
Quantitative methods for 

hydrological spatial field 

comparison 

 

 

 

Stephen Russell Wealands 

 

 

 

 

 

 

Submitted in total fulfilment of the requirements of the degree of 
Doctor of Philosophy 

 

August 2006 

Department of Civil and Environmental Engineering,  
The University of Melbourne 

 





Abstract 

Abstract 

This thesis addresses the current lack of comprehensive, quantitative methods for 

comparing hydrological spatial fields.  Comparison of spatial fields is needed for 

assessing hydrological models and for data assimilation.  The methods that are currently 

used for quantitative comparison generally fail to consider the spatial arrangement of 

element values within spatial fields.  Instead, there is a dependence on qualitative 

methods (e.g. visual comparison) to undertake comparison of many aspects (e.g. 

intermediate scale features), but such methods are non-repeatable, often biased and 

difficult to report on.  This thesis advances the comparison methods available for use 

with hydrological spatial fields. 

A detailed review of qualitative comparison and quantitative comparison methods used 

in other disciplines has been undertaken.  The review identified the key aspects of 

comparison that were needed for hydrological fields.  In addition to these aspects, 

existing comparison methods that could be adapted for hydrological comparison 

purposes were described.  Three general notions emerged as being most important for 

comparison and have been pursued in the thesis: 1) importance; 2) tolerance; and 3) 

completeness.   

Importance has been incorporated into new comparison methods by using data-driven 

(e.g. segmentation) and knowledge-driven (e.g. terrain analysis) pre-processing 

methods.  These methods are used to modify a spatial field so that it only represents 

what is deemed important, which is then used for making subsequent specialised 

comparisons.  Importance allows comparison measures to have a specific meaning and 

thereby reflect aspects of model performance that are application specific. 

Tolerance has been implemented into new comparison methods by allowing spatially- 

and temporally-related elements to be considered as similar during comparison (unlike 

current methods that demand spatial coincidence).  The notion of tolerance can also be 

thought of as accounting for uncertainty during comparison.  The results of a tolerant 

 



Abstract 

comparison reveal only the significant differences (i.e. those larger than the tolerances) 

between two spatial fields, thus providing a measure of the true error (rather than a 

measure confounded by insignificant differences).  During model assessment, this 

permits slightly different fields (e.g. with minor spatial shifts) to be evaluated as having 

equivalent performance, based on the requirements of the user.   

By combining the current comparison methods with the new methods (i.e. importance 

and tolerance), an extensive suite of measures are made available.  These measures are 

capable of quantifying a range of aspects and scales of spatial fields.  Completeness is a 

general objective for comparison that depends on having access to such a range of 

measures.  This thesis describes the process of devising a suitable comparison strategy 

that can achieve completeness by combining comparisons of complementary aspects 

and scales.  This requires the user to plan the comparison and make clear decisions 

about what should be compared.  Once made, the strategy can be applied to multiple 

fields and the results analysed with multi-criteria optimisation methods.  This is a 

complete contrast to most current comparisons, which produce single results that are 

generally ambiguous (e.g. RMSE).   

This thesis applied the new comparison methods within a customised comparison 

strategy to a real, hydrological modelling situation.  The comparison results concurred 

with visual inspection and provided more detailed quantitative information than 

previously available.  The unbiased and rigorous comparison of different aspects and 

scales produced clear, repeatable and reportable comparison findings that address the 

major weaknesses with current comparison methods.  This bodes well for future 

application of the methods to larger, more complex fields and comparison tasks.  At 

present, the hydrological community continues to develop its ability to observe and 

model spatial fields, but comprehensive model assessment is still in its infancy.  The 

methods developed here provide a new suite of tools to the modeller and, if adopted, 

should significantly advance the art and science of spatial hydrological modelling.   
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Chapter 1  

Introduction  

1.1 Importance of spatial field comparison 

Hydrological spatial fields can be produced using spatially distributed models and/or a 

range of observation techniques (e.g. remote sensing, in-situ measurement).  These 

fields are used to represent the spatial distribution and state of a specific hydrological 

attribute.  Observed spatial fields, which represent reality (albeit with uncertainty), are 

increasingly available because of improved observation techniques and the widespread 

use of spatial data in natural resources management.  Modelled fields, which aim to 

simulate reality, are also increasingly produced to help answer the ‘spatial questions’ 

that are posed by managers and researchers.  This increased use of hydrological spatial 

fields has led to many new avenues of hydrological research.  Much of the research is 

focussed on applications of different spatial fields, but there are important issues 

regarding the analysis of hydrological fields that still need to be addressed.   

Observed spatial fields are used as simple data sources for constructing, parameterising 

and forcing hydrological models.  These spatially distributed models are then used to 

simulate different hydrological or management-related attributes and their spatial 

arrangements (e.g. rainfall or land-use across a catchment) for a certain time period.  

The outputs from these models are often uncertain because of incomplete representation 

of the hydrological processes and poor definition of model parameters.  Reducing this 

uncertainty is a major objective in hydrological research and requires comparisons to be 

made between the uncertain model outputs and observations of reality.  Figure 1.1 

illustrates the general process of spatially distributed hydrological modelling and shows 

that comparison is necessary for facilitating model assessment and/or data assimilation.   
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Figure 1.1 A simplified flowchart of the hydrological modelling process, specifically showing the roles 

for spatial fields.  This thesis focuses on the key task of comparing observed fields with modelled fields

(shaded blue) to provide the necessary information to facilitate model assessment and/or data assimilation

(shaded yellow). 

In most current hydrological studies, comparison is only undertaken between values 

representing an integrated hydrological response (e.g. a runoff hydrograph) and 

observations of a comparable attribute.  Comparing integrated responses does not 

explicitly test the internal processes occurring in the model (Grayson et al. 1992), which 

are generally the most important outputs from a spatially distributed model.  If these 

processes are not explicitly tested, a model may be producing the right answers for the 

wrong reasons.  Observed spatial fields can explicitly represent these internal processes.  

Therefore, the addition of spatial field comparisons produces a more comprehensive test 
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of model performance (Grayson and Blöschl 2000b; Jetten et al. 2003).  Apart from 

situations where there are obvious constraints on spatial arrangement (e.g. a 

topographically-controlled flood inundation field (Horritt and Bates 2002)), spatial 

fields can help to avoid situations where a model produces the right answers for the 

wrong reasons (Klemeš 1986; Grayson et al. 2002).   

Spatial field comparisons (i.e. comparison of modelled to observed field) are important 

for comprehensive model assessment and for data assimilation.  Model assessment 

includes tasks such as model calibration, testing and understanding.  For calibration and 

testing, quantitative comparison methods can be used to evaluate which models (or 

parameter sets) are acceptable, thereby constraining the range of feasible (or optimal) 

models.  The observed spatial fields provide strong constraints on which models are 

considered feasible and are valuable for reducing model uncertainty, particularly when 

applied in an uncertainty framework (e.g. Beven and Binley 1992; Franks et al. 1998; 

Hunter et al. 2005) or multi-criteria optimisation (Gupta et al. 1998; Boyle et al. 2000).  

Both quantitative and qualitative spatial field comparisons are also used for 

understanding model performance by revealing where a model has errors and 

similarities, which can then be analysed by experts to understand the reasons why.  Data 

assimilation can also benefit from the results of quantitative comparisons, which can be 

used to help determine the location and value of the corrections applied to different 

model states (e.g. Houser et al. 2000; Pauwels et al. 2001).  These corrections adjust the 

model states so that it can produce modelled fields that are more similar to reality 

(based on the previously assimilated observations).   

1.2 Statement of problem 

Spatial field comparisons are already undertaken within hydrological modelling, 

although the current quantitative comparison methods used are not very comprehensive.  

These methods ignore the spatial arrangement within the spatial fields, instead treating 

each spatial field element independently.  While the current methods have some benefits 

(e.g. simple, exact), there is potential for more advanced comparison methods to provide 

more useful information about error and similarity.  Qualitative, visual comparison is 

commonly used to note similarities between spatial fields (i.e. using the relationships or 

patterns of arrangement).  This is a powerful and important method, but the inability to 
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quantify, repeat and report on such a comparison makes it unsuitable for operational use 

(e.g. in semi-automated uncertainty frameworks).  These comparison methods are the 

current state-of-the-art in hydrology, yet they cannot comprehensively describe how 

spatial fields compare.  The weakness of these methods has been recognised as a 

limiting factor in the uptake of spatial field comparisons in hydrological modelling 

(Grayson and Blöschl 2000b) and needs addressing. 

There are other disciplines, such as image processing, pattern matching and landscape 

ecology that have been researching the problem of spatial field (or image) comparison 

for far longer than hydrology.  Research in these disciplines has recognised that there 

are no “silver bullets that will solve a large range of general [comparison] problems” 

(Pavlidis 2003).  However, the research does offer an existing collection of methods that 

may be applicable and/or adaptable to the comparison of hydrological spatial fields.  

The experiences from these other disciplines, as well as an understanding of the 

requirements for hydrological comparisons, can be used to unearth alternative methods 

that can address the weaknesses of the current comparison methods used.  

1.3 Research objectives 

The overall objective of this thesis is to advance the methods used for quantitatively 

comparing spatial fields in hydrological modelling.  Within this objective there are a 

number of key research questions that need to be addressed: 

 How are spatial fields currently used in hydrological modelling?  Are there any 

problems or issues with their usage?  

 When comparing spatial fields, what aspects of error or similarity can and cannot 

be quantified with the current methods?  

 How can the quantitative comparison methods used in hydrology and other related 

disciplines be improved to quantify additional aspects of error or similarity? 

 How do the new and improved quantitative comparison methods improve model 

assessment processes in hydrological modelling?  

 How can the user decide which comparison methods are most suitable and how 

they should be applied for a given hydrological situation?   
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1.4 Scope 

This thesis does not aim to define the comparison methods that are suited to every 

different hydrological situation.  Nor does it aim to define what the ‘best’ comparison 

method is – this is a subjective decision that depends both on the needs of the user and 

the spatial fields being compared.  Instead, this thesis aims to develop a range of 

quantitative, deterministic comparison methods that are widely applicable to 

hydrological fields and highlight the pros and cons of each.  All of the methods should 

be considered for use in a semi-automated manner, where it is intractable for the user to 

visually inspect all of the fields. 

The methods do not aim to remove the need for user input into the comparison process.  

Instead, they aim to encourage being explicit about the subjective decisions that help to 

define suitable and meaningful comparisons.  All comparison methods require 

subjective decisions to be made, despite the fact that they are often referred to as 

objective measures within hydrology.   

These comparison methods are developed and discussed for use in hydrological 

modelling, particularly for facilitating model assessment and data assimilation, although 

they also have application for model understanding.  The term ‘model’ should be 

interpreted to be any modelled field, whether modelled using a distributed hydrological 

model or by an interpolation method.  It may even refer to any field that is being 

compared against another field taken as the reality (e.g. assessing a remotely sensed 

field using point-based ground observations).   

Finally, the spatial fields used for examples and analysis in this thesis are all regular-

shaped element fields (i.e. rasters).  These are used primarily because of their 

widespread availability and familiarity.  However, the new methods presented in this 

thesis are described and can generally be implemented for other types of spatial fields 

(e.g. irregular-shaped elements) also. 

1.5 Thesis outline 

This thesis proceeds (0) by defining spatial fields and their general use in hydrology.  

Essential background information is given regarding spatial observations, spatial 
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models and the various issues with their use.  This background defines the context in 

which comparison methods are currently used and the tasks that they facilitate.   

An extensive literature review is then undertaken (0), examining how spatial field 

comparison is done qualitatively and quantitatively within hydrology and many other 

disciplines.  The research from other disciplines helps to guide the improvements made 

to current hydrological comparison.  This review brings to light many analysis and 

processing methods that are valuable for hydrology and is an important contribution.  

From the review, three major themes emerge as being most important during 

comparison and they provide the basis for the methodology.   

The major themes of tolerance, importance and completeness are incorporated into 

some new comparison methods for use in hydrology.  The methods from other 

disciplines are adapted, applied and improved for use with the existing methods and 

hydrological spatial fields (Chapter 4).  Details of the algorithm and usage for each 

method are given.  The methods are tested using synthetic fields (with known 

deformations) to confirm their capabilities.  A comparison flowchart and strategy are 

presented to show how these methods can combine together for use in specific 

applications, such as different types of hydrological model assessment.   

Chapter 5 is a practical application of the comparison methods to a real hydrological 

situation.  The hydrological example used is the Tarrawarra data (Western and Grayson 

2000), in which modelled and observed spatial fields of soil moisture exist.  These 

fields have been previously compared by experts using the current hydrological 

methods, thus providing a benchmark against which the performance of new methods 

can be evaluated.  This chapter devises a comparison strategy for model assessment at 

Tarrawarra, then applies it and evaluates the results. 

The discussion (Chapter 6) draws on evidence presented in the practical application 

(Chapter 5) to describe how subjective user decisions combine with the general methods 

to create specialised comparison measures.  An example comparison strategy is devised 

for a different hydrological situation, thus demonstrating how the methods can be 

adapted to the needs of the user.  Attention is also given to issues regarding analysis 

(e.g. significance testing) and implementation (e.g. computational demands).  A 
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software comparison tool is also described (see Appendix A) and the reader is 

encouraged to experiment with this tool to better understand the methods.   

The conclusions are presented in Chapter 7, summarising the contributions made in this 

thesis and their expected impact on the field of hydrological modelling.  The thesis then 

concludes with a discussion about the directions for further research on this topic.   

1.6 Definitions 

The following table of definitions is given to clarify the way certain terms are used 

throughout this thesis.  There is no common language used in the literature when 

referring to spatial fields and their processing.  This table defines a standard set of terms 

relating to spatial fields, as well as defining other ambiguous terms from hydrology (e.g. 

calibration, testing). 

Table 1.1 Definitions for all major terms that are ambiguously used in hydrological literature or have not 

previously been clearly defined.   

Term Definition 

Spatial field
a collection of associated elements with defined topology (i.e. the physical or 
logical relationship between elements) that are representative of a certain attribute 
at a certain time (i.e. an instance or  duration) 

Spatial pattern a synonymous term for a spatial field that is avoided in this thesis because it implies 
some amount of trend or structure within the field (which may not exist) 

Element the building block of a spatial field; has a defined location (i.e. an area) and value 
(i.e. one attribute)  

Element value a value representing the magnitude (i.e. interval or ratio number) or type (i.e. 
ordinal or nominal category label) of the attribute being represented 

Continuous field a general grouping for any field representing an attribute with interval or ratio 
values (e.g. real numbers) 

Categorical field a general grouping for any field representing an attribute with ordinal or nominal 
category labels (including binary) 

Spatiotemporal 
series

a series of spatial fields that are representative of a certain attribute over a range of 
times, usually with a regular interval between each time step or field 

Observed spatial 
field

a field produced from observations that represents an attribute during the 
observation time (e.g. rainfall on a certain day); some processing may be used to 
convert raw observations into the observed field, but this is considered as part of the 
observation process (even though it is formally a type of model output) 

Modelled spatial 
field

a field produced from model output (i.e. via a defined algorithm), such as that 
produced by a distributed hydrological model  

Hydrological model
an algorithm representing real hydrological processes that is applied to a particular 
domain (using parameters and forcing data); the model algorithm, parameters and 
forcing data combine to produce modelled spatial fields 
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Term Definition 

Model calibration 
or optimisation

the process of refining the model algorithm or parameters so that the model 
output(s) best represent the calibration data set (e.g. observed time series or fields) 

Model testing the process of testing the capabilities of the model using independent observed data; 
often referred to as model validation 

Model assessment a holistic term to describe the process of understanding model outputs via 
comparison with observed data; may encompass calibration, testing, analysis, etc. 

Comparing spatial 
fields

the process of using quantitative comparison methods to obtain comparison 
measures of the error and/or similarity between two spatial fields 

Local scale 
comparison

a comparison method that uses the numerical relationship between each pair of 
elements having a certain spatial relationship (e.g. spatially coincident) to determine 
an field of local error or similarity, before summarising that field into a single 
comparison measure 

Global scale 
comparison

a comparison method that uses a characteristic of multiple elements from each field, 
rather than the numerical relationship for each individual element in computing the 
comparison measure 

Comparison 
measure

the numerical result of a comparison method being applied to a field or a pair of 
elements; interpreting this measure correctly requires understanding of the method 
used and fields being compared; often referred to as an objective measure or 
objective function in hydrology 

Intermediate 
measure

usually refers to a field of local comparison measures, such as is created during 
local comparison; can also refer to a table or graph that is an intermediate stage of 
processing during a comparison method; intermediate measures are useful for 
visually analysing the contributions to a final comparison measure 

Error measure

a comparison measure that uses the numerical difference (or residual) between field 
elements in its calculation; the measure is expressed in same units as the source 
field; interpreted relative to known characteristics of the source field; accumulates 
all errors and gives a measure of ‘how badly’ the fields match (i.e. a penalty-based 
comparison); often referred to as an absolute measure 

Similarity measure

a comparison measure that uses the numerical relationships between field elements 
and also a certain reference (e.g. observed mean, linear fit) in its calculation; 
produces a measure with a limited range, commonly bounded by zero and one; 
value of one denotes perfect similarity, while zero can denote no similarity or 
similarity equal to the reference (depending on method); only elements that are 
similar contribute to the resulting measure; gives a measure of ‘how well’ the fields 
match (i.e. a reward-based comparison); often referred to as a relative measure 

Intra-comparison

the process of analysing measures obtained from using one comparison method 
with one set of related spatial fields (e.g. many modelled fields compared to one 
observed field); the measures can be interpreted relative to one another or to a 
certain reference  

Inter-comparison

the process of analysing measures obtained from using one comparison method 
with many sets of spatial fields (e.g. with different locations, times and/or 
attributes); the measures must be interpreted relative to a certain reference or 
otherwise analysed as ranks to be inter-comparable 
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Chapter 2  

Background for spatial fields 

2.1 Chapter overview 

Spatial fields are observed and modelled using a range of techniques within hydrology.  

Observations can be made in-situ (i.e. on the ground) using techniques that measure 

hydrological responses at a point (e.g. a rain gauge) or over an integrated area (e.g. a 

stream gauge).  In-situ measurements are made at multiple locations to represent the 

spatial variability of the response.  Observations can also be made using remote sensing 

techniques that measure different aspects of hydrological response (e.g. RADAR, 

surface temperature).  When measurements are available for multiple locations and the 

locations are spatially related, an observed spatial field is produced.   

Spatial fields are also produced by hydrological models, which use equations to 

calculate and distribute hydrological quantities across an area.  The modelled values 

(e.g. surface runoff, soil moisture percentage) are produced for all locations within the 

area and usually for multiple times.  Comparison of the modelled fields against an 

observed field is the focus of this thesis, although understanding the meaning of spatial 

fields is necessary first.   

This chapter provides the background on spatial fields in hydrology, beginning with a 

definition of scale and spatial fields.  A number of observed and modelled fields from 

hydrology are then shown to illustrate their typical application.  Issues with 

observations and models that the reader should be aware of are then discussed, as these 

underlie the research questions tackled in this thesis.   
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2.2 Understanding spatial fields 

2.2.1 Defining scale 

The term ‘scale’ is used in many contexts and disciplines, however, in the Earth 

sciences it refers to the spatial and/or temporal dimensions of an object or process.  

Along with the term scale comes other terms, such as grain, extent and resolution that 

are all sometimes used to refer to scale or some aspect of it.  In the hydrological 

literature, scale is usually defined using the ‘scale triplet’ (Blöschl and Sivapalan 1995).  

This triplet defines the spacing, extent and support of an element or process in space 

and time (Figure 2.1).  The spatial and temporal scales of the elements that make up a 

spatial field define what the field truly represents, and subsequently what it can be used 

for.   

The spatial ‘spacing’ is the distance between neighbouring elements, spatial ‘extent’ is 

the bounds of all elements in the field and spatial ‘support’ is the area each individual 

element represents.  For a single spatial field, the temporal spacing is undefined and the 

temporal extent and support are the duration (or instant) that the field represents.  If a 

spatiotemporal series exists (e.g. model outputs), the temporal spacing is the time in 

between output of the fields, the temporal extent is the total time period between the 

first and last fields and temporal support is the duration (or instant) each field 

represents.      

For example, a spatial field of near-surface soil moisture obtained from time domain 

reflectometry (TDR) samples, the scale triplet could have values of 20m spatial spacing 

Figure 2.1 Schematic of the scale triplet, which can be defined for spatial and temporal scales (from 

Blöschl and Grayson 2000).  The scale of a spatial field defines what it truly represents and therefore the

applications it can be used in. 
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(the sampling interval), 200m spatial extent (the sampled area) and 10cm spatial support 

(the average diameter that influences a TDR measurement) (Blöschl and Grayson 2000).  

The temporal extent and support of a single TDR-derived field could be 12 hours (the 

time taken to sample all locations in the field), although that would only be true if 

stationarity were assumed.  If this same field was created from by an airborne passive 

microwave sensor, the values could be 50m spatial spacing, 2000m spatial extent and 

70m spatial support.  The temporal extent and support would be almost instantaneous 

(or the time taken for the sensor to scan the area).  In both examples, the fields represent 

near-surface soil moisture (albeit over different depths), but are measured in different 

ways.  By defining the scale triplet whenever data are being managed, a clearer 

understanding of the true meaning of the data is obtained that is essential when working 

with models.   

Comparison between spatial fields can only truly be done when the fields being 

compared represent the same thing.  Otherwise, scale differences in space and time can 

lead to detection of false differences or similarities between fields.  This is true from a 

conceptual point of view, but in practice this constraint would preclude almost any 

comparisons being used in modelling.  Some models produce fields and series with 

scale characteristics that are not reproducible by any observation methods.  Instead, 

scale differences should be understood and managed to limit their influences.  For 

example, spatial fields with matching spatial scales but different temporal scales (e.g. 

instantaneous versus daily) may be comparable for some purposes.  Spatial fields with 

different spatial supports are also often treated as being comparable (e.g. a rain gauge to 

a RADAR rainfall element).  The scale triplet provides a simple framework in which the 

user can understand scale differences.  Once understood, the differences can sometimes 

be mitigated by pre-processing the data (i.e. upscaling or downscaling).  In practice, 

scale differences are often overlooked and ignored, but this can lead to false or unclear 

findings when comparing data sets.   

2.2.2 Changing spatial scale 

A change in one or more components of the scale triplet results in a significantly 

different representation of the elements in a spatial field.  The impact of each 

component of the scale triplet can be seen in Figure 2.2.  If the support is too large, each 
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Figure 2.2 The effect of changing each component of the scale triplet for a spatial field: (a) true field; (b) 

the effect of increasing support; (c) the effect of increasing spacing; and (d) the effect of decreasing extent 

(from Western et al. 2002). 

element value will be an integrated response that smoothes out smaller scale variability 

(Figure 2.2b).  If the spacing between elements is too large, the local variability may not 

be represented at all (Figure 2.2c).  If the smaller spacing (as in Figure 2.2a) is used, 

then the extent that can be represented may be reduced due to time or money constraints 

(Figure 2.2d).  This will manage to represent local variability, but fail to represent the 

variability existing for the rest of the study area.  This is true for any kind of spatial 

field, whether produced using in-situ or remote techniques.   

Remotely sensed fields often suffer from the situation shown in Figure 2.2b, where they 

provide a continuous coverage of a large area but have too large a support, thus 

averaging the small scale variability.  Hydrological models can also suffer from this 

problem, although they can be run using computational elements with smaller support 

(provided the small scale processes can be represented).  Measurements taken in-situ are 

more often like Figure 2.2c, although they are commonly irregularly spaced.  They 

usually have small support and large spacing, leading to an intermittent coverage of the 

area that can miss small scale or local variability.  Figure 2.2d shows the situation that 

exists when high-resolution imagery is obtained but is too expensive for complete 

coverage of the area.  A comprehensive field is obtained that represents that local area 

well, but fails to represent the remaining area. 
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For comparison methods that deal with spatial fields from different sources (e.g. from 

models and independent observations), it is essential that scale inconsistencies be 

recognised and managed as best possible.  Some techniques exist that can be used to 

effectively change scales, but all assume certain relationships between scales to achieve 

this.  Western et al. (2002) presents a review about scaling soil moisture that identifies 

various approaches to changing between scales with common hydrological data.  “The 

essence of successful scaling is to distil the key patterns from information at one scale 

and to use these to make good predictions at another scale” (Western et al. 2002, p.151).  

Changing scale involves manipulating one or more components of the scale triplet to 

produce a new version of the data with a different characteristic scale.  This can require 

interpolating the values in between or around observed elements using the relationships 

within the original data (e.g. Figure 2.2c, d to Figure 2.2a).  Another common situation 

is where the data has large support (e.g. an areal average) and this is disaggregated to 

show the variability at a smaller scale (e.g. Figure 2.2b to Figure 2.2a).  This task uses 

specific rules or statistical relationships to estimate the small scale element values.  

More commonly, data are aggregated (or averaged) from a finer-scale to produce a 

coarser scale representation.  

There is no universal theory of scaling that permits data to be easily produced at many 

different scales, which could be used to make observed and modelled fields more 

comparable.  In hydrology, interpolation and extrapolation methods that use the 

statistical relationships within and amongst spatial fields are used for changing the 

spatial scale of spatial fields (where the arrangement is important) (Western et al. 2002).  

These methods use the spatial correlation within a single field or correlation between 

fields (e.g. relationship between soil moisture and terrain) to describe the variance in 

space.  The variance is a function of distance, with nearby elements usually having 

similar values and those further away being more variable.  Where the extent of a field 

is to be made greater, the relationships with other fields that cover the larger extent (e.g. 

terrain models) are used to facilitate extrapolation.  The relationships between or within 

fields are used to define the parameters for interpolation methods such as ordinary 

kriging or co-kriging (Journel and Huijbregts 1978), which are used to distribute these 

relationships in space.  Numerous interpolation methods exist that use different 

approaches to distributing the random variables (with known statistical structure) in 
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space.  A more technical description of the way spatial correlation is characterised is 

given in Chapter 3 and more details on estimation methods can be obtained in Isaaks 

and Srivastava (1989).   

Understanding scale relationships in hydrology is a continuing area of research, which 

can potentially provide better methods for changing the scale of particular spatial fields.  

Scaling relationships are also used in hydrological models for representing sub-element 

variability.  Further developments are expected with increased data availability, 

particularly where the same attribute is being measured by sensors at multiple scales 

(e.g. different resolution remote sensing platforms).   

2.2.3 Spatial field structure 

The definition of a spatial field refers to a set of associated elements, where each 

element contains a value and a location.  Elements are related to one another via a 

specified topology, which may or may not be inherent to the field structure.  Elements 

are the building blocks of spatial fields and determine the overall appearance of the 

field.  Most studies in hydrology deal with one of three different types of spatial fields, 

which have quite different visual appearance (Figure 2.3).  The type of field structure is 

usually determined by the methods used to create it, but the structure can be changed 

 

Figure 2.3 Spatial fields are made up of elements (shown in red), each with a value and location for 

which the value applies.  The relationship with other elements (shown by arrows) is defined in various 

ways, depending on the element type.  The examples shown are similar to situations in hydrology: a)

shows rain gauge observations, with nearby gauges considered to be related; b) shows a remote sensing

observation, where neighbouring elements are related; and c) shows a modelled field based on contours 

and flow lines, with pre-defined relationships (e.g. using an elevation model). 
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with different types of pre-processing.  The field structure determines how an extent is 

discretised, or more specifically, how the location that a value represents is defined in 

space. 

Observed fields collected by in-situ measurements are usually point elements (Figure 

2.3a), which have spatial relationships defined in some manner.  When known 

relationships exist between the point elements, these fields are usually processed into a 

regular element form (Figure 2.3b), using pre-processing or scaling methods.  Point 

elements sometimes have a fairly sparse coverage (i.e. with large spacing), so the 

relationship between nearby points is used to reduce the spacing and more clearly 

represent the spatial pattern between the point elements using regular elements 

(Grayson et al. 2002).    If the relationships between sparse points cannot be defined, 

they should be treated independently (i.e. no topology) and therefore not compared as a 

field (but can be compared as independent points).  Remotely sensed measurements are 

provided as regular elements on a regular grid.  Due to the continuous representation of 

a certain extent with remotely sensed measurements, each element is considered 

connected to all of its immediate neighbours.  This field structure is also used by many 

hydrological models, which produce modelled fields with the same structure.  The 

model equations may allow connectivity with either the four-way or eight-way 

neighbours, depending on the model.  This is the most common type of field used in 

hydrology (Figure 2.3b).  It can be thought of as synonymous with an image or a raster, 

made up of pixels or cells respectively.   

Irregular elements are also used frequently as model structures, where the element 

boundaries are defined with contours, flow lines or other topographic features (Figure 

2.3c).  Topology is defined within the hydrological model, which is commonly based on 

a terrain model (with upslope and downslope connectivity).  Some observed spatial 

fields also use an irregular element structure (e.g. soils maps), but they are often 

processed back onto a regular structure to be consistent with other data sets.  Therefore, 

by using some assumptions and/or scaling relationships the elements can be changed 

between different structures.  This involves some form of interpolation, with methods 

such as splines (Hutchinson and Gessler 1994) and ordinary kriging (Journel and 

Huijbregts 1978) being most popular.  Other methods such as Thiessen polygons 
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(Dingman 2002) are used for certain situations, such as when a point element is 

assumed to represent all locations it is the nearest to.  Interpolation methods facilitate 

making fields with different structures comparable, although they rely on making 

assumptions about the relationships between elements.   

Due to the widespread use of regular element fields, they are the type used throughout 

this thesis.  Most of the comparison methods presented can also be applied with the 

other field structures, albeit with minor modifications in some cases.  When working 

with multiple spatial fields and comparing them, the fields should be of the same type.  

This follows from the earlier discussion about scale consistency between fields during 

comparison.  If the scale and structure cannot be matched via pre-processing or assumed 

to be equivalent, then comparison between the spatial fields should not occur.   

2.2.4 Spatial field values 

Spatial fields can have either continuous or categorical values stored for each element.  

The type of value stored is usually determined by the measurement method.  For 

example, observed fields of soil moisture produced from TDR measurements will have 

continuous values of percentage moisture content (Figure 2.4a).  Other fields can have 

categorical values that have a hierarchy of values (i.e. ordinal values), such as erosion 

mapping with low/medium/high categories (Figure 2.4b).  Categorical fields of land use 

assign a nominal (i.e. named) category to each element.  The simplest type of value is 

binary categorical, in which elements can only have one of two values, such as saturated 

and unsaturated areas (Figure 2.4c).   

 

Figure 2.4 A spatial field represented with three different element value types: a) shows a continuous 

field of soil moisture with moisture content from 22% to 46% (dark to light); b) shows a categorical field, 

with soil moisture recorded as low/medium/high (dark to light); and c) shows a binary categorical field 

with saturated (light) and unsaturated (dark) areas.   
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Continuous spatial fields contain the values with the most information.  Continuous 

values can be readily simplified into categorical values if needed, using various 

assumptions and pre-processing.  However, due to the quantitative nature of hydrology, 

continuous fields are usually used without much simplification.  In land use modelling, 

continuous fields (containing reflectance values of multiple wavelengths) are almost 

always simplified into a categorical field (i.e. a classified land use map).  Categorical 

fields allow boundaries to be defined between values that are close together, which 

produces contiguous regions with the same value.  These regions (or features) open up 

alternative analysis options that are fundamental in disciplines such as landscape 

ecology.  There are few situations in hydrology where there is a need to simplify 

continuous fields as it leads to information loss, although for visualisation this is often 

undertaken (e.g. using categorised colour ramps).   

Hydrological spatial fields are represented by continuous values wherever possible.  

Some examples are soil moisture percentage, precipitation amount, flood level or snow 

depth.  However, there are frequently situations where the measurement methods cannot 

capture the hydrological attribute sufficiently to provide continuous values.  Jetten et al. 

(2003) mapped low/medium/high erosion due to difficulties with accurately measuring 

the volume of erosion from an area.  In flood hydrology, there is no feasible way to 

obtain water levels at every location during a flood.  Also, snow cover is often derived 

from reflectance values in remotely sensed imagery.  One solution is to sacrifice the 

detail of the value to cover a greater extent.  Remote sensing can be used to record the 

limits of the flood water inundation, thus providing a binary categorical field that can be 

used during modelling (Bates et al. 2004).  The other option would be to measure the 

water level as a continuous value at fewer locations.  Blöschl and Grayson (2000) refer 

to making a trade-off between obtaining detailed fields and obtaining detailed values.  

The value of the different options must be considered, in particular the ability of the 

measurements to constrain or assess model performance.  In many instances, covering a 

larger spatial extent with less information in each value can provide a more useful test 

of model performance than few points with more informative values (Jetten et al. 2003; 

Hunter et al. 2005).   

 



Chapter 2: Background for spatial fields 18  

The type of value determines the calculations that can be undertaken with the spatial 

field.  Continuous values can permit differences, ratios and magnitudes to be calculated 

between element values, whereas categorical fields generally only permit agreement or 

disagreement between categories.  If the categories have some kind of order, ranking 

can also be done.  For comparison of spatial fields, the type of value is a major control 

on the available comparison methods.  It must be the same between the fields being 

compared (or else made to agree).  Possibilities for comparison with continuous or 

categorical spatial fields are examined further in Chapter 3, although the focus for 

improving methods in this thesis is on continuous fields, due to their prevalence in 

hydrology.   

2.3 Observed fields in hydrology 

Observed spatial fields are used for many purposes in catchment hydrology.  They can 

serve as parameters or forcing data for spatially distributed hydrological models (e.g. 

Western et al. 1999b).  They can be analysed to obtain a detailed understanding about 

the spatial variability of hydrological attributes (e.g. Merz and Plate 1997).  They are 

also used for a myriad of other spatial analyses, ranging from estimating quantities to 

allocating resources.  A review of common observed spatial fields within hydrology is 

given here.  Two associated issues that arise when dealing with observed spatial fields – 

the use of surrogates and understanding measurement noise – are also reviewed.  These 

considerations are necessary in making sure that observed fields are fit for use in all 

aspects of modelling.  When used for calibration and testing, observed fields provide the 

representation of reality against which modelled fields are compared.  Ensuring that this 

is truly representative of reality is vital for making meaningful comparisons.       

2.3.1 Examples of observed hydrological fields 

Foufoula-Georgiou and Vuruputur (2000) used continuous fields of rainfall, collected 

via RADAR measurements, to assess the ability of stochastic models to simulate space 

and time variability of rainfall (Figure 2.5a).  They found this to be possible due to the 

dynamic scaling behaviour of rainfall fields.  Houser et al. (2000) also used continuous 

fields of rainfall, this time interpolated from a network of rain gauges (i.e. point 

elements), to assess the suitability of remotely sensed brightness temperature as a 
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surrogate for rainfall in semi-arid environments.  They found that spatial variability of 

rainfall must be represented in their model to correctly simulate hydrological response.  

Houser et al. (2000) also used continuous fields of soil moisture to assess the 

performance of different data assimilation schemes applied to their model.  Data 

assimilation uses observations to correct the model states and inputs, which should 

improve the model predictability by ensuring that the model conditions are up-to-date. 

Figure 2.5 Examples of spatial fields that have been used in different areas of hydrology:  a) rainfall

amount (black is high rainfall) (from Foufoula-Georgiou and Vuruputur 2000); b) soil moisture (blue is 

wet, yellow is dry) (from Western and Grayson 2000); c) saturation potential index (red is high saturation 

potential) (from Troch et al. 2000); d) snow cover (white is snow) (from Tarboton et al. 2000); e) 

saturated areas (black is saturated) (from Güntner et al. 2004); f) flood inundation (line is observed flood 

extent, dark is high likelihood of inundation, light is low) (from Aronica et al. 2002); and g) erosion 

amount (white is low, grey is medium, black is high) (from Jetten et al. 2003).   
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Pauwels et al. (2001) assimilated two different types of information obtained from 

observed fields of soil moisture – the statistical summary and the actual element values.  

They assessed performance based on catchment discharge values and found that 

assimilating the statistics of the field led to most improvement.  When assimilating the 

field, a minor improvement was recorded, although this is difficult to evaluate because 

the assessment did not include spatial field comparison.  

Western and Grayson (2000) observed continuous fields of soil moisture at multiple 

times (Figure 2.5b).  These were analysed as point element fields and also upscaled (via 

geostatistical interpolation) to match the modelled fields.  By visually comparing the 

observed and modelled fields, important processes for the model were determined.  

Amongst other things, they found that variable soil properties were not needed, while 

preferential flow through cracked soils would have improved model performance.  

Chirico et al. (2003) also used continuous fields of soil moisture, amongst other data 

sets, to determine the processes that should be represented to achieve sufficient model 

performance.  The final spatial simulations of the model were quantitatively compared 

against the observed fields to assess model error.  Wilson et al. (2005) has used the 

same type of fields for testing the performance of regression-based models of soil 

moisture variability.   

Blöschl et al. (1991) used binary categorical fields of snow cover to assess simulations 

from a distributed model (Figure 2.5d).  Adding complexity to the model (solar 

radiation and wind drift parameters) improved the model performance when compared 

to the observed fields.  Continuous spatial fields of snow water equivalent were used by 

Tarboton et al. (2000) to assess their snow model.  They found improved performance 

when wind drift processes were included, while other processes led to insignificant 

performance gains.  Another example of binary categorical fields exists with saturated 

area modelling.  Güntner et al. (2004) mapped saturated areas in the field, then used 

these to evaluate the best performing model from a collection of simple and complex 

terrain-based models (Figure 2.5e).  They considered scale differences between the 

modelled and observed fields during comparison.  Without observed fields, no 

quantitative assessment of these models would have been possible.  Continuous fields 

representing saturated areas have also been derived from time series of synthetic 
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aperture radar (SAR) images (Troch et al. 2000).  By recognising the areas with low 

variability over time, an index of saturation potential can be produced and used during 

modelling (Figure 2.5c).  This models was evaluated using a surrogate field based on in-

situ mapping of saturated areas.  

Franks et al. (1998) used mapped saturated areas to constrain model predictions of soil 

moisture.  The addition of an observed spatial field into the generalized likelihood 

uncertainty estimation (GLUE) methodology allowed significant reduction in the 

predictive uncertainty of the model.  A synonymous approach has also been used for 

flood inundation modelling, where an observed binary field of flood extents (Horritt et 

al. 2001) is used to provide additional assessment of model performance.  Bates et al. 

(2004) and Aronica et al. (2002) both used this type of additional assessment with the 

GLUE methodology to constrain the possible model parameters and reduce predictive 

uncertainty (Figure 2.5f).  Both of these examples show how the simplest binary 

categorical fields can provide useful information to improve modelling.  Categorical 

fields of erosion amount (with more than two categories) were mapped in the field by 

Jetten et al. (2003).  The LISEM (Takken et al. 1999) erosion model produced 

continuous modelled fields, which were changed into categorical fields to make them 

comparable (Figure 2.5g).  They found the observed field particularly useful for 

calibration and testing of the model and recommend using this type of data for 

assessment rather than integrated responses at the catchment outlet.  

2.3.2 Surrogate observations 

When the available measurement techniques cannot directly measure the attribute of 

interest, surrogate measurements can be used to represent the attribute, albeit with some 

uncertainty.  In the strictest sense, virtually all measurements are surrogates, although 

the surrogates referred to here generally lack high correlation with the attribute of 

interest (Grayson et al. 2002).  Surrogates are variables that have some correlation with 

the attribute of interest, but they are usually easier to obtain over a large spatial extent.  

Due to the lack of high correlation, surrogate fields that are used for comparison as 

observed fields should consider measurement errors (as should any observed field not 

assumed to be a perfect reality).  When using surrogates, the scales over which the 

correlation holds must be considered, otherwise the spatial arrangement of the surrogate 
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will not be an accurate representation of the hydrological attribute, thus making it 

unsuitable for comparison.   

Hydrologists most commonly use terrain or some characteristic of the terrain as a 

surrogate.  As such, digital elevation models (DEMs) are considered the base data in 

most modelling studies.  They are widely available as a continuous field and for many 

hydrological attributes elevation is a major control on spatial variability (Moore et al. 

1991).  Recent technologies, such as airborne scanning laser altimetry (Cobby et al. 

2001; Flood 2001) and SAR interferometry (Rabus et al. 2003), facilitate the rapid 

collection of high quality DEMs at varying scales and across large spatial extents.  A 

complete description of the uses of terrain models in hydrology is given by Moore et al. 

(1991).  To better understand these uses, as well as other surrogates used in hydrology 

for representing the spatial distribution of hydrologic attributes, some examples are 

given here. 

DEMs are often used as a surrogate for spatially distributing rain gauge measurements, 

due to the orographic influence of elevation on precipitation.  Mean annual rainfall and 

elevation are usually highly correlated, but when hourly rainfall is needed the 

correlation is far weaker (Blöschl and Grayson 2000).   Many studies use terrain as a 

surrogate for runoff generation though the use of the topographic wetness index (Beven 

and Kirkby 1979).  This index makes the assumption that saturation excess is the only 

runoff generating process and should be used with this in mind.  It provides a simple 

model that transforms slope and contributing area values into a useful index (Quinn et 

al. 1995).  Terrain aspect is used as a surrogate for solar radiation, which is useful in 

snow modelling (e.g. Blöschl et al. 1991) and soil moisture modelling (e.g. Western et 

al. 1999b) for considering snow melt and evapotranspiration effects respectively.   

Remote sensing measurements are often considered surrogates, as they measure 

reflectance values in different wavelengths.  These values are processed into values that 

represent attributes of interest.  For example, fields of land use categories are produced 

using combinations of reflectance values from different wavelengths.  Passive 

microwave sensors measure brightness temperature values from the Earth and use 

models to convert these to near-surface soil moisture (Schmugge et al. 2002).  Active 

microwave sensors (e.g. SAR) record backscatter values, which respond to the varying 
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dielectric constant of the soil and can be translated into moisture content values (Ulaby 

et al. 1996).   

Surrogate fields are also used to produce fields that are needed for forcing, 

parameterising and assessing models.  Where a particular model parameter cannot be 

measured directly, surrogates provide the means of obtaining spatially distributed 

parameter values.  For example, a categorical field of soil types can be transformed into 

a field of soil hydraulic properties by using ‘pedo-transfer functions’ (e.g. Rawls et al. 

1983).  For forcing a model, Wilson et al. (2005) showed how regressed terrain 

characteristics could be used to prepare spatially distributed soil moisture initial 

conditions.  In model assessment, surrogates are often produced because the 

measurements are not readily usable in their raw form.  Verhoest et al. (1998) used 

multiple SAR fields to produce a surrogate map of potential saturated areas.  Horritt et 

al. (2001) used the smooth areas in a SAR field to represent the area inundated during a 

flood event.  In these situations, the measured fields are made comparable to the 

modelled fields.  Grayson et al. (2002) also explain that models can be designed to 

produce fields that are comparable to the measurement methods available.  Land surface 

models are designed with a shallow ‘skin layer’ of soil moisture to facilitate assessment 

using measures from remote sensors (that only represent the response from the shallow 

layer near the soil surface).   

2.3.3 Measurement error 

There is measurement error in any measurement made, whether made in-situ or 

remotely.  The measurements used to produce observed spatial fields are no exception.  

Measurement errors are either systematic or random (i.e. noise).  Systematic errors are 

usually due to some characteristics of the measurement method, such as equipment set 

up or performance over different ranges (e.g. instrument calibration).  Systematic errors 

can often be corrected, provided that some more accurate measurements are available 

(e.g. calibration data for a particular measurement type).  Surrogates often have 

systematic errors from the hydrological attribute they are representing.  If these errors 

are well understood, then the surrogate can provide a useful representation of the spatial 

field.   
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Random errors can be significantly reduced via averaging.  This is done by having 

multiple measurements at each location and averaging them, or otherwise by averaging 

spatially-similar element values.  Reducing the amount of noise in a field helps to reveal 

the true spatial variance of the attribute (i.e. the signal), assuming that systematic errors 

are well managed.  If the noise is much higher than the variance in the field, the signal is 

hidden (e.g. Figure 2.6c).  If the noise is less than the variance, then the signal will be 

more apparent (e.g. Figure 2.6a).  Western et al. (1999b) experienced this effect when 

analysing soil moisture fields throughout the year.  During summer, the measurement 

error was as high as the variance, thus hiding any signal or pattern.  In winter, the 

variance of the field was much higher than the measurement error, thus revealing a 

clearer arrangement. 

The amount of improvement in measurement error by averaging is limited by the 

independence of the errors (Blöschl and Grayson 2000).  If the errors are independent, 

then measurement errors decrease with the inverse of the number of samples being 

averaged.  Averaging also changes the characteristic scale of the measurement, as it 

produces an average over time and/or space, thus changing the support of the element.  

Scale changes must be considered so that the averaging does not make the meaning of 

the field unsuitable for the purpose.  However, averaging multiple fields over time can 

be used to reduce the measurement error in remotely sensed fields and thus produce 

Figure 2.6 Examples of high resolution soil moisture fields (2m x 2m elements) with different degrees of 

measurement error: a) measured soil moisture field (Western et al. 1998); b) measured field, smoothed 

using ordinary kriging with nugget of 3% v/v; c) noisy field, created by adding random noise (σ2 = 40% 

v/v) to measured field; and d) noisy field, smoothed using ordinary kriging with nugget of 43% v/v (from 

Blöschl and Grayson 2000). 
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fields with higher signal-to-noise ratio.  Verhoest et al. (1998) used this approach to 

determine saturated areas from multiple SAR fields, which individually had weak 

correlations with soil moisture response.  

Averaging in space rather than time is achieved by using nearby measurements (i.e. 

aggregating).  This is often termed filtering or smoothing.  ‘Moving window’ filters can 

be used to achieve this (e.g. Mastin 1985), although where spatial correlation exists in 

the errors, geostatistical methods can produce better realisations of the smoothed field.  

Blöschl and Grayson (2000) presented an example where a field of soil moisture with 

measurement error of 3% v/v (Figure 2.6a) was filtered using ordinary kriging (Figure 

2.6b).  The resulting field shows a clearer signal or pattern, but not vastly different from 

the original field.  When additional noise is added (Figure 2.6c), the field produced by 

smoothing the measurement error (Figure 2.6d) has a much clearer pattern than the 

noisy field.  In this situation, the aggregation method (i.e. ordinary kriging) uses the 

nugget effect to determine how the smoothing is handled.  This analysis shows that 

when the errors are understood, systematic errors can be minimised and the effects of 

measurement errors can be removed.  In observed fields containing measurement error, 

pre-processing to reduce noise is beneficial because it helps make the observed field 

more representative of reality.  

2.4 Spatial models in hydrology 

Observed spatial fields provide a picture of the state of a hydrological attribute and are 

essential for understanding catchment response.  However, to understand the dynamics 

of catchments, a framework to facilitate hypothesis testing is needed.  Computer-based 

modelling is used throughout hydrology for this purpose.  There are many different 

types of models, ranging from those that estimate bulk quantities to those that produce 

spatially explicit estimates across an extent.  In this thesis, the focus is on spatial 

models, which are used for testing hypotheses about the behaviour of hydrological 

systems.  Models provide the platform on which conceptualisations of hydrological 

processes are combined to simulate hydrological response.  If models prove to 

adequately simulate a certain response, they can also be used for predicting the effects 

of changed conditions on hydrological response (e.g. land use change).  Typical 

examples of the types of spatial models used in hydrology are given here.  This is 
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followed by a discussion of the main issues to consider when working with spatial 

models, which centre on the choice of model complexity.  The way these issues are 

managed during the processes of model calibration and testing is then discussed.  These 

tasks are where spatial field comparisons can influence and advance modelling practice.  

2.4.1 Types of models 

There are many comprehensive reviews of hydrological modelling available, which 

provide examples and classifications of models (e.g. Singh 1995; Abbott and Refsgaard 

1996; Grayson and Blöschl 2000a).  These reviews highlight that models can be 

classified in many ways, although a common approach is to look at three main aspects 

of any model to help describe it: 1) the spatial representation (i.e. lumped or 

distributed); 2) the algorithms (i.e. empirical, conceptual or physically-based); and 3) 

the type of inputs and parameters (i.e. deterministic or stochastic).   

Lumped hydrological models have a single element to represent the entire study extent, 

thus failing to represent any spatial variability.  Typical examples are the STANFORD 

watershed model (Crawford and Linsley 1966) and the Sacramento model (Burnash 

1995).  Lumped models only provide an average value for the extent, thus being useful 

for addressing questions such as “how much?”, but not questions such as “where?”  In 

contrast, distributed models discretise the study extent in some manner and produce 

values for multiple model elements, providing a representation of variability in space.    

Typical examples include SHE (Abbott et al. 1986), Thales (Grayson et al. 1995) and 

TOPMODEL (Beven 1995).  These models can use different types of structures to 

represent the study extent, although regular grid-based structures are common.  The 

model element size determines the degree of spatial variability that can be represented 

and also the scale at which processes must be represented.  Any variability that occurs at 

a smaller scale can only be included in the model by using additional parameterisation.   

Mathematical algorithms are used to calculate values for each model element, whether it 

is a single lumped element or many distributed elements.  In the simplest case, 

empirical relationships are used to describe how the output varies relative to the input.  

This type of algorithm does not try to represent each individual process occurring.  A 

more common approach is to determine relationships that represent individual 
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processes.  A conceptual understanding of how the processes interact is then used to 

combine the individual algorithms to produce the desired model outputs.  This is a 

classical approach that is still in use.  TOPMODEL is an example of a conceptual 

distributed model (Refsgaard 1997) that uses simple topographic relationships to 

provide the spatial variation in model outputs.  Physically-based algorithms use the 

governing equations of water flow over and through soil and vegetation to model 

hydrological response.  These models aim to represent the physical processes and their 

interactions, using parameters that are, in principle, measurable physical quantities 

(rather than abstract parameters).  The processes that are represented in a given model 

are determined by the purposes of the model, as well as the knowledge that exists about 

the phenomena being modelled.  The SHE and Thales models are both physically-based 

spatially-distributed models that are used for hydrological research (e.g. Western et al. 

1999b; Chirico et al. 2003; Boegh et al. 2004; Abu El-Nasr et al. 2005).  For any 

additional processes to be included in models, additional parameters are needed.  It is 

often difficult to obtain measured values for all the parameters, leading to a situation 

where model calibration is needed to refine parameter estimates.  As such, physically-

based models are sometimes referred to as complex conceptual models.  The amount of 

complexity in a model (i.e. the number of processes represented) must be balanced with 

the purposes of use and the availability of data, as more complex models have greater 

data requirements.  As models become more complex, observed spatial fields become 

more useful for model assessment via comparison.  Issues relating to model complexity 

are discussed further in the next section.   

All models require inputs to produce modelled outputs.  The inputs are the forcing data 

(e.g. the meteorological conditions that drive the system) and the parameters (i.e. the 

controls on how the processes represented in the model act).  These can be provided as 

deterministic or stochastic inputs.  Deterministic inputs are the most common type, 

where a single set of inputs are used to produce a single set of outputs.  Stochastic (or 

statistical) inputs are being increasingly used in hydrology to more completely define 

the range of possible inputs that could exist for the model.  Statistical distributions are 

provided for some or all of the parameters and forcing data.  In most situations, a 

number of parameter sets are then sampled from the distributions and run through the 

model, producing a range of outputs that can be used to analyse uncertainty (Figure 
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Figure 2.7 Stochastic inputs to models are used to produce stochastic outputs, which can define the

bounds of model simulations.  This example time series (from Gupta et al. 1998) shows the observed data 

(dots), the bounds for all parameter sets considered (light grey area) and the bounds of the optimal

parameter sets (dark grey area). 

2.7).  This is conceptually similar to the ideas behind methods such as GLUE (Beven 

and Binley 1992).  In some models, the statistical distributions are applied within the 

process equations (e.g. Entekhabi and Eagleson 1989), although these approaches 

usually need the distributions to be simplified to make them computationally 

manageable.  The increased use of stochastic inputs is in response to the increased need 

for estimates of uncertainty on model outputs.   

2.4.2 Issues with spatial models 

Model complexity is the major control on the capabilities of spatial models and also the 

issues related to their use.  Determining the optimum model complexity for a study is a 

task that primarily relies on the experience of the modeller.  However, there are two 

general approaches that are used when building a model – the downward and the 

upward approach (Klemeš 1983; Grayson and Blöschl 2000a).  The downward 

approach begins with the simplest model possible, only adding in additional processes if 

they improve the ability of the model to simulate the observed data (Sivapalan et al. 

2003).  Even if a certain hydrological process is known to occur in the study extent, it is 

only included in the model if it improves performance (as evaluated via comparison).  

This results in a model that reproduces the observed data as best possible, but can lack 

the ability to simulate correctly when other processes occur.    In contrast, the upward 

approach includes all the processes that could be operating in the study extent.  It 

assumes that if the processes are represented correctly (i.e. the conceptualisations and 
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parameters are correct), then the model simulations will be correct.  This approach can 

produce models that are too complex and cannot be adequately parameterised or tested.  

If the observed data are insufficient, the model processes may need calibration (i.e. to 

assign parameters) and/or the performance of the model may not be adequately tested.  

When this occurs, models are said to have identifiability problems, because the data 

does not allow identification of whether the model is indeed producing the right answers 

for the right reasons (Klemeš 1986).  These problems are also termed non-uniqueness or 

equifinality (Beven 2001).   

The upward and downward approaches to modelling can lead to quite different 

representations of reality, none of which will be entirely correct.  Instead, hydrologists 

are forced to accept some level of “pragmatic realism” (Beven 2001), in which the real 

processes are represented using ‘less than ideal’ algorithms or relationships.  Overall, 

modelling approaches should endeavour to use representations of processes or 

relationships that hold true over the key spatial and temporal scales being investigated 

(e.g. Beven 2001; Littlewood et al. 2003; Sivapalan et al. 2003).  To achieve this, it is 

necessary to find a balance between representing sufficiently complex processes while 

working within the limitations of the available data.  This is where the upward and 

downward approaches converge and suitable models are developed.   

 

Figure 2.8 A conceptual relationship between model complexity, data availability and predictive 

performance (from Grayson and Blöschl 2000a).  The solid line represents certain data availability, while 

the dashed lines represent two models with different complexity.   
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At some point, a model will have sufficient complexity to represent the dominant 

processes, while still having sufficient data to parameterise and test that the model is 

simulating the study extent correctly.  This is where the optimal predictive performance 

will be found for a given model/data combination (Figure 2.8).  By finding this balance, 

modellers can ensure their model performs as optimally as possible, while still being 

able to explain why it performs as it does.  With spatial models lacking available data, 

poor predictive performance is usually encountered due to identifiability issues and the 

large uncertainty that goes with these simulations.  To rectify this situation, efforts in 

collecting data for models have increased over the past decade (Grayson et al. 2002).  In 

most cases, data availability is the limiting condition on model complexity and 

assessment.  As observed spatial fields are used more in modelling, the predictive 

performance of models is expected to improve.  There are many complex models that 

are not adequately tested.  They should be tested more thoroughly before more 

complexity is added.  This thesis focuses on the way that these complex models can be 

better tested via spatial field comparison.   

2.4.3 Model calibration and testing 

Model calibration and testing are traditionally separate processes.  The observed data 

are often split, with half being used for calibration and half for testing.  Model 

calibration is the process used to determine the set of parameters that produces the best 

model performance.  The optimal parameters are discovered through calibration by 

comparing model simulations with observed data.  By adjusting the parameters, the 

calibration converges on the optimum set.  Then, using this optimal parameter set, the 

model is used to simulate the period for which observed data are available.  Testing is 

the process of evaluating particular aspects of model performance to ensure the model is 

fit for a certain purpose.  This is done by comparing the model simulations against a 

reference defined by the modeller, which is usually some independent observed data.  

Spatial field comparisons are required when the observed data are spatially distributed.  

Rykiel (1996) describes the general types of testing that are done in modelling studies, 

ranging from expert assessment to statistical tests.  Testing is used to assess the ‘fitness 

of use’ of a model, so the purpose and context of the model must be well understood 

prior to undertaking model testing. 
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As models have become more complex and the number of parameters has increased, 

calibration procedures have been found to less frequently converge to a single set of 

parameters that is optimum.  Instead, a number of parameter sets are found to all 

produce optimal performance.  This is an identifiability problem (Figure 2.8), which is 

also termed non-uniqueness or equifinality (Beven 2001).  There are two main 

approaches for managing this problem: 1) to limit the number of free parameters to help 

simplify the calibration process; or 2) to run simulations for all of the feasible parameter 

sets and reject any non-behavioural simulations.  Non-behavioural simulations are those 

in which the model is not a plausible explanation of the observed field.  In both cases, 

observed data are needed to evaluate the model performance, whether it is done visually 

or quantitatively.  The first approach is discussed by Refsgaard (1997), who explains 

that model calibration with distributed models is possible if the ratio between 

independent observed data and the number of free parameters is kept low.  This is done 

by carefully parameterising the model using observed data, experience from similar 

studies or surrogates (e.g. using a soil map to spatially assign relative soil hydraulic 

properties).  If the processes represented in the model are physically-based, then 

observed data (collected at the correct scale) can be used to assign parameters and avoid 

most calibration (e.g. Western et al. 1999b).  If the many parameter values can be 

reduced down to a manageable number, calibration can still find an optimal solution.  

After calibration, the optimal model must be validated to ensure it is fit for use, which 

could be achieved using comparison with independent observed fields.   

The second approach is to reject the idea of calibration entirely (Beven 2002).  Rather 

than searching for the optimal parameter set for a certain model, all possible models and 

possible parameter sets are analysed and then constrained.  Models and parameters sets 

are rejected if they are not physically feasible.  Once the set of possible models and 

parameters are defined, they are used to simulate the hydrological attributes.  The model 

simulations are compared with observed data to further reject any unfeasible models.  

At this stage, all models and parameter sets that are judged as non-behavioural are 

removed.  The remaining, behavioural models are used to define the cumulative 

distributions of the simulated attributes.  The GLUE methodology follows this general 

approach and is increasingly being used in distributed modelling studies (e.g. Franks et 

al. 1998; Bates et al. 2004).  Under this approach, the observed data are used to 
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determine all possible simulations and assign their probabilities, thus providing a 

representation of the uncertainty in the model.  This conditioning process replaces the 

usual calibration and testing steps, although predictive testing (i.e. testing of model 

predictions using future observations) would still be desirable (Rykiel 1996).  This 

approach to modelling is still being researched and further developed, but is expected to 

have a major impact on hydrological modelling once it is commonly used and 

accessible (Grayson and Blöschl 2000a). 

To complete any calibration, testing or conditioning process, the model simulations 

must be compared to a reference to assess performance.  Rykiel (1996) describes the 

three things a modeller must specify for testing (which also apply to calibration): the 

purpose of the model; the context of its use; and the tests the model must pass (i.e. 

performance criteria).  The first two criteria are often not considered when validating 

models.  Instead, the ‘common’ suite of tests are run between the data sets and 

evaluated.  However, if a model is going to be used to determine where to spatially 

allocate resources, then its ability to get the spatial arrangement right must be validated.  

Jetten et al. (2003) make the point that it is more economical to over allocate in one 

location than allocate to the wrong location.  Testing different aspects of model 

performance is critical to the whole model assessment process.  Qualitative tests, such 

as visual inspection and expert opinion, can be used, but quantitative tests are more 

repeatable and useful for automated calibration and testing.   

2.5 Chapter summary 

A concise definition has been given to clarify what constitutes a spatial field (i.e. a set 

of elements with a defined relationship between them).  The specific definition of a field 

is also controlled by its characteristic spatial and temporal scales.  Understanding the 

scale triplet for a field is important to ensure that it is comparable with another field.  

Many scale differences are often overlooked so that spatial field comparisons can 

actually be used, as it is uncommon for the fields to have matching scale definitions.  

Pre-processing methods, such as interpolation, can enable scale differences to be 

resolved and have been discussed.   
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Typical examples of observed and modelled hydrological spatial fields show the 

diversity of hydrological attributes that are represented in a spatially distributed manner.  

These are the application areas in which spatial field comparisons are most likely to be 

used.  Issues that must be considered when working with these are discussed.  These 

include the removal of measurement errors to make the field more representative of 

reality and also the use of surrogates when the hydrological attribute cannot be directly 

observed.   

Finally, the types of hydrological models used to produce spatial fields have been 

reviewed and their issues discussed.  As models become more complex, they demand 

different approaches to calibration and testing.  These model assessment tasks are where 

spatial field comparison is most able to advance hydrological modelling practices.  The 

development made in the remainder of this thesis address this potential.   
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Chapter 3  

Review of spatial field 

comparison 

3.1 Chapter overview 

The comparison of spatial fields (or images) is a fundamental task in many disciplines, 

including image processing, pattern matching/recognition, medical imaging and 

landscape ecology.  In hydrology, spatial field comparisons are used primarily for 

model assessment tasks, but the methods used for making these comparisons are 

currently in their infancy.   

Hydrologists rely heavily upon qualitative visual comparisons, which are very useful 

but lack the rigour and repeatability needed for model assessment.  To address this, 

simple quantitative methods are applied to produce comparison measures that can be 

directly used in model assessment tasks.  However, the simple quantitative methods 

treat the elements within a field independently, which makes them incapable of 

comparing any aspects of spatial relationships (apart from strict agreement).  These 

quantitative comparison methods can potentially be improved by using: 1) an 

understanding of how visual comparisons work; and 2) the knowledge about 

comparison methods from other, more mature disciplines.   

This chapter begins by reviewing the key tasks undertaken during human visual 

inspection and comparison.  This highlights some aspects of visual comparison that 

would be desirable to emulate in a quantitative manner.  The current state-of-the-art for 

quantitative comparison in hydrology is then presented.  This reveals where the methods 

are currently limited and where advances would be most beneficial.  An investigation of 

other related disciplines is then given, which identifies any existing comparison 
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methods that could be applied or adapted for use in hydrological comparison.  Each of 

these three major sections are summarised individually.  The chapter then closes with a 

proposal for advancing the methods used for quantitatively comparing spatial fields in 

hydrological modelling, based on the findings of this review.  Major components of this 

chapter have been published in Wealands et al. (2003; 2005a). 

3.2 Visual comparison 

Visual comparison is considered the most powerful and comprehensive method for 

comparing spatial fields (Grayson et al. 2002; Hagen 2003).  All modelling studies in 

which observed and modelled fields are available tend to use this method before any 

other, mainly due to its immediacy and versatility.  Visual comparison is a method that 

is innate to humans because it is simply a task of visualising multiple fields and then 

‘playing spot the differences’ between them.   

When visualising spatial fields, element values are commonly represented using a 

colour from a specific colour ramp (i.e. a scale of colours used to represent the 

numerical values).  The research in cartography and other disciplines suggests some 

colour ramps that are suitable for certain types of data, although there are no firm 

guidelines about the best colours to use (Brewer 2003; Light and Bartlein 2004).  In all 

situations, the number of colours chosen (i.e. the discretisation of the element values) 

has a major influence on the visual appearance of the field.  When few colours are used 

to represent the full range of element values in a spatial field, the true variability in the 

field can become generalised (Figure 3.1b).  For categorical fields, a distinct colour is 

usually applied to each distinct category value.  For continuous fields, continuous 

colour ramps should be used so that a different colour is assigned to every value, 

resulting in very similar values having very similar colours (Figure 3.1c).  Light and 

Bartlein (2004) describe continuous colour schemes that use one hue for each category, 

with varying intensity to reveal variability in that category (i.e. from light to dark).  

Continuous colour ramps allow all the variability between elements to be shown and 

leave the responsibility with the human observer to make judgements about features that 

may or may not exist.   
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Figure 3.1 The method used to visualise a spatial field plays a major role in how it is interpreted during

visual comparison.  a) shows the numerical element values; b) shows the element values represented with 

four colours (using equally-spaced category values); and c) shows the element values on a continuous

colour ramp.  

A spatial field is presented to a human observer for visualisation by using a colour ramp 

to assign colours to each field element.  When the field is visualised, the innate abilities 

of the human visual system are then used to make a number of mental notes about 

characteristics of the field.  The human visual system uses a highly active process to 

convert the complex visual stimuli (i.e. the colours in the field) into organised 

information (Definiens Imaging 2003).    For example, a human observer will note the 

general colour of the entire field, the colour (and variability) in different parts of the 

field and the approximate amount of the field covered by each colour.  Mental notes 

about whether the colours are smoothly varying or whether there is high variability will 

also be made.  During this process, cues to perceptual organisation, such as proximity, 

connectedness, continuity and closure (Sarkar and Boyer 1993) are also used to assist in 

recognising homogeneous regions within the field.  These regions can then be described 

using the background knowledge of the observer.  These many powerful capabilities of 

human visualisation are explained in later sections.  The characteristics of the fields that 

are noted during visualisation depend on the observer.  An experienced observer who 
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understands the data and the purpose of its use will make more rigorous notes about the 

field compared to an independent observer with little background knowledge.  This 

inconsistency is one of the primary weaknesses with visual comparison, which results 

from all human observers having different background knowledge and different biases.   

To conduct a visual comparison between two fields, the most common approach is to 

visualise them together, either next to each other or toggling between them on a 

computer screen (Aerts et al. 2003).  Each characteristic from each field can then be 

inspected and compared individually.  Human observers tend to generalise the 

characteristics of the fields (in colour or location), which leads to comparisons that are 

not exact.  The results are often just mental notes or they may be translated into a type 

of scoring system, in which similarities are rewarded and differences are penalised.  An 

alternate approach is to use some type of quantitative comparison method first (e.g. 

compute the residual field) and to then visually interpret the resulting field (e.g. Western 

and Grayson 2000).  In this case, the difference between each element value is captured 

in the resulting field and used to determine the comparison measure.  Regardless of the 

approach taken, when visual methods are used for comparison, the results of the 

comparison are difficult, if not impossible, to quantify.  The true nature of the 

comparison is also ambiguous due to the different ways that human observers judge 

similarity.   

During both visualisation and comparison, there are large demands placed on the ability 

of the human visual system.  This system has evolved through time and is a powerful 

tool for explaining the visual stimuli presented (Definiens Imaging 2003).  However, 

the visual system uses various mechanisms to simplify the scene being observed, so that 

it can be feasibly processed in real-time (Itti et al. 1998).  Intermediate-level visual 

processes appear to select a subset of the available stimuli before further processing 

(Tsotsos et al. 1995).  This approach, combined with the organisation of a field into 

regions, makes it possible for humans to process complex scenes.  When complex 

spatial fields (i.e. multiple and/or highly detailed fields) need to be compared, these 

processes are employed by visual comparison methods.  These methods generalise the 

fields and limit the extents over which comparison is applied.  Visual comparison 
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methods cannot rigorously compare all elements in complex fields and therefore 

produce results that are biased by the structure imposed and the region investigated.   

This review of visual comparison methods has revealed the three biggest problems with 

visual comparison: 1) repeatability, as no specific set of characteristics are compared; 2) 

quantification, as there is no method to translate the mental notes into measures; and 3) 

rigour, as the human visual system imposes subjective organisation and importance onto 

the data to make processing complex data feasible.  These problems can be addressed to 

some extent by using statistics and image processing algorithms.  Repeatability, 

quantification and rigour are all achieved by specifying a set of algorithms that use the 

element values to produce numerical comparison measures between multiple, complex 

fields.  The difficulty lies in finding algorithms which are capable of comparing the 

characteristics of the fields that are suitable for the purpose.  The following sections 

provide a discussion about the general aspects of human vision and highlight the actual 

tasks that may be captured into algorithms.   

3.2.1 Comparing multiple characteristics  

One of the obvious strengths of visual comparison is the ability to compare many 

different characteristics of spatial fields and then formulate an assessment of similarity.  

The characteristics that are compared are determined by the observer and are influenced 

by their understanding of the data and the purpose.  There are some characteristics of 

spatial fields that are always useful to compare as they give general information about 

the fields.  These include the general colour, amount of variability, smoothness of the 

variations and the distribution of the colours (both in quantity and spatial arrangement).  

Power et al. (2001) acknowledge that humans intuitively identify a number of 

similarities between two images, by firstly noticing overall similarity and then focusing 

on the finer details.  Other characteristics will also be of interest depending on the 

situation, although the experience of the user is needed to determine which ones.  The 

user can then formulate an overall assessment of similarity by combining the knowledge 

about how similar or different certain characteristics are.   

This aspect of human vision depends largely on user experience, which cannot be 

replaced by a single algorithm.  Instead, different algorithms must be used to obtain 
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comparison measures that inform about specific similarities or differences.  These can 

then be combined into a single, overall measure (i.e. a combined index) or interpreted 

separately.  In hydrology, reporting multiple comparison measures (e.g. Legates and 

McCabe 1999) or undertaking multi-objective calibration (e.g. Boyle et al. 2000) are the 

most common way of achieving this.   

3.2.2 Focusing on important parts 

Research into eye movements and visual attention suggests that humans interpret 

complex scenes by selecting a subset of the available sensory information before further 

processing (Itti et al. 1998; Bruce 2003; Maeder 2005).  This subset is considered to be 

the perceptually important information.  By working with a subset, the processing is 

simplified and the effect of unimportant information is removed.  An approach such as 

this could be considered biased and incomplete, or it could alternatively be considered 

efficient and avoiding the interference of irrelevant information.  The real power of the 

human visual system is in its ability to rapidly identify the information that is important.  

This capability varies with the individual, the data and the task (i.e. the question being 

asked).   

Studies that aim to model visual attention begin by trying to understand what parts of a 

scene are perceptually important.  A number of studies have looked at physical evidence 

such as saccadic eye movements (those initial movements where the eye jumps between 

different points of interest in a scene) (Findlay et al. 1995; Itti et al. 1998).  Other 

studies have used conceptual models based on cognitive and information theory 

(Osberger and Maeder 1998; Tompa et al. 2000).  In both cases, a model is used to 

represent the characteristics that draw visual attention.  One common finding is that 

high local contrast is perceptually important (Itti et al. 1998; Tompa et al. 2000).  The 

model of visual attention is then used to produce an importance (or salience) map 

(Figure 3.2b).  From this point, the map of importance can be used to limit the extents 

of analysis or to define the starting points for subsequent processing.  During 

comparisons, this approach can be used to prioritise or limit the parts of the fields that 

are compared.  Tompa et al. (2000) has achieved this by using information maps to 

weight the comparisons, thus reducing the impact of differences between element values 

that are considered unimportant.  
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Figure 3.2 A real-world scene (a) and the computed importance (or saliency) map (b) (from Itti et al. 

1998).  Lighter colours in the importance map represent greater importance.  In this example, visual 

attention has been modelled by combining three factors – intensity contrast, colour contrast and 

orientation contrast.   

This aspect of visual comparison can be captured into an algorithm, although the 

algorithm generally requires user input to define the characteristics that are deemed 

important for the application.  These issues of visual attention and using an existing 

knowledge base are rarely considered in most computer vision examples (Sarkar and 

Boyer 1993).  In hydrology, a synonymous approach has been used with time series 

data.  Gupta et al. (1998) defined different parts of a stream hydrograph (e.g. the rising 

and falling limbs) that are functionally important, thus making use of expert knowledge 

to help focus the comparison method.  This is not widely practiced in hydrology, 

although recent research by Shamir et al. (2005) shows that it continues to be useful for 

assessment of temporal hydrological models.   

3.2.3 Recognising organisation and regions 

The human visual system depends on focus and simplification to process the vast 

amount of stimulus it receives.  When looking at spatial fields or images, humans 

rapidly recognise regions, which are effectively groups of elements.  This type of 

organisation is sought by using an innate ability that has evolved in a world that is very 

structured (Sarkar and Boyer 1993).  To illustrate this, an experiment by Smith (1986) is 
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referred to, in which a group of subjects were given a random visual stimulus and asked 

to reproduce it.   The reproduced set was then used as the stimulus for the next group of 

subjects.  After 12 iterations, there was an obvious structure that had been imposed onto 

the random stimulus.  With fields containing sharp boundaries, such as a land use map 

or an image of the built environment, regions tend to be very apparent.  In less 

structured fields, such as an elevation model or a satellite image of vegetation health, 

regions are much more difficult to recognise.  However, in all cases the human visual 

system will impose some kind of organisation onto the field.  The detection of 

organisation by human observers is explained by the laws of grouping, as determined by 

the Gestalt school of psychologists and summarised by Rock and Palmer (1990).  They 

found that the visual system organises ‘parts into wholes’ using cues such as proximity, 

similarity, closure, continuation and connectedness.  This organisation process can be 

influenced by attention, intention, attitude and other background information (Sarkar 

and Boyer 1993).   

Once regions have been recognised, the next process is to describe what the region 

actually represents.  This is quite simple when the object is familiar and distinct, but in 

less structured fields representing abstract attributes (such as those produced by 

hydrological models), the description will be less clearly defined.   

 

Figure 3.3 An example of regions that have been ‘recognised’ using an image segmentation approach 

(from Baatz and Schäpe 2000).  Notice the distinct regions found in the structured, built areas and the

somewhat arbitrary boundaries specified in the less-structured, natural areas.   
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The recognition of regions within images is an active area of research in computer 

vision and image processing.  Many methods exist for defining regions within images, 

although they can be difficult to assess due to the variability that exists within human-

derived recognition (e.g. Martin 2002).  Image segmentation methods that work at 

multiple scales (e.g. Baatz and Schäpe 2000) may also be useful for providing a strong 

recognition of regions within a field with unknown structure (Figure 3.3).  These 

methods are reviewed later in this chapter (section 3.4.1).  Once regions are defined, 

there remains the problem of describing or labelling the regions, as occurs during visual 

analysis.  Application-specific solutions have been found to achieve object recognition 

in certain situations by using known spectral or textural characteristics to assign labels 

to regions.  When these characteristics are not suitable, information from surrogate data 

or expert knowledge may be useful for providing the context for labelling regions.  

3.2.4 Multiple scales 

The use of multiple scales is an important aspect of visual comparison.  Unlike most 

analysis methods, visual comparisons operate across multiple scales.  Scale can be 

considered as the ‘window of perception’ (Hay et al. 2003) over which fields are 

observed.  As the scale changes, the visual appearance of a field will vary accordingly.  

Many of the characteristics observed in a field actually appear in different forms at 

different scales.  For example, a forest can be observed as a homogeneous region in a 

remote sensing image, but when looking at a smaller scale the forest is actually made up 

of patches of different trees, which are each made up of different individual trees.  

Clearly, the scale of observation or analysis plays a role in determining what 

characteristics of a field can actually be analysed or compared.  A major strength of 

human vision is the ability to recognise the ‘correct’ scale for analysis, a task that 

utilises extensive background information and an understanding of context.   

Performing comparisons at multiple scales is not an original idea, but it is not currently 

practised in hydrology.  In hydrology, multiscale methods have only been used for some 

spatial analyses, including the characterisation of rainfall fields (e.g. Zepeda-Arce et al. 

2000) and the derivation of terrain attributes (Gallant and Dowling 2003).  The current 

quantitative methods used for comparison perform all analysis at one defined scale.  

Costanza (1989) describes a comparison method that performs analysis across multiple 
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scales and then combines the findings into a single summary.  The field is upscaled by 

increasing the support of each element, thereby smoothing the appearance of the field.  

Hay et al. (2003) shows a range of methods for recognising regions by analysing 

multiscale representations of a field.  The recognised regions define the elements at the 

intermediate scale and can be used for analysis.  As the scale increases, the regions get 

increasingly larger and eventually they represent the entire field as a single element (i.e. 

at a global scale).  Once a field is represented at multiple scales, comparison methods 

can be applied to each scale to produce information about the similarities and how they 

vary (or persist) across scales (e.g. Pontius et al. 2004b).  

3.2.5 Tolerance for differences 

During visual comparison, human observers recognise regions and generalise the 

appearance of the fields.  Through simplifying and generalising, the human observer 

allows characteristics that may be slightly different to still appear similar.  The main 

characteristics that get generalised are value (or colour) and location (which influences 

both position and shape).  During comparison of these generalised fields, the observer 

ignores any differences that cannot be visually discriminated.  This human approach is 

flexible, while computerised comparison methods are strict.   

Hagen (2003) illustrates these different approaches using checkerboards (Figure 3.4), 

the first with a white box in the upper left corner, the other with a black box.  A strict 

comparison finds agreement at a global level, but total disagreement at local level of 

observation.  A human observer instantly recognises the similarity between the fields, 

but would have great difficulty in describing it with a value.  Some observers would 

 

Figure 3.4 Contrasting checkerboards provide a good example of the contrasting approaches taken by 

visual comparison and computerised comparisons.  Visual comparison will recognise the similarity 

between the fields, while a strict computerised comparison finds total disagreement 
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state that there is a shift, but otherwise the fields are identical, while others would state 

that the fields are opposite and therefore completely different.     

The strict nature of computerised comparisons can make them unsuitable for certain 

tasks.  For finding the absolute differences between fields, no generalisation is desired 

and strict methods are suitable.  However, in many tasks, some tolerance for differences 

is necessary.  In accuracy assessment for remote sensing, Foody (2002) recognises that 

there should be some level of positional tolerance incorporated into comparison 

methods.  At present, if any alignment issues occur between fields, they will appear as 

model errors, even though they are often understood and tolerated by the users.  Visual 

comparison has approximate ways of incorporating this, but it could be more 

specifically considered in the comparison algorithm.  Hagen (2003) uses fuzzy set 

theory to incorporate mismatches in location and category value between fields.  In 

hydrology, the fuzzy approach has been applied to a study of saturated area mapping 

(Güntner et al. 2004) so that locational differences that arise due to scale differences are 

tolerated.  A multiscale approach can also be used to indirectly tolerate differences, 

because the larger scale versions of the original field will have generalised locations and 

values.  Pontius et al. (2004b) described an approach that attributes the cause of the 

errors to either location or attribute differences, but does not produce a field showing 

where the problems occur.  In contrast, the method of Hagen (2003) explicitly allows 

for the mismatches at each individual element and produces a field showing any errors.  

These types of tolerant methods are potentially applicable for hydrological purposes. 

3.2.6 Emulating visual comparison methods 

Qualitative visual comparison is widely used in hydrology because of: 1) the 

convenience of the method; and 2) the many powerful capabilities of the human visual 

system.  Some of the powerful capabilities can be emulated by computerised methods, 

as described in the previous sections.  By emulating these familiar approaches to 

comparison, it may be possible to calculate useful quantitative comparison methods that 

are very familiar to hydrologists (i.e. the methods can answer the same questions that 

were being answered visually).  Table 3.1 summarises the key capabilities of visual 

comparison and the general methods identified to emulate them.   
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Table 3.1 Summary of visual analysis and comparison approaches and how they are used.  The potential 

for emulating these methods using computerised methods is also summarised.   

Aspect of visual comparison Description of use and potential approaches for emulation  

Evaluating multiple 
characteristics 

Used to comprehensively assess where and how fields are different or 
similar; emulated by combining a variety of quantitative measures into 
an index or by using multi-criteria model assessment 

Focusing on important parts of 
the field 

Used to simplify field, either by changing the extent being analysed or by 
generalising the details within the field; emulated by subsetting field into 
important regions, as defined by the user or by characteristics of the field 

Recognising organisation 

Used for simplifying field into recognisable features or objects, thereby 
reducing the information being analysed and allowing other 
characteristics of regions to be used for comparison; emulated using 
segmentation or other image processing tools 

Evaluating multiple scales 

Used to identify ‘correct’ scale of analysis based on knowledge, or 
otherwise to analyse the field at a range of scales; emulated by 
combining quantitative measures from different scales, which depend on 
having a method for changing representation of field at different scales  

Tolerance for differences 

Used to recognise aspects that are ‘slightly similar’ between fields, or 
otherwise to ignore differences that are too minor to visually discern; 
emulate by making comparisons with other nearby elements or by 
comparing at multiple scales  

In emulating any aspect of visual comparison, the computerised methods will require 

some parameters to be specified.  For example, region detection methods need some 

criteria to determine what defines a region.  Multiscale comparisons must have a 

method for scaling the data.  Limiting the extent of analysis requires some decisions 

about what is important.  To tolerate differences the magnitude of the differences must 

even be defined.  During visual comparison, these values are innately applied based on 

the experience of the user.  Over time, it is expected that similar experience could also 

develop for using computerised methods.   

3.3 Current methods used in hydrology 

The current, quantitative, computerised comparison methods used in hydrology make 

use of two general approaches: 1) characterisation followed by comparison (i.e. global 

comparison); and 2) comparison followed by characterisation (i.e. local comparison).   

In the first approach, each spatial field is either characterised into a number (e.g. 

summary statistics, landscape indices) or otherwise characterised into a graph from 

which the characteristics are derived (e.g. variogram).  These global characteristics are 

then numerically differenced to produce a measure of global similarity or error.   
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The second approach operates on each pair of elements that have a specific spatial 

relationship.  The numerical relationship between a characteristic of one modelled and 

one observed element is used to derive a local measure between each pair.  These local 

measures can then either be visually analysed as an intermediate field, or otherwise 

summarised into an error or similarity measure between the fields (e.g. mean absolute 

error).   

The following sections describe the current methods used in hydrology, starting with 

those that ‘characterise then compare’ (i.e. global comparison methods).  This is a 

thorough review of the comparison methods used for spatial field comparison in 

hydrology, including methods used for both continuous and categorical fields.  Some of 

the methods are for interactive analysis of fields, but they are still reviewed here 

because they illustrate how hydrologists currently deal with comparison problems.  In 

some of the following sections, the sets of example fields in Figure 3.5 have been used 

to illustrate interesting aspects of the comparison methods.   

Figure 3.5 Example fields used to illustrate current comparison methods in hydrology.  All fields are

generated from the observed field (a).  The other fields are: b) smoothed with mean filter; c) one 

realisation of random noise added (σ = 5); and d) one realisation of randomly rearranged elements.  The 

categorical fields (e-h) are created from the continuous fields (a-d) by using four equal categories.
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3.3.1 Statistical characterisation 

The elements within a spatial field can be characterised (or summarised) into a 

numerical value or plot.  When multiple fields are characterised in this way, the 

characteristics can be numerically differenced to describe how the fields compare.  

Throughout this section, the equations use xi to denote the location of element I within 

the field, f(xi) to denote the value of element i and N to denote the number of elements 

in the field. 

3.3.1.1 Basic statistical characterisation 

Statistical characterisation treats every element in each spatial field equally, with no 

regard to their location or size/shape.  Statistical characterisation focuses on describing 

the distribution of the element values, rather than capturing anything about their 

absolute arrangement (i.e. their interdependence).  These methods are considered to 

work in measurement space.  Hydrologists commonly use these methods to understand 

large datasets and subsequently draw conclusions from the data.  When used to make 

comparisons between fields, they are most often used to evaluate bias and differences in 

variability or distribution.   

The following equations (3.1-3.4) are commonly used to describe the distribution of 

continuous values within a spatial field.    The mean describes the central tendency, 

standard deviation describes variability, skewness describes the symmetry of the 

distribution and kurtosis describes the peakedness of the distribution . 
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Table 3.2 The basic statistical characteristics used to describe the distributions of element values within 

the continuous spatial fields shown in Figure 3.5.  BIAS is shown for comparison with the observed field. 

Field MEAN SDEV SKEW KURT BIAS 
a) Observed 36.3 4.1 0.4 2.9 - 
b) Smoothed 36.4 2.5 -0.7 1.5 0.1 
c) Noise added 36.3 6.5 0.1 0.0 0.0 
d) Rearranged 36.3 4.1 0.4 2.9 0.0 

All of these measures are used to characterise the distribution of values in a spatial field, 

yet the higher-order characteristics (i.e. skewness, kurtosis) are often unreliable when 

outliers are present.  Alternate summary characteristics, such as L-moments (Hosking 

1990), can be used to better describe distributions when outliers exist, although such 

methods are less well-known.  Where possible, many users inspect the empirical 

probability distribution functions (pdf) rather than summarising them.  While this is 

useful, it is not a quantitative method. 

The most common global comparison measure is bias (BIAS), which is the difference 

between the mean values for two fields.  Other characteristics can also be numerically 

differenced but are not commonly used.  There are some measures for comparing the 

probability density functions, such as the Kolmogorov-Smirnov test, which are detailed 

later (section 4.3.4.2).   

All of these measures allow the distributions to be compared, but they only provide a 

summary of a spatial field.  When categorical fields are used, summary measures more 

commonly contain counts or percentages of each category value.  Table 3.2 shows the 

statistics for the continuous example fields from Figure 3.5.  From this information, it 

can be observed that the smoothed field has less variation (but slight BIAS), while the 

noisy field is much more variable.  Smoothing changed the skewness of the distribution 

substantially, while adding noise removed the obvious peakedness of the distribution.  

The random field has identical characteristics to the observed field, yet they are visually 

quite different.  This has been done intentionally to illustrate the inability of basic 

statistics to incorporate any notion of spatial arrangement, yet they do identify the 

global changes between the fields.   
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3.3.1.2 Geostatistical characterisation 

Geostatistical methods utilise the distance between elements to describe the relative 

arrangement of element values within a field.  This is a similar approach to the lag 

correlation measures that are often used for analysing time series in hydrology.  Journel 

and Huijbregts (1978) introduced the variogram as a measure of the relationship of a 

single variable over a certain distance or lag.  The variogram is composed of measures 

of variance (the semivariance) that are dependent on the lag.  It is defined by 
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where Nh is the number of pairs of elements separated by the distance h.  At any 

distance, γ(h) should be evaluated against the global variance (σ2).  Where γ(h) < σ2 

there is strong spatial correlation, which gets weaker as γ(h) approaches σ2.  When the 

semivariances are plotted against the lag, a sample variogram is created which can be 

analysed to reveal characteristics of spatial variability.  The lags can be limited to 

certain directions during analysis, although omnidirectional variograms are used here.   

The characteristics of a variogram can be used for comparing spatial fields, but 

variograms are more commonly used for interpolating and generating stochastic data.  A 

thorough treatment of these applications is provided by Blöschl and Grayson (2000).  

An experimental variogram (i.e. that summarises a spatial field) can be prone to 

sampling issues (Skoien and Bloschl 2006) and therefore may not characterise the field 

adequately.  Variograms are also poor at describing multiscale characteristics. 

 

Figure 3.6 An idealised variogram, showing the definitions of the sill, range and nugget (adapted from 

Blöschl and Grayson 2000).  In hydrological fields, the nugget is considered to be made up of

measurement error and sub-grid (or small scale) variability.   
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Western et al. (1998) have used variograms extensively on observed spatial fields of 

soil moisture to understand spatial processes.  They obtain the characteristics of a 

sample variogram by fitting it with a theoretical variogram model.  From the theoretical 

variogram, the characteristics to describe spatial variability – the sill, the range and the 

nugget – are obtained (if they can be defined) (Figure 3.6).  The sill is the semivariance 

at which the variogram flattens, but this only exists if the process is stationary (i.e. there 

is no spatial trend).  The range is a measure of the distance over which spatial 

correlation remains, with large values denoting values that are smoothly varying over 

greater distances.  The nugget describes the variance between pairs of elements at small 

lags and is often used to represent measurement errors and/or sub-element variability.   

If the geostatistical characteristics of spatial fields can be defined, numerical 

comparison of the characteristics can describe how the spatial relationships within the 

fields differ.  In Western et al. (1998), exponential variogram models (with a nugget) 

were successfully used to describe observed soil moisture fields.  The characteristics 

(sill, range and nugget) were numerically compared between different fields and the 

change in the characteristics over time was visually analysed to describe trends.  In 

general, variograms are not widely used for quantitative comparison in hydrology, but 

the work by Western et al. (1998) illustrates how theoretical variograms can quantify 

specialised characteristics of spatial fields.  Extensions to the geostatistical approach 

that make use of categorical or binary data exist, but are not widely used in hydrology 

for comparison.   

3.3.1.3 Characterisation using landscape metrics 

When working with categorical fields, the options for undertaking comparisons change 

entirely.  However, there is still a clear difference between characterisation and 

comparison.  Categorical analysis is suitable when the element values are nominal or 

ordinal.  In most instances, this will occur because of the observation method used.  For 

example, binary fields are often observed in hydrology to map presence/absence of 

snow cover (e.g. Blöschl et al. 1991) or flood inundation (e.g. Horritt et al. 2001).  

Spatial fields can be converted from continuous to categorical, but this reduces the 

information content in the field and should only be done when sharp boundaries are 

required for use in analysis. 
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Characteristics of categorical fields have been used recently in hydrology by Güntner et 

al. (2004) to compare modelled and observed saturated area fields.  They made use of 

landscape metrics to characterise the general size, shape and arrangement of saturated 

area patches.  They then compared these characteristics (derived from observed and 

modelled binary fields) to provide quantitative support to their visual observations.  The 

landscape metrics used were the mean patch size and mean shape index.  Mean patch 

size is the average area of each contiguous region within each category, while mean 

shape index is the average of the shape index.  The shape index commonly used is  
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where P(ri) is the perimeter of patch/region ri and A(ri) is the area of that region 

(McGarigal and Marks 1995).  A value of 1 indicates a perfectly compact shape, which 

is considered to be a square.  These two metrics have been applied to the example fields 

from Figure 3.5, with the results listed in Table 3.3.   

Table 3.3 The results of applying two landscape metrics to characterise the size and shape of the 

categorical example fields in Figure 3.5. 

 Mean Patch Size (cells) Mean Shape Index 
Field Cat 1 Cat 2 Cat 3 Cat 4 Cat 1 Cat 2 Cat 3 Cat 4 
e) Observed 3.0 6.0 1.6 1.8 1.0 1.2 1.5 1.0 
f) Smoothed 8.0 7.0 3.8 1.8 1.2 1.2 1.2 1.3 
g) Noisy 1.0 5.0 4.0 1.0 1.0 1.2 1.2 1.0 
h) Random 1.0 4.0 6.0 1.0 1.0 1.1 1.2 1.0 

The characteristics listed in Table 3.3 reveal that the patches (or regions) in the 

smoothed field are the largest, followed by those in the observed field.  In all fields, the 

patches for categories 2 and 3 (i.e. the mid-range values) are largest.  In terms of the 

patch shape, most of the category patches are close to square (i.e. close to 1), although 

those in the observed category 3 are more complex.  The shape measures are influenced 

by having many single element patches in the noisy and random fields, thus resulting in 

an average size and shape close to a single square element.  When derived for multiple 

fields, the numerical differences between these characteristics gives information about 

how the spatial field structures compare.   
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There are many more landscape metrics available than those currently used in 

hydrological applications.  These include measures that aim to characterise overall 

fragmentation, patchiness, spatial cohesiveness, overall diversity, clumping and the 

amount of aggregation (Li et al. 2005).  Research in the field of landscape ecology has 

frequently used these to characterise patterns in landscapes, such as the appearance of 

land use and forest plots (e.g. Lundquist et al. 2001).   They are less frequently used for 

quantitative comparison, although Güntner et al. (2004) showed an application of the 

basic metrics to spatial fields of saturated areas in hydrology.  A number of researchers 

debate the ability of landscape metrics to quantify patterns rigorously, although they 

agree that when clear boundaries exist, the simple patch based metrics (e.g. those used 

in Table 3.3) can provide a useful summary of overall structure (Gustafson 1998; Li and 

Wu 2004; Li et al. 2005).  

 In hydrology, as with most other disciplines working in the natural environment, the 

creation of clear boundaries in a continuous landscape is a subjective process.  For 

example, Güntner et al. (2004) had to define what was considered a saturated area for 

their mapping, as well as defining the threshold at which a modelled element is 

considered as saturated.  This issue makes the meaning of landscape metrics dependent 

on the methods used to define categories.  If descriptions of landscape structure are 

desired in the natural environment, the patches (or regions) should either be observed as 

regions (e.g. levels of erosion (Jetten et al. 2003)) or otherwise defined using a rigorous 

and repeatable pre-processing method.  Such methods are explored later in this review.  

3.3.2 Local comparison 

Local comparison is the most widely used method for comparing hydrological data sets, 

including time series and spatial fields.  These methods all work at the finest scale, with 

a comparison being made for every pair of spatially coincident elements from the fields 

(i.e. from an observed and a modelled field).   

3.3.2.1 Current methods used for continuous data 

Hydrologists are frequently faced with comparing observed and modelled data, which 

can be achieved using a range of summary measures that are familiar amongst the 

hydrological community (e.g. Legates and McCabe 1999).  For each pair of spatially 
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coincident elements, a local measure of error or similarity is calculated and stored in an 

intermediate field (e.g. residual field).  The intermediate field is usually summarised 

into a final measure, which is used for model assessment tasks.  These are ‘compare 

then characterise’ methods, which are referred to through this thesis as local comparison 

methods.   

The following four equations (3.7-3.10) are the most widely used comparisons in 

hydrology.  Root mean squared error (RMSE) summarises the errors at each element, 

penalising larger errors more heavily (through squaring).  Mean absolute error (MAE) 

also summarises error, but all errors are treated according to their magnitude (i.e. no 

additional penalty).  The coefficient of determination, also known as R2 (RSQ), 

describes the proportion of variance in the observed data that is explained by the 

modelled data.  It evaluates how good the linear fit is between the two sets of element 

values, with a value of 1 denoting perfect agreement.  The coefficient of efficiency 

(COE) evaluates the error in the modelled data against the variance present in the 

observed data.  If the modelled data has less error than the variance of the observed 

data, COE will be a positive value (up to 1).  If the model error is greater than the 

variance, the COE will be negative.  These measures are calculated using 
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where f(oi) is an observed element value, f(mi) is a modelled element value and μf(x) is 

the mean of all element values in a specific field (Legates and McCabe 1999).  The 

continuous example fields (Figure 3.5) are compared using these methods, with the 

results listed in Table 3.4.   

The observed field shows the values that denote perfect agreement with all of the 

measures.  Lower values for RMSE and MAE indicate closer agreement, while for RSQ 

and COE the values close to 1 denote better fit.  With the example fields, it is apparent 

that the noisy field, while having similar sized errors to the rearranged field, exhibits 

much better fit (or similarity) with the observed data.  The RMSE for the rearranged 

field shows the impact that penalising large errors can have, as without the penalty the 

MAE shows no worse performance than the noisy field.  The COE values indicate that 

only the smoothed field is a better representation of the observed field than the observed 

mean would be.  This suggests that the errors in spatial arrangement in the noisy and 

rearranged fields cause greater errors than exist by having no spatial variation.  

Legates and McCabe (1999) discussed these measures in regard to their ability to assess 

goodness-of-fit between modelled and observed data.  They found that the measures 

each have individual strengths, but that no single measure can fully describe how fields 

compare.  For assessing absolute error, both RMSE and MAE provide a measure of the 

typical error.  For judging similarity between the datasets, the use of a normalised 

measure such as COE is favoured, as it can be evaluated relative to a known benchmark.  

In contrast, RSQ values must be evaluated based on experience, making interpretation 

across a range of different data sets more difficult.  These measures form the basis of 

any current quantitative comparison between spatial fields in hydrology, but are also 

Table 3.4 The widely used local comparison methods (RMSE, MAE, RSQ and COE) are used to 

compare the continuous example fields from Figure 3.5 to the observed example field. 

Field RMSE MAE RSQ COE 
a) Observed 0.0 0.0 1.0 1.0 
b) Smoothed 2.7 2.0 0.6 0.6 
c) Noise added 5.0 4.3 0.4 -0.5 
d) Rearranged 5.9 4.3 0.0 -1.0 
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routinely used in many other disciplines. 

3.3.2.2 Current methods used for categorical data 

Local comparison methods work in the same general way for categorical and continuous 

fields – that is, each pair of spatially coincident element values are compared and their 

comparison result is stored in an intermediate measure which is then summarised.  For 

categorical fields, the inability to numerically compare nominal or ordinal category 

values means that an intermediate field of local error measures cannot be created.  

Instead, the only information that can be stored on a per element basis is whether the 

elements match or not.  This intermediate field can be summarised to give a measure of 

‘percentage correct’ (PCOR), which is the most basic comparison measure for 

categorical fields.  PCOR can also be determined by adding the diagonal elements from 

the contingency table (Table 3.5).   

Table 3.5 The structure of the contingency table for four categories (Pontius et al. 2004b).  Components 

of the table are denoted by Pi,j, which is the proportion of elements with observed category i and modelled 

category j.  The + denotes all category values. 

 Modelled 
Observed Cat 1 Cat 2 Cat 3 Cat 4 Total Loss 

Cat 1 P1,1 P1,2 P1,3 P1,4 P1,+ P1,+ - P1,1
Cat 2 P2,1 P2,2 P2,3 P2,4 P2,+ P2,+ - P2,2
Cat 3 P3,1 P3,2 P3,3 P3,4 P3,+ P3,+ - P3,3
Cat 4 P4,1 P4,2 P4,3 P4,4 P4,+ P4,+ - P4,4
Total P+,1 P+,2 P+,3 P+,4 1  
Gain P+,1 - P1,1 P+,2 - P2,2 P+,3 P3,3 P+,4 - P4,4   

More advanced local comparisons record the differences between spatially coincident 

elements in an intermediate measure called a contingency table (or confusion matrix) 

(Monserud and Leeemans 1992; Foody 2002; Pontius et al. 2004b).  This table (Table 

3.5) contains values describing the proportion of elements in the fields that have each 

possible combination of category values.  The values within the contingency table are 

the basis from which summarised comparison measures are determined for categorical 

fields.  In this way, it performs a similar role to the residual field when comparing 

continuous fields.   

The most widely used comparison measure for categorical fields is Cohen’s ‘kappa 

index’ (Cohen 1960): 
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where k is the number of categories and the proportion values are obtained from the 

contingency table (Table 3.5).  This index uses the PCOR value (i.e. the sum of Pi,i) and 

adjusts it for any chance agreement that could be expected between categories (based on 

chi-square).  A value of 1 denotes perfect agreement.  It is widely recognised that PCOR 

can be heavily influenced by the number of elements within each category.  When one 

category is dominant, PCOR is often an artificially high value (Foody 2002).  This is 

where the kappa index is preferred and it is considered a standard for accuracy 

assessment between categorical fields.  Both PCOR and KAP are calculated in Table 

3.6 for the categorical example fields from Figure 3.5. 

Table 3.6 The percentage correct and kappa measures are calculated for the categorical example fields 

from Figure 3.5.  The KAP values have the range [-1, 1].   

Field PCOR KAP 
e) Observed 100.0% 1.00 
f) Smoothed 58.7% 0.31 
g) Noise added 56.9% 0.25 
h) Rearranged 39.6% -0.05 

The percentage correct measure shows that both the smoothed and noisy fields are 

evaluated as almost equally similar to the observed field.  However, in both cases, the 

kappa values show less agreement (as they are normalised by chance agreement).  The 

randomly rearranged field obtained a near zero score for KAP, indicating that it offers 

no improvement over chance agreement (as would be expected), while the PCOR value 

still finds almost 40% agreement.   

In hydrology, categorical measures based on the contingency table are used mainly for 

comparing binary or categorical spatial fields.  One major application is for flood 

inundation modelling, where methods are being used to compare observed inundated 

areas with categorised flood surfaces (e.g. Aronica et al. 2002; Bates et al. 2004).  These 

studies generally create their own, specialised measures from the contingency table, so 

that false positives and/or true negatives (e.g. elements that are correctly modelled as 

dry) do not confound the comparison measures (e.g. Hunter et al. 2005).  The 
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contingency table can be used as the basis for many other comparison measures, such as 

the measures of skill used in meteorology (Jolliffe and Stephenson 2003).  Some further 

discussion about how to interpret the contingency table is given in the following 

section.   

3.3.3 Intermediate measures 

Local comparisons compare every pair of elements and then summarise the results into 

a single measure.  This is the opposite approach to global comparison.  During local 

comparison, every element location is compared explicitly, which allows the variability 

of error or similarity to be analysed.  A number of simple analysis methods are used to 

do this, which are collectively termed intermediate measures.  These include residual 

fields, scatterplots and the contingency table.  Intermediate measures are usually 

analysed visually (i.e. as a field or a graph) and are particularly useful for explaining the 

causes behind a specific comparison measure.   

3.3.3.1 Intermediate and residual fields 

An intermediate field allows the spatial distribution of the local error or similarly values 

to be analysed.  The field is produced during local comparison, with each element 

containing the comparison measure computed between the observed and modelled 

fields.  When the numerical difference (or residual) is used as the comparison measure, 

the field is commonly known as a residual field.  Intermediate fields show the location 

and magnitude of all error or similarity values.   

Intermediate fields are usually analysed visually.  Residual fields are often visualised 

using a dichromatic colour ramp, with red for positive values and blue for negative 

values.  Visual analysis is often used to explain the reasons why a comparison measure 

(i.e. a summary of the residuals) obtained a specific value.  For example, if the RMSE is 

large, the residual field can reveal whether this was caused by some elements with very 

large errors, or whether it was an equal contribution of error from all elements.  

Intermediate fields are widely used in research papers for presentation of results and for 

discussion.  However, as with visual comparison of fields, visual analysis of 

intermediate fields is neither repeatable nor rigorous.   
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Figure 3.7 Residual fields produced by comparing the continuous example fields from Figure 3.5 against 

the observed field.   

Residual fields are shown in Figure 3.7 for local comparisons of the continuous 

example fields from Figure 3.5.  The colour ramp used allows over- and under-

prediction to be visually assessed.  It is apparent that the smoothed residuals are lower 

in value than all of the other fields.  The residuals from the smoothed and noisy fields 

lack any clear spatial structure, whereas the residuals from the randomly rearranged 

field show structure similar to the original observed field.  This illustrates a situation 

where the model (i.e. the rearranged field) fails to represent the spatial arrangement of 

the observation well, which causes the arrangement to remain in the residuals.   

Basic statistical characterisation can also be used to summarise the distribution of 

values in the intermediate fields.  These can give useful summary measures of 

individual fields, such as the error variance.  Geostatistical characterisation of the 

residual fields is also a useful way of evaluating the residuals.  Western et al. (1999a) 

used this approach to assess a spatially-distributed soil moisture model.  When clear 

spatial correlation remained in the residual fields (produced via local comparisons of 

modelled and observed soil moisture fields), the model performance was deemed to 

have poor spatial predictive performance.    

3.3.3.2 Scatterplots  

A common method for comparing observed and modelled data sets is to plot the values 

on a scatterplot (or dot plot).  Each element is plotted using the observed value as the x-

coordinate, and the modelled value as the y-coordinate.  If the values are identical, this 

produces a linear pattern in the scatterplot.  The scatterplot is an intermediate measure 
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that is related to the RSQ measure.  It visualises the errors between spatially coincident 

elements relative to a linear fit.   

Figure 3.8 shows the scatterplots for the comparisons between the continuous example 

fields (from Figure 3.5).  It is apparent that the noisy field has a linear trend, but is 

widely spread.  The smoothed field appears like a compressed and slightly modified 

version of the linear trend.  In contrast to these, the randomly rearranged field is 

scattered widely and shows poor agreement with the observed field.   

Scatterplots can also be used to analyse relationships between individual element errors 

and other surrogate variables.  For example, the residual field can be calculated for a 

pair of observed and modelled fields.  The residuals can then be plotted against another 

surrogate field using a scatterplot.  This can help to analyse if any relationship exists 

between the error and another variable.  It is particularly useful in hydrology, where 

model processes are often related to physical attributes that are available as spatial 

fields, such as terrain or climatic attributes. 
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Figure 3.8 Scatterplots for comparing each continuous example field in Figure 3.5 to the observed field. 
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3.3.3.3 Contingency table   

The contingency table explained earlier is an intermediate measure for categorical 

comparisons.  It can be analysed in many different ways, to reveal information about 

how individual categories have changed between two fields.  This table is still an active 

research topic in land use change and accuracy assessment (e.g. Pontius et al. 2004b; 

Foody 2006).  When analysing fields with more categories (e.g. land use maps), the 

confusion matrix can be used to determine useful information about change for each 

category (e.g. how much gain, loss or swapping has occurred).  Pontius et al. (2004b) 

have also shown that producing confusion matrices at multiple scales can enable the 

distance over which the changes occur to be determined.   

In hydrology, the contingency table is predominantly used as the basis for deriving 

comparison measures between binary fields (see previous section), rather than as an 

intermediate measure that is analysed more thoroughly.  The simple nature of the 

categorical fields used in hydrology (i.e. binary) limits the applicability of these recent 

advances in analysing categorical fields.   

3.3.4 Cross-section analysis 

One of the difficulties when dealing with spatial fields is the increased number of 

degrees of freedom that exist with any processing.  During time series analysis, time can 

be simply plotted against value.  However, during spatial field analysis or comparison, 

location requires two axes for representation, therefore making it more difficult to plot.  

Due to the familiarity with analysing and comparing time series in hydrology, it is often 

desirable to simplify a field into a cross-section or transect, thus enabling simpler visual 

analysis.   

Grayson et al. (2002) identifies that transects, when placed so that they follow important 

terrain features, can reveal shifts and highlight problems with model structure.  For 

example, they analysed a transect placed across a gully to inspect whether model error 

was related to terrain position.  Blöschl et al. (1991) used transects to compare fields of 

binary snow cover observed from aerial photography with modelled snow water 

equivalent, and to see if they were related to elevation.  The transects used in both these 

examples are shown in Figure 3.9.  The soil moisture example reveals better model 
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Figure 3.9 Two examples of transects being used to analyse spatial fields are shown.  Observed and 

modelled soil moisture (left) is compared with elevation.  Observed snow cover (right) is compared 

against modelled snow water equivalent and elevation (adapted from Blöschl et al. 1991; Grayson et al. 

2002). 

agreement at the bottom of the gully than on the hillslopes.  The snow example shows 

that the observed snow cover did not match the model in high elevation areas.  These 

interactive forms of comparison are useful, but the results are heavily dependent on the 

location of transects.  For example, detecting shifts (in any direction) requires carefully 

placed transects.   

This type of intermediate measure is considered as a useful analytical tool for 

explaining why error or similarity is occurring.  It has limited value for quantitative 

comparison, but does represent a more specialised comparison method used within 

hydrology.    

3.3.5 Comparison of ‘analysis windows’ 

The majority of methods used for comparing spatial fields treat every element 

independently of the neighbouring elements.  However, to compare the spatial 

relationships within spatial fields, neighbouring elements should be considered in the 

comparison method.  Defining an ‘analysis window’ is a common way of doing this.  

The analysis window specifies which neighbouring elements around each ‘focus’ 

element will also be used during analysis.  As each focus element in a field is processed, 

the window of neighbouring elements changes accordingly.  This allows information 

about spatial relationships (e.g. other nearby values) to be included during analysis (or 

comparison).   
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Figure 3.10 An example of the output from an optimal local alignment comparison method.  The arrows

start from an observed element and represent the direction and magnitude of the most likely matching 

element in the modelled field (based on the window of nearby elements).  The details of the underlying 

spatial field are irrelevant for the purposes of this example (adapted from Grayson et al. 2002).   

A comparison method termed ‘optimal local alignment’ was introduced by Grayson et 

al. (2002) to enable the investigation of locational shifts between spatial fields.  This 

method uses techniques from the image processing discipline of optical flow analysis 

(Barron et al. 1994).  The optimal local alignment method determines the direction and 

magnitude of the most likely shift (i.e. the optimal fit) for each ‘window’ of elements in 

the observed field.  A correlation measure is calculated between each ‘observed 

window’ and every possible ‘modelled window’ (i.e. a window that is moved across the 

entire modelled field, element by element).  The pair of windows that have the highest 

correlation are used to define the optimal local alignment.  The output of this method is 

a spatial field of vectors showing the direction and magnitude of the most likely shift 

(Figure 3.10).   

The user can visually analyse this output to identify areas with consistent shifts, which 

may be explained by issues with the model and/or observations.  As with transects, this 

approach is an intermediate measure that is useful for understanding how fields 

compare, but not for summarising the overall comparison for use in model calibration or 

testing.  Optimal local alignment requires variation within the spatial field for it to be 

able to recognise shifts.  Therefore, with binary categorical fields, shifts can only be 

recognised at edges (i.e. where there is variability).  This is due to the use of a cross-

correlation measure to evaluate the fit between the groups of elements. 

Another method that utilises an analysis window to include spatial relationships into 

comparison has been recently applied in hydrology (Güntner et al. 2004; Wealands et al. 

2005a).  This comparison method subjectively defines the degree of ‘locational 
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similarity’ between an element and each of its neighbours.  This is a form of fuzzy 

comparison, as originally detailed by Hagen (2003).  Using a fuzzy definition for 

location, an element might be defined as having similarity of 0.8 with its immediate 

neighbours.  The fuzzy definition effectively specifies the size of the analysis window, 

which contains all elements considered to be similar in location.  In the example shown 

in Figure 3.11, the similarity of location is defined by a linear function that decreases 

with distance (up to a radius of 5 elements).  Güntner et al. (2004) used this method to 

compare modelled and observed binary fields of saturated areas.   

As Figure 3.11 shows, each modelled element is compared against all observed 

elements that are within the analysis window.  If a matching value is found within the 

window, it is assigned a local similarity based on the fuzzy definition of locational 

similarity.  This allows some level of spatial relationship to be included into 

comparison, which is considered vital for advancing spatial field comparison methods 

(Wealands et al. 2005a).  

This approach has only been applied to binary fields in hydrology and categorical fields 

in other disciplines (as discussed in the following sections).  While it has not been used 

further in hydrology, it is a very promising comparison method.  A comparison method 

using the idea of analysis windows and fuzzy similarity is pursued further in this thesis 

for application with continuous hydrological fields.  

 

 Figure 3.11 An example of fuzziness of location, in which the modelled field is compared with an 

observed field (collected at a coarser resolution).  In the intermediate field of similarity values, a low 

value (dark shading) indicates better agreement (higher similarity) than a high value (light shading).  Note 

that even though some modelled elements are not spatially coincident with the observed element, they are 

still assigned similarity (adapted from Güntner et al. 2004). 
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3.3.6 Limitations of current comparison methods  

This section has described the variety of quantitative methods that are currently used for 

comparing spatial fields in hydrology.  Some of these methods, such as basic statistical 

characterisation and standard local comparison measures (e.g. RMSE), are widely used 

and will continue to be used because of their simplicity and versatility to any data set.  

Other methods, such as geostatistical characterisation, are potentially useful but often 

overlooked because they are seen as too difficult to compute and require experience to 

interpret.  It certain situations where numerical measures are not required, intermediate 

measures (e.g. residual fields, scatterplots, transects) are combined with visual analysis 

to help understand how the error or similarity varies across the field.  The most recently 

developed methods, which use analysis windows to consider spatial relationships, are 

promising examples of where spatial field comparisons can progress.  Table 3.7 

summarises the current comparison methods, their general uses and major limitations.   

Table 3.7 Summary of the current methods used for quantitative comparison in hydrology.  The shaded 

methods are used further throughout this thesis 

Current comparison method Description of use and limitations  

Basic statistical 
characterisation 

Used to summarise element values within a field into characteristics, 
which can then be numerically compared with other fields; operate at 
global scale in measurement space only, thereby ignoring the spatial 
arrangement of elements  

Geostatistical characterisation 
Used to characterise the spatial relationship between elements within a 
field; characteristics of variograms can be numerically compared; does 
not explicitly retain information about spatial arrangement 

Landscape metrics 

Used to characterise various aspects of contiguous regions within a 
categorical field; requires region boundaries to be defined if applied to 
continuous fields; handles information at an intermediate scale by 
deriving characteristics of regions rather than elements  

Local error and similarity 
methods 

Widely used through hydrology for comparing any type of temporal or 
spatial data set; enforces strict spatial coincidence during comparison, 
while ignoring spatial relationships with neighbours; determines error or 
similarity measures for every element, which are summarised to give 
comparison measure; works efficiently at the finest scale  

Contingency table 

Widely used for local comparison of categorical fields; provides 
information for understanding matches and mismatches between 
equivalent categories; used to derive summary measures for binary and 
categorical field comparisons; can also be used as intermediate measure 
for analysing category changes 
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Current comparison method Description of use and limitations  

Intermediate fields 

Used for analysing the arrangement of error or similarity values within a 
field, which combine to produce local comparison measures; can be 
characterised using basic statistics or geostatistics to give useful 
summaries of the comparison; useful for visually understanding which 
elements are most influential in resulting comparison measures 

Scatterplots 
Used to examine the relationships between values from both fields, or 
otherwise between residuals and surrogate fields; works at local scale 
and is strictly for spatially coincident elements 

Transects 
Used to simplify representation of spatial field, by examining only one 
cross-section and the values along it; analysis results are heavily reliant 
on placement of transect 

Analysis windows 

Used to perform analysis and comparison on groups of spatially related 
elements, rather than individual elements; allows spatial relationships to 
be explicitly considered during comparison; methods have had limited 
development for hydrological spatial fields (i.e. continuous fields) 

At present, local and global comparison methods address the extremes of comparison, 

in terms of both scale (i.e. the finest and coarsest level of comparison) and rigour (i.e. 

how strictly the comparison is performed).  However, the current methods generally fail 

to address the gap in between these extremes, which includes analysis at intermediate 

scales (e.g. regions) and the consideration of explicit spatial relationships and 

arrangement (e.g. recognising similarity of location).  These issues are currently 

managed by using visual methods.  To identify quantitative methods for addressing 

them, the remainder of this review looks at other disciplines for potential solutions.  The 

knowledge from other disciplines can then be combined with the current state-of-the-art 

in hydrology to define a plan for advancing spatial field comparisons in hydrology.     

3.4 Comparisons within other disciplines 

The task of producing a quantitative measure of similarity between two spatial fields is 

encountered in other disciplines, ranging from image processing and pattern recognition 

to landscape ecology and multimedia.  Other disciplines generally work with fields that 

are single- or multi-band images.  These disciplines usually rely on a number of 

fundamental methods for processing images and conducting comparisons, some of 

which could be applied to hydrological applications.   

The suitability of a new method depends on whether it can work with hydrological 

spatial fields, which have particular characteristics such as the lack of obvious and 

definable features and the presence of moderate to high noise.  These demands are 
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different to other disciplines dealing with comparison, which generally work with pre-

determined images or features (e.g. a face or fingerprint), operate under controlled 

imaging conditions (i.e. with minimal noise and uncontrolled changes) and must be 

performed very quickly (i.e. the details are often simplified).   

The reason for making a comparison varies slightly between disciplines, although in all 

cases it is used for reducing the complexity (or amount) of results to be analysed.  In 

content-based image retrieval, comparisons are done to find the most likely match from 

within a database of images (e.g. an image search engine) (Pauwels and Frederix 1999).  

Industrial applications use comparison to operate machinery on a production line, such 

as for rejecting products that do not match a prototype closely enough (Veltkamp and 

Hagedoorn 1999).  Surveillance applications also make use of comparison for 

recognising change between subsequently captured images (Radke et al. 2005).  Land-

use and land-cover change is an integral component of geographic, economic and 

ecological research that uses comparison to assess the accuracy of a model (i.e. define 

the error) and to identify where change has occurred (Pontius and Malizia 2004).   

All of these disciplines are particular application areas for the comparison of images (or 

spatial fields), as is hydrology.  Their ongoing need for comparison has led to the 

refinement of many common processing methods, most of which stem from the broad 

discipline of image processing.  When referring to methods from image processing, the 

terms image and pixel are often used instead of spatial field and regular element, but 

they are actually synonymous.  The following sections describe the comparison 

methods used in other application areas and how their specific approaches may be 

suited to hydrology.  This review is organised into the following sections: 1) the 

fundamental image processing methods used during comparison; 2) the structural 

features used in other disciplines; and 3) change detection methods used in other 

disciplines.   

3.4.1 Image processing for comparisons 

Image processing encompasses many fundamental methods that are used throughout 

other disciplines as part of the comparison process.  These methods are used to 

undertake the key tasks of conditioning (i.e. modifying pixel values) and grouping (i.e. 
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defining the organisation or structures present within an image) (Haralick and Shapiro 

1992).  Both of these are general pre-processing tasks that prepare images for use in 

different types of comparisons.  Hydrologists routinely use conditioning methods for 

making spatial fields ready for comparison (e.g. georeferencing, upscaling spatial 

fields).  In some situations, conditioning may be the only pre-processing needed before 

comparison.  Other comparison methods work with structural features from the fields, 

so grouping methods need to be applied.  These methods are not widely used in 

hydrology.  The following sections detail the methods used for conditioning and 

grouping in other disciplines.  

3.4.1.1 Conditioning an image  

Conditioning methods are generally used for removing artefacts of prior processing and 

correcting known problems.  Conditioning methods that work purely in measurement 

space (i.e. with the distribution of values only) include standardisation and histogram 

matching.  These methods are used to change the pixel values so that their numerical 

distribution meets certain criteria.  Standardisation makes the distribution have mean = 

0 and variance = 1.  Histogram matching is a more involved process that makes the 

cumulative distribution function (cdf) of one image match the cdf of another.  Both of 

these methods are useful when trying to compare images, as they make sure the 

measurement spaces coincide (to some degree) (Hadjidemetriou et al. 2004).  For 

hydrology comparisons, changing the distribution of elements may be undesirable 

because it removes the real-world interpretation of the values (which are generally 

important).  These methods are more suitable when the magnitude of the element values 

does not have a particular interpretation or when the element values being compared 

represent different attributes (e.g. comparing soil moisture to a vegetation index).  In 

these cases, assuming a particular relationship between the distributions (e.g. both have 

equal mean and variance) is needed to enable comparison.  The RSQ correlation 

measure implements a form of standardisation implicitly in its derivation (Legates and 

McCabe 1999).   

Conditioning methods that work with image space information (i.e. consider spatial 

location and relationships) include noise filtering and smoothing.  Both of these 

methods commonly use ‘analysis windows’ to incorporate information from 
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neighbouring pixels.  Noise filtering modifies pixel values that are dramatically 

different from their neighbours by replacing them with a value calculated from the 

neighbourhood (such as the average) (Mastin 1985).  In hydrology, the removal of noise 

is commonly achieved using these methods or geostatistical interpolation.  Both 

methods can also be used for upscaling (or smoothing), which uses neighbours to 

determine the upscaled pixel values.  These methods are quite widely understood and 

are not detailed further in this thesis.   

3.4.1.2 Defining structural features within an image 

Grouping methods are generally used to process an image into a set of structural 

features that are required for comparison or recognition.  Structural features are often 

defined by using edges that are apparent in the image.  Edge detectors use the change in 

pixel values in certain directions within a neighbourhood to assign an edge strength 

value to each pixel.  For example, edges are useful for enhancing the dominant features 

in facial images (e.g. eyes, mouth), as these features appear as sudden changes in 

contrast and produce strong edge response.  The edge detection methods use a number 

of different approaches (see Haralick and Shapiro 1992; Bow 2002), although they tend 

to be sensitive to image noise.  They are infrequently applied to natural scenes due to a 

lack of clearly defined edges in the natural environment, although Horritt et al. (2001) 

have used edge features (combined with additional image processing) for identifying 

flood inundation extents from SAR imagery.  Hydrological spatial fields are often 

smoothly varying, thus limiting the use of edge-based methods for region detection.  A 

more common approach for detecting structural features or regions (which ideally 

represent objects) is image segmentation.  This is the process of partitioning an image 

into a set of non-overlapping regions.  After segmentation, every pixel within the image 

will be assigned to a particular region.   

Segmentation can be achieved using knowledge-driven or data-driven approaches.  In 

knowledge-driven approaches, the image is analysed to extract a predetermined type of 

target object, such as finding individual tree crowns in a satellite image of a forest.  

Hydrological fields rarely have such pre-defined target objects, although pre-defined 

target regions could potentially be extracted from surrogate fields, such as a terrain 

model (e.g. to define a low slope feature).  In data-driven approaches, the image is 
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segmented into ‘image objects’ (Hay et al. 2003) based on some additional information.  

Some of the common methods used for data-driven segmentation are thresholding, 

clustering, region growing and region merging.  A range of methods are covered in the 

reviews about segmentation and its various applications (e.g. Pal and Pal 1993; Chang 

and Li 1994; Jain et al. 1999; Udupa and Saha 2003).  One of the important points from 

the broader literature on comparisons and segmentation is that there is no single best 

method (Smeulders et al. 2000),  although some are more applicable to the types of data 

encountered in hydrological applications than others. 

3.4.1.3 Segmentation using pixel values 

One of the most common and simple segmentation methods is thresholding (Haralick 

and Shapiro 1992).  Thresholding involves defining a fixed value that then determines 

whether each individual pixel is labelled as high or low.  Figure 3.12a shows a spatial 

pattern of soil moisture that has been grouped using a threshold of 38% volumetric soil 

moisture.  This data are from the Tarrawarra data set presented in Western et al. 

(1999b).  The threshold used was manually selected to identify the wet gully areas of 

the image, whereas other approaches exist that adaptively compute the threshold from 

Figure 3.12 Identification of regions within a spatial field of soil moisture using three alternate methods:

a) histogram thresholding; b) histogram slicing; and c) region merging segmentation (from Wealands et 

al. 2005a). 
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the image histogram (e.g. the threshold can be computed such that particular 

percentages of pixels fall between threshold values).  Thresholding is useful for 

separating the pixels of interest from the background, but requires visual inspection to 

determine the optimal threshold value.  Pal and Pal (1993) provide a comprehensive 

review of thresholding. 

Categorisation segments an image by grouping pixel values into pre-determined ranges, 

assigning pixels to categories using information from measurement space.  

Thresholding is the simplest type of categorisation.  After assigning new values to each 

pixel, they are grouped into connected regions using connected components labelling 

(Haralick and Shapiro 1992).  This is a process whereby pixels that are connected (i.e. 

form a spatially contiguous region) are given a common identifier.  For automated 

categorisation, the histogram of the spatial pattern is usually analysed and the category 

ranges calculated based on the characteristics of the histogram.  Figure 3.12b shows a 

spatial pattern of soil moisture after being categorised into four groups.  Notice that the 

regions representing some categories have ‘holes’ in them, thus producing a noisy 

looking segmentation.  Because this method works entirely in measurement space, the 

resultant regions are not always spatially contiguous.   

Clustering is another popular approach to segmentation that relies more on pixel values 

(i.e. measurement space) and less on their spatial arrangement.  Clustering maps the 

pixel values from multiple bands into a feature space and then uses an algorithm to 

identify the groups of pixels with features that are compactly grouped and isolated from 

other features (Jain et al. 1999; Pauwels and Frederix 1999).  The most common 

clustering method is K-means clustering (MacQueen 1967; Han et al. 2001), which is 

used because it is a very fast process.  This algorithm makes an initial estimate of K 

clusters and then shuffles pixels between the clusters until every pixel in every cluster is 

closest in value to its cluster than to any other cluster.  This is the optimal segmentation 

and the pixel values are updated to reflect the cluster they belong to.  Depending on the 

clustering algorithm used, the resulting segmentation may be strong (with logical 

regions being grouped in the image) or weak (with many small, disjointed regions).  

Multi-band images provide a large number of features and are well suited to clustering 
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approaches.  However, most fields used in hydrology have only one band of data and 

clustering them using only measurement space information is limited. 

3.4.1.4 Segmentation using pixel values and locations 

The most promising segmentation approaches for simple spatial fields are those that 

operate with both the pixel values and their locations (i.e. in both measurement and 

image space).  These methods use measurement space to calculate the homogeneity 

criteria when determining regions.  Region growing is one example, in which initial 

‘seed pixels’ are chosen and then iteratively grown (e.g. based on joining pixels that 

differ in value less than a specified amount) until the entire image is segmented (Chang 

and Li 1994).  This technique is sensitive to the choice of seeds and is not widely 

applicable.  By considering every pixel as a seed, the method of region merging has 

evolved and become more popular and useful.  The region merging method tries to find 

the best possible merge between neighbouring regions (i.e. closest in value) at each 

iteration through the image (Woodcock and Harward 1992; Baatz and Schäpe 2000).  

This iterative process eventually converges when there are no more merges that could 

proceed without violating the merge criteria.  In this method, the resulting segmentation 

is dependent on the criteria for homogeneity (i.e. to determine which merges are 

acceptable) and the order of processing (i.e. to determine which acceptable merges are 

performed).  Other criteria can also be used, which control the size or shape of the 

resultant segmented regions (Baatz and Schäpe 2000).   

Region merging suits a wider range of images than other segmentation techniques, 

having proved successful with simple grey level images (i.e. similar to most 

hydrological spatial fields) as well as multispectral images.  Figure 3.12c shows a 

segmented spatial pattern of soil moisture, using the region merging technique of Baatz 

and Schäpe (2000).  This segmentation method is adapted for use with hydrological 

fields later in this thesis.  This result is visually the most logical grouping of all 

examples shown in Figure 3.12.  It is also the most complex and requires more 

processing than the other methods, which can be disadvantageous when analysing many 

spatial fields (such as in image database applications).  This is one of the major 

limitations with segmentation methods that preclude their widespread usage for 
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computer vision tasks, although developments in computing hardware are making many 

image processing tasks more viable.   

3.4.2 Comparisons using structural features 

Fast and accurate image comparisons are essential in any type of content-based image 

retrieval application.  One typical application is facial recognition, in which a single 

query image is provided (e.g. the face being photographed) and then a large database is 

searched for images with similar features.  Comparisons for facial recognition have to 

manage changes in the illumination of the face, different expressions and changes due to 

ageing, so approaches that detect structural features in the facial image must be robust 

to these varied conditions.  Pujol et al. (2002) used a ‘valley detector’ (a type of moving 

window operation) on facial images to reduce the greyscale images down to a set of 

pixels representing locations that have high local curvature (calculated from pixel 

values) (Figure 3.13).  A similar approach is used for palmprint matching, in which the 

interesting features of the palm (e.g. intersections of fold lines) are identified using 

image processing operations and subsequently compared (You et al. 2002).  This 

refined set of pixels (or salient features) is computed using some knowledge of the 

image content and context, which is rarely so clearly defined in hydrological fields.   

For the comparison measure to be calculated, the salient features from the query image 

must be compared against the images (and their features) stored in the database.  This is 

done using a similarity measure, such as the Hausdorff distance (Huttenlocher et al. 

1993; Veltkamp and Hagedoorn 1999) that is commonly used in pattern matching 

 

Figure 3.13 A set of seven facial images (top row) and the associated edge and ‘valley’ features (second

row) (from Pujol et al. 2002). 
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research.  The Hausdorff distance is a global measure of distance that describes how 

closely the two sets of salient features agree.  If the features are closely matched, the 

distance will be small.  There are numerous metrics for comparing two sets of features 

extracted from images, designed to maximise robustness to noise, shifts, scale changes 

and rotation (Veltkamp 2001).  These comparison techniques are specifically for 

structural features defined in the images, so they could only be applied to hydrological 

spatial fields with simple, identifiable structural features (e.g. comparing observed and 

modelled river networks).   

With images where the context of the image is not known, such as within a general 

image database, meaningful structural features are more difficult to define.  When 

knowledge-driven structures cannot be defined, data-driven methods must be used to 

simplify an image into homogeneous regions (i.e. image objects).  The regions are 

labelled using their characteristics (e.g. value, variance, shape measures, etc) and these 

can be compared individually or summarised.  Because of the data-driven nature of 

segmentation methods, a region in one image often corresponds with several regions in 

another image.  This causes difficulty when trying to do pair-wise comparisons between 

regions (i.e. it is impossible to define how the regions from different fields relate, unless 

labelled equivalently).  Chen and Wang (2002) describe a method to determine image-

level similarity measures by combining the various region-level similarities.  To achieve 

this in an efficient way, they used fuzzy functions to represent how the region 

characteristics vary within an image.  Comparison was then undertaken by using the 

fuzzy functions to represent the content of the images (i.e. a global comparison of 

characteristics).  This made it possible to rapidly search a large database (>60,000 

images) using a query image.  A method that required comparison of each region would 

have been too inefficient for this type of application.  A similar approach could be 

applied to hydrological spatial fields when processing speed was essential, but this is 

not considered to be widely applicable.  

3.4.3 Comparisons for change detection 

Change detection using spatial fields of the natural environment is commonly 

undertaken in land-use and land-cover studies, using spatial fields from remote sensing.  

Change detection is also undertaken using other types of images for surveillance and 
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medical applications (Radke et al. 2005), where the changes between subsequent images 

need to be automatically interpreted (e.g. to trigger an alert).  While there is great 

diversity in the applications for change detection, most studies employ a number of 

common processing steps and algorithms.  The overall aim of change detection is to 

produce a ‘change mask’ (Radke et al. 2005), which is synonymous with an 

intermediate field as described in this thesis.  This is produced from two images that 

represent the same attribute at different times or from different sources.  The 

intermediate field should identify the elements that have changed.  However, the 

definition of what constitutes a difference is where the comparison methods vary. 

In many applications such as surveillance, images of stationary objects will change due 

to lighting, camera motion and even atmospheric influences.  These may be regarded as 

insignificant changes.  In the case of change detection for fields in the natural 

environment, insignificant changes are commonly those due to registration or 

processing nuances.  Ideally, the comparison method should detect the significant 

changes, while ignoring the effects of insignificant changes, such as those caused by 

registration, scale differences or illumination (e.g. Figure 3.14).  Radke et al. (2005) 

provide a comprehensive review of change detection algorithms, which describes many 

methods to produce a change mask that only represents the significant changes.   
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The most basic method presented in their review – simple differencing – is also the 

most widely used comparison method for change detection in land-use change and 

hydrology.  Beyond this method, Radke et al. (2005) identify a number of pre-

processing steps, including geometric and radiometric adjustment, which can be used to 

remove undesirable artefacts in the images (i.e. conditioning the images).  During local 

comparison of each pixel, there are additional analyses that can be applied to evaluate 

change.  For example, statistical significance testing can be applied between the pixel 

values to determine if the change is significant.  Another common approach is to use a 

simple spatial model to evaluate the comparison for each pixel (e.g. the ‘analysis 

window’ methods described in section 3.3.5).  

3.4.3.1 Applying simple spatial models during local comparison 

The idea of using simple spatial models to evaluate change has been recently applied for 

comparing categorical fields (Hagen 2003; Güntner et al. 2004; Hagen-Zanker 2006).  

Land-cover change studies usually conduct an element-by-element comparison (i.e. 

simple differencing) and produce a contingency table, from which the assessment of 

accuracy is made.  However, Foody (2002) and Power et al. (2001) recognised that this 

is prone to identifying elements effected by spatial registration errors as having land-use 

change, when in reality no significant change has occurred.  To adjust for this situation, 

Hagen (2003) describes a fuzzy comparison method, which allows the location and 

 

Figure 3.14 A pair of images of a human retina taken six months apart, with changes that are important to 

the application marked V and A.  Unimportant changes, such as those due to illumination differences, are 

marked I (from Radke et al. 2005). 

 



Chapter 3: Review of spatial field comparison 77  

category of an element to be defined using fuzzy sets (Cheng et al. 2001).  Fuzzy sets 

allow an element to be defined in an uncertain (or vague) manner, based on the 

subjective judgement of the user (or knowledge of the fields being compared).  These 

fuzzy definitions are then applied during each local comparison (by using a simple 

spatial model), resulting in an intermediate measure and overall comparison measure 

that is ‘less strict’ (Figure 3.15).   

The simple spatial model used by Hagen (2003), which calculates the similarity for each 

element, works with the focus element in one field and all elements within the analysis 

window (i.e. those defined as similar in location) from the other field.  Comparisons are 

done for each pair of elements, with the optimum similarity being returned.  The full 

details of this method, which is only applicable for categorical fields, are given in 

Hagen (2003).  However, the fundamental idea of allowing elements to be uncertainly 

defined has been pursued in this thesis.  Details of how this has been adapted and 

implemented for comparing continuous hydrological fields are provided in Chapter 4.   

3.4.3.2 Identifying and understanding the cause of change 
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Figure 3.15 Two categorical land-use maps are compared using a) strict and b) fuzzy comparison 

methods.  The strict comparison measures each pixel as either same or different, whereas fuzzy

comparison is able to measure the degree of similarity (adapted from Hagen 2003). 

In many applications, including hydrology, estimating the change (i.e. local errors or 

similarities) is the first step toward “the more ambitious goal of change understanding” 

(Radke et al. 2005).  To understand the meaning of the changes, further analysis of the 

change mask (or intermediate field) is needed.  In general, this involves segmenting the 

change field and then extracting the semantics of individual image objects, using some 

tools designed for specific applications.  For example, in surveillance, a change mask 

may be analysed to interpret whether the change is due to an intruder.  Explaining the 

meaning of features within an image is one of the great challenges for all disciplines 

dealing with pattern recognition and comparison.  In controlled situations (e.g. 

industrial manufacturing), it can be possible to interpret features within images.  

However, when the situation is less controlled (or less controllable), there remains a 

dependence on human visual inspection to undertake this role.  Hydrology is one of 

these ‘less controlled’ situations, which partly explains the difficulty faced when trying 

to explain why a certain difference exists between observed and modelled fields. 
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3.4.4 Comparisons utilising multiple scales 

The majority of comparisons undertaken in other disciplines are performed at a single 

scale.  The previous sections have shown that this may be at a global scale (e.g. 

comparing region-based characteristics), a defined intermediate scale (e.g. comparing 

structural features) or, more commonly, at a local scale (e.g. comparing every element).  

This is in contrast to the innate visual methods used by humans, in which multiscale 

analysis and comparison is routinely performed.  In the past five years, there have been 

many examples from a range of disciplines (including hydrology) where the analysis of 

images (or spatial fields) is performed at multiple scales simultaneously.  These include 

the multiscale segmentation and classification of images (Baatz and Schäpe 2000; 

Burnett and Blaschke 2003; Hay et al. 2003) and the derivation of terrain attributes 

using multiscale terrain models (Gallant and Dowling 2003).  Despite multiscale 

approaches being widely used for analysis, there are few examples of multiscale 

comparison being used.     

Within the discipline of ecological modelling, a method for comparison at multiple 

scales was first developed by Costanza (1989).  The reasons for developing the methods 

were two-fold: 1) that there is no ‘proper’ scale at which to compare models with 

reality, but rather a range of scales; and 2) comparison at a single scale gives no 

consideration to ‘near misses’.  The fuzzy comparison method (Hagen 2003) reviewed 

in the previous section provides an explicit way of considering near misses.  However, 

the lack of a ‘proper’ scale for comparison remains a valid point that is usually 

overlooked in favour of using the finest scale.  The method developed by Costanza 

(1989) works by calculating a measure of fit for a range of ‘upscaled’ spatial fields.  

This measure is then plotted against the scale or summarised into a multiscale measure.  

The ‘upscaling’ is managed at each scale by increasing the size of the analysis window 

around each element during local comparison.  Costanza (1989) calculated the fit 

between each ‘upscaled window’ by comparing the distributions of element values 

within the windows.  For continuous fields, Costanza (1989) suggests using the RSQ 

measure between the ‘upscaled windows’, although no analysis was done using this 

method with continuous fields.  RSQ cannot be calculated from only distribution 
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information (i.e. it requires pair-wise comparison of elements), so it would be expected 

to work differently to the examples given by Costanza (1989).   

Since first being presented in 1989, the multiscale method of Costanza (1989) has had 

limited recognition and use.  Only in the past five years has it been revisited in the 

ecological modelling and remote sensing literature (e.g. Pontius 2002; Pontius et al. 

2004a; Hargrove 2006).  These recent uses of multiscale comparison have worked 

solely with categorical fields.  Most of this work has been by Pontius et al. (2004a) and 

it focuses on the task of land-use change.  Multiscale comparison is applied to 

categorical fields to determine the cause of category changes (e.g. error due to quantity, 

error due to location), which is useful for assessing model performance.  The methods 

used by Pontius et al. (2004a) are not detailed here because they cannot be applied to 

continuous spatial fields.  However, the multiscale method of Costanza (1989) appears 

suited for use in hydrological applications and is further developed in this thesis (using 

a more suitable measure of fit). 

3.4.5 Potentially useful methods from other disciplines 

Four major aspects of comparison that are encountered in other related disciplines have 

been reviewed in this section.  Image processing is used for preparing images (or fields) 

for use in comparison.  This involves tasks such as noise filtering, applying geometric 

corrections and deriving structural features (e.g. regions, salient points).  Structural 

features are used for reducing the complexity of a field (i.e. for efficiency during 

comparison) and for providing an alternative representation that can be more readily 

interpreted.  When comparing structural features, a range of different comparison 

methods tend to be combined, although their use is application specific.  The most 

common application of comparison in other disciplines is change detection, which 

focuses on producing a change mask that only represents the differences between fields 

that are considered significant.  All of these comparison methods are applied at a single 

scale, despite the widespread recognition that multiscale analysis is useful.  Limited 

work using multiple scale comparisons has revealed they can provide useful information 

about comparison.  The methods identified in this section for pre-processing and 

comparison are summarised in Table 3.8.  There are a number of methods shaded in 

Table 3.8 that are considered suitable for using or adapting for hydrological purposes.  
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These methods can address some of the limitations with the current methods used and 

also emulate key aspects of visual comparison.  A proposed methodology for using 

these methods to advance spatial field comparisons is given in the following section. 

Table 3.8 Summary of methods used within other disciplines for comparison and pre-processing of 

spatial fields (or images).  The potential uses of these methods in spatial field comparisons are described.  

The methods shaded are pursued further in this thesis. 

Method Description of current use and potential use for hydrology 

Basic conditioning tasks 

Used to modify element values within a field, to remove undesirable 
artefacts (e.g. noise) or to make the field ready for comparison (e.g. scale 
differences); currently used in hydrology and many other disciplines; 
conditioning improves the change mask produced via simple differencing

Edge-detection methods 
Used for defining the edge of features in a field; unsuitable for 
continuous hydrological fields due to absence of sharp boundaries; 
potentially useful for binary categorical hydrological fields  

Knowledge-driven 
segmentation 

Used to extract predetermined features from a field; potentially used in 
hydrology to define features from surrogate fields (e.g. segmenting a 
slope map); method for integrating surrogate features into a comparison 
method is unclear 

Data-driven segmentation 
(using values) 

Used for identifying organisation within a data set or field, based on 
measurement space information (i.e. does not enforce spatial contiguity); 
limited value for hydrological fields due to poor spatial segmentation  

Data-driven segmentation 
(using values and locations) 

Used for breaking a field into a set of contiguous regions; no simple or 
existing method for labelling segmented regions; may be useful for 
recognising optimally homogeneous regions within hydrological fields; 
assigning labels (i.e. hydrological meaning) remains challenging 

Identifying salient, structural  
features 

Used to simplify a field into a limited set of features that are sufficient to 
describe its appearance; used in controlled cases (e.g. face recognition); 
generally unsuitable for hydrological fields which lack such features  

Comparing region-based 
global characteristics 

Used to summarise the characteristics of segmented regions within an 
image; avoids problem of ‘pair-wise’ comparison of regions with 
different labels; unsuitable as it removes the explicit locations of regions 
and their associated hydrological meanings 

Simple differencing 
Used for strict local comparison; intermediate field produced may 
identify differences that are not significant; useful as a strict comparison 
test, but not able to handle other situations  

Applying simple spatial 
models for local comparison 
(e.g. fuzzy comparison) 

Used for producing an intermediate field based on more than simple 
differencing; simple spatial models can make comparisons between 
‘windows of elements’; fuzzy comparison method has been developed 
for land-use change; useful to adapt general ideas for continuous fields 

Multiscale comparison 

Used to describe fit at a range of scales, which can be visually analysed 
by plotting fit versus scale, or numerically analysed by summarising 
multiple scales; some methods used for continuous fields could be 
applied for hydrological purposes 
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3.5 Proposed methodology 

The objective of this thesis is to advance the methods used for quantitatively comparing 

spatial fields in hydrological modelling.  Spatial field comparisons used in hydrology 

are currently quite simple, so advances can be made by introducing complexity into 

existing methods that can facilitate additional options during comparison.  From the 

review, three interwoven themes have been identified as being the most important when 

undertaking comparison: 1) importance; 2) tolerance; and 3) completeness.  The 

following sections describe each of these themes in more detail.   

The promising methods being used in hydrology and other disciplines will be adapted to 

include these themes into some new comparison methods for hydrology.  These new 

methods will need to include user-defined parameters, which will enable the methods to 

be adaptable for different applications. 

3.5.1 Importance  

Defining ‘importance’ relates to controlling what is actually being compared.  When 

comparison is undertaken only for important elements, a comparison measure that has a 

specific interpretation is produced.  During visual comparison, importance can be 

controlled by the user focusing on certain parts of the spatial fields more than others 

and/or making comparisons between elements recognised as being important.  Current 

quantitative comparison methods rarely use any such notion of importance, which 

results in comparison measures that only have general (and ambiguous) interpretations.  

In the other disciplines, there are a range of image processing methods that are used to 

define the important elements (or features) that are then compared.  This has shown that 

by simply defining importance, many general methods can be used for quite specific 

comparison tasks.   

In hydrology, importance is expected to be less-clearly defined than in other disciplines 

(e.g. facial recognition).  Pre-processing methods from image processing can be readily 

applied to change the structure or extent of a continuous field prior to comparison, but 

this is dependent on the definition of importance.  Importance can be based on 

characteristics of the field (e.g. elements in highly variable areas are most important), 

hydrological characteristics (e.g. hillslope elements are most important) or expert 
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knowledge (e.g. that a certain part of the catchment is most important).  Importance can 

also be based at different spatial scales, such as the finest scale (i.e. individual elements) 

or an intermediate scale (e.g. homogeneous regions segmented in the data).  When 

combined with a comparison method (e.g. local comparison), different definitions of 

importance can be used to produce a range of meaningful comparison measures.   

3.5.2 Tolerance 

‘Tolerance’ is included into many of the comparisons undertaken discussed in this 

review.  It is implicitly used during visual comparisons to ignore minor differences 

between spatial fields (e.g. shifts, different colours).  During quantitative change 

detection, the change mask is manipulated (i.e. via pre- or post-processing) so that 

insignificant differences are tolerated.  For land-use change, the user can define fuzzy 

similarity between locations and categories, which allows for the tolerance of 

mismatches.  In all cases, using tolerances allows the uncertainty with which an element 

is defined to be explicitly considered during local comparison.  Elements can potentially 

have uncertainty defined for value, location and time.   

Uncertainty exists throughout all aspects of hydrological modelling, yet it is not 

accounted for in most common practices (Pappenberger and Beven 2006).  Introducing 

tolerance (of uncertainty) during hydrological comparison can advance the comparison 

methods used and also promote greater consideration of uncertainty.  The fuzzy 

similarity method (Hagen 2003) used in land-use change appears suited for adaptation 

to hydrological fields.  While it has only previously been applied for categorical fields, 

the general approach can provide the basis for incorporating tolerance into local 

comparison for continuous fields.  These tolerances also allow some consideration of 

the spatial (and temporal) relationships between elements, which is currently lacking in 

all local comparison methods.  

3.5.3 Completeness 

‘Completeness’ is a general guideline to follow during comparison and it relates to 

making comparisons of multiple aspects and across a range of scales with different 

types of comparison measures.  Visual comparisons can innately achieve this, while the 

current quantitative methods each address a specific scale and aspect of comparison.  By 
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combining the notions of importance and tolerance into the current comparison methods 

(as proposed in the previous sections), many more different aspects and scales can be 

specifically compared.  In addition to these methods, the multiscale comparison method 

developed in ecological modelling (Costanza 1989) can be adapted for use with 

continuous fields to make comparisons at all scales.  When multiple aspects and scales 

are compared, computational demands are expected to be high.  Therefore, experience 

with selecting the most useful methods for particular applications will need to develop.  

By including the user in the comparison process, it is expected that this experience will 

develop and make it possible to use the existing and new comparison methods for a 

range of hydrological situations. 

The advances to spatial field comparisons expected from applying this proposed 

methodology are: 1) a range of comparison methods that are simple to apply, but 

versatile for different aspects and scales of comparison; 2) quantitative comparison 

methods that can be repeated and easily reported/interpreted; and 3) greater thinking by 

the user/hydrologist about what is compared and why.   

3.6 Chapter summary 

This review has investigated three topics: 1) the general processes undertaken during 

visual comparison; 2) the current limitations with quantitative methods used in 

hydrology; and 3) the promising methods being used in other disciplines for 

comparison.  Amongst these topics, a large range of methods for potentially improving 

current comparison methods have been identified.  These methods are useful for the 

hydrological community to be aware of, although many of them are only suited to 

specific applications or data types.  The summaries given for each topic identify the 

most promising methods for hydrological comparisons.  From this information, a 

proposed methodology for advancing the methods used for spatial field comparisons in 

hydrology has been devised and it is implemented in Chapter 4.   
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Chapter 4  

Development of comparison 

methods 

4.1 Chapter overview 

The review of spatial field comparisons in 0 identified three major themes that are 

encountered in other disciplines, but are currently lacking in hydrological comparison 

methods.  The proposed methodology describes how these interwoven themes – 

importance, tolerance and completeness – can potentially be implemented into 

comparison methods that are suitable for use in hydrology.  This chapter develops these 

‘new’ comparison methods, which encompass ideas that are new to hydrological 

comparisons.  The chapter also describes how the new methods work with the current 

methods used in hydrology to develop a general strategy for comparison.  

Importance is enforced in a spatial field comparison by ensuring that the fields only 

represent the important information.  This can be achieved by using existing pre-

processing methods for modifying the structure and values of continuous spatial fields.  

‘Hydrological importance’ is expected to be defined by using aspects of the observed, 

modelled and/or surrogate spatial fields (e.g. homogeneous regions, terrain attributes).  

A simplified version of the data-driven, region-growing segmentation method (Baatz 

and Schäpe 2000; Definiens Imaging 2003) has been adapted here for recognising the 

homogeneous regions in continuous fields.  A new ‘region-based comparison method’ 

for using regions of importance during comparison is developed. 

A new ‘tolerant local comparison method’ has been developed here by adapting the 

fuzzy comparison method described in the land-use change literature (Hagen 2003).  

The new method requires an alternate definition and implementation of tolerances to be 
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devised so that it can work with continuous spatial fields.  This method produces an 

intermediate field of tolerant error (or tolerant similarity) from which a range of new 

comparison measures have been developed.   

Completeness can be achieved by using different definitions for importance, tolerance 

and scale with different comparison measures (i.e. error and similarity) to compare 

multiple aspects of spatial fields.  To compare all spatial scales, a ‘multiscale 

comparison method’ (Costanza 1989) has been adapted for use with continuous 

hydrological fields.  It is not possible to compare all aspects of importance and/or 

tolerance, so a strategy for achieving completeness is needed.  A comparison flowchart 

that identifies all of the possible comparison measures available when the current and 

new methods are combined is developed.  By combining these methods, user 

knowledge and a set of comparison objectives, a general strategy for making complete 

comparisons is devised.  

4.2 Preliminary information 

All of the new methods aim to be simple and familiar, while still providing additional 

options for comparison.  These factors should help to make them readily adopted by 

hydrologists for use in a range of situations.  In all of the comparison methods, the 

information within two spatial fields is reduced into a single numerical measure, so 

there is an expected information loss.  However, many of the methods also provide 

intermediate measures that retain the spatially-explicit information and can be visually 

inspected to explain more about the numerical measure.   

The following sections describe some preliminary details that are used throughout this 

chapter: 1) the approach used for describing the algorithms and methods; 2) the 

synthetic spatial fields used for illustrating the new comparison methods; 3) the 

benchmark performance of the synthetic fields when using current comparison methods; 

and 4) the software tool available to the reader for experimenting with these methods. 

4.2.1 Approach used for describing algorithms 

Throughout this chapter, the comparison methods are detailed by describing the 

algorithm used to conduct the comparison.  The algorithms presented in this chapter are 
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all described using ‘pseudocode’.  Pseudocode is widely used in computer programming 

to describe an algorithm that can be implemented on many different computing 

platforms.  It provides a simple way of describing the processes followed for any 

comparison method.   

When using the algorithms, the spatial fields are referred to as the source field(s) and 

the target field(s).  In model assessment tasks, the source is usually the modelled field 

and it is compared with the target (i.e. the field that represents the reality or benchmark), 

which is usually the observed field.  In other tasks, the target field may be a reference or 

‘base case’.  The definition of which field is the source and which is the target is critical 

for comparison, as all comparisons are directional (i.e. the source field is compared 

against the target field to describe how it differs).   

Swapping the source and target field definitions can have different implications.  In 

simple comparisons (e.g. BIAS), it will only cause the sign of the summary measure to 

switch (e.g. from over- to under-prediction).  In more complex comparison methods, the 

direction can influence the overall magnitude and interpretation of the results (e.g. a 

tolerant comparison applies tolerances only to the target).  While all efforts have been 

made to be unambiguous with terminology used in this thesis, in ambiguous situations 

the modelled and observed fields should be interpreted to be the source and target fields 

respectively.   

4.2.2 Synthetic fields 

A set of synthetic spatial fields are used throughout this chapter to illustrate the 

performance of the new comparison methods.  A single ‘observed’ field (i.e. the target) 

has been used to produce nine ‘modelled’ fields, each with a different known 

deformation applied to it.  The origin of the observed field is irrelevant for its use in this 

chapter, although the spatial arrangement has been caused by factors common to 

hydrological fields – terrain, soil type, geology and vegetation     

Each of these synthetic fields has 59 x 24 elements and the elements are assumed to be 

related to all immediate neighbours (i.e. using eight-way connectivity).  The fields are 

shown using a ‘dry to wet’ colour ramp in Figure 4.1 to visually reveal the spatial 
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variability.  Using a single colour ramp (e.g. black to white) can make visual 

discrimination of variability more difficult.   

The details of the deformations applied to create each of the modelled fields are listed in 

Table 4.1.  This table also details a hydrological modelling situation that each type of 

deformation represents.  These synthetic fields are used throughout this chapter to test 

whether the new comparison methods perform as expected when applied to fields with 

known differences.  Chapter 5 applies these methods in a real hydrological modelling 

situation where model performance is being evaluated.   

Figure 4.1 Nine synthetic spatial fields have been produced for illustrating the comparison methods.  The 

locations altered by ‘locally applied’ deformations are delineated by the rectangle.  All of the 

deformations applied to produce fields b) to j) are detailed in Table 4.1. 
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Table 4.1 Details of the deformations applied to the ‘observed’ field in Figure 4.1 to create each 

‘modelled’ field.  A hydrological situation where each type of deformation could occur is also identified.   

Field  Deformations applied and hydrological situation represented 

a) Observed Treated as the observed reality throughout this chapter; representative of 
a typical observed spatial field used in hydrological modelling 

b) Smoothed 

Observed field has been smoothed using the ordinary kriging 
interpolation method (using the nugget parameter to control the level of 
smoothing applied); representative of hydrological model where small-
scale variability is not represented; also representative of observed field 
with larger spatial support (i.e. less variability) 

c) Noisy 
Random noise (σ = 100) has been added to the observed field; 
representative of a hydrological observation that contains 10% 
measurement error  

d) Noisy smoothed 
Random noise (σ = 100) has been added to the smoothed field; 
representative of a model where small-scale variability is poorly 
represented by a non-spatial stochastic parameter  

e) Globally biased 
All element values in the observed field were increased by 20%; 
representative of a model or observation that has a systematic bias in all 
elements 

f) Locally biased 
A small region of elements in the observed field were increased by 20%; 
representative of a model or observation with a localised systematic error 
(possibly resulting from incorrectly representing a process in the region)  

g) Locally shifted 

A small region of elements in the observed field were shifted two 
elements to the right; the ‘gap’ left by these elements was filled by using 
the ordinary kriging interpolation method; representative of a model 
where the magnitude of values is generally correct, but spatial shifts have 
occurred due to model processes or data processing 

h) Locally biased and shifted 

A small region of elements in the observed field were shifted by two 
elements and increased in value by 20%, as undertaken in f) and g); 
representative of a model where a range of factors are producing a 
localised error in the model 

i) Mean 
The mean value of the observed field is assigned to every element, thus 
producing a field with no variability; representative of a model that is 
non-spatial (i.e. lumped) but correctly models the mean value 

j) Randomly rearranged 

The element values in the observed field are randomly rearranged; only 
one realisation is used to define the synthetic field; representative of a 
model or observation where the spatial arrangement is completely wrong, 
yet the basic statistics are correct 
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4.2.3 Using current comparisons methods 

The current comparison methods used in hydrology are applied here to the synthetic 

fields in Figure 4.1.  Strict quantitative methods, as well as methods requiring visual 

analysis are presented.  These measures show how the current methods respond to the 

deformations introduced into the synthetic fields.  As the new methods are described 

throughout this chapter, the new quantitative information that they add to this existing 

information can be identified.   

4.2.3.1 Quantitative measures 

Basic statistical characteristics (MEAN, SDEV, SKEW, KURT), a global comparison 

measure (BIAS) and local comparison measures (RMSE, MAE, RSQ, COE) are shown 

in Table 4.2.  The basic statistics reveal that the mean is stable amongst all the ‘models’, 

apart from the globally biased model.  The standard deviation is less in the smoothed 

model, but much higher in the noisy models.  Global BIAS reveals the errors in the 

globally and locally biased models, although the local bias is reduced substantially by 

averaging.  The local comparison measures (RMSE, MAE) also only respond slightly to 

the models with local biases and shifts.  The RSQ measure identifies that most of the 

field is highly correlated in these instances, which correctly suggests that the error is 

localised.  When global deformations exist in the models (e.g. bias, noise), the local 

error measures increase.  With the correlation measures, RSQ ignores the errors in the 

globally biased model, but COE penalises them.  The rearranged field is identical for all 

global comparisons, but it is the worst performing model using local comparison.   

Table 4.2 The statistical characteristics (MEAN, SDEV, SKEW, KURT), a global comparison measure 

(BIAS) and local comparison measures (RMSE, MAE, RSQ, COE) for the synthetic fields (Figure 4.1). 

Field MEAN SDEV SKEW KURT BIAS RMSE MAE RSQ COE 
a) Observed 335.4 143.8 1.7 4.4      
b) Smoothed 336.0 135.0 1.6 3.5 0.5 38.4 24.7 0.93 0.93 
c) Noisy 335.4 176.4 0.9 1.7 0.0 100.0 86.1 0.68 0.52 
d) Noisy smoothed 336.0 168.0 0.8 1.4 0.5 108.6 92.3 0.59 0.43 
e) Globally biased 402.5 172.6 1.7 4.4 67.1 73.0 67.1 1.00 0.74 
f) Locally biased 339.7 160.6 2.3 7.6 4.3 26.9 4.3 0.98 0.96 
g) Locally shifted 333.6 137.5 1.5 3.5 -1.9 20.9 2.9 0.98 0.98 
h) Locally biased and shifted 336.5 148.6 1.9 5.8 1.1 23.2 2.6 0.98 0.97 
i) Mean 335.4 0.0 1.0 -2.0 0.0 143.8 89.1 0.00 0.00 
j) Randomly rearranged  335.4 143.8 1.7 4.4 0.0 199.6 136.3 0.00 -0.93 
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4.2.3.2 Methods requiring visual analysis 

Comparison methods requiring visual analysis are emulated by the new methods 

introduced in this thesis.  However, to identify what information should be recognised 

by these methods, visual analysis of the intermediate fields from the local comparison 

measures in Table 4.2 is undertaken (using Figure 4.2).  It is immediately apparent that 

the locally deformed models are identical for most of the extent, apart from the small 

region of deformation.  The exact differences are much more difficult to perceive when 

visually comparing the fields (e.g. using Figure 4.1).  There is a lack of spatial 

organisation in the residuals for the smoothed and noisy models, which suggests the 

errors are randomly distributed.  In the globally biased, mean and rearranged models 

there remains structure in the residuals, suggesting systematic problems in the model.  

Variograms for each of the synthetic fields are shown in Figure 4.3 and can be visually 

analysed and compared.  They show that most of the synthetic fields have a similar 

spatial structure, apart from the mean and rearranged models.  The rearranged field has 

no obvious range and appears to be comprised entirely of nugget effect, while the mean 

field has no variance at any lag.  The other variograms reveal some degree of correlation 

at a lag of approximately 20 elements (i.e. half the width of the field).  The magnitude 

Figure 4.2 Intermediate error (or residual) fields produced during local comparison of the synthetic fields 

from Figure 4.1.   
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Figure 4.3 The experimental variograms for the synthetic fields in Figure 4.1 are calculated and plotted. 

These show the general characteristics of spatial structure (e.g. smoothly varying) for each of the 

synthetic fields and can be visually compared.   

of semivariance varies between the models, although the similar shape in the 

variograms suggests similar spatial relationships exist within most of the fields.  The 

variograms of the noisy models have a much larger nugget, while the local changes 

cause only minor differences to the variogram shape.  The numerical differences 

between the semivariances at each lag could potentially be summarised (e.g. average 

separation between variograms), although this would only measure the absolute 

difference between variograms.  It is preferable to identify the key characteristics (e.g. 

nugget, range) and provide direct information about how the variograms differ  

4.2.4 Software tool for making comparisons 

During development of the comparison methods presented in this chapter, a prototype 

software tool has been created for running all of the comparisons and producing the 

necessary outputs.  The tool provides the user with a simple interface for defining the 

source and target fields, as well as a definition of analysis regions.  The current and new 

comparison methods can each be used to produce numerical and graphical outputs.   

The interested reader is referred to the more complete description of this software given 

in Chapter 6 and the detailed tutorial provided in Appendix A.  The spatial field data 

used in this thesis is provided for use in this software.   
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4.3 Importance  

Importance is defined in a spatial field comparison by using pre-processing methods to 

modify the elements and values of a spatial field.  The pre-processing allows the user to 

control what aspects of the spatial fields will be compared, which can help to produce 

comparison measures that are not confounded by any unimportant or erroneous 

information (i.e. only the information that is important).  When applied to hydrology, 

this approach allows the notion of ‘hydrological importance’ to be defined prior to 

comparison so that specific hydrological comparison measures can be produced.   

This section does not attempt to fully develop a definition of hydrological importance 

for use in comparison.  Instead, it focuses on analytical tools required to implement the 

concept of importance, leaving the specific definition of important to the user.  

Hydrological importance is assumed to relate to the elements and regions found in 

observed, modelled and/or surrogate hydrological fields.  Therefore, this section 

presents: 1) the existing pre-processing methods used for making spatial fields 

comparable; 2) a new data-driven segmentation method for recognising homogeneous 

regions within continuous fields; 3) the existing, knowledge-based methods for defining 

regions of hydrological importance; and 4) a new region-based comparison method.   

4.3.1 Making spatial fields comparable  

Prior to undertaking comparison, there are pre-processing methods that can be used to 

make the fields more comparable (i.e. to ensure that only the important information 

remains in the fields).  The primary focus when applying pre-processing is to remove 

(or reduce the impact of) any known differences introduced when producing the fields.  

In hydrological applications, the most common artefacts present within observed spatial 

fields are scale inconsistency and measurement noise.  Modelled fields can have 

different field structures and therefore also exhibit scale inconsistency. 

Noise filtering, smoothing and scaling are inter-related pre-processing methods that 

have been discussed in Chapter 2 and 3.  They are all used to make spatial fields more 

comparable, by reducing the differences between the characteristic scales of the fields.  

These scales should be equal during comparison to ensure that no ‘false differences’ 

confound the results, although this is not always possible due to the limited methods for 
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obtaining observed spatial fields.  A number of options for upscaling spatial fields, 

including moving ‘analysis window’ methods and geostatistical interpolation, are 

currently used for reducing these differences.  When random noise exists in an observed 

field (e.g. random measurement error), the impact of this noise can be reduced by 

smoothing the values.  These methods tend to distribute the noise amongst neighbouring 

elements and increase the spatial support of element values (i.e. upscaling), which leads 

to the finest scale being lost.   

Other pre-processing methods address factors such as spatial alignment and comparing 

equivalent hydrological attributes.  Correct georeferencing is essential to ensure that 

modelled field element(s) are compared with the appropriate observed element(s) (i.e. 

those that are spatially coincident).  This is generally managed in a geographic 

information system (GIS) or similar software.  If the attributes being compared differ, 

the measurement spaces must be pre-processed so that the distributions are forced to 

relate (for the purposes of the comparison).  Standardisation and histogram matching are 

both suitable methods for achieving this.  This is not an exhaustive list of the pre-

processing issues encountered when making spatial fields comparable, but these are the 

most common issues faced during pre-processing in hydrological modelling.   

4.3.2 Data-driven recognition of regions  

The recognition of regions within an image or spatial field is innate to humans and is 

used extensively during visual analysis.  Regions are also a used for identifying the 

important structures within a spatial field, which are used to simplify it for analysis and 

comparison purposes.  There have been many attempts to emulate this ability by using 

different segmentation algorithms.  The most promising method for use with continuous 

fields representing the natural environment is data-driven region-merging segmentation.  

This type of method treats every element as a separate region to begin and then uses 

decision heuristics to iteratively merge regions together until an optimised segmentation 

result is obtained.   

Woodcock and Harward (1992) presented an early approach at this type of 

segmentation, although the more recent implementation of Baatz and Schäpe (2000) is 

considered more suitable.  Baatz and Schäpe (2000) made two important improvements: 
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1) a ‘distributed treatment order’ is used to allow regions to grow evenly; and 2) ‘local 

mutual best merging’ is used to ensure that the best merge within a local area occurs.  

These improvements helped to produce more visually intuitive results and resulted in a 

patented implementation of this segmentation method (Baatz et al. 2004).  This 

segmentation method is used exclusively in the software named eCognition (Definiens 

Imaging 2003), which is increasingly used in research and industry for object-based 

image classifications for remote sensing.     

The following sections present: 1) the algorithm used for data-driven region-merging 

segmentation in this thesis; and 2) examples of using the segmentation method with the 

synthetic fields from Figure 4.1.   

4.3.2.1 The region-merging segmentation algorithm 

The key components of the region-merging segmentation algorithm used in this thesis 

are: the general iterative process used to determine the segmentation; the decision 

heuristics used for determining the ‘best merge’; and the order in which regions are 

treated.  The iterative process used here (Algorithm 4.1) is a direct implementation of 

the method described in the eCognition User Guide (Definiens Imaging 2003).  The 

decision heuristics used here (Algorithm 4.2) are a simplified version of the ‘local 

mutual best merging’ rules in Baatz and Schäpe (2000).  These are simplified because 

hydrological fields only have a single band of information (unlike much remotely 

sensed data) and the segmentation must therefore operate on less information.  The 

treatment order used here (Section 4.3.2.2) has been specifically developed for this 

implementation, although it is motivated by some ‘vague’ descriptions in Baatz and 

Schäpe (2000) and Baatz et al. (2004).   

Throughout Algorithm 4.1, three attributes are maintained for each region in the spatial 

field – heterogeneity (i.e. standard deviation), area and perimeter.  The area and 

perimeter values are combined to characterise the shape of each region.  The 

heterogeneity and shape attributes are combined (using the formula in Algorithm 4.2 

and the user-defined ‘region shape’ parameter) and used to determine the ‘cost’ of 

merging any two regions together and the ‘local mutual merge’ that is best.  Merging 

progresses by using these attributes and the treatment order until no more merges can be 
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1 Define global merging parameter in range [0,∞)  

2 Define region shape parameter in range [0,1] 

3 Initialise master list of regions using input field  

4  Create region for each element 

5  Initialise values for heterogeneity, perimeter and area 

6  Initialise list of neighbouring elements 

7 Do iteration of merging 

8  Create working list of regions (using distributed treatment order) 

9  While list of regions is not empty 

10   Assign first region from list to A and remove from list 

11   Determine neighbouring region of A with minimum merge cost (Alg. 4.2) 

12   If no merge is valid, go to next region in list 

13   Assign ‘best merge’ region from list to B and remove from list 

14   Determine neighbouring region of B with minimum merge cost 

15   Assign ‘best merge’ region from list to C and remove from list 

16   While a mutual best merge does not exist (A ≠ C)   

17    Reassign A = B and B = C (i.e. step along gradient of best merge) 

18    Determine neighbouring region of new B with minimum merge cost 

19    Assign ‘best merge’ region from list to C and remove from list 

20   Loop (While A ≠ C) 

21   When mutual best merge is found (A = C) 

22    Merge regions A and B – update heterogeneity, perimeter and area 

23    Replace regions A and B in master list with merged region 

24  Loop 

25 Loop if any merges were completed during iteration 

26 Return master list of regions 

Algorithm 4.1 The algorithm for the region merging segmentation method, where the ‘local mutual best 

merge’ is used at each location treated.  The ‘distributed treatment order’ in line 8 plays an important role 

in allowing regions to grow evenly.  Determining the neighbouring region with minimum merge cost (e.g.

line 11) is detailed fully in Algorithm 4.2. 

made that ‘cost’ less than a user-defined global merging parameter.  The final 

segmented regions are then given unique labels for use in further processing. 

The segmentation result is dependent on two user-defined parameters – the global 

merging parameter and the region shape parameter – and the defined treatment order.  

Algorithm 4.1 uses these parameters to control the size and appearance of the resulting 

segmented regions.  The ‘global merging’ parameter defines the maximum permissible 

cost of a merge during segmentation, but this ultimately controls the size of the regions.  
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This parameter ranges from 0 and is boundless, due to the fact that both the measure of 

shape and heterogeneity are also boundless.  The magnitude of the ‘global merging’ 

parameter is related to the magnitude of values in the field and their variance, but this 

relationship is non-linear and varies with each field.  Therefore, the global merging 

parameter can only be set with some knowledge of the underlying data and otherwise 

via empirical methods.  The ‘region shape’ parameter is a weighting parameter that 

controls how the heterogeneity and shape attributes combine when determining region 

merges.  This parameter ranges from 0 to 1, with 0 producing an optimum segmentation 

based on the shape attribute (i.e. all regions will be close to square) and 1 producing an 

optimum segmentation based on heterogeneity (i.e. all regions will be optimally 

homogeneous). 

Baatz and Schäpe (2000) introduced the ‘region shape’ parameter because regular, 

compact regions are most visually pleasing and desirable for image classification.  In 

hydrology, depending on the proposed use of the regions, the shape parameter can often 

be left at 1, thus ensuring that regions represent the homogeneity of values most closely.   

1 Assign minimum merge cost equal to global merging parameter  

2 Initialise best neighbour as empty 

3 Assign region shape parameter to W (i.e. weighting for region compactness)  

4 Assign focus region to A 

5 For each neighbouring region of A 

6  Assign neighbouring region to B  

7  Merge region A with B and assign to M 

8  Calculate cost of merging with this neighbour 

9   Note: Shp(X) = Shape of region X,  Het(X) = Heterogeneity of region X 

10   Shp cost = [Area(M) * Shp(M)] – [Area(A) * Shp(A) + Area(B) * Shp(B)] 

11   Het cost = [Area(M) * Het(M)] – [Area(A) * Het(A) + Area(B) * Het(B)] 

12   Merge cost = [W * Het cost] + [(1 - W) * Shp cost] 

13  If (Merge cost < Minimum merge cost) 

14   Set best neighbour as region B 

15   Set minimum merge cost to merge cost 

16 Go to next neighbouring region   

17 Return best neighbour 

Algorithm 4.2 The algorithm used for determining the neighbouring region with the minimum merge 

cost.  This is evaluated using the user-defined parameters for ‘global merging’ and ‘region shape’ (as

specified in lines 1-2 of Algorithm 4.1). 
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4.3.2.2 The treatment order 

The order in which regions are treated during segmentation has a major influence on the 

way they are recognised.  One solution is to allow only one ‘best merge’ to be made on 

each iteration, but this is slow and produces particularly large regions in the most 

homogeneous areas.  Baatz and Schäpe (2000) suggest that a visually-intuitive 

segmentation has similarly sized regions throughout the spatial field.  Therefore, 

Algorithm 4.1 treats each region once on each iteration to permit regions to grow 

equally, which is far more efficient but the results are heavily dependent on the 

treatment order.  A random order can be used, but this produces non-repeatable 

segmentations.  For repeatable segmentation results in which regions are allowed to 

grow simultaneously, the treatment order should follow two rules: 1) regions are 

processed in an order which ensures a maximum possible geographical distance from 

already processed regions (Baatz and Schäpe 2000); and 2) for each iteration, each 

region present at the beginning of the run is processed once at the most (Baatz et al. 

2004).   

The details of producing this type of distributed treatment order are not provided in any 

of the references or the patent for this segmentation method (Baatz and Schäpe 2000; 

 

Figure 4.4 Dither matrices of different sizes are produced by applying the recursive formula to the initial

2x2 dither matrix (Ulichney 1987).  These matrices always have 2n rows and columns.  The first 2, 4 and 

8 elements treated in these example dither matrices are shaded to illustrate the even distribution produced.
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Definiens Imaging 2003; Baatz et al. 2004).  However, it is suggested that it can be 

achieved by using a “dither matrix produced by a binary counter” (Baatz and Schäpe 

2000, p.16).  Dither matrices are used in image processing to reduce the colour palette 

used for display or printing.  However, it is the arrangement of values within an ordered 

dither matrix (Ulichney 1987) that appears to be useful for defining a treatment order.  

Ordered-dither matrices are created by using a recursive formula based on a simple 2x2 

matrix, as shown in Figure 4.4.  This produces a repeating, ‘checkerboard type’ 

arrangement that is efficiently computed and exhibits a well-spaced distribution.  Other 

algorithms, which explicitly maximise the geographical distance from previously 

treated elements, are unable to maintain a regular distribution once many elements have 

been treated (Figure 4.5).  

In Algorithm 4.1, the distributed treatment order is determined using an ordered dither 

matrix that has an extent that is equal or larger than the spatial field being segmented.  

This ensures that every region is assigned a position in the treatment order during the 

first iteration.  As each region is treated, it is removed from the treatment order until all 

regions have been treated once.  During subsequent iterations, the positions in the 

treatment order are determined using the same general approach, although now there are 

multiple positions assigned to each region (because the regions overlap multiple 

elements).  The first position in the order for each region is used, thus ensuring that each 

region is only treated once.   

 

Figure 4.5 Two different treatment orders, one designed using a dither matrix (left) and the other using a

simple algorithm that maximises distance from previously processed elements (right).  The first 8

elements treated using each method are shaded, illustrating the better distribution obtained by using the 

dither matrix method.   
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The treatment order implemented in this thesis has only used the general ideas 

suggested in the literature (Baatz and Schäpe 2000; Definiens Imaging 2003; Baatz et 

al. 2004).  Complete details of the treatment order used in their patented method have 

been unavailable in the literature or from the authors.  The treatment order devised here 

is an approach that works suitably for hydrological spatial fields.  

4.3.2.3 Using segmentation to identify regions 

To illustrate the performance of the data-driven, region-merging segmentation method 

in different hydrological situations, all of the synthetic fields from Figure 4.1 have been 

segmented (Figure 4.6).  The parameter values have been empirically set to produce 

‘mid-sized’ regions (global merging = 500) that should be quite regularly shaped 

(region shape = 0.25).  These parameters are kept constant for all of the fields.  To 

illustrate the influence of the two user-defined parameters, the observed field from 

Figure 4.1 has been segmented using a range of parameter settings (Figure 4.7).  The 

‘global merging’ parameter ranges from 250 to 2000 and the ‘region shape’ is 1 or 0.25.   

It is apparent from Figure 4.6 that the method is capable of producing visually-intuitive 

region definitions.  The segmentations of the noisy fields detect some of the underlying 

arrangement that is also seen in the observed field, but they are greatly affected by the 

noise.  The segmentation of the rearranged field identified only three small regions 

where there was some homogeneity, while the mean field had only the one region.  All 

of the other segmentations appear to have produced logical region definitions, which is 

the desirable performance for this method.   

The use of a shape parameter less than 1 has tended to produce more ‘visually pleasing’ 

segmentations of the observed field (Figure 4.7).  This requirement for shape regularity 

has caused the regions recognised at each scale to have a less ‘branched’ appearance 

and has also produced larger scale regions in this example.  The global merging 

parameter is the major control on region size and should be empirically set to produce 

the regions at a desirable scale.  As both segmentation parameters vary with the spatial 

field being processed, recommended parameter values cannot be defined.  However, the 

need to empirically determine the parameters is not considered a major limitation, as the 

regions must be visually inspected prior to their use.   
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Figure 4.6 Regions determined by using region-merging segmentation for each synthetic field from 

Figure 4.1.  The segmentations use the following parameters: global merging = 500; region shape = 0.25. 

 

Figure 4.7 Various segmentations of the ‘observed’ synthetic field from Figure 4.1, showing the effects 

of different ‘global merging’ and ‘region shape’ parameters on the resulting regions recognised.   
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4.3.3 Knowledge-driven definition of regions 

Knowledge-driven methods use surrogate information (e.g. terrain attributes) and/or 

subjective user knowledge to define regions within a spatial field.  These ‘artificially 

enforced’ regions are not always apparent in the observed or modelled spatial fields, but 

they are used to represent regions of specific hydrological importance.  Any knowledge-

driven definition should aim to identify spatially-contiguous regions that include 

elements that have a specific hydrological meaning or respond similarly to the 

hydrological processes being investigated.   

Some examples of regions of potential hydrological importance in different situations 

are listed in Table 4.3.  Each example describes how the regions could be defined using 

surrogate fields and user knowledge.  Details of these pre-processing methods are not 

given here because they are widely used throughout hydrology and image processing 

and have been discussed in 0 and 0.   

The examples in Table 4.3 all make use of either surrogate or ancillary information to 

define importance.  Because surrogate fields or user knowledge have been included into 

the definition of the regions, each region can be assigned a meaningful label.  The labels 

are used to define the interpretation of any comparison measures calculated using the 

regions.  When there are multiple contiguous regions having the same label (e.g. 

Table 4.3 A list of example, knowledge-driven regions that could be used for defining hydrological 

importance during comparison.  Some potential methods for defining each type of region are identified. 

Region basis Method of region definition  

Geomorphic units 

Defined by using terrain analysis methods to characterise each element within the 
spatial field; terrain attributes such as elevation, slope, aspect, profile curvature and 
Multi-Resolution Valley Bottom Flatness (MRVBF) (Gallant and Dowling 2003) 
are all useful; the field of terrain attributes should then be categorised and/or 
segmented to create spatially-contiguous regions  

Soil/geology units 
Defined or obtained from other data sources (e.g. remote sensing, in-situ 
observations); assign each element within the spatial field to the unit it is located in 
and processed to ensure spatial contiguity of each region 

Similar climatic 
effects 

Defined by using relationships between terrain and climatic processes (e.g. south- 
or north-facing slopes) or using other climatic data sets (with sufficient resolution); 
could be categorised into larger units with similar hydrological influences 

Vegetation cover Defined or obtained from other data sources; could be categorised into larger units 
that have similar hydrological responses 
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multiple different valleys within the extent of the spatial field), a decision must be made 

whether to label the regions as one non-contiguous region or as individual contiguous 

regions.  When using regions from data-driven segmentation, meaningful region labels 

can only be defined based on the actual characteristics of the region (e.g. the average 

element value, the region size or shape).  In these situations, a visual representation of 

the regions is used when interpreting comparison measures. 

Knowledge-driven and data-driven methods can be combined together to produce 

specialised definitions of important regions within a spatial field.  This has been 

undertaken with time series data in hydrology by Boyle et al. (2000).  They processed a 

stream hydrograph and recognised ‘regions’ of driven and non-driven flow by using 

their understanding of how different hydrological processes appear in the data (i.e. user 

knowledge combined with data).  These regions were used to compare each 

‘hydrologically important’ region and were ultimately useful for model assessment. 

Similar, specialised methods for defining regions can be developed for spatial fields 

using standard spatial analysis tools in GIS and the pre-processing methods discussed in 

this thesis.  The main requirement is an understanding of how the hydrological process 

is revealed within the data.  Morin et al. (2006) has recently used a specialised method 

to define rain cell regions within RADAR rainfall fields (Figure 4.8).  The method 

grows rain cell regions from locally maximum rainfall intensity values.  In this example, 

regions are used as the basis for characterising rainfall events rather than comparison.   

 

Figure 4.8 A RADAR rainfall field is processed by using both knowledge-driven and data-driven

methods to identify rain cell regions deemed hydrologically important (adapted from Morin et al. 2006). 
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4.3.4 Region-based comparison method 

The current comparison methods used in hydrology need to be adapted so that they can 

work with regions.  Regions are defined for use in comparison for two different 

purposes: 1) to identify important groups of elements in the fields that should be 

compared separately from one another; and 2) to simplify the spatial field by defining 

structural features (e.g. homogeneous regions).  These two purposes can be respectively 

thought of as local region-based comparison and global region-based comparison, 

because of the manner in which the elements within a region are compared.   

In both of these methods, a comparison measure is produced for each region and should 

be interpreted relative to what the region is representing.  For example, the resulting 

comparison measures might describe the bias in the model for simulating a particular 

structural feature in the observed field.  Alternatively, when knowledge-driven regions 

have been used, the measure may reflect, for example, the model error on northern 

facing slopes (which may relate to evaporation issues in the model).   

The following sections present: 1) the general region-based comparison algorithm; 2) a 

description of local and global region-based comparison measures, including a new 

similarity measure; and 3) an example showing region-based comparison applied to the 

observed synthetic field in Figure 4.1. 

4.3.4.1 The region-based comparison algorithm 

Algorithm 4.3 is a general algorithm that details the framework and order of processing 

for a region-based comparison method.  When global region-based comparisons are 

undertaken, the variability within each region is characterised prior to comparison.  

When local region-based comparisons are used, any local comparison method can be 

applied to the elements within each region to produce the comparison measure.   

Results from region-based comparisons are presented as a table of measures (one for 

each region) and an accompanying figure showing the regions (labelled with their 

meaning).  Interpreting the result of a region-based comparison can be performed by 

contrasting the performance of each field for a particular region, or otherwise between 

all regions within a single field.  
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1 Specify source and target fields to be used 

2 For each region 

3  Create weighting field (mask) to isolate region 

4  If local region comparison   

5   Multiply source field by weighting field (mask) 

6   Calculate intermediate measure for each source element 

7   Summarise error or similarity values  

8  If global region comparison 

9   Multiply source and target fields by weighting field (mask) 

10   Summarise source element values 

11   Summarise target element values 

12   Compare summary values for region  

13 Go to next region 

14 Tabulate comparison measure results for each region  

Algorithm 4.3 The algorithm for a region-based comparison, using either global or local comparison 

measures.  The results are produced as a table, with one comparison measure for each region. 

It should be noted that this type of comparison does not compare different region 

definitions for each field.  To compare different region definitions, such as undertaken 

by Power et al. (2001) with land use maps, the regions must equivalent labels (i.e. so 

that comparable regions can be determined).  Such clear labels rarely exist for 

continuous hydrological fields and therefore this is not considered to be a suitable 

comparison method.  Instead, one set of regions are enforced onto both fields being 

compared in these methods. 

4.3.4.2 Local or global region-based comparison measures 

Local region-based comparison is a simple, yet very effective, method that applies a 

local comparison method within each specific region.  For each region, a local 

comparison measure is produced for each element in the ‘masked’ source field and it is 

summarised to describe the error or similarity within the region.  When applied to every 

region, the relative performance within different parts of the spatial field can be 

assessed and contrasted (e.g. all models simulate a specific region well, but another 

region poorly).  Any form of local comparison, including the tolerant methods 

introduced in this thesis, can be applied to produce this type of ‘specific local 

comparison’.  This method is effective because it incorporates the user definition of 

importance to remove the confounding effects of any unimportant elements.  Figure 4.9 

 



Chapter 4: Development of comparison methods 106  

illustrates this by showing the comparison of the set of observed regions overlain on the 

three different synthetic fields (from Figure 4.1) being compared. 

In contrast to the specific local comparison method, global region-based comparison is a 

type of ‘feature based’ comparison.  The region definition is enforced upon both fields 

being compared to change the structure of the field and to upscale the elements to an 

intermediate scale.  A global comparison measure is then determined using the global 

characteristics derived from the elements within each region (i.e. the spatial 

arrangement is ignored).  The effect of this ‘upscaling’ is illustrated in Figure 4.9 (right 

column), where each of the fields have been represented using the region mean.  This is 

what would be compared during a global, region-based comparison that uses BIAS as 

the comparison measure.  A low measure of BIAS for a region would indicate that the 

region is well simulated by the model.  When large scale regions are used (as in this 

example), BIAS measures can causes large amounts of variation to be lost.  This may be 

the purpose of defining the large scale regions as structural features and can be an 

effective way of reducing the impact of noise during comparison.   

The global comparison methods used most commonly in hydrology are limited to either 

comparing the means or the variances.  An alternative method, called the Kolmogorov-

Smirnov test (Press et al. 1992), can be used to compare the distributions of two data 

sets.  It uses the maximum separation found between the cumulative distribution 

functions of two continuous fields to describe how closely they ‘fit’ (Figure 4.10).  If 

the distributions overlap in any way, then the separation will be less than 1.  If they are 

identical, the separation is 0.  This measure is particularly useful for global comparison 

methods, because it helps to use more complete information about element distributions 

during comparison.   

This measure is used to describe similarity rather than error throughout this thesis.  

Therefore, it has been converted into a measure of similarity by taking the complement 

(i.e. one minus the separation value).  This global comparison measure is herein referred 

to as the Kolmogorov-Smirnov similarity measure (KS).   
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Figure 4.9 Three of the ‘modelled’ synthetic fields from Figure 4.1 are compared with the ‘observed’ 

field using region-based comparison.  The regions for this comparison are segmented from the observed 

field.  Local region-based comparisons (left column) retain the spatial variation within each region during 

comparison.  Global region-based comparisons using BIAS (right column) characterise the elements 

within each region and cause all variation to be smoothed out (based on the region template).  When the 

KS measure is used for region-based comparison, only the variability of values (but not location and 

values) is used for comparison, thereby utilising more information during comparison.   

 

Figure 4.10 Two examples of how the Kolmogorov-Smirnov test statistic measures maximum separation 

between cumulative distribution functions (dotted line).  The left example has a smaller separation 

distance and therefore receives a higher KS similarity value (i.e. 1 – separation distance).   
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4.3.4.3 Using region-based comparison 

To illustrate how region-based comparisons work and the information they produce, the 

‘modelled’ synthetic fields from Figure 4.1 are compared with the ‘observed’ field 

using regions segmented from the observed field (Figure 4.9).  This example uses MAE 

for local region-based comparison.  Global region-based comparison is measured using 

BIAS and the suggested KS measure.  The results for each region and the actual region 

definitions are detailed in Table 4.4. 

Inspecting the MAE measures in Table 4.4 reveals that no individual region is found to 

have low error in all of the models.  Nor does any model have low error for all regions.  

The noisy models have a regular amount of error in all regions, with no region being 

particular better or worse.  The ‘locally deformed’ models only have errors in regions 3 

and 5, as would be expected.  The smoothed model is found as the best overall 

representation of the observed field (i.e. ignoring the locally deformed models).  This is 

not as apparent when making global region-based comparison using BIAS, which finds 

the noisy models to be a better representation (due to the effect of upscaling).  This is 

most noticeable in region 1 for the noisy models, where the noise is averaged over the 

largest region.  The global KS measure finds similar performance for the smoothed and 

noisy models, although regions 4 and 5 are not as well ‘modelled’.   

When only region 5 is analysed (i.e. the highest magnitude values), the MAE finds no 

model that simulates the element values well.  However, when the region is treated as 

an irregular element by using the global BIAS measure, the noisy field is recognised as 

being a good representation (i.e. the noise is averaged out, leaving a similar mean 

value).  The KS measure confirms this, showing that the distributions of the values 

within this region are actually quite closely matched (KS=0.81), even though the local 

errors accumulate to suggest otherwise.  All of the measures used here fail to note the 

perfect correlation between the globally biased model and the observations.  This 

highlights the value of also using correlation-based measures (e.g. RSQ or COE) for the 

local region-based comparisons.   
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Table 4.4 The results of using region-based comparison with the synthetic fields from Figure 4.1.  One 

local method (MAE) and two different global methods (BIAS, KS) have been used to produce 

comparison measures for each region (numbered according to the figure).   

 
MAE 1 2 3 4 5 6 7 
b) Smoothed 16.6 46.0 58.8 16.7 71.2 21.6 30.9 
c) Noisy 86.8 92.1 89.3 85.6 75.9 77.8 81.9 
d) Noisy smoothed 88.5 106.8 103.9 88.7 96.9 92.3 101.0 
e) Globally biased 64.0 81.4 125.3 50.8 165.0 22.7 41.5 
f) Locally biased 0.0 0.0 5.1 0.0 117.4 0.0 0.0 
g) Locally shifted 0.0 0.0 4.7 0.0 78.9 0.0 0.0 
h) Locally biased and shifted 0.0 0.0 8.7 0.0 62.9 0.0 0.0 
i) Mean 29.3 79.0 291.1 81.4 489.8 221.7 128.1 
j) Randomly rearranged  93.8 132.9 318.1 101.5 485.3 228.8 139.9 
        
BIAS 1 2 3 4 5 6 7 
b) Smoothed -1.3 11.3 -2.8 1.6 -43.9 11.2 18.5 
c) Noisy -0.6 -4.0 9.6 -3.7 2.3 -7.7 22.6 
d) Noisy smoothed -1.2 12.8 -12.7 4.5 -38.9 17.4 6.6 
e) Globally biased 64.0 81.4 125.3 50.8 165.0 22.7 41.5 
f) Locally biased 0.0 0.0 5.1 0.0 117.4 0.0 0.0 
g) Locally shifted 0.0 0.0 4.2 0.0 -61.8 0.0 0.0 
h) Locally biased and shifted 0.0 0.0 8.6 0.0 18.2 0.0 0.0 
i) Mean 15.5 -71.6 -291.1 81.4 -489.8 221.7 128.1 
j) Randomly rearranged  16.3 -87.3 -267.7 77.2 -481.5 224.5 122.1 
        
KS 1 2 3 4 5 6 7 
b) Smoothed 0.90 0.84 0.89 0.93 0.52 0.86 0.78 
c) Noisy 0.70 0.78 0.82 0.67 0.81 0.80 0.63 
d) Noisy smoothed 0.67 0.76 0.80 0.65 0.75 0.73 0.66 
e) Globally biased 0.29 0.55 0.40 0.41 0.38 0.74 0.53 
f) Locally biased 1.00 1.00 0.96 1.00 0.52 1.00 1.00 
g) Locally shifted 1.00 1.00 0.98 1.00 0.69 1.00 1.00 
h) Locally biased and shifted 1.00 1.00 0.98 1.00 0.83 1.00 1.00 
i) Mean 0.32 0.13 0.00 0.00 0.00 0.00 0.00 
j) Randomly rearranged  0.81 0.40 0.12 0.38 0.06 0.11 0.22 
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4.3.5 Summary of importance methods 

The importance methods discussed here are primarily dependent on pre-processing to 

define what is important.  Importance is essential during comparison so that specific 

tests with specific meaning can be made.  Without importance, quantitative comparison 

measures can only describe the overall error (or similarity) of a model, which is unclear 

to interpret and is very limited when trying to understand why a model performs well.   

In hydrological applications, importance is usually defined based purely on 

measurement space (e.g. values over a certain threshold).  However, there are useful 

methods that allow spatially-contiguous regions of related elements to be defined.  

These can be defined based on the data (i.e. segmentation methods) or by using user 

knowledge (e.g. terrain regions).  Once defined, the regions can be used in the ‘specific 

local’ and ‘region-based comparison methods’ to compare each region.  Both methods 

produce a comparison measure for each region, although these could be combined into a 

single measure using some type of weighting if required.   

Importance has previously been considered in hydrological applications, such as in time 

series analysis where the important parts of a hydrograph can be separately used during 

comparison.  However, the specific importance of spatially-related regions is rarely 

used for model assessment.  These new pre-processing methods and region-based 

comparisons are directly useful for model assessment, as they provide performance 

measures with specific meaning, which may then be used for multi-criteria optimisation.  

Importance methods are considered less applicable to data assimilation, which is 

generally concerned with making corrections to the whole model extent.   

4.4 Tolerance 

The theme of tolerance is incorporated into comparison methods at the local scale, 

where is provides greater control over the local comparison of elements.  Currently, 

strict local comparison methods are exclusively used at the local scale, with no other 

options for local comparison.  Tolerance allows local comparisons to be more flexible 

and to consider the spatial (and temporal) relationships between elements that are 

nearby one another.   
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Currently in hydrological modelling, the notion of tolerance is only applied at a global 

scale.  After a comparison measure has been calculated between two fields, the result is 

usually evaluated relative to some level of expected performance that implicitly 

includes tolerance for uncertainty.  For example, the MAE measure for a soil moisture 

model might be calculated at 10% v/v, but it is assumed to be good performance 

because there is an ‘implicitly tolerated’ measurement error of 4% v/v.  Explicitly 

including tolerance into the local comparison process enables a more direct application 

of value tolerances (i.e. the 4% v/v tolerance would be considered during comparison of 

each measurement, rather than globally).  This approach also enables tolerances to be 

specified regarding the location of elements, which can allow for minor mismatches in 

the location of values.  These ideas can also be applied globally for tolerating temporal 

differences between spatial fields (e.g. to permit minor timing problems during 

comparison).   

Tolerances can be applied to either: 1) represent known uncertainties in the target (i.e. 

the reality) used for comparison; or 2) define the differences that are deemed 

insignificant to the user and apply to both source and target.  Both of these uses are 

actually just different rationales for using the same general process, but the setting of 

tolerance amounts and interpretation of the results differ.  In the first application, the 

source field is compared against an uncertain target.  The tolerance amounts are defined 

based on the known uncertainty of the target and they allow it to change within the 

tolerances to optimally match the source field.  This provides a ‘best case’ result 

describing the error remaining in the source field.   

The second application of tolerances uses informed decisions about what differences are 

considered insignificant during comparison.  These differences define the tolerance 

amounts.  The same comparison process is used (i.e. source held constant while target 

changes to find optimal match), but it is repeated in the opposite direction (i.e. switch 

source and target around) to apply the tolerances to the source field also.  The results of 

the two comparisons are averaged for each element to identify the significant 

differences that exist between the fields.  This assumes that both of the fields are equally 

uncertain.  Due to the fact that both fields are ‘changed’ in this type of comparison, the 
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resulting measure cannot be attributed to either field directly, but it does provide a 

general comparison measure. 

In hydrological modelling, the first case mentioned is the most common and useful.  

Modelled fields are usually evaluated by comparison with observed fields (which may 

have uncertainty in them).  The uncertainty of the observed fields is tolerated during 

comparison so that it is not included into the measure of model error (as occurs with 

strict comparison).  The second case is not so common for model assessment because it 

cannot attribute the result to either field and it allows the model to change (which 

should not occur when it is being assessed).  In this thesis, the two direction comparison 

is not pursued further, although it can be easily produced using the algorithm described 

in this section.   

A suitable comparison method that can evaluate fuzzy similarity for categorical spatial 

fields is used in land-use modelling (Hagen 2003) and provides the inspiration for the 

tolerant method implemented here.  The definition of fuzzy similarity is fundamental to 

the comparison method of Hagen (2003), but it is not appropriate for direct use with 

continuous hydrological fields.  This is because it only defines categorical value 

similarities and is only able to describe similarity, not error (which is more commonly 

used in hydrology).   

Therefore, a new and more versatile approach for defining ‘tolerance’ is developed here.  

The new tolerances are defined in a manner that should be familiar to hydrologists and 

they enable tolerant comparison measures of both error and similarity to be produced.  

They also permit tolerance of timing differences during comparison of spatial fields or 

series, which has not previously been possible.  The following sections detail: 1) the 

new approach to define tolerances for continuous spatial fields; 2) the general algorithm 

for the new ‘tolerant local comparison method’; 3) the comparison measures that are 

produced from the tolerant method; and 4) examples of tolerant comparison being used 

with the synthetic fields from Figure 4.1.  Preliminary findings from this work have 

been previously published in Wealands et al. (2004; 2005b). 
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4.4.1 Defining tolerances for continuous fields 

Tolerances are defined for each component of a spatial field that is variable.  These 

components are the time represented by the spatial field (T); the location (L) of an 

element value; and the element value (V).  Tolerances are used during comparison to 

allow a source field and its elements to be compared against all ‘similar’ target fields 

and elements.  This can be better understood by referring to Figure 4.11.  In this figure, 

the source field (or element) is shown in the top row and the ‘similar’ target fields (or 

elements) are represented in the bottom row.  For each different type of tolerance (and 

the combination of tolerances), the number of comparisons made between the source 

and target is described and illustrated.  It shows that once all three types of tolerance are 

combined, there are many potential target elements that may be similar to the source 

elements.   

 

Figure 4.11 A conceptual diagram showing how tolerance definitions change the number of fields and 

elements being compared.  In these examples a) demonstrates a time tolerance of 1 time step; b) 

demonstrates a location tolerance of 1 element; c) demonstrates a value tolerance (note ± on target 

element); and d) demonstrates the combination of the three other tolerances.  As the tolerance definition 

changes, so does the number of comparisons made between the source and target fields and elements.  In 

all cases, the source field is kept constant, so the tolerances are applied to the target field. 
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Two different ways for defining these tolerances are developed in this thesis – crisp 

tolerances and fuzzy tolerances.  Crisp tolerances define any differences between 

elements that are permitted during comparison.  When elements are compared they are 

considered as either ‘the same’ or ‘different’ based on these tolerances. This makes it 

possible to measure the local error for each element (i.e. in the same units as the field).  

A tolerant measure of error is useful because it allows all differences to contribute to the 

summary measure (i.e. large errors will cause an overall larger error).  Crisp tolerances 

should not be confused with ‘strict’ comparisons, which do not incorporate any notion 

of tolerance.   

Fuzzy tolerances are used to define a spectrum of differences between elements that are 

designated as being similar to some degree.  When elements are compared, they will be 

considered as having a defined level of similarity based on these tolerances.  Unlike 

with crisp tolerances, fuzzy tolerances can only produce a measure of local similarity 

for each element.  This makes them unable to describe the typical error in a model, only 

the recognised similarity.  The local similarity values are always in the range [0, 1] and 

represent the spectrum from ‘no similarity’ to ‘same’.  

The tolerances use the differences found between the times of spatial fields and the 

location and value of elements (ΔV, ΔL, ΔT).  The following formulae are used to 

determine the differences between each component of the elements being compared:  

element)V(target -element) V(sourceV =Δ

  (4.1) 

field)T(target  -field) T(sourceT

element)L(target  and element) L(sourcebetween  measured DistanceL

=Δ

=Δ

The crisp tolerance (CTOL) or fuzzy tolerance (FTOL) functions define how the 

difference for each component is translated into values describing the error (EV, EL, 

ET) or similarity (SV, SL, ST).  These values are then combined together (via 

multiplication) to describe the ‘tolerated local error’ (ELOC) or ‘tolerated local 

similarity’ (SLOC) between two elements by using the following formulae:  
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 (4.2) 

This describes how tolerances are used at a conceptual level (i.e. converting differences 

between elements into estimates of error or similarity).  During implementation, it is 

necessary to define the actual CTOL or FTOL ‘functions’.  The following sections 

describe: 1) the simple functions designed for use in hydrological applications; 2) how 

to choose appropriate settings for these tolerance functions; and 3) options available for 

designing more specialised tolerances.   

4.4.1.1 Tolerance functions 

Tolerance functions are used to translate the value, location and/or time differences 

between elements into error or similarity values, which are then combined.  Any 

function can be used to achieve this provided the output range of the function follows 

the definitions in Equation 4.2.  When defining tolerances for hydrological comparisons 

throughout this thesis, linear decay functions and absolute differences (i.e. non-

directional) are exclusively used.  These are chosen because they are simple starting 

points and they can be specified using characteristics of spatial fields that are frequently 

reported (e.g. measurement error, positional accuracy).   

For crisp tolerance functions, the maximum ‘allowed difference’ for each component of 

tolerance is all that needs to be defined.  For the time and location components (ET and 

EL), this defines which other elements or fields it can be compared with.  These 

 

Figure 4.12 The two parameters required for defining fuzzy tolerances – maximum ‘allowed difference’ 

and ‘limit of difference considered similar’.   
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tolerated elements are assigned a value of one; all other elements are considered to be 

undefined (i.e. they are not comparable).  For the value component of the element (EV), 

the maximum allowed error is subtracted from the actual value difference (i.e. reduces 

the error by the tolerated amount).  This is only reduced until the error reaches zero, in 

which case the element values are considered equal.  By multiplying ET, EL and EV, 

the tolerated local error between each pair of elements is obtained. 

Fuzzy tolerance functions require additional parameters to be specified.  For each 

component of tolerance, the maximum ‘allowed difference’ is defined along with the 

‘limit of difference considered similar’.  These parameters are denoted by the ALLOW and 

LIMIT subscripts for each element difference (e.g. |ΔV|ALLOW, |ΔV|LIMIT) (Figure 4.12).  

Any actual difference that is less than the allowed difference is assigned a similarity of 

one.  Any actual difference that is greater than or equal to the ‘limit of difference’ is 

assigned similarity of zero.  In between these values, a linear decay function is used to 

translate the difference into a similarity value.  

Figure 4.13 illustrates the parameters that are used for either crisp or fuzzy tolerances.  

For each component of tolerance, the parameters have been applied to a simple 

situation.  For example, Figure 4.13b shows an analysis window of elements 

surrounding the current element.  The crisp tolerance designates |ΔL|ALLOW = 1.5 

Figure 4.13 Examples of the parameters used for crisp tolerances (top) and fuzzy tolerances (bottom).

For each component of tolerance, the parameters are converted into a conceptual representation showing

the EV/EL/ET or SV/SL/ST values that are determined.    
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distance units, which allows any element directly neighbouring to be considered as 

having no error (and therefore being comparable).  A tolerance of 1.5 units was 

specified so that the diagonal elements were also included.  The fuzzy tolerance for 

location specifies |ΔL|ALLOW = 0, |ΔL|LIMIT = 2.  This produces a location similarity (SL) 

of 1 for the same location and 0.5 for horizontal neighbours that are 1 unit away (i.e. 

half-way along the linear decay function from 0 to 2).  All of the other representations 

given in Figure 4.13 help to illustrate how the two simple parameters (i.e. ALLOW and 

LIMIT) are converted into expressions of tolerance that are used during comparison.   

4.4.1.2 Choosing appropriate tolerance values 

The definition of tolerances is a subjective process that should be primarily guided by 

knowledge of the spatial fields being compared.  Tolerances should be chosen to reflect 

the existing uncertainty within the target field/elements; or the strictness with which the 

target field/elements need to be matched during comparison.  By introducing tolerances, 

the error measured between the fields will be reduced (and the similarity increased).  As 

the tolerances increase in magnitude, the error approaches zero (and similarity 

approaches one), but the actual rate of change is dependent on the fields being 

compared.   

When tolerances are set to tolerate the uncertainty in the target field/elements, the 

purpose is to remove the effects of the uncertainty on the resulting comparison measure.  

This helps to produce a measure that better reflects only the true model errors.  The 

tolerances can be set directly from reported characteristics of the uncertainty in the 

target field.  For example, characteristics such as measurement error or spatial accuracy 

are often available for spatial fields available in hydrology.  The |ΔV|ALLOW parameter 

can be set at the measurement error, thus rendering any lesser value difference to be 

insignificant.   

Where such values are not reported or known, an understanding of the measurement 

method or pre-processing used to create the target field can be used to determine 

appropriate tolerances.  Güntner et al. (2004) describes a hydrological example where 

modelled field elements were derived from a 50m elevation model, while the 

observations were collected with 10m spacing.  Because of the scale difference, location 
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tolerances equivalent to |ΔL|ALLOW = 0m, |ΔL|LIMIT = 50m were used for a binary field 

comparison.  This example applies tolerances to manage the uncertainty arising from a 

spatial scale difference.  Similar logic can be applied to devise appropriate time or value 

tolerances.  For example, when there are differences in the precisions of the observed 

and modelled values, frequent small value differences will exist.  With continuous 

fields, these insignificant differences will all be accumulated into an error measure and 

they can even preclude similarity from being recognised (i.e. because the values are not 

equal).   

The other approach to choosing tolerance values is for subjectively controlling the 

strictness of a comparison.  If, for example, a location difference of 1 element is 

considered insignificant, then this can be explicitly tolerated and the measures of error 

(or similarity) will reflect these conditions.  Using this approach allows simple 

hypotheses to be tested.  For example, the response of a comparison measures to 

different tolerance conditions (e.g. with and without timing tolerances applied) can 

indicate the presence/absence of specific effects in certain models.  The existing 

applications of categorical fuzzy comparison (e.g. Hagen 2003; Hagen-Zanker 2005; 

White 2006) generally use subjective methods for defining the similarity between 

values and locations, although there has been a method developed for translating expert 

knowledge about categorical relationships (e.g. between different land use categories) 

into tolerance definitions (Fritz and See 2005).   

The tolerances for value, location and time do not act independently of one another.  For 

example, a difference in location (or time) between elements (or fields) will actually 

appear as a value difference during comparison of continuous fields.  Therefore, a value 

tolerance can be used to implicitly tolerate differences caused by these other factors, but 

doing so potentially leads to significant errors being tolerated, which is undesirable.  

The relationships that exist between different components of tolerance vary with each 

field and cannot be quantified.  Therefore, when explicitly tolerating multiple types of 

differences (T, L and/or V) during comparison, the potential impact of all differences 

occurring together should be considered.  For example, if value and location tolerances 

are used together during comparison, they effectively allow the target field to be 

spatially smoothed.   
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If using tolerances together during comparison, it is recommended to set the tolerances 

amounts conservatively because their combined effect may be greater than desired.  

However, when the tolerances are being applied individually (e.g. just a value 

tolerance), they may be set using known characteristics of the data (which are usually 

inclusive of many combined differences anyway).  The ultimate goal of using tolerances 

is to remove the impact of insignificant or confounding differences from the 

comparison.  Experience is needed to know what tolerances are suitable for specific 

comparison situations, although some empirical analysis of the data may be valuable for 

design suitable tolerances.  

4.4.1.3 Specialised tolerances 

The tolerances applied during analysis in this thesis are kept fairly simple for the 

purposes of illustration and understanding.  However, more specialised tolerances can 

be easily implemented by modifying the way tolerances are defined.  One of the 

simplest extensions to tolerances is to make them only tolerate differences in certain 

directions.  For example, only tolerating positive value differences can ensure that only 

over-estimations are tolerated.  Similarly, directional time tolerances might be used to 

ensure that only fields that are ‘too late’ are tolerated.   

As well as considering the direction of differences, a specialised tolerance can utilise 

additional information to make tolerances that are adaptive (i.e. the tolerance changes 

with the element being compared).  For example, a terrain model could be used to 

determine which nearby elements are located upslope and within a certain distance (i.e. 

to tolerate only elements that can contribute flow downslope).  Alternatively, the 

tolerance could use a soils map and be adaptive to different soil types (i.e. have a 

different measurement error in each soil type).   

Specialised tolerances allow any type of local comparison process to be undertaken.  

These are only facilitated by the generally-applicable definition of tolerances described 

in this section and developed in this thesis.  The major reason behind this adaptability is 

the fact that tolerances are all applied locally, during the comparison of each individual 

element in the source field.  The tolerances are able to use the ‘raw’ information about 

the elements to formulate an estimate of local error or similarity.  While the analysis in 
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this thesis focuses on showing the general application and utility of the new comparison 

methods for use in hydrological modelling, there is scope for further research and 

development of specialised tolerances.   

4.4.2 The tolerant local comparison algorithm 

The tolerant local comparison algorithm begins by defining the source and target fields.  

The source field is the subject of the comparison (i.e. the local comparison compares 

every element within the source field).  This field is held constant so that the differences 

between it and the target(s) can be evaluated.  These differences are fundamental to the 

evaluation of tolerances (Equation 4.1).  The tolerant local comparison algorithm 

(Algorithm 4.4) can compare one source field to any number of target fields.  To 

compare multiple sources, the algorithm is simply run multiple times using the same 

target each time.  The algorithm produces both a tolerant local comparison measure 

using one of the summary measures in Algorithm 4.5-Algorithm 4.8 and also an 

associated intermediate field of tolerant local error or similarity values.   

The source field is held constant in this algorithm and the time tolerance is used to 

determine if each target field is temporally similar.  If so, it is compared against the 

source.  When comparing these temporally similar fields, each source element is held 

constant.  The location of each element in the target field is evaluated using the location 

tolerance to see whether it is spatially similar.  If so, the source and target element 

values are compared using the value tolerance.  This determines the similarity or error 

of the element values, which is combined with the spatial and temporal similarities to 

assign an overall similarity or error for the source element (based on all of the 

tolerances).  After conducting this for any similar fields and elements, the target field 

that is most similar is used to produce the final summary measures. 
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1 Define crisp or fuzzy tolerances for value, location and time  

2 For each target field (i.e. each time) 

3  Compute ET or ST between source and target fields 

4  If time difference is tolerated (ET=1 or ST>0) 

5   For each source element (i.e. the focus element) 

6    For each target element  

7     Compute EL or SL between focus and target elements 

8     If location difference is tolerated (EL=1 or SL>0) 

9      If tolerances are crisp 

10       Compute EV and then ELOC (ET*EL*EV) 

11       Add to list of potential ELOC values for focus element 

12      If tolerances are fuzzy 

13       Compute SV and then SLOC (ST*SL*SV)  

14       Add to list of potential SLOC values for focus element  

15    Go to next target element  

16    If list of ELOC/SLOC is not empty  

17     Assign optimal value (min ELOC or max SLOC) to focus element 

18    Else focus element is undefined 

19   Go to next source element  

20   Add to list of potential intermediate fields 

21 Go to next target field 

22 For each potential intermediate field 

23  Compute summary measure (TMAE, TCOE, TMS or TCE) for each field 

24 Go to next potential intermediate field 

25 Return optimal summary measure and associated intermediate field 

Algorithm 4.4 The general algorithm for the tolerant local comparison method.  This algorithm produces 

a summary measure (i.e. using one of Algorithm 4.5-Algorithm 4.8) and an associated intermediate field 

(of tolerant error or similarity values). 

4.4.3 Tolerant comparison measures  

The summary comparison measures produced from a tolerant local comparison method 

resemble those produced from a strict local comparison.  The current strict local 

comparison measures are RMSE, MAE, RSQ and COE.  Of these measures, RMSE and 

MAE are both direct summaries of the intermediate field of errors and describe the 

typical error.  In contrast, RSQ and COE both relate the errors to a known, adaptive 

reference (i.e. based on the actual data) and produce similarity measures.   
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There are two general tasks for which comparison measures are needed: 1) intra-

comparison (i.e. contrasting the performance of many different models all compared to 

the same observation); 2) inter-comparison (i.e. contrasting the performance of different 

models from different times/locations).  For intra-comparison tasks, the distributions of 

errors produced during each comparison are generally assumed to be equivalent 

(because the models are for the same time/location and are compared to the same 

observation).  This allows absolute measures of error (i.e. those not relative to any 

benchmark) to be quite safely used and contrasted.  However, for inter-comparison 

tasks, the distributions of errors cannot be assumed to be equivalent.  These tasks 

benefit from measures that are standardised by a known reference.  The widespread 

recognition and understanding of the COE measure within hydrology is evidence of the 

benefit of these standardised measures.  

Two comparison measures for summarising the intermediate error field produced from 

using crisp tolerances are presented here.  One measure is a direct summary of the error 

field; the other is adjusted to a known reference.  A similar set of two measures are also 

developed for the field of similarity values produced from using fuzzy tolerances.   

4.4.3.1 Crisp tolerant comparison measures 

Following the suggestions of Legates and McCabe (1999), the MAE measure is used in 

favour of RMSE throughout this work so that localised large residuals do not unduly 

influence the resulting comparison measure.  The familiar algorithm for MAE is applied 

to the intermediate field of tolerant local errors produced from using crisp tolerances.  

The resulting measure is termed tolerant mean absolute error (TMAE) (Algorithm 4.5).   

The tolerant coefficient of efficiency (TCOE) (Algorithm 4.6) is a relative measure of 

performance that uses an adaptive reference field to standardise the result (for use in 

inter-comparison tasks).  In this algorithm, the error between the source and target fields 

is judged in comparison to the error found between the reference and target fields.   
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1 Use field of ELOC values from Algorithm 4.4  

2 For each element in field of ELOC values 

3  If element has ELOC value  

4   Update running total of absolute ELOC values 

5   Increment count of elements 

6 Go to next element in field of ELOC values 

7 TMAE = total of ELOC values / count of elements 

Algorithm 4.5 The algorithm for the measure of tolerant mean absolute error (TMAE). 

1 Define reference field (default is mean of target field) 

2 Use Algorithm 4.4 to produce field of ELOC values for source/target 

3 Use Algorithm 4.4 to produce field of ELOC values for reference/target 

4 For each element in ELOC field (source/target) 

5  Find spatially coincident element from ELOC field (reference/target) 

6  If both elements have ELOC values 

7   Update running total of absolute ELOC values (source/target)  

8   Update running total of absolute ELOC values (reference/target) 

9 Go to next element in ELOC field (source/target) 

10 TCOE = 1 – [total ELOC(source/target) / total ELOC(reference/target)] 

Algorithm 4.6 The algorithm for the tolerant coefficient of efficiency (TCOE). 

The default reference field is designated as the mean target field (i.e. usually the 

observed field).  Every element in the mean target field contains the mean value of all 

target elements.  This is chosen as the reference because it is synonymous with the 

observed mean, as used in the popular COE measure (Nash and Sutcliffe 1970; Legates 

and McCabe 1999).  The mean field also represents the ‘no skill’ performance, in which 

no spatial variability has been represented.  An alternative reference field can be 

substituted (e.g. a longer-term mean field) if desired.  The TCOE measure is interpreted 

in the same way as a strict COE measure.  A value of 0 denotes performance equal to 

the reference; negative values denote worse performance than the reference; positive 

values approaching one denote good performance.   

When the relative measure is being calculated, the tolerances are applied to the 

comparisons between both source/target and reference/target.  Therefore, if the 

tolerances are large relative to the variance in the field, the reference field may be found 

to be highly similar to the target field.  In these situations, positive values for TCOE are 
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difficult to attain.  If the tolerances cause the reference to be the same as the target, the 

measure is undefined (i.e. divide by zero situation). 

4.4.3.2 Fuzzy tolerance comparison measures 

The TMAE and TCOE measures developed for crisp tolerances cannot be directly 

applied to the intermediate field of similarity values output from fuzzy tolerant 

comparisons.  With these comparisons, the simplest summary measure is the tolerant 

mean similarity (TMS) (Algorithm 4.7).  This describes the average similarity found per 

element in the field.  It should not be interpreted as being the proportion of the field 

elements that are similar, because many elements can have partial similarity.  

As with the crisp tolerances, a relative measure termed tolerant similarity efficiency 

(TSE) is developed.  Algorithm 4.8 differs slightly from the TCOE algorithm, although 

the mean target field is again used as the default reference field.  The interpretation and 

tolerance issues described for TCOE apply to this measure also.   

1 Use field of SLOC values from Algorithm 4.4  

2 For each element in field of SLOC values 

3  If element has SLOC value  

4   Update running total of SLOC values 

5   Increment count of elements 

6 Go to next element in field of SLOC values 

7 TMS = total of SLOC values / count of elements 

Algorithm 4.7 The algorithm for the tolerant mean similarity (TMS) measure. 

1 Define reference field (default is mean of target field) 

2 Use Algorithm 4.4 to produce field of SLOC values for source/target 

3 Use Algorithm 4.4 to produce field of SLOC values for reference/target 

4 For each element in SLOC field (source/target) 

5  Find spatially coincident element from SLOC field (reference/target) 

6  If both elements have SLOC values 

7   Update running total of SLOC values (source/target)  

8   Update running total of SLOC values (reference/target) 

9   Increment count of elements 

10 Go to next element in SLOC field (source/target) 

11 TSE = [total SLOC(source/target) - total SLOC(reference/target)] /  
      [count of elements - total SLOC(reference/target)] 

Algorithm 4.8 The algorithm for the measure of tolerant similarity efficiency (TSE). 
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4.4.4 Using tolerant comparison methods 

The tolerant comparison method is applied here to make comparisons between the 

synthetic fields from Figure 4.1.  Tolerant comparisons are undertaken using both crisp 

and fuzzy tolerances to five different synthetic fields.  Each field that is compared has a 

known deformation from the ‘observed’ field.  The tolerances are defined differently for 

each comparison and attempt to tolerate the introduced deformation.  To evaluate the 

ability of the tolerant methods, both strict and tolerant methods are analysed here.  For 

each comparison, the basic quantitative measures (TMAE or TMS) and the intermediate 

fields are analysed.   

4.4.4.1 Crisp tolerance comparisons 

The quantitative results of the five comparisons made using crisp tolerances are listed in 

Table 4.5.  The associated tolerance definitions and intermediate fields are detailed and 

shown in Figure 4.14.  For these fields, the MAE and TMAE measures can be directly 

contrasted to see the impact of introducing tolerance during each comparison.   

Example b) compares the smoothed field and allows a location difference of 2 elements 

to tolerate the scale difference introduced by smoothing.  The location tolerance causes 

a significant decrease in the typical error found in the model.  The intermediate field 

reveals this to occur across the whole field and the location tolerance has been particular 

useful for removing the large errors (i.e. by finding a better matching element nearby).  

Example c) compares the noisy field and allows value differences of 100 units to 

account for the ‘measurement error’ that was introduced.  The strict comparison has 

MAE of 86.1, which is reduced to 15.7 after the tolerances were locally applied.  If the 

same value tolerance were applied globally (i.e. after comparison, as is currently 

performed in hydrology), the fields would be considered similar (when in fact an 

average error of 15.7 still exists).   
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Table 4.5 The comparison measures produced during strict and crisp comparisons of the synthetic fields 

from Figure 4.1.   

Field MAE TMAE 
b) Smoothed 24.7 4.5 
c) Noisy 86.1 15.7 
f) Locally biased 4.3 1.7 
g) Locally shifted 2.9 0.2 
h) Locally biased and shifted 2.6 0.1 

 

 

Figure 4.14 The intermediate fields produced during strict and tolerant comparison of the five synthetic 

fields from Figure 4.1.  The effect of applying the crisp tolerances (as specified) can be seen in the right 

column of fields.   

 



Chapter 4: Development of comparison methods 127  

Example f) is very similar to c), but in this case the majority of the field has no error.  

As with c), if the value tolerance was applied globally it would have ignored the fact 

that there actually remains an error of 1.7 in the model.  Example g) shows the influence 

of location tolerances during comparison.  The ‘locally shifted’ field is compared while 

allowing for location difference of 2 elements.  Because the deformation actually shifted 

some elements to the right, these element do not appear as errors in the intermediate 

field.  However, the elements that replaced the shifted elements do appear as errors 

when compared under tolerance.  Example h) allows both value differences of 100 units 

and location differences of 2 elements to tolerate the deformations in the ‘locally biased 

and shifted’ field.  This reduces the local errors to almost zero everywhere.   

4.4.4.2 Fuzzy tolerance comparisons 

The quantitative results of the five comparisons made using fuzzy tolerances are listed 

in Table 4.6.  The associated tolerance definitions and intermediate fields are detailed 

and shown in Figure 4.15.  In this situation, the TMS (i.e. average similarity) value can 

be compared against the strict similarity measure, which is the percentage correct 

(PCOR).  However, with continuous fields the PCOR generally finds few ‘perfectly 

matching’ values and often gives quite low results.  The RSQ and KS measures of 

similarity (i.e. one local, one global measure) are also listed to provide some basis for 

discussion.   

Example b) compares the smoothed field while tolerating a location difference limit of 4 

elements and value difference limit of 100 units.  The average similarity is 0.82, which 

suggests high similarity throughout the field.  By combining a value and location 

tolerance together, every element is actually found to be similar to some extent.  The 

least similar element on the right hand side of the field has similarity of 0.24, even 

though the actual residual for this element is greater than the value tolerance.  This is 

due to a more similar value being found nearby.  In the crisp tolerance example, the 

element is allocated the residual between it and the nearby value.  With fuzzy 

tolerances, the location difference also contributes to the final estimate of similarity.  

Therefore, even if an identical value were found nearby, the local similarity would be 

less than one because of the location penalty.   
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Table 4.6 The comparison measures produced during strict and fuzzy comparisons of the synthetic fields 

from Figure 4.1.   

Field PCOR RSQ KS TMS 
b) Smoothed 0.00 0.93 0.93 0.82 
c) Noisy 0.00 0.68 0.81 0.30 
f) Locally biased 0.97 0.98 0.98 0.97 
g) Locally shifted 0.97 0.98 0.99 0.98 
h) Locally biased and shifted 0.97 0.98 0.99 0.99 

 

 

Figure 4.15 The intermediate fields produced during strict and tolerant comparison of the five synthetic 

fields from Figure 4.1.  The effect of applying the fuzzy tolerances (as specified) can be seen in the right 

column of fields.. 
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Example c) recognises any value difference less than 100 to be similar while comparing 

the noisy field.  Contrasting the RSQ correlation measure with the TMS, it appears that 

the noisy field represents 68% of the variance in the ‘observed’ synthetic field, yet the 

elements only have similarity of 0.30 on average (under these tolerances).   

In examples f) through h), the influence of tolerances on local deformations can be seen.  

In contrast to the error field shown in the left column of Figure 4.15, the tolerant field 

for f) shows that all of the elements in the locally biased region have no similarity.  By 

including a location tolerance in g) finds one part of the local region to have similarity 

of 0.5, while the rest has no similarity.  This is because matching element values are 

found within the tolerance, but the locations are not coincident and are therefore 

penalised.  Example h) shows that when the tolerances are combined, more extensive 

searching for similar elements is allowed and the similarity improves.   

4.4.5 Summary of tolerance methods  

The tolerant comparison method and the approach described for defining tolerances 

permit the user to consider alternative aspects of spatial field comparison.  This allows 

similarity to be evaluated between elements that are not coincident in time, space or 

value, based on the user defined rules.  In practice, the tolerances can be considered to 

define the uncertainty for time, location and/or value of the target fields, which controls 

what each modelled field (or element) is compared against (refer Figure 4.11).  In 

general, tolerances are expected to be applied separately to ensure that their combined 

effects are not too great.  This also helps to make the resulting measure have a clear 

meaning (e.g. model error when location differences are tolerated).   

In hydrological modelling, tolerances should be applied during model assessment to 

allow the observed fields (i.e. the targets) to represent all possible representations of 

reality (i.e. to change within the tolerances).  This enables the modelled fields (i.e. the 

sources) to be evaluated against the ‘best possible realisation’ of the observed fields, 

which thereby makes the results of the comparison identify the ‘best case’ model error 

(or similarity).  Strict local comparisons, as are currently undertaken in hydrology, use 

only one realisation of the observed field (i.e. assumes target field is strict) and may 

therefore be including observation errors into the measure of ‘model error’.  Tolerances 
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can also allow the user to investigate alternative comparison approaches and their 

impact (e.g. if timing errors were tolerated, would the optimal parameters change).  For 

data assimilation, tolerances are expected to be useful for ensuring that only the 

significant local differences in the model are identified.  Algorithm 4.4 produces an 

intermediate field of the tolerant error (or similarity), which represents the significant 

differences between the model (i.e. the subject of the corrections) and the uncertain 

observations.  This field would be more effective for determining corrections to the 

model states, as it is less affected by the uncertainty of the observed fields. 

4.5 Completeness 

Completeness is a theme that should be sought during any comparison.  It is highlighted 

here in response to the inability of any single comparison measure to comprehensively 

compare all aspects of spatial fields.  Instead, completeness during comparison can be 

achieved by using a range of definitions for importance (e.g. data-driven and 

knowledge-driven), tolerance (e.g. ranging from strict to specialised) and scale.  The 

different comparison measures (e.g. error and similarity) produced using these 

definitions are used to evaluate multiple aspects of comparison for model assessment 

tasks.  Multiple ‘objective functions’ such as these are recognised as being essential for 

use in model assessment tasks and the methods for performing such assessments are 

widely researched in hydrology (e.g. Gupta et al. 1998; Boyle et al. 2000; Madsen 2003; 

McCabe et al. 2005). 

The new methods described in this chapter are essential for comparing multiple 

different aspects of spatial fields.  Importance definitions provide a ‘focus control’ for 

comparison; tolerance definitions provide a ‘strictness control’; and the choice of error 

or similarity measure controls whether to use a ‘penalty or reward’ approach.  

Combining these methods with the current comparison methods allows some different 

scales to be investigated (e.g. global, local, region-scale), but there is no comprehensive 

treatment of scale.  Therefore, a ‘multiscale comparison method’ developed for 

ecological modelling applications (Costanza 1989) has been adapted for use with 

continuous hydrological fields.   
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This section details the resources available to the user for achieving completeness 

during comparison.  These resources include: 1) a multiscale comparison method that is 

developed and explained; and 2) a flowchart identifying how the current and new 

methods work together to produce comparison measures for different aspects of spatial 

fields.  Using these resources, it is possible to devise a comparison strategy for different 

hydrological applications.  While this section does not explain how to devise this for 

every possible hydrological situation, it does identify the general objectives of a 

comparison strategy and suggests how to achieve them.  

4.5.1 Comparison of multiple spatial scales 

The methods used for comparing spatial fields are most commonly undertaken at the 

finest scale (i.e. the resolution of the spatial field).  However, during visual inspection 

comparisons are made at a variety of scales.  A multiscale comparison fundamentally 

works by generating upscaled representations of the spatial fields; conducting local 

comparison for each of the ‘upscaled’ fields; and summarising the results for each scale.  

Conducting multiscale comparisons allows analysis of the variation (or persistence) of 

differences across scale.  They also implicitly allow for some differences in the value 

and location of elements to be tolerated.  This occurs because the exact definition of 

each element is being relaxed via the upscaling process.   

The most critical feature of a multiscale comparison is the upscaling method used.  

Upscaling usually involves the averaging of multiple elements within a larger area to 

increase spatial support (and can also change the spacing and extent).  In hydrology and 

other disciplines, scaling of specific hydrological measurements to different temporal 

and spatial scales is actively researched (e.g. Blöschl and Sivapalan 1995; Dungan 

2001; Western et al. 2002).  For multiscale comparison of specific hydrological fields 

such as soil moisture, the scaling methods described in Western et al. (2002) could be 

used to create the upscaled fields.   

For more general application, the approach to multiscale comparison suggested by 

Costanza (1989) can be applied.  This method uses a moving analysis window of 

increasing radius (R) to represent each element at a range of scales specified by the user.  

As the analysis window radius increases, the spatial support of each element is 
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effectively increased and produces a form of upscaling.  A new multiscale algorithm 

based on this approach is detailed in the following section, followed by an analysis of 

its use with the synthetic fields from Figure 4.1. 

4.5.1.1 The multiscale comparison algorithm 

The existing multiscale method of Costanza (1989) cannot be directly implemented for 

hydrological fields.  This method was developed for comparing categorical fields from 

ecology and uses a specialised global measure for determining the category error 

between each ‘analysis window’.  To make this method more applicable for continuous 

fields, two different global measures for comparing the analysis windows are used – 

absolute bias (|BIAS|) and Kolmogorov-Smirnov similarity.  Any measure could be 

used here, although the measure should compare the analysis windows as though they 

are actually ‘upscaled element’.  Therefore, the spatial arrangement of elements within 

each upscaled element should be disregarded during these comparisons, which is 

achieved by using |BIAS| and KS.  The method used by Costanza (1989) for defining 

each analysis window has also been modified to account for the smoothing problems 

that can occur when treating elements on the edge of the spatial extent.  These effects 

cause biases in the measure produced by Costanza (1989) as a result of treating ‘edge 

elements’ less frequently than elements in the centre of the field.   

The adapted multiscale comparison method is detailed in Algorithm 4.9.  Three 

different parameters must be set for this method: 1) the scales to be compared; 2) 

whether to use absolute bias or KS similarity to comparing the analysis windows; and 3) 

the scale weighting parameter used to combine the performance from all scales into a 

single measure.  These three parameters control how the resulting intermediate and 

summary measures should be interpreted.  During multiscale comparison, the size of the 

analysis window always begins at a radius of zero (i.e. local comparison) and is 

incremented until the analysis window covers the whole field (i.e. global comparison).  

Measures are produced for a range of intermediate scales that can be adjusted using the 

radius parameter (i.e. to reduce processing time).  In practice, some knowledge about 

the spatial structure of the observed field should be used to parameterise a multiscale 

comparison.  For example, the variogram of a field could inform the user about the 

maximum scale of organised features.   
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1 Specify maximum radius and radius increment  

2 Specify scale weighting parameter K  

3 For R = 0 to R = maximum dimension of field step by radius increment 

4  For each source element 

5   Characterise all source elements within R (mean or distribution) 

6   Characterise all target elements within R (mean or distribution) 

7   Compare characteristics to produce comparison measure (|BIAS| or KS) 

8  Go to next element 

9  Determine overall summary measure for this scale (mean |BIAS| or mean KS)

10  Determine weight for this scale = e^(-K * R) 

11  Keep running sum of weights  

12  Keep running sum of weighted summary measures (i.e. weight * measure) 

13 Go to next scale (i.e. R = R + radius increment) 

14 Plot each overall comparison measure against scale 

15 Multiscale measure = sum weighted summary measures / sum weights 

Algorithm 4.9 The general algorithm for a multiscale comparison method.  The comparison measure 

used for each scale (lines 5-7) defines how to interpret the resulting measure (i.e. error or similarity).  The 

method produces an intermediate plot (measure versus scale) and a multiscale comparison measure of 

error (MSMEK) or similarity (MSMSK). 

The decision to use either |BIAS| or KS for comparison determines whether error or 

similarity is reflected in the intermediate and summary measures.  Figure 4.16 illustrates 

the plots and their general interpretations that result from using each type of measure.  

With continuous fields, it is common for error to decrease with scale (i.e. from MAE 

down to |BIAS|) and for similarity to increase with scale (i.e. from typically low PCOR 

up to higher KS).  The mean |BIAS| or mean KS values plotted for the intermediate 

 

Figure 4.16 A conceptual plot of how the error (red) or similarity (blue) measures can vary with scale.

For errors, the plot is bounded by MAE at local scale (R = 0) and absolute BIAS at global scale (R = 

maximum extent of field).  For similarity, the plot is bounded by PCOR at local scale and KS similarity at 

global scale.   
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Figure 4.17 The scale weighting parameter (K) controls how influential the comparison measures made 

at each scale are when producing the multiscale comparison measures (MSMEK and MSMSK).  

scales can reveal characteristic scales where the performance improves suddenly.  These 

features may be related to scale differences between the fields or other related 

characteristics (e.g. noise).   

The scale weighting parameter (K) (Algorithm 4.9, line 10) is used to control the 

influence that measures from each scale have on the summary multiscale measure (e.g. 

MSMEK).  This approach uses an exponential decay function to determine the 

weighting and was originally developed by Costanza (1989).  As Figure 4.17 shows, 

when K = 0 each scale contributes evenly to the summary measure and the multiscale 

measure is simply the average value across all comparison scales.  As the value of K is 

increased, the contribution of coarser scales is reduced and local scales are more 

influential in the final measure.  For example, at K=0.5 only the scales up to a radius of 

about 4 play any major role in defining the multiscale measure.  This weighting 

parameter and the specification of scales to use in the comparison combine to determine 

what the multiscale measure is actually testing.   

4.5.1.2 Using the multiscale comparison method 

To illustrate the utility of the multiscale comparison method, some synthetic fields from 

Figure 4.1 are compared to the observed field.  The smoothed, noisy and rearranged 

fields are used to represent situations where the spatial support differs between the 

fields being compared.  The multiscale method is applied using the |BIAS| and KS 
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measures and the intermediate plots (Figure 4.18) and multiscale measures are analysed.   

The numerical results of the multiscale comparisons are listed in Table 4.7, along with 

the results of the scale-specific local and global comparisons.  All scales up to R = 20 

elements (i.e. approximately half the field width) contribute to the resulting measures. 

The numerical results in Table 4.7 reveal that the multiscale measures (MSME0 and 

MSMS0) produce overall summary measures that are between the local and global 

measures.  These have all been produced using K = 0, where all scales are weighted 

equally.  In the top plot in Figure 4.18, mean |BIAS| versus scale is shown and the most 

prominent changes occur over the first 3 scales in all cases.  The noisy field shows this 

most clearly, with the value reducing from 86 down to 17 after the first scale.  This is a 

logical finding because the increase in scale causes more of the random noise to be 

averaged out.  At larger scales, the noisy and smoothed fields have minimal error.  The 

randomly rearranged field improves in error over the first few scales, again due to the 

basic smoothing occurring.  However, the error found in the rearranged field does not 

rapidly decrease, thus identifying the persistent errors present across all of the 

intermediate scales.  Table 4.7 identifies that this error reaches 0 at global scale, where 

all notion of spatial arrangement is removed.   

The bottom plot in Figure 4.18 represents mean KS versus scale and appears to be 

simply a mirror of the top plot, although closer inspection reveals differences.  With the 

similarity measure, the smoothed field is found to be most similar at all scales (apart 

from global, where the rearranged field is considered identical).  The KS measure 

compares the distribution of values in the upscaled elements, so the noisy field does not 

get averaged out as much and has lesser similarity.  Of interest in this plot is the greater 

improvement in the performance of the random field once the scale increases.  At a 

scale of 15, the random field is actually considered as similar as the noisy field, because 

sufficient elements are being compared for the distributions to begin to agree.   

 



Chapter 4: Development of comparison methods 136  

Table 4.7 The bounding values and multiscale measures (MSME0 and MSMS0) for the error and 

similarity-based multiscale comparisons plotted in Figure 4.18.   

Field MAE MSME0 |BIAS| PCOR MSMS0 KS 
b) Smoothed 24.7 3.01 0.5 0.00 0.82 0.93 
c) Noisy 86.1 10.05 0.0 0.00 0.69 0.81 
j) Randomly rearranged 136.3 69.16 0.0 0.00 0.64 1.00 

 

 

Figure 4.18 Two intermediate plots showing the multiscale comparison measures of error (top) and 

similarity (bottom) versus scale.  The scale ranges from R = 0 (local scale) to R = 20 (approximately half 

global scale).  The full range of scales is not shown so that details in the finer scales are visible.  The 

global scale values (i.e. where the plots finish) are listed in Table 4.7. 
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An additional use of multiscale comparisons, for diagnostic purposes during analysis, is 

illustrated in Figure 4.19.  In this example, the smoothed and noisy fields are compared 

using multiscale comparison but with a slightly different approach – only one of the 

fields is upscaled while the other is kept at its finest scale.  This is used to discover if 

better agreement exists between the fields when represented at different scales.  The plot 

shows that when only the smoothed field is upscaled, the error increases consistently 

and there is no coarser scale with a lower error.  If only the observed field is upscaled, 

an obvious improvement in error occurs at R = 2 elements.  This indicates that the 

observed field has a scale difference from the smoothed field (i.e. it contains finer scale 

features).  When both fields are upscaled, the effect of the scale mismatch is still visible 

in the plot but is less apparent.  With the plot for the noisy field, when it is upscaled 

there is an improvement in error, but it produces a less obvious minima than seen with 

the smoothed field.  This provides evidence that upscaling would make the fields more 

similar, but the gradual increase in error at the coarser scales suggests this is not caused 

by a clear scale difference.   

The multiscale measures are most useful when the intermediate plot of ‘measure versus 

scale’ can be visually analysed to detect characteristic scales.  When analysis of the plot 

cannot be undertaken (e.g. during an automated process), analysis can be based on a 

multiscale measure that summarises the key scales of interest, which are usually the first 

 

Figure 4.19 Two intermediate plots showing the mean |BIAS| measure versus scale for comparisons of

the smoothed (left) and noisy (right) fields (Figure 4.1).  These plots are used for diagnosing scale 

differences between fields.  The result of upscaling both fields is shown as a reference.   
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few scales.  Once the field has been upscaled to R > 5, the results are usually quite 

regular and of limited additional interest over a global scale comparison.  These 

measures are particularly suited to situations where a single comparison measure is 

required (e.g. when multi-criteria assessment is unavailable).  The multiscale measure 

condenses comparisons of multiple different scales together and thereby implicitly 

tolerates differences between the fields (via the upscaling).  This produces a single 

numerical measure that is indeed useful, but it does not replace the richer information 

available in the individual contributing comparisons.  

4.5.2 Combining methods in the comparison flowchart 

As there is no single method capable of completely comparing spatial fields, the 

combination of current and new methods is used to achieve completeness during 

comparison.  The widely-used current methods provide measures of strict error and 

strict similarity at local and global scales, but when the new pre-processing and 

comparison methods are added to these current abilities, an extensive suite of methods 

for comparing many aspects of spatial error or similarity are created.  The comparison 

flowchart presented in Figure 4.20 shows how these combinations occur and is 

supplemented by information in Table 4.8.  The comparison flowchart begins with 

modelled and observed spatial fields; applies pre-processing methods to them; uses a 

range of different methods to produce a range of comparison measures; and combines 

these measures into an overall model assessment.  The final step is not the focus of this 

thesis; the determination of the suitable comparison measures is.   

In this flowchart, the shaded boxes represent where the new pre-processing or 

comparison methods have added a branch to the flowchart.  The bottom row of the 

flowchart shows 14 groups of comparison measures that are made available by 

combining the methods (Table 4.8).  Of these 14, only 3 groups can be achieved with 

the methods that are currently used in hydrology.  The KS measure creates the group of 

global-scale similarity; the new multiscale measure directly creates 2 new groups; 

introducing tolerances directly creates 2 new groups; and introducing importance (via 

regions) contributes to 6 new groups.  This tally shows that by combining existing 

methods with some new, versatile methods, many more aspects of comparison can be 

measured and at a number of new scales. 
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Figure 4.20 The comparison flowchart shows how the current and new comparison methods interact.  

The acronyms (bottom row) refer to the general groups of comparison measures available (Table 4.8).   
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Table 4.8 Details of the acronyms listed in the comparison flowchart Figure 4.20.  Each acronym refers 

to a general group of comparison measures, within which there may be one (or more) particular measures 

that have been discussed in this thesis.  Each group of measures has a particular scale of application.   

Group of comparison measures Quantitative comparison measures 
discussed in this thesis 

Scale of 
application 

G E – Global error  BIAS 
|BIAS| Global 

G S – Global similarity  KS Global 

L E – Local error RMSE 
MAE Local 

L S – Local similarity 
RSQ 
COE 
PCOR 

Local 

TL E – Tolerant local error TMAE Local to 
intermediate 

TL S – Tolerant local similarity 
TCOE 
TMS 
TSE 

Local to 
intermediate 

M E – Multiscale error  MSMEK All 

M S – Multiscale similarity MSMSK All 

R E – Region-based error BIAS per region Intermediate 

R S – Region-based similarity KS per region Intermediate 

SL E – Specific local error RMSE for specific region 
MAE for specific region Specific local 

SL S – Specific local similarity RSQ for specific region 
COE for specific region Specific local 

STL E – Specific tolerant local error TMAE for specific region Specific local to 
intermediate 

STL S – Specific tolerant local similarity 
TCOE for specific region 
TMS for specific region 
TSE for specific region 

Specific local to 
intermediate 

The flowchart provides a clear map of the options for comparison.  It can be used to 

navigate down through the steps of processing to determine what comparison measures 

are available for use in model assessment.  It can also be used to navigate up from a 

particular comparison measure to see what decisions or steps are needed to calculate it.  

This is particularly useful when the measure is unfamiliar and the comparison method 

requires user parameterisation.   
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4.5.3 Comparison strategy for hydrological modelling 

The flowchart shows the full range of comparison options available.  Many of the new 

methods are dependent on user knowledge to parameterise and direct them.  There is a 

great diversity of measures represented in this chart and the associated table, although 

they are not all required in every situation.  For example, when the spatial arrangements 

in the fields are deemed unimportant, using global measures of error and similarity are 

probably sufficient.   

When such diversity of measures is presented, the difficult question arises – “What 

comparison measure(s) should I use for assessing my hydrological model?”  The simple 

and non-committal answer is – “The suitable comparison measure(s) depend on the 

specific application and the purpose of the assessment.”  While this is true, the 

following section is provided to give some more detailed guidance.   

Based on the review of comparison methods (both qualitative and quantitative) and the 

measures made available via developments in this chapter, there are some major 

objectives that should be achieved during comparison.  The user is responsible for 

selecting the comparison measures to use for assessments and these measures should: 1) 

make comparisons across a range of scales; 2) measure only the significant errors and 

significant similarity between elements; and 3) make comparisons that answer specific 

questions about model performance.   

4.5.3.1 Objective 1: cover a range of scales 

Continuous spatial fields contain local details, intermediate features and global 

characteristics that are all important to compare.  Current methods are applied at the 

extremes of scales and fail to recognise similarity between intermediate scale features, 

mainly because these intermediate scales for comparison are poorly defined.  A 

comparison strategy should aim to make comparisons at the extreme scales and also at 

one or more intermediate scales.   

Intermediate scale comparison measures can be calculated using region-based 

comparison methods (where there are specific features of interest) or tolerant local 

comparisons with a location tolerance specified (where there are scale differences of 
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known uncertainties).  An intensive comparison of all scales can also be achieved using 

the multiscale methods.  

4.5.3.2 Objective 2: measure both significant errors and similarity 

The fundamental approaches to comparison used by error and similarity measures are 

different and they have quite different interpretations.  At least one measure of each 

type should be used.  For these measures, the user should make efforts to ensure that 

only the differences (or similarities) that are significant (for the purposes of the 

comparison) are being considered.   

Comparison measures of error and similarity are available for all scales of comparison.  

Controlling these measures to only use significant differences (or similarities) can be 

achieved using tolerant methods (at local scale) or via pre-processing.   

4.5.3.3 Objective 3: make specific tests of model performance 

When all elements in the fields are compared, the resulting comparison measure is 

obviously a response to the error in all elements.  In many applications, specific 

elements are more important than others.  Using user knowledge to identify these 

important elements or regions is beneficial and can be used to test specific parts of the 

fields.  The user should incorporate any useful knowledge into the comparison by 

defining regions of importance.  Their choice depends on the specific objectives and 

uses of the model.  These specific tests are then undertaken using either region-based or 

region-specific local comparison measures.   

A range of different importance definitions should be used if they can be defined.  For 

example, only saturated areas (i.e. those above a threshold) may be compared for 

assessing a model of flood response.  In other situations, both the value and shape can 

be considered to identify importance.  For example, high rainfall areas that are 

elongated (linear features) may be used when assessing frontal precipitation, while 

circular regions may identify convective precipitation.  These tests will always depend 

on user knowledge of the phenomena being assessed, although there are a number of 

‘threshold processes’ in hydrology that lend themselves to this type of approach.   
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4.5.3.4 Summary of comparison strategy 

By selecting comparison measures that address each of these objectives, the 

completeness of the overall comparison can be established.  Ultimately, the onus 

remains with the user to select the measures and parameters that are used for assessment 

(as is current practice).  It is expected that by providing new concepts and measures that 

encourage greater user input, users will give more thought to comparisons and 

consequently make more rigorous and insightful assessments.  This strategy and the 

decisions required in devising it are illustrated in the following chapter for use in a real 

hydrological modelling situation.  

4.6 Chapter summary 

Throughout this chapter, the three major themes from the review – importance, 

tolerance and completeness – have been developed into comparison methods that can be 

used with hydrological spatial fields.  These new comparison methods have each been 

tested using synthetic fields.  The response seen in each of the measures (to the 

deformations introduced) was quite clear and matched the expected performance.  These 

measures can now confidently be applied in ‘less controlled’ situations (e.g. for 

comparison of modelled fields with in-situ observed fields) to evaluate their utility for 

making specific hydrological comparisons.   

The combination of the new methods with the current methods has expanded the range 

of available comparison measures greatly.  These measures can be used to compare 

many diverse aspects of spatial fields, including the representation of intermediate scale 

features (i.e. regions) and spatial relationships between elements (i.e. by using 

tolerances).  Such aspects were not able to be quantitatively compared prior to 

developing these methods.   

The diversity of the comparison measures made available throughout this chapter 

introduces greater flexibility to model assessments using spatial field comparison.  A 

general strategy for choosing suitable comparison measures is presented, but the details 

of the strategy are expected to vary with application and purpose.  The following 

chapter devises a comparison strategy that uses these comparison measures to evaluate a 

real hydrological modelling situation.   
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Chapter 5  

Hydrological application of 

quantitative comparison methods 

5.1 Chapter overview 

The assessment of spatially-distributed hydrological models can involve a range of 

processes including calibration, optimisation, testing and understanding.  All of these 

processes can utilise the results of spatial field comparisons, particularly when the 

number of models being assessed preludes use of visual analysis.  The current 

comparison measures used in hydrology compare only a limited number of aspects of 

spatial fields, but new methods introduced in the previous chapter enable a greater range 

of spatial field aspects to be compared (e.g. the comparison flowchart).  The goal in this 

chapter is to evaluate the use of these comparison measures for hydrological model 

assessment.   

The new comparison measures are applied to an example data set from hydrological 

modelling and their performance (for model assessment) is evaluated.  There is no 

‘correct answer’ to model assessment – it is an entirely subjective process.  However, a 

model assessment conducted by experts (i.e. those familiar with the model and data) 

does provide a useful benchmark against which an automated method can be evaluated.  

This chapter introduces the distributed soil moisture modelling work undertaken at 

Tarrawarra (Western and Grayson 2000), for which an existing ‘expert assessment’ 

using spatial fields is available.  Based on the approach used by the experts and the 

comparison measures available, a strategy is devised for conducting the comparison (i.e. 

the measures and parameters to use).   
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The comparison strategy is applied to produce a range of measures, which form the 

basis of the model assessment processes.  These measures are then analysed to: 1) 

recognise the optimally performing model(s) (or parameters); and 2) to identify 

where/when the model performs well (or badly).  The first type of analysis simulates 

what is undertaken during calibration or optimisation.  The second is used to assist with 

model understanding, which is usually only possible with visual inspection of the spatial 

fields.  The analysis results from the assessment are evaluated using the expert 

assessment and visual inspection of the fields.  The chapter concludes with a discussion 

about the relative merits of each group of comparison measures. 

5.2 Hydrological modelling example 

In this chapter, a comparison strategy is devised and applied for assessing the modelled 

spatial fields from a real hydrological modelling situation.  Due to the absence of 

modelling or field observation in this thesis, an example has been chosen that is 

considered representative of many different hydrological modelling situations.  The 

example chosen – the Tarrawarra project – has a variety of modelled spatial fields and 

independently produced observed spatial fields (i.e. not just one model and one 

observation); a temporal extent covering a range of climatic conditions; a spatial extent 

that includes significant topographic variation; and observed spatial fields that contain 

both random and organised features (i.e. not too simple for modelling).   

The Tarrawarra project (Western et al. 1999b) focuses on the 10.5 hectare Tarrawarra 

catchment located in the Yarra Valley, approximately 60 km east of Melbourne, 

Australia (Figure 5.1).  This catchment has been the subject extensive research and 

review in the past decade and is well known in the hydrological community (Western et 

al. 1998; Western et al. 1999b; Western and Grayson 2000; Western et al. 2004).  The 

catchment is mildly undulating, covered in pasture and features two southerly facing 

drainage lines, but these are not perennial streams.   
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Figure 5.1 The Tarrawarra catchment, showing topographic features and gauging equipment (from 

Western and Grayson 2000). 

In the original research by Western et al. (1999b) they investigated the spatial 

organisation of hydrological processes, particularly soil moisture.  Soil moisture is a key 

controlling variable in the hydrological cycle and also a key state variable in many 

hydrological models.  It is highly variable in both space and time and is influenced by 

many factors (e.g. topography, climate, land use), which together produce complex 

spatial arrangements of soil moisture.   

Fully-distributed hydrological modelling has been undertaken at Tarrawarra by Western 

and Grayson (2000) using the Thales model (Grayson et al. 1995).  Ten 

parameterisations were used to produce modelled spatiotemporal series (with daily time 

step) for a 14 month period (September 1995 to November 1996).  Within this period, 

observed fields of ‘daily’ soil moisture were collected (using in-situ measurement) on 

13 occasions and provide the ‘reality’ against which the modelling is assessed in this 

chapter.  In the original work, Western and Grayson (2000) used additional data for 

model assessment, but only the spatial fields are used here. 

5.2.1 Observed fields at Tarrawarra 

The spatial observations made at Tarrawarra were produced from regularly-spaced 

measurements (on a 10m x 20m grid) made using time domain reflectometry probes to 

measure volumetric soil moisture (% v/v) in the top 30cm of soil.  These were collected 

on 13 occasions over the 14 month period and cover different seasons and catchment 
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conditions (dry, wetting up, wet, drying down).  Each measured moisture value had a 

reported measurement error of σ=1.7% v/v, while the standard deviation of values 

across the catchment ranged from 2.3% v/v (in dry conditions) to 4.9% v/v (in wet 

conditions).   

TDR measurements are essentially point measurements (i.e. small support) and are 

more likely to be affected by small scale variability than an integrated measure (e.g. 

remote sensing derived soil moisture pixel value) would be.  Western et al. (1999b) note 

that the difference between a measurement made for each 10m x 20m area (as opposed 

to a point representing that area) would cause a minor reduction in the overall variance 

of the observed field (i.e. slightly smoother appearance).  Therefore, the point 

measurements are assumed to represent the larger support of 10m x 20m.  This is a 

convenient assumption so that the measurements can be represented as a regular-grid 

element spatial field, as is common in hydrology.   

The observed fields are shown in Figure 5.2 and highlight the different spatial 

arrangements of soil moisture that occur throughout the year.  This data illustrates the 

hypothesis put forward by Grayson et al. (1997) regarding the behaviour of soil 

moisture in temperate catchments.  They found that the spatial arrangement varies 

between two ‘preferred states’, each dominated by different hydrological fluxes. During 

summer months, the vertical fluxes dominate, thus limiting the lateral redistribution of 

water.  In winter, these lateral and surface fluxes are more dominant and produce a 

‘topographically controlled’ arrangement, with wet drainage lines and drier slopes (due 

to evapotranspiration).   
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Figure 5.2 The spatial fields observed during the Tarrawarra project.  Each field is labelled by the date of 

observation (in YYMMDD format) and all fields are represented in the same colour scheme (using dry to 

wet colours).  The driest months are November through March (i.e. in the southern hemisphere).  The four 

fields marked with asterisks are used throughout this chapter and are representative of the variation seen 

throughout the year in the observed fields.   
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Figure 5.3 The daily rainfall record during the Tarrawarra project.  The occasions on which spatial fields 

were observed are shown with solid vertical lines (grey).  The dates for the fields selected for use in this 

chapter are shown with solid vertical lines (red).   

Inspection of the rainfall record for the period of observation (Figure 5.3) and the spatial 

fields reveals four particularly interesting hydrological situations that a spatial model 

should correctly represent.  The fields on these occasions show different levels of 

organisation.  These four occasions are used in this chapter for model assessment so that 

the quantity of analysis is not overwhelming for the reader:  

 960223 Observed when there has been no rain for 12 days and occasional 

storms over past months.  This field represents the catchment in a ‘dry’ state (i.e. 

the end of summer) and has a uniform appearance with minor random variations. 

 960413 Observed during a period of autumn storms that have come after a 

particularly dry summer.  This field represents the catchment ‘wetting up’.  Some 

organisation of drier and wetter regions is apparent. 

 960902 Observed at the end of winter when there has been extensive rainfall.  

This field represents the catchment in a ‘wet’ state.  Clear organisation and some 

general features are apparent. 

 961025 Observed at the start of spring and there has been no rain for 4 days.  

This field represents the catchment ‘drying down’.  Very organised field, with 

drainage lines being particularly apparent and some aspect effects. 
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5.2.2 Distributed modelling at Tarrawarra 

The distributed modelling for Tarrawarra was undertaken with the Thales model 

(Grayson et al. 1995).  Thales operates on a computational network based on 

streamlines and elevation contours (i.e. irregular elements).  Thales produces an 

estimate of the soil moisture stored at different depths for each irregular model element 

(i.e. the value is an areal average) for each day (i.e. the timestep used in this application) 

during the modelling period.  The irregular element fields were converted into regular 

element fields to ensure the field structure was directly comparable with the observed 

spatial fields detailed in the previous section.  There is a scale inconsistency between 

the modelled (areal average) values and the observed (point sample) values that is 

discussed and managed throughout the comparison process.   

The application of the model at Tarrawarra used rainfall and potential 

evapotranspiration as the forcing data.  The model incorporated the following 

hydrological processes: saturated subsurface lateral flow; saturation excess overland 

flow; exfiltration of soil water; runon infiltration of overland flow; deep seepage; and 

evapotranspiration.  These processes were included because field observations 

suggested they may be present.  The soil profile used consists of two layers, of which 

only the top layer is laterally transmissive.  While limited detail of the model algorithm 

is provided here, full details of the differences between model parameterisations are 

given.  For complete details of the modelling algorithm, the reader is referred to 

Western and Grayson (2000).   

In the version of Thales used to produce the modelled fields, a number of spatially-

variable model parameters were set for each model element to define the soil properties 

and soil/plant interactions.  These include: saturated hydraulic conductivity (KSAT); deep 

seepage (KDEEP); total soil depth (DSOIL); and depth of laterally transmissive upper soil 

layer (DUPP).  A global parameter defining the presence/absence of the spatially-variable 

evapotranspiration process (SVET) was also defined.  SVET is influenced by the solar 

radiation falling on the terrain, which is controlled by slope and aspect.  Ten different 

model parameter sets (Table 5.1) were used to produce ten different model runs (or 

realisations) for the Tarrawarra catchment.  Unless otherwise specified, the spatially-

variable parameters are set as constant for all elements within the field.   
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The ten different model runs each represent a different combination of hydrological 

processes (e.g. evapotranspiration, deep seepage) and catchment states (e.g. soil 

parameters).  These parameter changes combine to produce modelled fields having 

different spatial arrangements of soil moisture values.  Based on previous analyses by 

Western and Grayson (2000), models runs 1, 3 and 4 are found to have very minimal 

differences from the other runs.  Therefore, they are not used any further in this chapter.  

This reduces the amount of data being analysed here down to four different occasions 

(representing vastly different spatial arrangements) on which there are seven (rather 

than ten) modelled fields and one observed field (Figure 5.4).  

Table 5.1 The ten model runs produced for Tarrawarra using different combinations of model parameters 

for Thales (adapted from Western and Grayson 2000).  Of these ten runs, seven runs (shaded) are used in 

this chapter.  Western and Grayson (2000) found run 5 to be the ‘best’ model, although the differences 

between models were noted as ‘quite subtle’. 

Run KSAT 
(mm/h) 

KDEEP 
(mm/h) 

DSOIL 
(mm) 

DUPP 
(mm) SVET Description of parameter changes 

1 20 0 600 400 Off Default parameters are set from available 
field measurements 

2 40 0 600 400 Off Doubled KSAT to increase rate of water flow 
through soil 

3 60 0 600 400 Off Tripled  KSAT to further increase rate of 
water flow through soil 

4 20 0 600 400 On Same as run 1, but with SVET enabled 

5 40 0 600 400 On Same as run 2, but with SVET enabled 

6 60 0 600 400 On Same as run 3, but with SVET enabled 

7 40 0 
Dependent 
on terrain 
position 

400 On 

Soil depth varies spatially and is distributed 
by using a regression relationship between 
the limited soil depth observations and 
terrain attributes  

8 40 0 600 1) 400
2) 200 On 

Depth of upper soil layer varies spatially and 
is distributed by using a field of soil types 
containing: 1) duplex; and 2) gradational 
soils (Figure 5.5) 

9 26.7 0 600 600 On 
Single, laterally transmissive soil layer is 
used (rather than two layer model) and KSAT 
is adjusted to be equivalent with run 5 

10 40 0.013 600 400 On 
Deep seepage (i.e. loss of moisture to 
groundwater) is introduced and calibrated so 
that overall catchment runoff is correct 
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Figure 5.4 The observed fields and the temporally-coincident modelled field from the seven different 

spatiotemporal series.  This figure can be used by the reader for visual comparison and assessment of 

model performance.  It is also useful for visually confirming the error or similarity that is measured by 

different comparison measures.  The outline overlain on each field shows the comparison extent for each 

occasion, based on the intersection of the modelled and observed fields (which varies slightly because of 

the varying extent of the observed fields on each occasion). 
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Figure 5.5 The spatial field of soil types used to define the depth of the upper soil layer in model run 8.  

Gradational soils are found in the gullies and duplex soils are observed to occur in all other places in the 

model extent (from Western and Grayson 2000). 

5.2.3 An expert model assessment for Tarrawarra 

In Western and Grayson (2000), the hydrological model that is used in this chapter was 

assessed using qualitative visual comparison of the fields (Figure 5.4), visual analyses 

of the intermediate error fields and basic local comparison measures (BIAS, RMSE).  

This assessment is considered to be an expert opinion because it was undertaken by the 

developers of both the modelled and observed spatial fields.    

The detailed findings of Western and Grayson (2000) are presented here and 

subsequently used for two purposes in this chapter: 1) to identify the types of 

comparisons that experts would make in this situation (i.e. a comparison strategy); and 

2) to define the ‘expert findings’ about model performance that may also be revealed by 

the quantitative model assessments undertaken in this chapter.   

Western and Grayson (2000) made a number of notes when comparing the modelled 

and observed spatial fields at Tarrawarra (often referred to as spatial patterns).  Overall, 

they judged model run 5 to be the ‘best’  model, but also noted that the “differences 

between the runs were often subtle and no one run was the best on every occasion” 

(Western and Grayson 2000, p.228).   

They then proceeded to compare model run 5 to the observed fields for different dates.  

They found that model run 5 “performs well during dry and wet periods” but “during 

the transition periods in autumn (wetting up) and spring (drying down) there are some 
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differences between the simulated and observed patterns” (Western and Grayson 2000, 

p.234).  More specifically, Western and Grayson (2000, p.234) make the following 

notes: 

 On the dry occasion (960223), the observed field was “well simulated in terms of 

the average moisture and the spatial pattern”.   

 On the wetting up occasion (960413), “the model predicted the average soil 

moisture well,” but there was no “evidence of the significant lateral 

redistribution” seen in the observed patterns. 

 On the wet occasion (960902), “extensive areas are saturated” and “the soil 

moisture pattern is well predicted”. 

 On the drying down occasion (961025), “the model performs relatively poorly” 

with “the effect of lateral redistribution over predicted” and the existence of 

“strong aspect bias in the soil moisture errors”. 

After comparing the fields from model run 5 to the observed fields, Western and 

Grayson compared the other model runs to run 5 (i.e. model to model) to identify the 

spatial changes caused by the different model parameters (i.e. a controlled comparison) 

(Western and Grayson 2000, p.235-238).  Any differences that were noted about the 

temporal dynamics of the models are not listed because they would require 

spatiotemporal comparison methods (i.e. comparing two model series), which is a 

challenge that remains for future research.  The differences that were noted from 

comparing the modelled spatial fields are listed here. 

 Run 2 used double the initial value for KSAT to “most closely represent the effects 

of lateral flow” in the observed field.  Because the SVET process was not active 

the run fails to represent the “strong aspect effect [that] was apparent in the 

observed data” on the wetting up, wet and drying down occasions.   

 Run 6 had “little difference compared with run 5” on the wetting up occasion, but 

the upper parts of the hillslopes were drier and the drainage lines wetter in both 

the wet and drying down fields. 
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 Run 7 had a more topographically controlled arrangement compared with run 5 

and this “generally led to similar or poorer simulations of the [observed] 

patterns.”  In the wetting up field “the hilltops were too wet” and in the wet field 

they “were too dry”.   

 Run 8 contained “an [unrealistic] band of high soil moisture at the soil unit 

boundary” caused by the discontinuity of lateral flow between the gradational and 

duplex soil types (Figure 5.5).   

 Run 9 was more influenced by lateral flow on the dry occasion than run 5 and this 

factor made it inconsistent with the observed field. 

 Run 10 exhibited slightly lower soil moisture (than run 5) in the drainage lines on 

the wetting up and drying down occasions and on the ridge tops on the wet 

occasion.   

These comparisons were made by experts using both visual and basic quantitative 

methods.  They compare different aspects of the hydrological fields – average moisture 

content; the representation of important hydrological features (e.g. hilltops, drainage 

lines); differences between terrain features (e.g. steep slopes, north/south facing slopes); 

and localised regions of large errors (e.g. unrealistic band of high soil moisture at soil 

unit boundary) – and compare at a range of scales (global, local and intermediate).   

They also note both similarities and differences, making it a complete comparison 

according to the definition in Chapter 4.  This comparison relies heavily on linguistic 

descriptions (e.g. “generally similar”, “relatively poorly”) of comparison, which are 

difficult to relate to real quantities and cannot be replicated by another set of experts.  

Therefore, any quantitative comparison measures evaluated against these expert 

opinions are done so with these factors in mind.  Ideally, a single dataset that was 

assessed by multiple experts would have been used to evaluate the automated methods.  

5.2.4 Emulating automated model assessment 

This chapter undertakes the different processes of model assessment in a manner that 

emulates automated model assessment.  When automated procedures (e.g. calibration, 

optimisation) are used in hydrological modelling, they require the observed (or 
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reference) field and other parameters (e.g. performance criteria) to be defined prior to 

running the procedure.  This requires the observed field to be well-understood, so it 

must be available for analysis prior to use (e.g. visually, quantitatively).  Once the 

automated procedure is parameterised, it can be run on any number (i.e. often hundreds) 

of models.  This overall process does not permit the visual inspection of the modelled 

fields at any stage.  Instead, each model is represented only by the results of the 

automated procedure.   

During this chapter, visual inspection of the modelled fields (i.e. those being compared 

to the reality) is not used for model assessment.  When discussing and evaluating the 

results of each comparison measure, the modelled fields are used to visually confirm 

and evaluate the measures.  The reader is encouraged to make additional visual analyses 

(using Figure 5.4) to evaluate whether the results from the various comparison measures 

are indeed logical (i.e. it is subjective judgement). 

5.3 Model assessment  

In this section, seven different models of the soil moisture processes occurring at 

Tarrawarra are assessed by making comparisons of the modelled and observed spatial 

fields.  This assessment is representative of how more complex model assessments, 

such as those involving Monte Carlo simulations (e.g. Bates et al. 2004), could also be 

conducted.  The measures available for use in this assessment are those listed in the 

comparison flowchart (Figure 4.20).  As described in the previous section, the 

assessment is applied here in a manner that simulates automated procedures, so visual 

inspection, comparison and analysis is not used.    

The remainder of this section details the comparison strategy used for conducting the 

assessment of Tarrawarra; uses the comparison measures to compare modelled and 

observed fields for each of the four occasions; and presents a manual analysis of the 

comparison measures.  The other sections in this chapter conduct the evaluation of the 

model assessment (i.e. using the expert assessment and visual inspection) and discuss 

the suitability of the comparison strategy used (i.e. the strengths and weaknesses of each 

group of measures). 
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5.3.1 Details of comparison strategy 

The comparison strategy devised for assessing the models of Tarrawarra is guided by 

the general aspects of spatial fields that were compared during the expert model 

assessment.  Table 5.2 details the strategy that has been devised for the quantitative 

comparison, including the measures; their parameters or pre-processing; and a 

description of what each measure is expected to assess about the models (based on their 

operation).  This strategy is applied to the Tarrawarra dataset and the performance of the 

various measures (i.e. describing how the modelled and observed spatial fields 

compare) is evaluated.  A discussion of this strategy is provided later in the chapter, 

identifying any issues with the way the measures were applied or how they operated.  

5.3.1.1 Rationale for parameters chosen 

The multiscale error measure is calculated for radius values up to 6 elements.  This is 

set by using a brief analysis of how upscaling affects the variability seen in the observed 

fields. As Figure 5.6 shows, beyond R = 6 elements, any comparisons would simply be 

replicating a global comparison.  The scale weighting parameter, K = 0.1, is set so that 

the larger scales (which often appear similar) are given slightly less weighting than the 

local scales (where most variation occurs) in the final MSME0.1 measure. 

The allowed value difference (|ΔV|ALLOW) is set to the reported measurement error of the 

observations (σ = 1.7% v/v).  This is a conservative value, as it only represents one 

standard deviation of the error (i.e. 68% of errors under this amount if normally 

distributed errors).  The maximum allowed value difference (|ΔV|LIMIT) is set at 5.1% 

v/v (i.e. 3σ) for the tolerant similarity measures.  

Figure 5.6 A brief analysis of upscaling an observed field (961025) reveals that almost all localised

variability is removed once R = 6 elements.  The boxes overlain on each field represent the size of the 

analysis windows used at each scale.   
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Table 5.2 The list of comparison measures used in the comparison strategy for model assessment of the 

Tarrawarra models.  The parameters (or pre-processing required) and a description of what the measure is 

expected to assess about the models is given for each measure.  The data-driven region-based measure 

(shaded) produces a variable number of results for each occasion (i.e. dependent on number of important 

regions identified in observed field). 

Group Measure(s) Parameters/Pre-processing Description 

G E BIAS - Over- or under-estimation of model 

G S KS - Similarity of element value distributions 
between model and observation 

L E MAE - Strict error per model element 

L S RSQ - Amount of observed variability that is 
represented by the model  

M E MSMEK
K = 0.1 
R = 0 to 6 elements 

Summary of model error over scales 
where variability in the observed field is 
still apparent 

TL E TMAE |ΔV|ALLOW = 1.7% v/v 
|ΔL|ALLOW = 10 m Significant error per model element 

TL S TCOE |ΔV|ALLOW = 1.7% v/v 
|ΔL|ALLOW = 10 m 

Performance of model relative to 
‘feature-less’ field; used for inter-
comparison 

TL S TMS 

|ΔV|ALLOW = 1.7% v/v  
|ΔV|LIMIT = 5.1% v/v 
|ΔL|ALLOW = 10 m 
|ΔL|LIMIT = 30 m 

Significant similarity of model elements 

R S KS 
Segment observed field; remove 
unimportant regions; parameters are 
empirically determined 

Similarity of model to observed region; 
reflects whether region exists in model 
(in some form) 

STL E TMAE 

Define slope regions from terrain 
model (classify slope map and 
connect regions); use tolerances 
previously defined  

Significant model error per slope region; 
describes model performance for 
drainage lines, hillslopes and ridge tops 

STL E TMAE 

Define aspects regions from terrain 
model (classify aspect map into 
north/south and connect regions); use 
tolerance previously defined  

Significant model error per aspect 
region; describes model performance for 
slopes facing north and south (i.e. 
different incident solar radiation) 

The allowed location difference (|ΔL|ALLOW) has been set to 10m due to the positional 

uncertainty introduced when creating the observed fields.  Each point-based observation 

was assumed to have a 10m x 20m support, but these observations were not necessarily 

located at the centre of each regular-element in the final field.  A half-element distance 

is the maximum error that should exist in the location of these measures.  The maximum 

location difference considered to be similar (|ΔL|LIMIT) is arbitrarily set to 30m to allow 

some spatial relationships to be considered.  This produces a location similarity of 0.5 
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when the element values differ in location by 20m.  The location and value tolerances 

are combined together during comparison, making them capable of tolerating situations 

where both differences occur.  This has the effect of allowing the observed field to be 

‘adaptively smoothed’ and may address any scale inconsistencies that exist.   

5.3.1.2 Pre-processing required to undertake comparisons 

Data-driven segmentation of the observed field on each occasion is required to identify 

any interesting regions (or features) that should be represented by the modelled fields.  

This is an interactive process in which the segmentation parameters (i.e. scale and shape 

controls) are modified to produce a segmentation that recognises the key features in the 

observed field (if such features exist).  The region shape parameter is generally kept 

constant (i.e. at one) unless ‘branched’ regions are being found.  Any unimportant 

 

Figure 5.7 Data-driven and knowledge-regions defined for Tarrawarra.  For the data-driven regions, only 

the interesting regions have been retained (numbered for identification in results).  The knowledge-driven 

regions are derived from terrain analysis and any very small regions have been removed. 
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regions that are recognised are removed to leave only the important ‘features’ (as 

decided by the user).  The data-driven regions used for Tarrawarra are shown in Figure 

5.7.    

Knowledge-driven segmentation of the catchment is undertaken using terrain attributes 

of slope and aspect to define the regions of hydrological importance to be used for 

region-specific comparisons (Figure 5.7).  The slope attribute of the terrain model for 

Tarrawarra is particularly effective at identifying the drainage lines and ridge top (i.e. 

low slopes) and the hillslopes (i.e. the steeper slopes).  The derived slope field has been 

categorised into low, mid and high slope regions, and these have been made into 

contiguous regions and suitably labelled.  Aspect has been derived from the terrain 

model and adjusted to account for the field rotation relative to true north.  The aspect 

values were categorised into elements facing north (i.e. greater incident solar radiation) 

and south.  Again, the regions were made contiguous and labelled.  The data- and 

aspect-driven segmentations have some generally similar features, which must be a 

response to aspect-related arrangements in the observed fields of soil moisture.   

The situation investigated at Tarrawarra is a relatively simple one, as there are a 

minimal number of ‘features’ defined for each occasion.  In more complex catchments, 

non-contiguous regions with the same label (e.g. many different drainage lines) may be 

recognised, but the user can decide to group these together or treat them individually. 

5.3.2 Analysis of comparison measures 

The comparison strategy outlined in the previous section is applied here to assess the 

models against the observed fields.  The comparison strategy identifies eight measures 

that apply to the whole field extent; two measures that apply to each of the seven 

knowledge-driven regions (i.e. four slope, three aspect); and one measure that applies to 

a variable number of different data-driven regions (i.e. maximum four), depending on 

the occasion.   

These results for all of the comparison measures (sorted into groups according to 

comparison flowchart in Figure 4.20) are listed on the following pages in Table 5.3-

Table 5.5.  The major points of analysis from these tables are listed in Table 5.6.  The 

optimum result(s) for each measure on each occasion are highlighted in bold in the 
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tables, providing an indication of the ‘best’ model runs (i.e. the runs that perform 

strongly across multiple different measures).  However, assessment such as this should 

consider the relative importance of each measure (i.e. the number of ‘hits’ for a model 

does not necessarily reflect the best).  As was noted during expert assessment, 

“differences between the runs were often subtle and no one run was the best on every 

occasion” (Western and Grayson 2000, p.228).  Therefore, it is the task of the user to 

define ‘optimal performance’ for their purposes, but the way to do this is not the focus 

of this analysis (or this thesis).  Instead, the focus of this analysis is to highlight how the 

different measures identify the optimum performance and whether these results can be 

supported by expert and/or visual evidence.  

 



Chapter 5: Hydrological application of quantitative comparison methods 163  

Table 5.3 Results from using strict global, local and multiscale error and similarity measures (applied to 

whole field) for model assessment at Tarrawarra.  The comparison measures and parameters used are 

defined in the comparison strategy (Table 5.2).  The optimum result for each measure on each date is 

bolded.  Coloured shading of any results indicates they are related to findings listed in the analysis table 

(Table 5.6). 

  Statistics of 
observed field 

Global 
comparison (G) 

Strict local 
comparison (L) 

Multi-scale 
comparison (M) 

Field MEAN 
%v/v 

SDEV
%v/v 

BIAS 
%v/v KS MAE 

%v/v RSQ MSME0.1 
%v/v 

960223 20.8 2.3      
Run 2   0.6 0.55 1.8 0.02 1.0 
Run 5   0.9 0.57 1.9 0.05 1.1 
Run 6   0.8 0.57 1.9 0.03 1.1 
Run 7   1.4 0.67 2.7 0.01 1.8 
Run 8   0.5 0.60 1.7 0.09 0.9 
Run 9   1.0 0.61 2.2 0.02 1.4 

D
R

Y
 

Run 10   0.6 0.59 1.8 0.06 0.9 
         
960413 35.1 3.5      

Run 2   -0.6 0.41 2.8 0.13 1.8 
Run 5   0.1 0.56 2.4 0.21 1.3 
Run 6   0.0 0.56 2.4 0.20 1.3 
Run 7   0.5 0.80 3.2 0.00 2.0 
Run 8   -0.1 0.56 2.5 0.17 1.4 
Run 9   0.1 0.61 2.3 0.27 1.2 

W
E

T
T

IN
G

 U
P 

Run 10   0.0 0.56 2.5 0.18 1.4 
         
960902 42.5 3.8      

Run 2   -0.3 0.70 2.7 0.16 1.7 
Run 5   -0.2 0.70 2.6 0.19 1.6 
Run 6   -0.9 0.70 2.8 0.17 1.8 
Run 7   -1.0 0.70 2.8 0.18 1.8 
Run 8   -0.9 0.69 2.7 0.16 1.7 
Run 9   -0.3 0.70 2.7 0.16 1.6 

W
E

T
 

Run 10   -0.7 0.70 2.7 0.19 1.7 
        
961025 35.1 4.4      

Run 2   5.8 0.33 6.1 0.29 5.8 
Run 5   6.2 0.30 6.4 0.34 6.2 
Run 6   5.4 0.50 5.6 0.39 5.5 
Run 7   4.8 0.63 5.3 0.40 4.9 
Run 8   4.6 0.44 5.2 0.31 4.7 
Run 9   6.1 0.37 6.4 0.33 6.1 

D
R

Y
IN

G
 D

O
W

N
 

Run 10   5.0 0.42 5.4 0.35 5.1 
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Table 5.4 Results from using tolerant local comparison (applied to whole field) and also region-based 

similarity measures for model assessment at Tarrawarra.  The comparison measures, parameters and 

regions used are defined in the comparison strategy (Table 5.2).  The regions defined on each occasion 

vary (i.e. DRY REG 1 ≠ WET REG 1) and can be better understood using Figure 5.7.  The optimum 

result for each measure on each date is bolded.  Coloured shading of any results indicates they are related 

to findings listed in the analysis table (Table 5.6). 

  Tolerant local comparison (TL) Region-based (R) comparison of 
important observed regions 

Field TMAE  
%v/v TCOE TMS  REG 1

KS 
REG 2

KS 
REG 3 

KS 
REG 4

KS 
960223        

Run 2 0.1 -0.63 0.99 0.00    
Run 5 0.1 -0.88 0.99 0.03    
Run 6 0.1 -1.84 0.98 0.03    
Run 7 0.7 -20.84 0.91 0.03    
Run 8 0.0 0.18 0.99 0.03    
Run 9 0.3 -7.54 0.95 0.03    

D
R

Y
 

Run 10 0.0 -0.03 0.99 0.03    
         

960413        
Run 2 0.3 -0.16 0.93 0.31 0.25   
Run 5 0.2 0.28 0.96 0.40 0.28   
Run 6 0.2 0.27 0.96 0.40 0.28   
Run 7 0.6 -1.17 0.89 0.49 0.32   
Run 8 0.2 0.23 0.96 0.41 0.28   
Run 9 0.2 0.37 0.97 0.41 0.28   W

E
T

T
IN

G
 U

P 

Run 10 0.2 0.24 0.96 0.41 0.28   
        
960902        

Run 2 0.1 0.10 0.97 0.17 0.34 0.00  
Run 5 0.1 0.30 0.98 0.17 0.34 0.00  
Run 6 0.2 -0.40 0.95 0.54 0.34 0.00  
Run 7 0.2 -0.50 0.96 0.55 0.34 0.00  
Run 8 0.2 0.00 0.97 0.50 0.32 0.00  
Run 9 0.2 0.00 0.97 0.25 0.34 0.00  

W
E

T
 

Run 10 0.1 0.10 0.97 0.38 0.34 0.00  
         

961025        
Run 2 2.1 -5.54 0.65 0.07 0.16 0.57 0.59 
Run 5 2.3 -6.28 0.60 0.06 0.16 0.57 0.65 
Run 6 1.8 -4.62 0.69 0.13 0.29 0.14 0.53 
Run 7 1.7 -4.38 0.71 0.32 0.65 0.00 0.35 
Run 8 1.5 -3.73 0.70 0.11 0.16 0.14 0.41 
Run 9 2.3 -6.28 0.60 0.10 0.27 0.71 0.59 

D
R

Y
IN

G
 D

O
W

N
 

Run 10 1.6 -3.94 0.70 0.10 0.29 0.43 0.53 
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Table 5.5 Results from using specific tolerant local comparison measures for model assessment at 

Tarrawarra.  The comparison measure, parameters and regions used are defined in the comparison 

strategy (Table 5.2).  Abbreviated terms are used to describe each of the hydrological regions defined 

from the terrain model and these can be better understood using Figure 5.7.  The optimum result for each 

measure on each date is bolded.  Coloured shading of any results indicates they are related to findings 

listed in the analysis table (Table 5.6). 

  Specific tolerant local comparison 
(STL) of slope-based regions  

Specific tolerant local comparison 
(STL) of aspect-based regions  

Field DRAIN 
TMAE 

RIDGE
TMAE 

HILL
TMAE 

STEEP
TMAE 

NORTH 1
TMAE 

NORTH 2 
TMAE 

SOUTH 
TMAE 

960223        
Run 2 0.2 0.1 0.1 0.0 0.0 0.0 0.2 
Run 5 0.2 0.1 0.1 0.0 0.0 0.0 0.2 
Run 6 0.4 0.1 0.0 0.0 0.0 0.0 0.2 
Run 7 4.7 0.0 0.1 0.0 0.0 0.2 0.9 
Run 8 0.0 0.1 0.0 0.0 0.0 0.0 0.1 
Run 9 1.6 0.1 0.1 0.0 0.0 0.0 0.4 

D
R

Y
 

Run 10 0.0 0.1 0.0 0.0 0.0 0.0 0.1 
         
960413        

Run 2 0.2 1.1 0.3 0.2 0.4 0.4 0.4 
Run 5 0.2 1.0 0.1 0.0 0.4 0.4 0.3 
Run 6 0.2 1.0 0.1 0.0 0.4 0.4 0.3 
Run 7 0.5 1.8 0.5 0.1 1.5 0.7 0.7 
Run 8 0.3 1.0 0.1 0.0 0.4 0.4 0.3 
Run 9 0.1 1.0 0.1 0.0 0.3 0.4 0.2 W

E
T

T
IN

G
 U

P 

Run 10 0.2 1.0 0.1 0.0 0.4 0.4 0.3 
        
960902        

Run 2 0.5 0.3 0.1 0.0 0.0 0.1 0.3 
Run 5 0.5 0.2 0.1 0.0 0.0 0.1 0.3 
Run 6 0.5 0.2 0.2 0.2 0.4 0.1 0.5 
Run 7 0.5 0.3 0.2 0.1 0.6 0.2 0.5 
Run 8 0.6 0.1 0.1 0.0 0.0 0.1 0.4 
Run 9 0.5 0.2 0.1 0.0 0.4 0.1 0.4 

W
E

T
 

Run 10 0.5 0.1 0.1 0.0 0.2 0.1 0.3 
         
961025        

Run 2 1.1 4.6 2.4 0.7 2.7 3.7 1.8 
Run 5 1.1 4.5 2.7 1.3 2.6 3.4 2.2 
Run 6 1.9 3.3 2.0 0.4 1.0 2.5 1.8 
Run 7 2.5 1.8 1.8 0.2 0.8 1.9 1.8 
Run 8 0.7 3.1 1.7 1.3 2.3 2.4 1.4 
Run 9 1.2 4.0 2.6 1.6 2.4 3.3 2.2 

D
R

Y
IN

G
 D

O
W

N
 

Run 10 1.0 3.5 1.8 0.7 1.5 2.5 1.5 
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Table 5.6 List of major findings from Table 5.3-Table 5.5.  Each finding from the analysis is related to 

certain measures, dates and runs, so these are identified and the finding is described.  The colour shading 

of the findings relates back to the tables of results.   

Table Measure(s) Date(s) Run(s) Description 

5.3 ALL 960223 8, 10 Performance of all models quite similar with different 
measures, but these runs are best overall  

5.3 KS, RSQ 960413 7 Contrasting performance suggests globally representative 
of values, but spatial arrangement is wrong  

5.3 ALL 960413 9 Best overall on this occasion 

5.3 ALL 960902 ALL Nearly identical performance, apart from BIAS; all are 
globally good, but locally mediocre 

5.3 BIAS 960902 ALL Models are consistently under-predicting soil moisture 

5.3 BIAS 961025 ALL Models are consistently over-predicting soil moisture 

5.3 ALL 961025 7, 8 Best overall performance 

5.3 MSME01 ALL ALL Provides good overall summary of scales that reflects the 
best and worst models in each case  

5.3 KS ALL ALL 
Values generally above 0.50 unless there is a major bias in 
the models; useful to combine with BIAS measure for 
global performance of model 

     

5.4 ALL TL 960223 8 Best performance; only model better than ‘feature-less’ 
observed mean field (i.e. TCOE) 

5.4 TMAE 960223 7 Local errors much higher than other models, despite 
tolerances; reflects significant local errors  

5.4 ALL TL 960223 2-6 
8-10 

Models are very similar to observed when minor 
tolerances are allowed, but the lack of features in observed 
makes performance better than observed mean field 
difficult to achieve (i.e. negative TCOE) 

5.4 REG 1 960223 ALL Region is poorly represented, possibly due to variance of 
region not being represented in models  

5.4 ALL TL 960413 9 Best performance, although all models perform similarly 
and most are better than mean field (i.e. positive TCOE) 

5.4 REG 1 960413 7, 2 
Best represented in run 7 and worst in run 2; this region is 
aspect related, so poor performance in run 2 is likely due 
to the absence of SVET in model 

5.4 ALL TL 960902 ALL Little to no error remains in the model once minor 
differences are tolerated 

5.4 REG 1 960902 6, 7, 8 Best representations of the ‘drier hillslope’ region 

5.4 REG 2 960902 ALL All models represent ‘larger saturated’ region in mediocre 
manner (KS ≈ 0.34) 

5.4 REG 3 960902 ALL No models represent the ‘small saturated’ region in the 
observed field  
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Table Measure(s) Date(s) Run(s) Description 

5.4 TMAE 961025 ALL Significant model errors exist in all runs, possibly due to 
effects of over-prediction  

5.4 REG 1, 2 961025 7 Best represents the ‘lower moisture on northern slope’ 
regions  

5.4 REG 4 961025 2, 5, 9 Best represent the ‘smaller drainage line’ region  

5.4 TCOE ALL ALL 

Models on 960413, 960902 are the best matching in terms 
of spatial arrangement; measures for 960223 are 
influenced by lack of organisation in observed field; 
961025 is poor performance due to bias 

     

5.5 DRAIN 960223 ALL 
Quite variable results for this region, suggesting different 
representations in this part of the field in each model; runs 
7 and 9 are worst  

5.5 ALL STL 960413 7 Performs worst for most measures, suggest fundamental 
problem with spatial arrangement 

5.5 ALL STL 960413 2-6 
8-10 

Very similar performance for all these models, although 
model run 9 is slightly better on all measures 

5.5 RIDGE 960413 ALL Worst performing part of fields with all runs, particularly 
run 7 

5.5 ALL STL 960902 ALL 

Similar results for all models and no particularly large 
model errors in any region; suggests comparable 
appearance and arrangements that match observed field 
within tolerances 

5.5 
DRAIN, 
HILL, 
SOUTH 

961025 8 Best performing model for these regions in this highly 
organised observed field 

5.5 NORTH 2 961025 7 Best representation of larger northern facing hillslope 
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5.4 Evaluation of model assessment 

The analysis table (Table 5.6) identifies a variety of results from the different dates, runs 

and measures that are interesting for identifying the optimal model and for 

understanding why a certain model is optimal.  The differing appearance of the four 

observed fields (i.e. ranging from having random noise in the dry period, to highly 

organised features in the drying down period) makes it challenging to recognise one 

optimal model, as was noted by Western and Grayson (2000).  Also, the differences 

between the measures for each model are often minimal, so the optimal result is often 

only marginally better.   

The expert assessment made by Western and Grayson (2000, p.228) was that “run 5 was 

judged to be the best”, although “the winter and spring periods were emphasised in [the] 

comparison because [of the] strong spatial organisation” present.  Throughout the 

results and analysis tables in this chapter, run 5 was rarely found to be the optimal 

model, except where many of the models performed similarly.  In the spring field 

(961025), run 5 was actually the worst performing run with the strict global and local 

measures.  In contrast, this analysis found runs 7 and 8 to both perform optimally on 

many occasions, although run 8 is the more consistent performer.  Run 7 produced a 

number of poor results (e.g. the error in the drainage line in the dry period) that suggest 

it may be less optimal across all dates.  The overall optimal model, based on this 

quantitative analysis, is considered to be run 8, although run 5 does not perform much 

worse.  The model that also shows promise is run 7, although there are some major 

errors detected in this model that preclude it from being optimal.     

The more detailed evaluation that follows addresses three different groups of measures: 

1) the global, local and multiscale measures applied to the entire field; 2) the strict and 

tolerant measures applied to the entire field; and 3) the measures produced for different 

regions of importance.  For each group, some of the major findings from the analysis 

are investigated further and contrasted with expert and visual evidence.  There are many 

other minor findings from the analysis, but for the sake of brevity these are not 

discussed here. 
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5.4.1 Using global, local and multiscale measures 

The strict global and local measures listed in Table 5.3 represent the information that is 

most widely currently used in hydrological modelling for assessment.  In addition to 

these measures, the new multiscale measure (Algorithm 4.9) is evaluated here.  All of 

these measures apply to the whole field, thereby making them suitable for quantifying 

statements about the average or typical soil moisture errors, or general similarity.   

5.4.1.1 Evaluation in the dry period (960223) 

In the dry period (960223), the observed field is featureless apart from apparently 

random noise.  This is best simulated by runs 8 and 10, although at the local scale 

(MAE, RSQ) there are errors of 1.7% v/v and the models general fail to explain any of 

the variance in the observed field (i.e. low RSQ).  The MAE value is of the same 

magnitude as the measurement error in the observations, suggesting that this may be an 

insignificant error (although it is not tolerated with these strict measures).  The expert 

assessment suggests that the average soil moisture and soil moisture pattern were “well 

simulated” on this occasion, although the global and local measures do not really reflect 

this (i.e. some bias and low fit).  The MSME provides a convenient summary of the 

scales (as it is designed to) and actually reveals that runs 8 and 10 are most similar if 

considering the ‘important scales’ (i.e. up to R = 6).  Visual inspection of Figure 5.4 

confirms this to be logical, as these runs are the only ones without a linear drainage 

feature (which would cause larger errors and be influential across intermediate scales 

also).  The measures also correctly identify run 7 as being worst on this occasion, 

although run 7 does have the best fit between distributions (i.e. highest KS) due to the 

greater variability it simulates (i.e. because of variable soil depths).   

5.4.1.2 Evaluation in the wetting up period (960413) 

As the catchment begins wetting up in the autumn (960413), run 9 is the strongest 

performing model across all scales (i.e. lowest MSME).  On this occasion, runs 5, 6, 8, 

9 ane 10 are all quite similar, with runs 2 and 7 being poor.  All runs have quite large 

typical error and relatively low RSQ, suggesting an inability to model the local details.  

Of interest here was the particularly high KS similarity (KS = 0.80) for run 7, yet RSQ 

of zero.  This translates to high global similarity, but no agreement between high/low 
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values at a local level.  Visual inspection of Figure 5.4 supports this finding, although 

there does appear to be some local agreement between elements.  As RSQ is often 

overly influenced by mismatches between extreme values, the high values in the 

drainage line may be the cause of overall low RSQ here, but this could not be 

ascertained from the quantitative analyses alone.  The expert assessment found good 

prediction of the average moisture content on this occasion, which is revealed in the low 

BIAS values.  However, these measures cannot determine whether the ‘significant 

lateral redistribution’ in the observed field was simulated or not, due to their summary 

of the entire field.  The low RSQ and high MAE values (approximately 2.5% v/v) 

suggest poor agreement of the general spatial arrangement.   

5.4.1.3 Evaluation in the wet period (960902) 

All of the global, local and multiscale measures were highly similar, suggesting that all 

models perform equally on the wet occasion.  BIAS provides some discrimination 

between the measures, with runs 2, 5 and 9 all performing with the least amount of 

under-prediction.  The similar results obtained here concur with visual inspection, 

which reveals it to be difficult to detect any differences between models.  The MAE 

values for this occasion are of similar magnitude to the previous date, suggesting that 

the model fails to represent the detailed strict local arrangement.  The expert 

assessment, which suggests “the soil moisture pattern is well predicted”, is not 

supported by the local measures because low RSQ and high MAE are found.  The 

expert assessment is likely to be more tolerant of minor errors, which may be causing 

this mismatch between the quantitative and qualitative assessments.   

5.4.1.4 Evaluation in the drying down period (961025) 

The observed field in the drying down period has the most spatial organisation and 

appears the most challenging to correctly simulate.  This is one of the reasons the expert 

assessment focused on this period and the wetting up period during model assessment.  

The results here are quite variable, with runs 7 and 8 each being optimal for different 

measures.  Run 8 is found to be the best for the global, local and multiscale error 

measures.  Run 7 performs more strongly with the similarity measures.  The expert 

assessment found the model to be generally quite poor on this occasion, particularly 

with failing to capture the variations with terrain aspect correctly, but this cannot be 
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assessed with these generalised measures.  The BIAS and MAE measures show there to 

be a large amount of over-estimation in all model runs, which reflects the generally poor 

performance.   

5.4.1.5 Assessment using these measures 

If these measures were used in a calibration or optimisation process, the most promising 

model run would most likely be run 8 or 9.  This is, of course, entirely dependent on 

how heavily weighted each date is in the automated procedure.  The expert assessment 

weighted the wetting and drying periods more highly, yet found run 5 to have the best 

performance.  Based on these quantitative measures, this finding is not supported, 

although run 5 can not be said to perform badly on any occasion.  The global and local 

measures provide quite different tests of agreement, as do the error and similarity 

measures, thereby testing different aspects of comparison.  The multiscale measure also 

appears to be a useful summary of these results, especially when it is focused onto the 

most important scales.  It also allows the findings from global and local scales to be 

confirmed, which informs the user that there must be no immediately conflicting results 

found at intermediate scales.  Closer inspection of the multiscale plot would be required 

to understand more about intermediate scale differences, but this is not possible in 

automated procedures.  Overall, these measures are a useful and exact comparison, 

although they fail to integrate user knowledge into the analysis (apart from the 

definition of scales for MSME).    

5.4.2 Contrasting strict and tolerant measures  

The tolerant measures reveal the significant error and similarity in the model runs.  

When the tolerances are set appropriately, any remaining errors can be safely assumed 

to be important and a major departure from the observed field.  The tolerances used in 

this model assessment allow for measurement error and minimal locational differences 

to exist without affecting the measure.  This causes many of the models to have TMAE 

≈ 0 on the dry, wetting up and wet occasions (i.e. no significant error).  Runs 2 and 7 

have significant model error remaining on these occasions, while run 9 is only in error 

during the dry period.  All of these can be considered poor simulations, although the 

reasons why they are poor cannot be established because they are calculated across the 
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entire spatial extent.  This is also a visually intuitive result, as runs 2, 7 and 9 each 

contain ‘false features’ on specific occasions.   

In contrast to the strict local measures, using tolerant measures makes the models 

containing ‘true’ errors much more apparent during analysis (i.e. they are the only ones 

not to be very low).  They are very highly correlated with the strict measures on the dry 

and wetting up occasions, although when the tolerances are particularly ‘active’ in the 

comparison (i.e. when they are frequently used), this correlation drops substantially and 

the tolerant measures provide different information.  This occurs on the wet occasion, 

where the TMAE is only 67% correlated with the MAE.   

The TCOE measure provides a useful way of assessing good performance across all the 

occasions.  Run 8 is the only model not to be considered worse than the ‘featureless’ 

observed mean field, against which the TCOE is standardised.  However, this measure 

penalises biases in the model substantially (as do all the tolerant measures), which is 

seen particularly on the drying down occasion.  All of the TCOE values are negative on 

this occasion due to the observed mean being a much closer estimate of the observed 

field than any model.   

In general, the tolerant measures produce multiple optimum models more often than the 

strict measures, as the tolerances reduce the variability within each measure and the 

ability to discern between ‘slightly different’ fields.  However, provided that the 

tolerances are wisely and conservatively set, the multiple optima should be appropriate, 

represent acceptable performance and importantly let the user identify and reject poor 

models.   

5.4.2.1 Visually inspecting the effect of tolerances 

To gain some insight into the localised impact of introducing tolerance, the ‘significant 

errors’ remaining in the models on 961025 are visually examined.  Three situations are 

shown in Figure 5.8 to illustrate how tolerances work to reduce the error (or increase 

similarity) between elements.  This figure shows the intermediate similarity fields from 

the tolerant comparisons for runs 7, 8 and 10 during the wet period at Tarrawarra.  

Looking at run 7, the circle marked in Figure 5.8 shows a gully region where run 7 has 

predicted some elements with too much moisture.  When only a value tolerance is 
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Figure 5.8 The influences of location and/or value tolerances are shown here to identify how they can 

produce global comparable results, but the local arrangement of similarity is quite different.  This figure

also illustrates how three different ‘features’ are assessed with and without location tolerances.  

introduced, there is similarity found where the few observed cells have similar moisture 

contents.  Introducing the location tolerance produces much more extensive similarity 

within this region because the ‘too wet’ modelled elements are allowed to search within 

30m (i.e. 3 elements) for a similarly wet element.  In this situation, the tolerance has the 

effect of allowing the wider, modelled wet area to match with the narrow, observed wet 

area (but with lesser similarity due to distance difference).   

The ellipse shown on run 8 indicates a modelled wet region that does not exist in the 

observed field.  This region has formed at the boundary between the two different soil 

types (and associated depths) specified for this model run.  When there is only a value 

tolerance, no similarity is found throughout most of this feature.  The location tolerance 

increases similarity, but because no elements as wet are found within the tolerance 

distance, low similarity is still assigned to the elements making up this feature.  Run 10 
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looks at a situation where there is minimal agreement between the wide gully feature in 

the model and the observed feature.  Due to only minimal mismatch in the location (i.e. 

1-2 elements), the location tolerance recognises higher similarity around this feature.  

The end result of using a combined tolerance on these fields is that they are each judged 

as being almost equally similar (TMS ≈ 0.70), although the local contributions to this 

summary differ considerably. 

5.4.3 Using importance regions 

Three different types of regions are used in this model assessment, attempting to 

emulate the regions that are utilised in the expert model assessment.  Western and 

Grayson (2000) made comparisons of the drainage lines, hillslopes, ridge tops and 

different facing slopes during the expert assessment.  These regions were used because 

they respond to particular hydrological processes.  For example, the drainage lines are 

where moisture collects and saturated soils are found, while the hillslopes are where the 

impacts of evapotranspiration are most obvious.  The evaluation conducted here 

separately discusses each of the region types used, then suggests how the importance 

measures would impact on any model assessment conducted. 

5.4.3.1 Data-driven regions 

The data-driven regions have been recognised within the observed field on each 

occasion and represent ‘features’ in the observations.  On the dry occasion, the only 

data-driven region is a small area where the moisture values are consistently lower than 

the rest of the field.  It is not immediately apparent what this region represents, but 

expert knowledge identifies this as an area where the soils were particularly shallow (R. 

Grayson, personal communication, 17/05/2006).  For evaluating the features, the KS 

measure is used.  It finds that none of the model runs simulate this feature, although this 

may be a result of the KS measure only being based on a small number of elements 

(which limits the detail of the distributions used).  For small features such as this, the 

BIAS measure is expected to be a more useful.  In this example, using BIAS per region 

would have found run 7 to be the best, which is an intuitive result considering that this 

run uses variable depth soils.  This region was not recognised during expert assessment. 
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Figure 5.9 Visual inspection of data-driven regions being compared on 960413.   

During wetting up, two regions of lower moisture are found.  Based on knowledge of 

the terrain, these regions appear related to the north facing slopes.  On this occasion, run 

7 is found to simulate the features better than all other runs, despite performing poorly 

with most of the other measures.  This is in contrast to the measures for the whole 

fields, which found run 9 to be optimal.  As can be seen in Figure 5.9, the fields are not 

vastly different in these regions, although run 7 does correctly simulate more ‘drier 

elements’ and this produces the higher KS measure.  Using a BIAS measure would have 

recognised run 9 to be the better run, although the amount of BIAS (approximately 

2.5% v/v over-estimate) would suggest the representation of features was far from 

exact.   

In the wet field, the regions recognised include a small area of slightly drier values on a 

ridge top; a small highly saturated area; and a large, but less visually distinct saturated 

area.  Of these fields, the small highly saturated area is not represented well in any of 

the models.  The larger saturated region is represented similarly in all runs (KS = 0.34).  

The drier ridge feature is best simulated in runs 6, 7 and 8, which concurs with visual 

inspection of Figure 5.4, but it is not particularly obvious.  Again, none of these features 

were recognised as being important during expert assessment, yet they certainly exist. 

During drying down, there is particularly strong spatial organisation and the regions 

recognised are obvious features.  The region-based measures on this occasion reveal run 

7 to simulate the drier features (regions 1 and 2) best, but the small drainage line 

features (regions 3 and 4) poorly.  In contrast, runs 2, 5 and 9 all simulate the smaller 

features within the drainage features best but not the drier features.  These inconsistent 

results between runs make it quite difficult to select an optimal run.  This may be due to 

the drainage features being quite small and therefore very sensitive to minor errors.  

None of the data-driven regions recognised using segmentation were used in the expert 

assessment.  Instead, the expert assessment focused on using knowledge-driven regions. 
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5.4.3.2 Knowledge-driven slope and aspect regions 

Slope was a particularly useful terrain attribute for dividing up the spatial extent into 

process-related regions.  Low slope areas could be separated into either drainage lines or 

ridge tops, while the mid and high slope values identified the major hillslope parts of 

the catchment.  Each of the aspect regions overlaps the slope regions, but they change 

the focus of the results to be the regions that face either north or south.  In each of these 

areas, the models have been assessed using a tolerant measure (TMAE), so that only 

significant differences are reflected in the results.   

On the dry occasion, all of the regions are well represented, apart from the drainage 

lines and southern facing slopes in runs 7 and 9.  These measures make clear and 

specific findings about why runs 7 and 9 are not good models on this occasion - too 

much moisture in the drainage lines (which are also south facing).  This measure is in 

accordance with visual inspection (Figure 5.4).  By using tolerances within each of the 

regions, any errors caused by the lesser drainage lines seen in runs 2 and 5 are reduced.  

This information is particularly useful for model understanding and can quantify how 

bad particular components of the model are. 

As the catchment wets up, run 7 continues to perform the worst and all of the other 

models are nearly identical for all of the slope and aspect regions.  Run 9 is the overall 

optimal, but not by any great amount.  On this occasion the worst performing region is 

the ridge top, where the TMAE values of more than 1% v/v exist (i.e. after tolerances 

have been applied).  This suggests the ridge top is not well simulated.  The expert 

assessment found that “the significant lateral redistribution” in the observation was not 

simulated on this occasion, which is supported by the poor ridge top simulations.  When 

the lateral redistribution of moisture is occurring, the ridge top would be much drier, yet 

in the models there is consistent over-estimation (i.e. too wet) in this region.   

The wet occasion was assessed by the experts as having “the soil moisture pattern well 

predicted.”  The region specific measures support this finding, as all of the different 

regions have similar comparable performance and the significant errors are much less 

than 1% v/v.  The drainage lines and southern slopes contain the largest model errors on 

this occasion, although they are under-estimates (i.e. not as saturated as observed field).  
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Figure 5.10 Visual inspection of the knowledge-driven regions on 961025 (drying down).  Either model 

run 7 or 8 is the optimal model for each of the regions, although neither model performs optimally for all 

regions.   

Western and Grayson (2000, p.234) noted that some of the observed moisture values 

“are likely to be slightly too high due to surface water ponding introducing some 

[additional] measurement errors.”  This is possibly the cause of the under-estimates 

found for each model in the drainage lines.  It should be noted here that measures such 

as TMAE and MAE do not inform of the direction of the error.  Therefore, the BIAS 

measure is an additionally useful summary, predominantly for this purpose.   

The drying down period has the most spatial organisation and produces the most 

variable results for these knowledge-driven regions.  In all cases, either run 7 or run 8 is 

the best performing model (Figure 5.10).  For example, the drainage line is considered 

best represented by run 8, while run 7 over-estimates the moisture there.  Visually, the 

drainage line in run 8 is not very prominent and contains the “unrealistic band of high 

soil moisture at the soil unit boundary” referred to in the expert assessment, but this 

seems to assist with matching the observed field better according to the quantitative 

measures.  Run 7 performs much better than run 8 on the northern facing slopes.  The 

expert assessment found that the models generally over-estimated lateral redistribution, 

which caused a “strong aspect bias in the soil moisture errors” on this occasion.  This 

finding is supported by the quantitative measures, as there are much higher errors in the 

northern facing regions than the southern facing regions in most of the runs (particularly 

runs 2 and 5).  This is a response to the inability of the models to correctly simulate the 

northern facing slopes, which are generally drier in the observed fields.   
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5.4.3.3 Assessment using importance regions 

The use of region-based or region-specific measures allows a clear meaning to be 

assigned to each measure.  When using multiple sets of regions, some elements may be 

compared multiple times as parts of different regions.  If only one set of regions is used 

(e.g. the slope-based regions), the relative contributions of error for each parts of the 

field can be ascertained.  When there are certain regions that perform well (or poorly), 

they can be directly analysed for model understanding.  For more automated 

assessments, the relative importance of each region can be specified and their results 

used to select an optimum.  In this example, if the slope and aspect regions are each 

given equal importance when combined, then runs 8 and 10 are found to be the most 

optimal across all knowledge-driven regions for all occasions.  Run 8 was noted to 

contain an ‘unrealistic soil moisture feature’ during expert assessment, although the 

presence of such a feature could not be detected in this quantitative assessment (due to 

the elements being shared amongst other regions).  Therefore, this run would not be 

rejected as being non-behavioural as it was in the expert assessment. 

5.4.4 Overall evaluation of quantitative model assessment 

Quantitative model assessment can be conducted in a more thorough manner by using a 

greater range of comparison measures.  The tolerant measures allow clear results that 

are not confounded by insignificant differences to be created.  The importance measures 

produce much more directed and useful measures that facilitate model understanding 

when they are logically applied.  The data-driven methods can be used for feature 

comparison, although in hydrological model assessment this is considered to be of 

limited value unless the observed fields contain particularly important features that 

could not be related to a certain process (and thereby defined using knowledge-based 

methods).  Finally, the multiscale measure provides a useful summary of the strict 

comparison measures currently used and ensures that local errors are not too influential.   

These measures can be combined together using different weightings or optimisation 

strategies to determine the optimally performing models.  Regardless of the way these 

measures are applied, they provide the base information on which models are assessed.  

The evaluation given here using expert assessment and visual evidence to confirm the 
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findings of quantitative assessment shows that these measures are capable of emulating 

and quantifying some of the visual approaches used when comparing spatial fields.  

However, the results of the quantitative analyses do not directly agree with the expert 

assessment.  Most noticeably, the quantitative analyses find run 8 to be the best model, 

as opposed to run 5 (by expert assessment).  Recent discussion with the experts suggests 

that had more sophisticated comparison methods been available at the time, run 5 may 

not have been chosen as the optimal model (R. Grayson, personal communication, 

17/07/2006).  The problem they visually recognised in run 8 (i.e. band of higher 

moisture at soil boundary) led to the rejection of this model, despite the fact that it 

otherwise performed well.  This was due to an over-emphasis on the visual appearance 

of the fields during comparison, which led to the potential importance of different soil 

types being overlooked (R. Grayson, personal communication, 17/07/2006).   

The unbiased treatment by quantitative comparison methods can avoid such situations 

by providing clear measures describing how different aspects of spatial fields compare.  

Analysis of the measures then permits the rejection of poor models, while also helping 

to understand why other models are performing well.  At the same time, visual analysis 

still has its benefit (e.g. feature recognition and comparison) and is not expected to be 

replaced.  However, the quantitative comparison measures used here produce a 

complete, intuitive, repeatable and reportable model assessment that can benefit users 

greatly.  The nuances with their application to hydrology are discussed in the remainder 

of this chapter, but overall their performance in a hydrological modelling application 

reveals great potential for further use.  

5.5 Discussion of comparison strategy  

The comparison strategy employed in this chapter for assessing the distributed model 

from Tarrawarra includes a large number of measures.  These measures cover the three 

major groups of measures shown in the comparison flowchart (Figure 4.20) – strict 

measures, tolerant measures and region measures.  Each of these groups includes a 

range of measures that require different parameters, pre-processing, etc.  Chapter 4 gave 

the details of what these parameters represent and some recommendations on how to set 

them.  This discussion focuses on the issues that arise when using each group of 

comparison measures for hydrological model assessment and how they can be managed.  
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A more general discussion about comparison strategies and making subjective decisions 

is given in the following chapter. 

5.5.1 Strict measures 

The strict measures used in the comparison strategy – BIAS, KS, MAE, RSQ – are all 

applied to the whole field equally and they do not utilise any of the relationships 

between elements within a field.  These global and strict local comparisons are a useful 

‘first step’ during comparison, as they allow the user to identify the model bias (BIAS); 

the overlap of the distributions (KS); the average error per element (MAE); and how 

well the model explains the variations in the observed field (RSQ).  By adding in the 

multiscale measure (MSME), a more complete treatment of strict comparison across all 

scales (including intermediate scales) is obtained, as highlighted in the comparison 

flowchart (Figure 5.11).  Without MSM, this group of measures would only compare 

the extremes of scale and could be unknowingly influenced by artefacts (e.g. noise, 

scale differences) in the fields.  All of these measures can be calculated without the need 

Figure 5.11 The position of the strict comparison measures within the comparison flowchart is 

highlighted to show how the measures fit into the overall flowchart and what pre-processing they require.  
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for much user control, apart from defining the range of scales used in MSME.  This may 

be considered as a strength of the measures, but as the previous evaluation shows, with 

limited user input there is generally limited control over the measures and they usually 

fail to compare the fields as desired.  These measures also treat the observed field as 

being fixed, thereby being unable to account for observations errors.   

The multiscale measure is quite a useful measure.  By using an upscaling process, it 

allows the effects of noise and scale differences to be minimised during comparison at 

the intermediate scales.  These then influence the overall MSM, which is not simply the 

average of the local and global scales, despite the fact it often works out that way.  

Where models with large local error, but much lesser errors at an intermediate scale 

(e.g. because noise is no longer dominating) are compared, the MSM provides an 

important addition to strict comparison.  This measure must only be calculated for the 

important scales, which are considered to be those up to the point where intermediate-

scale variability disappears.  In the example in this chapter, a simple empirical analysis 

of the upscaling helped to set these parameters.  In larger spatial fields, the number of 

important intermediate scales is expected to be much higher than was necessary for 

Tarrawarra.   

The KS similarity and global BIAS measures are both used for comparing each scale in 

a multiscale measure.  These measures are also used on their own to describe global 

similarity and error.  The results of model assessment at Tarrawarra highlighted a 

number of instances where the KS measures found high similarity, yet quite large errors 

or bias existed.  Therefore, as with any similarity measure, KS should always be 

supported by an accompanying error measure.  By using multiple measures, the 

response found can be supported or verified by the other measure and increases the 

confidence in interpretation.  This is one of the objectives needed for completeness 

during comparison.   

All of these measures are summaries for the entire extent of the field and their causes 

cannot be localised without further analysis (visually or with importance regions).  

Knowledge of the parameter changes between different models can be used to describe 

the cause of the comparison measure being better for one model than another.  

However, these descriptions also cannot be localised unless the parameter change only 
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had local impacts.  Therefore, the strict global, local and multiscale measures are all of 

limited value for model understanding.   

The strict error and similarity measures are very sensitive to any location or timing 

errors, unlike visual comparisons.  Therefore, the MAE and RSQ measures will often 

fail to describe what has been visually recognised.  While these measures are useful for 

providing a strict and simple estimate of error or fit, they are all influenced by 

insignificant differences and are misleading.  This makes them unsuitable for 

comparison, unless the user makes a clear assumption that there is no error in the 

observations  

5.5.2 Tolerant measures 

Tolerances are used to control the strictness of a comparison, which is desirable for 

removing the effects of insignificant differences on the measures (e.g. removing effects 

of potential uncertainties).  In hydrological comparisons, tolerant comparisons are 

generally only used for removing uncertainty in the target (or observed) field.  This is 

due to the purpose of comparison being to evaluate the error in the model, which 

encompasses the model uncertainty.  If uncertainty were defined for both fields in a 

comparison, the resulting error or similarity cannot be attributed to either of the fields 

directly and is difficult to interpret and use.  

Tolerances cause both the error and similarity measures to improve for all model runs in 

this chapter.  By applying tolerances to comparison, more model runs are therefore 

found to produce the same measures, highlighting the fact that they have equivalent 

performance under the conditions specified.  While the tolerances are reducing the 

ability of measures to discern between ‘apparently slightly different’ fields, this effect is 

desirable as it evaluates the fields in regard to the uncertainty that may exist within 

them.  This is comparable to visual comparisons in which there is widespread 

acceptance of ‘less than exact’ matches.  The tolerant methods allow this to be explicitly 

managed and also for different levels of tolerances to be analysed. 

 



Chapter 5: Hydrological application of quantitative comparison methods 183  

It is important that the tolerances defined correctly express the tolerances of the user or 

data.  This is the only parameterisation that is needed when applying tolerances, as can 

be seen in Figure 5.12.  It is not recommended to set tolerances too high, as the ability 

to differentiate between different models is reduced as tolerances increase.  However, if 

there are sound reasons to tolerate certain differences, the tolerances should be set 

conservatively to permit these departures from strict agreement.  For example, consider 

a model that is not expected to represent narrow features correctly due to the element 

setup.  If the observed data has such features, this inability of the model will cause large 

errors nearby the features and produce poor results.  If a location tolerance is 

introduced, the elements within the narrow feature are allowed to shift around within the 

tolerance (as needed) to produce a better match with the model.  Provided the tolerance 

is set conservatively, the desired effect can be achieved without allowing too much 

dissimilarity to influence results.  Tolerances could potentially be varied for each region 

analysed, although this requires additional parameterisation. 

Figure 5.12 The position of the tolerant comparison measures within the comparison flowchart is 

highlighted to show how the measures fit into the overall flowchart and what pre-processing they require.  

 



Chapter 5: Hydrological application of quantitative comparison methods 184  

   

Figure 5.13 A simple example showing the situation where the observed field (bottom left) has a much 

more limited extent (or greater spacing) than the modelled field (top left).  Here, a random 10% of

elements from the observed field on 961025 are used to represent the sparse observations.  The

intermediate tolerant similarity fields (right column) illustrate how introducing a location tolerance allows

more of the modelled field to be assessed (albeit with lesser similarity due to locational error).   

Another potential use for tolerances is to permit a greater extent of a modelled field to 

be assessed when only limited observed data exists (e.g. sparse, but related point 

samples).  Introducing a location tolerance can permit some locational differences and 

thereby allow model elements that are nearby the observed elements to be assessed, as 

depicted in Figure 5.13.  This situation often arises in ‘data poor’ hydrological studies 

and provides the user with a means of accounting for relationships between nearby 

points and thus testing more modelled elements with the limited observations.  The 

current method for handling this situation is to make the observed points represent a 

larger support by using a larger element size (i.e. so that they are spatially coincident 

with the modelled elements).  Such an approach does not permit any notion of reduced 

similarity for the non-coincident elements, whereas the use of tolerances allows greater 

control over how the relationships are defined.   
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5.5.2.1 The effect of combining tolerances 

The way in which value and location tolerances reduce a comparison measure varies 

with the fields being compared.  However, there are some common responses to these 

tolerances that are useful to recognise.  When the strict errors are mostly larger than the 

value tolerance, the amount of reduction in mean error will be similar to the tolerance 

(i.e. MAE will reduce by approximately |ΔV|ALLOW).  When this occurs, the variance of 

the errors will change little.  When the strict errors are mostly smaller than the value 

tolerance, there is a much lesser change in the MAE, but the error variance will change 

greatly (as many errors are now being reduced to zero).  Viewing the value tolerance 

dimension in the surface plots in Figure 5.14 reveals this response.  At location 

tolerance of 0, the change of TMAE starts reducing at a constant rate and then the rate 

decreases.  However, when the errors start out small, the change of TMAE is never 

constant (due to all errors being less than the tolerance), as seen in the plot for 960413.   

Location tolerances cause different responses depending on the arrangement of values 

in each field.  The surface plots show that the greatest reduction in error is found by 

introducing a small tolerance, which allows some scope for elements to find a better 

match within their immediate neighbourhood.  As this neighbourhood is made 

increasingly large, the error reduces, but will not reach zero (unless a perfect match is 

 

Figure 5.14 Surface plots showing the relationship between value tolerance, location tolerance and

tolerant MAE on two different occasions (960413 (left) and 961025 (right)). The TMAE values are 

calculated between model run 8 and the observed field using different combinations of the tolerances.   
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found for every element).  The correlation lengths of the spatial fields being compared 

here are approximately 40-60m (Western et al. 1998, p.30), thus showing that location 

tolerances smaller than this amount can still have significant impact on the comparison.  

However, it is by combining the location and value tolerances together that the greatest 

effect is seen.  If both these are set quite small, they may cause the same reduction as a 

single tolerance that was much larger.  Without combining the tolerances, the fields 

compared here are never found to have zero error, whereas a combination of |∆V|ALLOW 

= 1.5% v/v and |∆L|ALLOW = 40m would allow all errors present in these examples to be 

tolerated.   

5.5.3 Region-based or region-specific measures 

The use of importance regions is essential for: 1) enabling the comparison of ‘features’ 

within a spatial field; and 2) making specific comparison measures that can be used for 

both model assessment and model understanding.  The definition of regions allows 

measures to be produced for each region, which can remove the need for visual 

inspection of fields to ascertain the causes of errors.  The definition of regions is 

undertaken in pre-processing and then feeds through to the final measures, as shown in 

the comparison flowchart (Figure 5.15).   

In all of the strict and tolerant measures, there is no consideration of whether all of the 

field elements are actually necessary to evaluate model performance.  For example, if 

the model only needs to correctly simulate soil moisture content in the gullies (e.g. for 

saturated source area runoff predictions), then elements outside these regions may be of 

minimal consequence to whether the model is good.  There may also be other regions 

within the field that are important for determining if the model is behavioural or not 

(e.g. if the overall spatial arrangement is logical).  During model assessment, the 

individual regions with the highest importance can be favoured via higher weightings, 

determined by the specific application and purpose.   

Both knowledge- and data-driven regions can be used to separate spatial fields into 

manageable and related regions.  The knowledge-driven approach was far more 

successful in the model assessment conducted in this chapter, mainly because the same 

set of hydrologically important regions were analysed across all dates (i.e. they relate to 
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Figure 5.15 The position of the region-based and region-specific comparison measures within the 

comparison flowchart is highlighted to show how the measures fit into the overall flowchart and what 

pre-processing they require.   

general aspects of the spatial fields, not the specific date being compared).  In contrast, 

the data-driven regions were ‘date specific’ and were much more difficult to 

identify/label.  This is one of the challenges when working with data-driven regions and 

it occurs because the regions are created using a complex algorithm that minimises 

heterogeneity within regions.  These regions are more useful when particular features 

within the target field need to be tested.   

The findings from comparing each region can be used to indicate possible issues with 

the model structure or parameters (i.e. model understanding).  For example, over-

prediction on the steep slopes might infer that drainage is too slow, while under-

prediction may suggest it is too fast (or evapotranspiration is too high).  If there is over-

prediction in low slope areas, there may be insufficient drainage or evaporation 

occurring.  If northern facing slopes are always under-predicting, then either insufficient 

water is reaching them or they are losing too much via evapotranspiration.  Additional 

investigation of performance in regions of different soil type can also be useful.  These 
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results provide feedback on ‘response regions’ which can inform the user about how to 

improve the model, either through changes to model structure or parameters.  Without 

these importance methods, the results from comparison are unable to be related to 

particular areas without visual analysis.   

These are conceptually simple extensions to current methods.  Clearly, the onus rests on 

the user to define suitable regions, which will depend entirely on their knowledge and 

understanding about the hydrological processes at work.  As shown for Tarrawarra, 

many hydrological processes cause responses in specific components of the terrain and 

therefore can benefit from terrain analysis research for identifying suitable regions.  

However, terrain is not always the key surrogate field for defining suitable regions in all 

areas of hydrology, so users should consider other suitable surrogate fields.  

When comparing the regions as features (i.e. region-based comparison), the global KS 

and BIAS measures are used.  When the regions are quite small, KS is not very 

effective as it only has a limited number of elements to use to describe the distribution 

and generally produces low KS values (unless the regions match very closely).  In 

contrast, the BIAS measure is more robust with small regions as it provides a directed 

measure of error, but it fails to describe overall similarity with larger regions.  This was 

evident in the assessment conducted in this chapter, where KS was used for region-

based assessment and produced low values for all of the small data-driven regions.  It is 

therefore recommended to use both KS and BIAS for ‘feature comparison’, just as both 

error and similarity measures should be used in any comparison strategy.    

Finally, the use of importance regions is different from simply analysing the correlation 

between an intermediate field of local errors and another surrogate field (e.g. slope).  

Using regions enforces spatial contiguity and therefore the regions represent spatially-

related parts of the field (as recognised during visual analysis).  In contrast, a 

correlation-based analysis and the associated scatterplot do not treat values that have 

both similarity in value and location as being a feature.  Instead, every element with a 

particular slope is analysed separately, therefore removing the use of any spatial 

relationship between nearby values.  Using regions also permits multiple sources to 

contribute to the definition of regions, making it far more versatile. 
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5.5.4 General discussion about spatial field comparison 

The comparison measures evaluated here are generally used for determining the optimal 

model from a set of different runs.  This may be to facilitate calibration, optimisation or 

for testing (and model understanding).  In most current model assessments, a single 

measure (or index based on multiple measures) is used to determine the optimal model, 

but it is now recognised that single objective functions are rarely sufficient.  Instead, 

approaches using multiple comparison measures are recommended for completely 

evaluating the optimal model.  The methods evaluated and discussed here are the key to 

providing suitable comparison measures for spatial fields.   

Comparison across a range of scales is considered an essential part of any complete 

comparison and this is best achieved by using a combination of different measures (e.g. 

global, local, multiscale and region-based).  In situations where only a single measure 

can be used, the multiscale measure is suggested as the best ‘all-in-one’ assessment.  

These quantitative measures are often ambiguous in their meaning and therefore 

difficult to interpret.  Measures that utilise the notion of importance should be used 

wherever possible, although when there is only limited knowledge about the situation 

being compared this may not be possible.  Combining these with the tolerant measures 

allows insignificant differences to be managed during comparison and helps avoid any 

confounding information in the measures.  The end product of these three approaches is 

a suite of measures that can be adapted for different scales, different meanings and 

different levels of strictness to provide suitable tests of spatial field comparisons.  When 

used in model assessment they give the hydrologist control over where their model must 

perform well to be considered suitable.   

5.6 Correlation between measures 

At the most basic level, all quantitative comparison measures are based on the 

differences between elements.  With any local comparison measure, the numerical 

differences between pairs of element values are calculated.  The field of errors produced 

from this process (and variants of it) can then be transformed and summarised in 

various ways to produce different measures.  As a result of the measures being based on 

the same underlying element differences, there is always high correlation between 
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comparison measures.  The tolerance and importance methods introduced in this chapter 

are specifically aimed at changing the field of errors produced during local comparison.  

In this way, they can produce measures that are based on different (or refined) local 

element comparisons, which subsequently measure different aspects of comparison.  

There will always be some correlation (or redundancy) between different measures, due 

to the fact that they are all comparing the same fields.  However, the way that the fields 

are used during comparison determines what information about error or similarity is 

described by the measure.   

When multiple, different tolerance definitions are used to produce a range of measures, 

there is expected to be very high correlation between the measures.  Each tolerant 

measure is a very similar test and therefore only departs from being perfectly correlated 

when the tolerances results in different responses across the field (e.g. when locational 

shifts produce improved performance in some areas).  In situations where the tolerances 

result in regular changes across all fields, they do not actually provide any greater 

ability than strict measures in discerning between models, although this would be rare in 

real data.  It is the importance methods that generally result in the most variation 

between comparison measures, as they take a very different view of the underlying error 

field (by limiting the extents or changing the representation of elements).  They produce 

measures that test more specific parts of the fields, which generally reveal greater 

variation in the relative performance of different models.   

5.7 Chapter summary 

The practical application of the new and improved comparison measures for model 

assessment has been presented in this chapter using the Tarrawarra data set.  The 

observed and modelled fields from Tarrawarra on different occasions (e.g. spring, 

autumn) are considered to be representative of the range of fields that are generally used 

in hydrological modelling, thereby availing this example of broad relevance.  This data 

has also been previously analysed by experts (Western and Grayson 2000), which 

provides a qualitative benchmark against which the quantitative performance of the 

measures can be evaluated.   
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The new measures have been applied using a comparison strategy that achieves the 

general objectives of comparison set out in Chapter 4 – comparison of multiple scales; 

significant error and similarity measures; and application-specific comparison tests.  

This strategy produced a large number of quantitative measures that describe how 

different aspects of spatial fields compare.  For each measure, the optimal results (or 

particularly poor results) have been identified and are related back to the qualitative 

findings from expert assessment and also visual evidence that supports the quantitative 

results.   

The methods applied to the whole spatial fields (i.e. not specific regions) produced 

results that agreed with certain aspects of the expert assessment, although the expert 

assessment is not necessarily correct (i.e. it is only one opinion) and the assumptions 

made were generally undefined.  The tolerances were effective at reducing the minor 

value and location differences that were overlooked in the expert assessment.  The 

measures that best aligned with the notes made in the expert assessment were the 

knowledge-driven region methods, which effectively represented hydrological response 

regions.  This clearly demonstrated the value of including suitable regions via pre-

processing to facilitate improved quantitative model assessments and also enable model 

understanding without the need for visual analysis.   

Overall, the quantitative analysis using the new and improved methods found run 8 to 

be the optimal model.  This was in contrast to the expert assessment, which rejected run 

8 as being non-behavioural due to the presence of a ‘soil boundary’ feature.  In this 

situation, the bias in the expert assessment appears to have weighted this factor more 

highly than many other positive comparisons for run 8.  This may also have resulted in 

alternate soil parameterisations (e.g. a soils maps with gradual transitions) being 

overlooked.  This application gives strong evidence of the importance of quantitative, 

adaptable and repeatable comparison measures.   
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Chapter 6  

Discussion 

6.1 Chapter overview 

The quantitative comparison methods presented in this thesis require considerable 

thought by the user to define what is being tested by the spatial field comparison.  They 

are both quantitative and repeatable, while still utilising expert knowledge of the user in 

their design.  The development and application of each comparison method has been 

shown throughout Chapters 4 and 5.  This chapter discusses the general issues with the 

application of new comparison methods.   

The chapter begins by reviewing the general approach that is currently used for 

comparison (and subsequently model assessment).  The developments made throughout 

this thesis are briefly discussed in regard to how they can prompt a change to this 

approach.  This is followed by a discussion of the major issue raised in applying the 

new comparison methods – requiring the user to make subjective decisions.  The new 

measures provide the user with simple ways to control the comparison, whereas current 

measures are generally ‘black boxes’ that remove the user from the comparison process.  

Each type of subjective decision made enables additional capabilities during comparison 

that are outlined here.  The way that these decisions combine to devise a comparison 

strategy for any specific application is discussed and then illustrated using a 

hydrological example.   

Issues relating to how the comparison measures are analysed, such as the interpretation 

and significance of differences between comparison measures, are then considered.  

Finally, the issues relating to implementing these new comparison methods (i.e. 

software development, computational demands) are discussed.  
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6.2 Changing the approach to comparison 

Comparison of data sets is fundamental to model assessment and other tasks in 

hydrology.  Many of the situations faced with comparison therefore directly flow 

through to the model assessment process.  For example, when meaningful comparisons 

can only be made using qualitative methods (e.g. visual inspection of plots or fields), 

the model assessment is similarly qualitative.  If the quantitative comparison methods 

only provide generalised tests of comparison, then the model assessment can only be 

based on such information.  These two examples describe the current state of 

comparison and model assessment in hydrology.  Some advances have been made for 

time series comparison and assessment of temporal models, although the spatial 

comparison problem in hydrology has had limited attention prior to this thesis and some 

recent publications (Grayson et al. 2002; Jetten et al. 2003; Güntner et al. 2004; Western 

et al. 2004; Wealands et al. 2005b). 

Rykiel (1996, p.242), when reviewing the state of model assessment for ecological 

models, points out that “performance testing is fundamentally limited to showing that 

the model passes the validation tests devised for it.”  However, “modellers do not 

describe in an engineering sense the requirements [and] specifications of the models 

they build.  Because there are no generally agreed validation criteria for ecological 

models, the best that can be done at present is for the modeller to state explicitly what 

the validation criteria are and leave it to the user to judge if the criteria are adequate.  

The most common criteria at present are the ‘see how well the simulated data matches 

the observed data’ test and the ‘the model did a reasonable job of simulating…’ test in 

which the reader is asked to agree subjectively that the match is adequate.”  These 

findings are largely applicable to most current hydrological model assessments.   

The comparison measures presented in this thesis have been developed and are expected 

to help address this situation in the following ways: 

 Users are now able to rigorously describe the measures and parameters used for 

comparison, rather than relying on descriptive language to describe performance.  

This permits comparisons to be repeated and clearly reported, although the 

decisions made still need to be rationalised.  
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 Users are now able to quantify more meaningful tests of how spatial fields 

compare.  This can help the user to avoid qualitative comparisons for model 

assessment, or at the very least supplement them with numerical evidence of 

performance. 

The measures require the user to take greater control of the quantitative comparisons 

made in hydrology, which is a substantial change from current practice.  Currently, the 

user is able to utilise their knowledge, but it is rare for this knowledge to be captured 

into the comparison process.  It is expected that having greater access to comparison 

methods that emulate the qualitative approaches commonly used will lead to improved 

model assessment.   

6.3 Devising the comparison strategy 

The comparison methods developed in this thesis are not designed to be applicable to all 

situations, but they are suitable for most typical situations in hydrology and can be 

readily adapted for other situations.  The use of these measures together for any 

application is determined by the comparison strategy, in which subjective decisions are 

required to make each measure specialised for hydrology.  The following sections 

discuss what the major subjective decisions are and how they come together to control 

the aspect of spatial fields being compared (and the associated interpretation of the 

measure).  The overall comparison strategy can then be devised by using different 

combinations of these decisions to achieve the major objectives of comparing multiple 

scales; describing both error and similarity; and comparing specialised aspects of the 

spatial fields.   

6.3.1 Subjective decisions 

There is no such thing as a purely objective comparison measure, because a subjective 

decision has been made to use that measure in the first place.  Also, the underlying 

nature of making a comparison is actually subjective, because there are so many 

different aspects of a field that can potentially be compared.  This thesis presents 

quantitative comparison methods that manage the subjective decisions in a rigorous 

manner, rather than purporting to be purely objective.  This allows the decisions to be 

clearly stated and the resulting measures to be interpreted appropriately.  The decisions 
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only need to be made once to parameterise the comparison method, after which the 

quantitative measures can be produced for many different spatial fields.   

Subjective decisions can be made explicitly to produce a specialised measure, or 

otherwise they may be made implicitly by choosing an existing method.  For example, 

choosing to compare fields using a BIAS measure makes the following set of implicit 

decisions – it measures error using global scale comparison of the whole field with no 

tolerance for uncertainty.  When explicit decisions are made regarding the scale, focus 

and strictness of comparison, measures with specialised hydrological interpretation can 

be produced.  The following sections describe the specific decisions involved when 

producing a spatial comparison measure. 

6.3.1.1 Error versus similarity methods 

Error and similarity measures (as defined in section 1.6) should both be used when 

investigating how spatial fields compare, as they perform the comparison in distinctly 

different ways.  An error measure accumulates all differences between fields, with large 

differences having a major impact.  Error measures are generally small for similar fields 

and large for different fields.  They must be evaluated against background knowledge 

(e.g. expected measurement errors) to be correctly interpreted (i.e. is the performance 

good or bad).  In contrast, similarity measures accumulate any similarities (as defined 

by the user) while overlooking the differences (i.e. they are not influenced by outliers).  

They are limited to a specific range (e.g. 0 to 1), which makes it possible to evaluate 

them without knowing the nature of the data.  However, understanding the variability 

and expectations of the data will help to improve their interpretation.  The subjective 

decision of whether to produce error or similarity measures should favour using both 

together, which is supported by the findings of Legates and McCabe (1999) with time 

series comparison.  This ensures the user knows not only how closely the fields match, 

but also how bad the errors are when they do occur.   

6.3.1.2 Scale of comparison 

The scale of comparison directly changes how a measure should be interpreted.  For 

example, a global scale comparison treats the field (or region) as a single element that is 

characterised and then numerically compared.  In contrast, local comparison compares 
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each element within the field (or region) and then summarises the results.  This allows 

the variability to influence the measure, which is not necessarily desirable if performing 

a less detailed comparison (e.g. general feature comparison).  Local scale comparisons 

respond to differences in variability and arrangement, whereas global scale comparisons 

do not.  There is a default scale for most comparison methods (e.g. MAE works at local 

scale), but if an upscaling method is chosen this enables any (or multiple) larger scale(s) 

to be used.  This decision is often limited by the comparison method, but using a 

multiple scale method is considered valuable whenever a single summary measure is 

needed.  In most situations, using a range of methods that apply to different scales (e.g. 

one local scale, one intermediate (or region-based) scale, one global) is preferred so that 

the variation across scale can be understood.   

6.3.1.3 Regions of comparison 

Defining spatially contiguous regions, using the spatial fields or ancillary information 

(e.g. terrain model), is the most powerful way of changing the meaning of a comparison 

measure.  This decision is commonly overlooked and the entire fields are compared, 

which can cause ambiguous measures to be produced (i.e. comparisons in unimportant 

parts obscure the comparison desired).  Comparison regions must be defined and 

labelled using user knowledge or characteristics from the ancillary data to assign them a 

specific meaning.  When comparing hydrological fields, the definition of suitable 

regions will improve with experience and knowledge of the processes being modelled 

(e.g. for soil moisture at Tarrawarra, the slope-based regions were most useful).  A 

variety of spatial analysis tools (e.g. terrain analysis, segmentation) exist for translating 

this knowledge into the set of region definitions.   

As an alternative to using ancillary data, the regions that exist within the target field can 

be recognised using segmentation.  The region-growing method used in this thesis can 

be applied to any type of spatial field by adjusting the scale and shape parameters, 

making it particularly useful for this type of investigation.  It identifies optimally 

homogeneous regions that can then be used to perform a type of feature-based 

comparison (i.e. the similarity of each observed region).  In complex fields, a large 

number of regions may be identified.  The user may analyse these individually, or group 

them together into a summary measure for all regions of a particular type (e.g. the 
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average error of all hillslope regions).  The important point is that the user assigns 

hydrological meaning by introducing additional data.  These comparison methods 

encourage this user input and ensure it is managed in a rigorous manner.   

6.3.1.4 Tolerances  

Subjective decisions relating to the definition of tolerances allow the strictness of local 

comparisons to be controlled.  Basic value and time tolerances can also work with 

global comparisons.  Tolerances encourage the user to explicitly consider uncertainty 

within the fields being compared.  Considering uncertainty continues to be called for 

throughout the hydrological literature, although there is no ‘Code of Practice’ for 

incorporating this into analysis (Pappenberger and Beven 2006).   

Whenever possible, tolerances should be set based on user knowledge about uncertainty 

(e.g. measurement error, positional accuracy).  Where this is not possible, user 

experience can be used to assign suitable values.  The different components of tolerance 

(i.e. value, location and tolerance) have been shown to depend on each other, so they 

should be set conservatively if they are not based on user knowledge to avoid tolerating 

too much difference.  A decision about whether tolerances are applied to just the target 

field (e.g. uncertainty in only the observed field) or both the source and target (e.g. 

uncertainty in both model and observation) is also required.  When using observed 

fields to evaluate a model, only the uncertainty in the observation should be tolerated.  

This makes sure the resulting measure represents all the model error (including 

uncertainty).   

Tolerances allow further customisation to enable highly specialised comparisons.  For 

example, value tolerances that limit the direction of the difference can be used to only 

tolerate under-prediction.  Location tolerances may be specified to only consider 

connected elements that are upslope (i.e. determine from a terrain model) and within a 

certain distance.  These specialised tolerances are additional decisions available to a 

user (if required) during the comparison process.  
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6.3.2 Combining the decisions 

The subjective decisions combine to produce specialised comparison measures.  The 

interpretation of these measures is a direct result of the decisions made.  Figure 6.1 

shows the four groups of subjective decisions described here, as well as a final group 

that determines whether the measure represents relative performance.  One option is 

chosen (and parameterised if needed) from each group to produce a specific comparison 

measure.  The shaded options identify the decisions that must be explicitly made for the 

new measures to be used.  Users are expected to use pre-processing tools to translate 

their knowledge into either the regions or tolerances that parameterise their decisions.  

The type of user knowledge included determines whether the resulting measure has 

hydrological meaning or not.   

Each combination of decisions will produce a measure that belongs to one of the groups 

of measures identified in the comparison flowchart (Figure 4.20).  The informative 

combinations for hydrological comparisons are listed in Table 6.1 along with the 

following details for each combination: 1) the associated measures; 2) a description of 

how the measure is used; and 3) any limiting assumptions.   

Any of the measures listed in Table 6.1 could be used individually, but combining 

multiple measures into an analysis provides a more comprehensive comparison and is 

the recommended approach for ensuring completeness.  The different measures can 

each quantify different aspects of similarity (e.g. overall model error under uncertainty, 

similarity in gullies, similarity on hilltops, etc.) and can potentially be combined into 

automated optimisations to reveal the optimal models (assuming the model space is 

broad enough).  This is a major change of approach to what is currently taken in 

hydrology, but it is necessary to advance the science of spatial prediction.   
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Figure 6.1 The subjective decisions (made either implicitly or explicitly) combine together to define the 

meaning of the resulting comparison measure.  By incorporating user information (via the blue shaded 

options), specialised hydrological comparison measures can be created.    
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Table 6.1 The combinations of subjective decisions that are informative for hydrological comparisons.  

Each combination includes a list of the associated measures; the broad group they belong to in the 

comparison flowchart (Figure 4.20); a description of how the measure is used; and details of any limiting 

assumptions.  The shaded measures are only possible by making subjective decisions for the options 

introduced in this thesis.   

List of 
decisions 

Group  
- Measure(s) Use within hydrological modelling and limitations 

1.1.1.1.1 G E 
- BIAS 

Used for assessing over- or under-prediction of a hydrological 
model; treats entire field as a single element 

1.1.2.1.1 R E 
- BIAS per region 

Changes field structure from elements to regions and then compares; 
used for assessing how much particular regions of hydrological 
significance differ (e.g. error for each low slope region); assumes no 
variability within the region; should only be applied within 
homogeneous regions (e.g. those from data-driven segmentation) 

1.2.1.1.1 
L E 
- MAE 
- RMSE 

Strict comparison, so similar nearby elements are not considered; if 
local errors are squared it produces RMSE; used for assessing the 
average error per hydrological model element (i.e. model error); 
requires spatial and temporal coincidence of elements before 
comparison can be meaningful 

1.2.1.2.1 
1.2.1.2.2 

TL E  
- TMAE 
- TCOE 

Tolerant comparison allows for uncertainty in fields to be tolerated; 
error measure is dependent on tolerances (i.e. larger tolerances, 
lower errors); explicitly manages uncertainty at element scale; used 
for assessing significant hydrological model errors; can be relative to 
known reference (e.g. mean field) to facilitate inter-comparison of 
measures;  

1.2.2.1.1 
1.2.2.2.1 

SL E 
- MAE per region 
 
STL E 
- TMAE per region 

Unlike region-based comparisons, this does not change the field 
structure into regions before comparison; makes measures more 
focussed; used for assessing model error in specific regions of 
hydrologically significant elements (e.g. error on northern facing 
hillslopes) with or without accounting for uncertainty 

1.3.1.1.1 M E 
- MSMEK

Combines comparisons from global, intermediate and local scales 
together; comparisons at intermediate scales introduce some degree 
of tolerance (due to smoothing); can reveal scale differences if used 
diagnostically; used for assessing error for all important scales in a 
single holistic measure 

2.1.1.1.1 G S 
- KS 

Measures difference between cumulative distributions to describe 
similarity of elements in fields; used to assess general fit of 
hydrological model (treated as single element);  

2.1.2.1.1 R S 
- KS per region 

Changes field structure from elements to regions and then compares; 
compares distribution of elements within each region; used to assess 
how similar particular regions of hydrological significance are (e.g. 
similarity for each gully region); for small regions, high similarity is 
difficult to achieve due to limited overlap between distributions  

2.2.1.1.2 
L S 
- RSQ 
- COE 

Transforms local errors into similarity by using a reference (e.g. 
linear fit, observed variance); widely used but not specialised for 
hydrological comparison; currently used to assess hydrological 
model performance relative to a known reference; implicit 
assumptions are made that need to be understood for correct 
interpretation, but these measures are well-understood in hydrology 
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List of 
decisions 

Group  
- Measure(s) Use within hydrological modelling and limitations 

2.2.1.3.1 
2.2.1.3.2 

TL S 
- TCOE 
- TMS 
- TSE 

Fuzzy tolerances used to define the differences considered as similar; 
explicitly manages expectations of model in terms of value, location 
and time accuracy; used for assessing level of similarity between 
hydrological model and observation 

2.2.2.3.1 
2.2.2.3.2 

STL S 
- TCOE per region 
- TMS per region 
- TSE per region 

Uses region definition to focus comparison and provide 
unambiguous measure for specific elements; used for assessing 
similarity between elements in hydrologically significant regions 
(e.g. similarity within alluvial soil regions); in small regions, high 
similarity values can be difficult to obtain due to limited sample 

2.3.1.1.1 M S 
- MSMSK

Gives holistic measure of similarity (using KS) across local, 
intermediate and global scales (as defined by user); used for 
assessing similarity in a single holistic measure 

6.3.3 An example comparison strategy  

It is not necessary to calculate every comparison measure listed in Table 6.1 to 

comprehensively compare spatial fields.  Instead, there are a number of methods that 

may be more suitable for some applications than others.  The most suitable strategies for 

different applications are expected to emerge via user experience.  However, until such 

experience is available, the general objectives for a comparison strategy (from Chapter 

4) should be considered when faced with a situation requiring comparison.   

This section describes a comparison strategy that is devised for a situation in which a 

numerical weather prediction model is compared with observed RADAR rainfall fields.  

This example is given to illustrate how the methods presented in this thesis can be easily 

adapted to different hydrological situations (as opposed to the soil moisture situation in 

Chapter 5).  The actual comparisons and model assessments are not fully undertaken, 

but some details of the results are given for illustrative purposes.   

6.3.3.1 The rainfall fields to be compared 

Rainfall RADAR is one of the few methods used in hydrology that produces an 

observed spatiotemporal series with short temporal spacing.  Using this data for model 

assessment can permit more specialised questions to be asked about how the model and 

observations compare.  The example given here is for 6 hours of observed rainfall 

RADAR aggregated over a 15 minute period (i.e. 24 fields) for a 256km x 256km area 

(with regular 2km x 2km elements) covering the south-east of the United Kingdom (A. 
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Seed, personal communication, 04/05/2006).  A numerical weather prediction (NWP) 

model was used to simulate this same time period and it is being compared against the 

RADAR observations to measure model performance.  The modelled fields have been 

produced at a comparable scale to the RADAR observations.    

6.3.3.2 The suggested comparison strategy 

As presented in Chapter 5, the comparison strategy devised for this example is detailed 

in a table (Table 6.2) and then the rationale for the various decisions is given.  As the 

observed data in this situation is a spatiotemporal series, the comparison can also make 

use of time tolerances.  The strategy listed here meets the objectives set out in Chapter 4 

for achieving completeness during comparison.   

This strategy has been applied to assess 6 different time steps from the modelled series 

(shown in Figure 6.2).  The results from making the comparisons are listed in Table 6.3 

and are referred to in the following section.   

Table 6.2 The list of comparison measures used in the comparison strategy for model assessment of a 

numerical weather prediction model using RADAR rainfall fields.  The pre-processing, parameters and a 

description of what the measure is expected to assess about the models is given for each measure.   

Group Measure(s) Parameters/Pre-processing Description 

G E BIAS - 

Over- or under-estimation of rainfall 
averages but is representative of 
difference in total rainfall (i.e. it is just 
divided by number of elements) 

G S KS - Similarity of element value distributions 
between model and observation 

L S RSQ - Amount of observed variability that is 
represented by the model  

R E BIAS 
Define two regions in RADAR fields 
– elements with rain; and elements 
where no rain is observed 

Over- or –underestimation for ‘true rain’ 
and ‘false rain’ parts of the model 

TL E TMAE |ΔV|ALLOW = 0.1 mm  
|ΔL|ALLOW = 1 element (2km) Significant error per model element 

TL E TMAE 
|ΔV|ALLOW = 0.1 mm  
|ΔL|ALLOW = 1 element (2km) 
|ΔT|ALLOW = 15 minutes 

Significant error per model element, 
with inclusion of time tolerance for 
mismatches between overall fields 
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Table 6.3 Results from applying the comparison strategy for assessing the numerical weather prediction 

model against observed RADAR rainfall.  Refer to Table 6.2 for details of the region definitions and 

different tolerance (VL and VLT) definitions.  The best matching time step (i.e. lowest BIAS value) has 

been noted to show whether there was a regular timing difference between the models. 

FIELD BIAS 
mm KS FALSE RAIN

BIAS mm 
TRUE RAIN

BIAS mm 
TMAE

VL 
TMAE 
VLT 

TIME 
MATCH 

T = +1 hr 0.44 0.73 0.24 0.78 0.47 0.42 T = +0.75 hr
T = +2 hr 0.40 0.71 0.35 0.48 0.51 0.51 T = +1.75 hr
T = +3 hr 0.16 0.72 0.33 -0.17 0.63 0.59 T = +2.75 hr
T = +4 hr -0.07 0.78 0.25 -0.79 0.49 0.49 T = +4 hr 
T = +5 hr -0.17 0.86 0.25 -1.05 0.48 0.48 T = +5.25 hr
T = +6 hr -0.19 0.93 0.15 -0.91 0.36 0.33 T = +6.25 hr

 

 

Figure 6.2 The spatial fields from the numerical weather prediction model and RADAR rainfall 

observations.  Six temporally-coincident pairs of spatial fields are shown. 
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6.3.3.3 Rationale for strategy and parameters chosen 

Initial comparison of rainfall fields would generally use global measures of BIAS and 

KS similarity to describe whether the overall amount of rain in the field is correct and 

whether the distributions agree.  The distributional measure is particularly interesting 

for rainfall fields, as they are usually heavily skewed by the large number of ‘zero 

rainfall’ elements.  This can unduly influence the error measures if not considered.  

To obtain a measure that considers the ‘no rainfall’ elements, importance regions are 

recommended for use.  The rainfall fields could be divided into regions using any of the 

methods introduced in this thesis, although the simplest approach in this situation is to 

threshold the observed rainfall fields at 0mm.  This separates them into areas where rain 

actually occurred (i.e. the model would be estimating ‘true rain’) and where it didn’t 

(i.e. the model would be estimating ‘false rain’).  The resulting BIAS measures 

calculated for each region describe how well/poorly the modelled fields estimate rain 

and whether this is due to false positives or other causes.  For example, Table 6.3 shows 

that the model has a similar amount of ‘false rain’ at each time, but changes from over-

estimating to under-estimating ‘true rain’ at around T = +4 hr. 

The above comparisons provide global and region-scale comparisons, but local 

comparison of the fine details is also necessary for a complete comparison.  Tolerant 

local measures are favoured here, as they allow any uncertainty in the RADAR fields to 

be considered and investigated.  A subjectively-assigned value and location tolerance is 

used first, to summarise only the significant differences between the fields.  RADAR 

fields are typically quite uncertain, so the small |ΔV|ALLOW of 0.1 mm is likely to be 

much larger in a more realistic comparison.  There is also a difference in the temporal 

support of the numerical weather model versus the RADAR data which would lead to 

errors.  These could be included into a value tolerance or else as a time tolerance on the 

observed RADAR field.  An additional set of tolerances, in which the model is 

permitted to have a 1 time step difference with the RADAR fields, is used to see if a 

better local match is found nearby (i.e. as evidence of timing problems in the model).  

Table 6.3 shows that early in the series, the modelled rainfall may be moving faster than 

the observations, while in the latter times the model has fallen behind.   
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Further analysis of these fields is not undertaken here, but the strategy shows how 

readily adaptable the comparison measures from this thesis are for an alternate 

hydrological situation.  They are expected to have widespread applicability to 

continuous fields.   

6.4 Analysis issues 

Analysis of the results from comparing spatial fields can be managed in a variety of 

ways.  The measures are generally analysed to evaluate the optimally performing model 

(or parameter set) from a group of potential models.  The method used to determine the 

optimum can include approaches such as multi-criteria optimisation or rejection of non-

behavioural models.  Both of these methods have already been discussed in this thesis.  

However, regardless of the optimisation methods used, there are some issues with how 

to interpret and analyse the measures that must be considered.   

6.4.1 Interpreting comparison measures 

Comparison measures have limited value if there is no user knowledge applied when 

interpreting them.  They are simply summaries of the accumulated errors or similarities 

between two (or more) sets of ‘meaningless’ numbers.  However, this situation is 

uncommon because the user usually understands the spatial fields they are comparing.  

The primary knowledge that facilitates interpretation is the ‘type’ of the spatial fields 

being compared.  It identifies the actual attribute (e.g. rainfall), the units of the resulting 

error measures (e.g. rainfall in millimetres) and also the characteristic scales of the field 

elements (e.g. daily rainfall for each 100m x 100m square element).  This knowledge 

applies to all comparisons conducted between the fields, unless they are pre-processed 

to change their meaning.  In some studies, there may be limited additional knowledge 

about the fields apart from their basic context.  In other studies there can be much more 

ancillary information available (e.g. spatial distribution of topography, climatic 

information).   

In addition to the type of fields being compared, knowledge of the processing involved 

in the comparison method can be used to aid interpretation.  This is where the common 

methods used in hydrology often fail.  The comparison methods used to produce 

measures such as RMSE, BIAS, COE and RSQ are not interactive.  Instead, they are a 
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‘black box’, into which two data sets are put and a quantitative measure is produced.  

When the user is not encouraged to make decisions, they tend to blindly apply the 

methods without thinking about the implicit decisions/assumptions being made.  

Legates and McCabe (1999) showed that the methods to produce RMSE and COE could 

be easily modified to require users to control how the comparison is done (i.e. whether 

absolute or squared errors are used).  This type of interaction makes the user consider 

what is actually being compared and enhances their ability to correctly interpret the 

results.   

The RMSE measure is often misinterpreted as measuring the performance of a model 

for simulating high magnitude events (e.g. Sun et al. 2000).  This method does not 

specifically compare high magnitude elements, nor does it treat them any differently to 

others.  While RMSE does cause large errors to be more influential (i.e. by squaring 

them) in the resulting measure, it does not do so unambiguously and can be dangerous 

to interpret in this way.  A more appropriate comparison would require the user to 

specify a threshold for defining high magnitude events, which are then used as a subset 

(i.e. a non-contiguous region) for comparison, as done in time-series comparison by 

Boyle et al. (2000).  Explicitly making this decision makes the measure better reflect 

what the user wants to test, while still being quantitative and repeatable.  All that is 

required is the addition of user knowledge.  With spatial fields, the common methods do 

not produce easily interpretable measures, due to the confounding effects of spatial 

variability (as in the analysis throughout Chapter 5).  Therefore, useful and meaningful 

spatial comparison measures are particularly reliant on user interaction.   

6.4.2 Significance of differences between measures 

When a comparison measure is produced between a range of potential models and an 

observed field (i.e. reality), the resulting measures are generally similar in magnitude.  

This occurs because many model parameterisations cause only minor changes and this 

feeds through to the comparison results.  However, evaluating whether the performance 

of a model with similarity of 0.80 versus one with similarity of 0.82 is significantly 

different demands greater consideration.   
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Spatial field comparisons are influenced by the actual element values and their spatial 

arrangement within the fields being compared.  They can be considered synonymous 

with landscape indices, which are also dependent on the composition and configuration 

of the field being analysed.  A recent discussion about significant differences between 

landscape indices by Remmel and Csillag (2003) recognised that, unlike spatial 

statistical models in which the distributions are known, the distributions of landscape 

indices (and spatial field comparisons) are not known.  Therefore, the expected values 

and variance cannot be used to evaluate statistical significance.   

Bootstrap methods (Efron 1981) have been applied to try and estimate the distribution 

of certain landscape indices (e.g. Hess and Bay 1997), but these methods have only 

considered the element values, thereby ignoring the spatial autocorrelation present in 

most spatial fields.  Remmel and Csillag (2003) have presented a method to estimate 

confidence intervals for landscape indices, using multiple realisations of different binary 

landscapes (created with a range of value distributions and arrangements).  An empirical 

distribution is created from these realisations, from which confidence intervals can be 

determined for specific combinations of composition and configuration.  This allows 

significance to be determined, but relies on the realisations being representative of all 

the possible landscapes, which is difficult to ensure.   

For spatial field comparisons, the summary measure is generally determined from an 

intermediate error or similarity field (or multiple fields as with multiscale comparisons).  

The measure is therefore dependent on the initial arrangement of both fields and also on 

the comparison method used.  This introduces additional complexity into estimating the 

distribution of a measure and makes significance testing problematic with continuous 

fields.  This is an area that deserves further research, but it has not been attempted here 

because of the complexity in generating feasible realisations of continuous fields, as 

opposed to the binary landscapes attempted by Remmel and Csillag (2003).     

Any analysis and interpretation of a comparison measure should be made relative to 

other measures that use a similar method and data (so that some ‘feeling’ for the 

distribution is available).  It is not valid to analyse and contrast measures obtained from 

different data sets or times without having a reference to evaluate the measures against.     
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6.4.3 Relative comparison measures 

Comparison measures should be analysed relative to some reference value to aid with 

their understanding.  This can be incorporated into the comparison method, as is the 

case with the efficiency measures used throughout this thesis (e.g. COE, TCE, TSE).  

These measures all use the performance of the observed mean (or mean spatial fields) to 

standardise the values.  When using measures that are not adjusted to a known 

reference, the reference can be considered during the analysis in a less explicit manner.  

By contrasting each measure against the results from other fields being compared, the 

user can understand the distribution of the measure for the particular data sets.  This 

approach has been used throughout Chapters 4 and 5, in which the ‘stand out’ values 

from the result tables are highlighted and discussed.  When the complete distribution of 

the measure cannot be known and it is not assumed, these are the most suitable 

approaches to analysis.   

Relative comparison measures, based on evaluating the error or similarity relative to a 

known reference, are usually restricted to a certain range of possible values (e.g. zero to 

one).  A value of zero may represent no similarity, or it may represent the similarity of a 

featureless field with the correct mean (as with TCE and TSE).  Regular and/or 

widespread use of these measures with different data sets enables a user to understand 

their distribution via experience.  The COE measure is an existing example from 

hydrology, whereby most hydrologists would have an expectation about what a ‘good’ 

COE value is for a certain situation.  It is expected that similar experience will develop 

for more specialised spatial field comparison method also. 

6.5 Implementation issues 

Implementation of specialised spatial field comparison methods requires a 

computational system to manage element values/locations/times.  The common methods 

used in hydrology only compare spatially and temporally coincident elements, avoiding 

the need to manage location and time attributes.  This makes comparison as simple as 

summarising the differences between pairs of data values (e.g. in a spreadsheet).  When 

location and/or time are considered, a more advanced method of handling the data is 

required.  GIS software can be used for conducting simple spatial comparisons, but the 
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analysis tools within GIS are only suited to general analyses.  They manage time 

information using either an attribute or the name of the spatial field (or layer).  To 

undertake custom or complex analyses (i.e. implement a prescribed algorithm) with GIS 

software, a certain amount of programming or scripting is usually required.  GIS 

software generally provides a set of programmable objects that can be manipulated and 

combined to undertake these more advanced comparisons.   

To encourage users to apply new comparison methods, custom software tools that 

enable easy implementation are desirable. This is particularly relevant for the more 

complex methods that introduce tolerances and multiscale representations.  These 

methods are not just simple combinations of standard GIS operations.  Instead, they are 

custom algorithms that require a custom solution.  With the simpler, strict comparison 

methods (e.g. global, local, region-based), standard GIS analysis tools can be automated 

to conduct the comparisons, although considerable experience with GIS is needed to 

properly use or modify the functions.  For example, the ZONAL commands in ArcGIS 

(ESRI 2005) allow statistical operations to be conducted on a per region basis and thus 

can perform region-based comparisons.  Without specialised software for comparison, 

the simpler methods are expected to be the most commonly used, primarily because of 

their accessibility.  In this thesis, a spatial field comparison tool has been developed and 

used to undertake all analyses.  The development and use of this tool is detailed in the 

remainder of this chapter. 

6.5.1 The Invisible Modelling Environment (TIME) 

Research amongst the hydrological community in Australia has benefited over recent 

years from the Cooperative Research Centre (CRC) for Catchment Hydrology and more 

recently the eWater CRC.  A major output from these cooperative research programs is 

the Catchment Modelling Toolkit (Argent et al. 2003; eWater CRC 2006), which is a 

repository of models and modelling tools (e.g. optimisers, stochastic data generators) 

aimed at improving catchment modelling practice.  Within this toolkit is a development 

environment named The Invisible Modelling Environment (TIME) (Rahman et al. 2003; 

Rahman et al. 2004).  TIME provides users with access to the source code for the whole 

toolkit, enabling users to develop custom models/tools.  This ensures that any 

capabilities needed within the Catchment Modelling Toolkit can be added.  For 
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example, during this thesis tools were developed for calculating variograms, performing 

connected components analysis and also for undertaking all spatial field comparisons 

discussed.  Any person seeking access to these models and tools can gain access to the 

Catchment Modelling Toolkit and there is a growing user base for support, further 

development, etc.   

The TIME source code includes all of the underlying classes (i.e. programmable 

objects) for the included models and tools, as well as a range of general input and output 

classes for different data types (including visual interface classes).  TIME supports 

spatial, temporal and spatiotemporal data types, with classes that give access to element 

values, location and time.  TIME is an ideal environment in which to implement the 

new comparison methods in this thesis.  It provides suitable classes for implementing 

the algorithms described and for developing comparison tools that are readily accessible 

by the hydrological modelling community.   

Figure 6.3 A typical screen capture from the prototype spatial field comparison tool developed for 

implementing the comparison methods in this thesis.  Details are given in Appendix A.   
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All of the comparison methods developed in this thesis have been developed using 

TIME for application to regular element fields (i.e. rasters).  The comparison measures 

for synthetic and hydrological fields (from Chapters 4 and 5) were all undertaken using 

a prototype spatial field comparison tool (Figure 6.3).  This prototype contains a simple 

interface on which users can explore how spatial fields compare, without the need to 

implement the methods themselves.  It allows all of the methods listed in Table 6.1 to 

be calculated.  There is potential for future development of such a tool in the Catchment 

Modelling Toolkit that could integrate within other models.  

For the interested reader, more complete details about using this tool are given in 

Appendix A.  A detailed explanation is given about the interface, the options available 

and a tutorial showing how to conduct each type of comparison used in this thesis.  The 

installation files and some sample spatial fields are provided on the CD with this thesis, 

or alternatively by contacting the author.   

6.5.2 Managing computational demands 

Working with spatial fields and comparison methods are computationally demanding 

tasks.  Spatial fields are always much larger than temporal hydrological data sets 

because they represent a value for every location.  Large fields, such as high-resolution 

remotely sensed imagery, can have millions of elements (e.g. a 1000 x 1000 pixel 

image).  When a spatiotemporal series exists, the data size and computational demands 

increase even more.  In addition to the data being quite cumbersome, most comparison 

algorithms require every element (at every time) to be inspected at least once during 

processing (e.g. algorithms detailed in Chapter 4).  As the comparison methods become 

more inclusive of spatial relationships between neighbours, these computational 

demands increase again (with multiple visits to every element).  Some of the methods, 

such as segmentation or interpolation, are iterative processes that require multiple loops 

through the field before they converge upon a solution.  These iterative methods are 

computationally demanding, but are generally only required for parameterising a 

comparison method (i.e. they are ‘one-off’ computations).  In some situations it is 

impossible to reduce the computational demands, while in others it is possible to limit 

the spatial or temporal extent of the data being processed.  For example, comparing 
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elements with a limited, but meaningful region may be just as informative as comparing 

the entire field, yet requires far less computing power.   

Regardless of whether the amount of processing required can be reduced, the current 

cost (i.e. time and money) of computing power makes it feasible to run the comparison 

methods on standard desktop computers with typical hydrological fields.  The fields 

used throughout this thesis mostly have less than 10,000 elements, being for small 

research catchments.  The strict comparison measures are calculated almost instantly, 

while tolerant and multiscale measures take longer and are dependent on the size of 

location tolerances, number of intermediate scales, etc.   

To give some example times, a field with 100 x 100 elements has been analysed on a 

Pentium 4 PC with 1 gigabyte of RAM.  Strict comparison measures were produced in 

less than 1 second, but introducing a location tolerance of 10 elements (in all directions) 

increased processing time to approximately 3 seconds.  The time required for a 

multiscale measure (with 4 scales from local to global) was approximately 80 seconds.  

The region merging segmentation algorithm ran in approximately 15 seconds, but this is 

dependent on the values and arrangement of the field (i.e. an organised field is simpler 

to segment).  The greatest control on processing time is the spatial field size, with 

memory and processing demands (i.e. both in time and cost) increasing accordingly.  

Most of these issues can be managed via thoughtful software development or otherwise 

patience for longer runtimes.   

6.6 Chapter summary 

This chapter has provided discussion about the major issues relating to the application 

of new spatial comparison methods in hydrology.  These methods require a different 

approach to model assessment, in which the user directs the comparison process rather 

than attempting to make qualitative comparisons that are difficult to repeat and report.   

The subjective decisions required during comparison are identified and the manner in 

which they combine to control comparison is conceptualised.  From these decisions, a 

comparison strategy can be devised for different hydrological situations.  This is 
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illustrated by using an example from a large-scale weather prediction model and 

observed RADAR rainfall.   

More specific issues regarding application of these methods, including the analysis 

issues (e.g. interpretation, significance) and the implementation issues (e.g. software, 

resources), are discussed.  The software tool developed throughout this thesis is detailed 

and it identifies an area where this research may progress in the future.  The following 

chapter concludes this thesis by revisiting the initial research questions, describing how 

they have been addressed and presenting the important avenues for future research. 
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Chapter 7  

Conclusions and further research 

7.1 Conclusions 

The ability to quantitatively compare spatial fields used in hydrological modelling has 

been advanced through the development of new comparison methods.  These 

developments have been guided by an understanding of how qualitative methods (e.g. 

visual comparison), which are currently depended upon for making specialised 

comparisons in hydrology, operate during analysis and comparison.  Qualitative 

methods are recognised as being powerful and versatile and they remain useful.  

However, they cannot be automated and become overwhelmed when applied to large, 

complex comparison tasks (e.g. large spatial extents, complex spatial arrangements 

and/or numerous spatial fields requiring comparison).   

A review of approaches used in other disciplines facing similar comparison challenges 

(e.g. image processing, pattern recognition/matching) (Wealands et al. 2005a) has 

revealed three general themes that are common to most applications:  

1. importance; 

2. tolerance; and 

3. completeness. 

The development of these three themes into hydrological comparison methods has led 

to the significant advances.  The themes emulate general processes undertaken during 

visual comparison.  However, to achieve this, they must be guided by user knowledge 

and experience.  The new comparison methods developed in this thesis capture user 
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knowledge in an intuitive manner, through the use of pre-processing, feature definition 

and recognition, tolerance definitions and parameters that control spatial scale. 

The notion of importance is incorporated into comparison by pre-processing and then 

comparing the processed fields.  A range of existing and new methods can be used to 

change spatial fields so that they are comparable and representative of what is 

important.  A data-driven segmentation method is a new approach for hydrological 

fields (adapted from image processing) and is capable of automatically recognising 

homogeneous regions (i.e. features) within the observed fields, which may have specific 

importance or interpretation.  Specific hydrological or process knowledge can also be 

used to generate knowledge-driven regions, which can then allow region-based 

comparison measures to represent specialised comparisons.  In model assessment, 

measures that incorporate importance enable model understanding to be achieved 

without requiring the user to visually inspect the individual spatial fields.   

A new and versatile method for defining and incorporating tolerance into local 

comparison methods has been developed.  Tolerances allow insignificant differences (in 

time, location or value) to be ignored during comparison, making it feasible that a range 

of fields will have equal similarity (i.e. all within the tolerances) to the target.  This is 

not the same as tolerating errors globally and allows more explicit and specialised 

tolerances to be applied during comparison.  In model assessment, this means that there 

may be multiple models that are all optimal, based on how strictly defined the target 

field is (as defined by the user).  This is a desirable property and the range of optimal 

models is used to evaluate model uncertainty.  The intermediate field of tolerant 

residuals also has potential for use in data assimilation, where it can be more effective 

for determining corrections to model states because the known uncertainties have 

already been tolerated. 

Completeness of comparison is ensured by using a logical comparison strategy.  

Devising a comparison strategy encourages the user to plan which different aspects and 

scales of spatial fields are compared, based on those that can be measured using 

available methods.  It is not possible to make unambiguous comparisons with single 

measures that do not consider the purpose of comparison.  Some single measures can 

combine multiple scales or aspects, although they are difficult to interpret and have 
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limited versatility.  It is more suitable to use a range of comparison measures and to 

analyse performances using multi-criteria optimisation procedures.   

The new and current comparison methods, which incorporate the notions of importance 

and tolerance, combine to produce an extensive suite of measures that can quantify a 

broad range of aspects and scales of spatial fields.  Of the 14 groups of comparison 

measures shown in the flowchart (Figure 7.1), only 3 groups can be achieved with the 

methods that are currently used in hydrology.  By introducing the KS similarity 

measure, the new multiscale measure, tolerances and the notion of importance (via 

regions), the 11 additional aspects of comparison can be measured.  These provide the 

framework for devising a comparison strategy for a specific application.  The strategy 

will generally reflect how the user would undertake the comparison qualitatively.  

However, using this approach, the user is only required to make subjective decisions 

once.  The strategy can then be applied to numerous spatial fields to produce a complete 

quantitative comparison, including all aspects and scales the user deemed suitable. 

Figure 7.1 The comparison flowchart (repeated from Figure 4.20) details the expanded range of measures 

used for spatial field comparison, which should be used for assessing the optimally modelled fields from

the input set of potential models and observed fields.   
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The actual process of making the subjective decisions forces the user to consider in 

detail what to compare, which is an improved approach from common hydrological 

modelling practice.  The new methods ask the user what parts of the field are important; 

what differences are significant; what uncertainty exists in the fields; and what scale(s) 

to compare.  Simple software tools for translating user knowledge into comparison 

parameters (e.g. regions, tolerances) must be available to assist users with converting 

their knowledge into parameters.  The software presented in this thesis is an example of 

such a tool that could assist with changing comparison practices.   

This type of approach is a contrast to most current comparison measures, which are 

applied to all types of spatial fields in the same manner.  Different branches of 

hydrology have varying demands for comparison, due mainly to the different modelling 

expectations and uncertainties involved.  Therefore, the new methods can be better 

adapted to different applications.  The strict, non-specific methods are still useful for 

providing a strict measure of difference, but they become more useful when rigorously 

combined with user knowledge.   

The new comparison measures have been evaluated against expert assessment and 

visual evidence.  They achieve results that are visually intuitive and they provide more 

detailed quantitative information than previously available.  The unbiased and rigorous 

comparison of different aspects and scales produced clear, repeatable and reportable 

comparison findings that address the major weaknesses with current comparison 

methods.  The examples used in this thesis were relatively simple to facilitate 

evaluation, but the true power of these methods lies in their application to larger, more 

complex fields and comparison tasks.  Spatial fields that contain numerous important 

regions or model assessment tasks requiring numerous comparisons (e.g. Monte Carlo 

simulations) will truly benefit from more advanced and meaningful comparisons.   

Comprehensive model assessment can only be achieved by using comprehensive 

comparisons.  For spatial fields, the current methods are limited by their lack of user 

interaction.  By including the user into the comparison process in a rigorous and 

intuitive manner, better comparison measures have been developed.  These measures 

subsequently produce better model testing and more informative measures for model 

understanding, which ultimately improves the modelling process.   
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7.2 Further research 

This thesis has addressed an area of hydrology that is increasingly being encountered – 

the need to quantify the error or similarity between spatial fields.  Apart from some 

comparison methods designed for specific applications (e.g. Grayson et al. 2002; 

Güntner et al. 2004), there has been limited research on this topic in hydrology prior to 

this thesis.  As a result, there remain many avenues for future research that can 

contribute to the improved comparison of spatial fields. 

As the comparison methods introduced in this thesis become used in more complex 

hydrological situations, their true value will become better understood.  At present, 

there are only a few studies in which spatial observations have been used for 

comprehensive model assessment.  Apart from the soil moisture modelling at 

Tarrawarra, these studies have mainly worked with binary spatial fields of flood 

inundation (Hunter et al. 2005), snow cover (Blöschl et al. 1991; Blöschl and Kirnbauer 

1992) or saturated areas (Güntner et al. 2004).  The work on flood inundation by Hunter 

et al. (2005) is the best example so far of applying comparison methods to reduce 

modelling uncertainty, in this case with binary fields.  Future research should focus on 

using these new methods to make better assessments of complex situations.  Ideally, the 

measures will be used for assessing ‘Monte Carlo type’ modelling situations, where 

they determine the likelihood of each potential model.   

The significance (in a statistical sense) of differences between comparison measures is 

unclear and this makes interpretation of results difficult.  Further research in this area is 

expected, following on the recent progresses made with categorical comparisons by 

Remmel and Csillag (2003).  Continuous fields present a more difficult problem when 

estimating the distributions of comparison measures, but some methods to help with the 

general interpretation may be sufficient.  The many degrees of freedom in comparison 

problems is expected to limit the development of simple significance testing methods, 

so understanding via experience and relative performance (e.g. the COE in hydrology) 

is more likely.  There is also potential for geostatistical methods to be used for 

producing multiple realisations of continuous fields that adhere to specific spatial 

relationships (e.g. connectivity measures).  
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These methods address spatial field comparisons, with some limited consideration of 

temporal information.  As data availability and modelling approaches advance, the 

comparison of spatiotemporal series is expected to become necessary.  In this thesis, the 

comparison of spatiotemporal series is undertaken by first making spatial comparisons 

and then using the numerical results within a simple temporal series.  However, 

understanding changes at local spatial scales throughout time may also be useful.  For 

example, tracking feature movements or changes throughout time may be possible, 

although heavily dependent on the definition of a feature, which remains unclear in 

continuous hydrological fields.  Fuzzy region definitions may be a potential solution to 

this problem, although this is likely to increase the difficulty and versatility of 

comparison methods.  Tracking applications will be reliant on recognising a ‘dynamic 

feature’ via analysis of a spatiotemporal series.  For categorical fields, the change of 

features over time will be simpler to recognise (i.e. because boundaries exist between 

categories) and is likely to be where initial advances are made.   

This thesis has focused on using quantitative measures, in which visual inspection and 

analysis of the result is not used.  However, the intermediate measures produced by 

tolerant comparisons are potentially useful for various applications, but particularly 

within data assimilation.  Existing data assimilation studies usually assimilate either 

absolute values or residuals to correct states within the model.  However, by tolerating 

insignificant differences between elements, the intermediate field can be modified to 

better reflect where corrections are needed (i.e. avoiding false findings).  Using these 

methods would alter the magnitude and arrangement of the corrections applied during 

assimilation and may prove to be useful, although this requires further investigation.     

To encourage the use of newer methods by hydrologists, software tools that are readily 

available and easy to use are required.  A prototype software tool has been developed in 

this thesis to apply and test all of the comparison methods presented (Appendix A).  A 

spatial comparison tool such as this would benefit from greater software development to 

improve both the user interface and computational efficiency.  There are also other 

considerations for the development and design of such software, including user needs 

assessment and user-centred design.  It is also necessary to publicise and distribute such 
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a tool, although through the internet and the Catchment Modelling Toolkit (eWater 

CRC 2006) this is quite achievable. 

There is great scope for future application and development of comparison methods for 

spatial fields.  At present, the hydrological community continues to develop its ability to 

observe and model spatial fields, but comprehensive and rigorous model testing is still 

in its infancy.  The methods developed in this thesis provide a new suite of tools to the 

modeller and, if adopted, should significantly advance the art and science of spatial 

hydrological modelling.   
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Appendix A 

Tutorial for comparison tool 

A.1 Overview 

A software comparison tool has been developed to enable the comparison methods 

described throughout this thesis to be computed and analysed.  This tool has been 

developed using the Catchment Modelling Toolkit (Argent et al. 2003; eWater CRC 

2006) and is a prototype that can be developed in future research.  This tool is provided 

here for the reader to experiment with, using the sample fields provided and/or their 

own spatial field data.  The software is only a prototype, but it is representative of the 

type of interface and functionality expected in a comparison tool.   

The interface is designed to facilitate making the subjective decisions and defining any 

parameters needed for the comparison, rather than actually doing the pre-processing 

(which can be done externally using other tools).  However, pre-processing tools for 

standardising, equalising histograms and data-driven segmentation are accessible 

through the interface.  Other pre-processing methods (e.g. terrain analysis, noise 

filtering) are not yet developed into the interface, but some are available in other 

Catchment Modelling Toolkit products.   

A.2 Installation 

The software has been written in C#.NET and is supplied as an executable file and a 

variety of associated dynamic link libraries (DLLs).  The executable requires the 

Microsoft .NET Framework Version 1.1 (or greater) to be installed onto a Microsoft 

Windows operating system.  Many applications already use this framework and it has 

often been installed as part of another application (therefore not requiring reinstallation). 
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A.2.1 Installing the comparison tool 

The comparison tool is provided on the CD or as a zipped file containing one executable 

file and eleven DLLs from http://www.civenv.unimelb.edu.au/wealands/tool.zip.  This 

file can be unzipped into any target directory.   

To run the software, execute the file named comptool.exe that is in the CD directory 

(\tool) or the target directory chosen previously.  If an error message is shown, the .NET 

framework will need to be installed.   

A.2.2 Installing the .NET Framework 

The .NET framework can be installed from the CD directory (X:\dotnet\) or 

alternatively from http://www.microsoft.com/downloads (search for “.net framework”).  

To install, execute the file named dotnetfx.exe and follow the prompts.  After 

installation, the comparison tool can be executed again and should run. 

A.2.3 Troubleshooting  

If there are any problems encountered with the software or installation, the reader is 

encouraged to contact the author for assistance (mailto:sweal@unimelb.edu.au), 

although the availability of technical support may be limited.   

This software tool is provided primarily for the experimentation of the interested reader 

and should not be considered a final, packaged product.  It has limited error handling 

and is yet to be optimised for performance with large spatial fields (i.e. more than 

100,000 elements).  A brief tutorial is given in the following section to demonstrate the 

use of the interface with a range of sample fields provided. 

A.3 Tutorial 

A.3.1 Sample spatial fields 

Two sets of spatial fields have been supplied for the reader to use when experimenting 

with different comparison methods.  They are the synthetic fields from Chapter 4 

(\data\synth*\) and the soil moisture fields from Tarrawarra used in Chapter 5 

(\data\tarra*\).  These fields are provided on the CD (\data) or are downloadable from 

 

http://www.civenv.unimelb.edu.au/wealands/tool.zip
http://www.microsoft.com/downloads
mailto:sweal@unimelb.edu.au
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http://www.civenv.unimelb.edu.au/wealands/data.zip.  A readme.txt file in each 

directory details what each directory and sample spatial field represents and where it has 

been used in the thesis.  The reader may also use their own spatial field data within this 

tool.  The fields must be in Arc ASCII raster format and have comparable headers to be 

used in the tool.   

A.3.2 Interface 

The comparison tool interface is comprised of six main sections, each representing a 

different part of the comparison process.  Figure A.1 shows the appearance of the 

interface when populated with spatial fields and comparison results.  Table A.1 

identifies the major purpose of each section of the interface, detailing the interactions 

available to the user.  The interface uses a drag-and-drop approach for inputting the 

source, target and region fields.  The other parameters (e.g. tolerances, scales) are 

entered using the keyboard via simple text boxes arranged on the tab control.   

 

Figure A.1 The interface of the prototype comparison tool, illustrating the appearance of the tool after 

performing analysis.   

 

http://www.civenv.unimelb.edu.au/wealands/data.zip
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Table A.1 A listing of the purpose of each section of the interface shown in Figure A.1.  The interactions 

available to the user within each section are listed.  In general, the user controls the meaning of the 

comparison by the fields and parameters defined in sections 1-4, while the numerical and graphical results 

are presented in sections 5-6.   

1. Input and display source fields 

 User can drop files onto graphical control 

 Fields are added if extent and element size 
matches existing fields in list 

 Symbology can be defined by selecting colour 
ramp and min/max values 

 Defined regions are overlain on display 

2. Input and display target field 

 Same operation as section 1 

 Temporal representation is not implemented, so 
only one target field can be added 

 Matching symbology between source and target 
aids visual comparison 

 Target field can be segmented to make regions 

3. Input and display regions of comparison 

 Regions must be chosen using section 4 (e.g. 
source/target extents or custom regions) 

 If custom regions are chosen, a region field can 
be dropped onto the interface 

 Alternatively, the current target field can be 
segmented using the scale/shape parameters  

4. Define comparison methods and parameters 

 Use check boxes to select comparison methods  

 Use text boxes to define parameters such as 
tolerance and scale for the associated methods 

 Comparison methods are applied between each 
source field and the target field 

 Some parameters can introduce long run times 

5. Tabulation of comparison measures 

 Comparison measures are produced for every 
source/target/method combination  

 Each row is a different source field 

 Each column represents a particular method, set 
of parameters and region 

 Table can be exported to CSV format 

6. Intermediate fields from comparisons 

 Any intermediate field (e.g. residual field) 
produced is shown here and labelled  

 Symbology can be defined automatically or 
manually using colour ramps and values 

 Intermediate fields can be saved to ASC format 

A.3.3 Step-by-step analyses  

The following step-by-step tutorials show how to perform some different analyses using 

the comparison tool and the sample fields.  The instructions point out which part of the 

interface to work with and what selections to make.    

A.3.3.1 Calculating current measures (BIAS, COE, RSQ, RMSE, MAE) 

1. Select the 9 source fields (\data\synth_source\*.asc) in Windows Explorer and 

drag onto the ‘Source Fields’ display box.   

2. Select the target field (\data\synth_targ\observed.asc) in Windows Explorer and 

drag onto the ‘Target Field’ display box.   
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3. Check the ‘Match?’ option to make the colour schemes match between the source 

and target fields.  This helps with visual comparison.   

4. Choose the region(s) of analysis under the ‘Pre-processing’ tab.  For this analysis, 

select ‘Common Extents’ (i.e. the intersection of extents between both fields). 

5. Choose the comparison methods used for different scales under the ‘Global 

Methods’ and ‘Local Methods’ tabs.  For this analysis, check the ‘Bias’, ‘RSQ 

Correlation’, ‘COE (Nash-Sutcliffe)’ options under the ‘Global Methods’ tab.   

Check the ‘RMSE’ and ‘Tolerant Mean Error’ options under the ‘Local Methods’ 

tab.  Tolerant Mean Error is the same as MAE when no tolerances are set (i.e. 

they are all set to zero). 

6. Click the ‘Run’ button to perform each checked comparison method for each 

source field against the target field.  The numerical results are shown in the table, 

while the intermediate fields used in calculating the two local measures can also 

be viewed. 

7. The mouse cursor can be hovered over the displayed fields to reveal the 

coordinates and value.  By clearing the ‘Auto?’ option, custom values for the 

colour ramps can also be entered.   

8. The tabulated and intermediate field results of the analysis can be saved by 

clicking the ‘Save CSV’ and ‘Save Fields’ buttons.   

A.3.3.2 Calculating region-based measures 

1. Select and drag-drop the source and target fields.  Use the same fields as in the 

previous analysis (A.3.3.1).   

2. Choose the ‘Custom Extents/Regions’ from the ‘Pre-processing’ tab.  This allows 

a custom set of regions to be dropped onto the display, or alternatively enables the 

segmentation button to segment the current target field (using the defined 

parameters).   

3. Set the scale parameter at ‘5000’ and the shape parameter at ‘0.75’.  These values 

produce a general segmentation of the target field used in this analysis.  Click the 

‘Segmentation’ button to segment the target field.  This should take less than 5 
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seconds on a Pentium 4 PC with 1 Gb RAM.  Any regions that are not important 

can be removed using the ‘Remove’ button.  Remove the ‘Cust’ region, which is 

the combination of all regions.   

4. Check the ‘Absolute Bias’ option under the ‘Global Comparison tab.  Be sure to 

clear any other check boxes for the other comparison methods so that they are not 

computed. 

5. Click the ‘Run’ button to calculate the ‘Absolute Bias’ for each region of each 

source field.  The numerical results are tabulated (one column for each region).  

No intermediate fields are produced because the comparisons calculated were 

only ‘Global Methods’.   

A.3.3.3 Calculating multiscale measures 

1. Select and drag-drop the source and target fields.  Use the same fields as in the 

previous analysis (A.3.3.1).   

2. Choose the ‘Common Extents’ from the ‘Pre-processing’ tab.  This ensures that 

the multiscale comparison method is applied to the whole field. 

3. Check the ‘KS Similarity’ option on the ‘Multiscale Methods’ tab.  The parameter 

values define the different radii used when upscaling (specified as the number of 

field elements).  Large scales will take much longer to compute due to large 

number of elements being summarised at each scale.   

4. Set the parameters for minimum scale, scale step and maximum scale to 0, 2 and 6 

respectively.  This produces measures for scales of 0, 2, 4 and 6 element radii.  

The upscaling can be limited to only the source or target fields using the check 

boxes, but apply upscaling to both in this analysis.   

5. Clear any other comparison methods so that they are not also calculated.  It is 

possible to do multiple comparison methods on the one run, but this is avoided 

here for simplicity.  

6. Click the ‘Run’ button to calculate the ‘KS Similarity’ value for each scale 

between each source field and the target field.  This took less than 15 seconds (on 
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a Pentium4 PC with 1 Gb RAM) to calculate the 4 different scales for the 9 source 

fields.   

A.3.3.4 Calculating tolerant measures 

1. Select and drop the ‘shifted’ and ‘biased’ source fields (\data\synth_source\) onto 

the ‘Source Fields’ display box.  Use the same target field as in A.3.3.1.  

Alternatively, selecting a field that is no longer needed and click the ‘Remove’ 

button. 

2. Choose the ‘Common Extents’ from the ‘Pre-processing’ tab. 

3. Check the ‘Tolerant Mean Similarity’ option on the ‘Local Methods’ tab.  A set of 

different tolerances will be specified in this analysis and the results from the 

comparisons will be discussed.  The tolerances are specified in the same units as 

the underlying data.  In this analysis, the element values range from 0-1000 and 

the element size is 0.5 degrees.  Time tolerances are not yet implemented through 

this interface. 

4. Leave the tolerances set to 0 and ‘Run’ the comparison.  Visually inspect the 

intermediate fields and note that all fields have a small section that is different 

(while the rest of the field is identical).   

5. Set the value tolerance parameters to ‘allow’ = 0 and ‘limit’ = 100.  This causes 

any difference between element values <100 to be considered as similar (using a 

linear tolerance definition).  Click ‘Run’ and visually inspect the intermediate 

fields.  Similarity (i.e. values greater than 0) is now found between some of the 

elements, except those where the values have been shifted by more than 100. 

6. Reset the value tolerance back to 0 and set the location tolerance parameters to 

‘allow’ = 1 and ‘limit’ = 2.  Click ‘Run’ and inspect the intermediate fields.  

Similarity is now found between half of the shifted elements in the 

‘locally_shifted’ field.   

7. Set the value tolerance to ‘allow’ = 0 and ‘limit’ = 100, while leaving the location 

tolerances set as in the previous step.  Click ‘Run’ and inspect the intermediate 

fields.  Different amounts of similarity are now found between a number of 
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elements and the numerical summary measures reflect this increased similarity 

(due to increasingly relaxing the strictness of comparison).   

A.4 Summary 

The prototype comparison tool introduced and described here is a useful example of 

how hydrologists could better undertake comparison of spatial fields.  It encourages the 

user to make essential decisions about how the comparison is calculated.  The short 

tutorial shows how the different comparison methods can be applied using the tool.  

These methods can be extended and combined together to make more specialised 

comparisons (e.g. using tolerant measures within segmented regions).  The synthetic 

fields from Chapter 4 are used throughout the step-by-step analyses, while the fields 

from Tarrawarra (Chapter 5) are provided for further experimentation by the reader.  

The reader may also choose to experiment with their own spatial field data.     
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Appendix B 

List of acronyms and symbols 

Acronym or symbol Description 

TDR Time domain reflectometry 

GLUE Generalised likelihood uncertainty estimation 

GIS Geographic information system 

DEM Digital elevation model 

SAR Synthetic aperture RADAR 

xi Location (x) of element i 

f(xi) Value of element i 

MEAN Mean 

SDEV Standard deviation (σ) 

SKEW Skewness 

KURT Kurtosis 

BIAS Bias 

γ(h) Semivariance 

RMSE Root mean squared error 

MAE Mean absolute error 

RSQ Coefficient of determination (R2) 

COE Coefficient of efficiency 

PCOR Percentage correct 

KAP Kappa index 

KS Kolmogorov-Smirnov similarity measure 

V, L, T Value, location, time 

CTOL, FTOL Crisp tolerance, fuzzy tolerance 

SV, SL, ST Similarity for each component of an element – value, location and time 

EV, EL, ET Error for each component of an element – value, location and time 

ELOC, SLOC Local error, local similarity 

ΔV, ΔL, ΔT ALLOW Allowed difference in value, location and time 

ΔV, ΔL, ΔT LIMIT Limit of difference in value, location and time 
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Acronym or symbol Description 

TMAE Tolerant mean absolute error 

TCOE Tolerant coefficient of efficiency 

TMS Tolerant mean similarity 

TSE Tolerant similarity efficiency 

|BIAS| Absolute bias 

K Scale weighting parameter 

R Radius of elements included in multiscale comparison 

MSME Multiscale measure of error 

MSMS Multiscale measure of similarity 

G E Group of ‘global error’ measures 

G S Group of ‘global similarity’ measures 

L E Group of ‘local error’ measures 

L S Group of ‘local similarity’ measures 

TL E Group of ‘tolerant local error’ measures 

TL S Group of ‘tolerant local similarity’ measures 

M E Group of ‘multiscale error’ measures 

M S Group of ‘multiscale similarity’ measures 

R E Group of ‘region-based error’ measures 

R S Group of ‘region-based similarity’ measures 

SL E Group of ‘specific local error’ measures 

SL S Group of ‘specific local similarity’ measures 

STL E Group of ‘specific tolerant local error’ measures 

STL S Group of ‘specific tolerant local similarity’ measures 

% v/v Percentage volumetric soil moisture 

SVET Spatially variable evapotranspiration 

KSAT Saturated hydraulic conductivity 

KDEEP Deep seepage 

DSOIL Total soil depth 

DUPP Depth of laterally transmissive upper soil layer 

CRC Cooperative Research Centre 

TIME The Invisible Modelling Environment 

DLL Dynamic link library 
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