3 week period were used for deriving a relatively 

high fidelity algorithm parameter. While the possibility of a temporal change in β due 

to changes of land cover conditions is acknowledged, this length was found to give 

the best results and is consistent with that used in other studies.   

The parameter Γ used to denote the sensitivity of σvv to σhv was estimated from 

snapshots of σvv and σhv values at each 3 km pixel within the entire 9 km coarse scale 

pixel. In this study, 9 pairs of σvv and σhv in each 9 km area were used to calculate Γ for 

each 9 km area within the SMAPEx site, and for each day of data. The range of Γ 

due to heterogeneity in vegetation was from 0.2 to 0.6. The average values of Γ were 

0.34(±0.06 standard deviation) for grassland, 0.43(±0.14) for the mixed area, 

0.46(±0.26) for wetland and 0.52(±0.13) for the cropping area. Since radar 

backscatter σhv is more related to vegetation conditions than to soil moisture, the 

variation of σhv across the whole area can therefore reflect the heterogeneity of 

vegetation conditions to some extent, which can be further converted to σvv through 

the sensitivity Γ and thus reduce the influence of vegetation on the PLIS 

observations.  

7.4.2 Downscaling results 

Downscaling results at fine resolution (“F” in Eq. (6-1)) are based on the background 

Tb plus the variation of Tb within the entire area. The background Tb used here came 

from the aggregated 9 km Tb from PLMR, and the variation of Tb from 1km radar 

observations at vv- and hv-pol, together with the sensitivity parameter β and 

parameter Γ as estimated above. The 9 km Tb were downscaled to 1 km and 3 km 

resolutions in order to evaluate the performance of this downscaling algorithm at 

different resolution levels. Consequently, the baseline downscaling algorithm was 

applied to the 9 day data set, and the resulting downscaled Tb at both 1 km and 3 km 

resolution across the 9 days compared with the reference Tb from PLMR at the same 

resolutions.  
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Figure 7-3 shows an example of downscaling for v-pol at different resolutions on 

Day 9 (23rd September, 2011), including the downscaled Tb, reference Tb, and their 

absolute difference, as well as the RMSE for each 9km pixel. More statistics across 

the 9 days are provided in Table 7-1 with respect to different land covers, different 

resolutions and different polarizations. By combining the land classification from 

Figure 7-1 with the RMSE at 1 km and 3 km resolution from Table 7-1, it was found 

that the grassland area had the best downscaling performance due to its relative 

homogeneity, while the wetland area had the largest error. However, this poor result 

for wetland is due to the fact that the water-body has a considerable impact on the 

relationship between Tb and σ when not removed prior to downscaling, resulting in a 

poor estimation in the Tb variation across this particular 9 km pixel.  

In terms of downscaling resolution, the RMSE is reduced when going from 1 km to 

3 km, and it can therefore reasonably be expected to continue decreasing when 

upscaling to SMAP resolution. This is due in part to the reduced heterogeneity 

captured from observations at coarser spatial scale. Moreover, it is noted from Table 

7-1 that downscaled results at v-polarization have relatively lower RMSE than those 

at h-polarization, mainly due to the better linearity between σvv and Tbv than that 

 

Figure 7-3: An example of downscaling results on Day9 (23rd September 2011): a. 

Downscaled Tb at v-pol, 1 km resolution; b. PLMR observed Tb at v-pol, 1 km 

resolution; c. Absolute difference between a and b; d. RMSE of 1 km resolution data 

in each 9 km pixel; e to h. as for above but at 3 km resolution. 
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between σvv and Tbh. However, there is an obvious reduction of RMSE at both 

polarizations when aggregating to larger scale, e.g. a reduction of 4 K for cropping 

area, 2 K for grassland, 3 K for mixed area and 6 K for the wetland when aggregating 

from 1 km to 3 km resolution.  

Regarding the downscaling algorithm performance for different land covers, it is 

shown in Table 7-1 that the average RMSE at 3 km resolution is around 2.7 K and 

2.3 K at h- and v-pol respectively for the grassland, 4.3 K and 3.4 K for the cropping 

area, 5.6 K and 4.4 K for the mixed area, and 9 K and 8.5 K for the wetland. Since 

the grassland is relatively homogeneous in terms of surface and vegetation 

conditions, while the cropping and mixed area have much greater variation in 

vegetation characteristics and surface roughness, the heterogeneity in conditions for 

the cropping and mixed areas has resulted in a poorer estimation of β compared to 

the grassland, and thus influenced the downscaling accuracy. Moreover, as indicated 

from the wetland results, the water-body that covered approximately 10% of the 

coarse area pixel that contained it had a great influence on downscaling accuracy, due 

to the large difference in Tb between the water-body and the surrounding area, 

highlighting the need to clean the Tb data for water bodies prior to downscaling.  

The downscaled Tb target error is around 2.4 K for SMAP (Entekhabi et al., 2012) 

and 4 K for SMOS (Kerr et al., 2010). While the results in Table 7-1 and Figure 7-4 

show that the downscaling performance over the grassland area has fulfilled the 

SMAP target, results in the cropping area and mixed area are around 2 K higher than 

the SMAP target. This implies that while the SMAP baseline downscaling approach 

Table 7-1: RMSE (K) of downscaled Tb with respect to different land covers (C=crops; 

G=grassland; M=mixed area; W=wetland), at different polarizations (h- or v-) and resolutions 

(1 km and 3 km) across 9-days (D1 to D9 of SMAPEx-3). 
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should perform adequately within relatively homogeneous environments, it is 

unlikely to meet the target accuracy in areas with varied land surface conditions. In 

order to assess the effect of irrigated fields within the cropping areas, irrigated farms 

were additionally removed prior to aggregation and downscaling, with an 

improvement in RMSE of approximately 1.2 K at 1 km resolution and 0.4 K at 3 km 

resolution over the previous results. By combining different land cover types, 

downscaled Tb across the entire 36 km × 36 km area had an overall RMSE around 

7.2 K at h-pol and 6.1 K at v-pol at 1km resolution, and 3.8 K at h-pol and 3.1 K at v-

pol at 3 km resolution. In comparison with the results at the same resolution levels 

from (Wu et al., In Press-a), the results here showed an improvement of around 0.8 

K at 1 km and 1.5 K at 3 km resolution respectively, indicating that a spatially 

variable β across SMAP pixels may have the potential to retrieve more accurate 

downscaling results than using a single value of β across the entire area.  

7.5 Chapter Summary 

The objective of this study was to test the proposed baseline downscaling approach 

for the SMAP mission under a range of land surface conditions, using airborne active 

and passive data collected during the SMAPEx-3 field campaign in Australia. Results 

indicated that application of the downscaling algorithm to grassland areas was able to 

meet the target error for SMAP downscaled Tb. However, other land cover types 

such as crops and mixed land use (e.g. crops and grassland) had an error of 2 K 

higher than the target, likely due to the more complicated surface conditions. 

Moreover, comparing these results with from Chapter 6 suggests that a spatially 

distributed β may result in a better downscaling accuracy than using the assumption 

of single value of β across entire SMAP pixels.  
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Figure 7-4: Relationship between downscaled and PLMR observed Tb at 3 km resolution for h- (cross) and 

v-pol (circle) across 9 days. Colour for each land cover type: green=crop, black=grassland, red=mixed 

crop/grassland, and blue=wetland. Black dotted lines represent the 2.4 K target error for SMAP, while the 

red dash lines are the 4 K target error for SMOS. 
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8 Effect of Land Surface Heterogeneity 

For completeness of testing heterogeneity impacts on the baseline downscaling 

algorithm, this chapter presents a study using very high resolution radar backscatter 

(~ 100 m) to downscale “high” resolution brightness temperature from 1 km to 250 

m resolution. These scales were chosen to provide a similar resolution ratio to that of 

SMAP. Use of such high resolution data allows application at the paddock scale, thus 

allowing land cover impacts to be more thoroughly assessed. However, there is a 

trade-off to be considered, that soil moisture is more highly variable at small scale, 

and that the radar and radiometer data will be less accurate at finer resolution due to 

residual errors in incidence angle correction and azimuth effect that are smoothed 

when averaging to coarser resolutions. The work in this chapter has been published 

in a peer-reviewed paper at the Modelling and Simulation Conference (Wu et al., 

2013). 

 

8.1 Background 

As described in Chapter 6 and Chapter 7, the baseline downscaling algorithm 

proposed for SMAP has been studied at two resolution levels. Chapter 6 presented 

the downscaling of 36 km brightness temperature to 9 km resolution by using 3 km 

resolution radar backscatter, while Chapter 7 illustrated the potential increase in skill 

for pixels with a consistent land cover type by applying the same downscaling 

approach at 9 km resolution brightness temperature. These studies demonstrated that 

downscaling accuracy was affected by the land cover type of the pixel itself and the 

heterogeneity of land cover conditions across the pixel. To further assess the impact 

of land cover, this chapter presents an investigation on baseline algorithm 

performance using very high resolution observations. In this study, 1 km resolution 

radiometer data are disaggregated to 250 m resolution using 100 m resolution radar 

observations, keeping the same ratio of the SMAP mission (from 36 km to 9 km) but 

at scales which are comparable with the size of agricultural fields, including crop and 

grassland focus areas. 
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8.2 Study Site 

Data used in this study were collected from the second field campaign SMAPEx-2 

from 6th to 10th July 2010, which included 3 days of Regional flights over the entire 

SMAPEx area and 2 days of Target flights, each conducted over a focus area (“YA” 

and “YB”, see Figure 8-1a). Full details of SMAPEx field campaign has been 

described in Chapter 3, and the airborne data processing to match SMAP 

observations are given in Chapter 5, so only the details pertinent to this study are 

reported here.  

While the YA area is dominated by crops with variations in vegetation characteristics 

and land conditions, the YB area is a grassland site with relatively homogenous 

 

Figure 8-1: (a) Overview of SMAPEx study site (38 km×36 km size) and target areas YA 

and YB which are used to test the downscaling algorithm; (b) PLMR radiometer 

brightness temperatures (Tb) over the YA target area at v-polarization and 100 m 

resolution , and (c) aggregated to 1 km resolution; (d) observed 10 m resolution PLIS 

radar backscatters (σ) over the YA area at vv-polarization, aggregated to (e) 100 m 

resolution and (f) 250 m resolution, respectively. 
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conditions. Data collected from Regional flights included 1 km resolution PLMR Tb 

and 10 m resolution PLIS σ, which in this study were used to analyse the relationship 

between Tb and σ; data obtained from the Target flights included 100 m resolution 

PLMR Tb and 10 m resolution PLIS σ which were used to perform the Tb 

downscaling from 1 km to 250 m resolution. 

In order to closely replicate the viewing configuration of SMAP, both the PLMR and 

PLIS data were normalized for incidence angle variation to the constant 40˚ angle of 

SMAP, using a CDF based method (Ye et al., In Review). The error of this 

normalization method for PLMR is 2.4 K at 1 km resolution; for PLIS it is 3.3 dB at 

10 m resolution and 1.7 dB when aggregated to 100 m resolution.  

The observed 100 m resolution PLMR data from Target flights were linearly 

aggregated to 1 km resolution, and the observed 10 m resolution PLIS data 

aggregated to 100 m and 250 m in order to evaluate the downscaling algorithm at 

different resolutions. An example of the aggregated data over YA area is shown in 

Figure 8-1.  

8.3 Methodology 

Similar to previous chapters, this chapter also tests the baseline downscaling 

algorithm proposed for SMAP, with full equation shown in Eq. (6-1) of Chapter 6. 

But in this study, ‘C’ (coarse), and ‘F’ (fine) in Eq. (6-1) represents the brightness 

temperature Tb at 1 km resolution and backscatter σ at 250 m resolution, respectively. 

Consequently, β is obtained through Tb at 1 km and σ at 1 km resolution. Using Eq. 

(6-1) the downscaled Tb is obtained for each pixel in the YA or YB area at 250 m 

resolution; other scale resolutions such as 100 m can be obtained by using 100 m 

resolution PLIS data, instead of 250 m resolution, as the input of the fine resolution 

PLIS data in Eq. (6-1). This study downscales the 1 km resolution Tb to 250 m 

resolution, to test the ability of this baseline downscaling algorithm at the same 

resolution ratio as SMAP, which aims to downscale 36 km resolution Tb 

observations to 9 km. Furthermore, the downscaling algorithm is applied with a 100 

m target downscaled resolution to evaluate the performance of the downscaling 

approach at different scales. The downscaled Tb at fine resolution (including 100 m 
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and 250 m) is heavily dependent on the quality of the overall PLMR Tb at each 1 km 

by 1 km pixel, the relative backscatter difference within the coarse grid (1 km), and 

the relationship with Tb as represented by the regression slope that adds to the 

background value Tb. The downscaled results at different resolutions are evaluated 

by comparing with PLMR Tb data at the original resolution of 100 m and 250 m 

respectively. 

8.4 Results and Discussion 

8.4.1 Estimation of β and Γ 

Prior to carrying out the downscaling algorithm, the relationship between Tb at both 

polarizations (h and v) and σ at two polarizations (hh and vv) was determined to verify 

the linear relationship assumption which is the foundation of the approach, and to 

estimate parameter β to be used in Eq. (6-1). The parameter Γ also has to be 

estimated to represent the sensitivity of σvv to σhv.  

As described, this baseline downscaling algorithm is based on the assumption that 

brightness temperature Tbp is linearly related to the backscatter σpp at the same scale. 

Therefore, the robustness of this linear relationship is tested in this section using the 

four different combinations of Tbp and σpp. The aim is to determine the best 

combination of radiometer and radar channels for estimating parameter β. In this 

case, data from the three Regional flights were used. Parameter β was calculated using 

the regression between the PLMR Tb (observed at 1 km) and the PLIS σ (aggregated 

to 1 km) collected over each 1 km pixel in YA or YB area. Two different values of 

parameter β were estimated: one value for the YA area (characterizing the sensitivity 

of Tbp to σpp over crops), and a second value for the YB area (characterizing the 

sensitivity over grassland). The average β across each area, obtained from 3 days’ 

time-series over 12 pixels within this area, together with its standard error (around 

1.0 K/dB for different polarization), are listed in Table 8-1. The σ at vv-polarization 

had the best correlation to Tb, with correlation coefficient R = 0.65 and 0.81 for 

crops and grassland respectively. Conversely, σ at hh-polarization was less correlated 

to Tb, and showed little correlation at hv-polarization (R = 0.28 and 0.37). Therefore, 

σ at vv-polarization and at hh-polarization will be used to downscale PLMR Tb to 
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further confirm the influence of the correlation between Tb and σ at different 

polarization on the performance of the downscaling algorithm. Moreover, the 

magnitudes of β values over the YA area are larger than those over the YB area, 

indicating that the sensitivity of Tb to σ is stronger over crops than over grassland. Or 

in other words, the sensitivity of σ to Tb is stronger for grassland. This is mainly 

because radar backscatter is more sensitive to vegetation conditions than the Tb, 

which results in poorer correlation between σ and Tb in the YA area than in YB area. 

Table 8-2: Relationship between Tb (K) and σ (dB) at different polarizations over 

the YA and YB areas, β is the regression slope of Tb and σ, while R is the 

correlation coefficient between Tb and σ. A total of 36 pairs Tb and σ were used to 

estimate β, with standard error (in bracket) across each area. 

 YA (crops) YB (grassland) 

Tbh Tbv Tbh Tbv 

σvv 
β : -4.3(1.2) β : -3.2(1.0) β : -3.0(1.0) β : -2.3(0.8) 

R : 0.62 R : 0.65 R : 0.72 R : 0.80 

σhh 
β : -5.2(1.3) β : -3.8(0.9) β : -4.5(0.9) β : -3.3(0.7) 

R : 0.59 R : 0.61 R : 0.65 R: 0.71 

σhv 
β : -5.1(1.2) β : -4.1(1.2) β : -4.7(1.0) β :-3.0(0.9) 

R: 0.21 R: 0.28 R : 0.34 R : 0.37 

 

 Table 8-1: RMSE (K) of downscaling algorithm using σvv and σhh (in bracket) at 

different polarizations and at different resolutions (100 m and 250 m) over YA and 

YB areas. 

 YA (crops) YB (grassland) 

h-pol v-pol h-pol v-pol 

100 m 10.2(12.7) 8.6(10.1) 7.5(8.3) 5.7(6.6) 

250 m 9.0(11.1) 7.1(8.8) 5.8(6.9) 4.6(5.5) 
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The availability of only 3 days’ time-series will influence the robustness of β 

estimation and further influence the accuracy of downscaling. 

The parameter Γ was estimated using the pairs of σvv and σhv within each 1 km pixel, 

so as to obtain the regression slope Γ at each 1 km pixel. Consequently, Γ varies 

across the entire YA or YB area, with a range from 0.1 to 0.5 for both areas. 

8.4.2 Downscaling results 

Based on the respective value of β and Γ matrix over YA and YB, the 1 km Tb 

aggregated from Target flights were downscaled to 100 m and 250 m resolution, by 

using PLIS σ at 100 m and 250 m resolution (aggregated from 10 m resolution) 

respectively. The downscaled Tb was then compared with the reference Tb directly 

measured from PLMR at 100 m and 250 m resolution in order to evaluate the 

accuracy of the downscaling algorithm. Figure 8-2 and Figure 8-3 show the 

downscaled v-polarized Tb and the difference between downscaled and reference Tb 

at different resolutions over YA and YB area respectively. By comparing the 

differences over YA and YB, it is noted that results over the YB area show an overall 

smaller error than over YA, which could be attributed to the influence of 

heterogeneous vegetation in the YA area on the accuracy of the downscaling 

algorithm. Quantitative details are displayed in Table 8-2, from which it can be seen 

that the RMSE of YB has an improvement of approximately 3 K at h-polarization 

and 2.5 K at v-polarization over YA, confirming the results from Figure 8-2 and 

Figure 8-3. In addition, results at v-polarization are better than those at h-polarization 

for both the YA and YB area, with an improvement of around 2 K. This is due to σvv 

being more strongly related to Tb at v-polarization than Tb at h-polarization during 

the estimation of β. Moreover, the results at 250 m resolution were more accurate 

than those at 100 m, on the order of 1 K improvement in terms of RMSE. This is 

possibly because the speckle noise of radar backscatter is reduced when upscaling 

from 100 m to 250 m resolution, and the error of incidence angle normalization is 

reduced from 100 m to 250 m resolution. Additionally, the estimation of β at 1 km 

resolution is closer to β at 250 m than at 100 m resolution. It is noted that 

downscaled results based on σhh resulted in an RMSE on the order of ~1.8 K greater 

than when using σvv, confirming the conclusion from Table 8-1 that σvv is better 
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correlated with Tb. The influence from the variation in β (as indicated by the standard 

error in Table 8-1) was also analysed which was found to result in approximately 2 K 

error in the downscaled Tb at 100 m resolution. Therefore, a better estimation of β 

can be expected from longer time-series observations over each 1km pixel, thus 

improving the downscaling performance. 

To further evaluate the skill of the downscaling algorithm, the correlation between 

downscaled Tb and the reference Tb was studied with respect to different land cover 

at 100 m and 250 m resolution, with results displayed in Figure 8-4. While the black 

line represents a RMSE between downscaled and reference Tb of 0 K, the dashed 

line represents RMSE of ±4 K. It is noted from Figure 8-4 that the variation of Tb 

 

Figure 8-2: Evaluation of the downscaling algorithm at v-polarization over the YA 

area: (a) Downscaled Tb at 100 m resolution; (b) Reference Tb at 100 m resolution 

and (c) the difference; (d) Downscaled Tb at 250 m resolution; (e) Reference Tb at 

250 m resolution; and (c) the difference. 
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over the YA area is much larger than the YB area, in response to the wider range of 

vegetation and land cover across the cropping area YA than the relatively 

homogenous area YB. In addition, a greater fraction of the data at 100 m resolution 

is outside the 4 K error range than at 250 m resolution, due to the reasons stated 

above. It is also noted that a greater fraction of the data fell within the 4 K range 

over the YB area than for the YA area. Thus, it can be noted that the downscaling 

algorithm has an overall better performance over grassland than the cropping area.  

The target error of downscaled Tb at 9 km resolution of the SMAP mission is around 

2.4 K for vegetation water content less than 5 kg/m2, which is much lower than that 

achieved here. The reasons for larger errors when using the downscaling algorithm in 

this study may include: i) the availability of only 3 days of Regional flights for 

estimating parameter β, as the accuracy of β estimation influences the resulting 

accuracy of downscaling, which is expected to be improved when using a longer time 

series of data; ii) the incidence angle normalization prior to the downscaling 

 

Figure 8-3: Evaluation of the downscaling algorithm at v-polarization over the YB area: 

(a) Downscaled Tb at 100 m resolution; (b) Reference Tb at 100 m resolution and (c) the 

difference; (d) Downscaled Tb at 250 m resolution; (e) Reference Tb at 250 m resolution; 

and (f) the difference. 
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algorithm induced an error around 1.5 dB for PLIS at 250 m resolution and around 

2.4 K for PLMR at 1 km resolution.  

8.5 Chapter Summary 

The objective of this study was to test the effects of land cover heterogeneity on the 

baseline downscaling approach for the SMAP mission over homogeneous fields, 

using very high resolution data from the SMAPEx campaigns in Australia. In this 

study, radar backscatter aggregated to 100 m and 250 m resolution were used to 

downscale radiometer brightness temperature at 1 km resolution to 100 m and 250 m 

resolution respectively. The results showed that the method still worked best with the 

downscaling result over relatively homogenous grassland having 3 K improvement 

when compared to heterogeneous cropping areas. It is thus shown that the accuracy 

 

Figure 8-4: Agreement between downscaled Tb (horizontal) and reference Tb 

(vertical) at v-polarization: (a) at 100 m resolution over YA area; (b) at 250 m 

resolution over YA area; (c) at 100 m resolution over YB area; and (d) at 250 m 

resolution over YB area. 
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of the downscaling approach is primarily determined by the heterogeneity of 

vegetation characteristics across the study area, as well as variations in the sensitivity 

of brightness temperature to radar backscatter, as reflected in the parameter β.  
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9 Comparison with Alternate Linear 

Methods 

The previous chapters have focussed on evaluating the brightness temperature 

downscaling algorithm. Consequently, this chapter coverts the downscaled brightness 

temperature to soil moisture and compares the results with two different soil 

moisture downscaling algorithms, which are also based on active and passive 

measurements from the SMAPEx-3 field campaigns. The three algorithms include: i) 

baseline soil moisture downscaling algorithm proposed for SMAP; ii) optional 

downscaling algorithm for SMAP; and iii) an alternate method – change detection 

method. Paper of this work is currently under review. 

 

9.1 Background 

In preparation of the SMAP launch, suitable algorithms and techniques need to be 

developed and validated to ensure that an accurate intermediate resolution soil 

moisture product can be operationally produced from combined SMAP radiometer 

and radar observations. The proposed baseline downscaling method for the SMAP 

mission is based on an observed near-linear relationship between radar backscatter 

and the brightness temperature at the same scale, with the downscaled brightness 

temperature at ~9 km then interpreted to soil moisture using the passive microwave 

retrieval model (Das et al., 2014, Entekhabi et al., 2012). An optional method 

proposed for the SMAP mission utilizes the near-linear relationship between radar 

backscatter and volumetric soil moisture (rather than brightness temperature) and 

ultimately retrieves the medium-resolution soil moisture product directly (Das et al., 

2011, Entekhabi et al., 2012). An important element of these two methods is that the 

relationship between the slope parameter and vegetation heterogeneity should be 

formulated to improve the accuracy of this algorithm. A further candidate 

downscaling approach is based on the change detection method, which takes 

advantage of the approximately linear dependence of radar backscatter and 
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brightness temperature change on soil moisture change (Piles et al., 2009, Narayan et 

al., 2006). Each of these three method are referred to as linear methods; other non-

linear downscaling methods, such as the Bayesian merging algorithm (Zhan et al., 

2006), use a totally different strategy which results in a downscaled soil moisture 

product directly through the synergy of the active and passive data in a Bayesian 

framework.  

Given that current downscaling algorithms are relatively immature and not widely 

tested using experimental data, the main objective of this study is to evaluate the 

performance of these three linear downscaling algorithms using active and passive 

microwave observations from the SMAPEx-3 field campaign undertaken in Australia 

(Panciera et al., 2014). Evaluation of the non-linear Bayesian merging method is 

provided in the next chapter. The SMAPEx field campaigns provide the opportunity 

to evaluate the SMAP Active-Passive baseline algorithms using data that presents a 

range of conditions and land covers. Data were collected from the airborne simulator 

mounted with PLMR and PLIS, which can provide the brightness temperature 

observations and backscatter observations respectively.  

9.2 Data Set 

A full description of the SMAPEx field campaign and data set can be found in 

Chapter 3, so only the pertinent details are provided here. The radiometer and radar 

data used in this study were collected from the third SMAPEx field campaign 

(September 5-23 2011), which was conducted during the spring vegetation growing 

season. This campaign was used since it comprised nine regional flights over a 3-

week time period with the 2-3 day revisit time of SMAP. Those 1 km resolution 

brightness temperatures from PLMR and 1 km resolution backscatters from PLIS 

airborne observations have been spatially aggregated to 36 km and 3 km respectively, 

so as to simulate the SMAP data stream. Examples of the simulated SMAP data used 

in this study are shown in Figure 5-6 and Figure 6-2. Apart from the airborne 

observations, ancillary data such as surface roughness, VWC and etc. are also used in 

this study for retrieving soil moisture from brightness temperature.   
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9.3 Methodology 

9.3.1 Baseline downscaling algorithm 

The baseline downscaling algorithm to be implemented by SMAP is based on the 

assumption of a near-linear relationship between Tb and σ. Details on this method 

have been stated in Chapter 6. The output of this baseline downscaling algorithm in 

Chapter 6 was downscaled brightness temperature at medium resolution. Therefore, 

the main work concerning this downscaling algorithm in this study is to interpret the 

obtained downscaled Tb to downscaled soil moisture product, using the tau-omega 

(τ-ω) passive microwave retrieval algorithm with soil and vegetation parameters 

(Panciera et al., 2009). In order to differentiate the parameter β for each algorithm, 

the one used in baseline algorithm is denoted by β1 in this study. 

9.3.2 Optional downscaling algorithm 

The optional downscaling algorithm for SMAP (Das et al., 2011) is similar to the 

baseline but use the soil moisture instead of brightness temperature in Eq. (6-1). 

Implementation of this method requires a background soil moisture θ at C 

resolution, with the variation of θ imposed by the distribution of fine scale σ within C 

modulated by β2(C) of the linear regression between θ and σ at C resolution according 

to: 

θ(Fj) = θ(C) + β2(C) × {[σpp(Fj) - σpp(C)] -Γ× [σpq(C) - σpq(Fj)] },   (9-1) 

where θ(Fj) is the soil moisture of a particular pixel “j” of resolution F, θ(C) 

aggregated from 1 km resolution PLMR retrieved soil moisture product (through the 

passive microwave retrieval algorithm). β2(C), in the unit of cm3/cm3/dB, which is 

also assumed to be time-invariant and homogenous over the entire 9 km pixel and 

can be obtained through the time-series of θ(C) and σpp(C). Other terms in Eq. (9-1) 

are all the same as Eq. (6-1), with variation of soil moisture within C denoted by σ 

and Γ , and then converted to soil moisture at fine scale through multiplication by 

β2(C). The main differences between optional and downscaling algorithms are: i) 

estimation of the sensitivity parameter β from θ and σ, or from Tb and σ; and ii) soil 
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moisture retrieved in direct or in-direct way, the latter needs to go into the (τ-ω) 

retrieval model. 

9.3.3 Change detection method 

This change detection method uses the linear relationship between temporal change 

of radar backscatter and temporal change of soil moisture at the same scale (Piles et 

al., 2009). It has the same assumption as the optional downscaling algorithm, but is 

different in retrieving medium-resolution soil moisture: 

θ (Fj,t) = θ (C, t-tR) + β3(C) × {σpp(Fj,t) - σpp(Fj,t-tR) },   (9-2) 

where θ (Fj,t) is the soil moisture of a particular pixel “j” of resolution F and at time t, 

θ (C, t-tR) is aggregated from 1 km resolution PLMR retrieved soil moisture product 

(through the passive microwave retrieval algorithm) at time t-tR. tR is the revisit time 

of the observations, 2-3 days for the SMAP case. θ (C, t-tR) is then updated with soil 

moisture change evident in the fine resolution radar backscatter σ at different time. 

β3(C), which is also assumed to be time-invariant and homogenous over the entire 

site, can be obtained through the time-series of θ(C) and σpp(C).  

While the optional algorithm is based on a background soil moisture value and the 

variation across the entire area characterized by radar observations, this change 

detection method indicates that a soil moisture estimates at a given time can be 

obtained as the previous soil moisture estimate plus a change in soil moisture, which 

is given by the actual radar estimates and the value of regression slope β3. The first 

estimates are likely to be noisy due to the high uncertainty on the first calculated 

slopes. However, when a reasonable number of estimates are available, the 

uncertainty on calculating the slope becomes much lower, leading to robust soil 

moisture estimations.  

9.4 Results and Discussion 

9.4.1 Estimation of β and Γ 

For each method mentioned above, the estimation of the sensitivity parameter β is 

different. Results for β estimation can be found in Table 9-1. For the baseline 

downscaling algorithm, β was estimated from Tb and σ at 36 km resolution. As stated 
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in Chapter 6, σ at vv-pol showed the best correlation with Tb and therefore was used 

for estimating β1. Therefore, β1 was calculated at h- and v-pol, being -3.4 K/dB and -

2.2 K/dB respectively, since Tb was observed at two polarizations h- and v-pol. 

Different to the baseline algorithm, the sensitivity of soil moisture θ to backscatter σ 

in the optional algorithm was analysed using the slope of the linear regression as a 

measure of quality and therefore the parameter β2 was obtained, being 0.018 

cm3/cm3/dB. Since β3 of the change detection method also indicate the sensitivity of 

soil moisture to backscatter, it was therefore obtained as the same value as β2. 

Regardless of the actual variation of vegetation within the entire area, the sensitivity 

parameter β was estimated as a single value across the 36 km area as outlined in the 

SMAP baseline active-passive algorithm. According to previous work done in 

Chapter 6 to Chapter 8, the magnitude of β was actually affected by the land cover 

types, vegetation biomass and the existence of water bodies. For instance, the 

magnitude of β is relative large in the flooding or irrigated area, and decreases in the 

vegetated area, and in grassland β is the smallest. Therefore, the assumption of a 

constant β in this study may influence the resulting accuracy of downscaled product 

when compare with the reference. It is suggested that a more detailed investigation of 

the spatial distribution of β within the 36 km area should be undertaken, including an 

Table 9-1: Estimation of β and Γ for each downscaling algorithm. β1 is estimated 

from brightness temperature Tb and backscatter σvv at 36 km resolution; β2 is 

estimated from soil moisture θ and σvv at 36 km resolution; β3 is estimated from 

θ and σvv at 36 km resolution; Γ is estimated from snapshots of σvv and σhv at 1 

km resolution in each 9 km by 9 km pixel. 

                          β Γ 

Baseline 
β1 h-pol:   -3.4 (K/dB) 

0.2-0.45 
β1 v-pol:   -2.2 (K/dB) 

Optional β2: 0.018 (cm3/cm3/dB) 0.2-0.45 

Change detection β3: 0.018 (cm3/cm3/dB) - 
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investigation of a potential implementation in the SMAP baseline algorithm. But this 

is out of the scope of this study. 

Since the observed σ from radar is not only related to the soil moisture, but also to 

the vegetation conditions, use of Γ in baseline and optional downscaling algorithm 

aims to remove/reduce the influence from vegetation on σ and to make it more 

strongly correlated to the soil moisture. For these two methods, parameter Γ, the 

sensitivity of σvv to σhv, was estimated using the same method from the snapshots of σvv 

to σhv values at each 9 km × 9 km pixels within the entire SMAPEx study area. In 

order to obtain an estimate for the parameter Γ, the study area was divided into 16 

sub-areas of 9 km by 9 km in size, and the value of Γ calculated using the snapshots 

of all σvv-σhv pairs at 1 km resolution contained within each of those sub-areas, 

allowing an analysis of the relationship between estimation of Γ and vegetation 

conditions. Results are displayed in Table 9-1, with Γ ranging from 0.2-0.45 

according to vegetation conditions at different locations.  

9.4.2 Downscaling results 

As discussed above, downscaled soil moisture product was obtained through three 

linear downscaling algorithms: i) baseline algorithm: the downscaling results at fine 

resolution are a function of the background Tb value plus a variation of Tb within the 

entire area derived from the variation of the backscatter from the mean. For this 

algorithm, the background Tb is the aggregated 36 km Tb from PLMR, and the 

variation of Tb at higher resolution is characterized by the variation of σvv from PLIS 

observations, together with the β1 from the sensitivity of Tb to σ; ii) optional 

algorithm: the downscaling results at fine resolution are a function of the background 

θ value plus a variation of θ within the entire area derived from the variation of the 

backscatter. The background θ is aggregated from 1 km PLMR retrieved soil 

moisture to 36 km, and the variation of θ at higher resolution is also characterized by 

the variation of σvv from PLIS and the sensitivity parameter β2 of θ to σvv. The 

influence of vegetation is then deduced for both baseline and optional algorithm 

using σhv, due to its strong correlation with vegetation conditions; and iii) change 

detection: the downscaling results at fine resolution are a function of the previous 

background θ updated by the changes of σvv. 
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Consequently, the downscaled θ results from three algorithms were retrieved at 

resolutions of 1 km, 3 km and 9 km, from linearly aggregating the 1 km resolution 

downscaled θ to 3 km and 9 km resolution respectively. Data used to test these 

algorithms were collected on 9 days of SMAPEx-3 field campaign. Prior to applying 

the downscaling algorithms, the main water body in the far north-eastern section of 

the area, and some irrigated cropping areas within the western part of the regional 

area, were removed (these areas collectively represent approximately 1% of the entire 

study region) to reduce the influence of surface water on the resulting downscaling 

accuracy. The accuracy of three downscaling algorithms at different spatial 

resolutions was evaluated against the reference soil moisture θ which was previously 

introduced in Chapter 3.  

Downscaling results on each day of SMAPEx-3 are shown in Table 9-2 for each 

downscaling algorithm at different resolutions. It is noted from Table 9-2 that the 

downscaled results of baseline and optional algorithms are similar in terms of the 

RMSE. For baseline algorithm, the average RMSE across 9 days was 0.038 cm3/cm3, 

0.028 cm3/cm3 and 0.019 cm3/cm3 at 1 km, 3 km and 9 km resolution, respectively. 

While the average RMSE for optional algorithm showed the similar results with 

minor increment of approximately 0.002-0.003 cm3/cm3 depending on the 

resolution. In comparison, change detection method had a largest RMSE among 

these three algorithms, being 0.006 cm3/cm3 larger than the baseline algorithm. One 

possible reason, contributing this relatively poor performance of change detection 

method, is the influence from vegetation that has not been taken into account. 

Table 9-2: Root Mean Square Error (RMSE, cm3/cm3) of downscaled soil moisture from 

the different downscaling algorithm across the 9 days (D1 to D9) of SMAPEx-3 at 1 km, 3 

km and 9 km resolution. 
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Unlike baseline or the optional method, the change detection method did not use σhv 

and the parameter Γ to compensate the influence of vegetation on the soil moisture 

retrieval.  

It is noted from Table 9-2 that RMSE of each algorithm generally decreased from the 

beginning to the end of 9 days. Results of the first days i.e. D1 to D3 displayed 

relatively poor performance when compared to the later days. In particular, D1 and 

D2 contain significant noise levels. One possible reason is attributed to the heavy 

rainfall events that led to wet soil and vegetation conditions in the north-eastern part 

of the study area at the beginning of SMAPEx-3, subsequently affecting the 

radiometer and radar observations. D1 to D3 had a higher variation of Tb or θ 

(reference) when compared to the other days. Since Tb is more sensitive to the 

 

Figure 9-1: Comparison of downscaled soil moisture maps (cm3/cm3) from each 

downscaling algorithm (baseline, optional and change detection) and the reference 

at different resolutions (1 km, 3 km, and 9 km). Data were collected on D3 (10th 

September 2011) of SMAPEx-3. Pixels at 1 km resolution in the northeast of the 

study area are the water-bodies which have been removed prior to conducting the 

downscaling algorithm. 
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immediate soil moisture changes due to the rain in this region, the value of Tb drop 

according to soil moisture increase is more significant than the radar backscatter 

changes, as the latter are more influenced by the vegetation cover and consequently 

less sensitive to the soil moisture changes. Consequently, the sensitivity of 

backscatter to Tb/θ decreases, resulting in an obvious difference in the sensitivity 

parameter β for the area subjected to rainfall when compared with the other drier 

areas, which would have dominated the derivation of β itself. The influence from 

surface heterogeneity due to the rain event reduced during the dry-down period, 

especially after D3, as shown through the decrease in RMSE from D3 onwards.  

In terms of resolution, there is an obvious reduction of RMSE when applied to a 

larger scale, e.g. from 1 km to 3 km and 9 km respectively, which can be attributed to 

the reduction of random (white) noise following the aggregation of the backscatter 

data.  

 

Figure 9-2: As for Figure 9-3 but on D5 (15th September 2011) of SMAPEx-3. 
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Performance on three days (D3, D5 and D8) have been picked up to represent the 

weather conditions from wet, medium and dry, as shown in Figure 9-1 to Figure 9-3. 

The water-bodies have been removed as shown in the 1 km resolution maps in 

Figure 9-1, Figure 9-2 and Figure 9-3. Comparison between downscaled soil moisture 

product from different downscaling algorithm and the reference soil moisture with 

respect to different resolution are shown in these figures. According to the patterns 

shown in the reference, areas in the right end and in the left end were dominated by 

the cropping, while areas in the middle were mainly occupied by grassland. Therefore 

in terms of soil moisture, grassland was drier than the cropping site as shown in 

those figures. The pattern of optional algorithm largely matched that of the 

reference, especially on D8; while the pattern of change detection method could 

hardly represent the actual pattern; the baseline algorithm could show similar pattern 

as the reference but with poorer performance than optional one. Both of baseline 

and optional algorithm showed an improvement on the pattern match from D3 to 

D8, while the performance of change detection did not improve the detection of 

 

Figure 9-3: As for Figure 9-3 but on D8 (21st September 2011) of SMAPEx-3. 
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pattern from the beginning to the end. To this end, although all of these three 

downscaling algorithm had similar RMSE when compared to the reference, the 

ability to correctly detect the pattern as shown in the reference map is another key 

factor to examine the performance of downscaling algorithm.  

In order to quantify the degree of pattern match, a further evaluation of the skill of 

each particular downscaling algorithm was through the correlation (R2) between 

downscaled and reference θ at 1 km, 3 km and 9 km resolution (See Figure 9-4) by 

combining 9 days’ data. It is noted that the correlation at 1 km was quite poor, 

primarily due to the high noise level of the observations at 1 km resolution; the 

 

Figure 9-4: Comparison between reference and downscaled soil moisture maps 

from the baseline, optional and change detection methods at 1 km, 3 km, and 9 km 

resolution. Performance of each method was evaluated in terms of Root-Mean-

Square-Error (RMSE, in unit of cm3/cm3) and correlation (R2) between downscaled 

and reference soil moisture. Data are from all 9 days of SMAPEx-3, with data from 

Day 1 to Day 3 denoted by open circles, while data from Day 4 to Day 9 denoted by 

solid circles. 
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correlation was improved by approximately 0.23, 0.48 and 0.11 respectively for 

baseline, optional and change detection method when observations were averaged to 

larger scale from 1 km to 9 km. By comparing the behaviour of each algorithm at 9 

km resolution, the optional algorithm showed the best correlation with reference soil 

moisture around 0.62, being approximately 0.14 higher than the baseline; change 

detection was observed to have poorest correlation between its retrieved soil 

moisture and the reference, around 0.21, when compared to other algorithm. To this 

end, by assessing RMSE and the correlation between downscaled soil moisture and 

reference, the optional downscaling algorithm had the best performance and would 

be recommended for use in SMAP. 

 

Figure 9-5: Spatial distribution of Root-Mean-Square-Error (RMSE, in unit of 

cm3/cm3) for baseline downscaling algorithm, optional downscaling algorithm and 

change detection method across the entire SMAPEx site at 1 km, 3 km and 9 km 

resolution, respectively. RMSE for each pixel was calculated from the downscaled 

soil moisture and the reference soil moisture at this pixel across 9 days of 

SMAPEx-3. 
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The above analysis was also undertaken when including the water bodies that had 

previously been masked out in the aggregation procedure, in order to simulate more 

realistic SMAP data (as many water bodies will not be reliably identified for masking). 

Consequently, this was done to quantify the effect of relatively small water bodies on 

the accuracy of the downscaling approach. Without removing the water-bodies, the 

average RMSE of all nine days at 9 km resolution increased by approximately 0.01 

cm3/cm3, for each type of downscaling algorithm. 

In order to differentiate the impact from land cover types on the downscaling 

performance, the spatial distribution of RMSE and the correlation coefficient R2 was 

 

Figure 9-6: Spatial distribution of correlation coefficient (R2) for baseline 

downscaling algorithm, optional downscaling algorithm and change detection 

method across the entire SMAPEx site at 1 km, 3 km and 9 km resolution, 

respectively. R2 for each pixel was calculated from the downscaled soil moisture 

and the reference soil moisture at this pixel across 9 days of SMAPEx-3. 
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also obtained at different resolution levels across the entire study area, as shown in 

Figure 9-5 and Figure 9-6. Both RMSE and R2 were calculated from the series of 

downscaled soil moisture and the reference soil moisture at each pixel across 9 days, 

and at three resolution levels: 1 km, 3 km and 9 km. As shown in Figure 9-5, the 

optional and the baseline downscaling algorithm showed minor difference in terms 

of the spatial plot of RMSE, but overall these two were better than the change 

detection method. With respect to the land cover types, it could be observed from 

Figure 9-5 that the left side of the study area dominated by crops had greater error 

than the middle part that was occupied by grasslands, indicating the higher 

heterogeneity in the croplands attributed to a worse performance of downscaling. 

Moreover, the northeast area also had poor performance probably due to the 

increased surface heterogeneity as a consequence of raining events during the first 

couple days.  

In terms of the correlation between downscaled soil moisture and reference, the 

optional downscaling algorithm showed the best performance as shown in Figure 9-

6, in line with the results in Figure 9-4. Again, the downscaled results in the 

grasslands were more correlated to the reference than in the croplands, which was 

probably due to the influence from the crops on the radar observations. The 

croplands, which had more variations in the vegetation conditions, surface 

roughness, row structure etc., had introduced more noise to the radar observations 

and therefore hampered the accuracy of downscaling using those radar observations. 

To this end, the relatively homogenous grasslands had overall better performance in 

downscaling with lower RMSE and higher correlation to the soil moisture truth than 

the complicated croplands. 

9.5 Chapter Summary 

The objective of this study was to test the robustness of three downscaling 

algorithms using active and passive observations from SMAPEx field campaign in 

Australia. These three algorithms included: the baseline algorithm and optional 

algorithm proposed for the SMAP mission, and a change detection method. The 

errors associated with each downscaling algorithm were assessed for different spatial 

resolution levels. All three algorithms were found to perform poorly in the early days 
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of the experiment due to a rainfall event in the study area that created a large spatial 

heterogeneity in terms of soil moisture content. While all three methods met the 

RMSE requirement at 9 km resolution during the last 2 weeks of the experiment, 

which were characterized by a drying down period, the ability to detect the spatial 

pattern varied considerably. The change detection method had the poorest spatial 

correlation while the optional algorithm showed best spatial correlation. Due to the 

mixed results obtained for these three methods at the SMAPEx study site, it is 

important to test if non-linear methods are able to achieve a better result. 
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10 Comparison with Bayesian Merging 

Method 

This chapter investigates the Bayesian merging method using the same experimental 

data set as Chapter 9, being from the SMAPEx-3 field campaign. This method 

differs from the three linear downscaling algorithms evaluated in the last chapter, in 

that the method studied here is a non-linear downscaling algorithm based on the 

Bayes Theorem. The medium-resolution soil moisture product is obtained using a 

background soil moisture estimate that is updated according to the difference 

between observed and predicted brightness temperatures and backscatter coefficient 

at multiple polarizations. Results are assessed against a validated reference soil 

moisture map derived from airborne radiometer observations at 1 km resolution.  

 

10.1 Background 

The baseline and optional downscaling algorithm proposed for SMAP, together with 

another candidate downscaling algorithm called the change detection method (Piles 

et al., 2009), have been evaluated in Chapter 9, with results showing that the 

optional downscaling algorithm provided the overall best medium-resolution soil 

moisture results amongst those linear downscaling algorithms. However, as the three 

downscaling algorithms presented in earlier chapter are all based on an assumed 

linear relationship between radar and radiometer observations, it is considered 

valuable to test an alternative method for SMAP. For instance, the Bayesian merging 

method, which retrieves medium-resolution soil moisture in a totally different way 

(Zhan et al., 2006). The Bayesian method showed promising results in retrieving a 

soil moisture product at medium resolution, with a RMSE of 0.027 cm3/cm3 using 

low noise radar data and 0.044 cm3/cm3 using high noise radar data (Zhan et al., 

2006). However, this Bayesian method has only been tested using synthetic data. 

Therefore, the objective of this chapter is to test the Bayesian method using the same 

experimental data set as for the three linear methods compared in Chapter 9, and to 
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thus recommend an optimal downscaling algorithm for the forthcoming SMAP 

mission. 

10.2 Data Set 

Data from the SMAPEx-3 field campaign were used in this study. Details on the 

SMAPEx study area, surface conditions, airborne instrument and acquisition etc. can 

be found in Chapter 3. Apart from the observations from aircraft (i.e. Tb at 36 km at 

h- and v-pol from PLMR, and σ at 1 km at hh-, vv- and hv-pol from PLIS), vegetation 

and surface condition data were also needed. These data were used for background 

soil moisture retrieval from radar and radiometer observations alone, and for forward 

modelling of predicted backscatter and brightness temperature from given soil 

moisture values. Information on the ancillary data, including the surface roughness 

parameter h, surface Root-Mean-Square height s, VWC, vegetation parameter b which 

depends on vegetation type, surface temperature Tsurf, canopy temperature Tveg, 

sand/clay fraction, soil bulk density, incidence angle and single scattering albedo ω, 

can be found in Chapter 3. 

Importantly, radiometer retrieval and radar retrieval use different roughness 

parameters, being surface roughness h and RMS height s respectively, as shown in 

Figure 10-1. The roughness parameter required for the radar retrieval model can be 

obtained either from i) the RMS height map as shown in Figure 10-1, derived from 

interpolation of point sampled RMS height for each 1 km pixel according to field 

 

Figure 10-1: Spatial distribution of static surface roughness parameter h (cm) and 

surface Root-Mean-Square height s (cm). 
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measurements and a land use map; or from ii) the relationship with the surface 

roughness parameter h used in the passive retrieval, being approximately 2.6 times h 

(Wigneron et al., 2011). Both options have been tested, with the former showing 

poorer results in terms of the accuracy of radar retrieval, probably due to the 

uncertainties involved in the estimation of 1 km resolution RMS height from the 

limited point sampled data. Therefore, s was estimate as 2.6 times h in this study, for 

the purpose of radar retrieval and backscatter prediction. 

10.3 Methodology 

The Bayesian merging method used in this study is based on Bayes Theorem. It is 

simply stated in this chapter with full details available in (Zhan et al., 2006). The 

optimal estimates of soil moisture θ(F) at fine resolution “F” (1 km, 3 km or 9 km 

resolution in this study) can be derived from an initial estimate of the background 

soil moisture θb, updated according to the difference between the observations Z and 

predicted observation h([θb]) through the Kalman filter state update equation 

(Kalman, 1960) 

  [θ(F)] = [θb] + [K]×{[Z] - h([θb])},    (10-1) 

which is effectively an implementation of Bayes Theorem. When applied to the 

SMAPEx area, [θ(F)] is the vector of final retrieved soil moisture at each 1 km pixel 

across the entire 36 km area, and [θb] is the vector of background soil moisture also 

on each 1 km pixel across the entire SMAP footprint. In this application the 

background is taken as the soil moisture retrieved from either Tbh at 36 km resolution 

using the single channel passive microwave retrieval method (Panciera et al., 2009) as 

a spatially uniform field, or from the 1 km resolution PLIS backscatter using the 

single channel active microwave retrieval method, based on a combination of three 

active retrieval models (Dubois et al., 1995, Oh et al., 1992, Wang and Schmugge, 

1980). Details on the active models can be found in (Zhan et al., 2006). Both 

alternative background soil moisture sources are tested. The vector [Z] is the 

observations of Tbh and Tbv at 36 km resolution, and σhh, σvv, and σhv at 1 km 

resolution. The observation function h([θb]) provides the predictions of brightness 

temperature and backscatter from the radiometer and radar forward models for a 
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vegetation-covered soil using the background soil moisture θb on the 1km resolution 

grid. Details on these models can be found in (Zhan et al., 2006). The matrix [K] is 

the Kalman gain based on the uncertainties of the background states and 

observations through 

 [K] = [P][HT] / ([H][P][HT]  + [R]),    (10-2) 

where [P] represents the error covariance matrix of the background soil moisture 

field. In this study it is estimated by comparing the reference soil moisture taken 

from the work of Gao et al. (under review) to the background soil moisture [θb], or as 

the difference between the two alternative background fields, being from radar and 

from radiometer. The results from both approaches are compared, with the purpose 

to identify a practical way of estimating [P] operationally. Matrix [R] is the 

observation error covariance matrix based on the instrument characteristics and data 

processing accuracy, especially the accuracy of calibration and incidence angle 

normalization, as seen in Chapter 5. Matrix [H] is the linearized observation 

operator, which is the first derivative (Jacobian) of h([θb]) obtained from  

 [H] = δh([θb]) / δ[θ].      (10-3) 

The observation vector [Z] contains two 36 km brightness temperatures (at h- and v-

pol) and three backscatter observations (at hh-, vv- and hv-pol) for each 1 km × 1 km 

pixels; totally 3890 observations across the entire area. Each vector/matrix can be 

written as 

[𝑍] = [𝑇𝑏ℎ 𝑇𝑏𝑣  𝜎ℎℎ,1 𝜎𝑣𝑣,1 𝜎ℎ𝑣,1 … 𝜎ℎℎ,1296 𝜎𝑣𝑣,1296 𝜎ℎ𝑣,1296]3890×1
𝑇  (10-4) 

ℎ([𝜃])

= [𝑇𝑏ℎ(𝜃𝑏)  𝑇𝑏𝑣(𝜃𝑏)  𝜎ℎℎ,1(𝜃𝑏) 𝜎𝑣𝑣,1(𝜃𝑏) 𝜎ℎ𝑣,1(𝜃𝑏) …  𝜎ℎℎ,1296(𝜃𝑏) 𝜎𝑣𝑣,1296(𝜃𝑏) 𝜎ℎ𝑣,1296(𝜃𝑏)]3890×1
𝑇  

(10-5) 

[𝐻] = [

𝛿𝑇𝑏ℎ/𝛿𝜃𝑓,1 ⋯ 𝛿𝑇𝑏ℎ/𝛿𝜃𝑓,1296

⋮ ⋱ ⋮
𝛿𝜎ℎ𝑣,1296/𝛿𝜃𝑓,1 ⋯ 𝛿𝜎ℎ𝑣,1296/𝛿𝜃𝑓,1296

]

3890×1296.

𝑇

(10-6) 

In Eq. (10-4)-(10-6), 1296 is the number of 1 km × 1 km pixels across the site and 

3890 is the total number of observations: one brightness temperature observation at 
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each of h and v polarizations and 1296 backscatter observations at each of hh, vv and 

hv polarization. The 1296 diagonal elements of matrix [P] are assigned the error 

covariance of the background soil moisture with the off diagonal elements set to be 

zero, assuming that each 1 km pixel has uncorrelated soil moisture error. The 3890 

diagonal elements of matrix [R] are assigned based on the accuracy of the radiometer 

and radar observations with the off diagonal elements again set to be zero, assuming 

that observation errors are uncorrelated both spatially and between correlations. 

The final downscaled soil moisture field [θ(F)] is validated against the 1 km soil 

moisture reference map derived from the 1 km PLMR (Gao et al., under review). 

Results of the Bayesian algorithm are also compared to the “best” linear algorithm in 

Chapter 9, and with the soil moisture inversions from 36 km brightness temperature 

at h-pol and 1 km resolution backscatter at hh-pol. Downscaled soil moisture 

products are also evaluated at 3 km and 9 km resolution. Results on these resolutions 

can be obtained using two methods: i) by linearly aggregating the downscaled 1 km 

soil moisture to 3 km and 9 km respectively; or ii) by directly using the 3 km or 9 km 

resolution radar observations rather than the 1 km resolution radar observation as 

the input of [Z]. Both methods will be evaluated. 

10.4 Results and Discussion 

10.4.1 Passive-only and active-only soil moisture retrievals 

The background soil moisture field can be estimated from direct inversion of either 

the 36 km radiometer brightness temperature or from the 1 km radar backscatter. 

Based on the observations and available ancillary parameters as stated in Section 10.2, 

the 36 km resolution soil moisture was obtained from the 36 km radiometer 

brightness temperature at h-pol using the single channel τ-ω model (Panciera et al., 

2009). The time series of radiometer observations and retrieved soil moisture across 

the 9 days of SMAPEx-3 are in Table 10-1. Similarly, the background soil moisture 

field was obtained from the 1 km resolution radar backscatter at hh-pol through the 

active soil moisture retrieval model as shown in (Zhan et al., 2006).  
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An example of radar retrieved soil moisture at 1 km resolution on days D3, D5 and 

D8 is shown in Figure 10-2, where a contrast in soil moisture values can be seen 

between the grassland in the middle area and the cropping land on west and east 

sides. It should be noted that the accuracy of soil moisture retrieval from radar is 

highly affected by the surface roughness and vegetation structural parameters. 

However, default parameters relating vegetation and roughness were used during soil 

moisture retrieval and forward modelling, which may influence the accuracy of 

retrieval from radar and so also affect the accuracy of the downscaled soil moisture. 

Apart from being taken as the background soil moisture field, these radar and 

Table 10-1: Time series of observed brightness temperature (Tb, in K) at h-pol and v-

pol at 36 km resolution across the 9 days of SMAPEx-3, and the soil moisture 

(cm3/cm3) estimated from the Tbh values using the single channel passive microwave 

retrieval method. Also shown are forward model estimated brightness temperatures 

at 36 km resolution (from radiometer inversed background soil moisture) and their 

first derivatives (Jacobian), at h-pol and v-pol at 36 km resolution across 9 days of 

SMAPEx-3. 

 

D1 D2 D3 D4 D5 D6 D7 D8 D9 

Observed Tbh (K) 235 234 230 232 237 240 241 244 244 

Observed Tbv (K) 259 258 252 256 260 261 260 264 264 

Estimated Tbh (K) 230 218 229 231 235 237 238 242 242 

Estimated Tbv (K) 265 256 262 264 267 269 269 272 272 

Jacobian of Tbh 

(K/(cm3/cm3)) 
-305 -269 -290 -286 -298 -295 -305 -316 -313 

Jacobian of Tbv 

(K/(cm3/cm3)) 
-188 -190 -188 -181 -181 -177 -181 -180 -178 

Background soil 

moisture (cm3/cm3) 
0.099 0.094 0.120 0.122 0.095 0.095 0.088 0.074 0.078 
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radiometer inversed soil moistures will also be compared with the downscaled soil 

moisture product obtained from the Bayesian merging algorithm in the end. 

10.4.2 Selection of the background soil moisture 

In order to decide whether the radar retrieved soil moisture or the radiometer 

retrieved soil moisture is more suitable as the background soil moisture, a preliminary 

selection was conducted. During this selection, the radiometer inversed soil moisture 

and the radar inversed soil moisture was chosen as the background soil moisture 

individually, and the error covariance [P] of the background soil moisture obtained 

from comparison between the background soil moisture and the reference soil 

moisture, as discussed in the previous section.  

The forward model estimate of Tb and σ and their first derivatives (Jacobian) were 

obtained using the background soil moisture from the radiometer or radar inversion 

accordingly. When using the radiometer inversed 36 km soil moisture as the 

background, the time series of the estimated Tb and its Jacobian are shown in Table 

10-1 across the 9 days, with an example of estimated σ and the Jacobian on D5 

 

Figure 10-2: Radar observations at hh-pol at 1 km resolution on D3, D5 and D8 of 

SMAPEx-3, together with the soil moisture (cm3/cm3) maps retrieved from those 

radar observations. 
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shown in Figure 10-3. In this case, the RMSE of the estimated and observed 

brightness temperature across 9 days was around to be 6 K at h-pol and 7 K at v-pol, 

while the RMSE of the estimated and observed backscatter was around 2.1 dB at hh-

pol, 1.6 dB at vv-pol and 10.1 dB at hv-pol. When using the radar inversed 1 km soil 

moisture as the background, the time series of estimated Tb and its Jacobian are 

shown in Table 10-2 across the 9 days, with an example of estimated σ and the 

Jacobian on D5 shown in Figure 10-4. Consequently, the RMSE of the estimated and 

observed brightness temperature across the 9 days was around 11 K at h-pol and 13 

K at v-pol, being much higher than when using the radiometer retrieved soil moisture 

as the background. The RMSE of the estimated and observed backscatter was 

around 3.1 dB at hh-pol, 2.4 dB at vv-pol and 11.3 dB at hv-pol. 

 

Figure 10-3: Example of radar backscatter observations, estimates and first 

derivatives (Jacobian) at hh-pol, vv-pol and hv-pol on D5 (15th September, 2011), 

using the 36 km resolution background soil moisture derived from the radiometer 

on D5. Different colour-bar scales are used for hh-pol, vv-pol and hv-pol. 
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This evaluation was performed on each of the 9 flight days of SMAPEx-3, with 

similar results obtained for each day; day D5 is taken as an example here and shown 

in Figure 10-5. Using the radiometer inversed soil moisture as the background, the 

RMSE against the reference was 0.025 cm3/cm3 at 1 km resolution. In terms of the 

correlation between downscaled and reference soil moisture, the R2 approximated to 

0.85. In contrast, when using radar inversed soil moisture as the background, the 

resulting RMSE against the reference was 0.145 cm3/cm3 and the R2 in this case was 

around 0.06. Results on other days were similar to those on D5, indicating that use of 

radiometer inversed soil moisture as the background had much better results on the 

accuracy of downscaled soil moisture than use of radar inversed soil moisture as the 

Table 10-2: Time series of observed brightness temperature (Tb, in K) at h-pol and v-pol 

at 36 km resolution across 9 days of SMAPEx-3, and average soil moisture (cm3/cm3) 

estimated from radar backscatter (σhh) using the active microwave retrieval method. Also 

shown are forward model estimated brightness temperatures (using spatially aggregated 

1 km resolution radar inversed background soil moisture) and their first derivatives 

(Jacobian), at h-pol and v-pol at 36 km resolution across 9 days of SMAPEx-3. 

 

D1 D2 D3 D4 D5 D6 D7 D8 D9 

Observed Tbh (K) 235 234 230 232 237 240 241 244 244 

Observed Tbv (K) 259 258 252 256 260 261 260 264 264 

Estimated Tbh (K) 224 225 241 243 240 253 253 257 256 

Estimated Tbv (K) 262 261 269 272 270 278 278 279 279 

Jacobian of Tbh 

(K/(cm3/cm3)) 
-287 -292 -329 -325 -313 -339 -348 -356 -349 

Jacobian of Tbv 

(K/(cm3/cm3)) 
-189 -192 -182 -173 -178 -158 -167 -162 -159 

Background soil 

moisture (cm3/cm3) 
0.124 0.119 0.070 0.068 0.081 0.047 0.046 0.035 0.04 
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background. The main reason for the poor results using radar inversed soil moisture 

as the background could be attributed to the poor background soil moisture field 

from use of default ancillary parameters during retrieval and forward estimation. 

Therefore, based on this comparison of using radar and radiometer inversed soil 

moisture individually as the background, the use of radiometer inversion was selected 

for further evaluation of the Bayesian method. 

10.4.3 Downscaled results of the Bayesian merging algorithm 

The radiometer retrieved soil moisture was selected as the background soil moisture 

field, upon which the predictions of the brightness temperature and backscatter 

values were obtained, as listed in Table 10-1 and Figure 10-3. As for the error 

covariance [P] of the background soil moisture, it was obtained from comparing the 

background soil moisture to the radar retrieved soil moisture in this case, as the true 

soil moisture map at fine resolution is not available for SMAP. The [P] estimated 

 

Figure 10-4: Example of radar observations, backscatter estimates and the first 

derivatives (Jacobian) at hh-pol, vv-pol and hv-pol on day D5 (15th September, 

2011), using 1 km resolution background soil moisture from radar on D5. Different 

colour-bar scales are used for hh-pol, vv-pol and hv-pol. 
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from background and radar retrieved soil moisture was compared to the “true” [P], 

which was estimated from the background and reference soil moisture maps. Across 

9 days of SMAPEx-3, the average RMSE of the estimated and “true” diagonal 

elements of [P] were compared, being around 0.04 (cm3/cm3)2. Therefore, even 

without considering the correlation approximation, it is expected that the diagonal [P] 

values approximated from two alternative background fields will influence the 

accuracy of the soil moisture downscaling. However, the following downscaling 

results are based on the estimated [P] as the true soil moisture map at fine resolution 

will not be available for actual SMAP application, but are compared with those based 

on the “true” diagonal elements of [P] so as to evaluate the impact on the 

downscaling accuracy. 

The downscaled soil moisture at 1 km resolution was obtained for each of 9 days 

through the Bayesian merging method. Results at other resolutions (i.e. 3 km and 9 

km) were also obtained using the two methods describe previously: i) by linearly 

aggregating the downscaled 1 km soil moisture to 3 km and 9 km respectively; or ii) 

 

Figure 10-5: Comparison of downscaled soil moisture products on D5 (15th 

September, 2011) from different backgrounds, i.e. either the 36 km resolution soil 

moisture inversed from PLMR brightness temperature (Tb), or 1 km resolution soil 

moisture inversed from PLIS backscatter. Downscaled results are evaluated against 

the reference soil moisture retrieved from 1 km resolution PLMR Tb single channel 

retrieval.  
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by directly using the 3 km or 9 km resolution radar observations rather than the 1 km 

resolution radar observation as the input. Both methods have been conducted with a 

minor difference in the accuracy of downscaled soil moisture, being less than 0.002 

cm3/cm3 at 9 km resolution. Consequently, all of the figures and statistics showed 

here are from the first method.  

Three days, including D3, D5 and D8, have been chosen from the full 9 days 

experiment period as an example of the downscaling results. Day D3 represented the 

“wet” condition as a raining event happened during the first couple of days, D8 

 

Figure 10-6: Comparison of downscaled soil moisture maps (cm3/cm3) from 

Bayesian merging algorithm and the reference at different resolutions (1 km, 3 km, 

and 9 km). Data were collected on D3 (10th September 2011) of SMAPEx-3. Pixels 

in black at 1 km resolution in the northeast of the reference map are the water-

bodies which have been removed prior to conducting the downscaling algorithm. 

Also shown is the absolute difference for each pixel by comparing the downscaled 

soil moisture and the reference soil moisture. 
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represented the “dry” condition after a drying-down period, and D5 was selected to 

represent the status in between. Results on those three days are shown in Figure 10-

6, Figure 10-7 and Figure 10-8, with the water-bodies removed prior to conducting 

the downscaling procedure.  

By comparing the downscaled soil moisture to the reference soil moisture map, it is 

noted from Figure 10-6, 10-7 and 10-8 that the error of downscaling was greater in 

the eastern and western area than in the middle area of the SMAPEx site, probably 

due to the effect from different land cover types. The eastern and western areas were 

dominated by cropping sites which had various conditions in terms of vegetation 

types, heights, VWC, biomass and roughness etc., while the middle area was mainly 

occupied by relatively homogeneous grassland with more uniform surface conditions. 

As radar observations were more affected by the vegetated area than the grassland 

area, the accuracy of radar observations to reflect the actual distribution of soil 

 

Figure 10-7: As for Figure 10-6 but on D5 (15th September 2011) of SMAPEx-3. 
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moisture across the entire site was hampered by the heterogeneity in vegetation. 

However, the influence from the surface conditions was lowered when aggregated to 

larger scale, as the variations in the vegetation and surface roughness etc. were 

smoothed out by averaging the pixels at 1 km to 3 km and to 9 km resolution. 

Consequently, the error of downscaling reduced from 1 km to 9 km, as expected. By 

comparing the pattern in the downscaled soil moisture map to the pattern in the 

reference map it was found that results on D3 was poorest in terms of pattern match 

among those three days. The reference map at 1 km resolution in Figure 10-6 had 

higher soil moisture content, not only in the cropping areas but also shown in a strip 

spreading from the left-bottom corner to the centre of the SMAPEx site, because of 

rain in that area. However, the downscaled result in Figure 10-6 could not capture 

this soil moisture pattern. In contrast, results on D5 and D8 showed better pattern 

match than D3, mainly because the heterogeneity across the entire site reduced.  

 

Figure 10-8: As for Figure 10-6 but on D8 (21st September 2011) of SMAPEx-3. 
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By comparing the results for D5 as shown in Figure 10-5 and Figure 10-7 based on 

different [P], the RMSE of downscaled soil moisture at 1 km resolution was around 

0.020 cm3/cm3 in Figure 10-5 when using the “true” [P] and 0.043 cm3/cm3 in Figure 

10-7 when using the approximate [P]. The latter had a higher error due to the poorer 

estimation of [P]. Consequently, it is expected that more accurate estimation of [P], 

including correct consideration of the correlations would contribute to better 

downscaled results. Results on other days can be found in Table 10-3, from which it 

is noted that the RMSEs based on the “true” [P] are generally lower than those based 

on the [P] approximated from radiometer and radar retrieved soil moisture, across all 

9 days. The average RMSE using the “true” [P] was around 0.019 cm3/cm3 at 1 km, 

0.017 cm3/cm3 at 3 km and 0.013 cm3/cm3 at 9 km respectively, which would be the 

“best” performance of the Bayesian merging method given that the estimation [P] is 

improved to be very close to the “true” [P]. 

According to Table 10-3, the error of downscaling reduced when aggregating from 1 

km to 9 km, with an improvement in accuracy of around 0.030 cm3/cm3. It is also 

noticed that the error of downscaling reduced following the drying down from D1 to 

D9 due to the corresponding decreased heterogeneity of the surface conditions. This 

is consistent with results found from the other methods, as also shown in Table 10-3. 

The poorest results were found from the radar-only retrieval method, probably due 

to the strong influence from vegetation and surface roughness conditions and the 

poor predictive skill of this model using default parameters. This was followed by the 

radiometer-only retrieval, which used a uniform soil moisture value across the entire 

site. Clearly the best downscaling results were found from the more sophisticated 

downscaling methods that rely upon merging data from the active and passive 

approaches, with an improvement of approximately 0.01 cm3/cm3 over the 

radiometer-only method and 0.04 cm3/cm3 over the radar-only method at 9 km 

resolution. The optional method and the Bayesian method (when using the 

approximate [P]) showed minor difference in terms of RMSE, with both being 

around 0.02 cm3/cm3 at 9 km resolution.  
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Apart from the evaluation on individual days, comparison of these four methods was 

also conducted by combining all 9 days of results, as shown in the scatterplots in 

Figure 10-9. The RMSE indicated in Figure 10-9 was calculated by comparing all 9 

days’ time series of downscaled soil moisture with time series of reference soil 

moisture. The correlation between downscaled soil moisture and reference across 9 

days, denoted by correlation coefficient R2, was also studied. Again, the radar-only 

retrieval method showed the poorest correlation between downscaled and reference 

Table 10-3: Root Mean Square Error (RMSE, in the unit of cm3/cm3) of downscaled soil 

moisture from the different downscaling methods across the 9 days (D1 to D9) of SMAPEx-3 

at 1 km, 3 km and 9 km resolution. * Bayesian downscaling results based on the “True” error 

covariance [P]. 

Algorithm Resolution D1 D2 D3 D4 D5 D6 D7 D8 D9 Average 

Bayesian 

 

1km 0.048 0.059 0.059 0.062 0.043 0.045 0.046 0.048 0.041 0.050 

3 km 0.038 0.046 0.039 0.039 0.029 0.031 0.026 0.029 0.026 0.034 

9 km 0.026 0.030 0.024 0.027 0.017 0.020 0.009 0.017 0.013 0.020 

Bayesian* 

1km 0.018 0.022 0.022 0.022 0.020 0.016 0.015 0.018 0.018 0.019 

3 km 0.016 0.021 0.017 0.016 0.017 0.015 0.015 0.016 0.016 0.017 

9 km 0.013 0.020 0.011 0.012 0.012 0.013 0.012 0.012 0.012 0.013 

Optional 

1km 0.048 0.053 0.047 0.040 0.037 0.040 0.041 0.038 0.032 0.042 

3 km 0.037 0.042 0.035 0.030 0.028 0.025 0.025 0.028 0.022 0.030 

9 km 0.025 0.029 0.025 0.021 0.018 0.020 0.015 0.019 0.015 0.021 

Radiometer 

retrieval 

1km 0.064 0.095 0.059 0.056 0.061 0.056 0.051 0.050 0.052 0.061 

3 km 0.044 0.068 0.04 0.038 0.042 0.037 0.029 0.032 0.033 0.040 

9 km 0.032 0.059 0.025 0.025 0.024 0.022 0.017 0.019 0.020 0.027 

Radar 

retrieval 

1km 0.154 0.161 0.146 0.143 0.144 0.129 0.121 0.113 0.115 0.136 

3 km 0.099 0.096 0.091 0.092 0.084 0.083 0.070 0.071 0.069 0.084 

9 km 0.070 0.057 0.064 0.071 0.052 0.065 0.050 0.056 0.053 0.060 
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soil moisture, confirming that radar alone has little potential to provide a medium 

resolution soil moisture product with high accuracy without first making significant 

improvements to the algorithm and/or its parameterisation. Although the 

radiometer-only retrieval method had a RMSE close to that of the optional and 

Bayesian methods, it showed very poor spatial correlation between the downscaled 

and reference soil moisture, attributed to the fact that the same soil moisture was 

used at each 1 km × 1 km pixel.  Therefore variation of soil moisture across the 

entire site was not well captured by the radiometer-only method, with the more 

sophisticated methods adding considerable spatial skill. In term of the Bayesian 

merging method, its downscaled soil moisture at 1 km resolution was found to be 

poorly related to the reference soil moisture, with this situation improving 

considerably at 9 km resolution, which was similar to the scenario for the optional 

method. Consequently, the optional and Bayesian merging methods were found to 

have similar correlation between downscaled and reference soil moisture at 9 km 

resolution, but the optional method showed a superiority in downscaling soil 

moisture when applied at higher resolutions. Results from the 9 days were divided 

into two groups (i.e. D1-D3 and D4-D9) in order to differentiate the behaviour of 

downscaling algorithm with and without influence from the rain period. As shown in 

Figure 10-9, downscaled soil moisture on D1-D3 were less correlated to the 

reference than those on D4-D9, due to the more heterogeneous surface conditions 

on the first couple of days following the rain event. 

The RMSE and R2 for each pixel have also been calculated by using the time series of 

downscaled soil moisture value and reference soil moisture across the 9 days at that 

pixel. The spatial distribution of RMSE and R2 for the different methods can be 

found in Figure 10-10 and Figure 10-11. In comparison to the other methods, the 

radar-only retrieval method showed the greatest error and poorest correlation in 

retrieving medium resolution soil moisture. The large errors for the radar-only 

retrieval were expected due to the difficulty associated with the radar inversion 

modelling. 

In terms of the impact from land cover type, the cropping areas had higher RMSE 

and lower R2 when compared to the grassland areas, as shown in the downscaled 
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map from the optional method and Bayesian method, due to the strong influence 

from vegetation and surface roughness on radar observations. But when averaging to 

larger scale, the difference in RMSE and R2 across the entire site decreases. Especially 

at 9 km, the Bayesian downscaling algorithm showed very promising results in terms 

of RMSE and R2.  

The above analysis was done by removing the water-bodies which constituted 

approximately 1% of the study area. A study on the influence from water-bodies was 

also carried out in order to simulate more realistic SMAP data. In this case, a higher 

 

Figure 10-9: Scatterplot of the reference and downscaled soil moisture from the 

radiometer-only retrieval method, radar-only retrieval method, the optional 

downscaling algorithm for SMAP and the Bayesian merging method, at 1 km, 3 km, 

and 9 km resolution. Performance of each method was evaluated in terms of Root-

Mean-Square-Error (RMSE, in unit of cm3/cm3) and correlation (R2) between 

downscaled and reference soil moisture. Data are from all 9 days of SMAPEx-3, with 

data from Day 1 to Day 3 denoted by open circles, while data from Day 4 to Day 9 

denoted by solid circles.  
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average RMSE (across the 9 days) was obtained, being 0.056 cm3/cm3 at 1 km, 0.038 

cm3/cm3 at 3 km and 0.023 cm3/cm3 at 9 km resolution for the Bayesian merging 

method when including the existence of water-bodies.  

10.5 Chapter Summary 

The Bayesian merging method was tested for its ability to provide a medium 

resolution soil moisture map by using coarse resolution radiometer observations and 

fine resolution radar observations. The main objective of this study was to assess the 

feasibility of this downscaling approach for its application in the SMAP mission, by 

using experimental data rather than the synthetic data used in its development. The 

data set used here was from the SMAPEx-3 field campaign in Australia; the same as 

 

Figure 10-10: Spatial distribution of Root-Mean-Square-Error (RMSE, in unit of 

cm3/cm3) for radiometer-only retrieval method, radar-only retrieval method, the 

optional downscaling algorithm for SMAP and the Bayesian merging method 

across the entire SMAPEx site at 1 km, 3 km and 9 km resolution, respectively. 

RMSE for each pixel was calculated from the downscaled soil moisture and the 

reference soil moisture at this pixel across 9 days of SMAPEx-3. 
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for the three linear downscaling algorithms tested in Chapter 9. A finding from this 

study was that the accuracy of the Bayesian merging method was affected by the 

accuracy of soil moisture retrieval from fine resolution radar observations; it is 

expected that a better radar retrieval algorithm would likely improve the Bayesian 

method performance. Moreover, the downscaling performance was better in the 

homogenous grassland areas than the cropping areas which contained more 

heterogeneous surface conditions. In comparison to other medium resolution soil 

moisture retrieval methods, this non-linear Bayesian merging method had similar 

results in terms of RMSE and correlation R2 at 9 km resolution as the best linear 

downscaling algorithms tested in an earlier chapter, and had much better results than 

radar-only or radiometer-only retrieval methods. The main limitation of the Bayesian 

method was the use of default parameters involved in the radar retrieval model. 

Accordingly, it is expected that by using an improved radar model the Bayesian 

merging method will have great potential to retrieve a more accurate soil moisture 

product at medium resolution then the alternative methods. 
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Figure 10-11: Spatial distribution of correlation coefficient (R2) for radiometer-only 

retrieval method, radar-only retrieval method, the optional downscaling algorithm 

for SMAP and the Bayesian merging method across the entire SMAPEx site at 1 

km, 3 km and 9 km resolution, respectively. R2 for each pixel was calculated from 

the downscaled soil moisture and the reference soil moisture at this pixel across 9 

days of SMAPEx-3. 
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11 Conclusions and Future Work  

11.1 Conclusions 

The objective of this research was to test candidate active-passive soil moisture 

downscaling algorithms with a comprehensive experimental data set, for 

development of pre-launch algorithms of the SMAP mission. Existing active-passive 

downscaling algorithms including the baseline and optional downscaling algorithms 

for SMAP, a change detection method, and the Bayesian merging method have been 

selected. Previously these had been mostly studied with synthetic data. Therefore, the 

main contribution of this research was to provide an extensive study on alternate soil 

moisture downscaling algorithms using a consistent and comprehensive data set from 

field campaigns conducted in Australia, thus providing a solid recommendation on 

the preferred method when applied to the real world.  

11.1.1 Preliminary research 

Given the importance of applying the downscaling algorithm to experimental data, 

the first step of this research was to test the baseline downscaling algorithm with 

existing satellite data, as described in Chapter 4. Radiometer observations from the 

SMOS satellite and radar observations from ASAR (onboard ENVISAT) were used 

for this purpose, as they were the best options for closely simulating the data from 

SMAP. In this study the value of β was estimated using regression on pairs of SMOS 

Tb and ASAR σ data at the same resolutions within the SMAPEx area. The 

robustness of β was subjected to the number of available Tb and σ data pairs. The 

variation of β with seasons was illustrated, showing that β must be applied based on 

the specific land surface conditions, in order to ensure the accuracy of downscaled 

results. Another issue pertaining to β was the size of study area. Since β is related to 

vegetation type, surface roughness, land management and other factors, the 

robustness of its value is affected by the heterogeneity of the study area. At the 

beginning of this study, β was assumed to be time-invariant and homogenous in the 

entire area, which increased the errors obtained with the downscaling algorithm.  
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Results from this study indicated downscaling results using the baseline algorithm 

with SMOS Tb and ASAR σhh data generally did not meet the accuracy requirement, 

having a downscaled RMSE of not better than 5 K at 10 km resolution. While a 

better downscaling performance would be expected using an improved 

parameterization of β based on more pairs of radar and radiometer data for linear 

regression, and/or accommodating spatial variation, the main limitation from this 

particular study was felt to be from the characteristics of the available radar data. 

Limitations from frequency band, available polarization, limited concurrent overpass 

and high noise level have likely resulted in the failure to meet the performance 

requirement of the SMAP baseline downscaling algorithm using data from these two 

satellites. Consequently, it was concluded from this study that an experimental data 

set with identical characteristics to SMAP should be utilized in order to test the 

downscaling algorithm performance. 

11.1.2 Simulation of the SMAP data stream 

The SMAPEx field campaigns, conducted in Australia, provide the opportunity to 

simulate SMAP observations from an airborne simulator with radar and radiometer 

mounted together. Apart from the airborne observations, ground sampling was 

conducted concurrently with the aim to provide a reference brightness temperature 

and soil moisture data set for evaluating the downscaling algorithm performance. 

However, in order to simulate the prototype SMAP data stream, data collected from 

the aircraft simulator had to be processed in terms of spatial aggregation and 

incidence angle normalization so as to closely replicate features of the SMAP data.  

Results suggest that the RMSD of the normalization method would be less than 0.8 

dB for radar data from PLIS when aggregating the pixels to larger than 1 km; the 

RMSD would be less than 1 K for radiometer data from PLMR when upscaling to a 

resolution coarser than 6 km. In terms of upscaling, the error of linear aggregation 

for PLIS in power units is expected to be less than 2.7 dB when upscaling to larger 

than 150 m resolution, with the majority of this error being due to incidence-angle 

normalization, while for PLMR the upscaling error is around 2 K. Multi-azimuth 

observations from PLIS and PLMR were analysed for several fields, suggesting that 

fields with distinct row structure would induce obvious azimuthal signature at high 
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spatial resolution. However, such signatures tended to cancel each other out at coarse 

resolution, as the surface characteristics became more heterogeneous. Thus, the 

potential impact of the SMAP rotating antenna and the subsequent azimuthal 

impacts on the radar and radiometer data is expected to be minimal at the resolutions 

of SMAP. Moreover, it was concluded that the CDF-normalization method may be 

used together with linear aggregation to simulate the SMAP data stream from the 

SMAPEx dataset. After evaluating the accuracy of each method in Chapter 5, results 

indicated that airborne observations from the SMAPEx field campaigns can be 

reliably used to simulate the SMAP data stream for subsequent use in active-passive 

soil moisture algorithm development. 

11.1.3 Evaluation of the SMAP baseline downscaling algorithm 

Using the simulated SMAP data, the baseline downscaling algorithm proposed for 

the SMAP mission was tested in Chapter 6. The rationale behind this algorithm is an 

assumption of linearity between brightness temperature and backscatter. The product 

of this step is a downscaled brightness temperature at 9 km resolution. The average 

RMSE of downscaled Tb across 9 days at 9 km resolution was 3.1 K and 2.6 K at h- 

and v-polarization respectively, which increased to 5.5 K and 4.5 K at 3 km 

resolution, and 8.2 K and 6.6 K at 1 km resolution. The algorithm was found to 

perform poorly in the early days of the experiment due to spatial heterogeneity 

caused by a large rainfall event in the study area. In contrast, the last 5 days of the 

experiment, characterized by a drying down period and no rainfall, showed an 

increase in the algorithm performance, with an RMSE consistently better than 2.4 K 

at 9 km resolution, indicating that the baseline downscaling algorithm has the 

potential to fulfil the requirements of SMAP.  

It was also shown that the accuracy of the downscaling approach was primarily 

determined by the correlation between Tb and σ, which was in fact affected by the 

vegetation characteristics across the entire study area and the sensitivity of brightness 

temperature relative to radar backscatter, as quantified by the slope β of the linear 

regression. Moreover, it was found that σ at vv-polarization was best correlated to Tb 

at both polarizations, therefore being more suitable for use in the downscaling 

algorithm than σ at hh- and hv-polarization. While a better estimation of β at 36 km 
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scale may be expected from SMAP than that achieved here, due to the relatively 

short nature of this experiment, the impact from spatial variability is expected to be 

of greater consideration. Henceforth, it is indicated from this study that the baseline 

downscaling algorithm could perform well over the relatively homogenous grassland, 

but that performance is poorer than the SMAP error budget in the cropping area due 

to the influence from greater heterogeneity. Consequently, a single value of β (the 

sensitivity of Tb to σ) across the entire SMAPEx site was not adequate for correctly 

representing the sensitivity between Tb to σ when applied to a heterogeneous area.  It 

is suggested that improved spatially distributed estimation of β should be undertaken 

in order to improve the downscaling, such as through the correlation between β and 

RVI from fine resolution radar observations. 

11.1.4 Effect of land cover type and land surface heterogeneity 

Based on the finding of Chapter 6, use of a spatially varied parameter β according to 

land cover type was studied in Chapter 7. The main findings from this study 

included: i) the sensitivity of Tb to σ varied significantly with respect to land cover 

types, with the highest value found in wetland areas (with water body included) and 

the lowest value in grassland area; ii) the accuracy of the downscaling algorithm in 

grassland areas could meet the accuracy requirements of SMAP while in cropland 

areas it could not due to the higher complexity of land surface conditions; and iii) the 

influence from as little as 6% coverage by water-bodies was confirmed to have a 

significant impact on the downscaling performance and should therefore be removed 

prior to downscaling. Further to this study, the baseline downscaling algorithm was 

tested in Chapter 8 using very high resolution (i.e. 1 km Tb was disaggregated to 250 

m using 100 m resolution σ), in order to test the robustness of the baseline algorithm 

at different resolutions and to further assess the impact of land surface heterogeneity 

under more homogeneous pixel footprints. The main conclusion from this study was 

that the accuracy of the downscaling approach was primarily determined by the land 

cover/use type, due to the strong impact on the parameter β. The baseline 

downscaling algorithm of SMAP as tested in Chapter 6-8 maintained the same 

downscaling ratio as will be applied in SMAP, i.e. 36:9:3. 
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11.1.5 Comparison with alternate linear methods 

The output from the baseline downscaling algorithm of SMAP was a downscaled Tb, 

which then had to be converted to downscaled soil moisture.  Consequently, the 

main objective of Chapter 9 was to evaluate the derived soil moisture from the 

baseline algorithm and to compare the results across three alternative soil moisture 

downscaling algorithms: i) the baseline soil moisture downscaling algorithm for 

SMAP, which is based on a downscaled brightness temperature; ii) the optional soil 

moisture downscaling algorithm for SMAP, which uses the fine resolution radar 

observations to downscale the coarse resolution soil moisture to medium-resolution 

soil moisture directly; and iii) a change detection method, which is based on the 

assumption of a linear relationship between Tb and σ, but using the concept of 

temporal changes in fine resolution radar observations to update the soil moisture 

spatial distribution at the previous time.  

The average RMSE of downscaled soil moisture across the 9 days at 9 km resolution 

was 0.019 cm3/cm3, 0.021 cm3/cm3 and 0.026 cm3/cm3 for baseline, optional, and 

change detection methods, respectively. While all three methods met the RMSE 

requirement at 9 km resolution, the ability to detect the spatial pattern varied 

considerably. The change detection method had the poorest spatial correlation. 

Consequently the optional algorithm produced the best overall downscaling results, 

with comparable RMSE to the baseline method, but with much higher correlation 

between downscaled product and reference soil moisture.  

The assumption of a constant β across entire SMAPEx may influence the resulting 

accuracy of each downscaling algorithm. While a better estimation of the distribution 

of β across the entire site may be obtained through its correlation with land cover, 

vegetation water content, surface roughness etc. in future study, providing the 

opportunity to retrieve medium resolution soil moisture product more accurately.  

11.1.6 Comparison with Bayesian merging method 

In contrast to the linear downscaling algorithms, a non-linear downscaling algorithm 

– the Bayesian merging method – was also assessed. This non-linear algorithm uses 

the concept of Bayes theorem to update initial background soil moisture with both 
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fine resolution radar observations and coarse resolution radiometer observations 

simultaneously. Previously, this method had only been tested using synthetic data, 

meaning that this was the first study to test it with realistic experimental data. The 

RMSE of downscaled soil moisture at 9 km resolution from the Bayesian merging 

method was around 0.02 cm3/cm3, being similar to the “best” linear algorithm – the 

optional downscaling algorithm tested in Chapter 9. However, the non-linear 

Bayesian merging method had slightly poorer results in terms of the spatial 

correlation when compared to the optional algorithm. The main limitation of this 

Bayesian method was the accuracy of the radar model. It is expected that by using a 

more accurate radar parameterisation that the Bayesian merging method will surpass 

the retrieval accuracy of the optional model. 

To fully test the added skill of these downscaling methods, the optional and Bayesian 

merging method results were also compared to traditional inversions of the radar at 

the downscaled resolution directly, and from the radiometer observations when 

assuming a uniform spatial field. The poorest results were from the radar-only 

retrieval method, probably due to the strong influence from vegetation and surface 

roughness conditions and the use of default parameters. This was followed by the 

radiometer-only retrieval, due to the uniform soil moisture distribution assumption 

across the entire site. Based on this analysis the optional algorithm is recommended 

as the currently preferred approach due to its simplicity of application and slightly 

better results when compared to the Bayesian algorithm. However, both methods 

have the potential to provide better retrievals of soil moisture, through a better 

estimation of β in the optional algorithm and a better radar algorithm in the Bayesian 

algorithm.  

11.2 Future work 

Improvement and future work mainly include: 

1. A better estimation for β may obtained from its correlation with vegetation 

characteristics, e.g. land cover type and RVI etc., with the aim to obtaining a 

distribution map of β across the entire study area. Therefore, study on the 

parameterization of β from vegetation characteristics will be conducted in the 
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future work, thus having the ability to retrieving better results for baseline 

and optional downscaling algorithms for SMAP. This future work mainly 

includes the collection of time series of radiometer and radar observations 

from aircraft in order to obtain the value of β through regression. RVI can be 

simply obtained from the fine resolution radar observations at different 

polarizations, and therefore will be able to be studied on its correlation with 

β. 

2. Performance of the Bayesian merging method may get improved by using 

dynamic maps of ancillary parameters involved in the soil moisture retrievals. 

More accurate parameters including the surface roughness, VWC, land cover 

classification, other vegetation parameters etc., will be obtained through 

investigations on the retrieval of those parameters; moreover, different radar 

retrieval models will be evaluated in order to decide the “best” for application 

in Bayesian method. 

3. The effect from seasonality/time on the downscaling algorithms will be 

conducted, with data collected from different seasons, e.g. from SMAPEx-1, 

-2 and -3 field campaigns.  

4. Future work will also include the studies on retrieving temporal changes of 

soil moisture at medium resolution (~9 km). Again, those four downscaling 

methods, baseline, optional, change detection and Bayesian merging method, 

will be investigated on their ability to retrieve medium-resolution soil 

moisture changes.   

5. Alternative downscaling approaches will be investigated in future, which may 

use the land surface model output or/and the high resolution Tb data from 

shorter wavelengths to downscale the coarse resolution soil moisture.  
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