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Abstract 

It has been over ten years since the successful launch of the first-ever dedicated satellite 

for global soil moisture monitoring; Soil Moisture and Ocean Salinity (SMOS). 

Looking towards the future, P-band (0.3-1 GHz) is a promising technique to replace 

or enhance the L-band (1.4 GHz) SMOS and SMAP (Soil Moisture Active Passive) 

missions, because of the expected greater moisture retrieval depth and reduced impact 

from surface roughness and vegetation as a result of its lower frequency. However, 

there has been no observational evidence in P-band radiometry to demonstrate the 

above-postulated benefits. Accordingly, this research has established a long-term 

(2017-2021) tower-based experiment known as the P-band Radiometer Inferred Soil 

Moisture (PRISM, see https://www.prism.monash.edu) tower project, for 

undertaking a comprehensive evaluation of a P-band radiometer at 0.75 GHz in soil 

moisture remote sensing under a range of moisture, roughness, and vegetation 

conditions. This study therefore aimed to pave the way for a successful P-band 

radiometer-based mission to obtain deeper and more accurate global soil moisture 

information. The findings of this research are summarized here from the aspects of 

moisture retrieval depth, roughness effects, and vegetation effects. 

This research proposed a model to estimate moisture retrieval depth by utilizing the 

coherent radiative transfer model and the Fresnel equations, with the results being 

subsequently compared to empirical evidence from tower-based observations. Both 

predictions and observations agreed that P-band has the potential to retrieve soil 

moisture over a deeper layer than L-band, being ~7 cm rather than ~5 cm for the 

wavelength and conditions observed. The results also demonstrated that moisture 

retrieval depth is expected to increase with further increases in wavelength, with the 

potential to achieve a moisture retrieval depth greater than 10 cm for P-band below 

0.5 GHz. 

In terms of soil roughness, P-band was compared with L-band over bare flat and 

periodic soil surfaces. Physical simulations based upon the Improved Integral 

Equation Model demonstrated that P-band was less impacted by random roughness 

https://www.prism.monash.edu/
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than L-band. Moreover, the potential to retrieve soil moisture without discriminating 

periodic and flat surfaces was investigated by applying the roughness parameters 

calibrated for flat soil to retrieve the moisture of periodically rough soil. The results 

showed that soils with periodic surface profiles needed to be discriminated at L-band 

but not at P-band due to the reduced impact at P-band, supported by the more 

comparable RMSE at P-band (variation of up to 0.012 m3/m3) than L-band (variation 

of up to 0.022 m3/m3) across different roughness configurations. 

For vegetation, the tau-omega model was evaluated at P- and L-band over bare and 

wheat-covered flat and periodic soil surfaces. Comparable RMSE values across these 

different surfaces at both P- and L-band indicated that the periodic surfaces did not 

need to be discriminated when the vegetation canopy “masked” the roughness 

structure underneath. Moreover, a reduced vegetation impact at P-band was 

demonstrated, with an RMSE of 0.029 m3/m3 achieved when completely ignoring the 

wheat existence with under 4-kg/m2 vegetation water content, whereas at L-band the 

RMSE increased to 0.063 m3/m3. Soil moisture retrieval was also carried out over a 

much denser corn canopy with up to 20-kg/m2 vegetation water content when 

accounting for vegetation impact using the tau-omega model. The RMSE at P-band 

was found to be around 0.062 - 0.079 m3/m3, which was considered acceptable given 

the extremely high vegetation water content. Conversely, L-band was unable to sense 

the soil moisture beneath such a dense corn canopy at an acceptable accuracy, with 

RMSE higher than 0.1 m3/m3. 
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1 Introduction 

This thesis is the first investigation that compared P-band (~40-cm wavelength/0.75 

GHz) and L-band (~21-cm wavelength/1.41 GHz) radiometers in parallel using a 

long-term tower-based experiment site in Victoria, Australia, where various moisture, 

roughness, and vegetation configurations were covered, to determine if there is an 

improvement in soil moisture sensing capability at P-band due to the expected greater 

moisture retrieval depth and reduced roughness and vegetation impact when using a 

longer wavelength. This thesis is the first investigation that P- and L-band radiometers 

were compared in parallel. Although the footprints of P- and L-band radiometers were 

not completely overlapped when using the same incidence angle, potentially leading to 

slight uncertainties to this research, this thesis paves the way for a successful P-band 

mission in the future for sensing deeper and more accurate soil moisture from space. 

1.1 Background 

The amount of water in the Earth’s soil is around just 17,000 km3 (Oki and Kanae, 

2006), merely accounting for 0.05% of the total freshwater and 0.001% of the total 

water on/in the Earth (Shiklomanov, 1993). However, this small amount of water 

plays a crucial role in the Earth system because it nourishes vegetation, animals, and 

billions of humans. Moreover, soil moisture (SM) is a key parameter in the hydrological 

cycle that influences infiltration, runoff, and evapotranspiration (Seneviratne et al., 

2010). Furthermore, it controls the division of the available energy at the land surface 

into sensible and latent heat fluxes (Koster et al., 2004). 

Measuring soil moisture is challenging because of its high variability across temporal 

and spatial scale due to the heterogeneity of soil properties, topography, rainfall, and 

land cover characteristics (Owe et al., 2008). Over the past four decades, researchers 

have conducted numerous ground-, air- and space-based near-surface soil moisture 

remote sensing studies using visible (Liu et al., 2002, Lobell and Asner, 2002), thermal-

infrared (Maltese et al., 2013a, Maltese et al., 2013b, Zhang and Zhou, 2016), active 
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microwave (Panciera et al., 2014, Zhu et al., 2019a, Zhu et al., 2019b, Zhu et al., 2020) 

and passive microwave (Wigneron et al., 1995, Panciera et al., 2009b, Zhao et al., 

2020b). 

Microwave is the region of electromagnetic (EM) spectrum ranging approximately 

from 1 mm to 1 m in wavelength or correspondingly from 300 GHz to 0.3 GHz in 

frequency. Soil roughness is well known to complicate the interpretation of microwave 

data (Choudhury et al., 1979, Newton and Rouse, 1980). In addition, the vegetation 

canopy attenuates (absorbs and scatters) the soil emission and adds its own 

contribution to the overall emission (Jackson et al., 1982). Of all the current techniques 

for soil moisture sensing, L-band (~1-2 GHz) passive microwave remote sensing has 

been most widely employed due to: 1) the direct relationship of its response in the 

form of brightness temperature (TB) and soil moisture through the soil dielectric 

constant; 2) its greater soil moisture retrieval depth and 3) reduced roughness and 

vegetation impact compared to higher frequencies; and 4) having a protected band 

(1.400-1.427 GHz) allocated exclusively for radio astronomy use, meaning that it 

should be clear of Radio Frequency Interference (RFI) (Wigneron et al., 2017). 

To meet the growing need for global soil moisture data in hydrology, agriculture, 

drought, and flood forecasting, weather prediction, climate change, etc., the European 

Space Agency (ESA) launched the Soil Moisture and Ocean Salinity (SMOS) satellite 

(Kerr et al., 2010) in 2009 and the National Aeronautics and Space Administration 

(NASA) launched the Soil Moisture Active Passive (SMAP) satellite (Entekhabi et al., 

2010) in 2015. Both use L-band (1.4 GHz/21-cm wavelength) radiometers to measure 

the microwave emission from the Earth in the form of TB, which is a function of the 

emissivity and physical temperature of the target. The emissivity of bare soil varies 

from approximately 0.5 for smooth and very wet soil to close to 1 for rough and very 

dry soil (Ulaby et al., 1982), being the primary link between soil moisture and TB. The 

advancement of satellite observations and retrieval algorithms has made global soil 

moisture maps available every three days or less with overall accuracy of 0.04 m3/m3. 
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1.2 Problem and Objective 

Despite the above-mentioned achievements, global soil moisture sensing is still facing 

a few challenges. First, the moisture retrieval depth of the current L-band missions is 

believed to be 5 cm or even shallower (Escorihuela et al., 2010, Liu et al., 2012a, Zheng 

et al., 2019), which limits direct application of the data in disciplines that require deeper 

soil moisture information, e.g., weather prediction and climate research. Second, 

current SMAP and SMOS algorithms do not specifically consider any correction of the 

periodic row structure, which is a common type of soil tillage used for cultivation 

purposes and often affects soil emission to a substantial degree (Ulaby et al., 1986) 

because of the lack of global information on temporally varying row shape, height, and 

orientation. Third, the accuracy of these satellite products varies for different land 

surfaces. As an example, although the SMAP radiometer-based soil moisture data 

meets its overall target accuracy, errors for croplands are considerably larger (Chan et 

al., 2016, Colliander et al., 2017b, Walker et al., 2019). 

P-band (0.3-1 GHz/100-30-cm wavelength) is a promising candidate for conquering 

some of the difficulties faced at L-band due to its longer wavelength. It is a widely held 

understanding that a longer waveband should have a deeper moisture retrieval depth 

and reduced impact from surface roughness and vegetation (Ulaby et al., 1986), 

resulting in a more useful contributing depth and an overall higher soil moisture 

retrieval accuracy over vegetated rough/periodic soil surfaces. 

In terms of microwave radiometry, however, no observational evidence has been 

reported to demonstrate the postulated benefits of using P-band TB observations until 

this PhD research where the P-band Radiometer Inferred Soil Moisture (PRISM, see 

https://www.prism.monash.edu) tower project of Monash University was established. 

Taking advantage of the concurrently collected P- and L-band TB time series over a 

range of roughness and vegetation conditions, this PhD research aimed to demonstrate 

the potentially superior capability of a P-band radiometer over an L-band radiometer 

for soil moisture sensing from three aspects: 1) increased moisture retrieval depth, 2) 

reduced roughness impact, and 3) reduced vegetation impact. Global soil moisture 

https://www.prism.monash.edu/
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sensing could be substantially improved in terms of the moisture retrieval depth and 

retrieval accuracy if such hypotheses are proven to be true. 

1.3 Outline of Approach 

As Figure 1-1 presents, this thesis is organized around four key questions: 

1. Does P-band have a greater moisture retrieval depth than L-band? 

In this thesis, moisture retrieval depth was defined as the equivalent soil thickness for 

obtaining an average soil moisture that equates emissivity through the Fresnel 

equations to the theoretical emissivity from the coherent model. According to this 

definition, a moisture retrieval depth model was proposed to theoretically estimate the 

moisture retrieval depth for a range of typical soil profiles. To confirm this proposed 

method, empirical correlation analysis was also performed on the radiometric and soil 

moisture observations collected over bare flat soil. 

2. Is P-band less impacted by random and periodic surface roughness than L-band? 

 

Figure 1-1: Diagram illustrating the four research questions with data used in this 

PhD research. 
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The roughness effects herein involve two aspects: random roughness over flat soil and 

periodic roughness over furrowed soil for cultivation purposes. Accordingly, four 

different soil surfaces were included: flat soil, sinusoidal bench soil, and sinusoidal soil 

with a parallel and perpendicular orientation to the tower-looking direction. First, 

physical simulations were performed to seek theoretical evidence on the reduced 

roughness impact at P-band. Subsequently, the roughness model parameters were 

calibrated over the four soil surfaces. Finally, the parameters calibrated over the flat 

soil were applied to all four soil surfaces for soil moisture retrieval. The roughness 

impact of P- and L-band was compared based on the similarity of the retrieval 

performance across different soil surfaces. 

3. Is P-band less impacted by wheat canopy than L-band? 

This research question used the data for the same soil surfaces as in research question 

2 but covered by a wheat canopy with no more than 4 kg/m2 of vegetation water 

content (VWC). Based on the calibrated roughness parameter in research question 2, 

the vegetation parameters were further calibrated prior to the soil moisture retrieval. 

By comparing the retrieval performance across different soil surfaces, it was 

investigated whether the periodic surfaces need to be discriminated from the flat 

surfaces when covered by wheat in soil moisture retrieval at P- and L-band. Moreover, 

the vegetation impact at P- and L-band was compared by comparing the retrieval 

errors induced from ignoring the wheat canopy in the forward model. 

4. Is P-band less impacted by a dense corn canopy than L-band? 

This research question aimed to extend the investigation from the wheat with low-to-

intermediate VWC in research question 3 to dense corn with an extremely high VWC 

of up to 20 kg/m2. Similar to the methodology in research questions 2 and 3, roughness 

and vegetation parameters were calibrated separately and applied to soil moisture 

retrieval. The retrieval performance was subsequently compared at P- and L-band to 

demonstrate the expected reduction in vegetation impact at P-band. 
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1.4 Thesis Organization 

This thesis consists of 9 chapters. Chapter 2 provides an extensive review of the 

literature pertaining to different aspects of radiometry for soil moisture retrieval. 

Chapter 3 describes the PRISM tower experiment and the data sets used in the 

following analysis chapters, including P- and L-band TB observations, station soil 

moisture and temperature measurements, roughness and vegetation sampling, etc. 

Chapter 4 elaborates on the physical and semi-empirical models briefly introduced in 

Chapter 2 that are subsequently used throughout this thesis. 

Chapter 5 investigated research question 1 by theoretically and empirically estimating 

the moisture retrieval depth at P- and L-band. Chapter 6 answered part of research 

question 2 through physical simulation and soil moisture retrieval over different bare 

soil surfaces. Chapter 7 investigated part of research questions 2 and 3 over wheat-

covered flat and periodic soil surfaces. Chapter 8 further addressed research question 

4 by extending the investigation of vegetation to a higher-end VWC. Finally, Chapter 

9 presents the conclusions of this thesis and discusses further research requirements 

in order to ensure a successful P-band mission. 
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2 Literature Review 

This chapter presents the definition and importance of soil moisture and the 

techniques for soil moisture measurements. These techniques include 1) in-situ 

methods, and 2) remote sensing methods consisting of the visible, near- and thermal- 

infrared, and active and passive microwave techniques. Subsequently, passive 

microwave satellite missions are introduced, focusing on SMOS and SMAP, which is 

followed by the evolution of soil moisture measurement from microwave radiometry 

from the aspects of dielectric constant, sensing depth, effective temperature, soil 

surface roughness, and vegetation canopy. The soil moisture retrieval algorithms of 

current satellite missions are then reviewed. Finally, the knowledge gap and challenges 

at P-band are identified. 

2.1 Definition and Importance of Soil Moisture 

Soil moisture (or soil water content) is generally defined as the amount of water stored 

between the soil surface and water table, also known as the unsaturated zone. In 

practice, the water content is usually expressed in either the forms of volumetric or 

gravimetric soil moisture as follows (Seneviratne et al., 2010): 

 volumetric soil moisture, SMv =
vw

vm
 (m3/m3), where vm  and vw  are the 

volume of the moist soil and its water constituent, respectively; and 

 gravimetric soil moisture, SMg =
mw

mm
 (kg3/kg3), where mm and mw are the 

mass of the moist soil and its water constituent, respectively. 

Other terms include the ratio of saturation, soil moisture index, and absolute water 

content (Seneviratne et al., 2010). This thesis uses volumetric soil moisture in absolute 

terms (m3/m3) unless otherwise specified. 
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As a critical parameter in the hydrological cycle (Figure 2-1), soil moisture influences 

the precipitation partitioning into infiltration and runoff (Aubert et al., 2003). It also 

provides the water source for evapotranspiration, a process including mainly plant 

transpiration and bare soil evaporation that returns as much as 60% of the total land 

precipitation to the atmosphere (Oki and Kanae, 2006). Additionally, it partitions the 

land surface energy into latent and sensible heat fluxes through evapotranspiration 

(Trenberth et al., 2009, Seneviratne et al., 2010). Furthermore, soil moisture influences 

biogeochemical cycles since it is the ultimate solvent in the earth system. 

Stocker et al. (2019) reported that neglecting soil moisture in photosynthesis estimation 

reduces global annual amounts by ~15%, increases interannual variability by more than 

100% across 25% of the global vegetated land surface, and amplifies the impacts of 

extreme events on primary production. Moreover, soil moisture interacts with 

precipitation, temperature, ecosystems, and climate systems (Seneviratne et al., 2010). 

With increased climate change awareness, the measurement and analysis of soil 

moisture impacts at global scale remain an outstanding scientific problem with far-

 
Figure 2-1: Hydrologic cycle between land, ocean, and atmosphere (Tal, 2016). 
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reaching significance to humankind (Wei, 1995). Consequently, the Global Climate 

Observing System identified soil moisture as an Essential Climate Variable (Mason et 

al., 2010) to support the United Nations Framework Convention on Climate Change 

and the Intergovernmental Panel on Climate Change (Dorigo et al., 2015). 

Soil moisture data have been widely used in fields such as global climate variability and 

change (Dorigo et al., 2017b), global carbon cycle (Scholze et al., 2016), weather 

prediction (Scipal et al., 2008, Hunt and Turner, 2017), flood forecasting (Parinussa et 

al., 2016, Chifflard et al., 2018), landslide forecasting (Brocca et al., 2012) and 

assessment (Zhao et al., 2021a), and drought detection (Cáceres et al., 2015, Yuan et 

al., 2015, Xu et al., 2020). In addition, accurate soil moisture status is critical to 

agriculture, specifically yield prediction (Zhang, 2020), water conservation (Bayer et al., 

2013, Volo et al., 2014), and agriculture management (Schulte et al., 2012, Stevens et 

al., 2016). It is also worth noting that public health is also associated with soil moisture 

through links to vector-borne diseases (Shaman and Day, 2005). 

2.2 Techniques for Soil Moisture Measurement 

Measuring soil moisture is challenging because of the high variability across temporal 

and spatial scale (Owe et al., 2008). In-situ measurements can only be performed at 

limited locations and thereby cannot meet the requirement of hydrological studies that 

usually cover a basin of thousands of square kilometers. In recent decades, the 

advancement of remote sensing techniques has drawn the community’s attention due 

to its capability of providing (near-) real-time soil moisture information at national or 

even global scale. However, remotely sensed soil moisture data still have some 

shortcomings. While the mismatch of the point-scale in-situ measurements and the 

footprint-scale remote sensing observations is challenging (Crow et al., 2012), the in-

situ observations are regarded as the “ground truth” to assess the quality and accuracy 

of the remotely sensed estimates. 

Parallel with the development of remote sensing techniques, in-situ measurement 

networks have been established worldwide for validating the remotely sensed soil 
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moisture data, i.e., the Global Soil Moisture Data Bank (GSMDB, Robock et al., 2000) 

and the International Soil Moisture Network (ISMN, Dorigo et al., 2011). In addition, 

the Quality Assurance for Soil Moisture (QA4SM, https://qa4sm.eodc.eu/) service 

has been established to provide a user-friendly interface for evaluating remotely sensed 

soil moisture data against the ISMN and land surface models. It has facilitated and 

standardized the validation of satellite soil moisture data by bringing together 

methodologies and protocols and providing users with traceable validation results. 

2.2.1 In-situ techniques 

The gravimetric method also called the thermostat-weight or thermogravimetric 

method, is the most direct technique and is thus taken as the benchmark for calibrating 

and validating other indirect measurements. This method physically extracts soil 

samples from the field, weighs the sample before and after drying in an oven for at 

least 24 hours at 105°C, and converts the mass difference to gravimetric soil moisture 

(Montzka et al., 2020). Afterward, the gravimetric soil moisture can be converted to 

volumetric soil moisture using the soil density, facilitated by collecting a known volume 

of soil. Regular gravimetric soil moisture measurements were started in the 1930s in 

the former Soviet Union through an agrometeorological station network (Robock et 

al., 2000). Nevertheless, this method is impractical for long-term monitoring since it is 

labor-intensive and destructive to its site. 

Other methods are indirect and include measuring a proxy variable and relating it to 

the gravimetric soil moisture through physical or empirical relationships called 

calibration curves. These methods consist of the tensiometric method (Schmugge et 

al., 1980), Time-Domain Reflectometry (Davis and Chudobiak, 1975), Transmission 

Line Oscillators (Campbell and Anderson, 1998), Time Domain Transmissometry 

(Blonquist Jr et al., 2005), impedance sensors (Gaskin and Miller, 1996), heat pulse 

sensors (Campbell et al., 1991, Reece, 1996), and capacitance sensors (Nadler and 

Lapid, 1996). After proper installation, all these techniques can operate automatically 

for continuous point-scale observation at various depths. Please see Yu et al. (2021) 

for a detailed overview. 

https://qa4sm.eodc.eu/
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To bridge the scale gap between in-situ measurements and satellite remote sensing 

observations, some novel non-invasive techniques have emerged, allowing for 

continuous contactless and integrative soil moisture sampling at field- to basin-scale 

(Bogena et al., 2015). 

 Cosmic-ray neutron probes (CRNP) count secondary fast neutrons beside the 

soil surface, created by primary cosmic-ray particles in the atmosphere and 

soil (Zreda et al., 2008, Zreda et al., 2012). These secondary fast neutrons 

collide with the hydrogen atoms in soil water. Consequently, CRNP will 

detect more neutrons in dry than wet soil. 

 Global Navigation Satellite System (GNSS), initially used for positioning and 

navigation, has recently been applied to soil moisture retrieval (Larson et al., 

2008a, Larson et al., 2008b). Ground-based GNSS antennas simultaneously 

receive the direct signal from the GNSS satellites and the signal reflected by 

the land surface. The two signals cause an interference pattern whose 

amplitude and phase are influenced by the soil moisture. 

 Gamma-ray intensity can be measured and negatively correlated to soil 

moisture (Yoshioka, 1989) because all rocks and soil have radioactive isotopes 

whose decay emits gamma radiation. This radiation is more significantly 

attenuated by water than by air or soil particles. 

 Ground penetrating radar (GPR) transmits electromagnetic waves and 

records the reflected signal. The reflection/transmission ratio is related to soil 

moisture. GPR can penetrate the soil down to ~2 m with an ~10-cm vertical 

resolution when operating at ~500 MHz (Koyama et al., 2017). 

2.2.2 Remote sensing techniques 

Remote sensing techniques measure the emitted and/or reflected and/or scattered EM 

radiation from the land surface to estimate soil moisture, categorized into several 

groups according to the wavelength (or frequency) in the EM spectrum (Figure 2-2). 

Over the past five decades, researchers have conducted extensive ground-, air- and 

space-based soil moisture remote sensing studies using visible, near- and thermal-



 

Literature Review 

 

2-6 

 

infrared, as well as active and passive microwave techniques (Petropoulos et al., 2015). 

An overview of these techniques is provided in Table 2-1. 

While visible and infrared data have a high spatial resolution, they cannot be applied 

to global soil moisture estimation due to the attenuation from clouds, vegetation and 

atmosphere, the requirement of solar illumination, and its limited moisture sensing 

depth. In recent decades, microwave remote sensing has proven to be the most 

promising approach for (near-) real-time global soil moisture estimation due to its 

advantages explained in Table 2-1. 

Apart from the techniques listed in Table 2-1, gravity missions such as the Gravity 

Recovery and Climate Experiment (GRACE, Rodell et al., 2009) also exhibit potential 

in global soil moisture sensing (Abelen and Seitz, 2013). However, they cannot 

differentiate soil moisture from other water sources like snow, surface water and 

groundwater. In the following, visible, near- and thermal-infrared, as well as active and 

passive microwave techniques for soil moisture sensing are reviewed. 

 Visible, near-infrared and thermal-infrared 

Visible and near-infrared approaches generally link soil moisture to the reflectance via 

the water absorption bands. The negative correlation between reflectance and soil 

 
Figure 2-2: The electromagnetic spectrum (TelenorGroup). 



 

Chapter 2 

 

2-7 

 

moisture was first discovered by Ångström (1925). In the 1970s, optical remote sensing 

was investigated for soil moisture estimation by Johannsen (1970). Subsequently, 

Jackson et al. (1976) experimentally demonstrated that dry soil had a two-times-higher 

Table 2-1: Prime remote sensing techniques for near-surface soil moisture estimation, 

adapted from Petropoulos et al. (2015) and Wang and Qu (2009). 

Technique 
Observed 

variable 
Advantage Disadvantage 

Observed 

variables 
Advantages Disadvantages  

Visible/nea

r-infrared 

Land 

surface 

reflectance 

High spatial resolution, 

numerous satellites, 

hyperspectral sensors 

Cloud attenuation, 

atmosphere attenuation, 

vegetation attenuation, 

unavailability at night, 

severely limited sensing 

depth 

    

Thermal-

infrared 

Surface 

temperature 

High spatial resolution, 

numerous satellites 

Cloud attenuation, 

atmosphere attenuation, 

vegetation attenuation, 

unavailability at night, 

limited sensing depth 

    

Active 

microwave 

(radar) 

Backscatteri

ng 

coefficient 

Fine spatial resolution, 

all-time/weather 

capability, 

moderate penetration 

through vegetation, 

moderate sensing depth, 

negligible atmosphere 

attenuation < 10 GHz 

Coarse temporal 

resolution, 

sensitivity to vegetation 

geometry and structure, 

high sensitivity to 

surface roughness 

    

Passive 

microwave 

(radiometer

) 

Brightness 

temperature 

High temporal 

resolution, 

all-time/weather 

capability, 

moderate penetration 

through vegetation, 

moderate sensing depth, 

negligible atmosphere 

attenuation < 10 GHz 

Coarse spatial 

resolution, 

vulnerable to RFI 
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albedo than wet soil. Since then, empirical relationships have been widely built to 

estimate surface soil moisture. 

Liu et al. (2002) reported that, as the soil moisture increased, the soil reflectance 

decreased when the soil moisture was lower than the critical point but increased when 

the soil moisture was higher than the critical point. This so-called critical point is 

associated closely with the soil hydrodynamic characteristics. Through measuring the 

soil reflected shortwave radiation (400-2500 nm) in various moisture conditions, 

Lobell and Asner (2002) proposed a physical model and discovered an exponential 

relationship between soil reflectance and soil moisture. They also highlighted that the 

longer waveband (e.g., shortwave-infrared) is more suitable for estimating high soil 

moisture because reflectance quickly saturates at visible and near-infrared bands. 

For vegetated soil surfaces, the well-known Normalized Difference Water Index 

(NDWI) was widely used to estimate surface soil moisture by exploiting near- and 

shortwave-infrared bands (Gao, 1996). Later, Ghulam et al. (2007) proposed a 

Modified Perpendicular Drought Index as an indicator of soil moisture by utilizing the 

sensitivity of vegetation to soil water variations. More recently, Gao et al. (2013) 

established an empirical relationship between vegetation canopy and the mixed pixel 

reflectance at red to near-infrared bands to calculate soil moisture. 

In terms of thermal-infrared methods, thermal inertia, defined as the resistance to 

ambient temperature variations, highly correlates with soil moisture and can be used 

to quantitatively determine soil moisture (Jaeger, 1953, Pohn et al., 1974). Overall, 

promising results have been reported over bare (Leng et al., 2016, Matsushima et al., 

2018) and sparsely vegetated soil (Maltese et al., 2013a, Maltese et al., 2013b). 

A primary limitation of these techniques is the substantial deviation when employed 

outside local calibration conditions since soil spectral characteristics mutually depend 

on soil moisture, roughness, texture (i.e., clay, sand, and silt fractions), organic carbon, 

and observation geometry (Moran et al., 2004, Soriano-Disla et al., 2014). Despite the 

high spatial resolution, the relatively short wavelength means that these techniques can 
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only sense the very top layer of soil, which is a severe limitation of utilizing these data 

in hydrological and agricultural applications. Moreover, natural soil is rarely bare, and 

therefore what can be sensed from these techniques is usually properties of the 

vegetation rather than the soil beneath, let alone that atmosphere and cloud can further 

degrade the sensing capability of these methods (Griend et al., 1985, Zhao and Li, 

2013). 

 Active microwave 

Microwave remote sensing is categorized into active and passive techniques according 

to the source of the EM radiation. Active microwave remote sensing instruments, i.e., 

radar, scatterometer, and altimeter, generate and transmit microwave energy towards 

the target and measure the reflected signal. Synthetic aperture radar (SAR) is the most 

commonly used radar system for soil moisture retrieval. It utilizes signal processing 

techniques and the movement of the platform to simulate a large antenna or aperture, 

resulting in a high spatial resolution. 

A range of airborne SAR experiments have been carried out and have expanded the 

knowledge of soil moisture retrieval in the past few decades (see Karthikeyan et al. 

(2017a) and Liu et al. (2019) for comprehensive reviews). Among these, P-band SAR 

has been paid much more attention than those at higher frequencies due to the 

expected larger penetration through vegetation and soil, i.e., Jet Propulsion Laboratory 

(JPL) AIRborne SAR (AIRSAR, Freeman et al., 1990), German Aerospace Center E-

SAR (Horn, 1996) and F-SAR (Horn et al., 2009), and French Aerospace Research 

Agency Radar Aéroporté Multi-spectral d'Etude des Signatures (RAMSES, Dubois-

Fernandez et al., 2002). 

More recently, a P-band SAR known as the Airborne Microwave Observatory of 

Subcanopy and Subsurface (AirMOSS), was selected as one of five NASA Earth 

Venture-1 investigations in May 2010 (Chapin et al., 2012). It sought to retrieve the 

root-zone soil moisture and moisture profiles over America (Tabatabaeenejad et al., 

2014, Crow et al., 2018, Etminan et al., 2020, Tabatabaeenejad et al., 2020, Tobin et al., 
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2021). Alemohammad et al. (2019) concurrently collected P- and L-band 

backscattering observations using AirMOSS and the NASA/JPL’s Uninhabited Aerial 

Vehicle SAR (UAVSAR), respectively, and demonstrated reduced vegetation scattering 

at P-band. In addition, P-band satellite signals of opportunity has been proven to have 

a potential for sensing subsurface soil moisture (Yueh et al., 2020). These findings have 

motivated the first-ever spaceborne P-band-radar mission for mapping global forest 

biomass, i.e., Biomass (Le Toan et al., 2011) scheduled for launch in 2023, and the 

SigNals of Opportunity: P-band Investigation (SNoOPI) for soil moisture mapping 

scheduled for launch in early 2022 (Garrison et al., 2021). 

So far, more than ten satellite SAR missions have been operating, and quite a few 

missions have been projected to launch in the next five years. All these SAR missions 

work at below 10 GHz, and most of them have a fine spatial resolution ranging from 

1 to 100 m. Currently, the Advanced Land Observing Satellite 2 (ALOS-2, Kankaku 

et al., 2014) and Satélite Argentino de Observación COn Microondas-1A/B 

(SAOCOM-1A/B, Giraldez, 2003) are the only two operating L-band SAR missions. 

Despite the high spatial resolution of these SAR missions, only Sentinel-1 (Torres et 

al., 2012), SAOCOM-1A/B, and ALOS-2 provide regular global observations at 

revisits of 6-12, 8-16, and 14-46 days, respectively, being far from the 2- to 3-day 

requirement (Walker and Houser, 2004). Please refer to Liu et al. (2019) and Zhu (2019) 

for a detailed overview of current and scheduled SAR missions. 

The observed variable of active microwave instruments is the backscattering 

coefficient, calculated as the ratio of the transmitted and reflected intensity and 

generally expressed in decibels (dB). It is dependent on observing 

wavelength/frequency, mono- or bi-static configurations, local incidence and 

scattering angles, peak power transmit, transmit/receive polarizations, and finally, soil 

properties, i.e., soil moisture and texture, etc. (Ulaby et al., 2014). 

In practice, surface roughness and vegetation canopy make σ0 less sensitive to soil 

moisture, with sensitivity from vegetation of 10 dB, surface roughness of 7 dB, to soil 

moisture of 4 dB (Kim et al., 2011, McNairn et al., 2014). As a result, accurately 
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characterizing roughness and vegetation impact is necessary for deriving precise soil 

moisture information using active microwave observations. 

Surface roughness amplifies scattering and reduces the reflection in the specular 

direction, i.e., σ0. Numerous scattering models have been developed to account for the 

soil roughness over bare soil, such that 1) the semi-empirical Dubios model (Dubois 

et al., 1995) and the Oh model (Oh et al., 1992); 2) the physical Integral Equation 

Model (IEM, Fung et al., 1992, Fung, 1994) and its descendants, i.e., the Improved 

IEM (IIEM or I2EM, Fung et al., 2002) and the Advanced IEM (AIEM, Chen et al., 

2003); and 3) the Numerical Maxwell Model in 3-D Simulations (NMM3D, Huang et 

al., 2010, Huang and Tsang, 2012). Panciera et al. (2014) compared the IEM, Oh, and 

Dubois models over Australia using airborne L-band SAR data and found that their 

accuracy is comparable under HH polarization, whereas the Oh model is superior at 

VV polarization. 

The vegetation impact has also been integrated into scattering models. The Water 

Cloud Model (Attema and Ulaby, 1978) is one of the most important and commonly 

used semi-physical models for retrieving the soil moisture under a vegetation canopy. 

It assumes the vegetation behaving as a homogeneous water cloud distributed above 

the soil. Other models are either based on the radiative transfer theory (e.g., Ulaby et 

al., 1990, Stiles and Sarabandi, 2000) or the distorted Born approximation (e.g., Lang 

and Sighu, 1983, Burgin et al., 2011). 

Although abundant models have been established for soil moisture retrieval, an ill-

posed retrieval issue has been raised, given that the number of the model parameters 

needed to be determined is usually larger than that of observations (Zhu et al., 2019b). 

The scientific community has seen a great opportunity of taking advantage of multiple 

SAR missions to address this issue and improve the temporal resolution of SAR data 

(Srivastava et al., 2006, Balenzano et al., 2010, Zhu et al., 2019a, Zhu et al., 2019c). 

Moreover, the concepts and methodologies from machine learning have been 

introduced to deal with the SAR soil moisture retrieval, often with an improved 
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performance compared to traditional methods (Ahmad et al., 2010, Ali et al., 2015, Liu 

et al., 2020, Zhu et al., 2020, Chen et al., 2021, Manninen et al., 2021). 

 Passive microwave 

Unlike radar, a passive microwave instrument, i.e., radiometer, does not generate any 

radiation of its own but rather measures the emitted energy from the target in the form 

of brightness temperature, which is a function of emissivity and physical temperature 

of the target. The emissivity of bare soil generally varies from 0.5 to close to 1 in 

different moisture and roughness conditions (Figure 2-3), corresponding to an 

approximately 150-K difference in TB if the soil temperature is assumed to be 300 K. 

This variation is much larger than the noise sensitivity threshold of radiometers 

(typically ~1 K), resulting in a large signal-to-noise ratio and thus an expected accuracy 

better than 0.01-0.02 m3/m3 (Njoku and Entekhabi, 1996). However, this accuracy is 

not practically achievable due to modeling uncertainties resulting from soil properties, 

soil heterogeneity, surface roughness, and vegetation, which will be discussed in 

Chapters 2.3 and 2.4. 

Extensive ground- and air-based experiments since the late 1960s have significantly 

promoted passive microwave remote sensing in near-surface soil moisture retrieval. As 

 
Figure 2-3: Range of values that microwave nadir emissivity may cover for various 

targets, adapted from Ulaby et al. (1982). 
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one of the earliest studies in passive microwave soil moisture sensing, Conel (1970) 

conducted a so-called plate experiment, with radiometers observing the response from 

plane layers of granulated silicate materials backed by a perfectly reflecting metal plate. 

He discovered that TB is highly dependent on soil moisture and that a longer 

waveband has a larger attenuation depth. Shortly after, airborne radiometric 

observations were collected by Blanchard (1972) over the Washita River basin to 

explore the soil moisture sensing capability of passive microwave instruments. 

In 1978 and 1979 JPL undertook two pioneering field experiments to figure out 

whether P-(0.775 and 0.85 GHz), L-(1.42 GHz), or X-(10.69 GHz) band was the most 

effective in soil moisture sensing (Njoku and O'Neill, 1982). P- and L-band 

observations were found to be more sensitive to soil moisture variations than those at 

X-band. However, issues of moisture retrieval depth, roughness effects, and vegetation 

effects were not investigated in depth in this research. 

Since the 1990s, passive microwave experiments have grown, including the Hydrologic 

Atmospheric Pilot Experiment (Nichols et al., 1993), the First International Satellite 

Land Surface Climatology Project Field Experiment (Wang et al., 1990), the PORTOS 

experiments (Wigneron et al., 1993a, Wigneron et al., 1993b, Wigneron et al., 1995), 

the Monsoon field experiments (Jackson et al., 1993, Kustas and Goodrich, 1994), the 

Washita experiments (Jackson et al., 1995, Shi et al., 1997, Wang et al., 1997), the Soil 

Moisture Experiment (Narayan et al., 2004, Bindlish et al., 2006), the Surface 

Monitoring of the Soil Reservoir Experiment (Rosnay et al., 2006), the National 

Airborne Field Experiments (Merlin et al., 2008, Panciera et al., 2008), the Watershed 

Allied Telemetry Experiment Research (Li et al., 2009), the Australian Airborne 

Calibration/validation Experiments for SMOS (Peischl et al., 2012a), the Soil Moisture 

Active and Passive Experiments 1-5 (Panciera et al., 2013, Ye et al., 2019, Ye et al., 

2020a), the Heihe Watershed Allied Telemetry Experiment Research (Li et al., 2013), 

the SMAP validation experiment (McNairn et al., 2014, Colliander et al., 2017a), the 

Soil Moisture Experiment in the Luan River (Zhao et al., 2020b), etc. Moreover, several 

experiments have also been conducted in cold regions where frozen soil needs to be 
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considered, e.g., the Tibetan Plateau (Zheng et al., 2019, Zheng et al., 2021). Please 

refer to Wigneron et al. (2007) and Zhao et al. (2020b) for comprehensive reviews of 

these experiments and more. 

 Synergistic active and passive microwave remote sensing 

While both active and passive microwave instruments have the potential for soil 

moisture estimation, they have different sensitivities to different surface properties. 

Specifically, radars are more sensitive to surface roughness as well as vegetation 

biomass and structure, whereas radiometers are more sensitive to near-surface soil 

moisture (Njoku et al., 2000, Lee and Anagnostou, 2004). Overall, many operating 

SAR missions have routinely achieved a 0.06-m3/m3 unbiased root-mean-square error 

(ubRMSE) (Montzka et al., 2020), which has not yet attained the accuracy achieved by 

the passive microwave approach, i.e., a 0.04 m3/m3 ubRMSE (Colliander et al., 2017b). 

Even though radars generally require larger antennas and more energy to work 

properly (Woodhouse, 2005), which is a significant disadvantage in terms of payloads 

onboard satellites, they have much finer spatial resolution than radiometers. Compared 

to radars, radiometers have a coarser spatial resolution but a wider swath and provide 

more frequent coverage, making them more suitable for observing (near-) real-time 

global soil moisture (Entekhabi et al., 2010). 

The synergy of active and passive microwave remote sensing can benefit soil moisture 

estimation. Lee and Anagnostou (2004) combined the passive and active microwave 

observations from the Tropical Rainfall Measuring Mission (TRMM) to estimate soil 

moisture and vegetation properties. They found this synergy could increase the 

number of estimated geophysical variables, particularly over areas covered by low to 

moderate vegetation. Importantly, SMAP was designed to take advantage of the 

strengths of an L-band SAR and an L-band radiometer for enhanced soil moisture 

mapping (Entekhabi et al., 2010). It aimed to provide soil moisture data with higher 

accuracy and spatial resolution than those from using either of the individual 

instruments alone (Das et al., 2018). More recently, Gao (2016) incorporated the 
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active-retrieved roughness parameters into the passive microwave model to improve 

retrieval accuracy, making model calibration procedure unnecessary. Moreover, a 

discrete radiative transfer model, i.e., the Tor Vergata model (Bracaglia et al., 1995, 

Ferrazzoli and Guerriero, 1995, Ferrazzoli and Guerriero, 1996), driven by a single set 

of input parameters, has been applied to simulate and relate both emissivity and 

backscattering coefficient (Dente et al., 2014, Guerriero et al., 2016, Zheng et al., 2021). 

Another challenge has been that individual satellites cannot provide soil moisture 

records that span the long periods (e.g., >30 years) required in climate research. To 

bridge this gap, the ESA Climate Change Initiative (CCI) soil moisture product was 

developed by harmonizing and merging multiple Level 2 soil moisture products from 

different active and passive microwave sensors (Liu et al., 2011, Liu et al., 2012b, 

Wagner et al., 2012, Dorigo et al., 2017a). This product presents global surface soil 

moisture from 1978 to 2020 with a spatial resolution of 0.25°, a temporal resolution 

of 1 day, and moisture sensing depth from 0.5 to 5 cm (Mittelbach et al., 2014). 

Extensive worldwide evaluations have demonstrated its satisfactory performance 

(Dorigo et al., 2015, Zeng et al., 2015, An et al., 2016, Shen et al., 2016, Dorigo et al., 

2017a). 

2.2.3 Passive microwave satellite missions 

Given the discussion above, passive microwave is considered to be superior for rapidly 

providing global soil moisture datasets with reliable accuracy, which is the focus of this 

thesis. A number of satellite missions carrying passive microwave instruments have 

been launched and operated in the last four decades, including the Nimbus 7 satellite, 

the Defense Meteorological Satellite Program (DMSP), TRMM, the Aqua satellite, the 

Coriolis satellite, the FengYun-3B satellite, the Aquarius mission, the Global Change 

Observation Mission-Water “SHIZUKU” (GCOM-W), SMOS and SMAP. Please see 

Karthikeyan et al. (2017b) and Montzka et al. (2020) for a complete review of these 

missions. 
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Currently, SMOS and SMAP are the only two L-band missions dedicated to global soil 

moisture monitoring. SMOS was launched successfully on November 2, 2009 by ESA 

(Kerr et al., 2010). It is based on a sun-synchronous orbit (overpasses at 6 am/6 pm 

local time). The only payload is the Microwave Imaging Radiometer with Aperture 

Synthesis, a passive microwave 2-D interferometric radiometer operating at 1.413 

GHz/ 21 cm. SMOS provides TB at different incidence angles (0 to 55º) and full 

polarizations. The mission objective was to provide (ESA, 2017): 1) global volumetric 

soil moisture observations having an accuracy of 0.04 m3/m3, a spatial resolution of 

35-50 km2 and a temporal resolution of 1-3 days; 2) global ocean salinity observations 

with an accuracy of 0.1 practical salinity scale units for a 10-30 day average at a spatial 

resolution of 200 km2; and 3) daily sea ice thickness observations for the northern 

hemisphere at a spatial resolution of a 10 km2 up to maximum values of 50 cm. 

SMAP was launched on January 31, 2015 by NASA, having a SAR and a radiometer 

both at 1.41 GHz (Entekhabi et al., 2010). It operates in a near-polar and sun-

synchronous Earth orbit (overpasses at 6 am/6 pm local time) with a constant 

incidence angle at around 40°. The SAR and the radiometer share a 6-m-aperture 

reflector antenna that conically scans a swath of 1000 km in width, with spatial 

resolutions of 3 km and 40 km, respectively. SMAP’s scientific objectives were 1) to 

collect a global surface (top ~5 cm) soil moisture dataset with an ubRMSE of no 

greater than 0.04 m3/m3 at a 9-km spatial resolution and a 3-day temporal resolution; 

and 2) to capture freeze/thaw state transitions in the integrated vegetation-soil 

continuum with a 3-km spatial resolution and a 2-day revisit (Entekhabi et al., 2014). 

Unfortunately, the SAR ceased operations abruptly 11 weeks after launch on July 7, 

2015, with the radiometer remaining operating till now. As a substitute, the Sentinel-1 

C-band SAR has been employed to produce the active-passive high-resolution surface 

soil moisture product (Das et al., 2016, He et al., 2018, Das et al., 2019). 

Evaluations of the SMOS and SMAP soil moisture products have been conducted 

worldwide. Jackson et al. (2011) reported that the SMOS soil moisture retrievals 

approached the anticipated performance (0.04 m3/m3) with an overall RMSE of 0.043 
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m3/m3. However, Al Bitar et al. (2012) found that SMOS met the required accuracy 

only over some specific nominal cases, with overall underestimated soil moisture 

compared to in-situ measurements. More recently, Kerr et al. (2016) consider that 

SMOS has performed satisfactorily with globally consistent results over different eco 

climate regions. They also noted that their neural network-based product known as 

SMOS Neural Network Soil Moisture Data Assimilation, often performed well in areas 

where other products are poor. 

As for SMAP’s performance, Chan et al. (2016) and Colliander et al. (2017b) agreed 

that SMAP meets its overall target accuracy of 0.04 m3/m3 in ubRMSE, yet with 

considerable variations across different validation sites. Al-Yaari et al. (2017) noted a 

better accuracy of the SMAP product over the SMOS product. Recently, Beck et al. 

(2021) used in-situ measurements from 826 sensors in the USA and Europe to evaluate 

18 satellite- and model-based soil moisture datasets. SMAP performed best with a 0.65 

correlation coefficient (R) among the six satellite-based products, while SMOS 

performed worst with an R of 0.47. 

Some projected passive microwave satellite missions include the Copernicus Imaging 

Microwave Radiometer (CIMR) mission (Kilic et al., 2018) within the European 

Copernicus Expansion program, the Water Cycle Observation Mission (WCOM, Shi 

et al., 2014) and the Terrestrial Water Resources Satellite (TWRS, Zhao et al., 2020b) 

by China National Space Administration, and the SMOS-High Resolution (SMOS-HR) 

mission (Rodríguez-Fernández et al., 2019) by Centre National d’Etudes Spatiales. 

2.3 Microwave Radiometry of Soil 

Soil moisture retrieval consists of two phases: relating soil moisture to TB using the 

forward model and inverting the forward model of soil moisture by constraining some 

conditions. 

The models predicting soil microwave radiation can be categorized as coherent and 

noncoherent in terms of how they treated soil radiation. Stogryn (1970) developed a 
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coherent radiative transfer formulation, which was later extended by Tsang and Kong 

(1975). Subsequently, Njoku and Kong (1977) applied it to simulate soil microwave 

emission. Wilheit (1978) followed by developing a similar model but with fewer 

computations. 

Noncoherent radiative transfer models are usually approximated as zero- and higher-

order models. In the first-order noncoherent model developed by Burke et al. (1979), 

the soil is horizontally stratified into N layers. The radiation emitted from the soil 

surface is the summation of the contributions from each layer, considering the 

absorption in all layers above an emitting layer and the reflection losses at all 

boundaries between all layers above the emitting layer, but ignoring second- and 

higher-order reflections. 

Compared to the models mentioned above, the zero-order noncoherent radiative 

transfer model proposed by Schmugge and Choudhury (1981) is computationally 

simpler and has been the most widely used model in soil moisture retrieval. It 

approximates the Burke model by ignoring all reflections within the soil medium but 

considering the reflection only at the air-soil interface. 

In principle, TB is a function of the observing configuration, i.e., incidence angle 𝜃, 

frequency 𝑓  or wavelength 𝜆 and polarization 𝑃  (H-pol and V-pol), as well as the 

physical properties of the target, i.e., relative dielectric constant 𝜀𝑟 , physical 

temperature 𝑇, reflectivity Γ, and emissivity 𝑒. In the following sub-sections, a couple 

of primary factors that directly or indirectly affect TB are discussed. 

2.3.1 Dielectric constant 

The basic principle of using microwave techniques to estimate soil moisture is that soil 

water significantly determines soil dielectric constant (e.g., ~3.5 for very dry soil and 

~40 for saturated soil) (Ulaby et al., 1986) due to the high dielectric constant of water 

(~80) (Wagner et al., 2011). A high dielectric constant leads to low emissivity and thus 

a low/cold TB for a given physical temperature. The dielectric constant is usually 
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expressed as a relative form which is the ratio of the dielectric constant of a given kind 

of material to that of free space, such that 𝜀𝑟 = 𝜀𝑟
′ − 𝑗𝜀𝑟

′′  including real ( ′ ) and 

imaginary (′′) parts. The real part determines the propagation characteristics of the 

energy as it passes upward through the soil, and the imaginary part characterizes the 

energy loss in the propagation. 

A range of soil dielectric mixing models have been developed in the past years. Wang 

and Schmugge (1980) developed a simple empirical model at 1.4 and 5 GHz, with 

inputs of soil moisture plus clay and sand fractions. Subsequently, Hallikainen et al. 

(1985) introduced an empirical model over a broader frequency range between 1-18 

GHz. Because of the failure of the Wang and Schmugge (1980) model in accurately 

predicting 𝜀𝑟
′′ and conductivity losses, Dobson et al. (1985) proposed a semi-empirical 

model applicable between 1.4 and 18 GHz utilizing inputs of soil moisture, 

temperature, clay and sand fractions, bulk density, and the observation frequency. 

Later, this model was extended to P-band including from 0.3 to 1.4 GHz (Peplinski et 

al., 1995a, Peplinski et al., 1995b). 

Based upon the Debye dielectric relaxation formula (Dobson et al., 1985), Mironov et 

al. (2004) proposed a model considering the different effects of bound and free soil 

water. It extended the Refractive Mixing Dielectric Model (Birchak et al., 1974) to 

enable a prediction of dielectric constants as a function of soil moisture and 

observation frequency. Afterward, Mironov et al. (2009) simplified the spectroscopic 

parameters of the original model (Mironov et al., 2004) into soil moisture, observation 

frequency, and clay fraction, making it a generic model with more convenience in 

practical applications. Later, they further upgraded this model by accounting for the 

interfacial (Maxwell-Wagner) relaxation of soil water (Mironov et al., 2013b, Mironov 

et al., 2014), which is significant at P-band (Chen and Or, 2006). Importantly, 

significant advances in models applicable to thawed and frozen soil have been achieved 

(Zhang et al., 2010, Mironov and Savin, 2015, Mironov et al., 2017a, Mironov et al., 

2017b, Zheng et al., 2020). 
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Dielectric models are considered a significant uncertainty source in forward modeling 

of TB because of their empirical parameters. A comprehensive evaluation of nine 

commonly used dielectric models by Park et al. (2019) presented an average bias of 

around 0.03 m3/m3 compared to laboratory dielectric measurements. Mialon et al. 

(2015) compared the Dobson and Mironov model and found the retrieved soil 

moisture from the latter was higher at global scale, however, with no evidence to show 

either one was better. Moreover, a number of local-scale studies demonstrated a better 

performance of the Mironov model over the Dobson model (Wigneron et al., 2011, 

Montpetit et al., 2015, Srivastava et al., 2015), especially for very sandy soil (Bircher et 

al., 2012, Bircher et al., 2016) and organic-rich soil in the northern cold climate zone 

(Bircher et al., 2015). 

2.3.2 Sensing depth 

Sensing depth is an essential concept in microwave remote sensing, indicating the soil 

depth for which the measured microwave signal is representative. Various terminology 

has been used concerning microwave sensing depth, including penetration depth 

(Conel, 1970), temperature sampling depth (Wilheit, 1978), and moisture sensing depth 

(Njoku et al., 1980). The various terminology is somewhat confusing and thus needs 

clarification. Generally, the terminology can be categorized into two main classes: one 

from the aspect of thermal (radiation) and the other from the aspect of reflectivity 

(dielectric). These are introduced below. 

The penetration depth was originally defined as the length over which the energy 

density associated with an advancing plane wave is reduced to 1/e of its initial value 

(Born and Wolf, 1964). In the early 1970s, penetration depth was estimated by plate 

experiments (Conel, 1970, Blinn and Quade, 1972). However, the term is somewhat 

ambiguous because “penetration” implies the wave is penetrating the soil, being the 

case for radar rather than radiometry.  

Later, Wilheit (1978) and Njoku et al. (1980) proposed thermal sampling depth and 

temperature sensing depth, respectively, which have been used synonymously. The 
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definition in Njoku et al. (1980) is more specific, with temperature sensing depth 

expressed as the depth from above which (1 - 1/e)  63% of the emitted radiation 

originates. The temperature sensing depth can be expressed as (Ulaby et al., 1986) 

 𝛿𝑡 = 𝜆/[4𝜋|Im(√𝜀𝑟)|], Eq. 2-1 

where Im[ ] represents the imaginary part. Eq. 2-1 indicates that the temperature 

sensing depth increases as wavelength increases, being approximately 10 cm at L-band 

and 20 cm at P-band for a 0.3-m3/m3 moisture condition (Njoku and Entekhabi, 1996). 

Recently, Lv et al. (2019) redefined the temperature sensing depth as the depth 

whereby soil temperature equals the effective soil temperature. 

In practice, the moisture sensing (sampling or observation) depth is of primary interest 

because it indicates the soil thickness whose moisture content can theoretically be 

retrieved. Njoku et al. (1980) defined it as the depth below the surface over which 

moisture (i.e., dielectric constant) determines the surface reflectivity and emissivity. 

Accordingly, a common approach for estimating the moisture sensing depth has been 

to empirically correlate the observed brightness temperature observations with soil 

moisture measurements averaged over different soil thicknesses (Wang and 

Choudhury, 1981, Paloscia et al., 1993, Escorihuela et al., 2010, Zheng et al., 2019). 

The moisture sensing depth was found to be much less than the thermal sensing depth, 

being no deeper than 5 cm at L-band (Escorihuela et al., 2010, Liu et al., 2012a, Zheng 

et al., 2019). 

2.3.3 Effective soil temperature 

The commonly used zero-order noncoherent radiative transfer model usually assumes 

an ideal soil medium with constant soil moisture and temperature with depth 

(Schmugge and Choudhury, 1981). However, natural soil is by no means uniform 

because soil moisture and temperature are vertically distributed due to gravity, solar 

radiation, precipitation, and infiltration. Accordingly, effective soil temperature 𝑇eff
s  

was proposed to characterize this vertically varying temperature, defined as the 

equivalent temperature of ideal soil having the same microwave response to the 

natural soil (Schmugge and Choudhury, 1981). 



 

Literature Review 

 

2-22 

 

Shortly after, Choudhury et al. (1982) proposed a simple parameterization of 𝑇eff
s , 

expressed as 

 𝑇eff
s = 𝑇depth + 𝐶𝑇(𝑇surf − 𝑇depth), Eq. 2-2 

where 𝑇surf and 𝑇depth are the physical temperature of surface (0-5 cm) and deep (50-

100 cm) soil; 𝐶𝑇  determines the proportion of the surface and deep temperature 

contributions to 𝑇eff
s . 

Choudhury et al. (1982) initially calibrated 𝐶𝑇 to be 0.084 at P-band and 0.246 at L-

band (Choudhury’s scheme). Later, Wigneron et al. (2001) proposed a soil moisture-

dependent 𝐶𝑇   (Wigneron’s scheme), such that 

 𝐶𝑇 = (SM/𝑊0)𝑏0 , Eq. 2-3 

where 𝑊0  and 𝑏0 are fitting parameters. This scheme was further refined by taking soil 

texture into account (Wigneron et al., 2008). Holmes et al. (2006) suggested 𝐶𝑇 as a 

function of 𝜀𝑟 (Holmes’s scheme) 

 𝐶𝑇 = ((𝜀𝑟
′′/𝜀𝑟

′ )/𝜀0)𝑏0 , Eq. 2-4 

where 𝜀0 and 𝑏0 are fitting parameters. 

More recently, Lv et al. (2014) developed a new two-layer effective temperature model 

by accounting for sensing depth (Lv’s scheme). They also evaluated the four schemes 

mentioned above at the Maqu site in the Tibetan Plateau, discovering that the Lv’s and 

Wigneron’s schemes performed similarly (RMSE ~1.8-2.5 K) and better than the 

Holmes’s (RMSE ~3.5 K) and Choudhury’s (RMSE ~4.0 K) schemes. 

2.3.4 Soil surface roughness 

Soil roughness is well known to complicate the interpretation of microwave radiometer 

data and reduce the sensitivity of TB to soil moisture (Choudhury et al., 1979, Newton 

and Rouse, 1980, Newton et al., 1982, Njoku and O'Neill, 1982, Wang et al., 1983). 

The soil roughness effects are considered to result from a mixture of complex 

phenomena including 3-D soil spatial heterogeneities, volume scattering under dry soil 
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conditions, and soil anisotropy, making it impractical to model the effects physically 

(Panciera et al., 2009b, Wigneron et al., 2017). 

A tractable semi-empirical roughness model (referred to as the HQN model) was 

initially proposed by Choudhury et al. (1979) and further developed by Wang and 

Choudhury (1981) and Prigent et al. (2000) to simulate the reflectivity (Γ𝑃) of flat soil 

surfaces exhibiting only random roughness 

 Γ𝑃 = [(1 − 𝑄𝑅)Γ𝑃
∗ + 𝑄𝑅Γ𝑄

∗] exp[−𝐻𝑅𝑃cos𝑁𝑅𝑃(𝜃)], Eq. 2-5 

where the empirical parameters 𝐻𝑅 , 𝑄𝑅 , and 𝑁𝑅  characterize the intensity of the 

roughness effects, the difference between H- and V-pol reflectivity, and the 

polarization and angular dependence, respectively; Γ𝑃
∗  and Γ𝑄

∗  (with 𝑃=H, 𝑄=V or 

𝑃=V, 𝑄=H) are specular reflectivities. 

The optimal values of 𝐻𝑅, 𝑄𝑅, and 𝑁𝑅 are still under discussion (Peng et al., 2017a). 

The 𝐻𝑅 parameter is linked to a measurable parameter of the surface distribution, the 

root-mean-square (RMS) height (RMS height; also known as 𝑠) (Choudhury et al., 1979, 

Wang et al., 1983). Subsequently, a power-law relationship was found between 𝐻𝑅 and 

the slope parameter 𝑚 = 𝑠/𝑙, where 𝑙 is the correlation length of the soil surface (Mo 

and Schmugge, 1987, Wigneron et al., 2001). Later, Wigneron et al. (2011) established 

an equation, 𝐻𝑅 =(0.9437𝑠 /(0.8865𝑠 +2.2913))6, and discovered that 𝐻𝑅  saturated 

closing to 1.1-1.2 when 𝑠  exceeded ~5-6 cm. Afterward, Lawrence et al. (2013) 

estimated 𝐻𝑅 using a linear relationship to 𝑍𝑆 (𝑍𝑆 = 𝑠2/𝑙) and computed 𝑄𝑅 and 𝑁𝑅 

from the estimated 𝐻𝑅. More recently, Montpetit et al. (2015) validated the equation 

by Wigneron et al. (2011) at various frequencies from 1.4 to 90 GHz and confirmed 

that 𝐻𝑅 is rather insensitive to frequency, as noted earlier by Wang et al. (1983) and 

Pellarin et al. (2006). 

While some studies have reported that 𝐻𝑅  is insensitive to soil moisture (e.g., 

Wigneron et al., 2011, Lawrence et al., 2013), others showed contrary results with 𝐻𝑅 

increasing for dry soil conditions (Mo and Schmugge, 1987, Wigneron et al., 2001, 
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Escorihuela et al., 2007). Accordingly, soil moisture-dependent 𝐻𝑅  has been 

investigated (Panciera et al., 2009a, Pardé et al., 2011, Peischl et al., 2012b). Wigneron 

et al. (2001) explained the soil moisture dependence of 𝐻𝑅 as “dielectric roughness” 

due to the dielectric heterogeneity of drying-out soil. They also highlighted that the 

dielectric roughness is more important than the geometric roughness for dry soil and 

the converse for wet soil. 

While 𝑄𝑅 is commonly believed to be zero at low frequencies (Wigneron et al., 2001, 

Wigneron et al., 2011, Lawrence et al., 2013), a few studies continued to assert a non-

zero 𝑄𝑅 (Cano et al., 2010, Mialon et al., 2012, Peng et al., 2017a). Earlier, both 𝑁𝑅𝐻 

and 𝑁𝑅𝑉 were usually set to 2 (Choudhury et al., 1979) or 0 (Wigneron et al., 2001, 

Njoku and Chan, 2006). However, Escorihuela et al. (2007) proposed that 𝑁𝑅𝐻 and 

𝑁𝑅𝑉 are unnecessary to be the same, with 1 and -1 suggested, respectively. Lawrence 

et al. (2013) further suggested that the difference ∆𝑁𝑅 = 𝑁𝑅𝐻 − 𝑁𝑅𝑉  should be 

around 2 for smooth surfaces and 1-1.5 for rough surfaces. 

Periodic (e.g., sinusoidal) row structures, a common type of soil tillage used for 

cultivation purposes, usually result in larger roughness impacts on radiometric 

observations compared to flat soil (Ulaby et al., 1986). The periodic soil surface 

consists of micro-scale random variations, i.e., random roughness, superimposed on a 

macro-scale one-dimensional surface undulation, i.e., periodic roughness (Ulaby et al., 

1986, Gao, 2016). A common modeling approach is to simulate the micro-scale 

roughness and assume that the macro-scale roughness acts like topography by 

changing the local incidence angle of the micro-scale roughness (Wang et al., 1980, 

Ulaby et al., 2014, Neelam et al., 2020). 

Wang et al. (1980) were the first to model the emissivity over a periodic surface at 

varying azimuth. However, the model was found to overestimate the influence of the 

row structure (Promes et al., 1988). While Promes et al. (1988) concluded that the 

periodic structures can be ignored in most cases without notable error at L-band, this 

has been challenged by Zheng et al. (2012), who showed that row structures can lead 
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to a retrieval error of up to 0.1 m3/m3. The results of Pham et al. (2005) also indicated 

that the azimuthal signal present in periodic row structures can lead to a retrieval error. 

2.3.5 Vegetation canopy 

Apart from roughness, the vegetation canopy attenuates (absorbs and scatters) the soil 

emission and adds its own contribution to the overall emission, resulting in a noticeable 

reduction in the sensitivity of TB to soil moisture (Jackson et al., 1982, Ulaby et al., 

1983). Absorption occurs due to the non-zero imaginary part of the canopy’s index of 

refraction, which is largely caused by the presence of liquid water within the vegetation 

tissue (Hornbuckle and England, 2004). Scattering occurs in some vegetation because 

the water’s refractive index and the electrical size of the canopy constituents are large. 

The opacity of the canopy is usually characterized by the vegetation water content 

(VWC, in kg/m2), defined as the mass of liquid water within the vegetation per unit 

area, and the canopy architecture. 

The tau-omega (𝜏-𝜔) model proposed by Mo et al. (1982) models the TB response of 

vegetation-covered soil. It is essentially a zero-order solution of the radiative transfer 

equations where multiple scattering is neglected, with applicability and accuracy being 

widely evaluated at L- and C-band (Mo et al., 1982, Gao et al., 2018, Li et al., 2020). 

Optical depth 𝜏 and single scattering albedo 𝜔 characterize the vegetation extinction 

and scattering, defined as 𝜏 = ∫ 𝜅𝑒𝑑𝑥
ℎ

0
 and 𝜔 = 𝜅𝑠/𝜅𝑒, respectively, where extinction 

coefficient 𝜅𝑒  is the sum of absorption coefficient 𝜅𝑎  and scattering coefficient 𝜅𝑠 , 

and ℎ is the canopy height. The 𝜏 is directly proportional to the VWC of the canopy, 

while the 𝜔 primarily depends on the type of vegetation (Mo et al., 1982). 

The parameterization of 𝜏 and 𝜔 is crucial for soil moisture retrieval. Wigneron et al. 

(1995) proposed a tractable parameterization of 𝜏  to account for polarization 

dependence due to stem-dominated vegetation structures, further developed by 

Wigneron et al. (2007) such that 

 𝜏𝑃 = 𝜏NAD(sin2(𝜃) · 𝑡𝑡𝑃 + cos2(𝜃)), Eq. 2-6 
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where 𝜏NAD is the optical depth at nadir, and the structural parameter 𝑡𝑡𝑃 accounts for 

the vegetation anisotropy effects concerning incidence angle and polarization. In an 

isotropic case where 𝜏  is independent of polarization and incidence angle, 𝑡𝑡𝐻 =

𝑡𝑡𝑉 =  1 can be assumed. At a vineyard, Schwank et al. (2012) observed a larger 

difference of 𝑡𝑡𝐻 and 𝑡𝑡𝑉 in winter (~0.80 and ~0.11, respectively) than in summer 

(~1.40 and ~1.10, respectively), as a result of the more isotropic leafy components 

dominating the vine structure in summer. 

The 𝜏NAD was first found to be a function of the dry biomass and the moisture content 

of vegetation by Kirdiashev et al. (1979). Later, 𝜏NAD was estimated by linearly linking 

to VWC (Jackson et al., 1982, Jackson and O'Neill, 1990) 

 𝜏NAD = 𝑏 · VWC, Eq. 2-7 

where empirical parameter 𝑏 is a proportionality value depending on the vegetation 

type and structure and the observation frequency. Even though 𝑏  is somewhat 

dependent on vegetation growth stages and polarizations (Wigneron et al., 2004), it is 

commonly assumed to be time- and polarization-invariant for simplicity (Wigneron et 

al., 2007). 

Wigneron et al. (2007) proposed a linear function of 𝜏NAD and Leaf Area Index (LAI) 

 𝜏NAD = 𝑏′ · LAI + 𝑏′′, Eq. 2-8 

where 𝑏′  and 𝑏′′  are empirical parameters determined mainly by the vegetation 

structure. Wigneron et al. (2007) also calibrated 𝑏′ and 𝑏′′ using experimental datasets 

over soybean, wheat and corn. Afterward, Lawrence et al. (2014) investigated the 

SMOS optical depth product and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) LAI product over the crop area of the USA and estimated average 𝑏′ and 

𝑏′′ values to be 0.06 and 0.14, respectively. 

According to a wealth of ground-based calibrations, 𝜔 is close to zero at L-band, 

except for grass (~0.05) and corn (~0.05-0.13) (Wigneron et al., 2004, Wigneron et al., 

2007, Yan et al., 2015). Moreover, Kurum (2013) reported that the 𝜔 of a corn canopy 

varied between 0.05 and 0.10 at H-pol and between 0.10 and 0.15 at V-pol, indicating 
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the polarization dependence. While the temporal variations of 𝜔  were noted 

(Wigneron et al., 2004), in most cases 𝜔 was assumed to be time-invariant in the 

literature (Gao et al., 2017, Zheng et al., 2018, Zhao et al., 2021b). Two global maps 

of 𝜔 were produced by Entekhabi et al. (2014) with SMOS data, and by Konings et al. 

(2016) with Aquarius observations, to improve soil moisture retrieval. Nevertheless, 

Van der Schalie et al. (2016) observed no benefit from using spatially varying 𝜔 maps. 

Some limitations of the tau-omega model have been highlighted by Wigneron et al. 

(2017): first, it does not account for multiple scattering effects; and second, it 

inherently assumes small dielectric gradients between the air and vegetation canopy, 

implying that both the reflection and refraction at the air-to-vegetation interface are 

neglected. These assumptions are reasonable for L-band over sparsely vegetated soil 

(Wigneron et al., 1993b) but not as adequate when forests or litter/snow cover exists. 

Branches of forests have different dielectric and scattering properties from herbaceous 

components, leading to substantial single and multiple scattering that cannot be 

neglected even at L-band. Nevertheless, the tau-omega model can reportedly still be 

used over forests provided 𝜏 and 𝜔 are regarded as effective parameters and calibrated 

(Ferrazzoli et al., 2002, Kurum et al., 2012). 

Unlike the tau-omega model, a “two-stream” model (2S model) was developed to 

simulate multiple volume scattering and absorption in the context of the Microwave 

Emission Model for Layered Snowpack (MEMLS) (Mätzler, 1998, Wiesmann and 

Mätzler, 1999). As a first-order solution of the radiative transfer equation, this model 

could become a substitute for the tau-omega model over soil covered by dense 

vegetation, litter, or dry snow (Lemmetyinen et al., 2016). While Li et al. (2020) 

concluded that the retrieval results from using the tau-omega and the 2S models are 

similar at global scale, the latter holds a stronger physical background and can 

potentially unify various emission models in different applications. 
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2.4 Soil Moisture Retrieval Algorithms 

Soil moisture can be estimated by iteratively running the forward model to minimize a 

cost function (CF) computed from the differences between observed (TB𝑃
obs) and 

simulated (TB𝑃) TB, expressed as (Pulliainen et al., 1993) 

 CF =
∑(TB𝑃

obs−TB𝑃)
2

𝜎(TB)2 + ∑
(P𝑖

ini−P𝑖)
2

𝜎(P𝑖)2𝑖 , Eq. 2-9 

where P𝑖
ini and P𝑖 (𝑖 is the number of retrieved parameters) are the initial value and the 

value of the retrieved parameters, i.e., soil moisture, 𝐻𝑅 , 𝑏 , and/or any other 

parameters in the forward model to be determined; and 𝜎(TB) and 𝜎(P𝑖) are the 

standard deviation related to these variables that are usually empirically tuned to 

constrain these variables and adjust the convergence of the inversion. 

Mathematically, soil moisture retrieval is a process that seeks an optimized solution 

within an i-dimension space. The consideration of roughness and vegetation impacts 

brings more parameters (i.e., 𝐻𝑅 , 𝑄𝑅 , 𝑁𝑅𝑃 , 𝜏, 𝑏, 𝜔, 𝑡𝑡𝑃 , etc.) and thus substantially 

increases the dimension and complexity of the solution. Moreover, these parameters 

and soil moisture tangle together, making soil moisture retrieval more challenging 

(Martens et al., 2015, Zwieback et al., 2019). In general, the number of TB observations 

should be no fewer than that of retrieved parameters to guarantee a robust result. 

Otherwise, it becomes an ill-posed retrieval with multiple solutions. 

Efforts have been made from two aspects to address this ill-posed problem, i.e., 1) 

reducing the number of unknowns based on prior knowledge and assumptions 

(Jackson and O'Neill, 1990, Wigneron et al., 2011, Martens et al., 2015, Parrens et al., 

2017) and 2) augmenting the observations by using multiple observing incidence angles, 

polarizations, times, and/or frequencies (Grant et al., 2010, Konings et al., 2016, Zhao 

et al., 2021b). 

Due to the reasons mentioned above, some of these parameters (e.g., 𝐻𝑅, 𝑄𝑅, 𝑏, and 

𝜔) are usually assumed to be independent of incidence angle, polarization, and time 
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(Wigneron et al., 2007, Neelam et al., 2020, Gao et al., 2021). Although some 

experiments have confirmed that this assumption is not always true (Wigneron et al., 

2004, Grant et al., 2010, Jiang et al., 2019, Zhao et al., 2020a), it is reasonable at least 

at the scale of spaceborne observations where the dependence effects tend to be 

averaged out (Owe et al., 2001). 

Konings et al. (2015) identified that a robust retrieval can only be guaranteed if some 

redundant TB observations are provided, given that even the observations at different 

angles, polarizations, and times still contain mutual information. Accordingly, they 

proposed the concept of degree of information (DoI) and suggested that the DoI of a 

set of observations should be larger than the number of the retrieved parameters. 

Based on this theory, Zhao et al. (2021b) presented that multi-frequency observations 

have a slightly larger DoI than multi-angular observations if maintaining the same 

number of channels. 

Since the tau-omega model simplifies the complex calculation of the radiative transfer 

equation yet retains a similar accuracy, many retrieval algorithms have been developed 

based upon it and widely employed; e.g., the single channel algorithm (SCA, Jackson, 

1993) for SMAP, the L-band microwave emission of the biosphere (L-MEB) model 

(Wigneron et al., 2007) for SMOS, the dual channel algorithm (DCA, Njoku and Li, 

1999, Njoku et al., 2003), the land parameter retrieval model (LPRM, Owe et al., 2001), 

the multi-temporal dual channel algorithm (MT-DCA, Konings et al., 2016, Konings 

et al., 2017) and so on. One of the major differences is whether 𝜏 is concurrently 

retrieved with soil moisture or estimated based on ancillary data prior to the inversion 

process. 

2.4.1 The SMOS algorithm 

The L-MEB model was developed by Wigneron et al. (2007) to simultaneously retrieve 

soil moisture and 𝜏 (2-Parameter retrieval) by utilizing SMOS multi-angular and dual-

polarized observations according to the following interests (Kerr et al., 2019): 1) there 

is no requirement for ancillary vegetation data; and 2) the retrieved 𝜏  is likely to 
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become a beneficial product by itself for monitoring vegetation dynamics. However, 

retrieving two or more parameters at the same time is challenging due to their mutual 

dependence, typically resulting in degraded soil moisture retrieval accuracy. In the 

SMOS algorithm, a given pixel is classified into different fractions according to a high-

resolution (1 km) land cover map. Subsequently, all fraction contributions are 

aggregated into the TB for this given pixel. 

Initially, the SMOS baseline algorithm used the Dobson model revised by Peplinski et 

al. (1995a, b). Since the Algorithm Theoretical Baseline Document (ATBD) version 

3.f, the Mironov model (Mironov et al., 2013a), which was dedicatedly designed for 

the SMOS algorithm with simplified and specific equations at L-band, has been 

adopted as the default choice due to the following reasons (Wigneron et al., 2017, Kerr 

et al., 2019): 1) it is a more physical-based model that provides more robust results 

when soil moisture is close to zero; 2) it requires fewer input parameters, i.e., soil 

moisture, temperature, and clay fraction, reducing the uncertainties from auxiliary 

datasets especially soil density; and 3) it is valid for more extensive soil texture, whereas 

the Dobson model has some limitations for dry and sandy soil (Drusch et al., 2009). 

In the recent SMOS ATBD version 4.a, the Bircher empirical model (Bircher et al., 

2017) was introduced for organic soil. 

The SMOS baseline algorithm uses Eqs. 2-2 and 2-3 as the effective soil temperature 

model with the default values 𝑊0= 0.3 m3/m3 and 𝑏0= 0.3 (Wigneron et al., 2008). 

The 𝑇surf and 𝑇depth are derived from Layer 1 and 3, respectively, of the European 

Centre for Medium-Range Weather Forecasts (ECMWF) soil temperature forecasts. 

Currently, the SMOS algorithm adopts the HQN model for characterizing the soil 

surface roughness impact. Estimating 𝐻𝑅 , 𝑄𝑅 , and 𝑁𝑅𝑃  using the in-situ roughness 

measurements is impractical due to the impossibility of regularly performing such 

labor-intensive measurements across the globe. As a compromise, SMOS relies on a 

look-up table to provide constant 𝐻𝑅 values for the main land cover types, e.g., 0.1 for 

barren or sparsely vegetated soil and 0.3 for forests. Other parameters are assumed 

such that 𝑄𝑅= 0, 𝑁𝑅𝐻= 2, and 𝑁𝑅𝑉= 0. Similar to 𝐻𝑅, 𝜔 is assumed to be polarization- 
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and angle-independent and determined based upon a look-up table, e.g., 0 for barren 

or sparsely vegetated soil and 0.06-0.08 for forests. The skin temperature of the 

ECMWF forecasts is used as the effective vegetation temperature. 

2.4.2 The SMAP algorithm 

Algorithms considered in the SMAP ATBD included the SCA with either H- or V-pol 

observations (referred to as SCA-H and SCA-V), the DCA, the LPRM, and the 

Extended Dual Channel Algorithm (E-DCA, Chan et al., 2016). However, the latter 

two algorithms have been discontinued since the R16.3 data release, and therefore 

SMAP now provides soil moisture datasets from the former three algorithms (O'Neill 

et al., 2021a). The SCA-V was the original post-launch baseline algorithm for SMAP 

from 2015 to 2021 due to its superior performance over the other algorithms (Chan et 

al., 2016).  

According to the latest evaluation of the SMAP Level 2 Soil Moisture Passive (L2SMP) 

Version 8 using in-situ validation sites (O'Neill et al., 2021b), the SCA-V and the DCA 

had the same best overall performance of ~0.036 m3/m3 in ubRMSE, fulfilling the 

0.04-m3/m3 target accuracy of SMAP. However, the DCA showed better ubRMSE 

than the SCA at two agricultural sites. Consequently, the DCA has been adopted as 

the SMAP baseline algorithm since October 2021 (O'Neill et al., 2021a). 

The SCA is a 1-Parameter retrieval approach that requires ancillary information to 

parameterize roughness and vegetation impacts (Jackson, 1993). The SMAP SCA 

applies Eqs. 2-6 and 2-7 to estimate 𝜏, with 𝐻𝑅, 𝜔 and 𝑏 being determined globally 

using look-up tables itemized according to the International Geosphere-Biosphere 

Programme classification. The VWC in Eq. 2-7 is calculated by utilizing a set of land 

cover-based equations from the Normalized Difference Vegetation Index (NDVI) 

dataset. Other parameters are assumed such that 𝑄𝑅= 0, 𝑁𝑅𝐻= 𝑁𝑅𝑉= 2, and 𝑡𝑡𝐻= 

𝑡𝑡𝑉= 1. 
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Unlike the SCA, the DCA (Njoku and Li, 1999, Njoku et al., 2003) is a 2-Parameter 

algorithm that uses observations at dual polarizations to retrieve soil moisture and 𝜏 

concurrently, and therefore Eqs. 2-6 and 2-7 are no longer needed. The SMAP DCA 

uses a global map of 𝐻𝑅 with varying values from pixel to pixel. In addition, while 𝑁𝑅𝑃 

is assumed to be 2 as in the SCA, 𝑄𝑅 is no longer assumed to be zero but linearly 

related to 𝐻𝑅  by 𝑄𝑅 = 0.1771𝐻𝑅  (O'Neill et al., 2021a). The 𝜔  is also determined 

globally using look-up tables as in the SCA but with different values. An implicit 

assumption is that 𝜏 is identical at both polarizations in the SMAP DCA approach. 

All of the three dielectric mixing models (Wang and Schmugge, 1980, Dobson et al., 

1985, Mironov et al., 2009) are coded in the SMAP software, while the Mironov model 

(Mironov et al., 2009) is the baseline option in the Level 2 & 3 passive algorithms. The 

Choudhury’s scheme (Eq. 2-2) is adopted with 𝐶𝑇= 0.246 for the descending product 

and 𝐶𝑇= 1 for the ascending product. The SMAP algorithm derives 𝑇surf and 𝑇depth 

from the NASA Goddard Earth Observing System-Forward Processing soil 

temperature forecasts. It is worth noting that the SMAP algorithms multiply the right-

side term of Eq. 2-2 by a factor of 0.1007 to correct the bias between the temperature 

forecasts and in-situ measurements (O'Neill et al., 2021a). In addition, the 6:00 am 

(local time) descending overpass time minimizes the difference between soil and 

canopy temperature. Consequently, the effective temperature is assumed to be the 

same for soil and vegetation canopy. 

2.4.3 Other algorithms 

The LPRM is an index-based retrieval model that firstly computes 𝜏 based on the 

Microwave Polarization Difference Index (MPDI) and then retrieves soil moisture. 

The MPDI characterizes the polarization difference and was found to be a good proxy 

of 𝜏, expressed as (Owe et al., 2001) 

 MPDI = (TB𝑉 − TB𝐻) (TB𝑉 + TB𝐻)⁄ . Eq. 2-10 

The LPRM was initially implemented on a multi-frequency satellite (Owe et al., 2001, 

de Jeu et al., 2008, Owe et al., 2008), the Advanced Microwave Scanning Radiometer 
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- Earth Observing System sensor (AMSR-E) flown onboard the Aqua satellite, where 

the effective temperature can be derived from the Ka-band V-pol observations. 

Afterward, it was also applied to L-band airborne (De Jeu et al., 2009) and spaceborne 

observations (van der Schalie et al., 2015, Gao et al., 2021). Please refer to the literature 

(Owe et al., 2001, Meesters et al., 2005, De Jeu et al., 2009) for the detailed equations 

of this model. 

The MT-DCA retrieves 𝜏 and soil moisture from time series of L-band observations 

at dual polarizations (Konings et al., 2016, Konings et al., 2017). A single 𝜏 is estimated 

from a range of consecutive observations by assuming that the early morning VWC is 

constant across a few days. Along with 𝜏 and soil moisture, a time-invariant scattering 

albedo is also retrieved by this algorithm. Other algorithms that may not be covered in 

this chapter include the constrained multi-channel algorithm (Ebtehaj and Bras, 2019), 

the spatially constrained multi-channel algorithm (Gao et al., 2020), and machine 

learning-based algorithms (Ali et al., 2015, Yuan et al., 2020). 

2.5 Knowledge Gap and Objective 

The widely accepted L-band technology can only provide soil moisture information 

for no more than the top 5-cm layer of soil due to the limited moisture sensing depth 

(Escorihuela et al., 2010, Liu et al., 2012a, Zheng et al., 2019). In principle, moisture 

sensing depth depends on the soil moisture condition and the observation frequency, 

ranging from approximately one-tenth to one-fourth of the wavelength (Wilheit, 1978, 

Schmugge and Choudhury, 1981, Newton et al., 1982, Newton et al., 1983, Waite et 

al., 1984, Ulaby et al., 1986, Raju et al., 1995). While the temperature sensing depth was 

calculated to be approximately 10 cm at L-band and 20 cm at P-band for a 0.3-m3/m3 

moisture condition (Njoku and Entekhabi, 1996), such a demonstration for moisture 

sensing depth is still lacking. 

According to the Fraunhofer criterion (Ulaby et al., 1982), a surface may be considered 

electromagnetically smooth in the microwave range if the RMS height 𝑠 is less than 

𝜆/(32cos(𝜃)). This criterion asserts that observations at longer wavelengths should be 
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less affected by soil roughness than those at shorter wavelengths, which has also been 

demonstrated by a few experiments at L-band and higher frequencies (Blinn and 

Quade, 1972, Wang et al., 1983). Apart from roughness, the vegetation impact has also 

been demonstrated to be more significant at 2.8-cm wavelength than at 21.4-cm 

wavelength (Newton and Rouse, 1980). 

The above-hypothesized benefits of longer wavebands are promising but have not yet 

been experimentally demonstrated at P-band. Accordingly, this thesis aimed at 

verifying the potential of P-band for greater moisture sensing depth and reduced 

sensitivity to soil roughness and vegetation compared to the widely used L-band. 

2.6 Challenges of a Successful P-band Radiometer Mission 

While P-band is a promising proposition to replace or enhance the current L-band 

SMOS and SMAP missions in the forthcoming years, so as to obtain deeper and more 

accurate soil moisture information, there remain four challenges: aperture size, RFI, 

receiver design and calibration, and ionospheric and celestial emission effects (Johnson 

et al., 2021). 

With the spatial resolution of a radiometer determined by the aperture size relative to 

the observing wavelength for a given orbit altitude, the aperture of a 0.75-GHz 

radiometer needs to be enlarged by 1.87 times to retain the same 40-km spatial 

resolution of the 1.4-GHz radiometer of SMAP, i.e., increasing from the 6-m diameter 

antenna of SMAP to an 11.22-m diameter antenna. This principle also holds true for 

a synthetic aperture radiometer, which allows use of a thinned array antenna to have 

simultaneous multi-angular observations (Johnson et al., 2021). 

Unlike L-band (1.400-1.427 GHz) that is exclusively allocated for radio astronomy use, 

P-band (0.3-1 GHz) is heavily occupied by television broadcast, communications, and 

other applications (National Research Council, 2010), easily causing RFI and 

corrupting radiometric measurements from the target. Although strong RFI is easy to 

detect, its cancellation is challenging due to that it relies on the geo-localization 
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accuracy of the RFI source (Camps et al., 2014). Compared to strong RFI, weak RFI 

is more difficult to detect and thus harder to mitigate properly. Additionally, at 0.75 

GHz, the amount of Faraday rotation and ionosphere-specific attenuation is 

approximately 3.5 times as large as at 1.4 GHz, which needs to be corrected for satellite 

operations. 

Nowadays, large deployable antennas (e.g., Meguro et al., 2009) and highly developed 

downscaling techniques (Peng et al., 2017b, Sabaghy et al., 2018) make higher spatial 

resolution at P-band possible. Moreover, RFI mitigation techniques are becoming 

increasingly mature (Skou et al., 2009, Huang et al., 2018, Jin et al., 2019). The ultra-

wideband software defined microwave radiometer (UWBRAD) is a successful example 

in this regard, demonstrating how a future P-band radiometer-based mission might 

address the RFI issue (Johnson et al., 2016, Yardim et al., 2021). The UWBRAD 

detects and filters RFI by segmenting the observed bandwidth (from 0.5 to 2 GHz) 

into 12 channels, each of which is further resolved into 512 subchannels. Despite a 

cost of data loss, the RFI-free portions of the spectrum can be identified and integrated. 

These advancements in aerospace and remote sensing technologies pave the way for a 

successful P-band radiometer-based mission in the near future. 

2.7 Chapter Summary 

The first investigation on P-band radiometers dates back to the late 1970s (Njoku and 

O'Neill, 1982). However, this technology was not pursued because of severe RFI in 

their instrument degrading the interpretation of the data, and the coarse spatial 

resolution at P-band compared to higher frequencies for the same antenna size. Since 

then, this technique has been largely forgotten in soil moisture sensing until now, 

where the situation has changed considerably. Remote sensing technologies have 

grown rapidly in the past half century. In this context, a P-band mission is more likely 

to be launched now than ever in the past, motivating this PhD research to 

experimentally demonstrate the postulated benefits of using P-band radiometric 

observations for soil moisture sensing. 
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3 Data 

To bridge the knowledge gaps identified in Chapter 2, a comprehensive field 

experiment has been conducted, i.e., the P-band Radiometer Inferred Soil Moisture 

(PRISM, see https://www.prism.monash.edu) project. It comprises a long-term tower 

experiment (2017-2021) and four airborne campaigns (2017, 2018, 2019, and 2021). 

This thesis employed the PRISM tower-based data from 2019 to 2021 to investigate 

the soil moisture sensing capability of the P-band radiometer from three aspects of 

moisture retrieval depth, roughness, and vegetation impact. Collaborating with other 

colleagues, I was responsible for making experiment plans and logs, maintaining 

equipment, and collecting, processing and archiving data. 

3.1 Field Configuration 

The PRISM tower site was established at Cora Lynn, Victoria, Australia (Figure 3-1a) 

from October 2017 to May 2021. The field was 160 m by 160 m in size and divided 

  
Figure 3-1: Illustrations of the PRISM tower site, including a) location map with the 

PPMR and PLMR footprints for incidence angles of 30°, 40°, 50°, 60°, and 70° from 

the center outwards, respectively; and b) the tower carrying the PPMR and PLMR. 

https://www.prism.monash.edu/
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into four quadrants (numbered as Q1-Q4 from the northwest clockwise) with different 

soil surface roughness and/or vegetation conditions for comparison. A ten-meter-high 

tower was installed at the center of the field (Figure 3-1b). 

From time to time, the field was managed with different configurations. Figure 3-2 

depicts the different conditions of the field in each subperiod during the experiment. 

A range of roughness conditions were configured by ploughing the soil with different 

tillage. The RMS height ranged from ~0.5 cm for flat soil to ~8 cm for furrowed soil. 

Three types of vegetation, i.e., grass, wheat, and corn, were planted in the field to cover 

Table 3-1: A summary of data used in each analysis chapter. 

Chapter Period Quadrant Station 

5 May 9 - June 12, 2019 4 125 

6 July 17 - 31, 2019 1-4 126, 127 

7 November 13 - December 21, 2019 1-4 126, 127 

8 November 24, 2020 - May 4, 2021 2 126 

 

 
Figure 3-2: Field conditions for each subperiod during the tower experiment. 
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a large range of VWC, being up to ~2, ~4, and ~20 kg/m2, respectively. Table 3-1 

summarizes the period and quadrant of the data used in the following analysis chapters. 

3.2 Tower-based Observations 

The tower carried two different radiometers, the Polarimetric P-band Multi-beam 

Radiometer (PPMR, Figure 3-3a) and the Polarimetric L-band Multi-beam Radiometer 

(PLMR, Figure 3-3b). It automatically rotated the mast (changed azimuth) on a 

schedule such that PPMR and PLMR alternately observed the same four quadrants 

(Figure 3-4). Each position in Figure 3-4 lasted 30-45 minutes (totaling ~2-3 hours for 

a cycle), during which the instruments were tilted (changed zenith) every 5-10 minutes 

to produce a range of incidence angles from 30° to 70°, with the footprints as shown 

in Figure 3-1a. The P- and L-band observations for the same quadrant and incidence 

angle were separated by around 30 minutes, making them comparable when assuming 

constant soil moisture and temperature over this period. The continuous TB 

observations for each quadrant and each incidence angle were averaged before analysis. 

The specifications of the PPMR and PLMR are provided in Table 3-2. The PPMR and 

PLMR operate at 0.742-0.752 GHz and 1.401-1.425 GHz, respectively. The PPMR 

has four antenna beams with 30° beamwidth, while the PLMR has six antenna beams 

 
Figure 3-3: Photos and beam positions of a) the PPMR and b) the PLMR. 
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incidence angle, the spatial resolution of the 3-dB footprints of the PPMR and PLMR 

were approximately 8.2 m × 7.0 m and 4.0 m × 4.0 m, respectively. Radiometer 

footprints were approximated to be an ellipse (Figure 3-1a) and estimated using 

geometric information including tower height, pointing angles of beams, and 

beamwidth. 

Warm and cold calibration of PPMR and PLMR were performed regularly: the former 

was undertaken by positioning the PPMR and PLMR over a blackbody chamber 

constructed from microwave absorber having 16 temperature sensors to provide the 

reference TB; the latter was performed every midnight according to the tower schedule 

 
Figure 3-4: The four-step tower rotation cycle. 

Table 3-2: Specifications of the PPMR and PLMR. 

Specification PPMR PLMR 

Frequency 0.742-0.752 GHz 1.401-1.425 GHz 

Polarization H & V H & V 

Observation 

mode 

Four beams at each 

polarization with pointing 

angles of ±15° and ±45° from 

nadir. 

Six beams at each polarization 

with pointing angles of ±7°, 

±21.5° and ±38.5° from nadir. 

Beamwidth 30°×30° 17°×15° 
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by pointing the PPMR and PLMR towards the sky for 2 hours. The reference TB of 

the sky was taken to be constant and calculated to be 13.9 K at P-band and 5.3 K at 

L-band (ITU, 2015). The RMSE between the measurements of the calibration target 

and the reference, i.e., the calibration accuracy, was determined to be better than 1.5 

K for both the PPMR and PLMR (Ye et al., 2020b). Note that the use of “P-band” 

and “L-band” hereafter specifically refers to the frequencies at which PPMR and 

PLMR operate unless otherwise specified. 

3.3 Ground-based Observations 

The temporal evolution of soil moisture and temperature was monitored by the five 

stations (126, 127, 128, 136, and 138) installed at the four edges of the four quadrants 

to avoid any perturbation to the footprints of the radiometers (Figure 3-1a). Stations 

136 and 138 were installed side by side at the edge shared by Q1 and Q4 (Figure 3-1a). 

Temporary station 125 was installed only when cultivation activities required the 

removal of all other stations. Stations 126, 127, 128, and 136 had 12 hydra-probes with 

 
Figure 3-5: Illustrations of the ground measurements, including a) a station 

monitoring soil moisture, temperature, and rainfall evolution; b) a diagram showing 

the station installation; c) soil surface roughness measurement with the pin-profiler; 

d) surface soil moisture measurement using HDAS; and e) an example of destructive 

vegetation sampling. 
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5-cm-long pins inserted into the soil at 5-cm increments down to 60 cm, while station 

125 had five hydra-probes and station 138 had six hydra-probes at 5-cm increments, 

with measurements covering each 5-cm increment (Figure 3-5a and b). The top probe 

was installed vertically from the surface while the others were installed horizontally 

(Figure 3-b). These probes continuously measured soil temperature and moisture and 

logged the average readings at a 20-minute sampling step. 

To validate that the stations can represent the soil moisture over the instrument 

footprints, the spatial homogeneity of the soil moisture at this site was assessed by 

weekly surface soil moisture (~5 cm) measurements using the Monash University 

Hydra-probe Data Acquisition System (HDAS, Merlin et al., 2007). Demonstrating the 

homogeneous soil moisture distribution in this field can also support the neglect of 

the difference across PPMR and PLMR footprints (Figure 3-1a). The HDAS consists 

of a hydra-probe soil moisture sensor and a microcomputer integrated with a 

Geographic Information System (GIS) and Global Position System (GPS). Three 

measurements were performed within a 1-m radius at each sampling location shown 

in Figure 3-1a. A sampling photo is provided in Figure 3-5d. The hydra-probes used 

in this study were calibrated according to Merlin et al. (2007) and checked on-site using 

gravimetric samples, showing a satisfactory performance with a 0.96 R and a 0.04-

 
Figure 3-6: HDAS against gravimetric soil moisture measurement in the 0-5-cm soil 

layer. 
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m3/m3 RMSE (Figure 3-6). Note that these HDAS measurements were not used in the 

formal analysis throughout this thesis but were only used for checking the 

homogeneity of the soil moisture across the field and the representativeness of the 

stations. 

Soil roughness measurements were conducted at the locations in Figure 3-1a using a 

pin-profiler with an ~0.5-cm pin interval (Figure 3-5c). Three consecutive 1-m 

measurements (i.e., 3-m in total) in two perpendicular directions were performed at 

every sampling location on every sampling day. Photographs of the pin-profiler were 

taken during measurements, and the heights of the red pin tops in the photographs 

were derived from image processing for calculating the roughness statistics, e.g., RMS 

height and correlation length. Although it has been suggested that a roughness profile 

longer than 10 m is required to guarantee a good precision (Oh and Kay, 1998, 

Baghdadi et al., 2000), such a long profile is not practical to measure in field 

experiments, and so a 3-m profile has been widely taken as a compromise (McNairn 

et al., 2014, Neelam et al., 2020, Ye et al., 2020a, Zhao et al., 2020b). 

VWC was calculated from weekly destructive vegetation sampling (Figure 3-5e) at the 

locations as shown in Figure 3-1a. In addition, soil properties of the 0-5-cm soil layer 

at this site were investigated by laboratory experiments, including soil texture, bulk 

density, saturated soil moisture, field capacity, permanent wilting point, air-dry soil 

Table 3-3: Soil properties of the 0-5-cm soil layer. 

Property Unit Value 

Soil texture - Silty loam 

Clay % 18.0 

Silt % 71.1 

Sand % 10.9 

Bulk density g/cm3 0.87 

Saturated soil moisture m3/m3 67.32 

Field capacity m3/m3 33.25 

Permanent wilting point m3/m3 19.42 

Air-dry soil moisture m3/m3 5.19 

Conductivity S/m 0.0193 
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moisture, and conductivity (Table 3-3), which were used in the dielectric model 

throughout this thesis. 

Throughout this thesis, the radiometer and station observations in the 6 am rotation 

cycle were used because the soil temperature and dielectric profiles are likely to be 

more uniform at 6 am than other times of the day (Basharinov and Shutko, 1975). n 

addition, the difference between soil and canopy temperature is also minimized 

(Entekhabi et al., 2014). The current study used the daily TB observations at around 

40° incidence angle for both P- and L-band to approximate the configuration of SMAP 

(Entekhabi et al., 2014). Moreover, Zhao et al. (2020a) provide support by showing 

that 40° to 45° provided the best retrieval accuracy. Consistent with the TB 

observations, the soil moisture and temperature in the 6 am rotation cycle were 

averaged for each station to be analyzed. 

3.4 Chapter Summary 

This chapter presents an overview of the PRISM tower-based experiment, the field 

configuration, and the data used in this research, mainly including the tower-based TB 

observations along with the soil moisture and temperature measurements from 

stations. Ancillary data are also introduced from the aspects of spatial soil moisture, 

soil roughness, vegetation, and soil property measurements. In addition, the datasets 

adopted in each of the analysis chapters (Chapters 5 to 8) are identified. Please also 

refer to those chapters for more details of the dataset. 
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4 Model 

This chapter presents in detail the models for TB/emissivity simulation used in this 

thesis, i.e., the tau-omega model, the Njoku model, and the I2EM. The former two are 

based on the radiative transfer equation: the tau-omega model is a zero-order 

noncoherent model that implicitly assumes uniform soil moisture and temperature 

with depth, while the Njoku model is a stratified coherent model that is able to account 

for non-uniform soil moisture and temperature with depth. The emissivity of a soil 

surface can also be computed by integrating the total bistatic scattering over the upper 

hemisphere, with the I2EM bistatic scattering model enabling such a computation. 

Each of these three models relies on a dielectric mixing model to link to the soil 

moisture. Accordingly, the Mironov model used throughout this thesis is also 

introduced in this chapter. 

4.1 Tau-Omega Model 

The well-known tau-omega model (Mo et al., 1982) characterizes the brightness 

temperature of the thermal emission (TB𝑃, where subscript 𝑃 denotes either H or V 

polarization) from a vegetated soil surface with four terms (Figure 4-1), i.e., 1) the 

direct upward emission from vegetation ( TB𝑃
v_up

); 2) the downward vegetation 

emission reflected by the soil and attenuated by the canopy layer (TB𝑃
v_down

); 3) the 

upward soil emission attenuated by the canopy layer (TB𝑃
s ), and 4) the downwelling 

sky emission (TBsky_down) reflected by the soil and attenuated twice by the canopy 

layer (TB𝑃
sky

), formulated as (Ulaby et al., 2014) 

TB𝑃 = TB𝑃
v_up

+ TB𝑃
v_down + TB𝑃

s + TB𝑃
sky

= (1 − 𝜔)(1 − 𝛾𝑃)𝑇eff
v +

           (1 − 𝜔)(1 − 𝛾𝑃)𝛾𝑃Γ𝑃𝑇eff
v + (1 − Γ𝑃)𝛾𝑃𝑇eff

s + TBsky_downΓ𝑃𝛾𝑃
2, Eq. 4-1 

where 𝛾𝑃 and 𝑇eff
v  are the transmissivity and effective temperature of the vegetation 

canopy, and Γ𝑃 and 𝑇eff
s  are the reflectivity and effective temperature of the soil. The 

𝑇eff
v  was assumed to be equal to the physical soil temperature in the 0-5-cm layer 
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because the difference between canopy and soil temperature is minimal at 6 am 

(Fagerlund et al., 1970). Moreover, TBsky_down  was assumed to be constant and 

calculated to be 13.9 K at P-band and 5.3 K at L-band (ITU, 2015). Kirchhoff’s 

reciprocity theorem relates emissivity (𝑒𝑃) to Γ𝑃 through 

 𝑒𝑃 = 1 − Γ𝑃. Eq. 4-2 

The vegetation transmissivity (𝛾𝑃 ) was computed from the optical depth 𝜏𝑃  using 

Beer’s law such that 

 𝛾𝑃 = exp (−
𝜏𝑃

cos (𝜃)
), Eq. 4-3 

with 𝜏𝑃 being a function of VWC and an empirical parameter 𝑏 (Eq. 2-7). 

For bare soil, Eq. 4-1 can be simplified to 

 TB𝑃 = TB𝑃
s + TB𝑃

sky
= (1 − Γ𝑃)𝑇eff

s + TBsky_downΓ𝑃, Eq. 4-4 

 
Figure 4-1: Schematic of the tau-omega model, including 1) the direct upward 

emission from vegetation, 2) the downward vegetation emission reflected by the soil 

and attenuated by the canopy layer, 3) the upward soil emission attenuated by the 

canopy layer, and 4) the downwelling sky emission reflected by the soil and 

attenuated twice by the canopy layer. 
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where Γ𝑃 can be computed using the HQN model (Eq. 2-5). The specular reflectivity 

Γ𝑃
∗ and Γ𝑄

∗ in Eq. 2-5 can be calculated from the Fresnel equations as a function of 𝜀𝑟, 

such that 

 Γ𝐻
∗ = |

cos(𝜃)−√𝜀𝑟−sin2(𝜃)

cos(𝜃)+√𝜀𝑟−sin2(𝜃)
|

2

 Eq. 4-5 

 Γ𝑉
∗ = |

𝜀𝑟cos(𝜃)−√𝜀𝑟−sin2(𝜃)

𝜀𝑟cos(𝜃)+√𝜀𝑟−sin2(𝜃)
|

2

. Eq. 4-6 

While many models empirically estimate 𝑇eff
s  using only soil surface and deep 

temperature (Chapter 2.3.3), the physical model (Choudhury et al., 1982) was adopted 

throughout this thesis to avoid errors induced by empirical parameters, such that 

 𝑇eff
s = ∫ 𝑇(𝑧)𝛼(𝑧) exp[− ∫ 𝛼(𝑧′)𝑑𝑧′𝑧

0
] 𝑑𝑧

∞

0
, Eq. 4-7 

where 𝑇(𝑧) is the soil temperature at depth 𝑧 , and 𝛼(𝑧) is the power absorption 

coefficient depending on the soil dielectric constant 𝜀𝑟  and the observation 

wavelength 𝜆 written as (Ulaby et al., 1986) 

 𝛼(𝑧) = 2 ∙ (2𝜋/𝜆) ∙ |Im(√𝜀𝑟(𝑧))|, Eq. 4-8 

where Im ( ) represents the imaginary part. When estimating the effective soil 

temperature, the soil was modeled as a semi-infinite medium using the soil moisture 

and temperature observations from the hydra-probes of the station, with the soil 

moisture and temperature below the last observing layer assumed to be the same as 

those observed in the last observing layer. 

4.2 Njoku Model 

The Njoku model is a coherent model that is able to simulate the TB for a nonuniform 

soil, expressed as (Njoku and Kong, 1977, Schmugge and Choudhury, 1981) 

 TB𝑃 = ∫ 𝑇(𝑧)𝑓𝑃(𝑧)𝑑𝑧
∞

0
, Eq. 4-9 

where 𝑇(𝑧) is the soil temperature at depth 𝑧, and 𝑓𝑃(𝑧) is the fractional absorption 

which is calculated from the solution of a differential equation with a flux conservation 

boundary condition at the air/soil interface, such that 
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 𝑓𝐻(𝑧) =
𝑘

cos(𝜃)
𝜀𝑟

′′(𝑧)|𝜓(𝑧)|2 Eq. 4-10 

 𝑓𝑉(𝑧) =
1

𝑘cos(𝜃)
𝜀𝑟

′′(𝑧)(|
1

𝜀𝑟(𝑧)

𝑑𝜙(𝑧)

𝑑𝑧
|

2

+ |
𝑘𝑥𝜙(𝑧)

𝜀𝑟(𝑧)
|

2

), Eq. 4-11 

where 𝑘 is the free space wavenumber (2𝜋/𝜆), 𝑘𝑥 = 𝑘sin(𝜃), and the functions 𝜓(𝑧)

and 𝜙(𝑧) are determined from 

 
𝑑2𝜓(𝑧)

𝑑𝑧2 + [𝜀𝑟(𝑧)𝑘2 − 𝑘𝑥
2]𝜓(𝑧) = 0 Eq. 4-12 

 𝜀𝑟(𝑧)
𝑑

𝑑𝑧
(

1

𝜀𝑟(𝑧)

𝑑𝜙(𝑧)

𝑑𝑧
) + [𝜀𝑟(𝑧)𝑘2 − 𝑘𝑥

2]𝜙(𝑧) = 0  Eq. 4-13 

The boundary conditions for a plane surface are 

 
𝑑𝜓(𝑧)

𝑑𝑧
+ 𝑖𝑘 cos(𝜃) [2 − 𝜓(𝑧)] = 0 Eq. 4-14 

 
𝑑𝜙(𝑧)

𝑑𝑧
+ 𝑖 𝜀𝑟(𝑧) 𝑘 cos(𝜃) [2 − 𝜙(𝑧)] = 0 Eq. 4-15 

for 𝑧= 0. Refer to Njoku (1976) and Njoku and Kong (1977) for more details on the 

mathematical derivation of the Njoku model. 

4.3 I2EM 

The emissivity of a soil surface can be calculated based on Kirchhoff’s reciprocity 

theorem such that (Ulaby et al., 1982, Fung, 1994) 

 𝑒𝑃 = 1 − Γ𝑃 = 1 − Γ𝑃
non − Γ𝑃

coh, Eq. 4-16 

where Γ𝑃
nonand Γ𝑃

coh are the noncoherent and coherent soil surface reflectivity. Γ𝑃
coh 

can be calculated as 

 Γ𝑃
coh = Γ𝑃

∗ exp{−[2𝑘𝑠 ∙ cos(𝜃)]2}, Eq. 4-17 

where 𝑘 is the wave number, 𝑠 is the RMS height of the soil surface, and Γ𝑃
∗ is the 

specular reflectivity calculated from the Fresnel equation (Eqs. 4-5 and 4-6). 

The Γ𝑃
non can be obtained by integrating the bistatic scattering coefficient 𝜎𝑠 over the 

upper hemisphere 

 Γ𝐻
non =

∫ ∫ [𝜎𝐻𝐻
𝑠 (𝜃,𝜙,𝜃𝑠,𝜙𝑠)+𝜎𝐻𝑉

𝑠 (𝜃,𝜙,𝜃𝑠,𝜙𝑠)]
𝜋/2

0 sin(𝜃𝑠)𝑑𝜃𝑠𝑑𝜙𝑠
2𝜋

0

4𝜋cos(𝜃)
 Eq. 4-18 
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 Γ𝑉
non =

∫ ∫ [𝜎𝑉𝑉
𝑠 (𝜃,𝜙,𝜃𝑠,𝜙𝑠)+𝜎𝑉𝐻

𝑠 (𝜃,𝜙,𝜃𝑠,𝜙𝑠)]
𝜋/2

0 sin(𝜃𝑠)𝑑𝜃𝑠𝑑𝜙𝑠
2𝜋

0

4𝜋cos(𝜃)
, Eq. 4-19 

where 𝜃 and 𝜙 are the zenith and azimuth of the incident direction, respectively, while 

𝜃𝑠  and 𝜙𝑠  are the zenith and azimuth of the scattering direction, respectively. 

Moreover, 𝜎𝑃𝑄
𝑠  (with 𝑃 =H, 𝑄 =V or 𝑃 =V, 𝑄 =H) was modeled by the I2EM 

(Improved Integral Equation Model, Fung et al., 2002) in this thesis. It is a 

mathematically sophisticated computational algorithm for computing the bistatic 

scattering coefficient of a random surface, accounting for multiple scattering and 

shadowing effects. The I2EM was compared with another descendant of the IEM 

(Fung et al., 1992, Fung, 1994), i.e., the Advanced IEM (AIEM, Chen et al., 2003), by 

Wu et al. (2008), showing that the I2EM performed equally to or even better than the 

AIEM for low frequencies and small roughness, which is the case in this research. In 

addition, the I2EM has been used in similar simulations of the emissivity of soil 

surfaces (e.g., Ulaby et al. 2014). 

The main equation of the I2EM used in this thesis is 

 𝜎𝑃𝑄
𝑠 = 𝑆(𝜃, 𝜃𝑠)

𝑘2

2
 

 ∙ exp[−𝑠2(𝑘𝑧
2 + 𝑘𝑠𝑧

2 )] ∑ 𝑠2𝑛|𝐼𝑃𝑄
𝑛 |

2 𝑊(𝑛)(𝑘𝑠𝑥−𝑘𝑥,   𝑘𝑠𝑦−𝑘𝑦 )

𝑛!
∞
𝑛=1 ,  Eq. 4-20 

where 𝑆(𝜃, 𝜃𝑠)  is the bistatic shadowing function, 𝑘𝑥 = 𝑘sin(𝜃)cos (𝜙) , 𝑘𝑦 =

𝑘sin(𝜃)sin(𝜙), 𝑘𝑧 = 𝑘cos(𝜃), with 𝑘𝑠𝑥, 𝑘𝑠𝑦  and 𝑘𝑠𝑧 similarly defined in terms of 

the scattering angles 𝜃𝑠 and 𝜙𝑠, and 𝑊(𝑛) is the Fourier transform of the 𝑛th power of 

the surface correlation coefficient. Refer to Fung et al. (2002) for the full mathematical 

derivation of the I2EM. 

The inputs to the I2EM are dielectric constant, observation frequency, and surface 

properties, including the type of correlation function, RMS height, and correlation 

length. An exponential correlation function was assumed in this thesis since soil 

surfaces are mostly considered exponential-like (Fung and Kuo, 2006, Schwank et al., 

2009, Zhu et al., 2020). 
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The I2EM has also been employed to simulate the emissivity of furrowed sinusoidal 

soil surfaces. A one-dimensional sinusoidal surface with height 𝛧(𝑦) can be described 

by 

 𝛧(𝑦) = A [1 + cos (
2𝜋𝑦

Λ
)], Eq. 4-21 

with amplitude A and spatial period Λ. Assuming that there are many spatial periods Λ 

within the antenna footprint, the emissivity of this sinusoidal surface (𝑒𝑃
sin) can be 

integrated across a single period such that (Ulaby et al., 2014)  

 𝑒𝑃
sin(𝜙) =

1

Λ cos(𝜃)
∫ 𝑒𝑃 sec(𝛼) cos(𝜃′) 𝑑𝑦

Λ

0
, Eq. 4-22 

where 𝑒𝑃 is the emissivity of the local small-scale surface with local incidence angle 𝜃′

calculated using Eq. 4-16, and 𝛼 is the angle whose tangent is equal to the slope of the 

surface 𝛧(𝑦). Please refer to Ulaby et al. (2014) for more details on this model. Apart 

from the regular inputs of the I2EM model, additional input requirements include 

azimuth, amplitude, and period of the sinusoidal surface. 

4.4 Mironov Model 

Throughout this thesis, the dielectric constant was related to soil moisture using the 

model of Mironov et al. (2013b) because it accounts for the interfacial (Maxwell-

Wagner) relaxation of water in the soil, which is essential at P-band (Chen and Or, 

2006). While the Peplinski model is also applicable at P-band (Peplinski et al., 1995b), 

Mironov et al. (2013b) reported that the Peplinski model had a much larger standard 

deviation from dielectric measurements (~0.3 compared to 0.014 using the Mironov 

model) and was thus not adopted in this thesis. 

The real (𝜀𝑚
′ ) and imaginary (𝜀𝑚

′′ ) parts of the complex dielectric constant of moist 

soils can be represented in the form of the refractive mixing dielectric model as 

(Mironov et al., 2004) 

 𝜀𝑚
′ = 𝑛𝑚

2 − 𝜅𝑚
2  Eq. 4-23 

 𝜀𝑚
′′ = 2𝑛𝑚𝜅𝑚 Eq. 4-24 
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 𝑛𝑚 = {
𝑛𝑑 + (𝑛𝑏 − 1)SM, SM ≤ SM𝑡

𝑛𝑑 + (𝑛𝑏 − 1)SM𝑡 + (𝑛𝑢 − 1)(SM − SM𝑡), SM ≥ SM𝑡
 Eq. 4-25 

 𝜅𝑚 = {
𝜅𝑑 + 𝜅𝑏SM, SM ≤ SM𝑡

𝜅𝑑 + 𝜅𝑏SM𝑡 + 𝜅𝑢(SM − SM𝑡), SM ≥ SM𝑡
 Eq. 4-26 

where SM and SM𝑡 are the volumetric soil moisture and the maximum bound water 

fraction of the soil, respectively, and 𝑛𝑖 and 𝜅𝑖 are the refractive index and normalized 

attenuation coefficient, respectively, with the subscript 𝑖 being 𝑚 (moist soil), 𝑑 (dry 

soil), 𝑏 (bound soil water), or 𝑢 (unbound or free water in the soil). 

According to Mironov et al. (2013b), the 𝑛𝑖 and 𝜅𝑖 can be expressed as 

 𝑛𝑖√2 = √√(𝜀𝑖
′)2 + (𝜀𝑖

′′)2 + 𝜀𝑖
′ Eq. 4-27 

 𝜅𝑖√2 = √√(𝜀𝑖
′)2 + (𝜀𝑖

′′)2 − 𝜀𝑖
′. Eq. 4-28 

The two-relaxation Debye equations define the dielectric constant of the bound soil 

water as 

 𝜀𝑏
′ =

𝜀0𝑏𝐼−𝜀0𝑏𝐷

1+(2𝜋𝑓𝜏𝑏𝐼)2 +
𝜀0𝑏𝐷−𝜀∞𝑏𝐷

1+(2𝜋𝑓𝜏𝑏𝐷)2 + 𝜀∞𝑏𝐷 Eq. 4-29 

 𝜀𝑏
′′ =

𝜀0𝑏𝐼−𝜀0𝑏𝐷

1+(2𝜋𝑓𝜏𝑏𝐼)2 2𝜋𝑓𝜏𝑏𝐼 +
𝜀0𝑏𝐷−𝜀∞𝑏𝐷

1+(2𝜋𝑓𝜏𝑏𝐷)2 2𝜋𝑓𝜏𝑏𝐷 +
𝜎𝑏

2𝜋𝜀𝑣𝑓
, Eq. 4-30 

where 𝜀0𝑖𝑗 and 𝜀∞𝑖𝑗 are the dielectric constants in the low- and high-frequency limits, 

respectively, with the subscript 𝑗  being either 𝐼  (ionic relaxation) or 𝐷  (dipole 

relaxation), 𝜏𝑖𝑗 denotes the relaxation time, 𝜎𝑖 denotes the ohmic conductivity, and 𝜀𝑣 

is the dielectric constant of vacuum, being 8.854∙10-12 F/m. For the free soil water that 

possesses only dipole relaxation, 𝜀0𝑖𝐼=𝜀0𝑖𝐷 can be obtained, and thus Eqs. 4-29 and  

4-30 can be simplified to 

 𝜀𝑢
′ =

𝜀0𝑢𝐷−𝜀∞𝑢𝐷

1+(2𝜋𝑓𝜏𝑢𝐷)2 + 𝜀∞𝑢𝐷 Eq. 4-31 

 𝜀𝑢
′′ =

𝜀0𝑢𝐷−𝜀∞𝑢𝐷

1+(2𝜋𝑓𝜏𝑢𝐷)2 2𝜋𝑓𝜏𝑢𝐷 +
𝜎𝑢

2𝜋𝜀𝑣𝑓
. Eq. 4-32 

Based upon the model in Mironov et al. (2013b) and the dielectric measurements of a 

range of soil samples in the frequency range 0.04 to 26.5 GHz, Mironov et al. (2014) 

developed a relationship between soil properties (i.e., clay content and bulk density) 
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and the spectroscopic parameters in the model. Table 4-1 shows the parameter values 

used to compute the dielectric constant throughout this thesis. These parameters were 

calibrated at 20 ℃, indicating that this model implicitly assumes a constant 

temperature of 20 ℃. As a result, the impact of temperature variations on dielectric 

constant was neglected in this thesis. The clay content (C =18%) and bulk density 

(𝜌𝑏=0.87 g/cm3) measured in the field (Table 3-3) were used in the Mironov model. 

4.5 Chapter Summary 

This chapter introduced the models used in the following chapters. Chapter 5 uses the 

Njoku model to estimate the moisture retrieval depth at P- and L-band. Chapter 6 

adopts the I2EM for simulating the emissivity of flat and periodic soil surfaces. Since 

only the tau-omega model can account for the vegetation effects, it was applied to the 

analysis in Chapters 7 and 8 that dealt with vegetation-covered soil. The Mironov 

model was used throughout this thesis to link dielectric constant to soil moisture. 

Table 4-1: Parameters used in the Mironov model (Eqs. 4-23-4-32) according to 

Mironov et al. (2014). 

Parameter Value 

𝑛𝑑 1+(0.432-0.065C)𝜌𝑏 

𝜅𝑑  (0.008+0.011C)𝜌𝑏 

𝜀0𝑏𝐼 761-840C 

𝜀0𝑏𝐷 27.18+61∙exp(-C/0.287) 

𝜀∞𝑏𝐷 4.9 

𝜀0𝑢𝐷 100 

𝜀∞𝑢𝐷 4.9 

𝜏𝑏𝐼 2.5 10-9 s 

𝜏𝑏𝐷 1.25 10-11 s 

𝜏𝑢𝐷 1.06 10-11 s 

𝜎𝑏 0.001 S/m 

𝜎𝑢 0.097+0.69C  S/m 

SM𝑡 0.024+0.339C  m3/m3 

The C is clay content in percentage, and 𝜌𝑏 is soil bulk density in g/cm3. 
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5 Soil Moisture Retrieval Depth 

Chapters 3 and 4 have introduced the data and models used throughout this thesis, 

respectively, and so the analysis starts from this chapter onward. As discussed in 

Chapter 2.3.2, the moisture retrieval depth is of more relevance than the thermal 

sensing depth because it indicates the representative soil thickness of the soil moisture 

data. Accordingly, this chapter developed a theoretical model for moisture retrieval 

depth based upon the Njoku and Fresnel models introduced in Chapter 4 and 

empirically correlated the radiometer and soil moisture measurements presented in 

Chapter 3. The estimated moisture retrieval depth at P- and L-band was used in the 

following chapters for simulating TB and evaluating retrieved soil moisture. The work 

in this chapter has been published in Shen et al. (2021). 

5.1 Background 

Moisture retrieval depth can be determined only by model estimation rather than by 

direct measurement, and so it is subject to the retrieval model used. Therefore, the use 

of the term “moisture sensing depth” is considered inappropriate as it can be easily 

misinterpreted as an indicator of the sensing capability of the instrument. The fact is 

that it can only be determined by model estimation and not by direct measurement. 

More correctly, “moisture retrieval depth” is used instead hereafter in this thesis. 

The SMOS and SMAP missions can only provide moisture information within the top 

5-cm layer of soil or less (Entekhabi et al., 2010, Kerr et al., 2010) due to the limited 

moisture retrieval depth of L-band, hindering the widespread application of soil 

moisture products in hydrology, agriculture, and climate research. While moisture 

retrieval depth ranges from approximately one-tenth to one-fourth of the wavelength 

(Wilheit, 1978, Schmugge and Choudhury, 1981, Newton et al., 1982, Newton et al., 

1983, Ulaby et al., 1986, Raju et al., 1995), until now it has not been demonstrated to 

be actually greater at P- than L-band due to the lack of coincident radiometer 
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observations at these wavelengths. Moreover, there is no accepted model for 

predicting the moisture retrieval depth at different wavelengths. 

This chapter developed a theoretical model for moisture retrieval depth based upon 

the Njoku and Fresnel models introduced in Chapter 4 and compared the moisture 

retrieval depth from P- and L-band radiometry to understand the potential increase at 

P-band under a range of moisture profiles. Furthermore, the radiometer and soil 

moisture measurements collected over the bare soil at the PRISM tower site (Chapter 

3) were empirically correlated to estimate the moisture retrieval depth from an 

observation perspective. 

5.2 Data 

Figure 5-1 shows the ground-based measurements from the PRISM tower experiment 

(see Chapter 3) that were used for the empirical correlation analysis. During the study 

period shown in Figure 5-1, the field with four quadrants was maintained as flat bare 

ground (Figure 3-2c) with dynamic moisture conditions. To minimize the presence of 

 
Figure 5-1: Collected data include a) TB observations at 30° incidence angle, b) 

calculated MPDI from TB, c) time-series soil moisture and d) temperature from 

station 125. The data gaps in a) and b) resulted from the tower being lowered due to 

high wind on those days. 
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weeds, the experiment site was freshly plowed on May 7, 2019. Since the four 

quadrants had the same field conditions, only the TB observations collected in Q4 

were analyzed in this chapter. Although the TB observations at around 40° incidence 

angle are preferable to be analyzed, as discussed in Chapter 3.3, those at 30° were used 

instead due to the unavailability of the 40° data during the study period of this chapter. 

The MPDI was calculated from the TB measurements using Eq. 2-10 (Figure 5-1b). 

During the study period, all stations were removed due to cultivation activities, with 

only the temporary station 125 operating. Accordingly, the soil moisture and 

temperature measured by the five hydra-probes of station 125 are plotted in Figure 

5-1c and d, respectively. 

5.3 Method 

5.3.1 Radiative transfer theory 

For an ideal soil with uniform moisture and temperature profiles, the well-known 

radiative transfer approximation can be used to estimate the emissivity from TB 

measurements (Ulaby et al., 1986) 

 TB𝑃 = 𝑒𝑃𝑇. Eq. 5-1 

For real soils, moisture and temperature vary vertically due to solar radiation, 

precipitation, infiltration, and gravity, so are by no means uniform. In this case, the 

coherent model (e.g., the Njoku model introduced in Chapter 4.2) is able to simulate 

the TB of a nonuniform soil. In order to apply the radiative transfer approximation to 

soils with nonuniform temperature, the so-called effective soil temperature was 

proposed to substitute the physical temperature in Eq. 5-1. The theoretical form of 

effective soil temperature can be expressed as (Schmugge and Choudhury, 1981) 

 𝑇eff
s =

∫ 𝑇(𝑧)𝑓(𝑧)𝑑𝑧
∞

0

∫ 𝑓(𝑧)𝑑𝑧
∞

0

, Eq. 5-2 

where 𝑓(𝑧) is the fractional absorption calculated from the coherent model. Thus, 

with known TB𝑃 and 𝑇=𝑇eff
s , 𝑒𝑃 can be obtained from Eq. 5-1. However, the question 
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of what representative depth of soil over which the emissivity (i.e., dielectric constant 

and thus moisture) is estimated remains. 

5.3.2 Moisture retrieval depth model 

To quantify the above-mentioned representative depth, the moisture retrieval depth 

(𝛿𝑚) is defined as the equivalent soil thickness [0, 𝑧] for obtaining the average soil 

moisture that equates the emissivity through the Fresnel equations (hereafter referred 

to as the Fresnel emissivity) to the theoretical emissivity from the coherent model 

(hereafter referred to as the coherent emissivity). The mathematical explanations are 

as follows. 

Equating the Njoku model (Eq. 4-9) and the radiative transfer approximation (Eq. 5-

1) and substituting the theoretical form of effective soil temperature (Eq. 5-2), one 

obtains 

 𝑒∗[SM(0 − 𝛿𝑚)] = ∫ 𝑓(𝑧)𝑑𝑧
∞

0
, Eq. 5-3 

where SM(0 − 𝛿𝑚) is the soil moisture averaged over the 0-𝛿𝑚  layer, 𝑒∗[SM(0 −

𝛿𝑚)] denotes the Fresnel emissivity determined by SM(0 − 𝛿𝑚) that is calculated 

from Eqs. 4-2, 4-5, and 4-6, and ∫ 𝑓(𝑧)𝑑𝑧
∞

0
 is the coherent emissivity computed from 

Eqs. 4-10 and 4-11. Eq. 5-3 can therefore be used to determine the soil thickness 

whose averaged soil moisture produces a Fresnel emissivity that equals the coherent 

emissivity. 

To account for the roughness of natural soil surfaces, the widely used HQN model 

(Eq. 2-5) was adopted, such that 

 𝑒 = 1 − (1 − 𝑒∗) exp[−𝐻𝑅cos𝑁𝑅𝑃(𝜃)] Eq. 5-4 

for low frequencies, i.e., P- and L-band, with 𝑄𝑅 assumed to be 0. Substituting the 

Fresnel and coherent emissivity in Eq. 5-3 with 𝑒 demonstrates that roughness has no 

impact on moisture retrieval depth according to this model, and thus roughness effects 

were not considered in this model. Accordingly, the required inputs of this moisture 
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retrieval depth model are therefore the soil moisture profile, soil properties (clay 

content and bulk density), observation frequency, and incidence angle. 

5.3.3 Moisture retrieval depth prediction 

Eq. 5-3 was used to predict the moisture retrieval depth using the Njoku model (see 

Chapter 4.2) for six typical soil moisture profiles SM(𝑧) (Figure 5-2). Profile depth and 

layer thickness of all six profiles were assumed to be 10 m (i.e., 𝑧 < 10 m) and 0.1 mm, 

respectively, to avoid any possible boundary or numerical approximation artefacts. 

Profiles 1-5 were simulated using the functions from Njoku and Kong (1977) being  

 SM(𝑧) = SM𝑠 + ∆SM
e−𝛽𝑧−1

e−𝛽𝑑−1
     0 ≤ 𝑧 ≤ 𝑑 Eq. 5-5 

 SM(𝑧) = SM(𝑑)                 𝑧 ≥ 𝑑, Eq. 5-6 

and the parameters listed in Table 5-1, where SM𝑠 is the moisture content at the soil 

surface, ∆SM is the increment of moisture between the surface and depth 𝑑 below the 

surface, beyond which the moisture content was assumed to be constant, and 𝛽 

determines the moisture gradient of the profile.  

 
Figure 5-2: Simulated typical soil moisture profiles with constant moisture assumed 

below 50 cm. 
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Profiles 1 and 5 may both occur during rain but with different rainfall amounts, 

duration, and intensity. Profiles 2-4 simulated drying profiles. Profiles 2 and 3 had the 

same moisture gradient near the surface but different profile moisture, while profile 4 

had a smaller surface moisture gradient. Differing from profiles 1-5, profile 6 

represented the actual moisture profile observed at the experiment site, generated by 

interpolating the soil moisture measurements at different depths from the station. 

5.4 Results and Discussion 

5.4.1 Predicted moisture retrieval depth 

Prior to the estimation of the moisture retrieval depth, the complex relative dielectric 

constant and emissivity were compared for P- and L-band in Figure 5-3. It can be seen 

that the real components of the dielectric constant were basically the same across soil 

moisture at P- and L-band whereas P-band had a slightly larger imaginary component 

than L-band, in line with the literature (Hoekstra and Delaney, 1974, Wagner et al., 

2011). The slight difference in dielectric constant resulted in a small unapparent offset 

in emissivity at P- and L-band, particularly when soil moisture was less than 0.3 m3/m3. 

Figure 5-4 depicts the estimated coherent and Fresnel emissivity across soil thickness 

corresponding to the moisture profiles 1-6 of Figure 5-2 at 30° incidence angle and H 

Table 5-1: Parameters characterizing the moisture profiles plotted in Figure 5-2. 

Profile 
SM𝑠  

(m3/m3) 

∆SM  

(m3/m3) 

𝛽 

(cm-1) 

𝑑 

(cm) 

Moisture 

gradient over 0-

10-cm layer 

(cm-1) 

Moisture 

gradient over 

10-20-cm 

layer (cm-1) 

1 60 -25 0.5 50 0.025 0 

2 20 15 0.5 50 0.015 0 

3 7 15 0.5 50 0.015 0 

4 7 15 0.05 50 0.006 0.004 

5 60 -25 0.07 50 0.013 0.006 

6 – – – – 0.010 0.001 
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polarization. The 30° incidence angle was adopted herein for consistency with the TB 

observations used for calculating the observed moisture retrieval depth. The impact of 

soil texture on moisture retrieval depth was also tested by assuming a clay content of 

50% instead of 18% with a difference of not more than 1 cm between the two results. 

By definition, the simulated coherent emissivity for each profile is a single value and 

thus plotted in Figure 5-4 as the solid horizontal line. The Fresnel emissivity was 

calculated using the averaged soil moisture over an increasing soil thickness, shown as 

the dashed curve. The moisture retrieval depth for P- and L-band is thus indicated by 

 
Figure 5-3: Comparison of P- and L-band a) relative dielectric constant and b) 

emissivity across soil moisture. The emissivity was predicted by both the Fresnel and 

coherent model and found to be the same for this scenario of an assumed uniform 

moisture profile. 
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the intersection of the two models. However, this theoretical retrieval depth is subject 

to uncertainties. 

To account for uncertainties, the moisture retrieval depth was calculated as the vertical 

dotted lines shown in Figure 5-4. One major uncertainty source is considered to be the 

dielectric model because most dielectric models are semiempirical. A comprehensive 

evaluation of nine commonly used dielectric models by Park et al. (2019) found an 

average median absolute bias of around 0.03 m3/m3 when compared with 

measurements. Accordingly, the potential bias in emissivity can be estimated 

depending on the soil moisture and frequency. Moreover, in a practical sense, soil is a 

continuous medium, and thus high correlation exists between the soil moisture of 

neighboring layers, potentially enlarging the moisture retrieval depth further. Therefore, 

the moisture retrieval depth was increased to the point where the difference between 

 
Figure 5-4: Coherent and Fresnel emissivity at 30° incidence angle and H-pol across 

soil thickness and moisture retrieval depth indicated by vertical dotted lines. Subplots 

1-6 correspond to soil moisture profiles 1-6. In subplots 1 and 5, P- and L-band are 

very close to being overlapped. 
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the Fresnel and coherent emissivity was equal to the above-mentioned bias in 

emissivity. 

The calculated moisture retrieval depths in Figure 5-4 ranged within 0.8-10.5 and 0.6-

8.4 cm for P- and L-band at 30° incidence angle, respectively. Overall, a larger moisture 

retrieval depth at P-band than L-band can be observed for all profiles, especially 

profiles 2, 3, 4, and 6. However, P- and L-band did not substantially differ for profiles 

1 and 5 due to the extremely high surface soil moisture.  

Figure 5-5 demonstrates that, overall, the moisture retrieval depth increased with 

wavelength, notably when the frequency dropped below 1 GHz, though minimally for 

profiles 1 and 5 due to the extremely high surface soil moisture. The moisture retrieval 

depth of profile 6 had some “waves” across frequency due to the irregular fluctuation 

of soil moisture with depth. 

Figure 5-5 also shows that the soil moisture, especially the surface soil moisture relative 

to the profile soil moisture, had the primary impact on determining the moisture 

retrieval depth, e.g., a sequence of moisture retrieval depth from large to small was 

profiles 3, 2 and 1, corresponding to the surface soil moisture from low to high. 

 
Figure 5-5: Moisture retrieval depth at 30° incidence angle and H-pol against 

frequency from 0.3 to 10 GHz, corresponding to soil moisture profiles 1-6. 
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Previous empirical studies have also observed this frequency and moisture dependence 

of moisture retrieval depth at L-band (Wilheit, 1978, Escorihuela et al., 2010). However, 

this cannot explain why profile 5 achieved a larger moisture retrieval depth than profile 

1, even though it had higher surface and subsurface moisture. It is therefore reasonable 

to infer that the moisture gradient was another primary factor that dominated moisture 

retrieval depth. 

It is hypothesized that the lower surface moisture gradient in the 0-10-cm layer of 

0.013 cm-1 contributed to the deeper moisture retrieval depth of profile 5, compared 

to profile 1 whose surface moisture gradient was 0.025 cm-1 (Table 5-1), because a 

lower gradient usually means a higher correlation between the moisture of neighboring 

soil layers. Moreover, it was observed that the moisture gradient in the 10-20-cm layer 

affected the moisture retrieval depth. Profiles 2 and 3 had a large surface moisture 

gradient of 0.015 cm-1 but were then uniform below 10 cm, which explains why in 

Figure 5-5 for decreasing frequency the moisture retrieval depth increased slowly at 

first and then quickly below 0.5 GHz for these profiles. For the continuously changing 

profiles 4 and 5, the moisture retrieval depth did not change much over frequency. 

Therefore, P-band tended to have a substantially larger moisture retrieval depth than 

L-band only if the moisture profile was steep at the surface and then uniform for 

deeper depths, with dry-to-intermediate soil moisture (e.g., profile 3). Otherwise, P- 

and L-band had a similar moisture retrieval depth (e.g., profiles 4 and 5). 

5.4.2 Observed moisture retrieval depth 

Figure 5-6 shows the correlation of MPDI against the soil moisture measurements 

averaged over different soil thicknesses for P- and L-band. MPDI was used instead of 

TB to exclude the impact of diurnal or day-to-day variations in soil temperature on TB, 

and thus be more highly related to the dielectric properties (i.e., moisture) of the soil 

(Owe et al., 2001). It can be observed that the correlation was highest for the 0-5-cm 

thickness and decreased with increasing soil thickness. This result can be interpreted 

in one of two ways: 1) for the same moisture retrieval depth (~5 cm) a greater 

correlation (accuracy of retrieval) can be achieved at P-band than at L-band or 2) a 
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larger moisture retrieval depth can be achieved at P-band (~7 cm) than at L-band (~5 

cm) for the same correlation (accuracy of retrieval), confirming the prediction result 

for profile 6 in Figure 5-4. Importantly, these empirical results were limited to the 

specific moisture conditions, soil properties, and incidence angle used at the Cora Lynn 

site. 

5.5 Chapter Summary 

This chapter compared the moisture retrieval depth of P- and L-band radiometry from 

prediction and observation perspectives. For the same moisture retrieval depth, a 

higher correlation between soil moisture and MPDI was found at P-band than L-band, 

implying that P-band can either retrieve soil moisture over the same moisture retrieval 

depth as L-band (~5 cm) but with greater accuracy, or that a larger moisture retrieval 

depth (~7 cm) can be achieved while maintaining the same accuracy. These empirical 

results agreed with model predictions. Moreover, model predictions showed that the 

moisture retrieval depth increased with wavelength such that P-band can potentially 

provide soil moisture retrievals for a depth greater than 10 cm when using a frequency 

lower than 0.5 GHz. However, it was found that the moisture retrieval depth achieved 

depended on the moisture gradient of the profile in addition to the soil moisture 

 
Figure 5-6: Correlation of MPDI against soil moisture averaged over different soil 

thicknesses for bare soil observations from May 9 to June 12, 2019. 
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content and observation frequency. Although the moisture retrieval model proposed 

in this chapter has the potential to be applied to the time-series observations from the 

station, it will introduce many uncertainties to the results when interpolating soil 

moisture measurements at a 5-cm interval into continuous profiles, particularly for the 

top 2.5-cm layer which lacks direct observation. 

Although P-band has been demonstrated to have a larger moisture retrieval depth (~7 

cm) than L-band (~5 cm), the 0-5-cm soil moisture observations were used in the 

following chapters due to the lack of a soil moisture observation in the 0-7-cm layer 

and that the soil moisture was highly correlated between the 0-5-cm and 5-10-cm layers. 

Moreover, the moisture retrieval depth at P-band reduced to approximately 5 cm when 

the wheat (Chapter 7) and corn (Chapter 8) were present. 
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6 Roughness Impact of Random and 

Periodic Surfaces 

Chapter 5 demonstrated the greater moisture retrieval depth at P- than L-band. This 

chapter investigates the impact of random and periodic surface roughness on P- and 

L-band radiometry. The I2EM introduced in Chapter 4.3 was adopted to physically 

simulate the emission of bare random and periodic soil surfaces at P- and L-band. In 

addition, the semi-empirical model for bare soil (Eq. 4-4) was applied to calibrate 

roughness parameters and retrieve soil moisture. The calibrated roughness parameters 

were used in the following chapters. The work in this chapter has been published partly 

in Shen et al. (2022a) and Shen et al. (2022b). 

6.1 Background 

As discussed in Chapter 2.3.4, soil roughness is well known to complicate the 

interpretation of microwave radiometer data and reduce the sensitivity of TB to soil 

moisture (Choudhury et al., 1979, Newton and Rouse, 1980). In addition, roughness 

has been found to impact microwave radiometry by reducing polarization difference, 

i.e., the depolarization effect (Shi et al., 2002, Mialon et al., 2012). As a result, Wang 

and Choudhury (1981) developed the HQN model to simulate the random roughness 

impact, which is currently being used in the SMOS (Kerr et al., 2019) and SMAP 

(O'Neill et al., 2021a) algorithms.  

The Fraunhofer criterion claims that a surface may be considered electromagnetically 

smooth in the microwave range if the RMS height 𝑠 is less than 𝜆/(32cos(𝜃)) (Ulaby 

et al., 1982), asserting that observations at longer wavelength should be less affected 

by soil roughness than those at shorter wavelength. However, observational evidence 

at P-band is lacking. 



 

Roughness Impact of Random and Periodic Surfaces 

 

6-2 

 

Compared to flat soil, periodic (e.g., sinusoidal) row structures, a common type of soil 

tillage used for cultivation purposes, often affect soil emission to a substantial degree 

(Ulaby et al., 1986). A common modeling approach is to simulate the micro-scale 

roughness and assume that the macro-scale roughness acts like topography by 

changing the local incidence angle of the micro-scale roughness (Wang et al., 1980, 

Ulaby et al., 2014, Neelam et al., 2020). 

The current SMOS and SMAP SCA algorithms assume constant roughness parameters 

of the HQN model for different land cover types (Entekhabi et al., 2014, Kerr et al., 

2017). Additionally, the impact of periodic soil surfaces has not been considered due 

to difficulties such as the lack of a global map for row structure, row height, and 

orientation. Moreover, there is currently no basis for how to upscale such field 

information to satellite footprint scales. Since these assumptions and simplifications 

impose errors on the soil moisture datasets (Peng et al., 2017a), retrieval accuracy can 

be improved if a P-band radiometer is used on the satellite platform even if ignoring 

periodic structures, if it can be proven that the roughness effects are reduced from 

those at L-band. Furthermore, the calibration results could be taken advantage of to 

improve retrieval accuracy over periodic soil surfaces over an aircraft-based radiometer 

platform. Consequently, this chapter investigated whether P-band has a reduced 

roughness impact compared to L-band using the PRISM tower-based dataset for the 

bare soil surfaces with different roughness configurations (Chapter 3). 

6.2 Data 

The data collected in all four quadrants from July 17, 2019 to July 31, 2019 were used 

in this chapter (see Chapter 3). Because the field was plowed and sown with wheat in 

late July, only a limited period of data could be used for the study of bare soil. During 

this period, quadrants 1-4 were all bare soil and managed with different roughness 

conditions (Figure 6-1). Quadrant 2 was smooth flat soil while quadrants 1, 3, and 4 

had periodic row structures with different shapes and/or azimuth. Azimuth is defined 

here as the angle between the radiometer look direction and the row direction. The 
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period of the row structure is defined as the row spacing, while the amplitude is half 

of the vertical distance between the bottom and the top of the row. 

The roughness measurements in Table 6-1 were performed on July 17 and 31, 2019 

for quadrants 1-4. In total, four profiles were measured for each of the quadrants. The 

 
Figure 6-1: Photos of the roughness conditions (top row) and soil profiles (bottom 

row) of the four quadrants. Quadrants 3 and 4 were plowed in one pass and had the 

same roughness structures but with different orientations (perpendicular and parallel, 

respectively) relative to the tower look direction. 

Table 6-1: Characterization of the roughness structures in the four quadrants. 

Quadrant 
Row 

structure 

Periodic roughness Random roughness 

Azimuth 

(°) 

Period 

(cm) 

Amplitude 

(cm) 

RMS 

height 

(cm) 

Correlation 

length (cm) 

1 
Sinusoidal 

bench 
90 165 12 1.3 ± 0.2 5.4 ± 1.9 

2 Flat – – – 0.8 ± 0.3 11.1 ± 4.4 

3 Sinusoidal 90 
80 10 1.1 ± 0.3 5.5 ± 1.3 

4 Sinusoidal 0 

The measurements in Q1, Q3, and Q4 were decomposed into periodic and random 

components for calculating the periodic and random roughness statistics, 

respectively. Quadrants 3 and 4 were plowed in one pass and had the same 

roughness structure (just different orientations relative to the tower look direction), 

and therefore the measurements in these two quadrants were averaged.  
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measurements were performed across and along the rows for the periodic surfaces. 

The profiles measured across the rows were decomposed into random (micro-scale) 

and periodic (macro-scale) components (Figure 6-2). The periodic components (in 

orange in Figure 6-2) of the profiles in quadrant 1 as well as quadrants 3 and 4 were 

approximated using two-term and one-term sinusoidal functions, respectively. The 

fitting residuals (in green in Figure 6-2) were taken as the random roughness 

component across the rows. The RMS height and correlation length in all four 

quadrants were calculated and averaged (with standard deviation) from using the 

random roughness components in the two perpendicular directions (Table 6-1). The 

roughness properties did not change much during the observing period, as indicated 

by the small standard deviation in Table 6-1, making it fair to assume a constant 

roughness condition over the analysis period. Consequently, the time-average of the 

RMS height and correlation length measurements was used in this chapter. 

 
Figure 6-2: Decomposition of measured roughness profile into periodic and random 

profiles, for a) the sinusoidal bench profile of quadrant 1 and b) the sinusoidal profile 

of quadrants 3 and 4. 
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Figure 6-3 presents the collected data during the study period. The TB data at 38° for 

L-band and 40° for P-band collected at around 6 am were plotted and used in this 

chapter (Fig. 4a). The time series of soil moisture and temperature collected from 

stations 126 and 127 is plotted in Figure 6-3b and c. Stations 126 and 127 showed 

similar soil moisture evolution over time, but with higher near-surface soil moisture 

values at station 126. The reason for this offset is that station 126 was in the flat 

quadrant, while station 127 was in the furrowed quadrant (Figure 3-1a, Figure 3-2d, 

and Figure 6-1); the drier moisture condition in the furrowed quadrants was also 

supported by the HDAS measurements shown in Figure 6-3b. Considering the HDAS 

measurement agreement with the station soil moisture in the flat and periodic 

quadrants, in this chapter station 126 was used as the soil moisture reference for 

 
Figure 6-3: Collected data including a) TB observations at 6 am in quadrant 1 as an 

example; b) station time-series soil moisture with weekly HDAS measurements 

(boxplots) on two occasions; and c) station time-series soil temperature. The data 

gaps in a) resulted from the tower being lowered due to high wind on those days. 

Only the data collected from the top 3 of the 12 sensors are plotted in b) and c). 

Corresponding to the soil moisture evolutions of station 126 (in blue) for quadrant 2 

and station 127 (in red) for quadrants 1, 3, and 4, the HDAS measurements in 

quadrant 2, and quadrants 1, 3, and 4, are plotted as the blue and red boxplots in b), 

respectively, showing the maximum, 75% percentile, median, 25% percentile, and 

minimum. 
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quadrant 2 and station 127 was used as the soil moisture reference for quadrants 1, 3, 

and 4. As stated in Chapter 5.5, the time-averaged soil moisture at around 6 am in the 

0-5-cm layer was used to evaluate the retrieved soil moisture at P- and L-band. 

6.3 Method 

Theoretical models were first applied to compare the roughness impact at P- and L-

band, including the Fraunhofer criterion (Ulaby et al., 1982) and the I2EM for random 

and sinusoidal surfaces (see Chapter 4.3). Moreover, the magnitude of the 

depolarization effect was calculated as 

 ∆Γ = (Γ𝐻 − Γ𝑉) − (Γ𝐻
∗ − Γ𝑉

∗), Eq. 6-1 

where Γ𝐻
∗  and Γ𝑉

∗ were computed using the Fresnel equations (Eqs. 4-5 and 4-6), and 

Γ𝐻 and Γ𝑉 were calculated using the HQN model (Eq. 2-5). 

Subsequently, the semi-empirical model for bare soil (Eq. 4-4) was employed as the 

forward model to calibrate the roughness parameter and retrieve soil moisture. Given 

that the same mono-angular configuration as SMAP (~40°) was adopted in this thesis, 

the SMAP SCA approach (see Chapter 2.4.2) was implemented to retrieve the soil 

moisture in flat and periodic soil at P- and L-band, assuming 𝑄𝑅= 0 and 𝑁𝑅𝐻 = 𝑁𝑅𝑉= 

2. The roughness parameter 𝐻𝑅  were locally calibrated in Q1-Q4 by feeding the 

forward model (Eq. 4-4) with coincident TB and soil moisture measurements. 

Afterward, the calibrated parameters over the flat soil (Q2) were applied to the soil 

moisture retrieval over the periodic soil surfaces (Q1, Q3 and Q4), taking Q2 as 

calibration data and Q1, Q3 and Q4 as validation data. Finally, the retrieval 

performance for Q1, Q3 and Q4 was compared to Q2 as a benchmark. 

Inversion of the forward model used the SLSQP (Sequential Least SQuares 

Programming, Kraft, 1988) algorithm to iteratively minimize a cost function (CF) 

computed from the differences between the observed TB (TB𝑃
obs) and the simulated 

TB (TB𝑃) at either H- or V-pol, expressed as 

 CF = (TB𝑃
obs − TB𝑃)

2
. Eq. 6-2 
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The initial value of soil moisture was set to zero to avoid any potentially misleading 

prior knowledge in the retrieval. A bound of 0-0.7 m3/m3 was imposed on the retrieved 

soil moisture to ensure reasonable values were obtained, since the saturated soil 

moisture at this site is around 0.7 m3/m3 (Table 3-3). 

6.4 Results and Discussion 

6.4.1 Physical modeling of random roughness 

Figure 6-4 shows the smooth surface roughness limit for different wavelengths and 

incidence angles according to the Fraunhofer criterion (Ulaby et al., 1982). Accordingly, 

it can be seen that at 40° incidence angle, the roughness effects can notionally be 

ignored at both P- and L-band providing the RMS roughness height is lower than 0.8 

cm. However, for a surface with RMS height ranging from 0.8 to 1.6 cm it can only be 

considered electromagnetically smooth at P-band. Moreover, if the RMS height 

increases beyond 1.6 cm, it suggests that the roughness cannot be neglected even at P-

band. 

 
Figure 6-4: The maximum RMS height to consider a surface electromagnetically 

smooth for a given observation wavelength in the microwave range, calculated using 

the Fraunhofer criterion (Ulaby et al., 1982). 
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Figure 6-5 presents the simulated emissivity using the I2EM (Eqs. 4-16-4-20) for a 

specular, a smooth, and a relatively rough surface, encompassing the roughness range 

of typical flat soil surfaces, being mostly located within the range of 0.5-2 cm and 4-15 

cm for RMS height and correlation length, respectively (Mialon et al., 2012, Lawrence 

et al., 2013, Fernandez-Moran et al., 2015). The RMS heights of the smooth (0.8 cm) 

and rough (1.6 cm) surface were the breakpoints for L- and P-band, respectively, 

according to the Fraunhofer criterion (Figure 6-4). 

In Figure 6-5, the offset from the specular surface curve can characterize the impact 

of the random roughness, being reduced at longer wavelengths. Accordingly, a surface 

with 0.8-cm RMS height and 11.1-cm correlation length could be considered smooth 

at 0.3 GHz/100-cm wavelength and 0.75 GHz/40-cm wavelength, evidenced by the 

overlapped blue and orange curves. This also was true at 1.4 GHz/21-cm wavelength 

for incidence angles close to 40°. For the rough surface, the roughness effects could 

be ignored at 0.3 GHz/100-cm wavelength but not at 0.75 GHz/40-cm wavelength 

or 1.4 GHz/21-cm wavelength. However, it can still be seen that the impact at 1.4 

GHz/21-cm wavelength was more pronounced than that at 0.75 GHz/40-cm 

wavelength. 

 
Figure 6-5: Emissivity simulated using the physical model over different soil surfaces 

and at three frequencies, i.e., 0.3 GHz, 0.75 GHz, and 1.4 GHz. The dielectric 

constant was assumed to be 12 - j2.4 (~0.25 m3/m3 in soil moisture). The specular, 

smooth, and rough surfaces were assumed to have zero RMS height and 50-cm 

correlation length, 0.8-cm RMS height and 11.1-cm correlation length as observed in 

quadrant 2, and 1.6-cm RMS height and 6.8-cm correlation length as observed at this 

tower site in a different period, respectively. 
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6.4.2 Physical modeling of multi-scale roughness 

Figure 6-6 shows the comparison of simulated and observed emissivity over different 

periodic surfaces. Only sinusoidal surfaces (quadrants 3 and 4) were considered herein 

to explore the multi-scale roughness and azimuth issue. First, only the random 

roughness was modeled using the I2EM model (Eqs. 4-16-4-20) by ignoring periodic 

roughness. Next, the model for sinusoidal surfaces (Eqs. 4-21 and 4-22) was used to 

simulate the multi-scale roughness with random roughness on top of periodic 

roughness. The roughness measurements in Table 6-1 were used in simulations 

accordingly. 

It can be seen in Figure 6-6 that P-band had a better performance than L-band in all 

scenarios. Although the ubRMSE in quadrant 3 was the same at P- and L-band, P-

band had higher R values compared to L-band. From the comparison of top and 

bottom rows, the performance in quadrant 4 was improved substantially after 

accounting for the periodic roughness, while the statistics were degraded in quadrant 

3. In line with Figure 6-6, Promes et al. (1988) observed that another similar model 

(Wang et al., 1980) had a better agreement with observations for parallel- than 

 
Figure 6-6: Emissivity simulations compared against observations at P- and L-band 

using the I2EM over sinusoidal surfaces with perpendicular (left column) and parallel 

(right column) row structures. Top row: only random roughness was simulated; and 

bottom row: both periodic and random roughness was simulated. 
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perpendicular-look direction. Therefore, it is suggested that this type of model should 

be used with caution over periodic surfaces with a perpendicular-look direction. 

Although there have been a few models for simulating surfaces with multi-scale 

roughness (Wang et al., 1980, Ulaby et al., 2014), it is still impractical to use them in 

global soil moisture retrieval. Reasons include, 1) these models rely heavily on accurate 

roughness measurements including period, amplitude, and azimuth of the row 

structures which are difficult to obtain globally; and 2) the model accuracy was not 

always satisfactory (e.g., Figure 6-6) even though the roughness measurements were 

carefully sampled in the field. This finding is supported by Promes et al. (1988) who 

evaluated the model from Wang et al. (1980) using ground-based observations and 

found this model tended to overestimate the influence of the row structure. A potential 

reason to explain this is that these models were developed based on some assumptions, 

e.g., the radiometer footprint contains many spatial periods, which may not be fulfilled 

when the footprint extends across only a few meters in ground-based experiments. 

6.4.3 Depolarization effects 

Figure 6-7 shows the magnitude of the depolarization effect of roughness (∆Γ) using 

Eq. 6-1 and different 𝑁𝑅𝑃 values. It can be seen from the figure that both the SMOS 

(𝑁𝑅𝐻  = 2 and 𝑁𝑅𝑉  = 0) and SMAP (𝑁𝑅𝐻 = 𝑁𝑅𝑉= 2) parameterization did not imply a 

substantial depolarization effect, being close to 0. The depolarization is due to the fact 

that roughness impacts amplify H-pol emissivity to a greater degree compared to V-

pol emissivity (Shi et al., 2002, Mialon et al., 2012), in line with Figure 6-5 particularly 

for L-band. This results in a reduced difference between H- and V-pol observations. 

Depolarization could adversely impact soil moisture retrieval. Konings et al. (2015) 

pointed out that a robust retrieval can only be guaranteed if the DoI of a set of 

observations is larger than the number of the retrieved parameters. Accordingly, this 

depolarization reduces the independence of the observations at H- and V-pol and thus 

the DoI. 
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In a mono-angular retrieval, 𝑁𝑅𝑃 can be seen as a coefficient of 𝐻𝑅 that characterizes 

the intensity of roughness. A larger 𝑁𝑅𝑃 value makes the roughness coefficient, i.e., 

exp[−𝐻𝑅cos𝑁𝑅𝑃(𝜃)] in the HQN model (Eq. 2-5), closer to one, indicating a reduced 

roughness impact. Accordingly, ∆𝑁𝑅 , i.e., ∆𝑁𝑅 = 𝑁𝑅𝐻 − 𝑁𝑅𝑉 , is also able to 

characterize the depolarization effect apart from ∆Γ. In addition, a negative relation of 

∆𝑁𝑅 and roughness was established by Mialon et al. (2012) and Lawrence et al. (2013). 

It can be noticed from Figure 6-7 that ∆Γ is more likely to be non-positive, in line with 

literature observations that roughness-induced depolarization was often seen (Newton 

and Rouse, 1980, Wang et al., 1983, Mialon et al., 2012). A positive ∆Γ value is scarce 

to observe over bare soil because it indicates that roughness enlarges the difference 

between the reflectivity at both polarizations. This phenomenon can only be observed 

at low incidence angles (e.g., lower than 20°) over periodic soil surfaces (Wang et al., 

1980, Zheng et al., 2012). Consequently, 𝑁𝑅𝑃 values should be used with caution when 

∆𝑁𝑅 is larger than 5, as indicated by the red area in Figure 6-7. 

 
Figure 6-7: Magnitude of the depolarization effect (∆Γ) calculated using Eq. 6-1 with 

different 𝑁𝑅𝐻 and 𝑁𝑅𝑉 values. The dielectric constant, 𝐻𝑅, 𝑄𝑅, and incidence angle 

were assumed to be 12 - j2.4 (~0.25 m3/m3 in soil moisture), 0.1, 0, and 40°, 

respectively. 
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6.4.4 Parameter calibration and soil moisture retrieval 

In Figure 6-8, a range of 𝐻𝑅 values were used to simulate the TB for P- and L-band 

and H- and V-pol respectively using the semi-empirical model for bare soil (Eq. 4-4). 

The 𝐻𝑅  values that produced the minimum RMSE between the simulated and 

observed TB were considered the optimum, marked as the dots with annotated values. 

Compared to L-band, the HQN model performed better at P-band based on its lower 

RMSE. For example, the minimum RMSE in Q1 and Q3 was no higher than 6 K at 

P-band, while that at L-band was higher than 10 K. Moreover, at L-band V-pol, the 

RMSE in Q3 and Q4 was a minimum at 𝐻𝑅 = 0 and will further decrease if negative 

𝐻𝑅  is allowed. These phenomena can be attributed to the substantial impact of 

periodic row structures and the inapplicability of the SMAP SCA configuration (i.e., 

𝑄𝑅 = 0 and 𝑁𝑅𝑉  = 2) for periodic roughness at L-band. For both P- and L-band and 

both H- and V-pol, Q2 had the lowest calibration residual across the four quadrants 

 
Figure 6-8: RMSE (K) between the observed and simulated TB using a range of 𝐻𝑅 

values at H-pol (top row) and V-pol (bottom row) over the bare soil in each 

quadrant. The semi-empirical model for bare soil (Eq. 4-4) was adopted as the 

forward model. The dots with values indicate the minimum RMSE and the 

corresponding 𝐻𝑅 values for P-band (in blue) and L-band (in orange). The 

parameters 𝑄𝑅 and 𝑁𝑅𝑃 were assumed to be the same as in the SMAP SCA at both 

P- and L-band, being 0 and 2, respectively. 
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with only one exception (L-band H-pol in Q4), indicating the more considerable 

roughness impact of periodic surfaces than from the flat surface in Q2. Importantly, 

the 𝐻𝑅 in the four quadrants was more comparable at P- than L-band at V-pol, with 

the standard deviation being 0.046 and 0.068, respectively. 

To evaluate the induced retrieval error from applying the calibrated 𝐻𝑅 in flat soil to 

periodic soil, the optimal parameters calibrated in Q2 (Figure 6-8) were used to retrieve 

the soil moisture in all four quadrants for both bands and both polarizations, with the 

comparison of the retrieved and observed soil moisture plotted in Figure 6-9. As 

expected, Q2 was seen to have the best retrieval performance across all four quadrants 

because the 𝐻𝑅 had been calibrated in Q2. P-band was found to perform better than 

L-band in RMSE in all quadrants except Q4 for H-pol. In Figure 6-9, V-pol had better 

retrieval accuracy than H-pol at both P- and L-band. Focusing on V-pol (Figure 6-9 

bottom row), P-band had similar RMSEs across all four quadrants, whereas L-band 

 
Figure 6-9: Retrieved versus observed soil moisture for H-pol (top row) and V-pol 

(bottom row) over the bare soil in each quadrant, using the SCA (Eq. 6-2) with the 

bare soil forward model (Eq. 4-4). Calibrated 𝐻𝑅 values from the period of bare flat 

soil in Q2 were used for all quadrants here, i.e., 0.125 and 0.171 for P-band H- and 

V-pol, respectively, and 0.327 and 0.081 for L-band H- and V-pol, respectively. The 

parameters 𝑄𝑅 and 𝑁𝑅𝑃 were assumed to be the same as those from the SMAP SCA 

at both P- and L-band, being 0 and 2, respectively. 
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showed higher RMSE over periodic soil (0.031-0.040 m3/m3) than that over flat soil 

(0.018 m3/m3), indicating the reduced roughness impact at P-band. 

Importantly, the orientation of the row structure mattered; while the retrieval 

performance was not substantially different between Q3 and Q4 (Figure 6-9), the 

parallel row structure in Q4 led to a larger 𝐻𝑅 value, particularly at H-pol (Figure 6-8), 

in spite of the same row spacing and height. It should be noted that, although it fits 

with intuition that parallel row structures impose less roughness impact than 

perpendicular row structures, this is not the case according to either this research or 

the literature (Wang et al., 1980, Ulaby et al., 2014). 

6.5 Chapter Summary 

This chapter compared P- with L-band over bare flat and periodic soil surfaces to 

determine if there is an improvement in TB simulation and soil moisture retrieval 

accuracy, due to reduced roughness impact when using a longer wavelength. Results 

from the Fraunhofer criterion, semi-empirical and physical modeling indicated that P-

band was less impacted by random and periodic roughness than L-band. Moreover, 

the parallel row structure led to a larger 𝐻𝑅 value than the perpendicular row structure 

in spite of the same row spacing and height, particularly at H-pol. Importantly, this 

chapter has demonstrated that P-band did not need to have the periodic surfaces 

discriminated, while L-band needed differently calibrated parameters for bare periodic 

surfaces compared to bare flat surfaces due to the more considerable roughness impact, 

evidenced by the more comparable RMSE at P-band (variation of up to 0.012 m3/m3) 

than L-band (variation of up to 0.022 m3/m3) across different roughness 

configurations. The calibrated roughness parameters in this chapter were used in the 

next chapter for the wheat-covered flat and periodic soil surfaces. 
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7 Vegetation Impact of Wheat 

Chapter 6 has demonstrated the reduced roughness impact from random and periodic 

soil surfaces at P-band compared to L-band. This chapter evaluated the tau-omega 

model (see Chapter 4.1) at P- and L-band over the same soil surfaces as in Chapter 6 

but covered by matured wheat (see Chapter 3). The calibrated roughness parameters 

from Chapter 6 were used in this chapter. The work in this chapter has been published 

in Shen et al. (2022b). 

7.1 Background 

The vegetation canopy attenuates (absorbs and scatters) the soil emission and adds its 

own contribution to the overall emission, resulting in a noticeable reduction in the 

sensitivity of TB to soil moisture (Jackson et al., 1982). Accordingly, Mo et al. (1982) 

proposed the tau-omega model to relate the TB to soil moisture of vegetation-covered 

soil (Chapter 4.1). The 𝜏 is directly proportional to the VWC of the canopy, while the 

𝜔 primarily depends on the type of vegetation (Mo et al., 1982). The tau-omega model 

is essentially a zero-order solution of the radiative transfer equations where multiple 

scattering is neglected, with applicability and accuracy being widely evaluated (Gao et 

al., 2018, Li et al., 2020). Many retrieval algorithms have been developed based upon 

this practical model, e.g., the SCA (Jackson, 1993) and the DCA (Njoku and Li, 1999, 

Njoku et al., 2003) for SMAP. It is worth noting that the DCA has replaced the SCA-

V as the SMAP baseline algorithm since October 2021 due to its improved retrieval 

performance in some agricultural areas (O'Neill et al., 2021a). 

Although the SMAP radiometer-based soil moisture data meets its overall target 

accuracy, errors for croplands are considerably larger (Chan et al., 2016, Colliander et 

al., 2017b, Walker et al., 2019).  Moreover, current SMAP and SMOS algorithms do 

not specifically consider any correction of the periodic row structure. Use of P-band 

is a promising approach to conquering these difficulties due to its reduced impact from 
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vegetation (Ulaby et al., 1986). Chapter 6 has demonstrated that this simplification is 

more acceptable at P- compared to L-band in terms of the retrieval error. However, 

when covered by wheat with low to intermediate VWC it remains unclear if these 

periodic soil surfaces need to be discriminated from flat soil surfaces at P- and L-band. 

In this chapter, the tau-omega model was implemented at P-band for the first time to 

evaluate the vegetation effects at P- and L-band by comparing the retrieval errors 

before and after accounting for the wheat canopy in the forward model. Furthermore, 

the possibility of retrieving soil moisture over wheat-covered soil without 

discriminating periodic and flat surfaces was investigated, by applying the roughness 

and vegetation parameters calibrated in flat soil to retrieve the soil moisture of periodic 

soil with the SMAP SCA and DCA. This demonstration suggests that an improved 

global soil moisture dataset may be possible using the longer wavelength P-band 

observations, even if the same algorithms as those of SMAP are used. 

7.2 Data 

Quadrants 1-4 were plowed with varied roughness structures for the wheat-growing 

cycle from July to December 2019 (see Chapter 3) to compare the random roughness 

 
Figure 7-1: Photos at the maturity of wheat (top row) and diagrams of soil surface 

profiles (bottom row) of the four quadrants. Quadrants 3 and 4 were plowed in one 

pass and had the same roughness structures but with different orientations 

(perpendicular and parallel, respectively) relative to the tower look direction. 



 

Chapter 7 

 

7-3 

 

of flat soil and the periodic roughness of furrowed soil (Figure 6-1 and Figure 7-1). 

Table 7-1 shows the roughness measurements taken during the whole wheat-growing 

period. Note that these roughness measurements were not used in the formal analysis 

but to support that the roughness parameters can be assumed constant over the entire 

study period. 

In this chapter, two periods in the entire wheat-growing cycle were used: 1) the bare 

soil period from July 17 to 31, 2019, before wheat germination (see Chapter 6); and 2) 

the wheat-covered soil period (Figure 7-1) from November 13 to December 21, 2019, 

when matured wheat was senescing (a data example is plotted in Figure 7-2). The 

current study used the daily TB observations at 40° incidence angle for P-band and at 

38° incidence angle for L-band (Figure 7-2a), in order to approximate the fixed 40° 

incidence angle of SMAP (Entekhabi et al., 2014). 

Table 7-1: Characterization of the roughness in the four quadrants. 

Q 
Row 

structure 

Periodic roughness Random roughness 

No. of 

profiles 

Azimuth 

(°) 

Period 

(cm) 

Amplitude 

(cm) 

No. of 

profiles 

RMS 

height 

(cm) 

Correlation 

length (cm) 

1 
Sinusoidal 

bench 
6 90 165 10.5 ± 1.3 6 1.1 ± 0.5 9.2 ± 4.3 

2 Flat – – – – 16 0.9 ± 0.2 9.5 ± 2.7 

3 Sinusoidal 7 90 
80 9.8 ± 1.2 

7 
0.8 ± 0.3 9.0 ± 4.2 

4 Sinusoidal 7 0 7 

Azimuth is the angle between the radiometer look direction and the row direction; 

period is the row spacing; and amplitude is half of the vertical distance between the 

bottom and the top of the row. For the periodic soil in Q1, Q3, and Q4, the 

roughness measurements across the rows were used to calculate the “periodic 

roughness” in the table, while those along the rows were used to calculate the 

“random roughness” in the table. For Q2, the measurements in two perpendicular 

directions were averaged to calculate the roughness statistics. Q3 and Q4 were 

plowed in one pass and had the same roughness structure (just different orientations 

relative to the tower look direction), and therefore the measurements in these two 

quadrants were averaged. 
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Figure 7-2b and c show the time series of soil moisture and temperature, respectively, 

collected from stations 126 and 127 (Figure 3-1a and Figure 3-5a and b). This 

investigation follows Chapter 6 by using station 126 as the reference in Q2 and station 

127 as the reference for Q1, Q3, and Q4 based on the agreement between HDAS 

measurements and the station soil moisture in flat and periodic quadrants, respectively 

(Figure 7-2b). The station observations were considered representative of the 

radiometer footprints because the HDAS measurements were relatively uniform 

across each quadrant and agreed with the corresponding station measurements (Figure 

7-2b). The destructive vegetation samples were taken weekly (Figure 3-5e) at the 

locations shown in Figure 3-1a. Accordingly, Figure 7-2d presents the VWC 

 
Figure 7-2: Collected data including a) TB observations at 6 am in Q1 as an example, 

with the data gaps resulting from the tower being lowered due to high wind on those 

days; b) station time-series soil moisture with HDAS measurements (boxplots); c) 

station time-series soil temperature; and d) observed (boxplots) with fitted (black 

line) vegetation water content in Q1 as an example. For clarity only the data collected 

from the top 3 sensors are plotted in b) and c). Corresponding to the soil moisture 

evolutions of station 126 (in blue) in Q2 and station 127 (in red) in Q1, Q3 and Q4, 

the blue and red boxplots in b) show the maximum, 75% percentile, median, 25% 

percentile, and minimum of the spatial HDAS measurements in Q2 as well as Q1, 

Q3 and Q4, respectively. 
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measurements as boxplots and a fitted quadratic polynomial function to represent the 

VWC evolution. 

While P-band was found to have a greater moisture retrieval depth (~7 cm) than L-

band (~5 cm) over bare soil (Chapter 5), the presence of wheat could reduce the 

moisture retrieval depth to close to 5 cm at P-band and shallower at L-band. Given 

the difficulty in continuously measuring soil moisture at shallower depths, and the 

highly correlated soil moisture between neighboring layers, the daily mean soil 

moisture at around 6 am in the 0-5-cm layer from the station (Figure 7-2b) was used 

for both P- and L-band evaluation in this chapter. 

7.3 Method 

Given that the same mono-angular configuration as SMAP (~40°) was adopted in this 

research, the SMAP SCA and DCA approaches were implemented to evaluate the tau-

omega model over wheat-covered flat and periodic soil surfaces at P- and L-band. 

Similar to Chapter 6, the calibrated parameters over the flat soil (Q2) were applied to 

the soil moisture retrieval over the periodic soil surfaces (Q1, Q3 and Q4), taking Q2 

as calibration data and Q1, Q3 and Q4 as validation data. Finally, the retrieval 

performance for Q1, Q3 and Q4 was compared to Q2 as a benchmark. 

Roughness and vegetation parameters can compensate for each other and thus cannot 

be calibrated together to achieve a robust result (Njoku and Chan, 2006, Patton and 

Hornbuckle, 2012, Martens et al., 2015). To disentangle roughness and vegetation 

effects, Wigneron et al. (1995) separately calibrated roughness and vegetation 

parameters by using the data before and after the vegetation canopy development, 

respectively. A similar methodology was also employed in this research because the 

surface roughness was found to have little change throughout the entire period, as 

indicated by the small standard deviation in Table 7-1. 
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7.3.1 Single channel algorithm 

The SCA (Jackson, 1993) retrieves soil moisture using the TB observation at either H- 

or V-pol with all roughness and vegetation parameters known (Table 7-2). The 𝑏 in 

Table 7-2 is an empirical parameter that builds a linear relationship between 𝜏 and 

VWC (Jackson and Schmugge, 1991), and thus 𝜏 can be estimated from Eq. 2-7. As in 

the SMAP SCA (O'Neill et al., 2021a), this research assumed the parameters in Table 

7-2 were invariant throughout the study period. 

Additional to applying the default SMAP parameters to the soil moisture retrieval, 

vegetation parameters were locally calibrated in Q1-Q4 by feeding the forward model 

with coincident TB and soil moisture measurements using the roughness parameters 

calibrated over the bare soil period in Chapter 6. The same SCA inversion algorithm 

as in Chapter 6 was conducted in this chapter. Please refer to Chapter 6.3 and Eq. 6-

2. 

7.3.2 Dual channel algorithm 

The DCA (Njoku and Li, 1999, Njoku et al., 2003) uses dual-pol TB observations to 

retrieve two parameters. Unlike the SCA, the SMAP DCA uses a global map of 𝐻𝑅 to 

concurrently retrieve soil moisture and 𝜏. The 𝐻𝑅 values vary from pixel to pixel, so 

no specific 𝐻𝑅  value can be referred to in this chapter. In addition, while 𝑁𝑅𝑃  is 

assumed to be 2 as in the SCA, 𝑄𝑅  is no longer assumed to be a constant value. 

Accordingly, 𝐻𝑅 and 𝑄𝑅 were calibrated locally in Q1-Q4 using the bare soil data prior 

to undertaking retrieval in this chapter. Afterward, soil moisture and 𝜏  were 

Table 7-2: The default SMAP SCA parameters for croplands (O'Neill et al., 2021a). 

Parameter Value 

𝐻𝑅 0.108 

𝑄𝑅 0 

𝑁𝑅𝑃 2 

𝑏 0.11 

𝜔 0.05 
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concurrently retrieved using the dataset for the wheat-covered period and the 

calibrated 𝐻𝑅 and 𝑄𝑅 in Q2. The 𝜔 was assumed to be the same as in the SMAP DCA 

for both P- and L-band, being 0.6. 

The CF minimized by the SLSQP algorithm using dual-pol TB at ~40° incidence angle 

during the retrieval period was 

 CF = (TB𝐻
obs − TB𝐻)

2
+ (TB𝑉

obs − TB𝑉)
2

+
(𝜏ini−𝜏)

2

𝜎(𝜏)2 , Eq. 7-1 

where 𝜏ini and 𝜏 are the initial and retrieved values of the optical depth, and 𝜎(𝜏) is 

the parameter to balance the weight of the retrieved parameters for the optimization 

process to converge. The initial values of soil moisture and 𝜏 were set to zero. The 

same 𝜎(𝜏) value as in the SMAP DCA was adopted, i.e., 0.05 (O'Neill et al., 2021a). 

7.4 Results and Discussion 

7.4.1 Single channel algorithm 

The default SMAP SCA parameters for croplands (Table 7-2) were evaluated at P- and 

L-band and H- and V-pol over the wheat-covered soil with different roughness 

structures using the tau-omega model (Eq. 4-1), with the simulated and observed TB 

compared in Figure 7-3. L-band was found to substantially outperform P-band in all 

cases, indicating the inapplicability of the default SMAP SCA parameters at P-band. 

Consistent with the results in Chapter 6, Figure 7-3 also shows a superior performance 

at V- over H-pol. More specifically, the RMSE at L-band was no higher than 3 K at 

V-pol, demonstrating that the default SMAP SCA parameters were applicable to a wide 

range of roughness and vegetation conditions with satisfactory accuracy. In the 

following, only V-pol was analyzed due to its superiority over H-pol. 
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The SMAP SCA parameters were demonstrated to work very well at L-band with low 

RMSE shown in Figure 7-3, and therefore only the vegetation parameters (𝑏 and 𝜔) 

 
Figure 7-3: Comparison of TB simulations against observations for H-pol (top row) 

and V-pol (bottom row) over the wheat-covered soil in each quadrant, using the SCA 

with the tau-omega model. The default SMAP SCA parameters in Table 7-2 were 

used for all quadrants, both bands, and both polarizations. 

 
Figure 7-4: RMSE (K) between the observed and simulated TB using a range of 𝑏 

and 𝜔 values for P-band V-pol over the wheat-covered soil in each quadrant. The 

tau-omega model was adopted as the forward model. The yellow circles indicate 

where the minimum RMSE was reached, with the three values showing 𝑏, 𝜔, and the 

minimum RMSE, respectively. The calibrated 𝐻𝑅 values at P-band V-pol from the 

period of bare soil, i.e., 0.174, 0.171, 0.070, and 0.092, were used for Q1-Q4, 

respectively. The parameters 𝑄𝑅 and 𝑁𝑅𝑃 were assumed to be the same as in the 

SMAP SCA, being 0 and 2, respectively. 
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at P-band were calibrated in Figure 7-4. The soil moisture measurements collected over 

the wheat-covered soil were adopted to simulate TB, using the tau-omega model with 

calibrated 𝐻𝑅 (Figure 6-8) and varying 𝑏 and 𝜔. Overall, the 𝑏 and 𝜔 values differed 

slightly across quadrants, ranging from 0.099 to 0.150 and from 0.119 to 0.137, 

respectively (Figure 7-4). The varied 𝑏 and 𝜔 can be partially attributed to the different 

residuals of the roughness calibration that were left to be compensated by 𝑏 and 𝜔. 

Comparing the default and calibrated parameters, 𝜔 differed more considerably than 

other parameters, being 0.05 in the default configuration (Table 7-2) and ~0.12-0.13 

after calibration (Figure 7-4). 

Soil moisture was subsequently retrieved at P- and L-band V-pol using the tau-omega 

model (Figure 7-5). While the roughness (Figure 6-8) and vegetation (Figure 7-4) 

parameters were calibrated at P-band in all four quadrants, only the parameters 

calibrated in Q2 (𝐻𝑅= 0.171, 𝑏= 0.099, and 𝜔= 0.134) were used for the soil moisture 

retrieval at P-band (Figure 7-5). At L-band, the SMAP SCA parameters (Table 7-2) 

were applied to the soil moisture retrieval (Figure 7-5). It can be seen from Figure 7-5 

that the RMSEs/ubRMSEs were similar across all four quadrants either at P- or L-

band (variations no more than 0.016 m3/m3), suggesting the possibility to ignore the 

different roughness structures underneath vegetation when retrieving soil moisture. 

 
Figure 7-5: Observed versus retrieved soil moisture over the wheat-covered soil in 

each quadrant, using the SCA-V with the tau-omega model. The default SMAP SCA 

𝑄𝑅 and 𝑁𝑅𝑃 and the calibrated 𝐻𝑅, 𝑏, and 𝜔 parameters in Q2 (flat soil) were used 

for P-band in all quadrants here, i.e., 𝑄𝑅 = 0, 𝑁𝑅𝑃 = 2, 𝐻𝑅 = 0.171, 𝑏 = 0.099, and 𝜔 

= 0.134. The default SMAP SCA parameters in Table 7-2 were used for L-band in all 

quadrants. 
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7.4.2 Dual channel algorithm 

Before applying the DCA soil moisture retrieval to the vegetated period, the full-time-

series TB and soil moisture during the bare soil period were used to calibrate the 

roughness parameters, i.e., 𝐻𝑅 and 𝑄𝑅 at P- and L-band in each quadrant, shown in 

Figure 7-6. The 𝐻𝑅  and 𝑄𝑅  values that produced the minimum RMSE were 

considered as the calibrated values, marked as the yellow circles with annotated values 

in Figure 7-6. 

Figure 7-6 shows a lower RMSE at P- than L-band in the four quadrants, being 2.6-

4.8 K and 5.4-10.8 K, respectively. This indicates that the HQN model performs better 

at P-band due to the reduced roughness impact. Q2 had the lowest calibration residual 

across the four quadrants for both P- and L-band because of its relatively smooth 

surface compared to the periodic soil surfaces in Q1, Q3 and Q4. While 𝑄𝑅 is usually 

 
Figure 7-6: RMSE (K) between the observed and simulated dual-pol TB using a 

range of 𝐻𝑅 and 𝑄𝑅 values for P-band (top row) and L-band (bottom row) over the 

bare soil in each quadrant. The model for bare soil (Eq. 4-4) was adopted as the 

forward model. The yellow circles indicate where the minimum RMSE was reached, 

with the three values showing 𝐻𝑅, 𝑄𝑅, and the minimum RMSE, respectively. The 

𝑁𝑅𝑃 was assumed to be 2, the same as in the SMAP DCA, at both P- and L-band. 
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assumed to be zero (e.g., Wigneron et al., 2001, Martens et al., 2015), this assumption 

was only valid at P-band and not necessarily valid at L-band in Q2 when using dual-

pol TB. Moreover, Figure 7-6 supports that non-zero 𝑄𝑅 should apply for periodic 

surfaces when performing a DCA retrieval. It is also worth noting that 𝐻𝑅 and 𝑄𝑅 

were larger in Q4 than Q3, particularly at L-band, indicating that the periodic surface 

with parallel structures might have a larger impact than that with perpendicular 

structures at ~40° incidence angle, in spite of the same row spacing and height. 

Figure 7-7 presents the comparison of the observed and retrieved soil moisture when 

applying the 𝐻𝑅 and 𝑄𝑅 calibrated in Q2 (Figure 7-6) to all four quadrants. P-band was 

found to perform better than L-band in all metrics. Similar to the SCA result in Figure 

7-5, the RMSEs and ubRMSEs shown in Figure 7-7 at either P- or L-band were 

comparable across the four quadrants, with variations of no more than 0.011 m3/m3. 

While the SMAP baseline algorithm has recently changed to the DCA from the SCA-

V due to the improved performance in some agricultural areas (O'Neill et al., 2021b), 

based on Figure 7-5 and Figure 7-7 in this research, the DCA showed higher RMSE 

(e.g., 0.028 m3/m3 at P-band and 0.062 m3/m3 at L-band in Q2) than the SCA-V (e.g., 

0.009 m3/m3 at P-band and 0.018 m3/m3 at L-band in Q2). These results are consistent 

with the earlier validation results of SMAP (Chan et al., 2016). 

 
Figure 7-7: Observed versus retrieved soil moisture over the wheat-covered soil in 

each quadrant, using the DCA (Eq. 7-1) with the tau-omega model. The default 

SMAP DCA 𝑁𝑅𝑃 and 𝜔 were used for both P- and L-band, i.e., 𝑁𝑅𝑃 = 2 and 𝜔 = 

0.06. The calibrated 𝐻𝑅 and 𝑄𝑅 from the period of bare flat soil in Q2 were used for 

all quadrants, i.e., 𝐻𝑅 = 0.136 and 𝑄𝑅 = 0 for P-band and 𝐻𝑅 = 0.231 and 𝑄𝑅 = 

0.144 for L-band. 
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7.4.3 Estimation of vegetation impact 

To investigate whether P-band had a reduced vegetation impact at P-band, the soil 

moisture was retrieved over the wheat-covered soil in Q2 without considering the 

vegetation impact in the model, i.e., using the bare soil model with the calibrated 𝐻𝑅 

parameters in Chapter 6, being 0.171 for P-band and 0.081 for L-band. P-band was 

found to outperform L-band substantially in RMSE, being 0.029 and 0.063 m3/m3 for 

P- and L-band, respectively (Figure 7-8). The default SMAP 𝐻𝑅 values for the SCA 

(0.15 for bare soil and 0.108 for croplands) were also investigated for both P- and L-

band (not shown), and no discernable difference in RMSE was found compared to 

that in Figure 7-8. 

When using one TB observation to retrieve one soil moisture using the tau-omega 

model (i.e., the SCA), prior vegetation information (e.g., VWC, NDVI, LAI, etc.) is 

required to estimate 𝜏 using Eq. 2-7. When such information is not available, the use 

of P-band observations can still achieve an acceptable performance (0.029 m3/m3 in 

RMSE) when completely ignoring the vegetation impact by using the bare soil model 

(Figure 7-8). In contrast, the corresponding RMSE at L-band was as high as 0.063 

 
Figure 7-8: Observed versus retrieved soil moisture over the wheat-covered soil in 

Q2, using the SCA-V with the bare soil forward model (Eq. 4-4). Calibrated 𝐻𝑅 

values from the period of bare flat soil in Q2 were used here, i.e., 0.171 for P-band 

and 0.081 for L-band, while 𝑄𝑅 and 𝑁𝑅𝑉 were assumed to be the same as those from 

the SMAP SCA at both P- and L-band, being 0 and 2, respectively. 
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m3/m3, demonstrating that the impact of low-to-intermediate vegetation (under 4 

kg/m2) can be neglected at P-band but not at L-band. 

7.5 Chapter Summary 

This chapter evaluated the tau-omega model over wheat-covered flat and periodic soil 

surfaces at P- and L-band using the SMAP SCA and DCA approaches. From the aspect 

of soil moisture retrieval, no substantial variation across different quadrants was 

observed at both P- and L-band whether using the SCA (Figure 7-5) or the DCA 

(Figure 7-7), indicating that the same parameters can be used for wheat-covered soil 

with different roughness structures. 

A lower RMSE at P-band (0.029 m3/m3) than L-band (0.063 m3/m3) was observed 

when omitting vegetation effects in the forward model, confirming that P-band 

observations were relatively unaffected by the wheat canopy. However, when using 

the SCA-V approach with the vegetation impact considered by the tau-omega model, 

the RMSE was similar (~0.02 m3/m3) at P- and L-band (Figure 7-5). Neglecting the 

vegetation resulted in underestimating the soil moisture observations (Figure 7-8) 

because the vegetation contribution was mistakenly considered as a soil contribution, 

increasing the soil emissivity and thus decreasing the soil moisture. This phenomenon 

was particularly prominent for high soil moisture (Figure 7-8) when the VWC was also 

high (Figure 7-2). Consequently, it can be postulated that the advantage of P- over L-

band in reducing the vegetation impact will become more considerable when the VWC 

achieves a higher range, e.g., corn (Hornbuckle and England, 2004), which was 

investigated in the next chapter. 
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8 Vegetation Impact of Dense Corn 

While Chapter 7 has demonstrated a reduced vegetation impact of wheat on soil 

moisture retrieval at P-band according to its lower RMSE (0.029 m3/m3) than L-band 

(0.063 m3/m3) when omitting vegetation effects in the forward model, the 

performance was similar when using the SCA-V approach with the tau-omega model. 

Therefore, this chapter has extended the investigation of vegetation impact to 

conditions with much higher VWC to better understand the retrieval performance at 

P- as compared to L-band. Similar to Chapter 7, the tau-omega model was employed 

at P- and L-band but only over a flat soil surface covered by corn with up to 20-kg/m2 

VWC. The SMAP SCA-V and DCA approaches were also applied in this chapter. 

8.1 Background 

As discussed in Chapter 2.3.5 and Chapter 7.1, vegetation degrades the soil moisture 

signal by absorbing and scattering radiation emitted from the soil, which becomes 

more significant as the VWC increases. Ulaby et al. (1983) identified that the 

radiometric sensitivity to soil moisture at 1.4 GHz and nadir was 3.1 K per 0.01 m3/m3 

for bare soil and 1.1 K per 0.01 m3/m3 for a corn canopy with 5-kg/m2 VWC. However, 

when the VWC increased to 6.3 kg/m2 for corn, the radiometric sensitivity to soil 

moisture was observed to reduce to 0.5 K per 0.01 m3/m3 at 1.4 GHz and V-pol 

(Hornbuckle and England, 2004). Moreover, the difference in vegetation structure (i.e., 

the distribution of the dielectric constant) can also contribute to the opacity of the 

vegetation canopy; Wang et al. (1984) observed no radiometric sensitivity to soil 

moisture through a grass canopy with 8-kg/m2 biomass density at 1.4 GHz, whereas 

for a corn canopy with 8-kg/m2 biomass density it was 0.5 K per 0.01 m3/m3 at 1.4 

GHz and V-pol (Hornbuckle and England, 2004). 

In Chapter 7, it was identified that for low-to-intermediate vegetation, i.e., wheat with 

under 4-kg/m2 VWC, the use of P-band did not achieve a substantially higher retrieval 
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performance than L-band when accounting for the vegetation contribution using the 

SCA-V with the tau-omega model. Consequently, this motivated an investigation of 

corn in this chapter, which has a similar vertical structure as wheat but can reach a 

much higher VWC. Hornbuckle and England (2004) reported a corn canopy achieving 

6.3 kg/m2 in VWC with a 7.49-m-2 plant density. The PRISM tower project managed 

to plant corn more densely with an ~12-m−2 plant density, which together with rainfall 

and frequent irrigation meant that the VWC peaked at ~20 kg/m2. Accordingly, the 

retrieval performance at P- and L-band was evaluated and compared at this high VWC 

using the SMAP SCA-V and DCA tau-omega approaches in this chapter. 

8.2 Data 

Since quadrants 1-4 were all managed with a flat surface condition for the corn-

growing cycle from November 24, 2020 to May 4, 2021 (Figure 3-2f) and station 126 

located in Q2 was found to agree well with the HDAS measurements (Figure 8-1b), 

only Q2 was selected to be analyzed in this chapter (Figure 8-1). The corn was planted 

very densely with an ~12-m−2 density to achieve a high VWC. The entire growing cycle 

of corn was divided into three periods: 1) the bare soil period from November 24 to 

December 9, 2020, being before the corn germination; 2) the maturing period of corn 

from December 18, 2020 to March 7, 2021; and 3) the senescent period of corn from 

April 1 to May 4, 2021 (Figure 8-1). 

This chapter used the daily TB observations at 40° incidence angle for P-band and at 

38° incidence angle for L-band (Figure 8-1a) to approximate the fixed 40° incidence 

angle of SMAP (Entekhabi et al., 2014). Figure 8-1b and c show the time series of soil 

moisture and temperature collected from station 126 in Q2 (Figure 3-1a). The station 

observations were considered representative of the radiometer footprints because the 

HDAS measurements were relatively uniform in space (short length of boxplots) and 

agreed approximately with the station measurements (Figure 8-1b). Similar to Chapter 

7, the daily mean soil moisture at around 6 am in the 0-5-cm layer from station 126 

(Figure 8-1b) was used for both P- and L-band soil moisture retrieval evaluation in this 

chapter. 
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Figure 8-1d shows the RMS height averaged from the roughness measurements taken 

in two perpendicular directions. Note that these roughness measurements were not 

used in the formal analysis but rather to support that the roughness parameters can be 

assumed constant over the study period. The VWC measurements estimated from 

destructive vegetation samples were plotted as the dots in Figure 8-1e, with the daily 

 
Figure 8-1: Collected data in Q2 over the entire growing cycle of corn, including a) 

TB observations at 6 am, with the data gaps resulting from the tower being lowered 

due to high wind in December 2020 and January 2021 and from the instruments 

being taken to the airborne experiment in March 2021; b) station time-series soil 

moisture with HDAS measurements (boxplots); c) station time-series soil 

temperature; d) RMS height averaged from the roughness measurements in two 

perpendicular directions; and e) observed (dots) with linearly interpolated (line) 

vegetation water content. For clarity only the data collected from the top 3 hydra-

probes are plotted in b) and c). The boxplots in b) show the maximum, 75% 

percentile, median, 25% percentile, and minimum of the spatial HDAS 

measurements. 
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fit plotted as the line. Given the irregular rainfall and irrigation, the VWC reached ~20 

kg/m2 with the time series fluctuating to some extent. 

8.3 Method 

The same SCA-V and DCA tau-omega approaches as in Chapter 7.3 were 

implemented over the corn-covered flat soil surface at P- and L-band in this chapter. 

For the SCA-V approach, 𝜏 was estimated using VWC and 𝑏 according to Eq. 2-7. As 

in the SMAP SCA-V it was assumed that 𝑄𝑅= 0 and 𝑁𝑅𝑉= 2 in this chapter. In the 

SCA approach, roughness and vegetation parameters need to be determined before 

soil moisture retrieval. However, roughness and vegetation parameters can 

compensate for each other and thus cannot be retrieved together and achieve a robust 

result (Njoku and Chan, 2006, Patton and Hornbuckle, 2012, Martens et al., 2015). 

Therefore, a three-step approach was employed to calibrate parameters and retrieve 

soil moisture for the SCA-V (Figure 8-2): 1) the 𝐻𝑅  was calibrated using the data 

collected over Period 1; 2) based on the calibrated 𝐻𝑅, the 𝑏 and 𝜔 were calibrated 

using the V-pol TB, soil moisture, soil temperature, and VWC observations collected 

in Period 3; and 3) soil moisture was retrieved using the calibrated parameters from 

the first two steps and the V-pol TB observations collected in Period 2. 

 
Figure 8-2: Diagram illustrating the methodology and period of data used in the 

SCA-V and the DCA. 
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In terms of the DCA, it was assumed that 𝑁𝑅𝑃= 2 and 𝜔= 0.06 as in the SMAP DCA 

implementation. Since 𝜏 was concurrently retrieved with soil moisture, only 𝐻𝑅 and 

𝑄𝑅 needed to be determined before the soil moisture retrieval. Consequently, a two-

step approach was applied to calibrate the parameters and retrieve the soil moisture 

for the DCA (Figure 8-2): 1) calibrate 𝐻𝑅 and 𝑄𝑅 using the data collected over Period 

1; and 2) retrieve soil moisture and 𝜏 using the calibrated parameters from the first step 

and the dual-pol TB observations from Periods 2 and 3. The roughness parameters 

calibrated over the bare soil period were applied to the vegetation-covered soil period 

because the surface roughness was found to have little change throughout the entire 

period according to Figure 8-1d. 

8.4 Results and Discussion 

8.4.1 Single channel algorithm V-pol 

Use of the SMAP SCA default parameters for croplands (Table 7-2) was first evaluated 

at V-pol TB over Periods 2 and 3 (result not shown), with the RMSE between the 

 
Figure 8-3: RMSE (K) between the observed and simulated V-pol TB for Period 1 

using a range of 𝐻𝑅 values. The semi-empirical model for bare soil (Eq. 4-4) was 

adopted as the forward model. The dots with values indicate the minimum RMSE 

and the corresponding 𝐻𝑅 values for P-band (in blue) and L-band (in orange). The 

parameters 𝑄𝑅 and 𝑁𝑅𝑉 were assumed to be the same as in the SMAP SCA-V at 

both P- and L-band, being 0 and 2, respectively. 
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retrieved and measured soil moisture being extremely large (~0.5 m3/m3) at both P- 

and L-band. Consequently, the model parameters needed to be calibrated at this site. 

In Figure 8-3, a range of 𝐻𝑅 values were used to simulate the V-pol TB for P- and L-

band using the semi-empirical model for bare soil (Eq. 4-4). The 𝐻𝑅  values that 

produced the minimum RMSE between the simulated and observed TB were 

considered the optimum, marked as the dots with annotated values. Therefore, 𝐻𝑅 was 

calibrated to be 0.520 and 0.649 at P- and L-band, respectively, with the calibration 

residuals being 3.8 K at P-band and 11.5 K at L-band.  

In Figure 8-4, the soil moisture measurements collected over Period 3 were adopted 

to simulate TB, using the tau-omega model with calibrated 𝐻𝑅 (Figure 8-3) and varying 

𝑏 and 𝜔. As a result, 𝑏 and 𝜔 were calibrated to be 0.053 and 0.086 for P-band and 

0.094 and 0.070 for L-band. The calibration residual was 1.8 K at both P- and L-band. 

Soil moisture was subsequently retrieved at P- and L-band at V-pol using the tau-

 
Figure 8-4: RMSE (K) between the observed and simulated TB using a range of 𝑏 

and 𝜔 values for P- and L-band V-pol over Period 3. The tau-omega model was 

adopted as the forward model. The yellow circles indicate where the minimum 

RMSE was reached, with the three values showing 𝑏, 𝜔, and the minimum RMSE, 

respectively. The calibrated 𝐻𝑅 values from Period 1, i.e., 0.520 and 0.649, were used 

for P- and L-band, respectively. The parameters 𝑄𝑅 and 𝑁𝑅𝑉 were assumed to be the 

same as in the SMAP SCA, being 0 and 2, respectively. 
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omega model (Figure 8-5). Though the R at P-band (0.54) was slightly lower than at 

L-band (0.79), P-band performed better than L-band in all other metrics, particularly 

in RMSE, being 0.062 m3/m3 at P-band and 0.157 m3/m3 at L-band. While the 

RMSE/ubRMSE did not fulfill the 0.04-m3/m3 target accuracy of SMAP and SMOS 

even at P-band, the performance was acceptable considering that the VWC was as high 

as 20 kg/m2. The RMSE/ubRMSE at L-band demonstrated the inability of the PLMR 

to sense the soil moisture underneath such a dense corn canopy. 

Strikingly, Figure 8-5 presents some scatters with retrieved soil moisture of zero at L-

band but not at P-band. After excluding these zero values from calculating the statistics, 

the RMSE at L-band was still much higher than at P-band, being 0.098 m3/m3 (not 

plotted). These zero values at L-band were mainly due to the different vegetation 

conditions for the calibration and validation datasets, with the VWC being up to ~15 

and ~20 kg/m2, respectively. When applying the calibrated vegetation parameters to 

the validation dataset at L-band, the modeled TB was lower than the observed TB even 

though the soil moisture was zero at the beginning of the retrieval iteration. Therefore, 

the soil moisture was bounded to be zero since an increase of soil moisture further 

 
Figure 8-5: Observed versus retrieved soil moisture for Period 2 of the corn-covered 

soil, using the SCA-V with the tau-omega model. The calibrated 𝐻𝑅, 𝑏, and 𝜔 

parameters were used here, i.e., 𝐻𝑅 = 0.520, 𝑏 = 0.053, and 𝜔 = 0.086 for P-band 

and 𝐻𝑅 = 0.649, 𝑏 = 0.094, and 𝜔 = 0.070 for L-band. The default SMAP SCA 𝑄𝑅 

(= 0) and 𝑁𝑅𝑉 (= 2) were used for both P- and L-band. 
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decreases the modeled TB and thus enlarges the cost function. This phenomenon 

indicated that at L-band the calibrated parameters may not be transferred to 

applications with vegetation conditions substantially differing from the calibration 

dataset. However, the calibrated vegetation parameters at P-band were found to be 

applicable to broader conditions given the reduced vegetation impact. 

Given the analysis above, a more comprehensive calibration was repeated using the 

data over Periods 2 and 3 (Table 8-1). Finally, the 𝑏 and 𝜔 were calibrated to be 0.062 

and 0.086 at P-band and 0.065 and 0.063 at L-band. Although these values were not 

used in this thesis, they will be useful for following studies on P-band in the future. 

8.4.2 Dual channel algorithm 

Similar to the SCA-V, the data collected in Period 1 were first used to calibrate the 

roughness parameters, i.e., 𝐻𝑅 and 𝑄𝑅 at P- and L-band in the DCA approach (Table 

8-2). The model for bare soil (Eq. 4-4) was adopted as the forward model, with 𝑁𝑅𝑃 

assumed the same as in the SMAP DCA to be 2 at both P- and L-band. Subsequently, 

the DCA soil moisture retrieval was conducted using the calibrated 𝐻𝑅  and 𝑄𝑅  in 

Table 8-2, with the comparison of the observed and retrieved soil moisture presented 

in Figure 8-6. P-band was found to perform better than L-band in all metrics, 

particularly in RMSE, being 0.079 m3/m3 at P-band and 0.111 m3/m3 at L-band. 

Table 8-1: Calibrated SCA-V vegetation parameters for the corn-covered flat soil 

over Periods 2 and 3. 

Band 𝑏 𝜔 

P 0.062 0.086 

L 0.065 0.063 

Table 8-2: The calibrated DCA roughness parameters using the data for Period 1. 

Band 𝐻𝑅 𝑄𝑅 

P 0.618 0.070 

L 0.766 0.097 
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To understand the relationship between the vegetation impact and VWC, the VWC 

was plotted against MPDI for Periods 2 and 3 in Figure 8-7. All four quadrants  were 

taken into account for establishing a more reliable relation between VWC and MPDI. 

MPDI characterizes the difference between H- and V-pol TB and was found to have 

a negative relationship with 𝜏, and thus used in the LPRM to estimate 𝜏 (Owe et al., 

 
Figure 8-6: Observed versus retrieved soil moisture for Periods 2 and 3 of the corn-

covered soil, using the DCA (Eq. 7-1) with the tau-omega model. The default SMAP 

DCA 𝑁𝑅𝑃 and 𝜔 were used for both P- and L-band, i.e., 𝑁𝑅𝑃 = 2 and 𝜔 = 0.06. The 

calibrated 𝐻𝑅 and 𝑄𝑅 from Period 1 (Table 8-2) were used herein. 

 
Figure 8-7: VWC against MPDI at P- and L-band for Periods 2 and 3 and all four 

quadrants. 
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2001). From Figure 8-7 it can be seen that the MPDI was higher at P-band than L-

band for a given VWC, indicating the reduced vegetation impact at P-band. 

Konings et al. (2015) pointed out that some redundant TB observations need to be 

provided for a robust soil moisture retrieval since the observations at different angles, 

polarizations, and times contain mutual information. From this perspective, MPDI can 

characterize the amount of the independent information contained at dual-polarized 

TB observations, and therefore P-band observations had a higher Degree of 

Information (DoI, Konings et al., 2015) than L-band observations according to the 

MPDI in Figure 8-7, possibly explaining the better retrieval accuracy at P-band. For 

VWC approaching 20 kg/m2 and above, the MPDI at L-band was close to zero, which 

means that H- and V-pol observations did not contain useful independent information, 

while the MPDI at P-band was still around 0.01. In other words, the use of L-band 

dual-pol observations for such a high VWC added little information other than noise 

to the model. 

Exponential relations between VWC and MPDI were established at P- and L-band 

utilizing the observations collected in all four quadrants, with a higher R2 at P-band 

(0.75) than L-band (0.65) (Figure 8-7). These equations can be used to approximate 

the VWC at which P- or L-band becomes incapable of sensing the soil moisture 

beneath the canopy, meaning that the VWC thresholds would be around 17 and 12 

kg/m2 for P- and L-band, respectively, if 0.01 is selected as the cutoff in MPDI. 

However, these values should not be treated as definitive since they are also dependent 

on many other factors, i.e., moisture range, canopy structure, roughness, etc. 

8.4.3 Model parameters across frequencies 

Directly comparing the model parameters (i.e., 𝐻𝑅 , 𝑄𝑅 , 𝑏, and 𝜔) across different 

frequencies seems to be a straightforward way to judge the reduced roughness and 

vegetation impact at a specific frequency compared to others. However, this might not 

actually make sense. Gao et al. (2017) calibrated the 𝐻𝑅 and 𝑏 at L-, C- and X-band by 

assuming 𝜔 = 0.05 and found 𝐻𝑅 and 𝑏 increased with increasing frequency. On the 
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contrary, Wang et al. (1983) discovered that 𝐻𝑅 did not have a definitive relation to 

frequency. While Mo et al. (1982) obtained higher 𝐻𝑅 and 𝑏 values at C-band than 

those at L-band, consistent with Gao et al. (2017), they found 𝜔 was higher at L-band, 

being contradictory to microwave radiometry theory, which suggests that a longer 

wavelength band should have reduced scattering effects. Additionally, considering the 

results in this thesis (Figure 6-8, Figure 7-6, and Table 8-1) where no explicit frequency-

dependence was found for the parameters 𝐻𝑅, 𝑏, and 𝜔, it might be concluded that 

these model parameters should not be compared across different frequencies. 

Two reasons can be attributed to the incomparability of those model parameters. First, 

the tau-omega and the HQN models are semi-empirical, approximating the rigorous 

physical process by linking the model parameters (i.e., 𝐻𝑅 , 𝑏 , and 𝜔 ) to some 

measurable variables (e.g., RMS height, correlation length, and VWC). Meanwhile, 

many assumptions have been made to develop simplified analytical equations, 

including the homogeneity of soil moisture in space and with depth, the scattering 

isotropy of soil and vegetation, and the negligibility of the high-order scattering. 

Therefore, these parameters have to be considered as effective rather than physical 

(Wigneron et al., 2017). 

Second, the mismatch between the sampling depth of the soil moisture measurements 

and the theoretical moisture retrieval depth may also lead to an incomparability of 

model parameters. The moisture retrieval depth is dependent on frequency and 

moisture profile and is thus a time-variant variable (Chapter 5), making it impractical 

to calibrate the model parameters using the soil moisture observations exactly within 

the moisture retrieval depth, let alone the challenge to measure the continuous soil 

moisture in a very thin layer, e.g., 1-2 cm. Due to the reasons above, it is suggested to 

compare the calibration residual and the retrieval performance for comparing the 

roughness and vegetation impact across different frequencies. 

The 𝑄𝑅 was found to be a possible exception from both the literature and current 

results when estimated to be non-zero. Figure 7-6 and Table 8-2 present that the 𝑄𝑅 
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values at P-band were lower than those at L-band. Similarly, Wang et al. (1983) has 

reported that while 𝐻𝑅 is not correlated to frequency, such a relation exists for 𝑄𝑅, 

being 0.01, 0.15, and 0.20 at 1.4, 5, and 10.7 GHz, respectively, for a soil surface with 

0.73-cm RMS height. However, such a conclusion is drawn with much caution, given 

that relevant studies mostly assumed constant 𝑄𝑅 (Wigneron et al., 2001, Martens et 

al., 2015). It is suggested to include more frequencies in order to fully investigate this 

question in the future. 

8.5 Chapter Summary 

This chapter extended the evaluation of the tau-omega model at P- and L-band in 

Chapter 7 to a condition with much higher VWC, i.e., up to ~20 kg/m2 for corn. Both 

the SCA-V and the DCA approaches demonstrated that P-band had a substantially 

better retrieval performance than L-band, indicating a reduced vegetation impact at P-

band. While the RMSE at P-band was not low, i.e., 0.062 m3/m3 for the SCA-V and 

0.079 m3/m3 for the DCA, this performance is considered acceptable given that the 

VWC achieved such a high value. Conversely, L-band was unable to sense the soil 

moisture underneath such a dense corn canopy, with RMSE higher than 0.1 m3/m3 for 

both the SCA-V and the DCA. 
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9 Conclusions, Contributions and 

Future Work 

9.1 Conclusions 

The main limitations of L-band soil moisture remote sensing are the relatively shallow 

moisture retrieval depth and the degraded accuracy in areas with great surface 

roughness and/or dense vegetation. Accordingly, this thesis analyzed data from a long-

term tower-based experiment in Victoria, Australia, to determine whether using P-

band can improve the representative depth and accuracy of retrieved soil moisture by 

taking advantage of its longer wavelength than L-band. Comprehensive model 

simulations and experimental observations have demonstrated the greater moisture 

retrieval depth and the reduced impact from surface roughness and the vegetation 

canopy at P-band compared to L-band using time-series data from 2019 to 2021, with 

various moisture, roughness, and vegetation conditions investigated. This research 

therefore paves the way for a future P-band radiometer-based mission for globally 

sensing deeper and more accurate soil moisture. Detailed conclusions for each analysis 

chapter are as follows. 

9.1.1 Soil moisture retrieval depth 

Chapter 5 compared the moisture retrieval depth of P- and L-band radiometry to 

demonstrate the potential of P-band for a future satellite mission with deeper 

subsurface moisture sensing. Theoretical simulations were first performed to predict 

the moisture retrieval depth with simulated soil profiles by equating the coherent and 

Fresnel emissivity. Empirical correlation analysis was then applied to the MPDI from 

observed brightness temperature and soil moisture measurements collected in the 

PRISM tower experiment over a flat bare soil. 
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For the same moisture retrieval depth, a higher correlation between soil moisture and 

MPDI was found at P-band than L-band, implying that P-band can either retrieve soil 

moisture over the same moisture retrieval depth as L-band (~5 cm) but with greater 

accuracy, or that a larger moisture retrieval depth (~7 cm) can be achieved while 

maintaining the same accuracy. These empirical findings were in line with model 

predictions. Additionally, predictions revealed that the moisture retrieval depth 

increased with wavelength, indicating that P-band can potentially provide soil moisture 

retrievals for a depth larger than 10 cm when using a frequency lower than 0.5 GHz. 

Importantly, model predictions showed that moisture retrieval depth was not only 

dependent on soil moisture content and observation frequency, but also on the 

moisture gradient of the profile. 

9.1.2 Roughness impact of random and periodic surfaces 

Chapter 6 compared random and periodic roughness impacts on P- and L-band 

passive microwave brightness temperature to demonstrate the potential improvement 

in soil moisture retrieval from using the longer wavelength P-band observations rather 

than the shorter L-band observations over flat and periodic soil. The Fraunhofer 

criterion and physical modeling indicated that TB observations at a longer wavelength 

should have a reduced impact from random roughness. A reduced impact from 

periodic roughness was also confirmed at P-band compared with L-band by the 

physical modeling. The semi-empirical model for bare soil was evaluated in this chapter 

and found to work better at P- than L-band, supported by the lower RMSE at P-band 

in the simulation results. The calibrated 𝐻𝑅  in Q2 was applied to retrieve the soil 

moisture in all four quadrants, with the result showing that P-band had a reduced error 

compared to L-band. This evidence collectively confirms that P-band was less 

impacted by random and periodic roughness than L-band.  

For bare flat and periodic soil surfaces, V-pol was less impacted by roughness impact 

than H-pol at both P- and L-band in terms of both TB simulation and soil moisture 

retrieval. Evaluating the SCA-V retrieval results showed that P-band had a more 

comparable RMSE across different surface roughness configurations than those at L-
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band, with variations up to 0.012 and 0.022 m3/m3 for P- and L-band, respectively. 

Therefore, P-band did not need to have the periodic surfaces discriminated, while L-

band needed differently calibrated parameters for bare periodic surfaces compared to 

bare flat surfaces. 

9.1.3 Vegetation impact of wheat 

Chapter 7 evaluated the tau-omega model over flat and periodic surfaces covered by 

wheat with VWC up to 4 kg/m2 to demonstrate the potential improvement in soil 

moisture retrieval from using the longer wavelength P-band observations. The default 

SMAP SCA parameters for croplands were found to simulate TB satisfactorily at L-

band V-pol but not at L-band H-pol or P-band. Therefore, at P-band V-pol, the 

roughness and vegetation parameters were calibrated for the flat-soil quadrant and 

applied to retrieve the soil moisture in all four quadrants, while the default SMAP 

parameters were applied to retrieve the soil moisture in all four quadrants at L-band 

V-pol. The RMSE between observed and retrieved soil moisture showed that neither 

P- or L-band had a substantial performance variation across different quadrants for 

the SCA or DCA. 

Combining the findings for bare soil in Chapter 6, it can be concluded that P-band had 

a reduced roughness impact and was thus able to model both the flat and periodic soil 

using the calibrated parameters from the flat soil, for both bare and wheat-covered 

conditions. Conversely, L-band could only treat the different periodic surfaces like a 

flat surface when covered by a mature wheat canopy. Moreover, a lower RMSE at P-

band (0.029 m3/m3) than L-band (0.063 m3/m3) was observed when omitting 

vegetation effects in the forward model, confirming that P-band observations were 

relatively unaffected by the wheat canopy. However, when using the SCA-V approach 

with the vegetation impact considered by the tau-omega model, the similar RMSE 

(~0.02 m3/m3) at P- and L-band did not demonstrate the expected improvement in 

soil moisture retrieval over the wheat-covered soil at P-band. 
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9.1.4 Vegetation impact of dense corn 

Chapter 8 extended the investigation of vegetation impact to corn with VWC up to 

~20 kg/m2 so as to compare the retrieval performance at P- and L-band. Similar to 

Chapter 7, both the SCA-V and the DCA approaches were performed to retrieve the 

soil moisture. The default SMAP SCA-V parameters were found to work poorly over 

corn at both P- and L-band, motivating a local calibration of model parameters. Based 

on the calibrated parameters, the results from both approaches presented a 

substantially improved retrieval performance and a clear reduction in vegetation 

impact at P-band compared to L-band. While the RMSE at P-band was not low, i.e., 

0.062 m3/m3 for the SCA-V and 0.079 m3/m3 for the DCA, this performance can be 

regarded as acceptable considering the extremely high VWC. Conversely, L-band failed 

to sense the soil moisture beneath such a dense corn canopy, with RMSE above 0.1 

m3/m3 for both the SCA-V and the DCA. 

9.2 Contributions 

Portions of this thesis have been published in the following journal papers: 

1. SHEN, X., WALKER, J. P., YE, N., WU, X., BOOPATHI, N., YEO, I.-Y., 

ZHANG, L. & ZHU, L. 2021. Soil moisture retrieval depth of P- and L-band 

radiometry: predictions and observations. IEEE Transactions on Geoscience 

and Remote Sensing, 59, 6814-6822. 

2. SHEN, X., WALKER, J. P., YE, N., WU, X., BRAKHASI, F., BOOPATHI, 

N., ZHU, L., YEO, I.-Y., KIM, E., KERR, Y. & JACKSON, T. 2022. Impact 

of random and periodic surface roughness on P- and L-band radiometry. 

Remote Sensing of Environment, 269, 112825. 

3. SHEN, X., WALKER, J. P., YE, N., WU, X., BRAKHASI, F., BOOPATHI, 

N., ZHU, L., YEO, I.-Y., KIM, E., KERR, Y. & JACKSON, T. 2022. 

Evaluation of the tau-omega model over bare and wheat-covered flat and 

periodic soil surfaces at P- and L-band. Remote Sensing of Environment, 273, 

112960. 
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Contents of this thesis have been presented at the following international conferences: 

1. SHEN, X., WALKER, J. P., YE, N., & WU, X. 2021. P-band microwave 

remote sensing for improved soil moisture retrieval. 24th International 

Congress on Modeling and Simulation (MODSIM), Sydney, Australia 

2. SHEN, X., WALKER, J. P., YE, N., WU, X., BOOPATHI, N., ZHANG, L., 

ZHU, L., YEO, I.-Y., JACKSON, T., KERR, Y., KIM, E. & McGrath A. 2020. 

Moisture retrieval depths at P- and L-band. IEEE International Geoscience 

and Remote Sensing Symposium (IGARSS), Hawaii, USA 

3. SHEN, X., WALKER, J. P., YE, N., WU, X., BOOPATHI, N., ZHANG, L., 

ZHU, L. & YEO, I.-Y. 2019. Soil moisture sensing depth at P- and L-band: 

simulations and observations. 23rd International Congress on Modeling and 

Simulation (MODSIM), Canberra, Australia 

9.3 Future Work 

While this thesis has demonstrated that P-band is a promising proposition to provide 

deeper and more accurate soil moisture information compared to the current L-band 

missions, there remain four challenges: aperture size, RFI, receiver design and 

calibration, and ionospheric and celestial emission effects (see Chapter 2.6). 

Nonetheless, it is encouraging to witness that the advancements in aerospace and 

remote sensing technologies, e.g., large deployable antennas, downscaling techniques, 

RFI mitigation techniques, etc., have been conquering these challenges and paving the 

way for a successful P-band mission in the near future. However, further investigation 

is recommended from the following aspects to accelerate the arrival of a successful P-

band radiometer-based mission: 

1. Extend the findings in this thesis to airborne experiments that can simulate 

a satellite-scale (i.e., tens of km) scenario. At satellite scale, the 

heterogeneous moisture, surface roughness and vegetation conditions 

within one footprint may or may not be averaged out. Therefore, the 
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demonstrated greater moisture retrieval depth and higher retrieval 

performance at P-band remain to be confirmed at satellite scale. 

2. Compare the retrieval performance from using multi- and mono-angle 

observations to support the design of the future P-band mission. While 

taking more observations from different channels (i.e., polarization, 

incidence angle, frequency, etc.) is usually considered beneficial to soil 

moisture retrieval, noise will definitely be added to disturb the retrieval 

process at the same time. In some scenarios, more noise than useful 

information can be added to the model when trying to incorporate more 

observations. For example, substantially high roughness/vegetation can 

minimize the difference of the TB at different incidence angles and 

polarizations (see Figure 6-7 and Figure 8-7). 

3. Incorporate radiometers at multiple frequencies (particularly below 500 

MHz) to sense the soil moisture at different depths for retrieving soil 

moisture profiles. Providing soil moisture at a given depth has been falling 

behind the increasing demands of hydrological and climate applications. 

Since this thesis has demonstrated that the moisture retrieval depth 

increased as the increasing wavelength, retrieving moisture profiles can be 

realized by taking advantage of different frequencies. 

4. Combine different remote sensing techniques (e.g., SAR and optical 

sensors) to enhance the coarse spatial resolution of P-band radiometers. If 

the same antenna size as SMAP is used on a P-band radiometer, the spatial 

resolution is expected to degrade to ~75 km from the 40 km of SMAP, 

which remains to be improved to fulfill the requirements of precision 

agriculture and other applications. Apart from utilizing a larger deployable 

antenna, a combination of other techniques with high spatial resolution 

can downscale the soil moisture dataset from the P-band radiometer. 
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