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Abstract 

 
Soil moisture is a key variable that defines land surface-atmosphere 

(boundary layer) interactions, by contributing directly to the surface energy 

and water balance.  Soil moisture values derived from remote sensing 

platforms only accounts for the near surface soil layers, generally the top 5cm.  

Passive microwave data at L-band (1.4 GHz, 21cm wavelength) 

measurements are shown to be a very effective observation for surface soil 

moisture retrieval.  The first space-borne L-band mission dedicated to 

observing soil moisture, the European Space Agency‟s (ESA) Soil Moisture 

and Ocean Salinity (SMOS) mission, was launched on 2nd November 2009.  

 Artificial Neural Network (ANN) methods have been used to 

empirically ascertain the complex statistical relationship between soil 

moisture and brightness temperature in the presence of vegetation cover.  

The current problems face by this method is its inability to predict soil 

moisture values that are “out-of-range” of the training data.   

 In this research, an optimization model is developed for the 

Backpropagation Neural Network model.  This optimization model utilizes 

the combination of the mean and standard deviation of the soil moisture 

values, together with the prediction process at different pre-determined, 

equal size regions to cope with the spatial and temporal variation of soil 

moisture values.  This optimized model couples with an ANN of optimum 

architecture, in terms of inputs and the number of neurons in the hidden 

layers, is developed to predict scale-to-scale and downscaling of soil 

moisture values.  The dependency on the accuracy of the mean and standard 

deviation values of soil moisture data is also studied in this research by 

simulating the soil moisture values using a multiple regression model.  This 

model obtains very encouraging results for these research problems.   

 The data used to develop and evaluate the model in this research has 

been obtained from the National Airborne Field Experiments in 2005.   
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Chapter 1  

Introduction 
 

This thesis focuses on the investigation and development of a methodology 

using Artificial Neural Network (ANN) for both scale-to-scale and 

downscaling prediction of soil moisture from passive microwave remote 

sensing data.  The scale-to-scale methodology predicts soil moisture at the 

same scale as the input parameters, while downscaling uses data at a coarser 

scale to predict soil moisture at finer resolution.      

 

 1.1 Background 

Within a remote sensing context, surface soil moisture refers to the amount of 

water in the top layer of the soil surface; generally in the upper 5 to 10 cm 

below the natural ground surface.  Although the volume of soil moisture is 

small compared to other components in the hydrological cycle, it is of 

fundamental importance to many hydrological, biological and 

biogeochemical processes.  It is one of the few directly observable 

hydrological variables that plays an important role in the water and energy 

budgets necessary for climate study (Jackson and Schmugge 1995).   

 The variability of soil moisture changes in space (i.e. spatial variation) 

and time (i.e. temporal variation) and the behaviour of these two parameters 

is important for various hydrological modelling processes, such as rainfall-

runoff models (Wei et al. 2007) and snow melting models (Vinnikov et al. 

1996).  Moreover, the spatial distribution of soil moisture is being 

increasingly used as an input to these models (Lakhankar et al. 2006b).  

Therefore, the accurate estimation or prediction of the spatial distribution of 

soil moisture becomes increasing important.  The most common and accurate 

way of measuring the spatial distribution of soil moisture is through actual 

field measurement techniques that acquire data at discrete, although usually 

sparse, locations.  The disadvantage of these techniques is that, as the soil 
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moisture values are generally affected by the heterogeneity of soil properties, 

topography, land cover, evapotranspiration and precipitation, their use  is 

limited to a small geographic area and within a limited time period.  Many 

environment phenomena such as drought and flooding cannot be captured 

by ground measurements alone and methods are sought that can capture full 

coverage information over wide areas regularly.  Remote sensing can satisfy 

these desires as it allows rapid collection of spatial data over large areas on a 

routine basis.  Although remote sensing offers better data coverage, soil 

moisture measurements at distinct points are still important for calibration 

and verification of the results from remote sensing. 

 Microwave remote sensing has the potential for soil moisture retrieval 

due to the pronounced effect of the soil dielectric properties on the 

microwave signal. Passive microwave observation allows for larger area 

coverage at higher temporal frequencies for retrieving surface soil moisture.  

The Soil Moisture and Ocean Salinity (SMOS) mission, the first ever space 

borne radiometer which was launched in November 2009, has a resolution of 

~40 km.  Thus, methods need to be developed for reducing the coarse scale 

measurements of the data from such a satellite to a finer scale at which soil 

moisture knowledge is desired (~1 km) (Tsegaye et al. 2003).     

 

1.2 Motivation 

The research reported in this thesis is motivated by recent intense research 

activities currently underway by the European community in producing an 

upcoming satellite mission fully dedicated to soil moisture mapping from 

space: the European Space Agency‟s (ESA)‟s Soil Moisture and Ocean 

Salinity Mission (SMOS) (Kerr et al. 2001).  SMOS was launched in November 

2009 and will use a L-band interferometric radiometer to make 

measurements at a spatial resolution of around 40 km with a temporal 

resolution of 1 to 3 days.  The accuracy of the soil moisture measurements of 

this mission is expected to be 0.04 (4% v/v) volume of water over total 

volume (i.e. soil volume + water volume + void space) (Kerr et al. 2001). 
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 Soil moisture predictions from passive microwave remote sensing 

involve the measurement of the self emitted and/or reflected 

electromagnetic radiation in the microwave region of the electromagnetic 

spectrum from the Earth‟s surface. The measured intensity is termed the 

“brightness temperature”. At passive microwave radiation frequencies in the 

L-band (1.4 GHz frequency, 21 cm wavelength), vegetation and atmospheric 

effects are minimized, but are still non-negligible (Sandells et al. 2008).  For 

soil moisture prediction from passive microwave data, ancillary data like 

land cover and soil information are necessary (Schlenz et al. 2008).  Due to the 

complex approximation function relating brightness temperature and soil 

moisture, non-parametric methods like neural networks have been used to 

empirically ascertain the statistical relationship between soil moisture and 

brightness temperature in the presence of vegetation cover (Del Frate et al. 

1999; Atluri et al. 1999; Liou et al. 1999b; Maier and Dandy 2000; Chang and 

Islam 2000; Liou et al. 2001; Paloscia et al. 2002; Del Frate et al. 2003; Angiuli et 

al. 2008a; Junlei et al. 2008; Elshorbagy and Parasuraman 2008; Lakhankar et 

al. 2009).  Other non-parametric methods used include fuzzy logic 

(Lakhankar et al. 2006a) and maximum likelihood (Li and Gaiser 2007).  The 

neural network methods do not require prior assumptions about the 

statistical behaviour of the data or about any specific relationship between 

the variables.  The relationship between the inputs and outputs are 

determined by the network itself.  The major advantages of the neural 

network method are (Ghedira et al. 2004): 

i. Easy adaptation to different types of data and input configurations.   

Neural networks can easily incorporate ancillary data that would be 

difficult or impossible to do with conventional techniques. 

ii. A neural network uses its complex configuration to find the best 

nonlinear function between the input and output data without the 

constraint of linearity or pre-specified non-linearity which is required 

in regression analysis. 
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 ANN methods for soil moisture prediction using passive microwave 

remote sensing data have been investigated in this thesis.  From the review, 

for scale-to-scale retrieval, data used for the testing of the “trained” ANN is 

either a sub-set of the training data (Liou et al. 1999a; Liou et al. 2001; Liu et al. 

2002) or simulated data (Del Frate et al. 2003). The problem with simulated 

data is its incapability of covering all the unforseen conditions.  This issue 

has been reported by Angiuli et al.(2008a) and Lakhankar et al.(2009) who 

found that the “trained” neural network models were unable to predict soil 

moisture values which are outside the range of the training data.   

  One of the most popular and important types of neural network 

architectures are Feedforward Neural Networks (FNNs).  A FNN is a static 

network with a single signal flow direction from input to output and no 

feedback loop.  The training of the FNNs is mainly undertaken using 

Backpropagation (BP) based learning algorithms.  There has been much 

research activity directed to improving the conventional BP algorithm, which 

has resulted in many different training algorithms.  Researchers in soil 

moisture prediction have been utilizing some of these training algorithms in 

BP for their works.  This includes the conventional BP algorithm (Paloscia et 

al. 2002), Levenberg-Marquardt BP algorithms (Atluri et al. 1999; Posa et al. 

2004) and the Scaled Conjugate Gradient algorithm (Del Frate et al. 1999).  

Note the justification for the choice of the particular BP training algorithm 

have not been documented by these researchers.  Although the different 

variations of BP algorithms are aimed at improving the learning efficiency of 

the conventional BP algorithm, the impacts of them in improving the soil 

moisture prediction has yet to be analysed.   

 Apart from the brightness temperature, other spatial data may be 

used to aid the predictions.  Angiuli et al. (2008a) used brightness 

temperature, surface temperature and soil roughness as the inputs while 

Atluri et al. (1999) used surface temperature and brightness temperature as 

inputs.  On the other hand, Yuei-An et al. (1999a; 2001) used only brightness 

temperature as an input.  The effects of incorporating ancillary data with the 
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brightness temperature values as the inputs of the neural network have not 

been previously analysed and discussed. Shou-Fang et al. (2002) claimed that, 

ancillary information such as vegetation biomass, surface temperature, and 

surface roughness is not needed when using a neural network as a prediction 

method.  However, ancillary data, which provides information on the surface 

characteristics, should help a neural network in improving the soil moisture 

prediction, especially in building a neural network model that can capture 

the spatial and temporal nature of soil moisture variations. For space borne 

operational applications over large heterogeneous regions, the retrieval of 

accurate ancillary data, especially field-based, can be problematic or 

impractical.  Therefore, the requirements for ancillary data for moisture 

prediction using ANN should be analysed properly to avoid unnecessary 

efforts in obtaining such data.   

A scale disparity exists between the resolution of the passive 

microwave satellite missions, e.g. ESA‟s SMOS mission (40 km), and the 

much finer resolution at which soil moisture is desired (~1 km).  There is 

therefore a need to address such coarse spatial resolutions before important 

potential applications, such as the incorporation of soil moisture estimates in 

precision agriculture derived from L-band passive microwave data, can 

become possible (Voltz 1997),  In the research by Schamschula et al. (2002) 

and Tsegaye et al. (2003), much ancillary data were used which included low 

resolution emissivity, antecedent rainfall, soil texture, vegetation water 

content and upstream contributing area.   The downscaling was carried out 

from a resolution of 12.8 km to 0.8 km.  While these papers were restricted to 

only linear neural network models, this thesis will explore more complex 

non-linear neural network models.   

 

1.3 Research Objectives 

The main aim of this thesis is to investigate and develop ANN based soil 

moisture prediction approaches.  Specific objectives of the research include:  
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i. To investigate and develop a scale-to-scale soil moisture prediction 

solution.  The developed solution must be able to produce consistent 

and accurate results for data that are totally new and independent 

from the training data.  The developed solution must also be able to 

capture the spatial and temporal variation of soil moisture.   

ii. To determine the appropriate ancillary data to improve soil moisture 

prediction.  It is most efficient if the ancillary data are base on satellite 

observations.  For this reason, the ancillary data being studied are 

limited to the Normalized Difference Vegetation Index (NDVI) and 

the surface temperature obtained from the MODerate Resolution 

Imaging Spectrometer (MODIS).  

iii. To develop a soil moisture prediction solution using a neural network 

for the downscaling of soil moisture to bridge the gap of scale 

disparity between the resolutions of space-borne passive microwave 

remote sensors and the much finer scales at which soil moisture 

estimates are required (~1km).    

In addition, the scope of this thesis is constrained as follows: 

i. The proposed methodology will be evaluated using data from a target 

area 40km×40km in size, located at Goulburn River Catchment in 

south-eastern Australia. 

ii. Only data available for the field trip of 40km×40 km, which is the 

target study area of this research, will be used.   

iii. An analysis of the computational performance of the proposed 

methodology in terms of execution time is worthwhile, but is not 

within the scope of this thesis. 

 

1.4 General Methodology 

The methodology involves developing solutions to achieve the objectives in 

Section 1.3.   The data used in this research is obtained from the National 

Airborne Field Experiments conducted in 2005 (NAFE‟05).  During the first 

part of this research, soil moisture prediction is focused on scale-to-scale 
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prediction (Figure 1.1), while the focus in the second part is on downscaling 

problems of soil moisture prediction (Figure 1.1).  The training data will be 

divided into training, validation and testing sets. The developed ANN 

solutions will then be evaluated using an independent data set, i.e. data from 

a new date, to verify the accuracy of this model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Overview of the Thesis  

This thesis is divided into nine chapters. Chapter 2 presents the background 

information and theory related to soil moisture and soil moisture 

measurements that are necessary for this research.  A review of soil moisture 

prediction using passive microwave data is also presented in this chapter.  

Chapter 3 gives a brief overview of Artificial Neural Networks (ANNs) that 

includes the theory and examples of ANN models.  The terminologies and 

components that are important for this research are explained in this chapter.   

 The data used in this research was obtained during the field campaign 

NAFE 2005 (National Airborne Field Experiment) conducted in New South 

Wales, Australia during the month of November 2005.  Details on this field 

Figure 1.1.  Overview of the methodology followed in this research study. 
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campaign are in Chapter 4 of this thesis.  The description will cover the 

objectives of the campaign, ground sampling strategy and the airborne 

monitoring.   

 The literature review on the use of Artificial Neural Networks (ANNs) 

in the field of soil moisture prediction using passive microwaves is presented 

in Chapter 5.  This chapter will include a review of both scale-to-scale and 

downscaling of soil moisture predictions.  The general methodology of the 

approach developed in this thesis is also presented in this chapter. 

 The data pre-processing and analysis of the data used in this thesis are 

presented in Chapter 6.  This is followed by a detailed description of the 

methodology developed for scale-to-scale soil moisture prediction using the 

ANN in Chapter 7 and downscaling in Chapter 8.  Finally, the conclusions 

and proposed future directions are presented in Chapter 9. 
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Chapter 2  

 

Soil Moisture Measurement 
 

This chapter outlines the different methods and most recent research on soil 

moisture measurements, the theory of microwave dielectric behaviour, and 

the different sensors in remote sensing used for soil moisture retrieval.  The 

use of L-band passive microwaves and the different satellite observing 

systems for soil moisture retrieval are also covered.   

 

2.1 Types of Soil Moisture Measurement 

Information about soil moisture can be obtained either through point 

measurements or remote sensing techniques.  Point-based measurements of 

soil moisture, which are categorized as ground-based measurements, 

produce accurate information but gathering such data is costly and time 

consuming (Walker 1999).  Being point-based, only sparse measurements can 

practically be taken. Point-based measurement methods can be further 

divided into direct and indirect methods (Navarkhele et al. 2006).  For direct 

measurements, a sample of soil is taken and the water removed, by either 

evaporation or a chemical process, and measured. The thermo-gravimetric 

method, the standard direct method of measuring volumetric soil moisture 

content, removes water from the soil sample by evaporating the sample at 

105ºC using an oven (Walker et al. 2004).  The soil moisture measurement 

obtained can be expressed as a fraction or as a percentage of a gravimetric or 

volumetric basis.  The volumetric soil moisture θ is obtained using the 

formula (Walker et al. 2004): 

wd

bw

W

W




   

(2.1) 
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where wW  is the weight of the water contained in the voids (gaps) in the 

moist soil, dW  is the weight of the dry soil, bρ  is the soil bulk density of a 

known volume of soil, and wρ  is the density of the water.  Equation (2.1) can 

be rewritten as:  

T

w

V

V
  

(2.2) 

 

where wV  is the volume of water, and 
TV  is the total volume (i.e. soil volume, 

water volume and void space.  The unit used for θ is either m3/m3 or v/v (i.e. 

volume/volume).  A direct point-based measurement is simple, inexpensive 

and the soil moisture can be easily calculated.  However, this method is also 

destructive and it would not be possible to repeatedly carry out the point-

based measurement at the same location (Roth et al. 1990).  

 Indirect methods are non-destructive and monitor soil properties that 

are a function of water content.  The use of Time Domain Reflectometry 

(TDR) probes is based on the measurement of the dielectric properties of soil 

(Robinson et al. 2003). Indirect methods normally involve inserting 

instruments into the soil, or placing them on the surface.  This method 

promises in-situ measurements of soil moisture and can be repeated at the 

same location a number of times, although it requires one time calibration for 

the same location to determine soil moisture.   

The disadvantages of using point-based measurements are that this 

type of measurement is rarely representative of the spatial distribution of 

moisture required for mapping large areas.  This is because accurate spatial 

estimates of soil moisture require samples that are closely spaced, relative to 

the correlation length of the spatial soil moisture fields, meaning that this 

method is impractical to determine large scale areal estimation of soil 

moisture.   

Remote sensing, on the other hand, provides a mean of measuring soil 

moisture in both higher spatial and temporal dimensions and can provide 

readings for the top few centimetres of soil for areas with moderate to low 

vegetation cover.   Platforms supporting remote sensing instruments can be 
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either ground-based, aircraft-based or space-based (Wu 1996).  For ground-

based remote sensing systems, the sensors can be mounted on vehicles like 

trucks to allow the movement of the sensors.   The advantage of this type of 

measurement is the relatively small footprint of the sensor, allowing for 

easier control of the conditions under which the measurements are made 

(Jackson and Schmugge 1996).  However, the footprint covered is usually 

only a few metres in size, so this method is again limited when coverage of a 

larger area is needed.  Aircraft-based systems overcome such a limitation, 

allowing the mapping of larger areas to be carried out.  This method can also 

be used to investigate the performance and feasibility of future satellite 

sensors that will typically be of a lower resolution.   

In most cases, aerial measurements offer better spatial resolution than 

those from satellite systems.  Although aircraft data has more control over 

the frequency and timing of the coverage (Jackson and Schmugge 1996), the 

data is only available for limited areas and at times of intensive field 

experiments.   

The optimal solution in terms of mapping large areas and long term 

repetition coverage involves space-borne satellite systems.  However, for 

studies which involve rapidly changing conditions, like surface soil moisture 

where the time interval between measurements can be critical, aerial systems 

are still needed (Jackson and Schmugge 1996). 

 

2.2 Microwave Dielectric Behaviour 

The dielectric constant, ε  which is dimensionless, is also known as 

permittivity or specific induction capacity, and can be used to determine soil 

moisture.  It is a measure of an object‟s ability to polarize in response to an 

electric field (Walker 1999; Escorihuela et al. 2007).  This material property is 

usually measured relative to that of free space and is referred to as the 

relative dielectric constant 
r
ε . 
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A wet soil medium is a mixture of soil particles, air voids and liquid 

water (i.e. both bound and free water) (Hallikainen et al. 1985).  Therefore, 

the relative dielectric constant of soil is a composite of its components 

(Jackson and Schmugge 1996).  Table 2.1 shows the dielectric constants of 

soil constituents and the major types of soil.  As the contrast between the 

dielectric properties of liquid water (~80) and dry soil (~4) is large, soil 

moisture content can be determined from the measurement of the soil‟s 

dielectric constant (Wang and Schmugge 1980; Jackson and Schmugge 1989).  

As the moisture increases, the dielectric constant of the soil-water mixture 

increases and this change is detectable by microwave sensors (Njoku and 

Entekhabi 1996).   

 

Table 2.1. Dielectric constant of soil constitutes and of major 
soil types (Noborio 2001). 

 

Material Dielectric Constant 

Air 1 
Water 80 at 20°C 
Ice 3 at -5°C 
Basalt 12 
Granite 7 – 9 
Sandstone 9 – 11 
Dry loam 3.5 
Dry sand 2.5 

 

The dielectric constant, ε is a complex number representing the 

response of the material to an applied electrical field, such as electromagnetic 

waves (Behari 2005).  This property can be calculated from the real and 

imaginary parts: 

  i  (2.3) 

usually measured relative to that of the free space ( 
0


 r ).  The real 

component,    in   determines the propagation characteristics of the 

electromagnetic wave in the material. The imaginary component, which is 

often referred to as the dielectric loss factor, determines the energy losses or 
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absorption as the electromagnetic wave travels through the material 

(Engman and Chauhan 1995).   

 For dry soil particles, depending on the bulk soil density, the real part 

of the relative dielectric constant r
   varies from 2 to 5 independent of 

frequency (Dobson and Ulaby 1986) with the imaginary component 
r

 

typically less than 0.05 (Ulaby et al. 1996). For free water, the relative 

dielectric constant at room temperature for 1 GHz radiation is approximately 

80 for 
r

  , and 4 for 
r

   (Ulaby et al. 1996).  This large contrast makes the use 

of a microwave technique possible for the measurement of the soil moisture 

content with the addition of water to the soil causing the relative dielectric 

constant of the mixture to increase to a value of 20 or greater.  However, the 

dielectric constant of moist soil is not simply a weighted average over its 

components.  The mixing model is complex and there are many influencing 

factors (Jackson and Schmugge 1989).   Apart from the total soil moisture 

content, the magnitude of ε is also a function of the observation frequency, 

soil temperature, soil texture and soil salinity (Ulaby et al. 1996; Dobson et al. 

1985). 

The most sensitive frequency range for soil moisture content 

determination from the measurement of the soil dielectric constant lies 

between 50 MHz to 10 GHz (Curtis 2001), with the dielectric constant having 

a relatively weak sensitivity to soil type at the normal microwave range (0.4 

to 10 GHz).  Figure 2.1 shows the relationship between the dielectric constant 

and volumetric soil moisture at a frequency of 1.4 GHz for different soil 

types.  The dependence on soil type (or „texture‟) is due to the different 

percentages of water bound to the particle surfaces in the different soils 

(Njoku and Entekhabi 1996; Dobson and Ulaby 1986) and the soil porosity 

(Dobson and Ulaby 1986).  When soil moisture content is greater than 5%v/v, 

the soil porosity does not influence the soil dielectric constant as long as the 

moisture content is expressed in terms of volume (Ulaby et al. 1996).   
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Figure 2.1.  Dielectric constant as a function of volumetric soil moisture 
content for five different soil types and a soil temperature of 23ºC (Ulaby et al. 

1986). 
 

 

As soil temperature increases, the decrease in the dipole of alignment 

resulting from thermal agitation causes    to decrease (Walker 1999). The 

effect of salinity on the dielectric constant is to add an ionic conductivity 

term to    (Walker 1999).  This results in the following (Jackson and O'Neill 

1987): 

i. Salinity decreases the real part of the dielectric constant 
'ε and 

increases the imaginary part    at a given microwave 

frequency. 

ii. For frequencies in the 1 – 10 GHz range, the sensitivity of the 

real part    is relatively constant regardless of the frequency. 
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iii. As frequency increases, the sensitivity of the imaginary part of 

the dielectric constant    changes as salinity increases.   

Salinity, frequency and temperature play only a minor role in 

determining the dielectric constant of soil.  The frequency dependence up to 

5 GHz is low because there is little variability in the real part of the dielectric 

constant (Njoku and Entekhabi 1996).  The imaginary part of the dielectric 

constant in this range of frequencies, however, exhibits marked frequency 

dependence.  This dependence influences only the penetration depth, with 

smaller penetration depths for higher frequencies (Njoku and Entekhabi 

1996).  The temperature dependence of the dielectric constant of wet soil is 

weak and for the range of soil temperatures encountered, it may be ignored 

(Njoku and Entekhabi 1996).  Salinity becomes an important factor in more 

saline environments, such as when sea water is present in the soil, but for 

non-saline soil, this factor can be neglected.   

It is therefore first and foremost the amount of water present in the 

soil that affects its dielectric properties.  The dielectric properties, along with 

several other physical characteristics determine the microwave 

measurements.  This is explained in Section 2.3.3.5.   

 

2.3 Remote Sensing For Near Surface Soil Moisture 

The measuring of soil moisture using remote sensing is dependent on a 

relationship between the remote sensing parameter and soil moisture. For 

example, the measurement of soil moisture using radar data is dependent on 

the relationship between the radar data and soil moisture. If a relationship 

can be determined, the amount of radiation reflected or emitted from the 

land surface that is captured by the sensor at particular wavelengths can be 

used to quickly obtain an estimate of the soil moisture (Wang and Zhang 

2005).  Research on near-surface soil moisture retrieval has shown that 

suitable remote sensing signals are at visible, thermal infrared, active and 

passive microwave wavelengths.  These four signals differ in terms of the 

region of the electromagnetic spectrum that is used by the sensor and the 
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source of the electromagnetic energy.   A brief review of these four types of 

remote sensing measurements for near surface soil moisture is presented 

next.   

 

2.3.1 Visible Remote Sensing 

Remote sensing of soil moisture content using the visible regions of the 

electromagnetic spectrum (from 350 nm to 700 nm) is measured through the 

reflected radiation of the Sun from the Earth‟s surface.  In general, wet 

surfaces have lower reflectance values compared to dry surfaces (Singh and 

Fiorentino 1996).  The reflected solar radiation is not only dependent on soil 

moisture conditions, but also on other factors such as the amount and type of 

organic matter, soil texture, surface roughness, angle of incidence, plant 

cover and colour (Engman 1991).  In other words, the relationship between 

soil moisture and solar reflectance is only unique if these factors are known.  

As well as these limitations, reflected solar energy only responds to the top 

few millimetres of the soil profile (Moran et al. 2004).  These factors, therefore, 

have limited the utility of visible light for surface soil moisture retrieval. 

 

2.3.2 Thermal Infra-red Remote Sensing 

Thermal infrared radiation (approximately 3.0 µm and 14.0 µm) sensors 

measure the soil surface temperature using thermal infrared data. As soil 

moisture influences the thermal properties of the soil, near surface soil 

moisture content can be inferred from the thermal infrared data.  Soil 

moisture has a strong influence on the thermal properties of the Earth‟s 

surface, hence, relatively small changes in moisture content have a large 

effect on the thermal properties of the ground.  As the radiation from the soil 

surface depends on the surface temperature and emissivity, inferring soil 

moisture from thermal infrared will need knowledge of, or assumptions 

about, the soil surface emissivity (Ottlé et al. 1989). 
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 2.3.3 Microwave Remote Sensing 

Microwaves have wavelengths ranging from 1 mm to 1 m, with frequencies 

between 0.3 GHz and 300 GHz.   Microwave remote sensing is currently 

being actively researched for soil moisture measurement (Okamura 2000).  

The theoretical basis for measuring soil by microwave techniques is the large 

contrast between the dielectric properties of liquid water and of dry soil 

(Engman 1991).  The large dielectric constant for water is the result of the 

alignment of the electric dipoles of the water molecules in response to an 

applied electromagnetic field (Schmugge 1983b; Engman 1991).  Over bare 

fields, the measured microwave emissivity is almost linearly related to the 

moisture content of the soil layer that has a thickness dependent on the 

frequency of the observing signal (between 1cm at 5 GHz and 5cm at 1.4 GHz) 

(Wang 1987).  The sensitivity of microwave responses to soil moisture 

variations and the relative transparency of microwaves to the atmosphere, 

make microwave sensors especially well suited for remote sensing of soil 

moisture (Schmugge 1983b).  In addition and importantly, microwave signals 

can penetrate, to a certain extent, the vegetation canopy and retrieve 

information from the ground (Engman 1991; Oldak et al. 2002; Kasischke et al. 

1997).  The sensitivity of the soil‟s emissivity and reflectivity to its moisture 

content has been demonstrated with microwave systems operating from 

field/tower, aircraft and spacecraft platforms (Schmugge 1983b).   

Microwave techniques for measuring soil moisture include both active 

(radar) and passive (radiometry) approaches.  Active microwave systems 

generate their own radiation that is transmitted toward the Earth‟s surface, 

and measure the reflected energy which is dependent on the backscatter 

coefficient. Passive microwave sensors measure the natural thermal emission, 

termed the brightness temperature, from the land surface.  Active and passive 

microwave approaches to sensing soil moisture share certain physical 

processes, but they are also different with regards to the quantities they sense 

and the image products they generate (Du et al. 2000).  The following 

subsections describe the principles for both active and passive microwave 
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remote sensing.  This is followed by a discussion of both the system and 

target parameters affecting these two types of microwave sensing methods.   

 

2.3.3.1 Active Microwave Remote Sensing 

Active microwave sensors use the well-known RaDaR, (Radio Detection and 

Ranging) method.  This type of system generates its own radiation which is 

transmitted towards the Earth‟s surface and measures the returning 

backscattered radiation.  The strength of the backscattered signal, measured 

to discriminate between different targets and the time delay between the 

transmitted and reflected signals, determines the distance (or range) to the 

target.  The information that can be extracted is two-fold: the distance from 

the target to the radar and the backscattering coefficient (Barbier 2003).  The 

ratio of the strength of the received and transmitted signals, termed the 

backscattering coefficient  , depends on the surface reflectivity (itself 

dependent on surface geometry, surface roughness and dielectric properties) 

and the antenna characteristics (incidence angle, wavelength and 

polarization) (Behari 2005).   

 Over bare fields, the radar backscatter s  is related directly to soil 

moisture and is written in its functional form as (Engman and Chauhan 1995): 

 vs MaRf ,,   (2.4) 

where R  is the surface roughness term, a is the soil moisture sensitivity term, 

and 
vM is the volumetric soil moisture.  Although R  and a  are known to 

vary with wavelength, polarization and incidence angle, there is no 

satisfactory theoretical model suitable for estimating these terms 

independently.  Thus, the relationship between measured backscatter and 

soil moisture requires the determination of an empirical relationship with 

ground truth data, even for the simplest case of bare soils.   
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2.3.3.2 Passive Microwave Remote Sensing 

Passive microwave sensors are radiometers that measure the thermal 

emission from the surface (Schmugge 1998).  Over bare surfaces, a 

radiometer measures the intensity of emissions from the soil surface, which 

is proportional to the product of the surface temperature and the surface 

emissivity, referred to as the microwave brightness temperature (TB) 

(Engman and Chauhan 1995).  The soil emissivity is subject to atmospheric, 

vegetation and surface features, as shown in Figure 2.2 (Thomas 1993).   

 

 

Figure 2.2.  Schematic diagram of a passive microwave emission model for 
land surfaces (Thomas 1993). 

 

 Mathematically, TB can be expressed as (Schmugge 1990): 

  a t ms o i ls k yB TTrrTHtT  )1(*)(  (2.5) 

where: 

t(H) : is the atmospheric transmissivity for a radiometer at height H 
 above the soil  
r     : smooth surface reflectivity 
Tsoil : thermometric temperature of the soil 
Tatm  : average thermometric temperature of the atmosphere 
Tsky  : contribution from the reflected sky brightness 



20 

 

 

At wavelengths greater than 5cm, the atmospheric Tatm and sky Tsky 

contributions are small (less than 5°K) compared to the soil contribution.  

Thus, the brightness temperature of an emitter of microwave radiation is 

related to the physical temperature of the source through emissivity such 

that (Schmugge 1990): 

soi lsoi lB eTTrT  )1(  (2.6) 

where e = (1 - r) is the emissivity and is dependent on the dielectric constant 

of the soil and the surface roughness.  Although Equation 2.6 indicates the 

relationship between TB and e is linear, soil moisture has a non-linear 

dependence on reflectivity because the reflection coefficient of the ground is 

related in a nonlinear way to the dielectric constant ε of the ground.  For 

horizontal polarization, the reflection coefficient is given by:  










cos

cos
R  

(2.7) 

where  2

1
2 sin  and  is the angle of incidence.  Empirical 

relationships between the dielectric constant and soil moisture derived by 

Dobson et al. (1985) show that the dielectric constant has a nonlinear 

dependence on soil moisture.  Even though the brightness temperature and 

soil moisture relation has a strong theoretical basis, most algorithms are 

empirical in that they depend on ground truth data to determine the 

relationship (Engman and Chauhan 1995).   

 

2.3.3.3 Active and Passive Microwave Remote Sensing: A 

comparison 

Figure 2.3 shows the difference between active and passive microwave 

sensors.  Both active and passive microwave remote sensing techniques 

utilize the large contrast between the dielectric constant of dry soil and water 

(Zhen et al. 2002) and can be used in all weathers for land-surface monitoring 

(Robinson 2000).  Active microwave systems offer the advantage of high 

resolution, but this comes at the expense of higher data rates and more 
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complex processing, while passive microwave systems have the advantages 

of frequent coverage, low data rates and simpler data processing (Zhen et al. 

2002).  Due to the long wavelengths required for soil moisture remote 

sensing, space-borne passive microwave radiometers (both current and 

planned) have a coarse spatial resolution of the order of 25 to 50 km. Active 

microwave remote sensing, on the other hand, can supply resolutions of the 

order of tens of meters.   

 

 

 

 

 

 

 

 

 

 

 

 

The signal-to-noise ratio from dry to wet soils is significantly higher 

for passive radiometers than for active radars (Berger et al. 2003).  In addition, 

the radar signal is more sensitive to structural features such as soil roughness 

or vegetation canopy geometry than to soil moisture variations.  The 

radiometer response appears to be less disturbed by the geometrical features 

of the scene and hence, more sensitive to soil moisture (Chauhan 1997).  Even 

under the ideal scenario where effects due to roughness and vegetation cover 

can be estimated (which is generally not the case), active microwave systems 

generally fail to provide spatially distributed soil moisture at small scales.  

This is because the radar systems get strongly coupled to the variations of the 

surface.  If there are no surface features, i.e., the surface is smooth, the radar 

is unable to sense the surface in the backscatter direction, whereas a 

Figure 2.3.  Active and passive microwave system (Behari 2005). 
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radiometer can (Chauhan 1997).  This results in high resolution active 

microwave data only being able to assess mean soil moisture at the 

catchment scale.  These particular disadvantages of active microwave remote 

sensing have meant that passive microwave systems  are preferred when 

dealing with soil moisture measurement (Jackson and Schmugge 1989; 

Thomas 1993; Schmugge 1998; Simmonds 1998; Owe and Rathbun 1999; 

Jackson 2001; Tien et al. 2004; Calla et al. 2008). 

 

2.3.3.4 System Parameters Affecting Microwave Signature 

System design considerations for radiometers used in soil moisture sensing 

include the optimum choice of frequency or wavelength, polarisation and the 

incidence angle based on trade-offs between requirements for high 

vegetation penetration capability, freedom from electromagnetic interference 

and manageable antenna size (Njoku and Entekhabi 1996). 

 

i. Frequency 

The potential of passive microwave remote sensing for measuring 

surface soil moisture has been demonstrated over a range of 

microwave frequencies (Choudhury and Golus 1988; Drusch et al. 

2001) and a variety of platforms (Jackson et al. 1999; Jackson and Hsu 

2001). These studies clearly show the advantages of low-frequency (<5 

GHz) (thus longer wavelength) microwave sensors for this application 

(Jackson et al. 2002).  At low frequencies, attenuation from clouds and 

vegetation is lower than for higher frequencies (Drusch et al. 2001) and 

the soil sensing depth is increased.  The contrast between wet and dry 

soil is also larger at low frequencies (Bolten et al. 2003).  The longest 

wavelength, i.e. most deeply penetrating, generally used for remote 

sensing of soil water is L-band (1.4 GHz or a wavelength of 21 cm) 

(Simmonds 1998).   
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ii. Incidence  Angle 

The incidence angle affects the sensitivity to soil moisture content.  

With larger incidence angle, the sensitivity to soil moisture content 

increases. Moreover, an increase in the incidence angle increases the 

path length through the canopy; consequently, the optical depth will 

be increased (Owe and de Jeu 2001). As the incidence angle increases, 

the influence of surface roughness also increases and the spatial 

resolution decreases (Mission Objectives and Scientific Requirements 

of the SMOS Mission  2003; Thomas 1993).   

  

iii. Polarisation 

The orientation or polarisation of the electric field of electromagnetic 

waves is typically either horizontal (H) or vertical (V). The H 

polarized waves travel parallel to the soil surface and the V polarized 

waves travel perpendicular to the soil surface (Figure 2.4) (Lakhankar 

2006). 

 

 

 

 

 

For a homogenous soil with a smooth surface, the reflectivity at 

vertical and horizontal polarizations, 
VR  and 

HR  are given by the 

Fresnel expressions (Schmugge et al. 1986): 

2

2

2

sincos

sincos










k

k
RH  

(2.8) 

Figure 2.4.  Horizontal and vertical polarization (Lakhankar 2006). 
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(2.9) 

 

where   is the incidence angle and k  is the absolute value of the soil 

bulk dielectric constant ( b ).  Equations (2.8) and (2.9) show that the 

absolute magnitude of the soil emissivity ( Re 1 ) is lower for 

horizontal polarization.  The sensitivity to changes in surface moisture 

is significantly greater for horizontal polarization than for vertical 

polarization (Owe and de Jeu 2001).  Vertical polarization of 

microwave measurements were found to be influenced by some 

external disturbances (Grant et al. 2007b).  Most research and 

applications involving microwave remote sensing of soil moisture 

have emphasized the use of low frequencies (L-band) and, at this 

frequency, it is possible to develop a soil moisture measurement based 

on a single H polarization signal (Thomas 1993).   

 

2.3.3.5 Target Parameters Influencing Microwave Signature 

There are a number of factors other than soil moisture that influences the 

intensity of the emission from the soil.  These include, amongst others, 

surface roughness, vegetation cover and soil texture (Schmugge et al. 1986). 

 

i. Roughness  

Surface roughness increases the apparent emissivity due to an increase in 

the surface area of the emitting surface (Schmugge 1983b).  In order to 

modify the emissivity for a rough surface, an empirical roughness model 

has been developed (Choudhury et al. 1979) and is expressed as: 

)cosexp(1 2

)()( hRe iir   (2.10) 

where re  is the emissivity of the rough surface at polarization 



(i) (H or V),  

h  is an empirical roughness parameter which is related to the root mean 

square (RMS) height variation of the surface and the correlation length, R is 
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the reflection coefficient and   is the incidence angle.  The effect of a rough 

surface is to increase the surface emissivity and thus to decrease the 

sensitivity to soil moisture (Newton and Rouse 1980).  It was found that for 

microwave emissions, the effect of the surface roughness is less significant 

compared to that of the amount and type of vegetation (Wang et al. 1987).   

 

ii. Vegetation 

Vegetation absorbs, emits, and scatters microwave radiation (Njoku and 

Entekhabi 1996).  The brightness temperature measured above the canopy 

therefore contains not only information about the soil moisture, but also the 

vegetation characteristics.  A method based on radiative transfer theory 

described in Mo et al. (1982)  is a simple but physically based model that 

can effectively estimate the radiation by the soil surface even under 

vegetation (Owe et al. 2001): 

cscssB TeTTeT )1)(1)(1()1)(1()(    (2.11) 

    where : 
 
 

  

 

 

The first term on the right of Equation (2.11) represents the emission 

contribution from the soil corrected for the energy absorbed by the 

vegetation layer (labelled 1 in Figure 2.5).  The second component is the 

direct microwave emission from the vegetation layer (labelled 2 in Figure 

2.6).  The last term quantifies the vegetation emitted radiation travelling via 

the soil surface to the sensor (labelled 3 in Figure 2.5) (Su 2006). 

 

se  smooth surface emissivity  

  transmissivity of the vegetation layer 

  single scattering albedo 

sT  soil surface temperature 

cT  canopy temperature 
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The single scattering albedo describes the scattering of the emitted radiation 

by the vegetation and is a function of plant geometry.  The transmissivity is 

defined in term of optical depth  such that: 

)cos/exp(   (2.12) 

Optical depth is related to the vegetation density and the frequency.  With 

increasing optical depth, the sensitivity of the above-canopy brightness 

temperature to soil emissivity decreases as the vegetation weakens the soil 

emission.  However, towards the longer wavelength region of the microwave 

spectrum (wavelength 10 cm), the effects of vegetation and roughness are 

much reduced.  At these wavelengths, and in areas of low to moderate 

vegetation, soil moisture has a dominant effect on the brightness temperature 

(Wang and Choudhury 1995). 

 

iii. Soil Texture 

The dependence on soil type or texture is due to the different percentages 

of water bound to the particle surfaces in the different soils (Njoku and 

Entekhabi 1996).  Bound water exhibits molecular rotation less freely at 

microwave frequencies, and hence has a smaller dielectric effect than the 

Figure 2.5. Schematic representation of the different microwave emission 
terms over a vegetated surface (Su 2006). 
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free water in the pore space or voids between the particles.  The dielectric 

constant changes with the relative amounts of sand, silt and clay in the soil 

and this affects the microwave sensing of soil moisture (Engman and 

Chauhan 1995). Laboratory data and an empirical model developed by 

Wang and Schmugge (1980) show that the effect of soil texture is relatively 

small and can be neglected in practice (Engman and Chauhan 1995). 

 

2.3.4 L-band Passive Microwave Soil Moisture Retrieval 

Results of studies with L-band radiometers on trucks (Jackson et al. 1995b; 

Burke and Simmonds 2001), aircraft (Schmugge 1996; Mattikalli et al. 1998; 

Jackson 2001) and satellite platforms (St. Germain and Gaiser 2000; Njoku et 

al. 2003; Jackson et al. 2008) have shown a strong relationship between 

brightness temperature and surface soil moisture.  The attenuation from 

vegetation and surface roughness is lower at L-band frequencies.  Moreover, 

the penetration depth is approximately 5 cm, which is deeper than for 

shorter wavelengths (Jackson and Schmugge 1989).  These conclusions are 

supported by much research and experiments into passive L-band 

microwaves (Schultz 1988; Thomas 1993; Jackson et al. 1995b; Jackson and Le 

Vine 1996; Chanzy et al. 1997; Simmonds and Burke 1998; Schmugge 1998; 

Liou et al. 1999b; Fischman and England 1999; Crosson et al. 2002; Liu et al. 

2002; Schneeberger et al. 2003; Bolten et al. 2003; Uitdewilligen et al. 2003; 

Jackson et al. 2004; Schneeberger et al. 2004; Limaye et al. 2004; Behari 2005; 

Paloscia et al. 2006; Angiuli et al. 2008a).  The physical basis of microwave 

emission from bare soil and vegetated area is next presented. 

 

2.3.4.1 Soil Emission: Smooth Soil 

For rather smooth soil surfaces, the soil microwave emissivity e  can be 

approximated from the soil reflectivity Rof a plane surface: 

2
),(1

1

R

Re




 

(2.13) 
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The soil reflectivity, R , can be written as a function of soil dielectric 

permittivity   and viewing angle   using the Fresnel equation.  For soil,   is 

mainly dependent on the soil moisture content, and to a smaller extent, on 

the soil textural and the structural properties.  Although from Equation (2.13), 

the emissivity of the smooth soil can be related to soil moisture through ε  

and  , there are other factors, including the surface roughness and the 

volume of soil, which should also be taken into account.   

 For simple applications, the p -polarized soil reflectivity R  can be 

written as: 



Rp  1QsoilRp

*
QsoilRq

* exphsoilcos
Nso il    

(2.14) 

where 
soilQ (polarization-mixing effect) and soilh  (roughness effect) are 

obtained via a semi-empirical method; *R is the soil specular reflectivity at 

polarization p or q .  At L-band frequencies, so ilN can be set to zero and 
soilQ  

can be disregarded.  Therefore, at L-band frequencies: 

)exp(1
*

s o i lpp hRe   (2.15) 

Equation (2.15) is referred to as the h -parameter correction for soil 

roughness effects.  The volumetric soil moisture sw  can be considered as a 

decreasing function of the emissivity pe  of bare soil.  In general, the soil 

roughness conditions do not change much during the observations, so 

equation (2.15) can be approximated by a linear equation: 

sp waae 10   (2.16) 

This function has been shown to be true under a wide range of soil moisture 

and roughness conditions (Newton et al. 1982; Wang et al. 1983; Schmugge 

1983a; Jackson and O'Neill 1987).  

 

2.3.4.2 Soil Emission: Vegetation-covered  

The vegetation layer over the soil surface attenuates the soil emissions and 

adds its own contribution to the emitted radiation.  At low frequencies, these 

effects are well approximated by a simple radiative transfer (RT) model 
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which is normally referred to as the tau-omega (  ) model.  This model 

uses the optical depth   and the single scattering albedo ω  to parameterize 

the vegetation attenuation properties and the scattering effects within the 

canopy layer, respectively.  Using the   model, the emission from the soil 

and vegetation is the sum of three terms:  

a. the direct vegetation emission, 

b. the vegetation emission reflected by the soil and attenuated by the 

canopy layer, and  

c. the soil emission attenuated by the canopy layer. 

The soil ( soilT ) and vegetation (
vegT ) temperature are approximately equal 

(
vegsoi ls TTT  ). The canopy brightness temperature )( pBT , where p is either 

H- or V-polarization, can be estimated as a function of the attenuation factor 

p : 

sppB TeT )(
 (2.17) 

where the emissivity pe  is given by: 

ppspsppp RRe  )1()1)(1)(1( )()(   (2.18) 

where )(psR is the soil reflectivity at p -polarization. 

The attenuation factor can be computed from the optical depth: 

)co s/ex p (  pp   (2.19) 

 

Studies have shown that p is linearly related to the total vegetation water 

content 
cW (kg/m2) through the parameter pb  which can be calibrated for 

each crop type or for large categories of canopy, i.e. leaf-dominated, stem-

dominated and grasses (Pampaloni and Paloscia 1986; Jackson and 

Schmugge 1989; Schmugge and Jackson 1992; Thomas 1993; Owe et al. 2001):   

cpp Wb  (2.20) 

 

From Equations (2.17) and (2.18), it can be seen that the canopy brightness 

temperature can be computed as a function of three main surface variables: 
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surface soil moisture (through its effects on surface reflectivity )( psR , 

vegetation optical depth p (which can be related to 
cW  and canopy type), 

and canopy temperature cT .  Therefore, several measurements are required 

to determine the different effects of these variables.  These data can be 

obtained from measurements of several configurations of the systems in term 

of polarization, view angle and frequency.   

 

2.3.5 Satellite Observing System 

This section provides a short description of satellite observing systems and is 

limited to those observing systems that provide data of potential relevance to 

soil moisture remote sensing.   

 

i. Advanced Microwave Scanning Radiometer for EOS (AMRS-E) 

The Earth Observing System (EOS) Aqua satellite containing the AMSR-E 

was launched on May 4, 2002 to provide observations of several geophysical 

parameters of interest to hydrology, ecology and climate (Kawanishi et al. 

2003).  It uses a dual-polarized microwave radiometer with frequency 

channels at 6.9, 10.6, 18.7, 23.8, 36.5 and 89 GHz (Paloscia et al. 2006).  Aqua is 

in a polar orbit with 1.30 A.M./P.M. equatorial crossing times (Jones et al. 

2007).  The viewing angle of AMSR-E is fixed at 54.8° and the mean footprint 

diameter ranges from 56 km at 6.9 GHz to 5 km at 89 GHz (Bolten et al. 2006).  

The revisit time for the global swath coverage is two days or less (Njoku et al. 

2003).  The most appropriate frequency of AMSR-E for soil moisture retrieval 

is the C-band or the 6.9 GHz channel, which can measure to an accuracy of 

6%v/v under vegetated conditions or better with vegetation water content 

up to 1.5 kg m-2 (Njoku et al. 2003).  Passive microwave measurements at 

frequencies below L-band are susceptible to man-made radio-frequency 

interference (RFI) and the AMSR-E C-band centred at 6.9 GHz, which it 

shares with fixed and mobile communication services, is subject to RFI 

contamination, particularly near large urban land areas (Njoku et al. 2003).   
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ii. Moderate Resolution Imaging Spectroradiometer (MODIS) 

The Terra and Aqua satellites carry MODIS sensors.  These two satellites 

provide observations in the late morning (10.30 A.M./P.M) and early 

afternoon (1.30 A.M./P.M) (Savtchenko et al. 2004), meaning that the data is 

available on a daily basis.  MODIS acquires data in 36 spectral resolution 

bands between 0.41 μ m (visible) and 14.2 μ m (thermal infrared) with spatial 

resolutions of 250m, 500m and 1000m (Barnes et al. 2003; Savtchenko et al. 

2004).  There are many products derived from MODIS observations to 

describe features of land, ocean and atmosphere, and these can be divided 

into the following: 

a. MODIS Level 1 data: geo-location, cloud mask, and atmosphere 

products, 

b. MODIS land products, 

c. MODIS cryosphere products, and 

d. MODIS ocean colour and sea surface temperature products. 

 

iii. Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) 

ASTER is a sensor flying on the Terra satellite used to obtain detailed maps 

of land surface temperature, reflectance and elevation (Tan 2004).  It has a 

unique combination of wide spectral coverage and high spatial resolution in 

the visible near-infrared through shortwave infrared to the thermal infrared 

regions (LP DAAC: Land Processes Distributed Active Archive Center  1999). 

 

iv. WindSat 

WindSat, launched in 2003, is a space borne multi-frequency polarimetric 

microwave radiometer operating at 6.8, 10.7, 18.7, 23.8 and 37.0 GHz (Connor 

et al. 2004).   The earth incidence angle is not the same for all frequencies with 

the nominal range approximately 50° to 55° (Gaiser et al. 2004).  The spatial 

resolution for 6.8 GHz is around 40km×60km and around 8km×13km for 

37.0 GHz. 
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v. Soil Moisture and Ocean Salinity (SMOS) 

The main objective of the SMOS mission is to deliver key variables of the 

land surface (soil moisture fields), and of the ocean surface (sea surface 

salinity fields) (Kerr et al. 2001).  This mission is based on a revisit time of one 

to three days and uses a dual polarized L-band radiometer to achieve a 

ground resolution between 35 and 50 km with a swath width of 1000 km 

coupled with multi-angular (between 0° to 55°) acquisitions (Mecklenburg et 

al. 2008).  The satellite has a 6.00 A.M./P.M. equator overpass time.  It was 

launched in November 2009 (ESA Water Mission SMOS  2009).   

 

vi. Hydrospheric States (Hydros) Mission  

The objective of this mission is to provide exploratory global measurements 

of the Earth‟s soil moisture with two to three days revisit time (Jackson et al. 

2005).  The Hydros instrument is a combination of a radar system (1.26 GHz 

with VV, HH and HV polarizations) and a radiometer system (1.41 GHz with 

H and V polarizations).  The radiometer system allows retrieval of soil 

moisture in non-forested landscapes with a resolution of 40 km while the 

radar measurements will retrieve soil moisture at 3 km resolution, both at a 

constant look angle of 39° with respect to nadir (Entekhabi et al. 2004).  The 

Hydros satellite is scheduled to be launched in 2010 (Zhan et al. 2006).   

 

2.4 Research Review: Passive Microwave Soil 
Moisture Retrieval 

Different soil moisture retrieval approaches have been developed to account 

for the various parameters contributing to the surface microwave emission 

(Wigneron et al. 2003).  In this review, three main approaches of soil moisture 

retrieval are identified and classified, namely: i) statistical approaches, ii) 

forward model inversion, and iii) explicit inverse (use of neural networks) 

are identified and described. 
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2.4.1 Statistical Approaches 

This is an approach whereby the algorithms directly manipulate the remotely 

sensed signal to retrieve information on land surfaces through empirical 

relationships of the type: 

 nBBBjj TTTFx ,2,1, ,.....,  (2.21) 

where iBT , corresponds to the brightness temperature measurements made 

for various configurations of the sensor in terms of incidence angle  , 

polarization, or frequency; and jx  is the relevant land surface variable 

(Wigneron et al. 2003).   

 Surface soil moisture is statistically related to a combination of 

microwave emissivities and vegetation microwave indices that are used to 

correct the vegetation and roughness effects.  Over bare soil (Zhang et al. 

2002), the linear relationship of Equation (2.16) has proven to be valid under 

a large range of conditions, provided that sufficient ground data are 

available to calibrate the coefficients 0a  and 1a  (Wigneron et al. 2003).  Using 

Equation (2.16), the soil moisture value can be retrieved by inverting the 

linear equation.  The emissivity in Equation (2.16) is often replaced by the 

normalized brightness temperature 
BNT : 

sBBN TTT /  (2.22) 

where sT is the estimated surface temperature. 

 For vegetation covered areas, some studies have shown that, for a 

given level of vegetation biomass, the relationship between BT  and soil 

moisture cw can be approximated by a linear function for soil moisture 

between 0.1 to 0.4 m3/m3 (Ulaby et al. 1983; Pellarin et al. 2003).  The slope 

and intercept of the relationship are a function of the vegetation 

characteristics, i.e. canopy type, biomass or water content, and of the viewing 

configuration in terms of view angle, polarization and frequency.  The 

vegetation index has been used to quantify the effects of the vegetation cover. 

The vegetation index can be computed either from passive microwave 

observations (Microwave Polarization Difference Index (MPDI), Polarization 
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Difference (PD), etc.) or from data acquired by optical remote sensing 

systems (Normalized Difference Vegetation Indices (NDVI), Perpendicular 

Vegetation Index (PVI), etc). 

 

2.4.2 Forward Model Inversion 

Forward model inversion is a technique whereby a radiative transfer model 

is used to simulate the microwave radiometric measurement.  The 

microwave radiometric measurement, iBT )( (where qi .....,2,1  corresponds 

to measurements made for various configurations of the sensors in term of 

incidence angle  , polarization or frequency f ) can be written as a function 

of land surface characteristics jx ( pj ...,2,1 ): 

    ipipiiB ii
sssxxxT  . . . . . .,,;. . . . . .,, 2121  (2.23) 

for qi .....,2,1 where
iks ), . . . ,2,1;. . . ,,2,1( qiri  represents the configuration 

parameters which determine the observation conditions, and iε are the 

residual errors between the simulated and measured brightness temperature 

values.  Inverting the model consists of finding the set of variables under 

examination ). . . ,,2,1( pjx j   that provides the minimum value of residual 

errors i .  In other words, a model is used to simulate remotely sensed 

signatures (output) on the basis of land surface parameters (input).  The 

inversion methods are developed to produce an „inverse model‟ in which the 

outputs are represented by the relevant land surface variables.  The inversion 

methods are usually based on iterative minimization routines using the Root 

Mean Square Error (RMSE) between the forward model simulations and 

observations.  In short, forward model inversion consists of two steps: 1. 

selection of a forward model, and 2. selection of an inversion model that 

minimizes the residual errors i .   

 There are different forward modelling approaches that can be 

categorized into: 
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i. Non-parametric data driven models that are either based on 

statistical regression analysis or the neural network model (Liou et 

al. 2001). 

ii.   Parametric data driven models in which the model parameters are 

adjusted by comparison with observations.  In this approach, prior 

knowledge of the functional form of the processes that are being 

modelled is required (Mätzler C and Standley 2000). 

iii. Physical models that include a physical description of the radiative 

transfer process and where the model parameters can be directly 

related to the land surface characteristics.  In this approach, a 

number of surfaces can be modelled as a continuous medium or as 

a discrete medium containing randomly distributed scatterers 

characterized in terms of size, shape, density and distribution 

orientation (Ferrazzoli and Guerriero 1995; Ferrazzoli et al. 2000).  

This is a complex model that requires many input parameters, and 

which cannot be implemented easily to retrieve the surface 

characteristics. 

After the particular forward model has been selected, the method to 

invert the model needs to be defined.  A very common method of inverting 

the forward model is the statistical inversion approach, which searches for 

the input parameters pxxx ,...,, 21 consisting of the relevant geophysical 

parameters that minimize the square error between the brightness 

temperatures as measured from space 
iBT )( and the actual outputs of the 

model  pi xxx . . . . . .,, 21  (Pulliainen et al. 1993).   

 

2.4.3 Explicit Inverse 

The explicit inverse of the physical process can be built by mapping the input 

(remote sensing measurements) into the output (the land surface parameters).  

Some of these applications include the estimation of snow characteristics 

(Davis et al. 1993; Tsang et al. 1992), surface wind speed over the ocean 
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(Stogryn et al.), clouds and precipitation (Li et al. 1997), etc.  Artificial Neural 

Networks (ANNs) are used to produce the explicit inverse function.  The 

ANN is used to train an inverse model by reversing the roles of the inputs 

and outputs: the input nodes of the ANN are the measured brightness 

temperatures and the output nodes are the land surface characteristics.  The 

advantage of the ANN is that once the ANN is trained, the parameter 

inversion can be accomplished quickly.  Other advantages of ANNs include 

(Ghedira et al. 2000): 

 Adaptability: ANNs are easily adaptable to different types of data and input 

configurations. Moreover, ANNs can easily incorporate ancillary data which 

would be difficult or impossible with conventional techniques. 

 No assumption about data distribution: The traditional parametric 

classification methods, such as the Maximum Likelihood classifier, make 

unreasonable assumptions about the statistical proprieties of the data, 

specifically that they are normally (or Gaussian) distributed for each ground 

cover class.  However, this assumption is not always satisfied. 

 Problem and model complexity: ANNs can deal with large amounts of 

training data and their complex configuration can find the best nonlinear 

mapping function between the input and the output data without the 

constraint of linearity or pre-specified nonlinearity which is required in 

regression analysis. 

ANNs have been utilized in many applications in the field of 

hydrology and water resources and the results obtained have been very 

promising.    One of these applications is in the field of soil moisture retrieval.  

Soil moisture is linked to radiometric signatures through its influence on 

microwave emission of land surfaces (Jackson et al. 1999; Liou et al. 1999a; 

Njoku and Entekhabi 1996; Njoku and Li 1999) and the linkage is often 

extremely non-linear.  It is in general difficult to develop a physical-based 

retrieval approach due to the problem of understanding the behaviour of all 

the data involved.  To resolve the non-linearity the ANNs approach which is 
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known for its ability to handle non-linear mapping problem, is a good 

scheme.    

   

2.5 Chapter Summary 

This chapter has discussed the two methods commonly used for measuring 

soil moisture content over the soil profile: discretely at specific locations and 

by using remote sensing observations.  The use of remote sensing 

observations is better in terms of area and temporal coverage compared to 

point measurements.   

 It is concluded that of the remote sensing observations used, 

microwave observations have the greatest ability for soil moisture retrieval 

due to its all weather capabilities.  In addition, passive microwave 

observation has the best capability for measuring soil moisture content 

compared to active microwave observation as passive microwave 

observations are less sensitive to surface roughness, vegetation and 

topographic influences. 

 This chapter has also discussed the different categories of methods for 

retrieving soil moisture using passive microwave observations.  From the 

three different approaches, the statistical and ANN approaches promise 

simpler and more efficient methods than the forward modelling approach.  

The ANN is superior to the statistical approach as it does not require explicit 

mathematical functions.  The ANN will map the function between the input 

and output using the data provided during its training process.  Once this 

function is successfully mapped, inverse mapping can be accomplished 

quickly.   

The ANN approach has been applied to the soil moisture retrieval 

problem.  Chapter 3 will present the basics of ANN theory before reviewing 

the application of ANNs for soil moisture prediction in Chapter 5.   
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Chapter 3   

 

Artificial Neural Networks 

 

A brief overview of Artificial Neural Networks (ANNs) including the theory 

and some examples is presented in this chapter.    The knowledge presented 

in this chapter is then used to build the methodology in the following 

chapters that are concerned with using ANNs to enhance surface moisture 

retrieval from remotely sensed data.   

 

3.1 Introduction  

ANNs are used to generate a mapping between some input data and some 

required output.  ANNs are model free estimators in that they do not rely on 

an assumed form for the underlying data (Chang and Islam 2000).  Rather, 

based on some observed data, they attempt to obtain an approximation of the 

underlying system that generated the observed data.  They use a non-linear 

data driven self-adaptive approach as opposed to the traditional model 

based methods.  They are powerful tools for modelling, especially when the 

underlying data relationships are unknown (Jha 2007).  ANNs can identify 

and learn the correlated patterns between the input data set and the 

corresponding target outputs.  After training, the ANNs can be used to 

predict the outcome of new, unseen independent input data.  ANNs imitate 

some aspects of the structure and learning of the human brain and can 

process problems involving non-linear and complex data even when the data 

are imprecise and noisy (Jha 2007).  One of the appealing features of ANNs is 

that “learning by example” replaces “programming” in solving problems.  

This feature makes such computational models very useful in applications 

where one has little or incomplete understanding of the problem to be solved, 
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but where training data is readily available.  ANNs are not intelligent, but 

they are good at recognizing patterns and making simple rules for complex 

problems (Nissen 2007).  

In general, one can look at the computation in an ANN from the 

perspective of estimating an unknown function based on some observations.  

However, this does not imply that the ANN is a heuristic technique.  ANNs 

have a rich theory underlying them and are based on sound mathematical 

principles.  The technique has proved very popular and criticisms of the 

technique primarily arise from attempts to use ANNs as off-the-shelf black 

boxes (Chang and Islam 2000) without understanding their underlying 

theory.   

 

3.2 Basic ANN Model 

The neural network was historically inspired by the biological functioning of 

a human brain.  Specifically, it attempts to mimic the fault-tolerance and 

capacity to learn of biological neural systems by modelling the low-level 

structure of the brain (Patterson 1996).   

 The brain is composed of a very large number of interconnected 

neurons.  The neuron has a branching input structure (the dendrites), a cell 

body (the soma), and a branching output structure (the axon).  The axon of 

one cell connects to the dendrites of another through a synapse (Figure 3.1).   

When a neuron is activated, it fires an electrochemical signal along the 

axon.  The signal crosses the synapses to the other neurons, which may in 

turn fire.  A neuron fires only if the total signal received at the cell body from 

the dendrites exceeds a certain level (the firing threshold).  The chance of 

firing, i.e. the strength of the signal received by a neuron, depends on the 

efficacy of the synapses.   
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 When creating a functional model of the biological neuron, there are 

three basic components of importance (Haykin 1994): 

i. Synapses.  This is modelled as weights in ANNs.  The strength of 

the connection between an input and a neuron is represented by 

the value of the weight.  Unlike the synapses in the brain, the 

synapse weight of the artificial neuron lies within the range of 

positive and negative values.  Positive weight values designate 

excitatory connections while negative values reflect inhibitory 

connections;  

The next two components model the actual activity within the neuron cell: 

ii. An adder to sum up the input signal modified by their respective 

weights.  This is referred to as a linear combination; 

iii. An activation function that controls the amplitude of the output of 

the neuron.   An acceptable range of output is usually between 0 

and 1, or -1 and 1.   

This model is described schematically in Figure 3.2. 

Figure 3.1.  Structure of a neuron (Turchin 1977). 
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The model illustrated in Figure 3.2 also includes an externally applied bias, 

kb , which has the effect of increasing or lowering the net input of the 

activation function, depending on whether it is positive or negative, 

respectively.  Mathematically, using Figure 3.2, a neuron k  can be written as: 





m

j

jkk xwu
j

1

 
(3.1) 

and 

 kkk buy   (3.2) 

 

where mxxx ,...,, 21  are the input signals; 
mkkk www ,...,,

21
 are the respective 

synaptic weights of neuron k ; ku is the linear combination output due to the 

input signal; kb  is the bias;  .  is the activation function and ky  is the output 

signal of the neuron.  The use of bias kb  has the effect of applying an affine 

transformation to the output ku : 

kkk buv   (3.3) 

where kv  is termed as the induced local field or activation field of neuron k .  

The linear combiner ku is modified by kb
 in the manner shown in Figure 3.3. 

 

 

Figure 3.2.  An artificial neuron model (Haykin 1994). 
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 A bias is similar in function to a threshold and is treated as a weight 

connected to a node that is always on (Meyer and Maul 1991).  The weights 

determine where this hyperplane lies in the input space. Without a bias term, 

this separating hyperplane is constrained to pass through the origin of the 

space defined by the inputs. For some problems this is acceptable, but in 

many problems the hyperplane would produce increased performance away 

rom the origin. If you have many units in a layer, they share the same input 

space and without bias they would ALL be constrained to pass through the 

origin (Sarle 1997). 

 

3.3 ANN Data Pre- and Post-Processing  

Preprocessing aims at transforming the data into a better form for the 

network to use (Demuth et al. 2009).  This process, normally known as 

normalization or standardization, can speed up the training process of the 

ANN and reduce the chances that the ANN gets stuck in a local minima.  By 

normalizing the data, the effects of outliers in the data are reduced and with 

this, the density of the local minima (due to the outliers) is also reduced.  The 

use of normalization is mainly to transform the input features into the same 

range of values in order to minimize the possibility of bias within the ANN 

0 

Induced 
local 

field 
k

v  

Linear combiner 

output 
k

u  

Bias 
k

b > 0 

 
k

b = 0 

 
k

b < 0 

Figure 3.3.  Affine transformation produced by the presence of a bias 
(reproduced from (Haykin 1994)). 
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towards one feature over another (Priddy and Keller 2005).  The training 

time will be reduced because each feature has the same range of data values 

as each other and the gradient descent process will treat each feature the 

same.  The normalization process is especially useful when the inputs of an 

application vary over widely different scales.  There are different ways to 

normalize the data, and a popular one is the statistical or Z-score 

normalization technique which uses the mean and standard deviation for 

each feature across a set of training data to normalize each input feature 

vector.   

The usual way of data preprocessing for ANNs is to obtain the 

standard deviation and mean from the training data, but not from the 

validation and testing data (Sarle 1997).  The means and standard deviations 

are computed for each feature over the set of training data, and used to scale 

each sample of the validation and testing data (Priddy and Keller 2005). The 

performance of the ANN will vary significantly as the data was trained on a 

different data representation.  .   

The ANNs predictions will be in the normalized format.  These values 

must subsequently be “de-normalized” to provide meaningful results by 

reversing the normalization process (Dawson and Wilby 1998).   

 

3.4 Activation Function 

The activation function or transfer function works as a “squashing” function 

so that the output of a neuron in the neural network falls between certain 

values.  In general, there are two types of activation function: 

i. Threshold Function: This function will limit the output of the 

neuron to either 0 or 1 as illustrated in Figure 3.4. 
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ii. Sigmoid Function:  This is by far the most common form of 

activation function used in the construction of ANNs.  It is defined 

as a strictly increasing function that exhibits a graceful balance 

between linear and non-linear behaviour (Haykin 1994).  This 

function will limit the output of a neuron to a range between 0 and 

1.  The hyperbolic tangent function, on the other hand, limits the 

outputs to fall between -1 and +1 (Figure 3.5).  

 

 

 

 

 

 

 

 

3.5 Network Architectures 

There are two fundamentally different classes of network architecture (Sarle 

1997): 

 

i. Feedforward ANNs 

 In this type of topology, the connections between the neurons in an 

ANN flow from input to output only.  These ANNs can be further 

0 
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v
 

y  

Figure 3.4.  Threshold function. 

Figure 3.5.  Common non-linear functions. 
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divided into either single-layer feedforward ANNs or multi-layer 

feedforward ANNs.  The single-layer network is the simplest form of 

a layered network that has only one input layer that links directly to 

the output layer.  Figure 3.6(a) shows a one-layer network with the 

single layer referring to the output layer. With multi-layer 

feedforward ANNs, one or more hidden layers are present between 

the input and output layers, as shown in Figure 3.6(b).  By adding one 

or more hidden layers, the network can extract higher-order statistics 

from its input and model more complex non-linear and linear models.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Feedback/Recurrent ANNs 

 In feedback or recurrent ANNs, there are connections from later layers 

back to earlier layers of neurons.  There is at least one feedback loop in 

this type of network.  Either the network‟s hidden neuron unit 

activation or the output values are fed back into the network as inputs 

as shown in Figure 3.7.  The internal states of the network allow this 

type of network to exhibit dynamic behaviour when modelling the 

data‟s dependence on time or space (Timm et al. 2006).  With one or 

Output 
layer 

 Input 

a.  Single-layer feedforward ANN b.  Two-layer feedforward ANN 

Output 
layer 

 Input Hidden 
layer 

Figure 3.6.  Feedforward ANNs topology 
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more feedback links whose state varies with time, the network has 

adjustable weights.  This results in the state of its neuron being 

dependent not only on the current input signal, but also on the 

previous states of the neuron (Chiang et al. 2004).  In other words, the 

network behaviour is based on the current input and the results of 

processing previous inputs.  Some applications that use this type of 

network are (Orr et al. 1999):  

a. Learning formal grammars:  Language L is represented with a set of 

strings S.  Each string S is composed of a series of symbols.  A 

recurrent ANN is used to identify the strings that belong to language 

L. An example is L ={anbn}, where L is a string of any number of a‟s, 

followed by the same number of b‟s.  Strings belonging to L include: ab, 

aabb, aaabbb, aaaaabbbbb.  Strings not belonging to L include: aab, abb, 

and aabbbb.  Strings which belong to a language L are said to be 

grammatical, and ungrammatical otherwise. 

b. Speech recognition: For this type of application, speech is first 

represented as a series of spectral slices to a recurrent ANN.  Each 

output of the network represents the probability of a specific phoneme, 

given both present and recent input. The probabilities are then 

interpreted to recognize the whole utterance.   

 

 

 

 

 

 

 

 

 

 

 

a.  Hidden neuron unit activation 
feedback 

Output 
layer 

 Input Hidden 
layer 

Output 
layer 

 Input Hidden 
layer 

b.  Output activation feedback 

Figure 3.7.  Recurrent ANN topologies (O'Brien 2008). 
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3.6 Learning Processes 

The learning processes through which ANNs function can be categorized as 

supervised learning, and unsupervised learning.   

 

3.6.1 Supervised Learning 

This form of learning can be regarded as analogous to learning with a teacher, 

whereby the teacher has the knowledge of the environment.  The knowledge 

is represented as input-output combinations.  This environment is unknown 

to the neural network system.  The teacher who has the knowledge of the 

environment will provide the neural network with desired responses for the 

training vectors.  The network parameters are adjusted step by step under 

the combined influence of the training vector until the network emulates the 

teacher, producing the desired outputs for the corresponding inputs.  At this 

stage, the network is presumed to be optimum in some statistical sense.  In 

this way, the knowledge of the environment available to the teacher (ANN 

parameters frozen) is transferred to the neural network through training and 

stored in the form of fixed synaptic weights, representing long-term memory.  

When this condition is reached, the network is released from the teacher to 

deal with the environment by itself.  With an adequate set of input-output 

examples, and enough time in which to do the training, a supervised 

learning system is usually able to approximate an unknown input-output 

mapping reasonably well (Haykin 1994).  Some of the categories of well-

known supervised learning ANN models are listed in Table 3.1.  

 

3.6.2 Unsupervised Learning 

In this form of learning, the networks learn on their own as a kind of self 

study.  When a set of data is presented to the network, it will learn to 

recognize patterns in the data.  To perform unsupervised learning, a 

competitive-learning rule may be applied e.g. by creating a neural network 
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with two layers – an input layer and a competitive layer.  The input layer will 

receive the available data.  The competitive layer consists of neurons that 

compete with others for the opportunity to respond to features contained in 

the input data.  The output of the network is not compared with the desired 

output. Instead, the input vector is compared with the weight vectors leading 

to the competitive layer.  The neuron with the weight vectors most closely 

matching the input vector is the winning neuron (Best 1990).  In another 

words, the network operates in accordance with a “winner-takes-all” 

strategy (Haykin 1994).   

 

 

Table 3.1.  Some well-known supervised ANNs (Sarle 1997). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervised Learning 

 a. Feedforward NN 

  i. Linear 
    Hebbian (Hebb 1949) 
    Perceptron (Rosenblatt 1957) 
    Adaline (Widrow and Hoff 1960) 
  ii. Multilayer Perceptron (MLP) 
    Backpropagation (Rumelhart et al. 1986) 
    Radial Basis Function (RBF) network (Broomhead and Lowe 

1988) 
  iii. Classification only 
    Learning Vector Quantization (LVW) (Kohonen 1982) 
    Probabilities Neural Network (PNN) (Specht 1988) 
  iv. Regression only 
    General Regression Neural Network (Specht 1991) 
 b. Feedback NN 

    Backpropagation through time (Werbos 1990) 
    Elman network (Elman 1990) 
    Recurrent Backpropagation (Fernando 1988) 
    Time Delay Neural Network (TDNN) (Kevin et al. 1990) 
    Real-time Recurrent Network (Williams and Zipser 1989) 
    Hopfield network (Hopfield 1982) 
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3.7 ANN Methodology: Training, Validation and 
 Testing Datasets 

Once the network architecture is decided and the data needed are collected, 

the next phase of the ANN methodology is the training of the ANN model.  

The training goal is to find the training parameters that result in the best 

performance, as judged by the ANN‟s performance with unfamiliar data.  

This measures how well the ANN will generalize.  To find the optimum 

ANN configuration, an ideal approach is to divide the data into three 

independent sets: training, validation and testing.  The definition of these 

terminologies as discussed by Priddy and Keller (2005) are taken: 

i. Training set: A set of samples uses to adjust or train the weights in the 

ANN to produce the desire outcome.  

ii. Validation set: The validation error is used to stop the training.  The 

validation error is monitored to determine the optimum point to stop 

training.  Normally, the validation error will decrease during the 

initial phase of training.  However, when the ANN begins to overfit 

the data, the output error produced by the validation set will begin to 

rise.   When the validation error increases for an appreciable number 

of iterations, thus indicating the trend is rising, the training is halted, 

and the weights that were generated at the minimum validation error 

are used in the ANN for the operation.  

iii. Testing set: To assess the performance (generalization) of the ANN.   

As the real prediction accuracy will be generally worse than that for the 

holdout sample (Zhang 2007), there is a need to evaluate the developed 

model with some real problem.  In this research, the sets of independent data 

used will be termed “evaluation sets”.  The “evaluation sets” used in this 

research represent two real problems, i.e. predicting soil moisture from two 

different dates which was not used during the training process.   
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3.8 Classification and Function Approximation 

Neural networks are mainly used to learn for two main tasks (Swingler 1996):  

i. Classification: Where the input is the description of a number of 

objects to be recognized and the output is the identification of the class 

to which the objects belong.  In other words, this is a task whereby the 

target output cannot be arranged along a meaningful continuum; each 

possible output of the network is a separate entity, discrete from all 

the others.   

ii. Continuous Numeric Functions: These functions describe the 

relationship between different sets of variables.  This is where the 

target output falls along a meaningful continuum and each possible 

output of the network has its place along that continuum. This 

problem is called function approximation or function mapping.   

If the output of a function approximation problem is discrete, then the 

problem becomes a classification task.  

 

3.8.1 Example: Function Approximation Using ANN 

ANNs are widely used to model non-linear functions.  The ability of an ANN 

in fitting a non-linear function when given training data will be 

demonstrated using an example.  In this example, a set of training data was 

generated from the function xxy  2
: 

 

Table 3.2.  Data created from function xxy  2
. 

 

 

   

   

 

As an example, a feedforward backpropagation neural network with two 

layers is created.  The transfer function between the input and the hidden 

x  1 2 3 4 5 6 7 8 9 10 

2x  1 4 9 16 25 36 49 64 81 100 

y  2 6 12 20 30 42 56 72 90 110 
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layer is a sigmoid function and the function between the hidden layer and 

the output layer is the linear function.  There are 10 neurons in the hidden 

layer (Figure 3.8).  The input of the neural network are the x and 
2x  values 

and the target is the y  value.  These input-output combinations are provided 

to the neural network to “learn” to fit a function to the two inputs and the 

one output.  The learning process involves the setting of the weights and bias 

values in the neural network architecture.  

 

Table 3.3.  Predicted y  values obtained using the neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 shows the relationship between the actual y  and the predicted y  

values for given values of x , while Table 3.3 shows the numerical and 

predicted values of y  using the neural network. From the graph (Figure 3.9), 

it can be seen that the predicted y values are very close to the actual value y .  

x   Actual y  Predicted y  

1  2 1.97 
2  6 5.75 
3  12 12.71 
4  20 19.20 
5  30 30.07 
6  42 42.47 
7  56 55.74 
8  72 72.07 
9  90 89.06 
10  110 110.02 

Figure 3.8.  Architecture of the neural network being applied. 
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These results demonstrate that the ANN can map a non-linear equation from 

a small set of input-output combinations. More complex non-linear 

relationships can be learned with more complex ANN structures and with 

enough input-output pairs for the ANN to adequately learn the relationship. 

It is the function approximation property of ANNs that is explored in 

this thesis.  

 

 

Figure 3.9.  Actual and Predicted y values given x . 

 

3.9 Chapter Summary  

This chapter presents the basis and theory of ANNs models.  This 

terminologies of training, validation, testing and evaluation sets are 

introduced in this chapter.  Moreover, the normalization process of 

preparing the data for ANN in the data pre-processing is also presented.  The 

difference between classification and function mapping problem is 

discussed.  An example of using ANN for non-linear function mapping is 

also presented. This example shows that ANN is capable of solving non-

linear problems.  The information presented in this chapter and Chapter 2 

will be utilized in the research of passive microwave data for soil moisture 
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prediction using ANNs.  The data used for this research study is next 

presented in Chapter 4.   
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Chapter 4  

 

NAFE’05: Study Area & Data 
Acquisition 

 
This chapter describes the field campaign NAFE 2005 (National Airborne 

Field Experiment) conducted in New South Wales, Australia, during 

November 2005.  The description will cover information relevant to this 

thesis, namely the objectives of the campaign, the ground sampling strategy 

and the airborne monitoring during this field campaign.  A more detailed 

description regarding this field campaign can be found in Walker and 

Panciera (2005) and Panciera et al. (2008).  The data is available at 

www.nafe.unimelb.edu.au.  

 

4.1 Overview and Objectives  

The purpose of NAFE was to map near surface soil moisture at different 

resolutions making use of passive microwave airborne and space borne 

remote sensors.  The ultimate goal was to provide reliable near-surface soil 

moisture observations at paddock scale over a large area.  Specifically, it 

involves capitalizing on remote sensing missions such as the European Space 

Agency‟s (ESA‟s) Soil Moisture and Ocean Salinity (SMOS) satellite that was 

launched in November 2009.  SMOS carries the first-ever space borne 2-D 

interferometric radiometer operating at 1.4 GHz (L-band) with V- and H-

polarized observations at a range of incidence angles (Kerr et al. 2001).   

To utilize SMOS, there are still unanswered questions that need to be 

addressed.  These include: i. the correct interpretation of the large-scale 

spatially averaged passive microwave observations provided by the remote 

sensors (i.e. brightness temperatures), ii. the inconsistency between the scales 

http://www.nafe.unimelb.edu.au/
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at which the variables are measured and predictions are needed, and iii. the 

applicability of soil moisture retrieval algorithms from brightness 

temperatures developed using radiometers mounted on towers or trucks, 

whose field of view is limited to tens of meters, to satellite sensors 

characterised by large footprints (Panciera et al. 2006).   Consequently, to 

utilize data from the SMOS mission requires coordinated airborne and 

ground data collection campaigns to verify and refine the soil moisture 

retrieval algorithms (Panciera et al. 2008).   

 

4.2 Study Area  

The study area of NAFE‟05 was the Goulburn River catchment, a sub-humid 

to temperate area located in south eastern Australia, approximately 300 km 

north-west of the city of Sydney (Figure 4.1).  This catchment extends from 

31046‟S to 32051‟S and 149040‟E to 150036‟E, with elevations ranging from    

106 m in the floodplains to 1257 m in the northern and southern mountain 

ranges.  The catchment was chosen for: i. its relative large area of 

predominantly low to moderate vegetation cover in the north of the 

catchment (useful for satellite soil moisture remote sensing studies), and ii. 

the lack of maritime effects in order to avoid mixed pixel responses from 

ocean and land data within the satellite measurements.  

 

Figure 4.1.  Location of the Goulburn River Catchment (Rüdiger et al. 2007). 
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This catchment has two intensively monitored sub-catchments, the 

Krui River (562 km2) and Merriwa River (651 km2) in the northern half of the 

catchment (Figure 4.2).   

 

 

   

 

4.2.1 Climate 

The general climate within the region can be described as sub-humid or 

temperate with significant variation in the annual rainfall and evaporation 

during the year, and a high variability of rainfall throughout the catchment.  

While the average annual rainfall in the Goulburn River catchment is 

approximately 650 mm, it varies from 500 to 1100 mm depending on altitude.  

Major rainfall events generally occur from November to March with an 

average monthly precipitation of 68 mm, while the monthly average 

precipitation in June is 32 mm.  Monthly mean maximum temperatures reach 

approximately 30°C in summer and 14°C in winter, with mean minimum 

values of 16°C and 2°C, respectively. Except for elevated areas, frost is 

unlikely to occur during daytime in winter, but night time minimum 

temperatures in winter are frequently less than 0°C (Rüdiger et al. 2007). 

  Pembroke 

 Stanley 

  Illogan 

Roscommon 

 Dales 

  Midlothian 

Merriwa 
Park 

Cullingral 

Krui 
Area 

Merriwa 
Area 

 

Figure 4.2.  Overview of NAFE‟05 focus farms within the Krui and Merriwa 
areas. 
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4.2.2 Geology and Soil 

The geology of the Goulburn River catchment can be divided into two types: 

the north, which is predominantly Tertiary basalt, a product of the Cainozoic 

volcanism that took place throughout much of eastern Australia; and the 

south, which is dominated by rocks of Triassic age laid down as sediments in 

lagoons and consisting of sandstone, conglomerate, and shale.  The actual 

NAFE‟05 study area falls in the northern part of the Goulburn catchment, 

across the Liverpool Range and the Merriwa Plateau.  The northern part of 

the NAFE ‟05 study area is characterized by black basalt derived cracking 

clays, while the very southern part of the study area is characterized by 

sandstone derived soils. Red basalt derived clays also exist in southern 

regions of the study area. 

 

4.2.3 Vegetation 

Much of the original vegetation in the northern part of the Goulburn 

catchment has been cleared, the extent of which has largely been influenced 

by topography and soil type.  In the north where the terrain is rugged (the 

Liverpool Range), accessibility is restricted and the area has thus remained 

highly vegetated. To the south, clearing has been more extensive due to the 

rolling to hilly terrain, ensuring greater accessibility (the Merriwa Plateau). 

Grazing and cropping activities dominate the cleared areas due to the high 

fertility of basaltic soils. The sandstone derived soils to the far south are 

largely uncleared as they are less fertile and hence expected to be less 

productive. 

 

4.3 Ground Monitoring  

Eight focus farms within the Krui and Merriwa sub-catchments were chosen 

according to the spatial distribution and characteristics of each farm for 

detailed measurements.  This region is very suitable for soil moisture remote 

sensing studies due to the moderate vegetation cover arising from grazing 

and cropping activities in the region.  Table 4.1 summarizes the main 



58 

 

characteristics of each farm.  From Table 4.1, it can be seen that for a grid cell 

of 1 km spatial resolution for example, there is sub-grid heterogeneity either 

in terms of the vegetation or the topography.   

 

Table 4.1.  Main characteristics of the focus farms during the NAFE‟05 
campaign. 

 

Farm Name Area(ha) Topography Landuses Soils 

Pembroke 6400 Hilly/Gently 
rolling 

 Grazing 

 Crop (wheat) 

 Black basaltic 
clays 

Stanley 720 Hilly  Grazing  Black basalts on 
flat; red basaltic 
clays on crests 

Roscommon 940 Flat/Gently 
rolling 

 Grazing  Black basaltic 
clays and sandy 
soils 

Illogan 560 Flat/Gently 
rolling 

 Crop (Barley, 
Oats, Wheat) 

 Black basaltic 
clays with patches 
of red basaltic 
clays 

Dales 1500 Flat/Hilly  Grazing 
 

 Black basaltic 
clays 

Midlothian 2000 Flat/Hilly  Grazing 

  Crops (Sorghum, 
Lucerne, Wheat) 

 Black basaltic clays 

Merriwa Park 750 Hilly  Grazing 

 Crop (wheat) 

 Black basaltic clays 

Cullingral 220 Flat   Grazing  Black basaltic clays 

 

Spatial ground sampling was concentrated in the 40 km   40 km 

region and the eight focus farms, with soil moisture data to 5 cm depth soil 

profiles collected at a range of spatial scales.  The spatial soil moisture 

sampling is divided into: i. regional scale sampling, and ii. focus farm 

measurements.  Figure 4.3 shows the calendar for ground sampling for the 

NAFE‟05 campaign.  In this figure, the shading shows when the sampling 

took place.  The soil moisture within the top 5 cm of the soil profile was 

monitored coincident with aircraft flight either across the entire site or across 

the focus farms.  During regional sampling, the entire 40km×40km study 

area was sampled on a grid of approximately 1 km.  Regional sampling was 

carried out once a week.  On all other days (Figure 4.3), the sampling was 
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focused on the two focus farms, with each farm mapped one or two times 

per week.   

 

 

 

 

 

Soil moisture measurements within the focus farms were taken at 500 

m, 250 m, 125 m and 62.5 m resolutions, covering as much as possible the 

range of land uses, topography, soil types and soil wetness conditions 

present across the farms.  Figure 4.4 shows the ground sampling strategy 

within the focus farms. 

 

Figure 4.3.  Ground sampling calendar for NAFE‟05 (Walker and Panciera 
2005). 
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Figure 4.4.  Schematic of farm scale soil moisture sampling strategy (Walker 
and Panciera 2005). 

 

 

Within each farm, a small area of 150m  150m was chosen for 

intensive soil moisture sampling.  These small “high resolution” areas were 

sampled at 12.5 m and 6.25 m to provide highly detailed information about 

the variability expected from point soil moisture and vegetation biomass 

measurements.   

Apart from soil moisture measurements, the following supporting 

data were also collected at the focus farms during each sampling day for 

each focus farm: 

i. Gravimetric soil moisture samples 

ii. Vegetation water content samples 

iii. Leaf wetness observation and dew amount 

A number of auxiliary data sets are needed to characterize the surface 

conditions of the study area.  This information is needed to model the soil 

microwave emission and to calibrate the ground sensors that were used 

during the campaign.  The supporting data include: 

i. Thermogravimetric soil moisture samples 

ii. Vegetation biomass and water content 

iii. Dominant vegetation type 
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iv. Visual observation of land use and classification 

v. Normalized Difference Vegetation Index (NDVI) 

v. Surface roughness 

 

4.4 Airborne Monitoring 

Airborne measurements have been made using a two-seater motor glider 

called the Small Environmental Research Aircraft (SERA).  This aircraft is 

instrumented with the Polarimetric L-band Multibeam Radiometer (PLMR) 

which allows very high resolution passive microwave (down to 50 m) 

observations to be made across the entire study areas. 

The PLMR measures both V- and H-polarized brightness 

temperatures with polarization switched at incidence angles +/-7°, +/-21.5° 

and +/-38.5° in either across track (pushbroom) or along track configurations.  

The beamwidth is 17° resulting in an overall 90° field of view.  This 

instrument has a frequency of 1.413 GHz and bandwidth of 24 MHz.   

A total of around 100 hours of NAFE mission flights were conducted 

during the campaign.  All flights were north-south oriented to be parallel to 

the geomorphology of the area and to avoid the strong variation in terrain 

elevation, as well as direct sun glint in the outermost beams.  Importantly, 

this orientation is similar to the planned SMOS flight path.  Full coverage of 

the same ground area was guaranteed by allowing a full PLMR pixel overlap 

between adjacent flight lines for the median ground altitude of the area.  A 

schematic view of the PLMR flights during this field campaign is shown in 

Figure 4.5.   
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Figure 4.5.  Schematic view of PLMR flights during NAFE‟05.  The flight 
heights are nominal mean altitudes above ground level (Walker and Panciera 

2005). 
 

 

During each flight, the study area was covered at four different 

altitudes in descending order: 3000m, 1500m, ~750m and  ~200m Above Sea 

Level (ASL), which results in L-band maps at approximately 1000, 500, 250 

and 62.5 m spatial resolution (Table 4.2).  

 

Table 4.2.  PLMR flight description. 
 

Flight 
Names 

Flight 
Altitude 
(AGL) 

Flight 
Altitude 

(ASL) 

Nominal 
Ground 

Resolution 

Swath Coverage 

Low 
Resolution 

10000 ft 3430 m 1000 m 6000 m  Regional 

 Krui 

 Merriwa 
 

Intermediate 
Resolution 

5000 ft 1910 m 500 m 3000 m  Krui 

 Merriwa 
 

Medium 
Resolution 

2500 ft 1050 – 
1270 m 

250 m 1500 m  Farms 
 
 

High 
Resolution 

625 ft 480 –   
700 m 

62.5 m 375 m  Farms 
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4.5 1-km Soil Moisture Product 

In this section, a description of the 1 km soil moisture product is presented.  

The 1 km soil product was produced and validated using L-MEB (L-band 

Microwave Emission of the Biosphere) model applying the brightness 

temperature observations made with the PLMR radiometer (at incidence 

angle of ±38.5º) across the NAFE‟05 study area.  A detail description of this 

retrieval can be found in Panciera (2009).  For the purpose of this thesis, only 

the pertinent details from Panciera (2009) are presented.  The product, 

termed the 1-km soil moisture product hereafter, is used as the soil moisture 

ground truth for the analysis in Chapters 7 and 8 of this thesis.    

The soil moisture maps derived from the 1 km airborne data have two 

major advantages with respect to ground point measurements which make 

them desirable for the objective of ground-truthing coarse-scale soil moisture 

retrieval: (i) they have a larger extent, covering the entire study area and 

therefore characterizing the soil moisture variability within all the coarse-

scale pixels, and (ii) each soil moisture observation represents an integrated 

value over a 1km area, therefore overcoming the limitation of point data 

which only provides information for the domain sensed by the ground probe 

(a few centimeters depth) at specific locations. 

 The L-MEB model (Wigneron et al. 2007) is based on a simplified zero-

ordered radiative transfer model, called the “tau-omega    ” model 

(Grant et al. 2007a).  The model takes into account the effect of vegetation 

cover on soil emission.  The ancillary data on land cover, near surface soil 

moisture and canopy temperature, and soil textural properties for the L-MEB 

model used in this study were obtained from either existing databases or 

derived from available satellite imagery. The L-MEB model which is used as 

a forward emission model to simulate the L-band emission of the soil-canopy 

layer at H- and V-polarization according to incident angle, is the core 

component of the SMOS soil moisture retrieval algorithm (Panciera et al. 

2009). In principle, ground collected data were given priority where possible.  

In the case where satellite imagery had been used, the dataset with the finest 
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available resolution were chosen.  This choice aims at avoiding as much as 

possible any errors associated with the ancillary data so that the effects of 

land surface heterogeneity can be isolated.  A summary of the ancillary data 

is presented in Table 4.3.  

The average accuracy of this soil moisture product is reported to be 3.8% 

v/v and in all cases better than 6% v/v over the variety of land surface 

conditions typical of the study area (Panciera 2009).  Soil moisture was 

retrieved for each cell of the 1 km brightness temperatures (Tb) grid using 

the L-MEB model together with the ancillary data described in Table 4.3.  

The soil moisture output of the L-MEB algorithm was limited to a maximum 

soil moisture value of 58%v/v, derived from the analysis of the maximum 

soil moisture achieved at the monitoring stations.  Conversely, no lower limit 

was imposed on the retrieved soil moisture.   

 

Table 4.3.  Summary of the ancillary data used for the L-MEB model. 
 

Ancillary 

Data 

Source Resolution Description 

Land cover Landsat 5 
Thermatic 
Mapper 

30m Supervised classification 
and defined five land 
cover types: 

 Native grass (50.7%) 

 Dense forest (24.3%) 

 Bare soil/vegetation 
with low Leaf Area 
Index (LAI) (12%) 

 Open woodland 
(8.5%) 

 Cropped area 
(4.5%) 

Soil Texture Ground 
sampling 
(Malvern 
Mastersizer 
2000) 

88 soil 
samples (7cm 

wide, 5cm 
deep) on two 

regional 
sampling 

days 

Very variable, ranging 
from black basalt derived 
cracking clays in the 
northern part to sandstone 
derived soils in the 
southern part.  An exact 
inverse distance technique 
was used to interpolate 
and upscale soil texture 
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point data to the entire 
study area. 

Soil 
Temperature 

Monitoring 
stations 

2.5cm and 
15cm depth 

Daily average obtained 
from the monitoring 
stations was used. 

Canopy 
Temperature 

Thermal 
infrared sensors 

Four thermal 
infrared 
stations 

Sensors were mounted on 
2m high towers pointing 
vertically down towards 
the vegetation canopy of 
four different land covers: 
bare soil, lucerne crop, 
wheat crop and native 
grass. 

 

4.6 Conclusions 

This chapter described the field campaign NAFE 2005 (National Airborne 

Field Experiment) conducted in New South Wales, Australia during 

November 2005. Only details of the data pertinent to this thesis are presented.  

These details include an introduction of the study area, the airborne and 

ground monitoring data obtained from this field experiment.  For the 

purpose of this research, the 1 km soil moisture product will be used as the 

ground truth.  The average accuracy of the ground truth is 3.8%v/v, which is 

considered very accurate according to the SMOS mission.   Full details can be 

obtained from the NAFE data website: http://www.nafe.unimelb.edu.au 

and from Panciera et al. (2008).  The website provides all the information 

needed for the full interpretation of these data, along with general 

information on the Goulburn catchment, photographs of the landscape, 

sampling methods and a full experiment plan.   

http://www.nafe.unimelb.edu.au/
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Chapter 5  

 

Literature Review and General 
Methodology 

 

A review of the use of Artificial Neural Networks (ANNs) for soil moisture 

retrieval, focusing particularly on passive microwave data, is presented in 

this chapter.  The description starts with an explanation of the inverse 

problem. For clarity, the research is categorized according to the number of 

parameters, including the soil moisture values retrieved using ANNs. In 

addition to this, the use of the ANN for solving the downscaling of the soil 

moisture retrieval problem is also presented in this chapter.  Following an 

analysis of possible solutions, a new solution is proposed to solve the current 

issues at the end of the chapter.  

 

5.1 The Inverse Problem  

When we have a measurement vector m arising from some physical process 

Ø( ) acting on a parameter vector x which we wish to infer, it is called an 

inverse problem (Davis et al. 1995).  In soil moisture retrieval, the radiative 

transfer model can be used to calculate the brightness temperature from 

geophysical parameters in a forward model.  In an inverse model, the soil 

moisture can be estimated from the brightness temperature values.  In other 

words, the inverse problem involves restoring the values of the physical 

parameters of a natural medium from the data of remote sensing instruments 

(Sharkov 2003). 

Inverse problems are usually ill-posed and complicated as inverse 

mapping is often a many-to-one mapping, with more than one parameter set 

x which could account for the observed measurement set m.  Moreover, the 
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relationship between the sensing measurements and the geophysical 

parameters is often highly nonlinear (Davis and Jenq-Neng 1997).  Figure 5.1 

shows more than one forward mapping and the explicit inverse mapping.  

Multiple parameter values X1 and X2 are mapped to the same measurement 

m.  An explicit inverse can immediately invert a measurement m and 

estimate its associated parameter x̂  (Davis and Jenq-Neng 1997). 

 

   

5.1.1 The ANN as an Explicit Inverse Solution 

From Figure 5.1, it is clear that the explicit inverse is a process whereby for a 

given measurement set m, a unique inverse Ø-1 (m) exists that will yield x̂ .  

The explicit inverse of the physical process can be built by transferring input 

(remote sensing measurements) into output (land surface parameters) 

(Wigneron et al. 2003).  In most studies (Liou et al. 1999b; Atluri et al. 1999; 

Liu et al. 2002; Posa et al. 2004) an ANN may be used to create this explicit 

inverse function.  The input of the ANN is the measured brightness 

temperature and the output nodes are the land surface parameters such as 

soil temperature, soil roughness and soil texture (Figure 5.2).  After the 

inversion, the ANN provides an explicit retrieval algorithm, which is a 

solution of the inverse problem and can be used for retrieval.   

 

X1 

x̂  

X2 

m 

Forward Model  
Ø (x1) 

Forward Model  
Ø (x2) 

Explicit inverse 
Ø-1 (m) 

Parameters 

Measurement
s 

 Figure 5.1.  Representation of a common forward model and the explicit 
inverse relationship. (Davis and Jenq-Neng 1997). 
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For a given set of training data and with sufficient training, a 

feedforward ANN is ideally able to synthesize a mapping akin to the process 

that is responsible for generating the training data (Jensen et al. 1999).  The 

output of the trained neural network x  can be characterized by: 

where f  corresponds to the memory-less function describing the mapping 

from the input to the output, m is the input vector, and w  is the vector of the 

weights internal to the network.  Inversion of a neural network consists of 

clamping the weights and the neural network output while adjusting the 

input in equation (5.1) until an equality or a best possible fit occurs for one or 

more values of m (Jensen et al. 1999).   

 The advantage of using an ANN is that all surface parameters can be 

included and the ANN will act as an empirical mapping between the 

brightness temperature measurements and the surface parameters.   The 

disadvantage of such a method is that the empirical mapping is not easy to 

write down explicitly from the ANN parameters once the ANN has been 

trained (Dawson et al. 1997).  This is because of the inherent complexity of the 

ANN. Each node (hidden and visible) sums the responses of a number of 

linear equations, each described by a number of parameters or weights. It is 

this complexity that gives the ANN the flexibility to learn in many different 
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 Figure 5.2.  An ANN model based on inversion where the inputs are the 
measurements and the outputs are the surface parameters. 
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domains.  Figure 5.2 shows one particular ANN architecture from the many 

that can be used.   

Importantly, the number of nodes and layers can significantly affect the 

performance and these parameters have to be chosen carefully with respect 

to the data, the model of the process and the required performance.  Ideally, 

the simplest ANN architecture that gives the required performance is the 

best as compared to a complicated architecture.   

 

5.2 Review: Soil Moisture Using ANN 

The research in this thesis looks into the problems of: (i.) scale-to-scale, and 

(ii.) downscaling of soil moisture prediction.  The discussion on previous 

research into soil moisture prediction using ANN particularly using passive 

microwave data, is presented according to these two categories.    

 

5.2.1 Scale-To-Scale Soil Moisture Prediction   

To simplify the discussion, the research under this category is divided 

into (i) single- and (ii) multi-parameter retrieval.  Single parameter retrieval 

is only concerned with obtaining soil moisture whereas multi-parameter 

retrieval uses one ANN to obtain the values of soil moisture and other land 

surface parameters. 

 

5.2.1.1 Single Parameter Retrieval  

For single parameter retrieval, the only target of retrieval is the soil moisture.  

Yuei-An et al. (2001), Paloscia, et al. (2002), Del Frate, et al. (1999; 2003), 

Macelloni, et al. (2003) and Angiuli et al. (2008b) have used either a model-

based approach,  field experimental data or a combination of these two as the 

input for the ANN they used for the retrieval of soil moisture.   

Yuei-An et al. (2001) used only simulated data from the Land Surface 

Process/Radiobrightness (LSP/R) model during a two-month dry-down of a 

prairie grassland with vegetation wet biomass of 3.7kg/m2 to train and test 
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the ANN.  The LSP module in the LSP/R model simulates land-air 

interactions and estimates surface fluxes, temperature and moisture profiles 

in soil and vegetation when forced with observed weather. These estimates 

are used by a microwave emission model, called the R module, that predicts 

terrain brightness temperatures (Judge et al. 2003).  From the total of 8640 

paired Tb-SM samples, 5% were randomly chosen to train the developed 

Error Propagation Learning Back Propagation (EPLBP) network model.  

Another 5% were randomly chosen for testing.  Experiments were conducted 

for combinations of different frequencies of brightness temperature (Tb) with 

either single or multiple viewing angles.  The retrieval result saw less than 

1% v/v Root Mean Square Error (RMSE) for all cases and the correlation 

coefficient between the retrieved and reference SM was better than 0.9 for all 

cases.    The noise was assumed to have a Gaussian distribution with 

standard deviations of 1K and 2K. It was found that L-band with a single 

look angle is more sensitive to soil moisture retrieval, producing a RMSE as 

low as 0.412% v/v for the no noise case at an incident angle of 10°, 0.614% 

v/v for the 1K noise case at an incidence angle of 20°, and 0.955% v/v for the 

2K noise case at an incidence angle of 50°.  

Paloscia, et al. (2002) used both model simulations and experimental 

data as input for their ANN. Their results showed that the retrieval 

performance is encouraging if the ANN is trained using the physical model 

together with the experiment data.  The microwave bands used for these 

studies were the L, C and X bands.  Dual polarizations, i.e. H- and V-

polarization data, were used as the input for the ANN.  In addition to the 

brightness temperature, Paloscia, et al. (2002) also used the incident angle as 

input to the ANN for soil moisture retrieval.  It was verified that L-band 

emission correlated well with the soil moisture content of a greater depth 

(10cm) compared with the C and X bands.  Apart from the frequency of the 

data, researchers were also trying to verify whether single or multi-angular 

data is more suitable for soil moisture retrieval.   Saleh et al. (2006) in their 

research on investigating the development and assessment of the 
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performance of statistical regressions linking passive microwave 

measurements to surface soil moisture over natural grass land, reported that 

rather small accuracy differences in the surface soil moisture retrievals 

should be found between single and multiple angles configuration 

approaches when the L band emission of standing vegetation and the mixed 

layer is small.   

An ANN trained with a physical vegetation model was used to 

retrieve soil moisture of a wheat crop during the whole crop cycle by Del 

Frate et al. (1999).  The network was next tested by using extensive field 

measurements carried out in 1993.  The frequencies studied included 1.4 

GHz (L band), 5.3 GHz (C band), 10.65 GHz (X band) 23.8 GHz (K band), 36.5 

GHz (Ka band) and 90 Ghz.   The dual-polarization data at various 

observation angles (between 0º and 50º) together with the corresponding soil 

moisture content values were used to train and test the network.  Using L 

band data, the RMSE obtained was approximately 3% v/v.  

Macelloni et al. (2003) trained two different neural networks (ANN1 

and ANN2) with different set of inputs.  For ANN1, the data used were 

generated using the Integral Equation Model (IEM) only, while ANN2 used 

both IEM and field measurements data.  The Integral Equation Model (IEM) 

(Fung 1994) is a theoretical method to model microwave emission.  This 

model provides a good prediction of surface scattering coefficients for a wide 

range of surface profiles (Zhao et al. 2003).  The frequencies being 

investigated included L, X and Ka bands.  Only H polarized data were used 

as the input for the ANNs.  Their results showed that ANN1, which was only 

trained with data from the IEM, was not very good, as comparing to ANN2, 

with a correlation coefficient between the actual and predicted soil moisture 

of around 0.7 for all cases.  ANN2, which was trained with data from both 

IEM and experiment data, showed a better result with an average correlation 

coefficient of around 0.9.   

Del Frate et al. (2003) retrieved soil moisture using multiangular L 

band observations at both H and V polarizations for each date of radiometric 
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acquisition in 1993 and 1996 for the whole wheat cycle using the Scaled 

Conjugate Gradient (SCG) algorithm with sigmoid functions as the activation 

function of the networks units.  The training data was generated using an 

electromagnetic model by using the detailed biophysical and geometrical 

information of year 1993 as the input of the model. A variety of conditions 

within the established range of 6.25% to 37.5% of soil moisture and surface 

standard deviations of 0.5 cm, 1 cm and 1.5 cm were covered by using the 

dual polarized L band brightness temperature with incidence angles between 

10º and 50º in steps of 10º.  A total of 180280 samples were used for training.  

The RMSE values obtained were between 4 and 5% v/v for 1993 and slightly 

lower for 1996.   

In the work by Angiuli et al. (2008b), an ANN based on the standard 

backpropagation algorithm was applied to train the data simulated using the 

land emission model and tested with L band radiometric data of bare soils 

obtained during two field experiments: T-REX and MOUSE. A total of 2000 

samples were simulated with 1400 used for training and 600 for testing. The 

data was simulated for soil moisture ranging from 0.0 to 0.4% v/v, standard 

deviation of roughness from 0 to 5 cm, correlation lengths from 1 cm to 50 

cm, incidence angles from 25° to 65°, and soil temperatures from 10°C to 45°C.  

In terms of the topology, a two hidden layer ANN with sigmoid activation 

function was used.  The simulated data were divided into training and 

testing sets.  The input vector consisted of the brightness temperatures at 

different incidence angles (with no noise added), surface temperature and 

soil roughness.  The output of the neural network was the soil moisture 

content corresponding to the brightness temperature in the simulation.  The 

performance of the ANN during the learning phase was monitored 

simultaneously both on the training and the testing set.  Once the error on 

the test set reached the minimum value, indicated by an increase in error if 

learning continues, the learning process ended.  At this point, the ANN is 

regarded as trained.  The trained ANN was tested using L band radiometric 

data of bare soils at different antenna elevation angles obtained during the 
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two different field experiments.  The maximum Root Mean Square Error 

(RMSE) obtained was 7% v/v, and being 5% v/v for soil moisture in the 0-5 

cm soil layer.  The ANN was found to underestimate for cases of soil 

moisture content of more than 15% v/v as the network was trained with the 

simulation data of soil water content, in a large percentage lower than this 

value.   

 

5.2.1.2 Multi-parameter Retrieval 

For multi-parameter retrieval, the ANN is used to retrieve other parameters 

of interest, e.g. soil temperature as well as the soil moisture.  Yuei-An et al. 

(1999b) utilized both simulated H and V polarized brightness temperature at 

1.4, 19.0 and 37.0 GHz for a single incidence angle at 53° as input for the 

ANN. The parameters retrieved were the land surface parameters: canopy 

temperature, water content, soil temperature and moisture of the uppermost 

5 mm of the ground.  In their research, the LSP/R model and the ANN 

model were integrated to retrieve these parameters from the terrain 

brightness temperature.  The two ANN architectures with their inputs and 

outputs configurations are shown in Figure 4.3.   

For the four channels ANN model, the RMSE of soil moisture retrieval 

was around 0.05% v/v while for the six channels ANN model, the RMSE of 

soil moisture retrieval was around 0.1% v/v (Liou et al. 1999b).   
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Shou-Fang et al. (2002) used the measured H and V polarized 

brightness temperatures at 1.4 and 10.65 GHz to retrieve both soil moisture 

content and vegetation water content of wheat at multiple look angles.  The 

brightness temperatures were taken over wheat fields through the three 

months growth cycle.  The soil moisture was measured at depths of 5 cm and 

10 cm. The input of the ANN was divided according to either one or two 

look angles.   It was found that, retrieval of soil moisture content and 

vegetation water content can be obtained if two look angles for the L band 

signal are utilized, with an average RMSE error of 4% v/v for soil moisture 

retrieval.   

Atluri et al. (1999) used field experiment data to retrieve soil moisture 

and soil temperature using a backpropagation ANN trained with the 

Levenberg-Marquardt algorithm.  Ground-based microwave remote sensing 

instruments were used to measure soil moisture.  The brightness 

temperature data were collected using two radiometers mounted on a crane 

and moved by a truck.  The inputs of this network were the surface 

temperature together with the brightness temperature in the L and S bands.  

Angular data was not considered.  The two-layer feed-forward ANN was 
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 Figure 5.3.  ANN input-output configuration of Yuei-An et al. (1999b). 
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able to predict the soil moisture with an error of 0.02% to 0.95% v/v with 

respect to the ground truth values.   

Zhao et al. (2003) tried to retrieve soil moisture and surface roughness 

of bare soil using a simulation of a validated IEM model of dual-polarized 

data. The simulation was of the satellite-based Advanced Microwave 

Scanning Radiometer (AMSR/E) for a viewing angle of 55°.  Sensitivity 

analysis with respect to the input noise was carried out in order to determine 

the effect of random noise on the results from the simulated data.  The ANN 

consisted of two hidden layers, each made up of 100 neurons or nodes. For 

the 6 GHz data for both polarizations, the RMSE of soil moisture retrieval 

was 1.54% v/v. For both the 6 GHz and 10 GHz data of both polarizations, 

the RMSE was 0.0891% v/v without noise.  When Gaussian distribution 

noise with a standard deviation  of 0.02 and 0.06 was added, the results for 

the 6 GHz data with both polarizations gave a RMSE of 1.97% v/v, and for 

the 6 GHz and 10GHz data with both polarizations, the RMSE was 5.91% 

v/v.   

 

5.2.2 Spatial Downscaling of Soil Moisture 

Passive microwave in the L band (1.4 Ghz) have been proved to be more 

sensitive to soil moisture measurement up to 5 cm in depth compared to 

higher frequencies, and more direct methods such as radar backscatter and 

thermal data (Kerr 2007; Wagner et al. 2007).  Despite the high sensitivity of 

microwave radiometers to near-surface soil moisture, their spatial resolution 

is about 10 to 500 times coarser than that of active microwave and optical 

systems (Merlin et al. 2008b).  For example, the L-band Phased Array type L-

band Synthetic Aperture Radar (PALSAR) can achieve a spatial resolution of 

about 100 m and the Advanced Visible and Near Infrared Radiometer type-2 

(AVNIR-2) has a spatial resolution of 10 m.  On the other hand, the Soil 

Moisture and Ocean Salinity (SMOS) mission, provides data at around 40 km 

resolution globally.  While this spatial resolution is suitable for some broad 

scale applications, it is not useful for small scale applications such as on-farm 
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water management, flood prediction or meso-scale climate and weather 

prediction (Walker and Panciera 2005).  To use this passive microwave data 

for small scale applications, it is important to explore ways to disaggregate 

low-resolution passive radiometry data to a finer scale resolution which is 

more suitable for use in hydrologic studies and water management.   

 Despite the low spatial resolution of passive microwave data, the 

repeat cycle of SMOS is 3 days, while the current and planned radar 

observations have repeat cycles of about 30 days for high resolution products  

(eg. PALSAR has a repeat cycle of 46 days) and about 6 days with medium 

resolution products (eg. 1 km resolution for the C-band of the Advanced 

Synthetic Aperture Radar (ASAR) data) (Merlin et al. 2008b).  For optical 

sensors, high resolution data are acquired sparsely with a 16 days repeat 

cycle for ASTER, and optical sensors at intermediate spatial resolution, such 

as the MODerate resolution Imaging Spectroradiometer (MODIS), which has 

a 1 km spatial resolution, provides global coverage every 1 to 2 days (Merlin 

et al. 2008b).  With the high soil moisture sensitivity, but low spatial 

resolution of passive microwave data, and the high spatial resolution but low 

temporal resolution of optical/thermal data, the combination of these two 

sources of information needs to be explored to determine if reliable soil 

moisture data can be determined at an intermediate spatial resolution.   

 

5.3.2.1 Related Research 

Several downscaling approaches with different degree of complexity have 

been developed.  These approaches can be categorized into three groups: 

i. Methods that used topography, soil depth and other land surface 

parameter information    

In the research carried out by Pellenq et al. (2003), a disaggregation 

scheme based on simulated values of topography and soil depth was 

developed.  This scheme was based on the assumption that topography 

was the dominant source of heterogeneity in soil water dynamics and 

that soil depth was the dominant source of heterogeneity in soil water 
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storage capacity.  The catchment scale of 0.06 km2 was disaggregated to 

a Digital Elevation Model (DEM) scale of 20 m.  The main goal of this 

research was not to retrieve the local soil moisture values at the fine 

scale, but rather to predict satisfactory patterns of soil moisture at a 

coarse scale of three to five DEM pixels.  The results showed that, given 

the DEM resolution of 20m×20m, an adequate level of correlation 

between observed and predicted near-surface soil water content may be 

obtained by averaging point values over more than 100m×100m. 

 Kim and Barros (Kim and Barros 2002) performed empirical 

scaling analysis using the linkage between the spatial and temporal 

variability of soil moisture and ancillary data such as topography, 

vegetation water content and soil texture indices (e.g. sand and clay 

content).  They found that the variance of soil moisture fields was 

multi-scaling consistent with the scaling of soil hydraulic properties 

(related to the percent of sand content) and vegetation cover while the 

multi-fractal behaviour was associated with the temporal evolution of 

soil moisture fields.  From their findings, they developed an algorithm 

to downscale from 10 km to 0.825 km (Kim and Barros 2002) with field 

experiment data.  The scaling functions were a linear combination of 

spatial distributions of the ancillary data.   

 Kaheil et al. (2008) developed a method to reconcile information 

from coarse resolution images with point measurements.  This 

approach was applied and validated by downscaling images for two 

cases.  In the first case, a synthetically generated random field was 

reproduced at fine scale.  The downscaled data was shown to match 

the spatial properties of the true image with goodness-to-fit measure 

of 2R 0.91.  In the second case, a soil moisture field from a field 

experiment was downscaled from a resolution of 800m×800m to a 

resolution of 50m×50m.  The algorithm was claimed to preserve the 

coarse resolution image, i.e. the algorithm managed to “rebuild” the 

coarse image.   
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 Schamschula et al.(2002) and Tsegaye et al.(2003) developed a 

disaggregation algorithm using a linear ANN consisting of only one 

neuron.  The input and output mapping functions were linear.   The 

data used to train and validate the ANN was generated using a 

hydrology model.  The input of the ANN included: low resolution 

emissivity, antecedent rainfall, soil texture, vegetation water content 

and upstream contributing area.  Downscaling was done from a 

resolution of 12.8 km to 0.8 km and the algorithm showed 

encouraging results.  Outside of the wettest season, the RMSE values 

for the 1.6 and 12.8 km resolutions were between 3% v/v to 7% v/v.  

However, during and immediately following the rain period, RMSE 

was greater than 7% v/v and occasionally 8% v/v for the 1.6 km case, 

and above 12% for the 12.8 km case.    

 

ii. Methods based on the combination of passive microwave data with 

high spatial resolution active microwave data or optical data such as 

surface temperature and vegetation index 

Narayan et al. (2004) and Xiwu et al. (2006) used a combination of 

passive microwave data with high spatial resolution active microwave 

data for disaggregation purposes.  In the study by Narayan et al. 

(2004), the Passive/Active L-band System (PALS) radiometer and 

radar data obtained during a field experiment were used to 

disaggregate from 400 m resolution to a resolution of 90 m and the 

results showed good spatial agreement between the spatial patterns of 

soil moisture.  The basis for this downscaling method was the linear 

relationship developed by performing statistical regression between 

PALS radiometer observations and the in situ surface soil moisture (0–

6 cm. depth). 

Xiwu et al. (2006) investigated a Bayesian method, using the 

simulation of the Hydrosphere State (Hydros) satellite data, and 

successfully merged the 36 km radiometer brightness temperature 
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with 3 km radar backscatter data to retrieve soil moisture at 3 km and 

9 km resolutions.  They found that the Bayesian method performed 

better than direct inversion of either the brightness temperature or 

radar backscatter alone.  The average RMSE of 3 km soil moisture 

retrieval using the Bayesian method was 2.8% v/v and 5.0% v/v at 9 

km resolution.   

 In terms of disaggregation using passive microwave and 

optical data, Chauhan et al. (2003) developed a two-step algorithm by 

which soil moisture at low resolution (~25 km ) was estimated using a 

passive microwave remote sensing technique.  This was followed by 

relating the microwave-derived soil moisture to NDVI, surface albedo, 

and Land Surface Temperature (LST) through a regression relation.  

This technique was applied to data obtained from the Special Sensor 

Microwave Imager (SSM/I) and Advanced Very High Resolution 

Radiometer (AVHRR).  The RMSE showed that the estimated soil 

moisture was approximately 5% v/v.  Hemakumara et al. (2004) used 

the Water Deficit Index (WDI) and Vegetation Temperature Condition 

Index (VTCI) which are both surface wetness indices from AVHRR 

and MODIS imagery to downscale low resolution AMSR-E near-

surface product from 25 km to 1 km resolution.  Their results 

concluded that AMSR-E is capable of providing reasonable estimates 

of near surface soil moisture content when compared with point 

observation averages.   

 

iii. Methods based on the combination of coarse-resolution passive 

microwave data, with fine-scale optical data and a surface process 

model 

Merlin et al. (2005) used a disaggregation method which involved 

three models: a L band radiative transfer model to simulate the 

angular and bipolarized SMOS brightness temperature, the thermal 

infrared radiative transfer model to invert the radiometric soil 
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temperature from the surface temperature, and the land surface model 

to simulate the radiometric soil temperature under different surface 

conditions within the SMOS pixel.  This physically based 

disaggregation methodology combined multi-angular brightness 

temperature at a coarse scale (~40 km) along with fine scale auxiliary 

data (1 km) to estimate soil moisture at a fine scale.  The basis of this 

disaggregation strategy was the correlation between the inverse of the 

radiometric soil temperature from the thermal infrared, and the 

microwave soil moisture.  This method was then tested on real data 

from AVHRR and ESTAR for a field experiment.  The input data was 

the surface temperature and fractional vegetation cover derived from 

AVHRR and the output was the inverse of the soil moisture from 

ESTAR.  The result of this disaggregation showed that the standard 

deviation between the soil moisture disaggregated and the inverse of 

the soil moisture from ESTAR was less than 4% v/v.  

 The potential use of satellite-based estimates of instantaneous 

evapotranspiration on clear-sky days for downscaling the coarse 

resolution passive microwave soil moisture was studied by Merlin et 

al. (2008a).  This model used two different soil moisture indices: 

Evaporative Fraction (EF) and Actual Evaporative Fraction (AEF).  A 

land surface model was used to account for the heterogeneity of 

vegetation cover, soil type and atmospheric conditions.  L-band 

airborne brightness temperatures obtained during a field experiment 

was first aggregated to a low resolution of ~500 m which was then 

disaggregated to 180 m.  In their study, the authors suggested that 

although ground-based soil moisture indexes were used, these could 

be replaced with high resolution optical data such as that from 

NOAA/AVHRR and MODIS.  The overall accuracy in the downscaled 

values was evaluated to be 3% v/v for EF and 2% v/v for AEF under 

cloud-free conditions.  
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5.3. Discussion on the Related Research 

5.3.1 Scale-To-Scale Prediction 

The most common ANN that has been used for soil moisture retrieval is the 

feedforward ANN with the backpropagation learning algorithm.  This has 

been widely investigated for inversion modeling to obtain soil moisture 

information from the brightness temperature data. All the research 

considered in this chapter used either simulated or field based measurement 

data.  The SMOS mission is the first ever satellite providing such data.  

However, as the satellite was recently launched, the data available is still 

limited.  Hence, model simulations have been widely used for the 

verification of passive microwave systems for soil moisture retrieval, with 

the aim of developing methods for processing satellite data when it becomes 

available. Although model simulations show very encouraging results, the 

models present well-defined relationships between soil moisture and 

brightness temperature that may not be valid.  On the other hand, field 

measurements typically obtained from ground-based radiometers are more 

representative of the true model, but are less representative of spatial 

resolution when compared to the proposed satellite systems.  Hence, much 

care is needed when deciding on the best approach for the prediction of the 

performance of such satellite systems for soil moisture retrieval. 

Shou-Fang et al. (2002) argued that there is no requirement to consider 

ancillary information of the complex surface parameters, such as vegetation 

biomass, surface temperature, and surface roughness, to aid in the retrieval 

of soil moisture from the brightness temperature.  However, other 

researchers (Atluri et al. 1999; Angiuli et al. 2008a) are investigating ancillary 

information for input to an ANN together with the brightness temperature 

with the objective of improving the performance. The effect of the ancillary 

data in improving the soil moisture retrieval using ANN models should be 

further analyzed.  A further research issue is the choice of the best 

architecture to use for the ANN. 
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ANNs require an initial training period to establish the weights of 

each neuron.  Moreover, the number of data for training must be large 

enough in order for the ANNs to learn to map well the function between the 

inputs and outputs.  To overcome the usual problem of data shortage for 

training, and to make sure the data used for training is representative of the 

testing data, there are basically two options: (i) sub-divide the available data 

into training and testing data, and (ii) simulate data using electromagnetic 

models to cover as much as possible the real-life conditions of the target.  The 

use of option (i) was utilized by Yuei-An et al. (2001) and Shou-Fang et al. 

(2002) as discussed in Section 5.3.1.  However, the weakness of this method 

is that the testing data is part of the data used for the training of the ANN.  

This is not practical for real-life problem, especially for soil moisture retrieval 

application as the retrieval is generally needed on an unknown future date.  

Consequently, method (ii) is a better option whereby data can be simulated 

to cover a variety of conditions, but a lot of ancillary data are needed for the 

simulation process.  

The ANN used in most of the reported papers is trained and tested 

using data from specific geographic regions for specific times or dates. In this 

aspect, the ANN is calibrated for this problem domain for a specific time and 

place. Ideally the ANN should generalize across the spatial locations and for 

different times of the year so that it does not have to be re-trained for each set 

of measurements. 

The potential of ANN applications within the context of ESA‟s SMOS 

mission (Wigneron et al. 2000) over land has been studied by Angiuli et al. 

(2008b).  Their results were claimed to be in accordance with the result 

obtained when an optimal estimation approach was applied.  Moreover, 

their work also found that the neural network tends to “memorize” the 

pattern during the training, i.e. overtraining where the ANN does very well 

using the training data, but the prediction is poor on unseen data.  In another 

words, the ANN does not generalized well.  The mapping between the 

reference and predicted soil moisture was graphed and shown to be very 



83 

 

poor although the correlation coefficients were not being reported.  The 

weakness of the neural network, i.e. being only able to retrieve soil moisture 

of the same pattern as the training data, will be the main challenge for this 

approach to be applied successfully in practice.   

 

5.3.2 Spatial Downscaling 

The review on spatial downscaling of soil moisture (Section 5.3.2) clearly 

showed that to fully utilize future satellite missions, the use of high 

resolution data from other sensors is needed.  Category i. of Section 5.3.2.1 

which used topography, soil depth and other land surface parameter 

information were methods that used mainly ground-based parameters 

together with low resolution passive microwave data for downscaling 

purposes. The other two categories utilized high resolution data from either 

active microwave and/or optical data and ground measured parameters, by 

applying either statistical or deterministic methods.  For statistical methods, 

regression (Narayan et al. 2004) and Bayesian (Chauhan et al. 2003; Zhan et al. 

2006) approaches were used.  These approaches demonstrated that less 

ancillary data were needed compared with the deterministic methods and 

the downscaling can be done with the combination of passive microwave 

data and data from either high resolution active microwave or optical data. 

The deterministic method developed by Merlin et al. (2005; 2008a) utilized 

data from optical sensors and land surface model.  For this type of approach, 

a larger number of surface parameters are required.  

 For the problem of soil moisture retrieval, ancillary data usually 

consist of surface parameters that can provide valuable information.  To 

obtain this information, field experiments need to be conducted.  However, 

capturing this data over large areas may not be practical.  To overcome this 

issue, a statistical method is preferred.  In the regression method, the slope of 

the linear law is not exactly constant from one watershed to another as the 

land regions associated with each watershed can be different.  Therefore, 

calibration is needed each time this method is applied.  The Bayesian method, 
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on the other hand, requires prior probability distributions, which are 

estimated from the training data sets. These are then used to find posterior 

probabilities using Bayes‟ method.   

 Compared to these statistical methods, ANNs have the advantage of 

being able to identify and accommodate subtle and non-linear patterns, 

which is not always the case for traditional statistical methods such as for 

Bayes‟ method.  In addition to this, ANNs do not require normally 

distributed continuous data and may be used to integrate data from different 

sources with poorly defined or unknown contributions (Notarnicola et al. 

2008).   

 

5.4 General Methodology  

This research study will look into developing a method to optimize a 

backpropagation ANN to predict soil moisture across geographic space and 

time within an area of 40 km×40 km for both scale-to-scale and downscaling 

issues (see Section 1.4 and Figure 1.1).  The desired target error for this 

research is ≤ 4%v/v, following the SMOS mission.  The upper bound of the 

RMSE value will therefore be 4% v/v.   

 

5.4.1 Scale-To-Scale Soil Moisture Prediction  

The scale-to-scale soil moisture prediction will predict 1 km resolution soil 

moisure values from 1 km input data.  Figure 5.4 shows the overall of the 

scale-scale soil moisture prediction process.  For this problem, the inputs 

used include the dual-polarized brightness temperatures data, i.e. TbH and 

TbV, the Normalized Difference Vegetation Index (NDVI) and Land Surface 

Temperature (LST) from MODIS (Figure 5.4).  The combination of these 

inputs will undergo an input parameters selection process to determine the 

optimum combination of inputs for the soil moisture prediction purpose.   

The brightness temperature data will undergo preprocessing to 

correct the data to an incidence angle of 38º (Figure 5..4).   As the MODIS 
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NDVI data was calculated from band 1 (red) and band 2 (near-infrared) at 

250 m resolution, the NDVI data will be resampled to 1 km resolution (see 

Section 1.3).  A number of studies (Sandholt et al. 2002; Carlson 2007; 

Nemani et al. 1993) have suggested that the combined information from land 

surface temperature (LST) and NDVI can provide better information on 

vegetation stress and moisture conditions at the surfaceMoreover, research 

by Hossain and Easson (2008a) showed it is possible to retrieve quantitative 

soil moisture by combining the universal triangle model (Carlson et al. 1994) 

of NDVI and LST from MODIS with reference soil moisture data from 

AMSR-E. Therefore in this study, only NDVI and LST are considered in this 

study.   The pre-processing of these data is discussed in Chapter 6 Section 

6.1.  

After the parameter selection process, the optimum combinations of 

inputs will be used in the ANN for soil moisture prediction.  Preliminary 

experiments using the standard backpropagation neural network will be first 

carried out.  The retrieval accuracy achieve from the prelimanary 

experiments show that the standard backpropagation ANN model fails to 

achieve the SMOS mission of ≤ 4%v/v accuracy (see Section 7.1).   This leads 

to the development of the proposed solution.  An optimization model is 

developed for the ANN model. The optimization model developed in this 

research study solves the spatial and temporal issues of the soil moisture 

prediction problem.  The predicted soil moisture values are then compared 

with the 1-km soil moisture product from the NAFE‟05 data in order to 

calculate the retrieval accuracy.  . 
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Figure 5.4 General processes involve in the scale-to-scale prediction. 

  

5.4.2 Downscaling of Soil Moisture  

For the issue of downscaling, the ANN model will predict soil moisture 

values at 1 km resolution (see Section 1.3) from a coarse resolution of 20 km 

(see Section 8.3.1).  The model developed by Merlin et al. (2008b) is adapted 

to be used with the ANN model in this research.  The processes carried out 

for the downscaling approach in this study is shown in Figure 5.5.  Using 

this model, a few indices will need to be calculated from the MODIS data, 

mainly using the information from NDVI and LST data.  These indices 

include the vegetation fraction cover, skin surface temperature, characteristic 
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volume fraction and the soil evaporative efficiency (see Section 8.2.1).  The 

relationships of these parameters form the downscaling relationship by 

Merlin et al. (2008b).  The use of the appropriate parameters for the ANN 

model for downscaling purpose is discussed in Section 8.3.  The 1-km soil 

moisture product will be aggregated to 20 km resolution.  This information, 

together with the indices calculated using the NDVI and LST from Merlin et 

al. (2008b) model, will be used in the backpropagation ANN model.  The 

ANN model be optimized using themethodology developed in this research 

study to improve the prediction results.  The predicted soil moisture values 

at 1 km resolution will be compared with the 1-km soil moisture products 

from NAFE‟05 data to calculate the retrieval accuracy.   

 

 

Figure 5.5.  Overview of the downscaling process. 



88 

 

5.5 Chapter Summary 

This chapter gave an analysis of the work that has been done on passive 

microwave soil moisture retrieval using ANN models.  The review of the 

scale-to-scale soil moisture retrieval was categorized into either single or 

multiple parameter retrieval.  For both of these categories, the inputs for the 

ANN model are either the dual-polarized brightness temperature or the 

brightness temperature together with ancillary information.  Therefore, there 

is a need to verify the need for ancillary information.  For supervised 

learning, the ANN needs to provide with adequate data for training.  Data is 

either simulated from electromagnetic model or by dividing the training data 

into training and testing set.  Moreover, the ANN used in most of the 

reported papers is trained and tested using data from specific geographic 

regions for specific times or dates.  In addition to this, the ANN model has 

not been considered for the downscaling problem.  Thus, the practicality of 

the ANN model developed using this practice is questionable.   

 The general methodology of this research study is divided into scale-

to-scale and downscaling problems.  The overall processes for each of these 

problems were introduced.  The pre-processing process and analysis of the 

data being used in the methodology is presented in the next chapter, Chapter 

6: Data Pre-processing and Analysis.  Details of the developed methodology 

in optimizing the backpropagation ANN model used for both scale-to-scale 

and downscaling of soil moisture are presented in Chapter 7: Scale-to-scale 

Soil Moisture Prediction and Chapter 8: Spatial Downscaling of Soil 

Moisture. 
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Chapter 6  

 

Data Pre-processing and Analysis  
 
This chapter presents the data analysis and pre-processing steps in preparing 

the data for the experiments described in the following chapters.  The pre-

processing steps will process the raw data obtained from the NAFE‟05 field 

experiment (Chapter 4).  The analysis of the data obtained from this field 

experiment is useful to show the properties of the data.   

 

6.1 Airborne Data 

During the NAFE‟05, the regional airborne observations were undertaken at 

1 km nominal resolution over the entire study area on October 31st, 

November 7th, 14th and 21st 2005 (see Section 4.4).  The data on October 31st 

were omitted from this research due to imperfections in the data acquisition 

that occurred partly because it was the first day of data acquisition.  Hence, 

to maintain consistency, only data from the later three dates were used.  The 

40 km long, north-south oriented flight lines were flown at 10,000 ft between 

approximately 7.00 A.M. and 9.30 A.M.  This time window was chosen as it 

is close to the SMOS overpass time (6.00 A.M.) and therefore will give 

measurements that will closely correspond to those that are planned to be 

acquired from this satellite.  The radiometer was flown in „pushbroom‟ 

configuration, yielding the following six across track observations at each 

aircraft location: brightness temperature (Tb) at H- and V-polarization at 

incidence angles ±7º, ±21.5º and ±38.5º.  The PLMR data used in this thesis 

were already geo-referenced at H and V polarizations and internally 

calibrated (Panciera et al. 2006).   
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 In order to effectively use pushbroom radiometer data for soil 

moisture mapping, it is desirable to account for the effects of varying beam 

angles through a normalization procedure and for the effects of varying soil 

temperature during the acquisition (Panciera 2009). Over a homogeneous 

bare soil target, it is well-known that the measured Tb is affected by the 

viewing angle (Schmugge et al. 1992).  This angular variation can be 

described by the Fresnel equations.  Previous studies (Schmugge et al. 1992; 

Jackson et al. 1995a; Jackson et al. 1999) showed that a normalization 

procedure can be realised for mixed land covers.  This procedure normalizes 

the data into an equivalent angle of choice, by assuming that the deviation 

between beam positions is due to the Fresnel effect and calibration errors for 

the individual beam positions, and that for a given day, the Fresnel effect for 

a particular beam is assumed constant for the range of soil moisture and 

vegetation present.  There are some circumstances in which using a limited 

data set for this correction, say a single flight line, can lead to errors.  This can 

occur when there is an anomaly in a particular beam that is not present in the 

others (such as a small water body).  From the previous studies mentioned 

above, it was shown that by using a daily average for all data in an area, 

potential errors due to anomalies would be minimized.  The normalization is 

applied as follows and summarized in Figure 6.1. First, the daily average Tb 

over the land target is computed for each beam.  Next, a correction factor is 

computed by taking the ratio between the averages of each beam to the 

average of the reference beam.  All the data for each beam on each day are 

then corrected using the following correction factor: 



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
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(6.1) 

where iTb is the individual Tb value to be normalized, N

iTb is the normalized 

value, and iTb  and 
refTb are the daily averages of the Tb values of the beam 

to be normalized and the beam taken as the reference beam, respectively.   

The reference beam was the radiometer‟s outermost beams ( 05.38 ).  

This choice of angle was motivated by the fact that at close-to-nadir incidence 
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angles, H and V polarized Tb values are very similar, while at off nadir, the 

V polarized Tb data at higher incidence angles have values generally higher 

than the H polarized values (the amount of difference varies depending on 

the land surface conditions).  The polarization difference yields information 

about the polarizing effect of the vegetation canopy when using a wider 

incidence angle (Wigneron et al. 2000).  With the NAFE‟05 data, experiments 

were carried out by Panciera (2009) using multi-angle Tb observations to 

study the normalization procedure.  The results obtained showed that there 

was an excellent agreement between normalized and observed Tb values 

with Root Mean Square Errors (RMSE) of less than 1.5 K in all cases.  The 

experiments showed that the normalization procedures adopted can be used 

to produce Tb maps at a constant reference angle from pushbroom 

radiometer data, under the assumption that for a given day the Fresnel effect 

for a particular beam is constant for the range of soil moisture and vegetation 

conditions present (Panciera 2009).   

The normalized Tb is gridded into a reference grid with uniform 

resolution.  After averaging several individual Tb acquisitions into one Tb 

value for each cell in the grid, anomalies in individual readings and the 

signal noise are reduced.  To determine if there was a good representation of 

pixel values across the various resolutions i.e. that specific resolutions did 

not produce any artifacts, a pixel-by-pixel comparison between the averaged 

high resolution Tb observations (sampled at 62.5m) and the individual low 

resolution Tb observations (sampled at 1 km) collected over the entire area 

was carried out by Panciera et al. (2006) for the NAFE‟05 data.  In their 

experiments, the Tb values for each pixel at each resolution (250 m, 500 m 

and 1000 m) were compared with the Tb values observed at higher 

resolutions (62.5 m, 250 m, 500 m) aggregated within each grid. 
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Figure 6.1.  Normalization of the brightness temperature data to the 
reference incidence angle of ±38.5º. 

 

For example, measurements at 62.5 m resolution were aggregated to 250 m 

resolution and compared with the corresponding single measurement at 250 

m resolution. The comparison showed excellent correlation between the Tb 

values observed and the aggregated values for each pixel at all resolutions.  

The results indicated a linear scaling characteristic of passive microwave 

signatures across most land surface conditions for NAFE‟05 data (Panciera et 

al. 2006).   

Figure 6.2 shows the aggregated normalized brightness temperature 

for H polarized data for Nov 7th, 14th and 21st.  
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 (a) 

 

 

(b) 

 

(c) 

 

 

Figure 6.2.  Normalized H-polarized brightness temperature for (a) 
November 7th, (b) November 14th , and (c) November 21st at 1 km 

resolution.  The boundaries for the focus farms are shown in orange while 
the boundary for the study area is shown in red. 
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6.2 1-km Soil Moisture Data 

The 1-km soil moisture data described in Chapter 4 (section 4.5) are shown in 

Figure 6.3.  The retrieved soil moisture shows interesting spatio-temporal 

dynamics that reflects the rainfall regime experienced by the area during the 

field experiments.  The high soil moisture values for November 7th were due 

to the heavy rainstorms that crossed the study area at the beginning of the 

experiment (20 mm over October 30th and 31st), followed by more intense 

rainfall on November 5th (21 mm). The period between November 5th and 

23rd was characterized by little or no rainfall and accordingly drier soil 

moisture conditions were retrieved for November 14th and the 21st. 

The spatial distribution of the retrieved soil moisture across the study 

area shows a significant association with land cover and soil texture. In 

particular, the large forested area in the southern part of the study area 

exhibited drier conditions than the rest, while the cropped areas, more dense 

in the western part of the study area, maintained wet conditions throughout 

the month. 

The large native grass areas that cover the greatest fraction of the 

study area exhibited highly variable patterns where the influence of soil 

texture and some influence of topography can be identified.  This is 

illustrated by comparing Figure 6.4 to the soil moisture of Figure 6.3.  During 

the drydown period between November 14th and the 21st, the southern part 

of the study area, which is characterized by a low, flat plateau with 

sandstone derived soils, dried more quickly than the northern part, which is 

characterized by steeper hills and black clay soils. This could be due to the 

higher water retention properties of the clay with respect to sandy soils, as 

well as surface shading effects due to topographic aspects in the northern 

part, reducing evaporation. 
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 (a) 

 

 

(b) 

 

(c) 

 

 

Figure 6.3.  L-MEB retrieved soil moisture from regional airborne 
observations (1 km) on (a) 7th Nov, (b) 14th Nov and (c) 21st Nov 2005.  The 

boundaries of the focus farms and the whole study area are shown as 
polygons. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 6.4.  Spatial distribution across the study area: (a) terrain elevation 
map, (b) sand content, and (c) Landsat land cover map (Panciera 2009).  The 

boundaries of the focus farms and the whole study area are shown as 
polygons. 
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6.3 Statistical Properties  

The statistics of the L-MEB derived soil moisture data and for the Tb 

observations are shown in Table 6.1 for each date when data acquisition 

occurred.   

Table 6.1.  Statistics of the regional L-MEB soil moisture product at 1 km 
resolution together with the brightness temperature at H and V polarized 

(TbH and TbV) and the amount of rain.  For each date, the mean and 
standard deviation values are shown. 

 

Date TbH (K) TbV (K) Soil Moisture 
(v/v) 

Rain (mm) 

7th Nov 241.5±10.1 261.4±7.8 0.39±0.12 21.3 two days 

previously 

14th Nov 266.0±6.5 279.3±5.4 0.17±0.10 4.1 five days 

previously 

21st Nov 271.3±3.9 282.6±3.1 0.16±0.08 0 

 

 From Table 6.1, it is seen that the average soil moisture decreased 

from 39% v/v (7th Nov) to 16%v/v (21st Nov), with the soil moisture 

standard deviation across the 40km×40km study area decreasing from 12% 

v/v in wet conditions to 8% v/v in dry conditions. The average brightness 

temperature values show increment for both H and V-polarization.  The wet 

to dry condition was the result of the amount of rain fell on the study area 

during the field experiment. It is seen that the amount of rain was getting 

less.  This dataset is therefore representative as it covers the full soil moisture 

range to be considered, i.e. the dry and wet conditions.   
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6.4 Chapter Summary  

This chapter covered the analysis and pre-processing that were carried out 

on the NAFE‟05 dataset for the use of the methodology in this thesis.  The L-

MEB soil moisture product (Section 4.5) has the advantage of overcoming 

the limitations of the point measurements and limited extent achievable with 

traditional ground sampling methods. The L-MEB soil moisture product 

used in this research is representative of the soil moisture obtained from 

SMOS as the core component of SMOS soil moisture retrieval algorithm is 

the model which simulates the microwave emission at L-band from the soil–

vegetation layer (Panciera et al. 2009). The data used in this thesis is 

representative as it covers the full soil moisture range from wet to dry 

conditions.  From the review in Section 5.3.1 and the analysis in Section 

5.3.3.1, the practicality of ANN for soil moisture retrieval is that it can only 

predict soil moisture that is in the range of the training data.  In this research 

study, a model is needed to solve this issue as predictions for a different date 

from that date when the training data was obtained will be used.  Moreover, 

for coverage of an area of 40km×40km, the developed ANN methodology 

should be able to cope with the spatial variability of the soil moisture values.  

This methodology will need to solve both the scale-to-scale and downscaling 

of soil moisture problems.  In the next two chapters (Chapter 7 and Chapter 

8), the methodology developed to solve these issues is presented.   
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Chapter 7  

 

Scale-to-scale Soil Moisture 
Prediction 

 
A methodology is developed to optimize the most widely used 

backpropagation Artificial Neural Network (ANN) model to capture the 

spatial and temporal variability of soil moisture is presented in this chapter.  

Preliminary results on the experiments using high resolution data with the 

standard Backpropagation ANN are first presented.  High resolution data is 

tackled first because it will give an upper bound on the results.  It would be 

expected that lower resolution data will produce worse results.  The   

preliminary results show that the standard ANN model is not able to achieve 

the desired 4%v/v of Root Mean Square Error (RMSE).  Therefore, a 

methodology is developed to improve the accuracy of the retrieval of the 

standard ANN model.   A discussion on the strengths and limitations of this 

model optimization methodology is presented at the end of the chapter. 

 

7.1 Standard Backpropagation ANN model: 
Preliminary Results  

In this section, the standard backpropagation neural network algorithms is 

used for soil moisture retrieval.  The objective of the preliminary testing is to 

assess the ability of the standard backpropagation neural network algorithm 

on soil moisture retrieval.  The effects of different variations of the standard 

backpropagation neural network model and the combination of different 

inputs are assessed.   

The NAFE‟05 data has different resolutions.  However, as  high 

resolution data (250m and 500m) consists of higher detailed information of 

the soil surface,  they were chosen for testing.  With such high resolution data, 
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the accuracy of the soil moisture retrieval will be higher compared to low 

resolution data.  With such high resolution data, the accuracy of the soil 

moisture retrieval will be higher compared to low resolution data. 

 

 7.1.1 Backpropagation Training Algorithms  

As discussed in Section 1.2, there is a need to evaluate the impacts of the 

different variations of backpropagation algorithms to improve soil moisture 

predictions using ANNs.  Soil moisture was retrieved at eight focus farms in 

the NAFE study area, corresponding to high resolution ground sampling 

sites that were intensively monitored for the top 5 cm soil moisture, soil 

temperature, surface roughness, soil texture, vegetation biomass and 

vegetation water content (refer to Section 4.3).  The Roscommon site was 

considered as the “control” site as it exhibits uniform, flat and short grass 

conditions.  All other sites were characterized by either heterogeneous land 

cover (Midlothian, Cullingral, Illogan and Pembroke) or significant 

topography (Stanley, Dales and Merriwa Park) (Panciera et al. 2009).  As 

there was little variability across the Roscommon farm, soil moisture is the 

dominant effect on the received passive microwave signal.  Therefore, for the 

purpose of analysing the impacts of different variations of backpropagation 

algorithms, Roscommon was selected.  As discussed in Section 1.2, there 

were different variations on the basic backpropagation algorithm.  The major 

problem of the basic backpropagation neural network is its slow rate of 

convergence.  The slow convergence rate prompted many proposed 

variations to the original backpropagation learning technique to address this 

problem.  The effect of these different variations of the basic backpropagation 

neural network on soil moisture retrieval is the main objective of the testing 

in this section.      

The information on the soil surface is more detailed at higher 

resolutions.  Therefore, the airborne data at 250 m resolution is utilized for 

this section.   
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The inputs of the backpropagation ANN model are the H and V 

polarized brightness temperature value while the output is the volumetric 

soil moisture data.  As the Roscommon farm exhibits uniform, flat and short 

grass conditions, the dominant effect on the brightness temperature is the 

soil moisture values.  Therefore, only the dual-polarized brightness 

temperature values are used as the inputs for the neural network model.  As 

H-polarization has a higher sensitivity to soil moisture, the Roscommon data 

were first divided into three different classes: low, medium and high, 

according to the maximum and minimum values of the TbH data.  The 

corresponding TbV data were also grouped.  As Roscommon is flat, uniform 

with low vegetation, the soil moisture variations for nearer locations were 

similar compared to data for further locations.  Therefore, the data division 

method ensured that the final data is distributed throughout the spatial 

location and is not gathered only for a certain TbH range.  For each of the 

classes, the data were sampled in a stratified manner into 60% for training, 30% 

for validation and 10% for testing the trained network. For example, the 60% 

training set consisted of the same number of samples from the high, medium 

and low classes and distributed across the site.  There is no hard and fast rule 

on the proportions used for data partition, but more data should be allocated 

to training.   A general schematic of the division of the data is shown in 

Figure 7.1. The training, validation and testing set each contain values from 

the low, medium and high classes.  
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Figure 7.1.  Schematic diagram shows the partition of the H polarized 
brightness temperature (TbH) for the Roscommon 

area. The corresponding V polarized brightness temperatures 
and the ground sampling volumetric soil moisture data are  

obtained together with the TbH data. 

 

During the training and validation processes, 10-fold cross validation was 

carried out whereby the training and validation sets were combined.  In 10-

fold cross validation, the data was partitioned randomly into 10 partitions.  

During each run of the training process, a section of the 10 partitions was 

used for validation while the remaining 9 partitions of data were used for 

training.  As the variations of the backpropagation neural network were 

developed based on the basic gradient descent algorithm, therefore, the 

network was trained and validated using a basic ANN that used 

backpropagation with gradient descent.  The bias, layer weights and output 

weights of the network were obtained where it produced the lowest RMSE 

for both the training and validation data sets. These bias, layer and output 

weights were then used for initialising the training, validation and testing of 

the other backpropagation training algorithms using MATLAB. With these 
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bias, layer weights and output weights, the ANN starts from a good 

configuration for the testing of the variations of the backpropagation 

algorithm.   

As the inputs of the network consist of only two inputs, only a single 

hidden layer neural network is considered.  Before running the experiment 

using different variations of backpropagation training algorithms, the 

optimum number of hidden neurons in the single hidden layer was first 

examined.  With the standard gradient descent algorithm, the neural 

network was trained and validated using a number of hidden neurons 

starting from from 1, in steps of 1.  The results obtained when these networks 

were tested with the testing data are shown in Figure 7.2.  It can be seen that 

the RMSE values increased for 5 hidden neurons and increased for 6 hidden 

neurons.  Therefore, the training and validation were stopped at 6 hidden 

neurons.  From Figure 7.2, it can be concluded that the optimum number of 

hidden neurons was four.   

 

 

Figure 7.2.  Experiment for selecting the optimum number of hidden neurons 
in the ANN model. 

 

With two inputs (TbH and TbV), a single hidden layer of 4 neurons 

and one output, the ANN was tested with different variations of 
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backpropagation training algorithms.  Table 7.1 shows the results of each of 

the backpropagation training algorithms. 

 

Table 7.1.  RMSE of soil moisture retrieval of various backpropagation 
training algorithms. 

 

Results obtained are between the ranges of 3.93% to 5.77% of RMSE 

for soil moisture prediction using 11 different backpropagation ANN 

training algorithms.  The globally accepted accuracy of soil moisture is less 

than or equal to 4% v/v of error.  With the same backpropagation ANN 

architecture, it is seen that the Broyden, Fletcher, Goldfarb, and Shanno 

(BFGS) Quasi-Newton algorithm manages to retrieve soil moisture most 

accurately while the scaled-conjugate algorithm obtains the lowest soil 

moisture prediction accuracy using the same architecture of backpropagation 

ANN and with the same data set.  By looking at the ranges of RMSE values, 

it is concluded that different variations of backpropagation neural network 

algorithm affect the retrieval accuracy.  Therefore, it is important to carefully 

decide on the type of backpropagation training algorithm to be used.     

No. Backpropagation Algorithm RMSE (%v/v) 

1. Batch Gradient with Momentum 4.86 

2. Gradient Descent with Adaptive Learning Rate 5.34 

3. Gradient descent with momentum and adaptive learning 

rate 

4.88 

4. Resilient backpropagation 4.93 

5. Conjugate gradient backpropagation with Fletcher-Reeves 

updates  

4.82 

6. Conjugate gradient backpropagation with Polak-Ribiére 

updates  

4.83 

7. Conjugate gradient backpropagation with Powell-Beale 

restarts  

4.83 

8. Scaled conjugate gradient backpropagation 5.77 

9. Quasi-Newton Algorithm : BFGS 3.93 

10. Quasi-Newton Algorithm :One step Secant Algorithm 5.51 

11. Levenberg-Marquardt 4.04 
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7.1.2 Generalization Abilities of ANN across Different Dates 
 and Sites  

As discussed in Section 5.3.3.1, ideally the ANN should generalize across the 

spatial locations and for different times of the year so it does not have to be 

re-trained for each set of measurements.  For this purpose, a combination of 

the different farms with different dates is used for training while testing will 

use data from different focus farms.  The Krui area consists of four focus 

farms; Illogan, Pembroke, and Roscommon are used for training while 

Stanley is the area for testing.  From Table 4.1 (refer to Section 4.3), the 

training data of the three focus farms covers the different topography (flat, 

gently rolling to hilly).  The land uses of the training data include grazing 

and different crops (wheat, barley and oats).  Stanley, the testing site,  is hilly 

with grazing as the main land use, which are a sub-set of the topography and 

land uses of the training data.  The experiments in this section test the 

hypotheses that the ANN is able to capture these characteristics from the 

training data.  As explained in the previous section, data at higher resolution 

is preferable.  Therefore, data at 250 m resolution are used.  The soil moisture 

variability ranges from 0.039 v/v to 0.47 v/v over these four focus farms.  

This shows that the farms cover the range of dry to wet conditions and the 

ANN is tested for its ability to learn such conditions.  The ground sampling 

dates for each of these focus farms are shown in Table 7.2.   

 

Table 7.2.  The ground sampling dates where there are complete sets of 
required ancillary information. 

 

No. Focus Farm Date 

1. Illogan 10th Nov, 17th Nov, 24th Nov 2005 
2. Pembroke 15th Nov, 22nd Nov 2005 
3. Roscommon 1st Nov, 8th Nov, 15th Nov 2005 
4. Stanley 10th Nov, 17th Nov, 24th Nov 2005 

 

As shown in Section 7.1.1, the network: four neurons in one hidden layer 

with the BFGS Quasi-Newton training algorithm, is the best to use.  With 

only TbH and TbV values as the input, the trained ANN achieves a RMSE of 
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6.75%v/v of soil moisture prediction accuracy.  As the prediction accuracy is 

greater than the desired  error of 4% v/v of SMOS mission, a further analysis 

on the use of the ancillary information which provides information about the 

surface characteristics is carried out to investigate whether the use of 

ancillary information would further improve the retrieval accuracy.     

 

7.1.3 Prediction Accuracy Obtained By Incorporating Ancillary 
 Data  

Following Section 7.1.2, input data of TbH and TbV, together with ancillary 

information including soil temperature, vegetation water content (VWC) and 

soil texture properties ratio, are used in the ANN model.  The retrieval for 

the control farm (Roscommon) in Section 7.1.1 was seen to achieve an 

accuracy of 3.93% v/v with proper selection of the appropriate 

backpropagation training algorithm.  However, when more farms of 

different topography and land use properties were used, the retrieval 

accuracy deteriorated to 6.75% v/v.  This shows that the ANN model was 

not able to incorporate the topography and land use properties in the model.  

Ancillary information, which provides information about the surface 

characteristics, is next incorporated in the ANN model.  The incorporation of 

the ancillary information is done by adding them as the inputs for the ANN 

model.  The source of training and testing data are the same as in Section 

7.1.2.  The number of hidden neurons is set to be equal to the number of the 

inputs.  The architecture of the ANN model as shown in Figure 7.3 is used.  

The BFGS Quasi-Newton algorithm is used for the ANN learning.   
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Figure 7.3.  The ANN architecture used for the input of TbH and TbV and 
their corresponding ancillary data, including the soil temperature, vegetation 
water content (VWC) and the ratio of soil texture properties ( clay:silt:sand). 

 
 

The prediction result obtained is 5.65% v/v.  Although this result is still 

greater than the desired 4% v/v for the SMOS mission, it shows that 

ancillary data aids in improving the prediction accuracy. In this experiment, 

the inputs are all of the available supporting data from the field experiment.  

There is no proper decision on whether the data provided are unnecessary or 

redundant for the ANN model. Since an ANN is a data driven model, proper 

input selection is a crucial step in its implementation as the presence of 

redundant or unnecessary inputs can severely impair the ability of the 

network to learn the target patterns.  Therefore, a proper input selection 

method is explored in the next section. 

 

7.1.4 Incremental Contribution of Variables: Ancillary Data 
 Selection  

To evaluate which information was redundant and not necessary for the 

ANN model used, the incremental contribution of variables was explored.  

When considering what inputs to use for an ANN, the effect of 

adding/removing an input can be used as an indication. The incremental 

contribution of an input can be explained by the reduction of the explained 

variance of the dependent variable (output) when we exclude an explanatory 
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variable (input) (Kaashoek and Van Dijk 2002). A natural candidate for 

quantification of the network performance is the square of the correlation, R2. 

The network performance with only one input deleted can be measured in a 

similar way. 

For the purposes of this study, the ANN architecture is first optimized 

using all available features as input.  The optimization produces a correlation 

of .  When the contribution of an input of a feature is set to zero, the same 

network after this first optimization without this particular input produces a 

correlation of .  The incremental contribution of this particular input is 

then defined as:  

 (7.1) 

If the value of Equation (7.1) is low for some input n compared to all other 

inputs, then this input is a candidate for exclusion from the network.  In the 

research by Kaashoek and Van Dijk (2002), a feature is to be considered for 

exclusion if the value of Equation （7.1） is less than one tenth of the feature 

with the highest contribution.  This criterium is used in the analysis below 

for selecting inputs. 

 For this study, experiments are carried out to select the input factors 

from the available inputs for the study area: H and V polarized brightness 

temperatures (TbH and TbV), surface temperature (Ts), vegetation water 

content (VWC), Normalized Difference Vegetation Index (NDVI), average 

RMS roughness value (Rs), and percentage of silt (%Si), sand (%Sa) and clay 

(%Cl) of soil textural properties.   

Two sets of experiments were carried out and are discussed here.  

These two experiments compare the effects of constant values of the ancillary 

data.  This is done by having experiments using one single farm and a 

combination of different farms.  By using a single farm, the ancillary data 

which were collected once throughout the field work (NDVI, Rs, %Si, %Sa 

and %Cl) would be constant values.  When multiple farms were used, these 

constant values will be variable according to the farms used.   
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The first experiment used the data from the Pembroke focus farm and 

the second experiment was conducted using data from a combination of 

three focus farms: Roscommon, Stanley and Cullingral.   As there were nine 

inputs for the ANN model, the ANN became more complicated.  In order for 

the ANN to learn well, there is a need for more data.  Therefore, Pembroke 

was chosen as it is the largest among the eight focus farms and hence will 

provide adequate data for the training of the ANN.  Experiment 2 requires 

focus farms of different characteristics in term of topography and land cover.  

For these reasons, Roscommon, Stanley and Cullingral, with the 

characteristics stated in Table 7.3 were selected.   

Pembroke has a high average vegetation biomass of 1.5 kg/m2 

compared to Roscommon 0.6 kg/m2, Stanley 0.5 kg/m2 and Cullingral 0.5 

kg/m2. The average spatial variability of soil moisture for Pembroke was 

4.5% v/v, Roscommon 3.3% v/v, Stanley 5.8% v/v and Cullingral 11% v/v. 

Roscommon was considered as the “control” site with minimum soil 

moisture heterogeneity.  A spatial data resolution of 500 m is used because 

there was more data available at this resolution than for the previous 

experiment that used 250 m resolution data.. As the ANN model with more 

inputs is more complicated, more data are needed in order for the ANN to 

map the relationships between the inputs and the output.  Therefore, data at 

coarser resolution comparing to previous sections were used.  The data at 500 

m resolution is the coarsest with the desired amount of data available for the 

study area.   
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    Table 7.3.  Characteristics of the data for the focus farms used in the experiments. 
 

Focus Farm : Pembroke  (Area : 6400 ha, Topography : Hilly/Gently rolling, Land cover: Wheat and Barley) 

Date TbH(K) 

(max/min) 

TbV(K) 

(max/min) 

SM(v/v) 

(max/min) 

VWC 

(kg/m2) 

NDVI Rs %Cl %Si %Sa No. of 

Data 

8/11 258.7/243.4 277.4/260.3 0.63/0.28 0.54 

0.71 0.84 62.5 29.5 8 

88 

15/11 269.7/256.4 283.2/272.1 0.35/0.14 2.03 88 

17/11 270.3/258.1 282.0/271.1 0.36/0.14 0.91 88 

22/11 273.7/263.7 284.5/276.1 0.22/0.06 2.41 88 

  

 

i. Experiment 1: Pembroke 

 Data obtained for the Pembroke focus farm on 8th Nov and 15th Nov 

2005 are used for training of the ANN.  To make sure that the data used were 

representative, data were selected using a stratified according to dates.  This 

assures that data used is representative of each date.  Of the 176 samples 

available on these two dates, stratification across the dates was used to select 

3% (5 samples) of the data for validation and 3% (5 samples) for testing.  The 

BFGS Quasi-Newton algorithm which produced the lowest RMSE on the 

testing samples was then taken as the trained ANN.  At this stage, the 

weights and biases were held constant.  The contribution of each of the 

inputs was evaluated by setting the weights of the chosen input to be zero 

Focus Farm : Roscommon  (Area : 940 ha, Topography : Flat/Gently rolling, Land cover: Grassland)  

Date TbH(K) 

(max/min) 

TbV(K) 

(max/min) 

SM(v/v) 

(max/min) 

VWC 

(kg/m2) 

NDVI Rs %Cl %Si %Sa No. of 

Data 

1/11 237.0/205.1 262.9/235.0 0.38/0.19 0.77 

0.60 0.62 6.5 8.5 85 

11 

8/11 244.2/222.9 262.7/253.5 0.26/0.11 0.83 11 

15/11 271.0/260.2 285.1/278.4 0.10/0.04 0.48 11 

22/11 275.4/269.2 286.3/282.3 0.05/0.01 0.44 11 

Focus Farm : Stanley (Area : 720 ha, Topography : Hilly, Land cover: Grassland)  

Date TbH(K) 

(max/min) 

TbV(K) 

(max/min) 

SM(v/v) 

(max/min) 

VWC 

(kg/m2) 

NDVI Rs %Cl %Si %Sa No. of 

Data 

3/11 255.1/243.7 275.1/265.4 0.46/0.23 0.37 

0.73 1.07 39.2 39.4 21.4 

17 

10/11 255.6/241.7 272.4/260.7 0.47/0.21 0.07 17 

17/11 268.7/260.4 281.3/274.4 0.25/0.05 0.31 17 

24/11 248.4/237.3 267.8/255.2 0.37/0.16 0.29 17 

Focus Farm : Cullingral  (Area : 220 ha, Topography : Flat, Land cover:Wheat and Barley)  

Date TbH(K) 

(max/min) 

TbV(K) 

(max/min) 

SM(v/v) 

(max/min) 

VWC 

(kg/m2) 

NDVI Rs %Cl %Si %Sa No. of 

Data 

4/11 255.5/249.9 273.2/265.7 0.41/0.11 0.87 

0.60 0.65 0 6 94 

8 

9/11 249.0/240.5 270.0/258.5 0.64/0.14 0.48 8 

18/11 275.1/264.8 285.9/277.4 0.24/0.006 0.42 8 

25/11 271.8/262.1 281.9/273.6 0.23/0.09 0.36 8 
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and the trained ANN was evaluated to examine the correlation R2 on the other 

inputs. The incremental contribution of each of the inputs is shown in Table 

7.4.   

 

Table 7.4.  Incremental contribution of each of the inputs for Experiment 1. 
 

Input Excluded R2 Incremental 
Contribution 

RMSE (% v/v) 

None 0.5031 - 4.09 

I1 (TbH) 0.4893 0.0138 3.94 

I2 (TbV) 0.4482 0.0549 4.06 

I3 (Ts) 0.5041 -0.0010 3.58 

I4 (VWC) 0.5311 -0.0280 4.15 

I5 (NDVI) 0.5040 -0.0009 4.06 

I6 (Roughness) 0.5040 -0.0009 4.06 

I7 (%Clay) 0.5031 0 4.09 

I8 (%Silt) 0.5031 0 4.09 

I9 (%Sand) 0.5031 0 4.09 

 

  From Table 7.4, the incremental contribution for TbH and TbV are 

higher compared to the other parameters (i.e. more than one tenth of the 

contributions of all nine inputs).  The incremental contributions of I3(Ts), I4 

(VWC), I5 (NDVI), I6 (Roughness), I7 (%Clay), I8 (%Silt), and I9 (%Sand) are 

very small and hence these inputs are candidates for exclusion  From Table 

7.4, it can be seen that, the adding of the I7 (%Clay), I8 (%Silt) and I9(%Sand) 

made no contribution to the retrieval accuracy.  After all these inputs are 

excluded from the ANN, the ANN is re-trained to obtain the best parameters 

and performance. Then the process of checking the incremental contribution 

of each of the remaining variables is again undertaken with the results 

shown in Table 7.5.   
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Table 7.5.  Incremental contribution of TbH and TbV after exclusion of other 
inputs. 

 

Input 
Excluded 

R2 Incremental 
Contribution 

RMSE 
(%v/v) 

None 0.5307 - 3.92 

I1 (TbH) 0.2233 0.3074 4.03 

I2 (TbV) 0.3576 0.1731 6.32 

 

Table 7.5 shows that the incremental contributions for each of the two 

inputs are of similar magnitude and the lowest is greater than that one tenth 

of the largest.  Hence, no further exclusion is needed.  Note the result for all 

input features in Table 7.5 is worse that the result in Table 7.4 with I3 

removed.  However the result in Table 7.5 is more desirable because of the 

reduction in the number of inputs needed.  This results in a network of 

{2,10,1}, i.e. two inputs, 10 hidden nodes and one output node.  To verify that 

these inputs alone produce either superior or almost the same accuracy with 

the inclusion of any other ancillary data, the lowest RMSE value for each of a 

number of combinations of ancillary factors with the brightness temperature 

is shown in Table 7.6.   

Table 7.6 shows that using just the brightness temperatures: TbH and 

TbV, produces the best accuracy for both dates.  The ANN model was used 

to predict the soil moisture for the two different dates (17th Nov. and 22nd 

Nov.) after training on two previous dates (8th Nov. and 15th Nov.).  

Although good accuracy was obtained on the training data (3.92%v/v), the 

accuracy is not better than the desired 4% v/v, for the  SMOS mission for the 

17th and 22nd of November.  As the conditions were getting drier during the 

field experiment, the range of soil moisture was different for the testing dates 

compared to the training date.  These results are similar to the results 

obtained by Angiuli et al.(2008) whose ANN model was unable to predict soil 

moisture values which were out of range of the training data.   
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Table 7.6.  RMSE testing when using different combinations of inputs. 

 

ii. Experiment 2: Combination of Roscommon, Stanley and Cullingral 

Farms 

 Experiment 1 considered a single farm for which the values of NDVI, 

RMS roughness value, %Clay, %Silt and %Sand were constant throughout 

the whole farm. To investigate whether the exclusions of these parameters 

are the result of relatively uniform parameters across this farm or because 

there was little correspondence of the values with other data for each of the 

particular farms, a combination of farms was used.  The ANN was trained 

using data for the first three dates of each of three farms (Roscommon: 1st, 8th 

& 15th Nov., Stanley: 3rd, 10th & 17th Nov., Cullingral: 4th, 9th & 18th Nov.).  To 

make sure that the data used for validation and testing are representative of 

the training data, the stratified method was used whereby it was made sure 

that data from each date was equally distributed selected.  A total of 108 

samples were obtained and of these, six samples were selected for each of the 

validation and testing samples.  The same process of input analysis followed 

in Experiment 1 was used.  The incremental contributions of all nine inputs 

are shown in Table 7.7.   

Table 7.7 shows that inputs I1 (TbH), I4 (VWC), I6 (Roughness), and 

I9 (%Sand) are candidates for exclusion.  This results in a network of {5,10,1}.  

It can be seen that the constant values for %Clay and %Silt do contribute to 

the mapping of the function using the ANN and hence are not a parameter to 

be excluded at this stage.  After the exclusion of the candidate inputs, the 

ANN is retrained and results shown in Table 7.8.  The inputs I5 (NDVI) and 

Combination RMSE (% v/v) 

17th Nov 22nd Nov 

TbH+TbV 4.93 8.85 

TbH+TbV+Ts 12.41 30.58 

TbH+TbV+Ts+VWC 6.43 12.52 

TbH+TbV+Ts+VWC+NDVI  10.34 10.13 

All Nine Inputs 9.21 12.50 
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I7 (%Clay) are now candidates to be excluded.  This results in a network of 

{3,10,1}. 

 

Table 7.7.  Incremental contribution of each of the variables in Experiment 2. 
 

Input Excluded R2 Incremental 
Contribution 

RMSE 
(%v/v) 

None 0.5210 - 7.31 

I1 (TbH) 0.5044 0.0166 7.37 

I2 (TbV) 0.3904 0.1306 8.01 

I3 (Ts) 0.0030 0.5180 11.68 

I4 (VWC) 0.5472 -0.0262 7.21 

I5 (NDVI) 0.3629 0.1581 8.21 

I6 (Roughness) 0.5774 -0.0564 8.62 

I7 (%Clay) 0.0251 0.4959 15.60 

I8 (%Silt) 0.2423 0.2787 9.82 

I9 (%Sand) 0.4851 0.0359 9.08 

 

Table 7.8.  Incremental contributions of each of the variables of network 
{5,10,1}. 

 

Input Excluded R2 Incremental 
Contribution 

RMSE 
(%V/V) 

None 0.5878 - 6.76 

I2 (TbV) 0.0096 0.5782 17.41 

I3 (Ts) 0.1075 0.4803 16.95 

I5(NDVI) 0.5333 0.0545 8.42 

I7(%Clay) 0.7655 -0.1777 7.25 

I8(%Silt) 0.4255 0.1623 9.44 

 

Table 7.9 shows the results after further training which results in 

input I8 (%Silt) being considered for exclusion.  The network of size {2,10,1} 

is again retrained and the results are shown in Table 7.10.  As the 

contributions of the two inputs are almost the same, no further reduction is 

needed.  A verification of this combination of inputs compared to other 

combinations is shown in Table 7.11.  
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Table 7.9.  Incremental contributions of each of the variables of network 
{3,10,1} . 

 

Table 7.10.  Incremental contributions of each of the variables of network 
{2,10,1}. 

 
 

Table 7.11.  Accuracy for different combinations of input. 

 

Table 7.11 shows the accuracies obtained with the two inputs selected 

from Experiment 2, the best inputs combination from Experiment 1, and all 

nine inputs when the ANN is evaluated using data from different dates to 

those used for training.  It can be seen that TbH was determined to be a good 

input for a single farm and for multiple farms. Note that TbV gives the best 

result in combination with TbH in Experiment 1 whereas Ts gave the best 

result in combination with TbV in Experiment 2. The results show that 

analysis of the incremental contributions of variables helps to reduce the 

number of inputs needed, resulting in less complex ANNs.  

Input 
Excluded 

R2 Incremental 
Contribution 

RMSE (%v/v) 

None 0.6685 - 6.21 

I2 (TbV) 0.4133 0.2552 8.57 

I3 (Ts) 0.1803 0.4882 17.47 

I8(%Silt) 0.8268 -0.1583 10.86 

Input 
Excluded 

R2 Incremental 
Contribution 

RMSE (%v/v) 

None 0.6039 - 6.56 

I2 (TbV) 0.3411 0.2628 8.86 

I3 (Ts) 0.1826 0.4213 18.08 

Combination RMSE (% v/v) 

Roscommon 
(22/11) 

Stanley 
(24/11) 

Cullingral 
(25/11) 

TbV+Ts 1.77 9.11 5.86 

TbH+TbV 7.56 10.06 5.09 

All Nine Inputs 2.06 6.90 7.17 
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iii. Analysis of results 

The two experiments have analyzed the use of brightness temperature and 

ancillary data for soil moisture retrieval.  It is important to analyze the ANN 

for different combinations of inputs to determine those that improve the 

accuracy of soil moisture measurement, and those that, could, reduce the 

performance by essentially confusing the ANN.  Table 7.6 showed that, for 

one farm, the use of ancillary data reduces the accuracy and hence appears 

not to be beneficial.  Table 7.11 shows that more inconclusive results for the 

usefulness of ancillary data occur for a more representative training and 

testing set of data i.e. over more farms.  Through the analysis of the 

incremental contribution of each input, the best combination of inputs 

needed can be determined.   

With the use of ancillary data, and with the incremental contribution 

of variables to select appropriate input parameters for the ANN model, the 

prediction accuracy obtained (except for the Roscommon farm that is 

considered a “control” site) is still worse than the desired 4% v/v when the 

“trained” ANN is tested on data from a new future date.  This shows that the 

ANN model does not generalize well for future   dates.   

While these two experiments show that the incremental contribution 

of a variable can be used for the selection of parameters for the ANN model, 

the validity of the ancillary data used in the experiments could be an issue as 

most of the values of the ancillary data used have constant values (see 

Section 7.1.4).  Variables that have constant values across a site but which are 

different for different sites can be used to bias the ANN towards the right 

result. The same would be true for the same site for different dates.  

Moreover, from Table 7.3., the number of data available for training is 

limited.  Therefore, in the next stage of this thesis, only data at 1 km 

resolution which covers the whole target area of 40 km×40 km (presented in 

Section 4.5 and Section 6.2) will be used.     
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7.2 Overview of the Proposed Methodology  

From the preliminary experiments results and Section 5.3.3, it is concluded 

that, the problem of using ANN as a soil moisture prediction method is its 

inability to capture data for future dates which is out-of-range of the training 

data i.e. has higher or lower values than those used for training.  This is said 

to be a problem of capturing the variability of the soil moisture values.  

However, soil moisture is highly spatially and temporally variable (Western 

et al. 2002).  When quantities vary in space or time, the variation can be 

quantified with a number of characteristics (Western et al. 2002). These 

characteristics include the central tendency (i.e. mean or median) and the 

spread (i.e. variance or standard deviation).   

For this research study, the prediction of soil moisture is over a target 

area of 40 km×40 km and on two dates, 14th Nov and 21st Nov 2005 which are 

one and two weeks after the data used for the training of the ANN (7th Nov 

2005).  This data division ensures that the predictions are done on two totally 

new dates and on unknown conditions.  Moreover, the ability of trained 

ANN is tested on two real cases.  As surface soil moisture variance observed 

within a square metre can be as large as a whole field (Van Oevelen 1998), the 

ANN in this research study will have to capture the variance of the soil 

moisture across a large area (spatial variation) and across different dates 

(temporal variation).   

A technique to accommodate this is to normalise each of the input 

variables using the mean and standard deviation.   As the spatial variability 

of soil moisture is scale dependent (Nykanen and Foufoula-Georgiou 2001; 

Richard et al. 2004), soil moisture prediction is done using a “window”.  The 

details of this methodology are discussed in this chapter.   

Different scenarios are used to verify this methodology.  Figure 7.4 

summarizes each of these different scenarios.  Note the dotted and full lines 

mean the same but are to show clearly the different paths.   From this figure, 

it can be seen that there are four different scenarios.  The data on 7th Nov 

2005 is divided into training, validation and testing sets with each set 
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consisting of 1440, 80 and 80 data samples respectively.  The ANN model is 

first trained using data for the 7th Nov 2005 to obtain the optimum ANN 

architecture.  The input of the ANN is normalized using the mean and the 

standard deviation values obtained from the input variables.  The predicted 

soil moisture values are de-normalized using the mean and standard 

deviation of the actual soil moisture values.  The RMSE values are then 

calculated from the actual and de-normalized soil moisture values.  This 

“trained” ANN model is next tested using data for the  14th and 21st Nov 2005 

(termed as evaluation cases hereafter).  To evaluate the importance of using 

the standardization and de-standardization factors from the data on each of 

the evaluation cases, the trained ANN is tested with standardization and de-

standardization factors from the training data (scenario b. of Figure 7.4).  The 

result is compared with the trained ANN model which uses the 

standardization and de-standardization factors from the evaluation cases 

(scenario a. of Figure 7.4).  In Figure 7.4, the scenario d is the proposed 

method to optimize the standard backpropagation ANN model for soil 

moisture retrieval.   The importance of the standardization and de-

standardization factors in this proposed methodology is verified by testing 

whether the use of these factors from the training data affects the accuracy 

(scenario c. in Figure 7.4).  Scenario a. and d. of Figure 7.4 also will be used to 

compare the result of the retrieval of soil moisture without using the 

“window” method proposed in this research.  

Note the de-normalisation on the output uses the values we are trying to 

predict. It is envisaged that some surrogate or indicator for this will be used 

in future.  For example, results for previous dates where we have the input 

data and corresponding output results may be useful to determine these 

values.  An alternative is to use some other indicator of soil moisture, 

perhaps a crude low resolution measure from ground measurements. 
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Figure 7.4.  Different scenarios (a, b and c) used to verify the proposed 
methodology (d). 

 

7.2.1 Data Division: Training, Validation and Testing Data 

The regional data acquired on 31st October 2005, 7th November 2005, 14th 

November 2005 and 21st November 2005 as discussed in Chapter 4 (section 

4.5) and Chapter 6 (section 6.2) was the target dataset.  However, as MODIS 

scenes were available for only three of the four days during NAFE‟05, only 

data on the 7th, 14th and 21st November 2005 were considered and discussed 

in this study.  Data was binned into a 1 km reference grid for the whole 40km

40km area.   On occasions where there were missing data, i.e. the data from 

MODIS acquired when not totally cloud free, the Inverse Distance Weighted 


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(IDW) method was used to interpolate the values based on the surrounding 

values. IDW is a commonly used technique for interpolation (Steed et al. 

2004)that is based on the assumption that the interpolating surface should be 

influenced most by nearby points and less by distant points.  As the 

MODIS/Aqua Surface Reflectance Daily L2G Global data has a resolution of 

250 m and the MODIS/Aqua Land Surface Temperature and Emissivity 

Daily L3 Global data of 1 km, and as the reference grid is chosen to be 1 km, 

the points that needed to be interpolated will be close.  IDW is shown to 

provide reasonable estimates and is shown in a large number of comparative 

studies to perform better than kriging-based techniques, an advanced spatial-

statistics technique that uses data trends (Weber and Englund 1992; Babak 

and Deutsch 2009).  A total of 1600 (40×40 at 1 km resolution) samples were 

obtained for each date.  To train the ANN model, 1440 samples from the 7th 

November 2005 are randomly selected for training, and 80 samples (5%) are 

selected for each of the validation and testing sets.  To randomly select 

samples, the MATLAB routine (rand( )) was used.  The ANN is trained to 

minimize the RMSE between the referenced (ground truth) and retrieved 

(predicted) soil moisture value.  At this stage, the weights and bias of the 

ANN, termed the “trained ANN”, are used for evaluation using data of 14th 

and 21st November 2005 (evaluation cases) (Figure 7.5).   



121 

 

 

Figure 7.5.  Data division process. 
 

 

7.2.2 Data Pre-processing for ANN: Input Normalization 

The input data will be normalized so that they have zero mean and unit 

standard deviation using: 

 
(7.2) 

where  is the normalized feature value,  is the input feature value,  

is the mean and is the standard deviation of the input data,  is equal to 

0, and  is equal to 1.  Equation (7.2) can be simplified and written as: 

 
(7.3) 

Using Equation (7.3), the input data is normalized.   

  yxxz
x

y

n o rm 















n o rmz x



x 

x y

y

x

norm

xx
z






 

 
 

Evaluation Cases 



122 

 

 The mean and the standard deviation of the target layer of the ANN 

model are also calculated for the data de-normalization step.   

 

7.2.3 Data Post-processing: De-normalization  

The output of the ANN, which are the normalized soil moisture 

prediction values, are de-normalized using the mean and standard deviation 

obtained in Section 7.2.2.2.  The de-normalization of the normalized soil 

moisture is calculated based on equation (7.4):  

 (7.4) 

where  is the de-normalized soil moisture values,  is the predicted soil 

moisture values in normalized format,  , and  is the standard deviation and 

mean of the soil moisture obtained in Section 7.2.2.2.   

Figure 7.6. shows the process for the normalized and de-normalized 

process to pre- and post-processing the data as discussed in Section 7.2.2 and 

7.2.3.  This outlines in more detail the stages shown in Figure 7.4 showing the 

equations used. 
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Figure 7.6.  The pre- and post-processing of the data. 

 

7.3 Normalization: Training, Validation, Testing and 
 Evaluation Cases Data 

The general way of data preprocessing for ANNs is to obtain the standard 

deviation and mean from the training data, but not for the validation and 

testing data as the validation and testing data are normalized using the same 

mean and standard deviation when inputted to the ANN (Sarle 1997).  

Therefore, generally, the means and standard deviations are computed for 

each feature over the set of training data, and are used to scale each sample 
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of the validation and testing data (Priddy and Keller 2005). The performance 

of the ANN will vary unpredictably if the ANN is trained using normalized 

data but then tested with unnormalized data.   

In contrast to this general way of pre-processing the data, 

normalization is also done for the validation, testing and evaluation cases 

data using the mean and standard deviation of the data itself.  

The rationale behind this is that as the training is done using a single 

date, the condition of wetness/dryness for each date will almost certainly 

differ from the training date (i.e. in this study, the evaluation cases condition 

differ from the training data).  The review of the literature (Section 5.3.3) 

showed that to cover the variety of conditions, electromagnetic models that 

include much ancillary data, could be used to simulate enough data during 

training so that the ANN can learn all those unforeseen conditions.  

However, it is not easy to cover all the unforeseen conditions.  On the other 

hand, the values of mean and standard deviation that represent the variation 

can be used to overcome the issue of the different conditions on an 

unforeseen date.  For example, different normalization factors were applied 

for the training and evaluation samples by Minns and Hall (1996) in their 

rainfall-runoff model.  In their study, they pointed out the importance of 

normalizing data as the ANN they used failed to extrapolate when required 

to predict values that are out-of-range of the training data.  Their research 

concluded that in practice, the ANN can only be used to predict data that is 

similar or the same as that which has been “seen” before.  In their research, 

they found that when using the same normalization factor for training and 

evaluation data (determined from the training data), the results were notably 

poorer than when different normalization factors were used.  The results 

obtained from their research emphasized the care required in choosing the 

normalization factors.  Moreover, previous work by Chai et al. (2008) has 

shown that the performance of the ANN can be improved if the ANN is 

presented with the training and testing data of similar statistical mean and 

standard deviation values. 
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7.4 Input Data Selection 

From Section 7.1.4, it is clear that with carefully selected ancillary data, the 

soil moisture prediction accuracy will be improved using the ANN model.   

Ancillary data investigated in this study include the Normalized Difference 

Vegetation Index (NDVI) and soil surface temperature (Ts) from MODIS 

(refer to Section 5.4.1).  NDVI data are calculated from Band 1 and Band 2 of 

the MODIS/Aqua Surface Reflectance Daily L2G Global 250 m data while 

the Ts values are obtained from the MODIS/Aqua Land Surface 

Temperature and Emissivity Daily L3 Global 1 km data.  Both of these 

ancillary data are gridded to the same 1 km reference grid as used in the 

processing of the brightness temperature and soil moisture data. The 

sensitivity of the ANN towards the inputs is measured by the change of Root 

Mean Square Error (RMSE) when an ancillary feature is added to the model.  

The ANN is initialized and trained repeatedly until the lowest global error 

between the referenced and computed values is obtained.  At this stage, the 

ANN is assessed using the testing data.  

 

7.5 Neural Network Architecture Determination  

There are a number of parameters that need to be determined for the ANN.  

The number of input and output nodes is directly linked to the application 

itself.  In this thesis, the different input combinations assessed include: (i) H- 

and V-polarized brightness temperatures (two features), (ii) combination of 

the dual-polarized brightness temperatures with NDVI (three features), (iii) 

combination of the dual-polarized brightness temperatures with Ts, (three 

features) and (iv) combination of the dual polarized brightness temperatures 

with NDVI and Ts (four features).  The output node is the soil moisture value 

(one output value).   

 Parameters that need to be determined include the number of hidden 

layers and the number of hidden neurons in each of the chosen hidden 

layers.  It is known that backpropagation ANNs with one or more hidden 
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layers can form any arbitrary decision boundary if a sufficient number of 

neurons is used in the hidden layers (Stinchcombe and White 1989).  Multi-

Layer Perceptrons (MLPs) with non-linear activation functions and an 

arbitrarily large number of hidden units suffice for the “universal 

approximation” property (Hornik et al. 1989; Lippmann 1987).  However, 

ANNs with two hidden layers can represent functions of any shape 

(Lippmann 1987).  There is currently no theoretical reason to use neural 

networks with more than two hidden layers (Heaton 2008).  For this reason, 

the ANN architecture being determined has either one or two hidden layers.  

Using too few or too many hidden neurons may undermine the application.  

Too few hidden neurons will cause underfitting to occur, whereby 

complicated signals within the data are poorly represented by simple models 

in the ANN.  On the other hand, using too many hidden neurons will cause 

overfitting whereby the neural network has too much information processing 

capacity to build complex models, such that the limited amount of 

information contained in the training set is not enough to train all of the 

neurons in the hidden layers.  Moreover, if too many hidden neurons are 

used, the amount of training time will increase.  Currently, the best way to 

optimize the number of hidden layers and the number of hidden neurons is 

simply through trial and error (Lakhankar 2006) . 

From Section 7.1.1, it is found that the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method derived from the Newton method in optimization 

obtained the best retrieval results when different training algorithms are 

trained and tested with the same data set.  For this reason, the BFGS method 

is selected.  The details of the neural network parameters used in this study 

are given in Table 7.12.   
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Table 7.12.  The training parameters for the BFGS training algorithm. 
 

Performance goal 0.001 

Maximum number of epochs to train 200 

Minimum performance gradient 1e-10000 

Maximum validation failures 5 

Name of line search routine to use 1-D minimization using 
Charalambous' method 

 

The number of hidden neurons chosen ranged from 2 to 100 for a 

single hidden layer case, while for two hidden layers, the same number of 

hidden neurons were used for each layer (the notation 2:2 means two hidden 

layers with 2 hidden neurons at each of two layers, and will be used 

hereafter).  Equal number of hidden neurons in each hidden layer is typically 

used by ANN researchers for soil moisture retrieval.  The training of the 

ANN is repeated until the ANN produces an acceptable accuracy for the 

testing data.   

 

7.6 Capturing Spatial Variability: Sub-grid 

As the surface soil moisture variance observed within a square metre can be 

as large as a whole field (Van Oevelen 1998), there is a need to determine the 

size of the area (sub-grid) whereby the ANN can capture the spatial 

variability within this region.  For this purpose, a methodology that utilizes a 

“window” approach is developed.  Using the approach, the prediction of soil 

moisture will be carried out within the “window” as the prediction process 

moves from top left corner of the target area of 40 km×40 km, to the right and 

down, without overlap.  The main reason for not overlapping the “window” 

is because the prediction will be done for each cell within the “window”.  

Thus, overlapping the “window” will cause multiple values being predicted 

for a single cell.  To develop this approach, there is a need to determine the 

size of the “window”. 
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In order to have two sets of independent data for testing purposes, it 

the data on 14th and 21st Nov 2005 are not used for training.  For this reason, 

the “window” size selection was determined using only data on 7th Nov 

2005.  An area of size 20km×20km at the top left of the study area on 7th Nov 

2005 is used for the training of the ANN.  Among these 400 data samples, 5% 

or 20 data are randomly selected (again using the MATLAB random number 

function) for validation and testing. The training of the ANN is repeated 

until the ANN produces an acceptable accuracy with the testing data.  At this 

stage, the weights and biases are retained for purpose of selecting the 

“window” size.  Different “window” sizes of 2km×2km, 3km×3km, 

4km×4km, 5km×5km, 6km×6km, 7km×7km and 8km×8km, for the same date 

are used for the testing of the effects of the different sizes on the prediction 

accuracy.  The selection of the 20km×20km area for training and testing for 

getting a trained ANN model can be done at any location on the 40km×40km 

study area.  However, the data use for training and testing should not be 

from the same area.  This is to avoid the ANN being biased by the training 

data.  Figure 7.7 shows the division of the data on 7th Nov 2005 for the 

purpose of “window” size selection.  From Figure 7.7, it is clear that each of 

the “windows” is a sub-set of another larger “window”.  By each window 

being a subset of a bigger window, the effect of adding extra data can be 

compared across window sizes.   
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Figure 7.7.  “Window” size determination using data from the 7th Nov 2005.  
The red-filled data were used for the training.  The unfilled squares are the 

location of the “window” used for the size selection. 

 

7.7 Selection of Optimum ANN Architecture, 
 Combination of Inputs and “Window” Size 

For the selection of the optimum ANN architecture, the combination of 

inputs and “window” size, the ANN is trained using the data division as 

shown in Figure 7.7.  The experiment for obtaining the optimum features in 

terms of architecture, inputs and “window” size is conducted at the same 

time as well as for each of the four different combinations of inputs:  TbH & 

TbV, TbH, TbV & NDVI, TbH, TbV & Ts and TbH, TbV, NDVI & Ts.  The 

best combination of inputs will be selected from these four different 

combinations.  The effect of ancillary information in addition to the 

brightness temperature can be seen from the experiments for using the four 
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different combinations of inputs.  The results are shown in Table 7.13 (TbH 

and TbV as input), Table 7.14 (TbH, TbV and NDVI), Table 7.15 (TbH, TbV 

and Ts) and Table 7.16 (TbH, TbV, NDVI and Ts).  

Table 7.13.  The impact on RMSE and R2 for different numbers of hidden 
layers, hidden neurons and “window” size when using only TbH and TbV as 

input. 
 

 

 

 

Hidden 

neurons 

RMSE 

(R
2
) 

Testing 

(%v/v) 

RMSE (R
2
) for Different “Window” Size (km) (%v/v) 

2×2 3×3 4×4 5×5 6×6 7×7 8×8 

2 6.69 

(0.34) 

1.09 

(0.77) 

3.26 

(0.49) 

5.66 

(0.54) 

6.42 

(0.42) 

7.04 

(0.63) 

6.69 

(0.31) 

6.97 

(0.38) 

4 6.45 

(0.40) 

1.14 

(0.77) 

3.12 

(0.55) 

5.35 

(0.66) 

6.07 

(0.56) 

6.73 

(0.35) 

6.38 

(0.43) 

6.71 

(0.47) 

6 6.32 

(0.34) 

1.37 

(0.91) 

3.25 

(0.30) 

4.87 

(0.56) 

5.74 

(0.46) 

7.11 

(0.20) 

6.65 

(0.26) 

6.78 

(0.32) 

8 6.34 

(0.33) 

1.42 

(0.94) 

3.75 

(0.10) 

5.31 

(0.43) 

5.75 

(0.46) 

6.89 

(0.24) 

6.52 

(0.28) 

6.83 

(0.31) 

10 6.23 

(0.37) 

1.23 

(0.63) 

2.93 

(0.56) 

4.56 

(0.69) 

5.60 

(0.49) 

6.80 

(0.26) 

6.28 

(0.34) 

6.42 

(0.41) 

20 5.75 

(0.45) 

1.42 

(0.59) 

2.44 

(0.63) 
2.86 

(0.88) 

4.52 

(0.67) 

5.75 

(0.47) 

5.27 

(0.53) 

5.53 

(0.55) 

50 5.4 

(0.54) 

1.57 

(0.62) 

2.98 

(0.46) 

3.57 

(0.75) 

4.41 

(0.68) 

5.82 

(0.46) 

5.23 

(0.54) 

5.76 

(0.51) 

100 5.39 

(0.63) 

1.44 

(0.32) 

3.21 

(0.40) 

3.08 

(0.84) 

4.51 

(0.65) 

5.22 

(0.58) 

4.66 

(0.64) 

5.21 

(0.60) 

2:2 7.01 

(0.29) 

1.05 

(0.83) 

3.70 

(0.12) 

6.24 

(0.29) 

6.82 

(0.33) 

7.33 

(0.19) 

7.05 

(0.24) 

7.38 

(0.30) 

4:4 6.59 

(0.31) 

1.32 

(0.91) 

3.47 

(0.23) 

5.28 

(0.53) 

6.01 

(0.46) 

7.11 

(0.20) 

6.75 

(0.24) 

7.03 

(0.29) 

5:5 6.42 

(0.36) 

1.13 

(0.70) 

3.52 

(0.22) 

5.60 

(0.47) 

6.19 

(0.39) 

6.95 

(0.24) 

6.56 

(0.30) 

6.74 

(0.38) 

10:10 6.16 

(0.37) 

1.44 

(0.91) 

3.64 

(0.13) 

4.95 

(0.55) 

5.48 

(0.53) 

6.87 

(0.25) 

6.52 

(0.28) 

6.66 

(0.35) 

20:20 5.86 

(0.44) 

1.44 

(0.71) 

2.72 

(0.52) 

3.63 

(0.79) 

4.61 

(0.69) 

5.81 

(0.47) 

5.57 

(0.49) 

5.92 

(0.49) 

50:50 5.73 

(0.47) 

1.45 

(0.74) 

2.90 

(0.49) 

3.50 

(0.78) 

5.06 

(0.56) 

6.58 

(0.34) 

6.02 

(0.41) 

6.02 

(0.47) 

100:100 5.74 

(0.47) 

1.50 

(0.66) 

3.16 

(0.37) 

3.25 

(0.82) 

3.93 

(0.74) 

4.68 

(0.68) 

4.12 

(0.72) 

5.16 

(0.61) 
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Table 7.14.  As for Table 7.13. but using TbH, TbV and NDVI as input. 
 

Hidden 

neurons 

RMSE 

(R
2
) 

Testing 

(%v/v) 

RMSE (R
2
) for Different “Window” Size (km) (%v/v) 

2×2 3×3 4×4 5×5 6×6 7×7 8×8 

2 6.30 

(0.39) 

1.29 

(0.80) 

2.84 

(0.55) 

4.58 

(0.75) 

5.78 

(0.55) 

6.75 

(0.30) 

6.37 

(0.36) 

6.64 

(0.41) 

4 5.23 

(0.63) 

1.43 

(0.91) 

3.1 

(0.36) 

5.12 

(0.46) 

5.93 

(0.41) 

6.22 

(0.40) 

5.84 

(0.45) 

5.76 

(0.54) 

6 5.34 

(0.54) 

1.55 

(0.95) 

3.09 

(0.37) 

4.53 

(0.58) 

5.33 

(0.53) 

6.23 

(0.38) 

5.84 

(0.43) 

5.89 

(0.49) 

8 5.50 

(0.50) 

1.64 

(0.88) 

2.93 

(0.43) 

4.01 

(0.69) 

5.13 

(0.58) 

6.21 

(0.40) 

5.94 

(0.41) 

5.99 

(0.48) 

10 5.56 

(0.51) 

1.41 

(0.90) 

3.04 

(0.38) 

4.89 

(0.53) 

5.50 

(0.52) 

5.41 

(0.59) 

5.09 

(0.62) 

5.19 

(0.67) 

20 4.82 

(0.64) 

1.45 

(0.71) 

2.55 

(0.58) 

3.59 

(0.80) 

5.09 

(0.58) 

5.60 

(0.51) 

5.25 

(0.55) 

5.16 

(0.63) 

50 5.46 

(0.51) 

1.60 

(0.95) 

3.36 

(0.36) 

4.49 

(0.48) 

5.92 

(0.42) 

6.11 

(0.44) 

5.57 

(0.49) 

5.46 

(0.57) 

100 5.52 

(0.49) 

1.87 

(1.00) 

3.11 

(0.49) 

4.84 

(0.52) 

4.61 

(0.64) 

5.01 

(0.61) 

4.60 

(0.65) 

5.01 

(0.64) 

2:2 6.54 

(0.39) 

1.27 

(0.89) 

3.34 

(0.31) 

5.33 

(0.63) 

6.18 

(0.53) 

7.04 

(0.26) 

6.73 

(0.30) 

7.03 

(0.36) 

4:4 5.84 

(0.55) 

1.32 

(0.92) 

3.11 

(0.39) 

5.12 

(0.58) 

5.86 

(0.53) 

6.17 

(0.50) 

5.91 

(0.53) 

6.12 

(0.58) 

5:5 5.53 

(0.56) 

1.38 

(0.86) 

2.95 

(0.44) 

4.74 

(0.62) 

5.59 

(0.52) 

5.56 

(0.57) 

5.30 

(0.61) 

5.52 

(0.65) 

10:10 5.57 

(0.50) 

1.55 

(0.94) 

2.60 

(0.56) 

3.96 

(0.76) 

5.15 

(0.60) 

6.46 

(0.34) 

6.12 

(0.38) 

6.22 

(0.44) 

20:20 5.60 

(0.51) 

1.46 

(0.22) 

3.24 

(0.31) 

5.17 

(0.44) 

5.59 

(0.48) 

6.01 

(0.43) 

5.53 

(0.50) 

5.50 

(0.58) 

50:50 5.27 

(0.54) 

1.46 

(0.72) 

2.85 

(0.46) 

5.27 

(0.42) 

5.42 

(0.50) 

5.91 

(0.44) 

5.44 

(0.50) 

5.43 

(0.57) 

100:100 5.30 

(0.54) 

1.68 

(1.00) 

2.72 

(0.61) 

4.76 

(0.53) 

4.41 

(0.76) 

4.90 

(0.70) 

4.52 

(0.71) 

4.64 

(0.72) 
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Table 7.15.  As for Table 7.13. but using TbH, TbV and Ts as input. 

 

 

Hidden 

neurons 

RMSE 

(R
2
) 

Testing 

(%v/v) 

RMSE (R
2
) for Different “Window” Size (km) (%v/v) 

2×2 3×3 4×4 5×5 6×6 7×7 8×8 

2 6.51 

(0.42) 

1.11 

(0.56) 

2.88 

(0.67) 

5.22 

(0.67) 

6.34 

(0.46) 

7.09 

(0.24) 

6.54 

(0.37) 

6.76 

(0.45) 

4 5.72 

(0.46) 

1.43 

(0.76) 

2.93 

(0.43) 

4.16 

(0.65) 

5.27 

(0.55) 

6.09 

(0.42) 

5.52 

(0.50) 

5.60 

(0.55) 

6 5.98 

(0.43) 

1.33 

(0.87) 

3.20 

(0.33) 

4.66 

(0.64) 

5.21 

(0.59) 

6.04 

(0.46) 

5.66 

(0.52) 

5.82 

(0.56) 

8 5.84 

(0.50) 

1.38 

(0.94) 

2.75 

(0.50) 

4.27 

(0.64) 

5.56 

(0.48) 

6.46 

(0.33) 

5.67 

(0.46) 

5.59 

(0.55) 

10 5.66 

(0.48) 

1.36 

(0.68) 

2.56 

(0.59) 

3.59 

(0.77) 

5.36 

(0.53) 

5.93 

(0.46) 

5.25 

(0.56) 

5.25 

(0.62) 

20 5.73 

(0.47) 

1.23 

(0.68) 

2.59 

(0.62) 

3.68 

(0.76) 

5.59 

(0.47) 

6.06 

(0.41) 

5.20 

(0.56) 

4.99 

(0.66) 

50 5.27 

(0.54) 

1.33 

(0.87) 

2.31 

(0.66) 

3.62 

(0.76) 

5.30 

(0.52) 

6.39 

(0.39) 

5.65 

(0.48) 

5.55 

(0.55) 

100 4.81 

(0.62) 

1.33 

(0.46) 

3.63 

(0.32) 

4.49 

(0.60) 

5.58 

(0.49) 

6.07 

(0.42) 

5.39 

(0.51) 

5.82 

(0.51) 

2:2 6.75 

(0.39) 

1.13 

(0.63) 

3.46 

(0.25) 

5.70 

(0.48) 

6.73 

(0.46) 

7.06 

(0.29) 

6.79 

(0.31) 

7.14 

(0.34) 

4:4 5.85 

(0.50) 

1.17 

(0.75) 

2.64 

(0.60) 

3.95 

(0.78) 

5.28 

(0.61) 

5.85 

(0.50) 

5.31 

(0.60) 

5.38 

(0.51) 

5:5 6.09 

(0.50) 

1.12 

(0.72) 

3.04 

(0.50) 

4.86 

(0.72) 

5.84 

(0.62) 

6.16 

(0.53) 

5.77 

(0.61) 

5.95 

(0.68) 

10:10 5.93 

(0.42) 

1.46 

(0.92) 

2.82 

(0.50) 

3.92 

(0.77) 

5.52 

(0.52) 

6.69 

(0.29) 

6.01 

(0.40) 

6.07 

(0.38) 

20:20 5.59 

(0.48) 

1.54 

(0.91) 

3.50 

(0.21) 

4.75 

(0.53) 

5.39 

(0.51) 

6.27 

(0.37) 

5.66 

(0.46) 

5.62 

(0.55) 

50:50 5.56 

(0.49) 

1.46 

(0.61) 

2.49 

(0.63) 

2.79 

(0.84) 

4.56 

(0.83) 

5.29 

(0.56) 

4.70 

(0.63) 

4.84 

(0.66) 

100:100 5.08 

(0.57) 

1.54 

(0.39) 

3.24 

(0.34) 

4.61 

(0.56) 

5.41 

(0.50) 

5.97 

(0.44) 

4.99 

(0.60) 

5.24 

(0.62) 
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Table 7.16.  As for Table 7.13. but using TbH, TbV, NDVI and Ts as input. 
 

Hidden 

neurons 

RMSE 

(R
2
) 

Testing 

(%v/v) 

RMSE (R
2
) for Different “Window” Size (km) (%v/v) 

2×2 3×3 4×4 5×5 6×6 7×7 8×8 

2 6.45 

(0.53) 

1.13 

(0.35) 

3.25 

(0.35) 

5.86 

(0.33) 

7.03 

(0.17) 

7.29 

(0.51) 

6.71 

(0.31) 

6.78 

(0.47) 

4 5.54 

(0.50) 

1.51 

(0.92) 

2.96 

(0.41) 

4.43 

(0.63) 

5.53 

(0.50) 

6.44 

(0.34) 

6.04 

(0.39) 

6.08 

(0.47) 

6 5.69 

(0.60) 

1.27 

(0.88) 

2.81 

(0.60) 

4.69 

(0.77) 

5.68 

(0.62) 

6.34 

(0.45) 

5.96 

(0.52) 

6.11 

(0.59) 

8 5.78 

(0.50) 

1.31 

(0.91) 

2.68 

(0.57) 

4.01 

(0.80) 

5.04 

(0.71) 

5.82 

(0.54) 

5.52 

(0.59) 

5.66 

(0.63) 

10 5.79 

(0.45) 

1.41 

(0.98) 

3.18 

(0.33) 

4.83 

(0.58) 

5.71 

(0.49) 

6.49 

(0.33) 

6.00 

(0.41) 

6.03 

(0.52) 

20 5.78 

(0.46) 

1.27 

(0.66) 

2.97 

(0.43) 

4.35 

(0.68) 

5.53 

(0.53) 

5.88 

(0.49) 

5.30 

(0.58) 

5.60 

(0.59) 

50 4.96 

(0.59) 

1.59 

(0.95) 

3.41 

(0.27) 

5.21 

(0.45) 

6.06 

(0.38) 

6.52 

(0.34) 

6.05 

(0.40) 

5.78 

(0.51) 

100 4.93 

(0.61) 

1.54 

(0.22) 

3.67 

(0.22) 

3.69 

(0.72) 

5.47 

(0.50) 

6.54 

(0.35) 

5.68 

(0.48) 

5.62 

(0.54) 

2:2 6.69 

(0.48) 

1.15 

(0.89) 

3.43 

(0.31) 

5.81 

(0.55) 

6.57 

(0.50) 

6.94 

(0.45) 

6.68 

(0.48) 

7.03 

(0.53) 

4:4 6.04 

(0.62) 

1.22 

(1.00) 

3.42 

(0.23) 

6.06 

(0.28) 

6.79 

(0.25) 

7.13 

(0.22) 

6.66 

(0.31) 

6.76 

(0.43) 

5:5 5.31 

(0.60) 

1.25 

(0.74) 

3.05 

(0.41) 

4.48 

(0.67) 

5.27 

(0.62) 

6.04 

(0.47) 

5.54 

(0.54) 

5.81 

(0.58) 

10:10 5.53 

(0.56) 

1.30 

(0.87) 

3.09 

(0.41) 

4.49 

(0.70) 

5.24 

(0.64) 

6.05 

(0.47) 

5.69 

(0.53) 

5.81 

(0.58) 

20:20 5.70 

(0.47) 

1.37 

(0.61) 

2.96 

(0.43) 

4.12 

(0.44) 

5.10 

(0.59) 

6.03 

(0.43) 

5.51 

(0.51) 

5.95 

(0.49) 

50:50 5.48 

(0.51) 

1.51 

(0.95) 

3.23 

(0.32) 

4.10 

(0.67) 

5.07 

(0.60) 

6.00 

(0.44) 

5.66 

(0.47) 

5.80 

(0.51) 

100:100 4.40 

(0.68) 

1.72 

(0.77) 

3.21 

(0.34) 

4.61 

(0.55) 

6.70 

(0.29) 

7.21 

(0.24) 

5.84 

(0.44) 

5.47 

(0.56) 

 

7.7.1 Analysis  

The results shown in Tables 7.13 to 7.16 will be analysed for different 

“window” sizes, and the ANN architecture in order to select the optimum 

parameters for the trained ANN model.  This trained ANN model will be 

evaluated using the data from 14th and 21st Nov 2005.   
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7.7.1.1 “Window” Size 

From the four tables, it can be seen that, generally, the retrieval results 

deteriorate as the “window” size increases.  For example, the accuracies 

deteriorate from 2.44%v/v to 5.53%v/v when the “window” size increases 

from 2km×2km to 8km×8km (Table 7.13).  This is due to the inability of the 

ANN to capture the variability within the larger “window” size.  For the 

combination of TbH and TbV (Table 7.13), the largest “window” size where 

the ANN can obtain the globally acceptable error of less or equal than 4%v/v 

is 4km×4km with the number of hidden neurons being 20, 50 and 100 for 

both single and two hidden layers.  When the inputs consist of TbH, TbV and 

NDVI (Table 7.14),  with a single hidden layer of 20 neurons and two hidden 

layers of 10 hidden neurons in each layer (10:10), the ANN achieves an 

acceptable error at the largest “window” size of 4km×4km.  The same 

optimum “window” size is obtained for the case of TbH, TbV and Ts (Table 

7.15) as inputs and for a single layer of 100 hidden neurons using all four 

parameters as inputs, i.e. TbH, TbV, NDVI and Ts (Table 7.16).  As a result of 

this work, the optimum “window” size will be 4km×4km.   

 

7.7.1.2 ANN Architecture 

By looking at the column for 4km×4km “window” size, a decision can be 

made on the number of inputs and hidden layers and neurons.  The lowest 

RMSE obtained for the “window” size of 4km×4km is 2.79%v/v (R2 = 0.84) 

with two hidden layers of 50 neurons in each layer when TbH, TbV and Ts 

were used as input (Table 7.15).  For the same “window” size, the use of only 

TbH and TbV as input results in a RMSE of 2.86%v/v (R2=0.88) using a 

single hidden layer of 20 neurons.  More hidden neurons used show that the 

relationship between the inputs and the output is complex.  Although this 

RMSE is slightly higher than the lowest RMSE obtained when Ts is added, 

fewer resources are needed if the inputs used only consist of the dual-

polarized brightness temperature.  Moreover, according to Vonk et al. (1997) 

less complex neural networks are preferred over complex ones, providing 
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they have similar performance.  Therefore, a single hidden layer of 20 hidden 

neurons is preferred compare to two hidden layers of 50 neurons in each 

layer.  Figure 7.8 shows the graph of the RMSE obtained when different 

combinations of inputs are used with this architecture.  From this graph, it is 

clearly seen that TbH and TbV give the best RMSE value.  The use of the 

ancillary information does not aid much in improving the accuracy of the 

retrieval.  This might be because the data used for these two dates are not 

totally cloud free.    

The ANN architecture chosen will be of two inputs (TbH and TbV), a 

single hidden layer of 20 neurons and 1 output.   

 

 

Figure 7.8.  Comparison between different combinations of inputs for a 
single layer ANN with 20 hidden neurons and verification on 4km×4km 

pixels. 
 

7.8 Testing: Evaluation Cases 

With the architecture (number of neurons and hidden layer and the number 

of inputs) and the defined “window” size, the ANN is evaluated using the 

data of 14th and 21st Nov 2005.  The condition of the field is totally different 

during the evaluation dates.  The mean and standard deviation for each date 

are given in Table 7.17, showing that the training data on 7th November 2005 
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is “wetter” compared to the verification cases on 14th and 21st November 

2005.    

After the ANN is trained using the data of date 7th Nov 2005, the ANN 

is evaluated.  During the evaluation, the prediction process is carried out at 

each “window” of 4km×4km.  This “window” starts from the top left corner 

of the target area moving to the right, down and to the end of the image.  

 

Figure 7.9.  The start position of the 4km×4km “moving window” and its 
position after one move in the horizontal direction. 
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Table 7.17.  Statistical mean and standard deviation for the dual polarized 
brightness temperature and soil moisture values used for training (7th Nov) 

and evaluation (14th Nov and 21st Nov). 

 

Figure 7.9 shows the start position of the 4km×4km “moving window” and 

the position of the window after one step of horizontal movement.  The mean 

and standard deviation of the soil moisture within the window will be used 

as the de-normalization factors for the corresponding output of the ANN 

model.   

Using this methodology, the RMSE values between the actual and 

predicted value were 3.9 %v/v with for the 14th and 3.4%v/v with 

for the 21st November 2005.  The actual and predicted soil moisture 

maps are shown in Figure 7.10a and Figure 7.10b while the correlation 

relationships are shown using scatter plots in Figure 7.11.  It can be seen 

from the soil moisture variation map (iii. of Figure 7.10) that the maximum 

difference between the actual and predicted soil moisture was 0.24 v/v.  The 

locations where such large differences happened were very few.  The 

correlation coefficients chart shows that the predicted and actual soil 

moisture values are highly correlated.   

 From this, it can be concluded that, with the use of TbH and TbV as 

inputs, the ANN manages to capture the variability of soil moisture by 

incorporating the use of mean and standard deviation of soil moisture as the 

standardization factors for the ANN and prediction process which is divided 

into each defined “window” size.  

 

85.02 R

81.02 R

Date 

TbH (K) TbV (K) Soil Moisture (v/v) 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

7th Nov 05 241.5 10.1 261.4 7.8 0.39 0.12 

14th Nov 05 266.0 6.5 279.3 5.4 0.18 0.10 

21st Nov 05 271.3 3.9 282.6 3.1 0.16 0.08 
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i. Actual Soil Moisture 

 

 
ii. Predicted Soil Moisture 

 
iii. Difference 

a. 14
th

 November 2005 

 
i. Actual Soil Moisture 

 
ii. Predicted Soil Moisture 

 
iii.  Difference 

b.  21
st
 November 2005 

  

Figure 7.10.  Actual and predicted soil moisture map at 1 km resolution on a. 14th November 2005, and b. 21st November 2005. 
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7.9 Methodology Verification 

As the proposed methodology requires the mean and standard deviation 

within a specific “window” size, the dependency of these values on the 

applicability of the ANN model for practical use is needed to be verified.    

Moreover, the use of different standardization factors is needed to be 

justified.  To verify the use of different standardization factors and the 

prediction process within the defined “window”, a series of experiments 

were conducted.   These are explained in the following sections.   

 

7.9.1 Same Standardization Factors  

In the first experiment, the general way of applying the same 

standardization factors from the training data are conducted.  The ANN, 

trained using data of 7th Nov 2005, consisting of 2 inputs, 1 hidden layer of 20 

neurons and 1 output is used (see Section 7.8). The verification is divided 

into two categories: (i) without “window” and (ii) with “window”.  For the 

category without “window”, the retrieval of soil moisture will be done for 

Figure 7.5.  Actual and predicted soil moisture map at 1km resolution on a. 14th 
November 2005, and b. 21st November 2005. 
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the whole study area of 40km×40km.  Each 1km×1km cell is evaluated in a 

raster fashion from top left to bottom right.  For with “window”, the cell 

from each “window” is evaluated in a raster fashion from top left to bottom 

right inside the window.   During the verification of these two categories, the 

data are standardized using the same factors obtained from the training data 

(7th Nov 2005).  The overview of this testing is shown in Figure 7.12.   From 

this figure, it can be seen that the data on 7th Nov 2005 is divided into 

training, validation and testing.  For training set, the normalization and de-

normalization factors are obtained from the inputs and output of the data.  

This is the same for the validation and testing data.  The training, validation 

and testing data are used to develop a trained ANN model.  This trained 

model is next evaluated using data from 14th and 21st Nov 2005.  The 

standardization factors are obtained from the training data. As discussed 

earlier, to verify the methodology, two categories of the testing are carried 

out (Figure 7.12).  The results are shown in Table 7.18.  
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Figure 7.6.  Process of verifying the methodology for using different 
standardisation factors and regions. 

 

Table 7.18.  Results of using the same standardization factors from the 
training data for cases of with and without “window”. 

 

Category I : Without “ Window” 

Date RMSE (%v/v) R2 

14th November 2005 6.1 0.78 

21st November 2005 8.8 0.53 

 

Category II : With “Window” 

Date RMSE (%v/v) R2 

14th November 2005 6.1 0.78 

21st November 2005 8.8 0.53 

 

The RMSE and R2 values for each categories at each evaluation date 

are shown in Table 7.18.  From Table 7.18, it is clear that with same 

standardization factors across the dates, the retrieval accuracy was around 
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6.1 to 8.8%v/v, which was worse than the desired target error.  The retrieval 

accuracies for either using or not the “window” show the same values as 

expected because the two evaluation methods are identical in terms of the 

processing for each cell.  .   

 

7.9.2 Different Standardization Factors 

To verify whether the conclusion from Section 7.9.1 stands, a further analysis 

is carried out using different standardization factors for each evaluation date. 

In this case the retrieval of the 1km resolution soil moisture is done for the 

whole 40km×40km at once, i.e. without “moving window”. For this 

experiment, the temporal variation is captured using the different 

standardization factors but the spatial variation is neglected (i.e. without the 

use of the “moving window”).  The results of this experiment are shown in 

Table 7.19.  From Table 7.19, it can be seen that, the retrieval accuracy is 

improved (comparing to Table 7.18), although it is still worse than the 

desired retrieval accuracy of 4%v/v .  

 

Table 7.19.  Results of using different standardization factors without 
different regions within the 40km×40km target area (compare to Table 7.18). 
 

Date RMSE (%v/v) R2 

14th November 2005 5.5 0.72 

21st November 2005 4.6 0.65 

 

7.10 Dependency: Accuracy of Mean and Standard 
 Deviation Values 

Prior information required by this proposed methodology are the mean and 

standard deviation of the soil moisture at each of the 4km×4km “windows”. 

While this research initially assumed such information was equal to the 

values calculated from the actual soil moisture within the “window", such 

data will not be available in practice, and the mean and standard deviation of 

soil moisture within the “window” will need to be estimated by alternative 
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methods.  Consequently, the sensitivity of results to the accuracy of these 

values needs to be assessed. In the pass, retrieval of land surface parameters 

using passive microwaves had utilized a multiple linear-regression method 

(Njoku and Li 1999).  If we assume a linear relationship between the input 

variables and the soil moisture, then a regression model can be used to 

predict the values of soil moisture used for normalization and hence act as a 

surrogate.  Therefore, a multiple linear-regression method is investigated to 

estimate the soil moisture values using TbH, TbV, NDVI and Ts values..   

For each of the evaluation dates (14th and 21st Nov 2005), 18 data 

samples (1%) of the data are randomly selected for the regression. The 

rationale behind the small number of data selected is to simulate a situation 

where these data are ground-truth samples. With more data selected, the 

regression formula will be more accurate, but at the same time, more sample 

points will need to be taken if ground sampling has taken place. The RMSE 

and R2 between the actual and regressed soil moisture values are shown in 

Table 7.20.  The regressed soil moisture values are correlated to the actual 

soil moisture with , and the RMSE values are more than 4%v/v.   

 

Table 7.20.  Comparison of RMSE and R2 for the regressed and actual soil 
moisture values. 

 

Date RMSE (%v/v) R2 

14th November 2005 8.3 0.77 

21st November 2005 6.0 0.70 

 

The trained ANN, as in Section 7.8, is evaluated using the regressed 

soil moisture values. The results are given in Table 7.21.  The predicted soil 

moisture values using the ANN produce errors that are similar to the error 

between the regressed and actual soil moisture values.  The results show that 

the accuracy of the predicted soil moisture with this methodology depends 

highly on the mean and standard deviation values used.  

 

 

50.02 R
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Table 7.21.  The RMSE and R2 values obtained using the ANN. 

 

Date Regressed and 

Predicted SM 

Actual and 

Predicted SM 

RMSE 

(%v/v) 

R2 RMSE 

(%v/v) 

R2 

14th November 2005 4.2 0.66 7.8 0.67 

21st November 2005 1.4 0.92 5.8 0.53 

 

7.11 Conclusions 

This chapter has presented a methodology that captures the temporal 

variability of soil moisture using different standardization factors and spatial 

variability using a “window” method, yielding soil moisture retrieval with 

an acceptable error.  The effects of using different standardization factors 

both with and without a “window” are also shown and discussed.  

Compared to the general ANN application for soil moisture retrieval, the 

combination of these two methods has solved the problem of “out-of-range” 

conditions when the trained ANN is used to retrieve results for future data 

which is totally new and not previously “seen” by the ANN during the 

training process.  The “out-of-range” problem is mainly due to the inability 

of the ANN to capture the spatial and temporal variability of the soil 

moisture.  Temporal variability is a common condition in soil moisture 

prediction problems when the prediction is needed on a different date to that 

used in the training process, as it is not easy to cover all the conditions 

during the training. Spatial variability occurs as soil moisture values can vary 

greatly even within a square metre.  .  For temporal variability, the trained 

ANN model is able to predict soil moisture of an unknown future date which 

is almost certain to have a pattern different from the training data (“out-of-

range” condition).  For spatial variability, the ANN model is shown to be 

able to predict soil moisture for each cell at different 1km locations on the 

40km×40km study area.   
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Despite the encouraging results, the main challenge of this method is 

the estimation of the variability in terms of the mean and standard deviation 

of the soil moisture at the optimum window size as the de-normalization 

factors for the ANN.  The actual soil moisture values will not be available for 

future dates so some means of predicting them or using surrogate is needed.  

In this thesis, the mean and standard deviation within a pre-determined 

window size is calculated using the actual soil moisture values within the 

window.  A method of predicting the soil moisture values from input data 

for de-normalization is evaluated using multiple linear-regression.  The soil 

moisture values are regressed using the TbH, TbV, Ts and NDVI with a 

selected number of samples and the mean and standard deviation values 

within the window are calculated with the regressed soil moisture values.  

The results show that, the proposed approach depends greatly on the 

accuracy of the mean and standard deviation of the soil moisture values.  

Therefore, the practicality of this method depends on a highly accurate 

method in retrieving the mean and standard deviation of the soil moisture 

values within the optimum window size. 
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Chapter 8  

  
Downscaling of Soil Moisture 

 
Downscaling procedures offer the possibility that the desired fine scale 

statistical properties of soil moisture fields can be inferred from coarse-scale 

data.  A novel approach using an ANN to downscale soil moisture is 

presented in this chapter.  An introduction to the problem of downscaling 

has been presented in Section 5.3.2 and the general methodology used for 

downscaling in this research was outlined in Section 5.4.2.  In the literature, 

the term disaggregation is used to refer to downscaling and hence, in this 

chapter, the word downscaling and disaggregation can be regarded as 

interchangeable.   

 

8.1 Overview  

The basic principle of the proposed methodology in capturing the spatial and 

temporal variability of soil moisture in Section 7.2 is also used for the 

downscaling of soil moisture retrieval.  For the purposes of this study, the 

downscaling scale is from 20 km to 1 km.  The linear relationship between 

the soil evaporative efficiency and near surface soil moisture approach by 

Merlin et al (2008b) is adapted in this study and is discussed below.  This 

relationship is incorporated into the ANN model that will be used for 

downscaling purposes.  A description of this relationship is first presented, 

followed by outlining how this relationship is incorporated into the ANN 

model.  Different results of testing and verification of this methodology are 

presented. 
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8.2 Soil Evaporative Efficiency  and Near  Surface 
Soil Moisture 

This section of the thesis will explore the approach by Merlin et al. (2008b). 

8.2.1 Deterministic Downscaling Approach  

A deterministic approach for downscaling of soil moisture from 40 km 

resolution SMOS observations was developed from 1 km resolution MODIS 

data by Merlin et al. (2008b).  The disaggregation scale was fixed at 10 km.  In 

further work, Merlin et al. disaggregated microwave-derived soil moisture 

from 40 km to 4 km using MODIS data with a resulting RMSE of 2.6% v/v 

(Merlin et al. 2009).  The 1 km resolution airborne L-band brightness 

temperatures from the NAFE 2006 experiment were used to generate a time 

series of eleven clear sky 40 km by 60 km near-surface soil moisture 

observations to represent SMOS pixels across the three-week experiment.  

The NAFE 2006 experiment was similar to the NAFE 2005 experiment but 

covered a different site.  The overall RMSE between downscaled and 

observed soil moisture varies between 1.4% v/v and 1.8% v/v with soil 

moisture values ranging from 0 to 15% v/v. 

 The linear relationship derived from MODIS by Merlin et al. (2008b) 

and physically-based model predictions of soil evaporative efficiency is: 

 

   where: 

 

 

 

 

 

 

 is calculated using: M O D I S


 
(8.1) 
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(8.2) 

  

where: 

 

 

 

 is calculated using the triangle approach (Price 1980; Carlson et al. 1995): 

 
(8.3) 

 

where 

 

 

 

and the vegetation fraction cover,  is defined as: 

 
(8.4) 

 

  

where:  

 

 

 

In the study by Merlin et al. (2008b), the  and  were 

assumed to be constant over time within the study area, , , were 

assumed to be uniform within the study area but varying over time.  

Parameters  and were determined from the 16-day NDVI 

product within the SMOS pixel.  Vegetation temperature was estimated 

at the time of overpass (10.00am. or 1.00pm.) as the minimum temperature 
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reached at maximum  ( =1).  Minimum temperature  was used 

as it could be estimated either over fully vegetated pixels by assuming 

or over water bodies as the minimum temperature reached at 

minimum .  Parameter  was the value extrapolated along the dry 

edge of the triangle.  A typical NDVI/   scatter plot is shown in 

Figure 8.1.  The upper edge of the triangle is defined as dry-edge. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Equation (8.1) can be further simplified to: 

 (8.5) 

with:    

 
(8.6) 

 

From Equation (8.2), by assuming that  and are mostly uniform 

within the SMOS pixel and the integral  is approximately equal 

to the areal average of  (designated as ),  can be 

computed as: 
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Figure 8.1.  Simplified NDVI/Surface temperature space (Lambin and 
Ehrlich 1996). 
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(8.7) 

 

The characteristic water fraction  is computed as: 

 (8.8) 

 

where:  (% v/v) and (s/m) are two soil dependent parameters and 

(s/m) is the aerodynamic resistance over bare soil, given the roughness and 

the wind speed at a reference height of 2 m.  The empirical parameter  

controls the soil‟s capacity to retain moisture under optimal evaporative 

conditions, i.e. when wind speed is zero or  is infinite.  In other words, the 

higher  is, the slower the soil dries. 

 

8.3 The ANN Downscaling Approach 

In order for the ANN to learn the downscaling relationship in Equation (8.5), 

the ANN will need three values as input: ,  and  and the 

output of soil moisture at desired downscaled resolution, .  The value of 

 is obtained by aggregating the soil moisture value at the desired 

resolution from the L-band derived soil moisture value.  The value of 

 is calculated from the MODIS/Aqua Land Surface Temperature 

and Emissivity Daily L3 Global (1 km resolution) data to derive the 

, ,  and  values. The values for  and  are 

derived from Band 1 and Band 2 of the MODIS/Aqua Surface Reflectance 

Daily L2G Global (250m resolution) data.  The value of  depends on the 

value of wind speed and is soil dependent but is unavailable for the 

NAFE‟05 data used in this study.  In this study, the ANN is used to learn the 

relationship between ,  and  without the value of  and 

maps a function between these three variables through the learning process 
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for the ANN.  The ANN will calibrate the values of in the relationship 

mapped between the ,  and .  

An analogy for this phenomena is a set of data of a function .  

For a particular situation, let the value of .  By supplying the values of 

 and the value 3 as the inputs, and the calculated  values for the 

corresponding  values, the ANN can map a function between the inputs 

and output using a linear model.  This simple scenario becomes more 

complicated when   is a parameter which is dependent on other factors, i.e. 

the value of  will change.  The value of   is related to wind speed and 

two soil dependent parameters, and hence the “complicated” scenario in the 

analogy happens when this linear relationship is adapted in the ANN model 

without having the value of .    

Figure 8.2 shows the summary of the steps carried out in this 

downscaling study.  This follows the general downscaling approach as 

presented in Section 5.4.2.   
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Figure 8.2.  The general process in the proposed methodology 
used in this downscaling study. 
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8.3.1 Data Preparation  

As the NAFE‟05 field experiment was carried out over a single area of 40km

40km, downscaling from 40 km to 1 km will result in the input of the ANN 

with a constant value of  together with 1600 different values of 

 to predict 1600 different soil moisture  values at 1 km.  As 

constant values of  fail to provide useful information, to avoid this, the 

area of 40km 40km is further divided into 20km 20km “grids”.  The 20km

20km grids (each called “20 km area” hereafter) are chosen to cover as 

much as possible the whole 40km 40km study area.  In order to have more 

data, it would be better to have as many as possible 20 km areas so that 

the ANN can better learn the relationship.  However, there is no rule of 

thumb for how large the data should be.  Therefore, for the purpose of this 

study, seven 20 km areas are selected.  In order to cover as much as possible 

the whole study area, the easiest way is to divide the study area into the four 

20 km area of Grid 1 to Grid 4 of Figure 8.3.  Another three 20 km areas are  

defined by choosing areas which overlap the underlining four grids.   

Although there may be reasons for deciding on which areas to choose as the 

overlapping ones, the three extra ones were randomly selected. This is 

shown as Grid 5 to 7 in Figure 8.3.  From the seven 20 km areas selected, all 

seven areas are used for the training phase while for evaluation purpose, 

only Grid 1 to Grid 4 are used.  The 1 km soil moisture product within the 20 

km area is aggregated to form the coarse scale soil moisture value (20 km 

resolution).  
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Figure 8.3.  Locations of the seven selected 20 km areas on the 40km×40km 
study area. 

 

8.3.1.1 Data Division: Training, Validation and Testing Sets 

 

The regional data acquired on 7th, 14th and 21st Nov 2005 are used (see 

Section 6.1). For each of the 20 km areas, there will be one similar  

value for all the 400  values at 1 km resolution.  During the training 

phase, the data on the 7th November 2005 are used.  With the 2800 data 

points available on this date, 140 or 5% of the data is randomly selected 

(again using the MATLAB random number function previously mentioned) 

for each of validation and testing sets while the remaining 90% of the data 

are kept for training.  The data on the 14th and 21st November 2005 are kept 

as the evaluation cases.  The data division process is shown using a 

schematic diagram in Figure 8.4.   
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Figure 8.4.  Schematic diagram showing the data division process for the 

downscaling methodology. 
 

8.3.2 ANN Architecture 

The inputs of the ANN are  and  , while the output is .  The 

number of nodes in the input and output layers are determined by the 

number of input and output parameters. However, a decision needs to be 

made regarding the number of hidden layers and the number of hidden 

neurons in each of the hidden layers.  The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) training algorithm is used which gave the best results for  soil 

moisture retrieval  (Section 7.1.1).   

The details of the neural network parameters used in this study are 

given in Table 8.1.   
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Table 8.1.  The training parameters for the BFGS training algorithm. 
 

Performance goal 0.001 

Maximum number of epochs to train 1000 

Minimum performance gradient 1e-10000 

Maximum validation failures 100 

 

8.3.3 Data Pre and Post-processing for ANN  

The justification and procedures for the process of normalization have been 

presented in Section 7.2.2.  The mean and standard deviation values are used 

as the standardization and de-standardization factors (Section 7.2.2 and 

7.2.3, Figure 7.5).   

 

8.3.4 Window Size Selection 

To select the optimum window size, i.e. size when the desired disaggregation 

accuracy is at most 4% v/v, the data on 7th Nov 2005 is used in the training 

phase while Grid 1 of 14th Nov 2005 is used for the evaluation phase.  This is 

shown in Figure 8.5.  Not all the grids of 14th Nov 2005 are used as this is a 

process of selecting the window size. Moreover, those grids which are not 

used will be useful to evaluate the ability of the trained ANN model on 

unseen data.  Increasing “window” sizes are assessed: 2km×2km , 3km×3km 

and so on.  The grid cells for 2km×2km window are: {A1, A2, B1, B2} while 

the grid cells for the 3km×3km window are {A1, A2, A3, B1, B2, B3, C1, C2, 

C3} which means that the window of size 2km×2km is the subset of the 

window size of 3km×3km (Figure 8.6).  The same relationship exists between 

the window sizes of 3km×3km, 4km×4km and 5km×5km and so on.  With 

such relationships, the variances of the results obtained, if any, are caused by 

the new cells in the larger window.  Moreover, the new cells added in the 

larger windows are close to the smaller sub-set of the larger window.  The 

topography, land uses and soil texture conditions of the new cells are 

expected to be similar to those for the smaller sub-sets.  Therefore, the 
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variance of the soil moisture is not expected to change much across window 

sizes.  

 

 

 

 

Figure 8.6. The different window sizes used for the selecting the optimum 
ANN architecture and window size using data from Grid 1 of 14th Nov 2005. 
 

Figure 8.5. The data division used for selecting the optimum ANN architecture and 
window size. 
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Table 8.2.  The effects of using different numbers of hidden neurons for one 
and two layers in the ANN architecture when tested on different 

“window”sizes of Grid 1 on 14th Nov 2005. 

 

8.3.5 Selection of ANN architecture and “Window” Size 

The ANN of different architecture is first trained using the training data.  For 

each different architecture, the trained ANN model is next tested on the next 

different “window” size.  Using the data division shown in Figure 8.5 and 

the different window size in Figure 8.6, testing is carried out to select the 

optimum ANN architecture, i.e. the number of hidden layers and neurons in 

the hidden layers.  The results are shown in Table 8.2.  Note the RMSE after 

training, is for the best ANN from the training, testing and validation stage.  

Only the results of four “window” sizes: 2km×2km , 3km×3km , 4km×4km  

and 5km×5km, are shown as the result deteriorate greatly for larger window 

sizes.  The RMSE for the testing data are shown to be low (column 3 of 

 Hidden 

Neuron 

RMSE 

After 

training 

(% v/v) 

(R
2
) 

RMSE (%v/v) (R
2
) for Different “Window” Sizes 

2×2 km 3×3 km 4×4 km 5×5 km 

O
n

e 
L

a
y
er

 

2 8.15 (0.74) 4.09 (0.29) 4.69 (0.22) 6.47 (0.05) 6.48 (0.12) 

4 8.12 (0.74) 4.07 (0.55) 4.84 (0.20) 6.50 (0.002) 6.52 (0.02) 

6 8.11 (0.74) 3.89 (0.54) 4.84 (0.15) 6.60 (0.20) 6.49 (0.0002) 

8 8.03 (0.75) 3.80 (0.55) 4.76 (0.18) 6.56 (7.3E-06) 6.51 (0.02) 

10 7.75 (0.76) 3.56 (0.46) 4.59 (0.22) 6.45 (0.003) 6.21 (0.02) 

20 7.75 (0.76) 5.55 (0.13) 6.24 (0.18) 7.43 (0.13) 7.42 (0.13) 

50 7.55 (0.77) 6.02 (0.12) 6.93 (0.24) 6.31 (1E-08) 6.31 (0.12) 

100 7.50 (0.78) 5.08 (0.26) 5.77 (0.26) 6.37 (0.10) 6.60 (0.14) 

T
w

o
 L

a
y
er

s 

2:2 8.19 (0.73) 4.44 (0.17) 4.90 (0.25) 6.48 (0.09) 6.57 (0.13) 

4:4 8.12 (0.74) 3.84 (0.38) 4.49 (0.27) 6.64 (0.08) 6.69 (0.11) 

5:5 8.00 (0.75) 5.00 (0.11) 5.63 (0.15) 6.66 (0.10) 6.88 (0.04) 

10:10 7.76 (0.76) 3.67 (0.40) 4.46 (0.27) 6.54 (0.05) 6.62 (0.05) 

20:20 7.76 (0.72) 4.67 (0.04) 5.33 (0.19) 6.37 (0.11) 6.49 (0.14) 
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Figure 8.5).  This might be because the testing data which are randomly 

selected from the training data are not representative of the training data.   

From Table 8.2, it can be seen that, the prediction results deteriorate 

as the window size increases.  For example, for single layer of two hidden 

neurons, the RMSE values deteriorate from 4.09% v/v for 2km×2km 

“window” size to 4.69%v/v at 3km×3km, to 6.47%v/v and 6.48%v/v for 

4km×4km  and 5km×5km respectively. This is as expected, as soil moisture 

variance observed within a square meter can be as large as a whole field (Van 

Oevelen 1998), depending on homogeneity.  However for the site evaluated 

here, for a bigger “window” size, the soil moisture variance will be higher 

comparing to a smaller “window” size because of a lack of homogeneity.  As 

the variance increases, the ANN is unable to capture this variability, causing 

the retrieval accuracy to deteriorate.     

For a single hidden layer of 10 neurons, the best RMSE obtained is 

3.56% v/v with a correlation coefficient, R2 = 0.46 for the 2km×2km 

“window” size.  For two hidden layers of 10 neurons in each layer, it is 3.67% 

v/v with R2 = 0.40 for the 2km×2km “window” size.  The results show that 

the use of two hidden layers gives little improvement in the accuracy of 

predictions indicating that a more complex model is unnecessary.  In 

addition to this, when the “window” size increases, the RMSE values 

increase.  This was because the training was carried out using 20km×20km 

area and the testing carried out using various window sizes.  The bigger the 

window the harder it is to capture the increased variability of the site.  This 

shows that without the use of the “window” during prediction process, the 

ANN would not work well.  This is verified in the later testing discussed in 

the Section 8.3.6.  

 With this testing, the optimum ANN architecture is set to be 10 

neurons in one single hidden layer with an optimum “window” size of 

2km×2km (shown in bold in Table 8.2).  
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8.3.6  Testing: Evaluation Cases 

With the architecture (number of neurons and hidden layer) and the size of 

the “window” defined, this methodology is evaluated using the data of the 

14th and 21st Nov 2005.   

During the evaluation, the prediction process is carried out using a 

“window” of size 2km×2km.  The prediction process is carried out within the 

“window” before moving to the next location.  This “window” starts from 

the top left corner of the target area, moving to the right, down in a raster 

scanning fashion to the end of the 20 km area.  Figure 8.7 shows the start of 

the “window” of size 2km×2km in one of the 20 km area and the position of 

the next window after this location.  The mean and standard deviation of the 

actual soil moisture within the “window” will be used as the de-

normalization factors for the output of the ANN model.   

 

  
Figure 8.7. The the first and second 2km×2km moving windows and its 

moving direction. 
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Table 8.3.  The RMSE values obtained for each of the 20×20 km grids in the 
40×40 km target area. 

 

 

 

  

 

 

 

 

 

 
a. 

 
b. 
 

Figure 8.8. The relationship between actual and predicted soil moisture after 
applying the disaggregation method on a. 14th Nov 2005, and b.  21st Nov 

2005. 
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Date Grid (20×20 km) RMSE (%v/v) 

14th Nov 2005 Grid 1 3.5 

 Grid 2 3.4 

 Grid 3 2.3 

 Grid 4 1.8 

21st Nov 2005 Grid 1 2.7 

 Grid 2 2.9 

 Grid 3 2.0 

 Grid 4 2.3 
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Using this methodology, the RMSE between the actual and predicted 

values for each of the four grids of the 14th and 21st November 2005 are 

shown in Table 8.3.  The correlations of the actual and predicted soil 

moisture are shown using scatter plots in Figure 8.8.  The actual and 

predicted soil moisture maps are shown in Figure 8.9 show reasonable 

correspondence between the actual and predicted maps.  From the spatial 

difference of the soil moisture map, generally, the predicted soil moisture 

using this methodology is slightly lower compared to the actual soil moisture 

as evidenced by the large number of cells of positive difference.    

From Table 8.9 , it can be seen that the RMSE values range from 1.8% 

v/v to 3.5% v/v.  Figure 8.10 shows the standard deviation values for each of 

the 2 km×2 km “windows” in each 20 km area for each evaluation date.  

From this figure, it can be seen that the variability of soil moisture for Grids 3 

and 4 for both dates is smaller, resulting in a maximum RMSE of 2.3% v/v.  

Grids 1 and 2 show greater soil moisture variability for both dates (Figure 

8.10).  With higher variability, the RMSE values obtained are higher.  The 

RMSE values ( see Figure 8.10 for grids 1 and 2 on both dates) show that the 

ANN model fails to capture the variability of the soil moisture when the 

variability of the soil moisture is high.  In other words, even with the use of 

2km×2km “window”, the capabilities of the ANN in capturing the soil 

moisture variability is shown to be low, and hence the ANN might not be 

able to generalize well if the downscaling is done for the whole target area 

(i.e. without the use of “window”).  To verify this conclusion, further 

analyses are carried out in Section 8.4.  
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i.  Actual soil moisture map ii. Predicted soil moisture map iii. Difference  

a. Soil moisture map at 1 km resolution on 14
th

 Nov 2005. 

   

i. Actual soil moisture map ii. Predicted soil moisture map iii. Difference 

b. Soil moisture map at 1 km resolution on 21
st
 Nov 2005. 

 
 

Figure 8.9.  The actual and predicted soil moisture maps at 1 km resolution after applying the downscaling 
methodology.  The difference between the actual and predicted soil moisture for each date is also shown. 
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8.4 Methodology Verification 

The methodology proposed in this chapter is a combination of the use of 

“windows” and the different standardization factors for downscaling using 

an ANN model.  To verify the use of different standardization factors and the 

“window” methods for downscaling of soil moisture in this chapter, three 

verification experiments are conducted.  The first experiment will verify the 

use of the same standardization factors from training data with the 

“windowing” method, the second experiment focuses on the same 

standardization factors from training data without “windows”, and the third 

experiment will verify the use of different standardization factors without 

“windows”.  The ANN consisting of 2 inputs, 1 hidden layer of 10 neurons 

and 1 output which is trained using the data from the 7th Nov 2005 of Section 

8.3.6. will be used.   

 

8.4.1 Same Standardization Factors from Training Data With 
 Windows  

The mean and standard deviation from the training data are used for the 

evaluation cases (see Section 7.2).  During the prediction process, the 

“window” of size 2 km×2 km is used.  To de-normalize the data, the mean 

and standard deviation values of the actual soil moisture values of the 

training data are used (see Section 7.2).  The results are shown in Table 8.4.  

From this table, it is seen that the retrieval results range from 14.97%v/v to 

63.72%v/v.  The RMSE values show that the ANN is not generalizing as the 

error is larger than the range of soil moisture on the target area (0% v/v to 

50% v/v) (see Section 8.4.2, Figure 8.11).  
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a. 14
th

 Nov 2005 b. 21
st
 Nov 2005 

  

  

  

  

Figure 8.10. The variability of the soil moisture values for each of the 2 km×2 
km “window” on each 20 km area. 
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Table 8.4.  Prediction of 1 km using 2 km×2 km “moving windows” using 

the standardization factors from the training set. 

Date Grid RMSE (%v/v) R
2
 

14
th

 November 2005 1 17.23 0.0005 

 2 45.48 0.04 

 3 31.78 0.0002 

 4 55.33 0.10 

21
st
 November 2005 1 18.04 0.09 

 2 56.18 0.22 

 3 14.97 0.04 

 4 63.72 0.06 

 

8.4.2 Standardization Factors from Training Data Without 
 “Moving Windows”  

The importance of “moving windows” is verified using both the 

standardization factors obtained from the training data and the retrieval of 

the soil moisture of the 20 km area, i.e. the use of same standardization 

factors and not using “window”.  The results are shown in Table 8.5.    

 

Table 8.5.  Disaggregation to 1 km resolution using the same standardization 
factors from the training set without the use of “moving windows”. 

 

Date Grid RMSE (%v/v) R
2
 

14
th

 November 2005 1 31.46 0.001 

 2 53.43 0.06 

 3 53.03 0.02 

 4 57.13 0.24 

21
st
 November 2005 1 50.94 0.20 

 2 56.19 0.20 

 3 29.31 0.10 

 4 63.72 0.06 

  

 Comparing to Table 8.4, it can be seen that the disaggregation results 

deteriorate without the use of “windows” (Table 8.5).  For example, the 

RMSE on 14th Nov 2005 for Grid 1 deteriorates from 17.23%v/v to 

31.46%v/v, Grid 2 from 45.48%v/v to 53.43%v/v, Grid 3 from 31.78%v/v to 
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53.03%v/v and Grid 4 from 55.33%v/v to 57.13%v/v.  The same trend goes 

for the four grids on 21st Nov 2005.  In fact, the RMSE values show that the 

ANN is not generalizing as the error is larger than the range of soil moisture 

on the target area (0% v/v to 50% v/v).  For example, from Figure 8.11, the 

actual and predicted soil moisture for Grid 4 of 21st Nov 2005 shows that, the 

predicted soil moisture is mostly in the range of 0.65 v/v to 0.85 v/v, which 

is virtually constant with regards to the actual soil moisture values, i.e. a 

horizontal straight line.  Hence, a low  value.   Therefore, from Table 8.4 

and Table 8.5, it can be concluded that, the use of “windows” during the 

disaggregation process improves the retrieval accuracy.  The effects of 

standardization factors in pre- and post-processing of the ANN data is 

verified using the experiment below (Section 8.4.3).  

 

8.4.3 Different Standardization Factors Without “Moving 
 Windows”  

As the proposed methodology used different standardization factors, there is 

a need to verify the importance of this method in the proposed methodology.  

Therefore, a further analysis of the standardization factors on the 

disaggregation accuracy is carried out using different standardization factors.  

The disaggregation is done without the use of “moving windows”, i.e. for the 

whole 20 km area at once.  The pre- and post-processing of the data for the 

ANN is done using the mean and standard deviation  of each of the 20 km 

areas for each date, i.e. the pre- and post-processing of ANN for Grid 1 on 

14th Nov 2005 is done using the mean and the standard deviation of the data 

on this grid, and so on.  The disaggregation results are shown in Table 8.6.   

 

 

 

 

 

2R
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Table 8.6.  Disaggregation results at 1 km resolution without “moving 
windows” with the use of mean and standard deviation values from each of 

20 km regions. 
 

Date Grid RMSE (%v/v) R
2
 

14
th

 November 2005 1 7.29 0.003 

 2 9.02 0.06 

 3 7.77 0.05 

 4 8.24 0.01 

21
st
 November 2005 1 5.80 0.14 

 2 8.67 0.10 

 3 5.79 0.04 

 4 7.53 0.05 

 

 
 

Figure 8.11. Actual and predicted soil moisture values for Grid 4 on 21st Nov 
2005. 

 

Comparing Table 8.4 and Table 8.5, the retrieval accuracies increase.  

For example, the retrieval accuracy for Grid 1 on 14th Nov 2005 is 17.23%v/v 

when the retrieval is done using the standardization factor of the training set 

and with the use of 2km×2km “window” (Table 8.4).  This result deteriorates 

to 31.46%v/v when the standardization factors of the training set are used 

without the 2km×2km “window” (Table 8.5).  With the use of different 
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standardization factors, but without the 2km×2km “window”, the retrieval 

accuracy is better, i.e. 7.29%v/v (Table 8.6).   Therefore, it is concluded that 

the disaggregation to 1 km resolution improves significantly when the 

standardization factors are obtained from the data itself.   The retrieval result 

is the best when different standardization factors are used together with the 

2km×2km “window” (Table 8.3). 

 

8.5 Sensitivity to Mean and Standard deviations  

The proposed methodology utilized the mean and standard deviation of the 

soil moisture at the “window” size to de-normalize the disaggregation 

results from the ANN model.  The 1 km soil moisture product is used to 

calculate the mean and the standard deviation values within the “window”.  

The dependency of the proposed methodology on the accuracy of these two 

parameters is verified by simulating the mean and standard deviation values 

using a multiple regression model.  Using the H- and V-polarized brightness 

temperature (TbH and TbV), the NDVI and Land Surface Temperature (LST) 

from MODIS/Aqua, the soil moisture values at 1 km resolution are 

regressed.  The mean and standard deviation values within the “window” 

are calculated based on the regressed soil moisture values.  

 

Table 8.7.  RMSE and R2 between the regressed and actual soil moisture 
values. 

 

Date Grid RMSE (%v/v) R
2
 

14
th

 November 2005 1 6.4 0.13 

 2 10.5 0.15 

 3 6.3 0.27 

 4 9.1 0.43 

21
st
 November 2005 1 4.3 0.29 

 2 8.7 0.001 

 3 3.1 0.57 

 4 6.1 0.23 
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For each of the dates (7th, 14th and 21st Nov 2005), 18 data (around 1%) 

of the data are randomly selected (using the MATLAB random number 

function) for the regression.  The rationale behind the small number of data 

selected is to simulate a situation where these data are ground-truth samples.  

With more data selected, the regression formula will be more accurate, but at 

the same time, more sample points will need to be taken if ground sampling 

has taken place (see Section 7.10).  Table 8.7 shows the RMSE and R2 values 

for each of the 20 km areas for each date.  The disaggregation is carried out 

with the 2km×2km “windows” and the results are shown in Table 8.8. 

From Table 8.8, it can be seen that the RMSE values between actual 

and predicted soil moisture are similar to the RMSE values between the 

regressed and predicted soil moisture values in Table 8.7.  As the predicted 

soil moisture values (using the ANN model) are very close to the regressed 

soil moisture values (using the linear regression model), the RMSE values 

between the actual and predicted soil moisture exhibit similar RMSE values.  

From this experiment, it is shown that the accuracy of the disaggregated soil 

moisture with this methodology depends greatly on the accuracy of the 

mean and standard deviation values used.   

Table 8.8.  The RMSE and R2 values obtained using the ANN for 
disaggregation. 

Date Grid Regressed and Predicted 

SM 

Actual and Predicted 

SM 

RMSE (%v/v) R
2
 RMSE 

(%v/v) 

R
2
 

14
th

 November 

2005 

1 2.6 0.74 6.2 0.14 

 2 2.9 0.53 10.5 0.15 

 3 2.6 0.73 6.3 0.30 

 4 2.6 0.71 9.1 0.50 

21
st
 November 

2005 

1 1.5 0.82 4.3 0.28 

 2 1.8 0.45 8.7 0.00 

 3 1.7 0.82 3.1 0.58 

 4 1.8 0.72 6.1 0.25 
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8.6 Conclusions 

This chapter has presented a novel ANN approach that utilizes the 

variability in terms of the mean and standard deviation values as the de-

standardization factors in the ANN model with “windows” method to 

disaggregate soil moisture values from 20 km to 1 km resolution.  This model 

improves the ability of the ANN to capture the variability of soil moisture 

values when disaggregated from coarse resolution data.  The method has 

shown to achieve RMSE values ranging from 1.8%v/v to 3.5%v/v, with an 

average of 2.7%v/v.  The benefit of this method is in terms of the minimum 

input variables required.   

 The challenges of this approach include the following:  

1.  The number of data needed to train the ANN in order for the ANN 

to learn the relationship between the , and .  The number of 

data should be large enough in order for the ANN to map the function.  In 

the approach proposed in this thesis, as the data are only available on three 

different dates, and with the aim of this thesis of developing an ANN model 

which can be tested with at least two real problems (see Section 3.7), the 

target area of 40 km×40 km is divided into seven 20 km areas for training in 

order to avoid the problem of supplying constant values to the ANN model.   

2.  The variability values, i.e. mean and standard deviation values, at 

the “window” size for the de-normalization purpose.  In this study, the mean 

and standard deviation values are estimated from the actual soil moisture 

values and from multiple linear-regression.  However, in real life, the 

estimation of the mean and standard deviation values of actual soil moisture 

at the “window” size, especially at a size as small as 2km×2km, will need to 

be further investigated.  One possible solution towards this challenge is to 

use radar data that promises higher resolution data.  It is believed that by 

incorporating radar data of a higher resolution, this methodology will be able 

to disaggregate soil moisture to a resolution finer than the resolution of the 

radar data.  By incorporating both passive and active microwave data, the 

accuracy of this methodology for disaggregation purpose will therefore 

 SMOS
M O D I SSM P
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depend on the accuracy of the radar data in order to disaggregate to a 

resolution finer than the radar resolution.  The minimum input variables 

required for this methodology is the main advantage of this approach.   An 

alternative approach is discrete possibly sparse ground sampling of soil 

moisture or a surrogate. 

 With SMOS having a resolution of around 40km×40km, it is argued 

that this method can lead to the disaggregateion of the data to 2 km 

resolution (20 times as suggested in this chapter) at an accuracy of around 

3% v/v, provided an acceptable mean and standard deviation accuracies 

(around 3% v/v) at a resolution of around 4km×4km can be obtained.  In fact 

Merlin et al. (2008b) have proposed that their method can also downscale 20 

times.  The performance of achieving this using the ANN approach will 

require further investigation. 
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Chapter 9  

 

Conclusions, Contributions and 
Future Work 

 
 

9.1 Conclusions 

This research can be divided into two main parts: i. scale-to-scale soil 

moisture predictions; and, ii. soil moisture disaggregation from coarse scale 

resolution data.  From the results of this study, it is clear that passive 

microwave remote sensing has significant capabilities in estimating soil 

moisture in faster and more reliable ways and with sufficient accuracy using 

ANNs.   The data used in this research is generally at 1 km resolution.  The 

main reason for using data at this resolution is that there is a large amount of 

data available for the sites of interest which enables the ANN model to 

reliably and representatively learn and map the relationship between sensed 

input data and output predictions. The ANN is trained using a single date: 

7th Nov 2005, and was verified using data from two different dates: 14th and 

21st Nov 2005. Good performance for the evaluation cases demonstrate the 

ability of ANN to generalize to other dates. 

The microwave response to surface characteristics is not only strongly 

dominated by the volumetric surface soil moisture, but also by vegetation 

attenuation and the effective surface temperature (Kerr et al. 2001).  In this 

research, the influence of these two factors was studied in terms of their 

effects on the accuracy of the soil moisture retrieval using ANNs.  The 

backpropagation neural network model, a popular form of ANN and the 

most commonly used ANN model for soil moisture retrieval, is used in this 

research.  The NDVI and the surface temperature were combined with the 
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dual-polarized brightness temperature to form the input for the ANN model.  

The architecture of the ANN in terms of the number of hidden neurons and 

hidden layers was analysed using different combinations of these inputs.  

A novel approach which utilizes the mean and the standard deviation 

values as the de-normalization factors for the output of the ANN was 

developed to capture the temporal variability of the soil moisture values.  

This approach is combined with a methodology that predicts soil moisture 

values at a pre-determined “window” size within the target area to capture 

the spatial variability of the soil moisture values.  The optimum “window” 

size for the spatial variability statistics where the ANN manages to obtain a 

RMSE of less than or equal to the globally acceptable retrieval error of 4% 

v/v was analysed.  This approach is adopted for both the scale-to-scale and 

the downscaling methods for soil moisture prediction. For scale-to-scale 

retrieval, the retrieval results are 3.9%v/v and 3.4%v/v for data on 14th Nov 

and 21st Nov 2005 respectively, while for downscaling, the average RMSE 

value obtained is 2.7%v/v.This method shows that an ANN can be used both 

for scale-to-scale and downscaling methods of soil moisture prediction.  In 

addition to this, it was also shown that the ANN is able to maintain stable 

prediction results when independent and new data sets are used.  For scale-

to-scale retrieval, the optimum “window” size was determined to be 

4km×4km with an ANN consisting of a single hidden layer of 20 neurons 

while for downscaling purpose, it is 2km×2km. 

The addition of satellite derived data such as NDVI and land surface 

temperature (LST) derived from MODIS data produced little improvement in 

the scale-to-scale predictions, although these two parameters have been used 

to retrieve soil moisture from passive microwave through the “universal 

triangle” method by Hossain and Easson (2008b)   

The soil moisture spatial variability is mainly affected by physical 

properties such as climate, soil texture, vegetation and topography in natural 

catchment or agricultural areas (Mohanty and Skaggs 2001).  In this work, as 

the study area only covers an area of 40km×40km, the climate factor can be 
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neglected.  Jacobs et al. (2004) and Mohanty and Skaggs (2001) concluded that 

topography is a crucial physical factor in understanding surface soil moisture 

variability. Teuling and Troch (2005) pointed out that soil and vegetation 

may be important factors that can increase or decrease soil moisture variance.  

There is therefore a need to incorporate these factors into soil moisture 

prediction using ANN models.  In this research, this was done by 

incorporating the mean and standard deviation of the actual soil moisture 

values as the de-normalization factors and the “window” method in the 

ANN model.  The ANN was shown to capture the temporal and spatial 

variation with this methodology.  Multiple linear-regression was 

investigated as a method of determining the mean and standard deviation 

from the input data for standardisation with the result that if the estimates 

were poor, then the prediction of  soil moisture was poor.   

For disaggregation of soil moisture, the linear relationship between 

the soil evaporative efficiency and near-surface soil moisture approach by 

Merlin et al. (2008b) was incorporated into the ANN model.  The soil 

moisture at the desired downscaled resolution, , can be written as a linear 

relationship between the soil moisture at SMOS scales or a coarse scale , 

characteristic volume fraction , and the  value (Chapter 8).   As 

is not available for the NAFE‟05 data, the ANN model learns to map the 

relationship between the target  and the inputs of  and .  

The spatial and temporal variability in terms of the mean and the standard 

deviation of the soil moisture were used as the de-standardization factors for 

the ANN model. Using the same principle as in the scale-to-scale soil 

moisture retrieval in Chapter 7, the spatial variability of soil moisture is 

captured using a method that predicts soil moisture at a pre-determined 

“window” size.  During training, as the data were not organized according to 

the spatial location and not using the “windows” method, the RMSE values 

obtained are high.  Different “window” sizes were used to determine the 

optimum size and this was found to be 2km×2km with 10 hidden neurons in 


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

C


M O D I S
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C
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a single hidden layer.  This novel approach was used to disaggregate a total 

of eight different 20km×20km coarse scale soil moisture data sets from the 

14th and 21st Nov 2005 to 1 km soil moisture data.  The disaggregation 

accuracies obtained were between 1.8 %v/v and 3.5% v/v of RMSE.  This 

shows that this novel approach is applicable to disaggregate soil moisture 

from 20 km to 1 km using an ANN without the need to incorporate any 

empirical parameters.   

 
9.2 Contributions 

The contributions of this research to the problem of passive microwave soil 

moisture prediction using the ANN approach can be summarized with 

respect to the objectives identified in Section 1.3: 

i. A methodology to predict soil moisture at 1 km resolution 

using 1 km input data.  The methodology developed is capable 

of capturing the spatial and temporal variability of soil 

moisture and provide a stable and encouraging results when it 

was used on data of different dates on the same target area.  

This solves the common issue of not being able to work with 

data which are “out-of-range” with the ANN model.   

ii. The use of ancillary data, i.e. NDVI and LST data in this 

research study, as the input of the ANN model is shown to 

produce minimal improvement to the prediction accuracy for 

scale-to-scale soil moisture prediction.  Therefore, only the 

dual-polarized brightness temperatures are used to predict soil 

moisture in this thesis. 

iii. A methodology for the downscaling of soil moisture from 20 

km to 1 km resolution using the ANN model.  This developed 

model shows that the downscaling of soil moisture data can be 

done using only data from two satellites, i.e. MODIS and 

passive microwave data, without the incorporation of data 

obtained empirically.    
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The main contribution of this thesis is the development of a novel 

approach which aids the ANN‟s generalization ability across different dates 

with encouraging and stable results.  This approach utilizes the mean and 

standard deviation of ground truth soil moisture values as the de-

standardization factors in the ANN model and “windows” method during 

the prediction process.  It is found that the use of the mean and standard 

deviation as the de-standardization factors and the “moving window” 

methodology manages to capture the temporal variability and the effects of 

topography, vegetation and soil.  With this innovative approach, the ANN is 

able to account for spatial variations in soil type and temporal variation in 

soil moisture condition. This methodology is applied to both scale-to-scale 

and disaggregation soil moisture retrieval methods with the use of two 

evaluation cases which are neither: i. a subset obtained from the training data, 

nor, ii. data which are modelled within the constraints of the conditions on 

the training data.  The use of two evaluation cases verifies the capability of 

this methodology for soil moisture retrieval to generalise over time and 

locations within the same target area.  

 

9.3 Future Directions 

Although the use of mean and the standard deviation values of the soil 

moisture as the de-normalization factors and the “window” method in the 

prediction process have showed their capabilities in improving the retrieval 

accuracy, further exploration of the practicality of this methodology is 

needed.  This is mainly due to the dependency of this methodology on the 

accuracy of the mean and standard deviation values of the ground truth soil 

moisture data as shown in Section 7.10 and Section 8.5.  The corresponding 

mean and standard deviation values used in this research study are 

calculated by using the soil moisture values at 1 km.  Therefore, there is room 

for improvement, such as the development of an algorithm to predict the 

mean and standard deviation at the pre-determined “window” size.  Further 

work is required to determine good surrogates for the actual soil moisture.  
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This is an important task in order for this methodology to be practical.  One 

possible solution towards this challenge is to use radar data that should 

produce higher resolution data.   

Moreover, as the data used in this work focuses only on a single site, 

further testing is needed to assess the applicability of such an approach for a 

wider range of surface conditions, especially over heavily vegetated areas. 

 As only field experiment data were used in this research, it is 

necessary to examine the capability of this methodology using the SMOS 

satellite data.  This is especially important for the methodology of 

downscaling soil moisture data.  In this research, as the data from the field 

experiment was only from a single site area of 40km×40km, the problem of 

data inadequacy resulted in dividing this site into different 20km×20km 

regions.  Although the results obtained were very encouraging, and with an 

expectation that the method can be applied to downscale data from the 

SMOS satellite (~40km resolution) to 2 km resolution (20 times as suggested 

in this thesis) at an accuracy of ~3% v/v (provided the mean and standard 

deviation at a resolution of 4km×4km can be obtained at an accuracy of 

around 3% v/v), further verification of the practicality of this approach is 

needed.    
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