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Abstract

Drought poses the greatest threat to freshwater availability and food se-

curity, affecting larger areas for longer periods than any other natural hazards.

In many regions, droughts increase in frequency and severity due to climate

change. As a slow developing natural disaster, better estimates of water avail-

ability can be valuable for forecasting droughts and their impacts on ecosystem,

agriculture and food security. With accurate knowledge of root-zone soil water

and groundwater dynamics, effective planning of water resources and agricul-

ture can be made months in advance. However, the simulated root-zone soil

moisture and groundwater are often highly uncertain due to the unpredictable

nature of soil water and groundwater dynamics caused by human activities

such as water extraction and irrigation. Ground-based and remotely sensed

measurements of water content are often limited in both spatial coverage and

temporal resolution. Therefore, quantifying the change of water availability

and its impacts on vegetation conditions at large scales remains largely unex-

plored.

In my study, contrasting satellite observations of water presence over dif-

ferent vertical domains were assimilated into a global water balance model,

providing unprecedented accuracy of soil moisture profile and groundwater

storage estimates. The water availability at different depths observed from

soil moisture (SMOS) and space gravity (GRACE) missions provides an op-

portunity to separate total water storage vertically into different layers through

data assimilation. However, combining these two data sets is challenging due

to the disparity in temporal and spatial resolution at both vertical and hori-

zontal scales. SMOS provides global high spatial and temporal resolution (i.e.

40𝑘𝑚2, 3-day) near-surface (0-5cm) soil moisture estimates from microwave

brightness temperature observations. In contrast, the GRACE mission pro-

vides accurate measurements of the entire vertically integrated terrestrial water

storage column, but it is characterized by low spatial and temporal resolutions



(i.e. 300𝑘𝑚× 300𝑘𝑚, monthly). An ensemble Kalman smoother based global

data assimilation system was developed to resolve the discrepancy between

model and observations in space and time.

The use of data assimilation integrates these two measurements to effec-

tively constrain model simulations and to accurately characterize the vertical

distribution of water storage. Compared with model estimates without the as-

similation or single-variant assimilation, joint assimilation typically led to more

accurate soil moisture profile and groundwater estimates with improved con-

sistency with in situ measurements. The improved water storage estimates in-

tegrated over different depths were used to determine the vegetation-accessible

storage in association with vegetation growth and surface greenness. Accessible

storage reflects a combination of vertical root distribution and soil properties,

and its spatial distribution correlates with aridity and vegetation type. Skill-

ful forecasts of vegetation conditions are achievable several months in advance

for most of the world’s drylands, which offers exciting new prospects for the

improvement of drought early warning systems to help reduce human suffering

and economical and environmental damage.



Contents

1 Introduction 1

1.1 Climate, water and vegetation . . . . . . . . . . . . . . . . . . . 1

1.1.1 Drought monitoring and forecasting . . . . . . . . . . . . 1

1.1.2 Vegetation response to water availability . . . . . . . . . 3

1.1.3 Monitoring water availability . . . . . . . . . . . . . . . 5

1.1.4 Hydrological data assimilation . . . . . . . . . . . . . . . 7

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Water balance model and satellite water observations 13

2.1 Ecohydrological model . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Model structure . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 GRACE terrestrial water storage . . . . . . . . . . . . . . . . . 15

2.2.1 Mission overview . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 SMOS surface soil moisture . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Mission overview . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Joint assimilation of GRACE and SMOS water content re-

trievals 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



CONTENTS

3.2 Materials and Method . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Hydrological modelling . . . . . . . . . . . . . . . . . . 28

3.2.2 Satellite observations . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Data assimilation method . . . . . . . . . . . . . . . . . 32

3.2.4 Model evaluation . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Contributions of SMOS and GRACE data to different

water stores . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Consistency with satellite retrievals . . . . . . . . . . . . 45

3.3.3 Evaluation against near-surface soil moisture measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Evaluation against root-zone soil moisture measurements 50

3.3.5 Evaluation against groundwater level measurements . . . 51

3.3.6 Evaluation of evapotranspiration and streamflow . . . . . 53

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Disaggregation of monthly integrated water storage . . . 54

3.4.2 Impact on soil moisture profile estimates . . . . . . . . . 57

3.4.3 Impact on groundwater estimates . . . . . . . . . . . . . 58

3.4.4 Impact on evapotranspiration and streamflow . . . . . . 59

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Improved global root-zone soil moisture estimates 63

4.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Ecohydrological model . . . . . . . . . . . . . . . . . . . 68

4.2.2 Land cover types . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Satellite-observed water content . . . . . . . . . . . . . . 70

4.2.4 International Soil Moisture Network . . . . . . . . . . . . 70

4.2.5 Satellite-observed greenness . . . . . . . . . . . . . . . . 72

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



CONTENTS

4.3.1 Data assimilation . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Evaluation of soil moisture estimates . . . . . . . . . . . 75

4.3.3 Analysis of vegetation response to root-zone soil moisture 75

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Near-surface and root-zone soil moisture estimation . . . 77

4.4.2 Relation between vegetation greenness and soil water

availability . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Trends in soil water availability and vegetation response 83

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Forecasting dryland vegetation conditions months in advance 91

5.1 Main text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Summary and outlook 105

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Satellite data assimilation . . . . . . . . . . . . . . . . . 106

6.1.2 Improved estimation of soil water availability . . . . . . . 107

6.1.3 Advancing drought impacts . . . . . . . . . . . . . . . . 107

6.2 Limitation and future work . . . . . . . . . . . . . . . . . . . . 108

iii



CONTENTS

iv



List of Figures

2-1 GRACE total water storage anomalies in EWH (equivalent wa-

ter height) in March 2003 from JPL spherical harmonics solu-

tions and mascon solutions. . . . . . . . . . . . . . . . . . . . . 18

2-2 Example of CATDS Level-3 daily soil moisture retrievals (20th

Feb 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-1 In-situ observation networks for validation . . . . . . . . . . . . 41

3-2 Averaged analysis increments to individual water storage com-

ponents (top-, shallow-, deep-layer soil water, groundwater stor-

age, and total water storage) in percentage (𝑥𝑎-𝑥𝑜)/𝑥𝑜 in March

and September . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-3 Consistency with SMOS and GRACE data . . . . . . . . . . . . 46

3-4 Time series of SM and TWSA for Yanco before and after the

assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-5 Inconsistent trends between rainfall, SMOS and GRACE data

over 2010 to 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-6 Correlation of model-simulated soil moisture with in-situ obser-

vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-7 Correlation increments (𝑟𝑎-𝑟𝑜) of model-simulated groundwater

storage anomalies with in-situ water level measurements . . . . 53

3-8 Performance of four assimilation experiments on improving dif-

ferent water balance components and statistics of correlation

increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



LIST OF FIGURES

4-1 Averaged relative error of satellite-observed water content in

different land cover types for: (a) SMOS-derived soil moisture;

(b) GRACE-derived total water storage. . . . . . . . . . . . . . 71

4-2 Distribution of in situ near-surface and root-zone soil moisture

sites from the International Soil Moisture Network . . . . . . . . 72

4-3 Assessment of near-surface soil moisture estimation with ISMN

in situ measurements from 2010 to 2015 . . . . . . . . . . . . . 78

4-4 Performance of surface and root-zone soil moisture estimates

from four data assimilation scenarios against open-loop . . . . . 79

4-5 Time series of vegetation responses (NDVI) to soil water storage

over different integrated depths across land vegetation . . . . . . 80

4-6 Change in correlation in seasonal cycle and anomaly . . . . . . . 82

4-7 Vegetation response to different sources of soil water availability 84

4-8 Change of soil water availability and vegetation greenness from

2010 to 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5-1 Accessible storage and vegetation dynamics prediction skill . . . 95

5-2 Global distribution of accessible storage capacity and skilful

forecast lead time . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-3 The 1-month and 3-month forecasts of vegetation condition . . . 98

6-1 Catchment boundaries and coincident model grid cells for stream-

flow evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



List of Tables

3.1 Spatial-averaged correlation of relative wetness and TWS with

SMOS and GRACE data for open-loop model simulation and

different data assimilation experiments over the Australian con-

tinent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Evaluation of near-surface and root-zone soil moisture estima-

tion with ISMN in situ soil moisture observation across land

cover types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Locations of aggregated surface soil moisture in-situ observations132

6.2 Correlation of model-estimated surface soil relative wetness com-

pared with in-situ data . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Correlation of model-estimated root-zone soil water storage com-

pared with in-situ data . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Evaluation of streamflow and evapotranspiration estimates with

in-situ measurements for open-loop model simulations and dif-

ferent data assimilation experiments . . . . . . . . . . . . . . . . 135

vii



LIST OF TABLES

viii



Chapter 1

Introduction

1.1 Climate, water and vegetation

1.1.1 Drought monitoring and forecasting

Among all natural disasters, drought poses the greatest threat to fresh-

water and food security, affecting people over larger areas and for longer pe-

riods. Droughts of the 21th century are exacerbated by the change in cli-

mate and the increase in water demands. The increasing frequency, severity

and duration of droughts lead to a rise in drought-driven tree mortality and

ecosystem transformations (Crausbay et al., 2017). The warming climate and

water deficiencies may cause a widespread shift from tree-dominated to shrub

and grass-dominated landscapes (Jiang et al., 2013). Therefore, there is a

compelling need to improve the understanding of vegetation dynamics under

climate change and water stress.

Drought, by definition, is a condition of insufficient usable water sources

(i.e. soil moisture, groundwater, snowpack, streamflow and reservoir stor-

age) caused by precipitation deficit over a time period (McKee et al., 1993).

The drought onset time varies greatly from months to years for agricultural

droughts (soil moisture) and hydrological droughts (groundwater, streamflow

and reservoir). An ideal drought monitoring or forecast system should express

1



CHAPTER 1. INTRODUCTION SECTION 1.1

the water deficit as a function of water source and appropriate time scale.

The most prominent drought indices used for assessing drought severity are

precipitation-based, such as rainfall deciles (Gibbs, 1967) and standardized pre-

cipitation index (SPI) (McKee et al., 1993). However, these precipitation-based

drought indices are primarily for monitoring meteorological drought without

consideration of temperature anomalies, soil effects, land use and crop growth.

The PDSI (Palmer Drought Severity Index) (Palmer, 1968) incorporates an-

tecedent precipitation, moisture supply and moisture demand with a two-layer

lumped parameter model without considering the spatial variability of land

cover and soil properties. The GRACE Groundwater Drought Index (GGDI)

based on satellite-observed water storage budgets can capture the groundwater

drought in U.S. Central Valley, as a results of both human activities and nat-

ural changes, but is not sensitive to soil moisture variability at various depths

(Thomas et al., 2017). Thus, each index has its strengths and weaknesses in

monitoring different types of droughts.

Soil moisture is a key component in the water cycle and an important

regulator of plant productivity. The characterization of the spatial variabil-

ity of soil moisture is highly desirable for monitoring both agricultural and

hydrological droughts. The temporal availability and vertical distribution of

soil moisture indicates the agricultural potential and available water storage

(Keyantash and Dracup, 2002; Sheffield et al., 2004). Drying soil causes re-

duced vegetation productivity and increased fire risk, in turn accelerating the

depletion in groundwater and reservoirs by the increase in human demand

for water. Severe die-off of overstory plants was fround expressed in NDVI

(normalized difference vegetation index) after 15 months of depleted soil wa-

ter content across southwestern North American woodlands (Breshears et al.,

2005). Sheffield et al. (2004) used the drought index combining soil moisture at

different layers to monitor different types of droughts on a monthly time scale

at a high resolution across the Unite States. The lack of long-term and large-

scale soil moisture profile measurements restricts soil moisture modelling based

2



SECTION 1.1 CHAPTER 1. INTRODUCTION

drought monitoring and forecasting (Sheffield and Wood, 2008a; Narasimhan

and Srinivasan, 2005; Sheffield et al., 2004). Thus, accurate observation-based

knowledge of the spatial and vertical distribution of water availability can be

valuable for drought monitoring and forecasting.

Current drought forecasting services emphasize the provision of seasonal

climate forecasts based on atmospheric forecast models (Pozzi et al., 2013).

However, their skill is limited due to the rapidly decreasing predictability of

the climate system beyond the first few weeks. Soil water availability and

vegetation conditions reflect recent and antecedent precipitation with a longer

memory of prevailing climate that can span weeks to months. The soil moisture

at 2-3 m depth can have originated even from past rainy seasons (Schulze et al.,

1996). Thus, better estimation of water availability and vegetation conditions

can be valuable for drought preparation and agricultural planning.

1.1.2 Vegetation response to water availability

Since satellite-observed spectral reflectance from the NOAA AVHRR (Ad-

vanced Very High Resolution Radiometer) sensor became available, the Nor-

malized Difference Vegetation Index (NDVI) has been widely used to char-

acterize the spatial and temporal variability of healthy and dense vegetation

(Kogan, 1995). NDVI is calculated based on the simple phenomenon that green

and healthy vegetation absorbs more visible light (VIR) for use in photosyn-

thesis and strongly reflects near-infrared light (NIR) (Equation 1.1). Stressed

vegetation with increased reflectance in visible light and decreased reflectance

in near-infrared light has lower values of NDVI. Healthy and dense vegetation

has larger NDVI with a maximum value close to 1. NDVI is the primary

tool for monitoring vegetation dynamics on a regional and continental scale

(Anyamba and Tucker, 2005), and it is used more often in investigating eco-

logical responses to climate and environmental change (Liu and Kogan, 1996;

Ichii et al., 2002; Ji and Peters, 2003; Pettorelli et al., 2005; Gu et al., 2007;

Badeck et al., 2004).

3



CHAPTER 1. INTRODUCTION SECTION 1.1

𝑁𝐷𝑉 𝐼 = (𝑁𝐼𝑅− 𝑉 𝐼𝑅𝑟𝑒𝑑)/(𝑁𝐼𝑅 + 𝑉 𝐼𝑅𝑟𝑒𝑑) (1.1)

NDVI is responsive to chlorophyll variations but is vulnerable to additive

noise effects and canopy background variation (Huete, 1988). The enhanced

vegetation index (EVI), which utilizes a blue band in addition to the red and

NIR bands is more responsive to the variations in canopy structure (Huete

et al., 2002). NDVI shows larger dynamic range in semiarid regions than EVI,

but a smaller range over humid forest (Huete et al., 2002). Moreover, NDVI

was found to be more sensitive to crop change during green up and senescence,

while the EVI was found more sensitive at the peak of growing season (Wardlow

et al., 2007). Both NDVI and EVI demonstrated good capability in monitor-

ing vegetation dynamics spatially and temporally and are complementary for

different climate regions and vegetation types.

Soil water availability is a critical factor that governs the spatial and tem-

poral dynamics of ecosystem processes in water limited regions (Singh et al.,

1998). Vegetation conditions are strongly controlled by the pulsing and unpre-

dictable nature of soil moisture dynamics in association with the alterations

of indeterminacy and magnitude of rainfall events (Porporato et al., 2004).

For instance, soil water availability may be different for frequent small pulses

versus one large pulse, depending on whether these pulses occur in a dry or

wet period (Ni et al., 2002). Apart from the precipitation, soil type, land cover

and surface topography predominately determine the vegetation response to

soil moisture fluctuations (Gu et al., 2008). For example, loamy soils suscep-

tible to evaporative loss would have less water available for plant use than

sandy soils in dry regions (Singh et al., 1998). On the other hand, the density

of plants, the stage of plant growth and the rate of evapotranspiration also

constrain the amount of water retained in the soil column (Cassel and Nielsen,

1986). The temporal and spatial variation in water availability and vegeta-

tion response are not linearly related and have threshold behaviors (Snyder

and Tartowski, 2006). The quantification of vegetation responses to soil wa-

4
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ter availability is critical to effectively improve the forecasting skill of climate

impacts on ecosystem structure and function.

The majority of the studies on drought stress on plants are limited to

regional scales. Gu et al. (2008) found that plants were most responsive to

intermediate soil moisture change with 2 weeks time lags in grassland sites

using soil moisture data from Oklahoma Mesonet Network. Chen et al. (2014)

found that vegetation greenness typically lags soil moisture at less than 10 cm

depth by one month over mainland Australia. Similarly, stronger correlation

between NDVI and soil moisture was found to lag by up to 8 weeks in the U.S.

Corn Belt, implying that soil moisture may be a useful predictor for vegetation

condition estimates (Adegoke and Carleton, 2002).

1.1.3 Monitoring water availability

Effective management of water and food security requires reliable predic-

tions of water availability and distributions. Various approaches have been

developed to monitor and predict key components of the water cycle from

distributed hydrological modelling, ground-based monitoring networks, to air-

borne and spaceborne remote sensing techniques. However, advancing real-

time early warning of droughts and floods through forecasting changing water

and vegetation conditions remains challenging regionally and globally.

Hydrological models simulate water content regularly in time and space

through the simulation of hydrological processes. The accuracy of model esti-

mation is largely dependent on the model physics, parameterization and the

quality of forcing data sets. Global models often perform more poorly than

catchment models, owing to the coarse resolution of global meteorological forc-

ing, the lack of model calibration, and the complex and different dynamics of

hydrological process over different regions. The simplification of model physics

is often a trade-off between accuracy and computational cost.

Ground-based monitoring networks are point-scale measurements with

limited number of samples and uneven distribution. Extrapolating isolated

5
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measurements of soil moisture or groundwater level to represent the water

distribution at basin scale is often difficult both spatially and vertically due

to the variations of topography, land cover types and soil properties (Wang

et al., 2007). Therefore, the ground-based measurements are often used for

field experiments and model validation and calibration.

Remote sensing techniques mitigate the absence of observations over large

areas and remote locations and provide opportunities for instantaneous mea-

surements of water cycle components such as precipitation, surface water,

snow, soil moisture, and total water storage. For instance, GPM (Global Pre-

cipitation Measurement) provides global rainfall and snowfall retrievals every

3 hours from 2014 (Hou et al., 2014). Water stored in the uppermost few cen-

timetres of soil is a key to the water and energy exchanges between the surface

and the atmosphere (Kerr et al., 2010). Both passive microwave radiometry

and active microwave radar have been widely used for mapping soil moisture

with the brightness temperature measurements. The primary limitations of

microwave techniques are the radiometric sensitivity to surface heterogeneity,

surface roughness, topography, surface water and RFI (Radio Frequency Inter-

ference). Total water storage as the main cause of time-variable gravity change,

was derived from the GRACE (Gravity Recovery And Climate Experiment)

mission from 2002 to 2017 (Tapley et al., 2004). The strong seasonally varying

signals of water storage derived from GRACE measurements have been widely

used for monitoring the availability of freshwater, especially groundwater (Yeh

et al., 2006; Syed et al., 2008; Rodell et al., 2009; van Dijk et al., 2011; Rodell

et al., 2018). GRACE Follow-On a successor to the GRACE mission, started

tracking Earth’s water movement in 2018. Although, these satellite obser-

vations of water content are spatial comprehensive, the temporal and spatial

resolution are non-continuous and highly constrained by the instruments and

mission design. The combination of model simulations and satellite observa-

tions tends to become the most effective and popular tool for monitoring water

availability recently.

6
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1.1.4 Hydrological data assimilation

Data assimilation was pioneered by meteorologists and has been widely

used to improve weather forecast and ocean dynamics prediction for decades

(Walker and Houser, 2005). Significant advancements in data assimilation in

hydrology applications have been made with the increasing satellite observa-

tions of water cycle such as remotely sensed precipitation, streamflow, surface

soil moisture, snow, and total water storage (Walker and Houser, 2001a; Rodell

and Houser, 2004; Zaitchik et al., 2008; Clark et al., 2008; Liu et al., 2011; Li

et al., 2013). The concept of data assimilation is to optimally merge the infor-

mation from uncertain observations and uncertain model simulations (Reichle

et al., 2002). The criteria used in the estimation process to determine the

influence of dynamics and data onto the state estimate are therefore crucial

for solving this problem (Robinson and Lermusiaux, 2000).

Data assimilation algorithms are developed from simple rule-based direct

insertion, to advanced smoothing and sequential methods, to sophisticated

variational methods (Liu et al., 2012a). The sequential method is a near-real

time model updating method that only uses the present available observations.

It is more computation efficient and suitable for forecasting applications. The

variational method allows the model to run backwards and use both present

and future observations. It is highly suited for reanalysis problems but more

complex to implement. Among various approaches, the ensemble Kalman fil-

ter (Evensen, 2003) is the most widely used data assimilation approach for

its convenience in error covariances estimation for a non-linear model with

propagated ensemble states.

A lot of previous work confirmed that the assimilation of surface soil mois-

ture observations impacts deeper-layer soil moisture predictions and could lead

to improved estimates of evaporative fluxes, drainage and runoff (Walker and

Houser, 2001a; Li et al., 2012; Liu et al., 2011). Walker and Houser (2001a)

implemented a one-dimensional Kalman filter to assimilate near-surface soil

moisture observations into a catchment-based land surface model. The results
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illustrated that the accuracy of soil moisture profile estimates as well as runoff

and evapotranspiration were improved. Renzullo et al. (2014) demonstrated

that the assimilation of AMSR-E and ASCAT-derived surface soil moisture

into the AWRA-L model yielded similar performance for the top-layer, how-

ever ASCAT data improved root-zone soil moisture estimation for more sites.

Li et al. (2012) tested the conventional and mass conservation updating scheme

and showed that both schemes reduced the bias in the shallow root zone and the

mass conservation scheme provided better estimates in the deeper profile. Xu

et al. (2015) and Lievens et al. (2015) assimilated SMOS soil moisture retrievals

over the Great Lakes basin and Murray Darling basin. Moreover, Chakrabarti

et al. (2014) assimilated SMOS soil moisture for quantifying drought impacts

on crop yield and found higher improvement during agricultural drought. An

ensemble Kalman smoother was used to assimilate monthly GRACE TWS into

the Catchment Land Surface Model (CLSM) for the Mississippi river basin

and western and central Europe for improved groundwater estimation (Za-

itchik et al., 2008; Li et al., 2012). Forman et al. (2012) assimilated GRACE

data into a snow-dominated basin, with an ensemble Kalman smoother and a

similar method as used by Zaitchik et al. (2008). They evaluated the results

with snow water equivalent and runoff. Eicker et al. (2014) used an ensem-

ble Kalman filter to assimilate GRACE into the WaterGAP model to update

model states and parameters together. Houborg et al. (2012) and Li et al.

(2012) used GRACE data assimilation system results in drought monitoring

using improved groundwater storage estimates. van Dijk et al. (2014b) devel-

oped a data assimilation scheme that used GRACE data, satellite water level

data and ’off-line’ estimations from several hydrological models in a global

water cycle reanalysis. These various studies showed that data assimilation

holds considerable potential for improving water content estimation, in turn

resulting in better initial conditions for forecasting the impacts of water deficit

on ecosystems.
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1.2 Motivation

Accurate knowledge of water availability is critical for forecasting the im-

pacts of drought on ecosystems, especially in semi-arid and arid regions. Op-

erational systems for drought early warning or water availability monitoring

are still lacking in many parts of the world, in particular in less developed

countries with inadequate monitoring networks and limited facilities. There is

a compelling need for quantifying vegetation response to variations in water

availability for better management of water resources, agricultural planning

and natural hazard preparedness.

In this research, to accurately estimate water storage in individual com-

partments, I developed a global data assimilation framework that optimally

integrates the dynamics of surface soil moisture and total water storage jointly.

The main objective of this study is to improve the prediction of water availabil-

ity and vegetation response with accurate estimates of current water storage

availability at different depths. Informing the water availability and potential

impacts on vegetation vigor months in advance can be of great value to ensure

water and food security and reduce environmental and economical loss.

9
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1.3 Thesis structure

Chapter 2 provides a brief overview of the model and data sets used in this

study, including the water balance model, satellite-observed total water storage

and near-surface soil moisture data.

Chapter 3 to 5 are organized based on three published papers. Consequently,

there may be some repetition in these chapters with the description of dataset

and materials in Chapter 2.

Chapter 3 introduces the data assimilation method developed for this study

to jointly integrate GRACE and SMOS data in a water balance model. The

results were evaluated extensively with in-situ measurements of soil moisture,

groundwater, streamflow and evaporation over Australia. This chapter is based

on the material published in

Tian, S., Tregoning, P., Renzullo, L. J., van Dijk, A. I., Walker, J. P.,

Pauwels, V. R., & Allgeyer, S. (2017). Improved water balance component

estimates through joint assimilation of GRACE water storage and SMOS soil

moisture retrievals. Water Resources Research, 53(3), 1820-1840.

Chapter 4 is a study of the global joint assimilation on improving the estima-

tion of root-zone soil moisture and vegetation response. Further modifications

of the method in the global study are described here. This study focuses on the

investigation of the benefits of improving soil water availability to anticipating

vegetation response. This chapter is based on the material published in

Tian, S., Renzullo, L. J., van Dijk, A. I., Tregoning, P., Walker, J. P. (2019).

Global joint assimilation of GRACE and SMOS for improved estimation of

root-zone soil moisture and vegetation response. Hydrology and Earth System

Sciences, 23(2), 1067–1081

Chapter 5 introduces a forecasting framework using the improved water stor-

age estimates from the global data assimilation in Chapter 4. This chapter
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highlights the benefits of using accurate water availability information in fore-

casting drought impacts on vegetation. This chapter is based on the material

published in

Tian, S., van Dijk, A. I., Tregoning, P.,& Renzullo, L. J. (2019) Forecasting

dryland vegetation condition months in advance through satellite data assimi-

lation. Nature Communications, 10(1), 469

Chapter 6 concludes the key findings of this study with both benefits and

limitations, followed by the suggestions for the future work.

Appendix A includes the supplementary material of the case study in Chap-

ter 3.
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Chapter 2

Water balance model and satellite

water observations

The first part of this chapter briefly introduces the World-Wide-Water (W3)

model used in this study for water balance estimation. To further improve

the water storage estimation, W3 model simulations were constrained by two

types of water content retrievals reflecting water content at different depths.

Retrievals of total water storage change from GRACE and near-surface soil

moisture from SMOS are described in the second part of this chapter include

details of the satellite missions and products.

2.1 Ecohydrological model

2.1.1 Model overview

The ecohydrological model used in this study is the World-Wide-Water

(W3) model, based on the landscape hydrology component model of the Aus-

tralian Water Resource Assessment (AWRA-L) system (van Dijk et al., 2013c)

(available at http://www.wenfo.org/wald/). It is a grid-distributed biophysical

model that provides relevant information about the history and present state of

the water balance in agreement with both ground gauging and satellite observa-
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tions (Van Dijk and Renzullo, 2011). The model has been used in a wide range

of applications, including operational water resources assessment service by the

Bureau of Meteorology Australia (http://www.bom.gov.au/water/landscape/),

drought and flood monitoring (van Dijk et al., 2013b; Guerschman et al., 2011),

and agricultural studies (Bryan et al., 2015). Both W3 and AWRA-L has been

extensively evaluated with in-situ and satellite observations and other models,

and it has been demonstrated to reproduce soil moisture, streamflow, total

water storage, and vegetation greenness with accuracy commensurate to or

better than other models (Van Dijk et al., 2011; Van Dijk and Renzullo, 2011;

van Dijk et al., 2013c).

2.1.2 Model structure

The W3 model can be described as a hybrid between a simplified grid-

based land surface model and a lumped catchment model applied to individ-

ual grid cells (van Dijk et al., 2013c). Each grid cell contains an mix land

cover classes (Hydrological Response Units; HRUs) and is conceptualized as a

catchment that does not laterally exchange water with neighboring cells. The

minimum meteorological input data are daily gridded precipitation, incoming

short-wave radiation, minimum and maximum temperature. These inputs de-

fine the resolution of the model output. Precipitation is assumed to be the only

water input into the system. The precipitation enters the grid cell through the

vegetation and soil moisture stores and exits the grid cell through evapotran-

spiration, run-off or groundwater discharge. Each grid cell contains two HRUs,

namely, deep-rooted vegetation (trees) and shallow-rooted vegetation (grass).

Different vegetation has different degrees of access to soil water. Soil and veg-

etation water and energy fluxes are simulated at sub-grid level by assigning

parameters separately for each HRU. The unsaturated soil water is partitioned

into three layers: top-layer (0-10 cm), shallow-layer (10-100 cm) and deep layer

(1-10 m). The groundwater and river water dynamics are simulated at grid

cell level (van Dijk, 2010a).
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2.2 GRACE terrestrial water storage

Terrestrial water storage (TWS) consists of all forms of water stored above

and beneath the Earth’s surface, including soil water, groundwater, snow, ice,

vegetation water and surface water in rivers, lakes, and reservoirs. TWS is

a controlling component in the water cycle and regulates water, energy and

biogeochemical fluxes (Famiglietti, 2004). Accurate measurements of TWS

have significant implications for water resource management (Syed et al., 2008).

The lack of direct measurements of TWS at large scale was not resolved until

the launch of Gravity Recovery and Climate Experiment (GRACE) satellites

(Tapley et al., 2004). The GRACE mission has revolutionized space-borne

remote sensing, providing remarkable prospects for tracking water movement

over the globe.

2.2.1 Mission overview

The GRACE mission was launched in 2002 to map the global gravity field

with a spatial resolution of hundreds of kilometres. The GRACE Follow-On

(GRACE FO) mission is continuing GRACE’s legacy from May 2018 onwards.

The GRACE mission consisted of two identical satellites flying in a near-polar

obit about 220 km apart and 450 km above the Earth. Mass anomalies

cause a change in the gravity field of the Earth, which affects the flight of the

satellites and causes changes in the distance between them. The changes in

distance between these two satellites, caused by the changing Earth gravity

field, is measured via a sensitive K-band microwave ranging system with a

measurement precision of 10 𝜇𝑚 (Tapley et al., 2004). Each satellite carries

a Global Positioning System (GPS) receiver, laser retro-reflector, star sensors

and accelerometers on board (Bruinsma et al., 2010). The distance between the

two satellites increases when the first satellite approaches a stronger gravity

anomaly and speeds up. The first satellite lingers over the anomaly region

due to the deceleration caused by it. Concurrently, the following satellite will
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catch up to the first satellite, which decreases the distance. Similar changes in

distance occur for weaker gravity anomalies.The time varying Earth’s gravity

map is derived from the continuously changing intersatellite range-rate coupled

with the absolute positions measurements from GPS instruments on board.

The total water storage estimates from GRACE are anomalies with re-

spect to a static reference gravity field. The time varying quantity of the

gravity field is small but contains important geophysical information, reflect-

ing the interaction between the atmosphere, terrestrial water, oceans and the

solid Earth. Since the gravity effects of the solid Earth, oceans, and atmo-

sphere are reduced in the data processing, the GRACE-detected time varying

gravity field mainly reflects the changes in terrestrial water storage on seasonal

and shorter time scales (Jiang et al., 2014). GRACE-observed terrestrial water

storage anomalies at large scale provide a complement to traditional ground-

based hydrological measurements, which tend to be restricted to the scales of

individual catchments (Wahr et al., 1998). GRACE TWS estimates are in-

tegrated water storage changes throughout the whole water column including

the soil water, groundwater, surface water, snow and ice. Due to the highly

accurate, global and homogenous nature, GRACE data have been utilized ef-

ficiently to study terrestrial water storage change, sea-level changes, ice-sheet

mass balance, ocean circulation as well as droughts and floods (Chen et al.,

2009; Hu et al., 2006; Jiang et al., 2014; Ramillien et al., 2008; Rodell and

Famiglietti, 2002; Rodell et al., 2018).

2.2.2 Products

The raw data collected from satellites known as Level-1A are not avail-

able to public. These data go through extensive and irreversible processing

and are converted to the Level-1B data. The Level-1B data including the

inter-satellite range, range-rate and range-acceleration. are used to produce

the monthly gravity field estimates in form of spherical harmonic coefficients as

Level-2 products. The Level-1B and Level-2 products are released by Physical
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Oceanography Distributed Active Archive Center (PO.DAAC) and Informa-

tion System and Data Center (ISDC). GRACE Level-3 products, with time

series of surface mass anomalies after suitable correction and filtering, are

available from different international centres, such as the Jet Propulsion Labo-

ratory (JPL), the Centre of Space Research at the University of Texas (CSR),

the GFZ (GeoForschungsZentrum) German Research Centre for Geosciences

and French Groupe de Recherche de Géodésie Spatiale (GRGS).

By implementing different inversion methods, it is possible to derive the

estimates of the Earth’s temporal gravity field at time intervals of 1-,10- or

30-day (Bruinsma et al., 2010; Kurtenbach et al., 2009; Tapley et al., 2004).

The majority of these solutions solve the gravity field with spherical harmonic

basis functions. Figure 2-1a shows the total water storage anomalies estimates

based on JPL RL05 spherical harmonics. However, empirical smoothing has

to be applied to mitigate the typical north-south stripes for unconstrained

spherical harmonics solutions from GRACE (Swenson and Wahr, 2006). True

geophysical signal of interest along with the stripes can be removed with the

smoother or destriping algorithms in the post-processing. In addition to spher-

ical harmonics solutions, the mass concentration (mascon) solutions have been

used for gravity estimation. JPL RL05M product uses surface spherical cap

mascons to estimate mass change directly from intersatellite range-rate mea-

surement from GRACE (Watkins et al., 2015). The primary advantage of the

mascon solutions is that no post-filtering or scaling is required for users. It

also shows improved spatial resolution and accuracy over areas where the sig-

nal magnitude is small (Watkins et al., 2015). Mascon solution (Figure 2-1b)

shows similar spatial patterns of water storage anomalies with spheric har-

monics solution but stronger magnitude of water loss and gain than spherical

harmonic solution in many places, such as the Amazon, India and Mexico. The

mascon solution also shows the water storage anomalies at the actual resolu-

tion of GRACE without spatial filtering. Therefore, the JPL RL05M 3 degree

monthly mascon solutions (available at the GRCTellus: grace.jpl.nasa.gov)
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were used in this study. In order to better assess or improve hydrological mod-

els, the uncertainties in GRACE TWS estimates need to be quantified and

used appropriately.

Figure 2-1: GRACE total water storage anomalies in EWH (equivalent water height)
in March 2003 from JPL spherical harmonics solutions and mascon solutions.
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2.3 SMOS surface soil moisture

Surface soil moisture is an important reservoir of water that can be evapo-

rated into the atmosphere and also a tracer of precipitation (Kerr et al., 2010).

In contrast to indirect approaches like optical sensing, microwave systems are

capable of measuring the dielectric constant of soil in all weather and are often

less affected by the atmosphere, clouds or vegetation. There are three types of

microwave systems: radar, scatterometer and radiometry. Synthetic aperture

radars (SARs) offer high spatial resolution but rather low temporal sampling

and are affected by speckle and scattering at the surface (Kerr et al., 2010).

Scatterometers compromise between spatial and temporal resolution with a

coarser spatial resolution but a more frequent revisit. The surface roughness

and vegetation effects of the scatterometer data is still significant but provide

relatively accurate measurements over arid and semiarid regions (Gruhier et al.,

2010). Compared to active systems, passive microwaves are less influenced by

surface roughness and vegetation.

Numerous studies have demonstrated the potential of low-frequency pas-

sive microwaves for retrieving surface soil moisture using ground or airborne

radiometers (Schmugge and Jackson, 1994; Chanzy et al., 1997). However, it

requires a large antenna diameter to achieve high spatial resolution which is

really technically challenging. The use of space-borne L-band radiometers was

not possible until the development of interferometry, which can measure the

phase difference of incident radiation (Kerr et al., 2001). SMOS (Soil Moisture

and Ocean Salinity) is the first mission dedicated to global mapping of the

surface soil moisture and ocean sanity together using a low frequency L-band

(1.4 GHz) radiometer.

2.3.1 Mission overview

Carrying the first polar-orbiting, space-borne, 2D interferometric radiome-

ter, the SMOS mission has observed soil moisture over the land and salinity
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over the oceans from space since 2009. It is a relatively new measuring tech-

nique for a space-borne radiometer and adopts an interferometric method.

The MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) in-

strument provides brightness temperature measurements over incidence angles

from 0∘ up to 55∘ at both horizontal and vertical polarization, with a spatial

resolution of 30-50 km and a repeat cycle of 2-3 days (Pinori et al., 2008).

SMOS is a sun-synchronous satellite and it passes over the equator twice a

day, at 6:00 am local solar time in the ascending pass and 6:00 pm in the de-

scending pass. SMOS provides global near-surface soil moisture map with an

accuracy about 0.04 𝑚3/𝑚3 and vegetation water content with an accuracy of

0.5 𝑘𝑔𝑚−2 (Kerr et al., 2001). The penetration depth of the L-band radiome-

ter is about 5 cm, but can be exgrated to increase (decrease) with very low

(high) soil water content.

2.3.2 Products

SMOS data is generated and delivered by ESA up to Level-2 products.

The Level-3 and Level-4 data are processed by national centres in France and

Spain. This study used the CATDS (Centre Aval de Traitement des Données

SMOS) soil moisture Level-3 products including daily ascending and descend-

ing multi-orbit soil moisture retrieval products and time aggregated products

for 3-day, 10-day and monthly (Jacquette et al., 2010). The CATDS Level-3

products are processed based on the Level 1B products with Fourier compo-

nents of the brightness temperature (Kerr et al., 2013). To provide a more user

friendly, regular global grid, it uses the Equal-Area Scalable Earth (EASE) grid

instead of ISEA to provide the reprocessed global maps of surface soil moisture

with a spatial resolution of approximately 25 km × 25 km. Figure 2-2 shows

the spatial coverage of the daily soil moisture retrieval with both ascending

and descending orbits.

The nominal accuracy goal of SMOS retrieved soil moisture is 0.04 𝑚3/𝑚3.

Jackson et al. (2012) and Leroux et al. (2014) compared SMOS data and other
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Figure 2-2: Example of CATDS Level-3 daily soil moisture retrievals (20th Feb 2010)

satellite data against four watersheds in the U.S. They demonstrated that

SMOS reaches the accuracy target with a RMSE of 0.043 𝑚3/𝑚3 (ascending)

and 0.047 𝑚3/𝑚3 (descending). Leroux et al. (2013) evaluated SMOS error

globally via the triple collocation method and pointed out that SMOS works

best over North America, Middle East, central Asia and Australia, which are

RFI (Radio Frequency Interference) free regions. The RFI contamination is

caused by the unauthorized emission within the protected passive band coming

from active sources, and unwanted emissions from active services operating in

adjacent bands (Oliva et al., 2012).The SMOS error is relatively high over

Europe, Asia and North America where the proportion of forest is high. The

accuracy of SMOS is also influenced by water bodies, salted water, wetlands,

barren or urban area. Since it is sensitive to canopy cover, surface roughness

and surface texture, proper parameterization of forest models and soil texture

in retrievals is required in the retrieval algorithms but not always achievable

(Jackson et al., 2012).
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Chapter 3

Joint assimilation of GRACE and

SMOS water content retrievals

Due to the difficulty of multi-scale and multi-variant assimilation, the focus

of hydrological data assimilation is mainly on improving one state variable

with one or multiple observations. In this study, satellite-observed total wa-

ter storage change and surface soil moisture were assimilated jointly into a

water balance model. It was the first time that the contrasting water con-

tent retrievals with different spatial and temporal resolution were integrated

with model simulations to better redistribute water storage horizontally and

vertically. The joint assimilation provides new insights for monitoring subsur-

face water storage availability, especially root-zone soil water and groundwater

without direct measurements. The joint assimilation framework together with

the results over Australia are introduced in this chapter. This chapter is based

on the material published in Water Resource Research:

Tian, S., Tregoning, P., Renzullo, L. J., van Dijk, A. I., Walker, J. P.,

Pauwels, V. R., & Allgeyer, S. (2017). Improved water balance component

estimates through joint assimilation of GRACE water storage and SMOS soil

moisture retrievals. Water Resources Research, 53(3), 1820-1840.
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abstract

The accuracy of global water balance estimates is limited by the lack of

observations at large scale, and the uncertainties of model simulations. Global

retrievals of terrestrial water storage (TWS) change and soil moisture (SM)

from satellites provide an opportunity to improve model estimates through

data assimilation. However, combining these two data sets is challenging due

to the disparity in temporal and spatial resolution at both vertical and hori-

zontal scale. For the first time, TWS observations from the Gravity Recovery

and Climate Experiment (GRACE) and near-surface SM observations from

the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into

a water balance model using the Ensemble Kalman Smoother from January

2010 to December 2013 for the Australian continent. The performance of joint

assimilation was assessed against open-loop model simulations and the assimi-

lation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only

assimilation improved SM estimates but reduced the accuracy of groundwater

and TWS estimates. The GRACE-only assimilation improved groundwater

estimates but did not always produce accurate estimates of SM. The joint as-

similation typically led to more accurate water storage profile estimates with

improved surface SM, root-zone SM, and groundwater estimates against in-situ

observations. The assimilation successfully downscaled GRACE-derived inte-

grated water storage horizontally and vertically into individual water stores

at the same spatial scale as the model and SMOS, and partitioned monthly-

averaged TWS into daily estimates. These results demonstrate that satellite

TWS and SM measurements can be jointly assimilated to produce improved

water balance component estimates.

3.1 Introduction

The ability to accurately estimate terrestrial water storage (TWS) and

its components (e.g. soil moisture, groundwater, surface water, snow and ice)

24



SECTION 3.1 CHAPTER 3. JOINT ASSIMILATION

is critical for hydrological studies and water resource assessment and manage-

ment. Constraining water balance estimates with satellite observations over

large areas offers better potential for assessing water availability, especially

in areas with sparse ground observations. Data assimilation is an effective

approach to optimally combine information from both model predictions and

observations. Measurements of water cycle components have been integrated

into hydrological models in a number of studies, including measurements of

precipitation (e.g. Joyce et al. (2004); Huffman et al. (2007)), soil moisture

(e.g. Walker and Houser (2001a); Reichle and Koster (2005); Draper et al.

(2009); Renzullo et al. (2014); Dumedah et al. (2015)), TWS (e.g.Zaitchik

et al. (2008); Li et al. (2012); van Dijk et al. (2014a); Eicker et al. (2014);

Tangdamrongsub et al. (2015)) and snow (e.g. Sun et al. (2004); Rodell and

Houser (2004); Andreadis and Lettenmaier (2006)). In many cases, assimila-

tion improved the model estimates.

As a key component in the water cycle, soil moisture (SM) controls the

water and energy exchange between the atmosphere and land surface. How-

ever, the estimation of soil moisture distribution within the profile at large

scales remains challenging due to the lack of root-zone SM observations. The

assimilation of near-surface SM observations has been shown to improve near-

surface as well as root-zone soil water balance estimates and, in some cases, also

produced improved estimates of evaporation, runoff or deep drainage (Walker

et al., 2001; Reichle and Koster, 2005; Brocca et al., 2010; Renzullo et al.,

2014; Draper et al., 2011). A number of recent studies (Dumedah et al., 2015;

Lievens et al., 2015; Martens et al., 2015) assimilated SM retrievals from the

SMOS (Soil Moisture and Ocean Salinity) satellite mission (Kerr et al., 2001)

into land surface models. SMOS is the first polar-orbiting, space-born, 2D

interferometric L-band radiometer, fully dedicated to the retrieval of surface

SM and ocean salinity. Martens et al. (2015) found that SMOS SM retrievals

sourced from the Level 3 CATDS (Centre Aval de Traitement des Données

SMOS) product (Jacquette et al., 2010) have high quality over Australia. The
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same SMOS SM retrievals were used in this study. Since SM moisture profile

estimates can be improved by the assimilation of surface SM observations, it

might be expected that total water storage estimated will also be improved.

However, so far this hypothesis has not been tested.

The absence of integrated TWS measurements as an overall water balance

constraint was resolved with the launch of the GRACE (Gravity Recovery and

Climate Experiment) mission in 2002. It provides a complement to traditional

ground-based hydrological measurements which are restricted to the scales of

sites or individual catchments. The observed mass changes are the combined

result of changes in surface water, soil water, groundwater, vegetation water,

snow and ice (Tapley et al., 2004). Therefore, ancillary data sets or model-

based methods are needed to partition GRACE-observed mass change into

changes in the individual water components.

GRACE-observed TWS is most commonly provided as an integrated monthly-

averaged water storage change, known as the TWS anomaly (TWSA). An is-

sue that requires much consideration is how to downscale, in a temporal sense,

the monthly GRACE TWSA estimates to the high temporal frequency of the

hydrologic model. Zaitchik et al. (2008) assimilated monthly GRACE TWS

estimates into the Catchment Land Surface Model (CLSM) using an ensem-

ble Kalman smoother (EnKS)-like approach and distributed the increments

evenly over each day of the month. Li et al. (2012) and Forman et al. (2012)

applied a similar method as in Zaitchik et al. (2008) and showed the bene-

fits of assimilation in drought monitoring and snow water equivalent estima-

tion. Furthermore, the drought indicators based on assimilated GRACE data,

in particular the groundwater storage drought indicator, showed their great

value for drought detection (Houborg et al., 2012). Eicker et al. (2014) and

Schumacher et al. (2016) assimilated GRACE data using an ensemble Kalman

filter (EnKF) to jointly update model states and parameters at monthly time

steps with consideration of spatial covariance. Tangdamrongsub et al. (2015)

also implemented an EnKF to assimilate GRACE data into a model consid-
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ering hydrological routing and demonstrated that GRACE data assimilation

can improve overall model behavior but with little improvement in stream-

flow estimates. van Dijk et al. (2014a) developed an "off-line" assimilation

scheme combining GRACE, satellite water level data and hydrological models

for global water cycle reanalysis. All these studies demonstrate the potential

of GRACE data assimilation to improve TWS and groundwater estimates.

However, the assimilation of TWS does not guarantee accurate estimation of

surface SM (Li et al., 2012), and vice versa.

Assimilating multiple observations of the water cycle components should

maximize consistency between water balance variables and result in improved

water balance estimates. In this study, the feasibility and benefits of jointly

assimilating SMOS-derived SM and GRACE-derived TWS estimates into a

global water balance model (i.e. the World-Wide Water model, W3; van Dijk

et al. (2013a), Section 3.2.1) was investigated. To assess the performance of the

joint assimilation, the open-loop model (without assimilation), the assimilation

of SMOS data only and the assimilation of GRACE data only, respectively,

were conducted as comparison against the joint assimilation results. In-situ

surface SM, root-zone SM, evapotranspiration (ET), streamflow, and ground-

water level observations were used to evaluate the assimilation results (Section

3.3). SMOS observed near-surface SM and GRACE observed TWSA were also

used as independent data sets to evaluate either GRACE-only or SMOS-only

assimilation experiment. TWSA estimated through SMOS-only data assimi-

lation were evaluated against GRACE TWSA data to examine the influence

of SM assimilation on TWSA estimates. Conversely, SMOS observations were

used to evaluate surface SM estimates in the GRACE-only assimilation ex-

periment as ancillary independent observations in addition to 𝑖𝑛 𝑠𝑖𝑡𝑢 mea-

surements. The deficiencies of the assimilation of either SMOS or GRACE

data only, and the comparative benefits of joint assimilation for estimating

soil moisture profile, groundwater and fluxes are outlined (Section 3.4).
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3.2 Materials and Method

3.2.1 Hydrological modelling

The hydrological model employed in this study is the World-Wide Water

(W3) model (van Dijk et al., 2013a) (available at http://www.wenfo.org/wald/).

It is a global water balance model based on the landscape hydrology component

model of the Australia Water Resource Assessment system (AWRA-L) (van

Dijk, 2010a; Van Dijk and Renzullo, 2011). Full technical details about AWRA-

L can be found in the model technical documentation (van Dijk, 2010a). The

W3 model consists of a grid-based, one-dimensional landscape hydrological

model with modules describing surface water and groundwater dynamics and

snow. It can be considered as a hybrid between a simplified grid-based land

surface model and a "lumped" catchment model of water balance, vegetation

ecohydrology and phenology (van Dijk et al., 2013a).

Soil water and energy fluxes are simulated individually for two hydrologi-

cal response units (HRUs), namely, deep-rooted vegetation and shallow-rooted

vegetation. Each of the HRUs occupies a fraction of each grid cell 𝑓𝐻𝑅𝑈 . The

groundwater and surface water (rivers, lakes and reservoirs) dynamics are sim-

ulated at grid cell level, effectively representing individual catchments. Lateral

water distribution between grid cells is not considered in the vertical water bal-

ance estimation. Net radiation is the sum of net short-wave radiation and net

long-wave radiation (Brutsaert, 1975). Precipitation is partitioned into inter-

ception evaporation and net precipitation. The net precipitation is partitioned

into infiltration, infiltration excess surface runoff and saturation excess runoff

(van Dijk, 2010a).

W3-simulated TWS is the integration of soil moisture, groundwater, sur-

face water, snow and vegetation water storage. The soil water storage is par-

titioned into individual stores for three layers: top layer 𝑆0, shallow root layer

𝑆𝑠 and deep root layer 𝑆𝑑 in equivalent water height. Fluxes for these three un-

saturated soil layers comprise infiltration, soil evaporation, drainage and root
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water uptake. Layer thickness and porosity are not separately specified to avoid

model parameter estimation equifinality issues (Renzullo et al., 2014). Instead,

a maximum water holding capacity 𝑆𝑧𝐹𝐶 (field capacity) is specified for each

layer 𝑧. Spatial estimates of soil water availability from the Australian Soil Re-

source Information System (http://www.asris.csiro.au) were used to estimate

the equivalent physical thickness of the W3-modelled soil layer. Thickness can

be estimated by the proportion of field capacity water storage to the available

water content (i.e. the difference between field capacity and wilting point for

each soil layer). The resulting thicknesses of the top-layer soil in W3 is 5 to

10 cm. The shallow- and deep-root soil layers have an estimated thickness

between 15-25 cm and 3-6 m, respectively.

Groundwater balance terms include ground water storage, 𝑆𝑔, recharge

from deep drainage, capillary rise (estimated with a linear diffusion equation),

evaporation from groundwater saturated areas, and discharge into streams

(estimated with a linear reservoir model) (Peña-Arancibia et al., 2010; van

Dijk, 2010b,a). The river water balance comprises surface water storage, 𝑆𝑟,

inflows from runoff and discharge, open water evaporation and catchment water

yield (van Dijk, 2010a). A simple but widely tested snow model used in HBV96

(Hydrologiska Byrans Vattenbalansavdelning model) was implemented in W3

for snow water balance estimation (Bergström et al., 1995). Finally, it is

assumed that 80% of vegetation biomass consists of water.

Global daily gridded 0.5∘ precipitation, short-wave and long-wave down-

wards radiation, air temperature, wind speed, surface pressure, humidity and

snow rate from the WATCH (Water and Global Change) Forcing Data method-

ology applied to ERA-Interim (WFDEI) (Weedon et al., 2014) (available at

https://wci.earth2observe.eu/), were used as meteorological inputs to the model.

A global tree cover fraction map (Hansen et al., 2003) was used to determine

the vegetation fraction of each HRU. An albedo climatology was derived from

Moderate Resolution Imaging Spectrometer white-sky albedo (Moody et al.,

2005) (http://modis-atmos.gsfc.nasa.gov/ALBEDO/). The parameter values
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used in this study are based on those from AWRA-L version 0.5 (van Dijk,

2010a).

3.2.2 Satellite observations

3.2.2.1 SMOS soil moisture retrieval

SMOS observations allow retrieval of near-surface SM at global scale with

a repeat cycle of 2-3 days (Kerr et al., 2001). The SMOS satellite is in a sun-

synchronous orbit that has equatorial overpasses at 6:00 am ascending and 6:00

pm descending. The signal depth of the SMOS L-band observations is typically

in the range of 0-5 cm, depending on the degree of soil wetness. Daily global

SM retrievals from the Level 3 CATDS (Centre Aval de Traitement des Données

SMOS) product (Jacquette et al., 2010) from January 2010 to December 2013

were used. The Level 3 SM retrieval algorithm is based on the ESA level 2

processor (Kerr et al., 2012) but enhanced using a multi-orbit retrieval method.

The retrievals are available for both ascending and descending orbits on a

regular 25 km EASE (Equal Area Scalable Earth) grid instead of the irregular

ISEA (Icosahedral Snyder Equal Area) system (Kerr et al., 2008). The data

quality index, which considers the error in the retrieval as well as the accuracy

of the brightness temperatures, quantifies the uncertainty in the retrievals.

The daily SM estimates used in the assimilation were derived from as-

cending passes, since the retrievals from early morning or nighttime bright-

ness temperatures show better agreement with 𝑖𝑛 𝑠𝑖𝑡𝑢 measurements (Jackson

et al., 2012; Dente et al., 2012; de Jeu, 2003; Draper et al., 2009). To facilitate

assimilation into the W3 model, SMOS SM retrievals were upscaled from their

original 0.25∘ resolution to the W3 modeling grid of 0.5∘ resolution by simple

averaging to be consistent with the forcing data.
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3.2.2.2 GRACE total water storage estimates

Since 2002, GRACE has measured variations in the regional gravity field

to provide unique measurements of monthly mass changes at regional to global

scale. Changes in water storage induce mass redistribution and, therefore, can

be estimated from GRACE after removing atmospheric, ocean and other time-

variable gravity effects. The total water storage (TWS) change estimates used

in this study were obtained from the most recent release of the monthly 3∘×3∘

Jet Propulsion Laboratory (JPL: http://grace.jpl.nasa.gov) mascon solution

(JPL-RL05M) (Watkins et al., 2015). The mascon surface mass changes are

provided with a spatial sampling of 0.5∘ resolution due to the boundaries of

mascons locating parallels of 0.5∘ increments. The value of each 0.5∘×0.5∘ grid

inside a corresponding mascon is identical. JPL-RL05M used surface spher-

ical cap mascons to directly estimate mass variation from the inter-satellite

range-rate measurements. The regularization used employs a combination of

quasi-global geophysical models and altimetry observations to obtain accurate

mass flux estimates globally and eliminates the need for empirical destriping

filtering. A glacial isostatic adjustment (GIA) correction has been applied

based on the model introduced by Wahr and Zhong (2012). Additional scaling

factors derived from hydrological modelling (Landerer and Swenson, 2012) for

the interpretation of signals at sub-mascon resolution were not applied to the

data in this study. Uncertainty in each mascon derived, following Wahr et al.

(1998), is provided along with the product. Each monthly TWS estimate rep-

resents the surface mass anomaly relative to the baseline average over January

2004 to December 2009. To obtain absolute TWS estimates, the averaged

model-simulated TWS over the same period was added to the GRACE TWS

estimates in the assimilation. Twelve years of GRACE TWS change estimates

from April 2002 to December 2013 were used in this study.
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3.2.3 Data assimilation method

In this study, two single-observation assimilation experiments (i.e. the

SMOS-only assimilation or GRACE-only assimilation, respectively) were con-

ducted as comparisons to the joint assimilation of SMOS and GRACE observa-

tions. SMOS SM retrievals were assimilated into the W3 model using both the

EnKF (Ensemble Kalman Filter) and EnKS (Ensemble Kalman Smoother).

GRACE TWSA estimates were assimilated into the model using the EnKS

with a one month assimilation window considering temporal error correlations

between each day. Near-daily SMOS SM and monthly GRACE TWSA re-

trievals were jointly integrated into the W3 model through the EnKS with a

one-month assimilation window to resolve their difference in temporal resolu-

tion. Like most data assimilation approaches, our approach explicitly acknowl-

edges that precipitation estimates are uncertain. As a result, water balance is

not necessarily maintained, that is, changes in the total water storage in each

control volume (i.e., grid cell TWS) may vary from the net sum of fluxes (i.e.,

the original precipitation estimate, evapotranspiration and streamflow). This

is addressed in Section 3.4.4.

3.2.3.1 Ensemble Kalman filter and ensemble Kalman smoother

The EnKF is a Monte-Carlo implementation of the Bayesian state update

problem that was first introduced by Evensen (1994) to improve the compu-

tational feasibility for high-dimensional systems. It is relatively simple and

efficient, and has become one of the most popular approaches for assimilat-

ing satellite data (e.g. Reichle et al. (2002); Crow and Wood (2003); Clark

et al. (2008); Renzullo et al. (2014); Lievens et al. (2015)). The ensemble of

model states is generated by propagating the model forward in time with per-

turbations, known as forecast states. The forecast state ensemble is used to

determine model covariances under the assumption of unbiased (i.e. random

only) model error. In the analysis or update step, the forecast states repre-

senting the uncertainty in model states are adjusted towards the observations
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by the Kalman gain matrix, which is determined by model and observation

error covariances.

The EnKS is a sequential smoother using only the ensemble of forward-

in-time model states, and bears a strong resemblance to the EnKF (Evensen

and Van Leeuwen, 2000). Unlike the EnKF, the EnKS computes the analysis

from previous times up to the current time within an assimilation window,

and information at assimilation times is propagated backwards in time using

the ensemble covariances. A fixed-lag (or assimilation window) is defined in

practical implementations to improve computational efficiency (Cohn et al.,

1994). The assimilation window is determined based on the assumption that

the observations will only impact the states in this time interval. The EnKS

also eliminates discontinuities or spikes otherwise obtained with sequential

filtering of infrequent observations. The benefits of EnKS over EnKF have

been demonstrated in several studies (e.g. Evensen and Van Leeuwen (2000);

Dunne and Entekhabi (2006); Dunne et al. (2007)).

Generation of an ensemble with an appropriate spread is a critical step in

the ensemble-based assimilation. The ensemble spread should be large enough

to allow the observations to influence model estimates (Renzullo et al., 2014).

Inappropriate ensembles will impact on model error covariances and place un-

due emphasis on either the observations or the modeled forecast, thus affecting

the correlated states (Turner et al., 2008). The initial conditions of the ensem-

bles were perturbed and optimized by a 10-year ensemble open-loop spin-up

from 1992 to 2002 to reach dynamic equilibrium. The meteorological forcing

data for the model were perturbed to generate an ensemble of forecast states.

Each ensemble member 𝑖 of the state variable 𝑥 at current time step (𝑡) can

be expressed in a discrete form as

𝑥𝑖−𝑡 = 𝑓(𝑥𝑖+𝑡−1, 𝑢
𝑖
𝑡, 𝛼, 𝜔

𝑖
𝑡) 𝑖 = 1, ...,𝑀, (3.1)

where 𝑓 represents the hydrologic model and 𝑢, 𝛼, and 𝜔 indicate the forcing

33



CHAPTER 3. JOINT ASSIMILATION SECTION 3.2

data, model parameters and model error respectively. The superscripts ‘-’

and ‘+’ represent the forecast and analysis state, and 𝑀 denotes the number

of ensemble members. In this study, 100 ensemble members were used to

ensure an accurate approximation of the error covariances while maintaining

computational efficiency.

A previous assimilation study with the closely related AWRA-L model by

Renzullo et al. (2014) found that daily precipitation, incoming shortwave radi-

ation and average air temperature were the most important forcing variables

and that the perturbation of these variables ensures adequate ensemble spread.

Therefore, radiation and air temperature were perturbed with an additive er-

ror, and precipitation was perturbed with a multiplicative error. Gaussian

noise of 50 W.m−2 was added to the shortwave radiation, while air tempera-

ture was perturbed with an additive error of 2K. We assumed a multiplicative

error in precipitation (𝑃𝑔) by taking a univariate random sample between ±0.6

𝑃𝑔 to avoid negative rainfall for low or zero rainfall values.

The satellite observations available at measurement time 𝑡 can be gathered

in a vector 𝑦𝑡 with the uncertainties specified in the random error 𝜖 such that

𝑦𝑡 = ℋ(𝑥𝑖−𝑡 ) + 𝜖𝑖, 𝜖 ∼ 𝑁(0, 𝑅), (3.2)

where ℋ is the observation operator that maps the state vector 𝑥 to the obser-

vation space. In both EnKF and EnKS, the analysis state for each ensemble

member can be updated with the forecast state and a weighted difference be-

tween the observation and model prediction as:

𝑥𝑖+ = 𝑥𝑖− + 𝑃−𝐻𝑇 (𝐻𝑃−𝐻𝑇 +𝑅)−1[𝑦 −ℋ(𝑥𝑖−) + 𝜖𝑖], 𝑖 = 1, ...,𝑀, (3.3)

where the model error covariance 𝑃 can be computed from the ensemble of

forecast states. If the model error covariance 𝑃 approaches zero, less weight is

gained from the observation 𝑦. On the contrary, if the observation error tends

towards zero, the analysis states are dominated by the observations.
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In the EnKF, model forecast error covariance at time 𝑡 is computed as

𝑃−
𝑡 =

1

𝑀 − 1

𝑀∑︁
𝑖=1

[𝑥𝑖−𝑡 − 𝑥−𝑡 ][𝑥
𝑖−
𝑡 − 𝑥−𝑡 ]

𝑇 , (3.4)

where the analysis state is only influenced by the observation and model error

covariance at the update time 𝑡. However, all the forecast states within a

smoothing interval are updated together with a set of available observations

in the EnKS. Therefore, the temporal correlations within the observation and

model forecast states are considered in the error covariance matrices.

3.2.3.2 Assimilating SMOS only

Both EnKF and EnKS were employed to assimilate SMOS-derived SM

data in the W3 model. The model states 𝑥 for update were the W3 simulated

top- and shallow-layer soil water storage for two HRUs (shallow-rooted and

deep-rooted vegetation, i.e. 𝑆0ℎ𝑟𝑢1, 𝑆0ℎ𝑟𝑢2, 𝑆𝑆ℎ𝑟𝑢1, 𝑆𝑆ℎ𝑟𝑢2). The SMOS ob-

servations impact on the model-simulated deeper soil water storage indirectly

through the percolation process from the top soil layer and directly through

the adjustments from the error correlation structure in the analysis step. The

model states of each grid cell were updated independently without considering

neighboring grid cells. The analysis increments of two HRUs for each grid cell

were calculated separately.

Before the assimilation, SM observations were rescaled to remove system-

atic difference between the model and observations (Reichle and Koster, 2004;

Renzullo et al., 2014; Koster et al., 2009). This is mainly because the W3

model simulates soil water storage in equivalent water height but SMOS SM

retrievals are in volumetric water content. Scaling was done by a mean and

variance matching, which ensures the same statistical distribution between

model and observations for an effective adjustment of the model estimates.

The observations were transformed into model space without modifying the

dynamics of the data.
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The observation operator ℋ was the relative wetness 𝜔 in this case, due

to the inconsistency in units and soil layer thickness between the SMOS ob-

servations and W3 model. Relative wetness was calculated as

ℋ = 𝜔 = (1− 𝑓𝑠𝑎𝑡)𝜔0 + 𝑓𝑠𝑎𝑡, (3.5)

where 𝜔0 is the relative wetness of the unsaturated soil column, derived by

scaling the top soil layer water storage by the field capacity (i.e. 𝑆0/𝑆0𝐹𝐶) for

each HRU, and 𝑓𝑠𝑎𝑡 is the fraction saturated area.

To avoid ensemble collapse and to optimize the use of observations, the

covariance inflation technique introduced by Anderson and Anderson (1999)

was applied to the top soil layer water storage estimates. Instead of apply-

ing a fixed inflation factor all the time, we inflated the ensemble only when

the model error was less than 5%. This rational was used to ensure model

uncertainties competitive with SMOS uncertainties to allow SMOS to impact

on the model states. The inflation factor was calculated dynamically from the

variance of the top-layer storage estimates based on error propagation theory.

This procedure eliminated the under-estimation of the model error, especially

during low or zero rainfall period. Without covariance inflation, error variance

would decrease in time to low values, and therefore the observation would not

impart constraint on the model estimates (Houtekamer and Mitchell, 2005).

In the EnKF, the states were updated instantaneously when the SMOS

observation was available. In the EnKS, by contrast, all of forecast states in

a month were entered in one vector and updated jointly on the last day of

a month. The temporal and spatial varying observation errors used in the

assimilation were derived from the uncertainties of the SM provided along

with the SMOS product. Since the observations were transformed to relative

wetness instead of absolute values, the uncertainties of the relative wetness

derived from SMOS were transformed using the same scaling factor applied to

the original SMOS SM data.
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3.2.3.3 Assimilating GRACE only

GRACE TWS change estimates represent the average TWS change over a

month. The W3 model, however, simulates TWS at a daily time step. We used

the EnKS with a one-month assimilation window to assimilate GRACE TWS

change. The long-term TWS mean from the open-loop model simulation was

added to GRACE TWS anomalies to obtain the absolute TWS estimates. The

water storage components from the W3 model comprised the system states,

and were updated individually with GRACE estimates. We used the 3∘ mascon

solutions with a spatial sampling at 0.5∘ resolution, without considering the

spatial correlation between neighboring grids. Thus, there was no variation in

TWS anomalies inside the grid cells corresponding to each 3∘ mascon. GRACE

TWS signals were disaggregated vertically into changes in the individual water

stores and temporally into daily variations through the assimilation process.

ℋ =
1

𝑁

𝑁∑︁
𝑛=1

[𝑓𝐻𝑅𝑈1(𝑆
𝑛
0,ℎ𝑟𝑢1 + 𝑆𝑛

𝑆,ℎ𝑟𝑢1 + 𝑆𝑛
𝑑,ℎ𝑟𝑢1 + 𝑆𝑛

𝑠𝑛𝑜𝑤,ℎ𝑟𝑢1 + 𝑆𝑛
𝑣𝑒𝑔,ℎ𝑟𝑢1)

+ 𝑓𝐻𝑅𝑈1(𝑆
𝑛
0,ℎ𝑟𝑢1 + 𝑆𝑛

𝑆,ℎ𝑟𝑢1 + 𝑆𝑛
𝑑,ℎ𝑟𝑢1 + 𝑆𝑛

𝑠𝑛𝑜𝑤ℎ𝑟𝑢1 + 𝑆𝑛
𝑣𝑒𝑔ℎ𝑟𝑢1) + 𝑆𝑛

𝑔 + 𝑆𝑛
𝑟 ],

(3.6)

We calculated model predicted monthly-averaged TWS using all the daily

TWS estimates in a month as the observation operator ℋ (Equation 3.6). Since

the water stores associated with the soil (three layers), snow and vegetation

water are simulated independently with two HRUs, and groundwater and sur-

face water are simulated at the grid scale, all the daily states in a month were

gathered in a (5× 2 + 2) 12𝑁 × 1 state vector for each ensemble member (i.e.

12 states per day for 𝑁 days in a month). The 𝑁 -day state error variance and

observation state error covariance were computed, and then used to compute

the analysis increments for individual daily water stores. In the assimilation,

the ensemble of forecast states was established using all daily forecasts in the

month. The smoother was applied at the end of the month and updated all
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states back to the first day of the month through the temporal error correla-

tion. Next, the states of the first day from the next month were initialized

with the analysis states of the last day from the previous month. The pertur-

bation of the observations was temporally and spatially independent using the

uncertainties provided with the JPL-RLM05 product.

3.2.3.4 Joint assimilation

Different from the single-observation assimilation experiments, joint as-

similation provides multiple constraints to the W3 model estimates. We ap-

plied an EnKS with a one-month assimilation window to assimilate the SMOS

SM and GRACE TWS observations into the W3 model. The state vector was

the same as for the GRACE-only experiment, including all daily water storage

compartments for a month. The observation vector was established with all

available SMOS observations during the month and a single monthly GRACE

observation. The observation operator in the joint assimilation combined the

operator for the assimilation of SMOS and GRACE data, respectively. The

model-predicted daily relative wetness of the top soil layer was calculated as ex-

plained in Section 3.2.3.2, while model-predicted TWS was treated identically

as the GRACE-only experiment (see Section 3.2.3.3). The analysis increments

of the states were calculated from both SMOS and GRACE data based on the

error variance and covariance matrices (Equation 3.3). Therefore, the degree

of influence from the observations on the model states is related to the relative

error magnitudes of the model and both SMOS and GRACE observations.

The mismatch in dynamic range and observation frequency required spe-

cial attention. There were two orders of magnitude difference between the units

of SM and TWS, resulting in large differences in the magnitude of uncertainties

(i.e. ∼ 0.04 m3/m3 for SM and ∼ 20 mm for TWS). The large observation un-

certainties of GRACE assigned the corresponding elements a relatively smaller

value in the Kalman gain matrix, resulting in less weight given to the GRACE

observations. There were about 10 SMOS observations per month and only
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1 monthly GRACE observation, thus the analysis increment for each individ-

ual state was impacted by 10 SM observations and 1 TWS observations. Left

unaddressed, the analysis increments gained from SMOS and GRACE data

would therefore be imbalanced, leading SMOS to unduly dominate the model

estimates. To account for this unit disparity, and to ensure neither observa-

tions inappropriately dominated the model estimate, a weighting factor was

applied to the observation uncertainties. We conducted several experiments

with different scaling factors for the observation uncertainties to allow SMOS

and GRACE to have approximately equal weighting in the state vector updat-

ing process. Three of those experiments are described here, i.e. assimilation

with original observation uncertainties, multiplying SMOS uncertainties by 2

and multiplying GRACE uncertainties by 0.5, respectively.

3.2.4 Model evaluation

We used GRACE observed TWS anomalies to validate the TWS estimates

updated by the SMOS-only assimilation, and SMOS SM to validate SM es-

timates updated by assimilation of GRACE only. This analysis was helpful

to evaluate the performance of the single-observation assimilation and to in-

vestigate whether there was any conflicting information imparted by the two

observations. In addition, 𝑖𝑛 𝑠𝑖𝑡𝑢 measurements of near-surface SM, root-zone

SM, groundwater level, evapotranspiration and streamflow were used to val-

idate related model-simulated water balance variables in comparison to the

open-loop model simulation. These measurements are described in the follow-

ing sections.

3.2.4.1 Soil moisture observations

Three separate Australian networks of 𝑖𝑛 𝑠𝑖𝑡𝑢 SM sensors were used in

the evaluation of our modeling results: OzNet, OzFlux and CosmOz (Hol-

gate et al., 2016) (Figure 3-1(a)). OzFlux and CosmOz sites are spread across

Australia, while OzNet provides dense measurements for one catchment (that
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of the Murrumbidgee River) in southeast Australia. OzFlux is a national

ecosystem research network providing observations of energy, carbon and wa-

ter exchange between the atmosphere (http://www.ozflux.org.au). CosmOz is

a network of cosmic-ray sensors containing 10 calibrated stations out of 14 total

stations across Australia (http://cosmoz.csiro.au). OzNet contains 63 moni-

toring stations in the Murrumbidgee River catchment in New South Wales,

Australia (Smith et al., 2012). Most OzNet and OzFlux stations use Campbell

Scientific water content reflectometry probes and provide SM at depths from

0 to up to 90cm. Unlike the point measurements from other networks, the

measurement scale of the CosmOz cosmic ray probes have a signal source area

with an approximately 600m radius, 𝑖.𝑒. ∼30 ha (Desilets and Zreda, 2013).

The signal depth is influenced by water content itself; from ∼10 cm depth in

saturated soil to ∼50 cm in very dry soil (Franz et al., 2012).

We evaluated model-simulated near-surface SM using all available 𝑖𝑛 𝑠𝑖𝑡𝑢

measurements (OzNet, OzFlux, CosmOz) at 0-10 cm from 2010 to 2013. The

CosmOz measurements were used to evaluate surface SM, due to the depth

of CosmOz measurements being generally 6-15 cm in wet soil (Hawdon et al.,

2014). Furthermore, measurements from 37 OzNet probes measurements dur-

ing our assimilation period were used for evaluation of root-zone SM at 0-30

cm and 0-90 cm depth. For each OzNet, OzFlux and CosmOz probe, daily

SM were computed by averaging all the measurements within the 24 hours.

The mean of all measurements within a model grid cell was used if these con-

tained multiple probes (locations are available at Table S1). We provisionally

assumed these daily-averaged measurement to be representative for the coin-

cident model grid cell. Since the averaged effective depth of CosmOz sites are

around 10-15cm, the CosmOz sites were included in the evaluation of top-layer

soil moisture. In total, there were 𝑖𝑛 𝑠𝑖𝑡𝑢 data for 39 grid cells to evaluate

the top-layer SM estimates and 9 grid cells to evaluate the shallow-layer SM

estimates. Correlations between 𝑖𝑛 𝑠𝑖𝑡𝑢 data and model-simulated soil water

storage at the same depth were calculated to evaluate the accuracy of the esti-
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Figure 3-1: In-situ observation networks for validation: (a) locations of soil mois-
ture probes from OzNet, OzFlux and CosmOz with a background of temporally-
averaged error estimates in SMOS soil moisture retrievals; (b) groundwater bores
with a background of temporally-averaged error estimates of GRACE mascon TWS
change estimates.

mation, to circumvent the difference in units between model simulations (mm

extractable water) and 𝑖𝑛 𝑠𝑖𝑡𝑢 measurements (soil volume %).

3.2.4.2 Groundwater observations

There are around 800,000 groundwater monitoring bores spread unevenly

across Australia, providing point-scale groundwater level change over time

(Figure 3-1(b)). The groundwater level data from the Australian Ground-

water Explorer (Bureau of Meteorology,

http://www.bom.gov.au/water/groundwater/explorer) were collected. We chose
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bores that had more than 24 observations and at least 4 consecutive months

over the period of January 2002 to December 2013. Water level was reported

as either depth to water (DTW, depth below a reference point on the bore),

standing water level (SWL, distance from the top of the ground surface to the

groundwater) or reduced standing water level (RSWL, groundwater elevation

above Australian Height Datum). We calculated groundwater level anomalies

from these measurements and aggregated them to 309 values on 0.5∘ grid cells

to enable a comparison to model-estimated groundwater storage anomalies.

The mean of all the measurements in a grid cell was assumed to be representa-

tive of the grid cell, since GRACE detected the average water change inside its

footprint and cannot distinguish the difference between aquifers. The number

of bores in each grid cell varies from 1 to > 4000; most grid cells with high

bore density were located in south-east Australia. Monthly groundwater level

anomalies were computed by averaging all the measurements during a month

and compared with model simulations owing to the difference of water level

baseline for each bore. Specific yield values were not applied to the water

level measurements because we only evaluated correlation between groundwa-

ter level anomalies and groundwater storage estimates. This avoids errors from

assumed specific yield values to contaminate the comparison.

3.2.4.3 Evapotranspiration observations

Observations from the OzFlux network (http://www.ozflux.org.au) were

used to evaluate model estimates of daily evapotranspiration (ET) from Jan-

uary 2010 to December 2011. The coincident model grid cell was compared

with observations from 16 flux towers. Observations were converted from la-

tent heat flux measurement, integrated over the 24-hour period, into model

units of mm per day using the latent heat of vaporisation (i.e. 2.45 MJ/kg).
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3.2.4.4 Streamflow observations

Streamflow observations from 780 unregulated catchments across Aus-

tralia (Zhang et al., 2013) were used in the evaluation of monthly modelled

streamflow. Where catchment boundaries overlapped serval model cells, corre-

sponding cells were averaged to give representative model estimates. Similarly,

where several catchments were within a single model cell, the streamflow data

were averaged. The catchment boundaries and their coincident model grid

cells are shown in Figure S1 of the supplementary data. In total, there were

84 aggregated catchments available from January 2010 to December 2011 for

use in the evaluation of model-simulated streamflow before and after the as-

similation.

3.3 Results

3.3.1 Contributions of SMOS and GRACE data to dif-

ferent water stores

The analysis increments were calculated as percentages to investigate the

contributions to different water stores from SMOS data and GRACE data.

Figure 3-2 shows the averaged analysis increments of March and September

from three assimilation experiments: the SMOS-only assimilation (EnKF),

GRACE-only assimilation and joint assimilation, respectively. The analysis

increments to the top-layer soil water from SMOS-only assimilation was the

largest among the three with around 30% (Figure 3-2(a)). GRACE data were

less correlated with top-layer soil water storage and led to moderate analysis

increments (Figure 3-2(b)). This appears to be a result of the high variability of

near-surface SM in both time and space and the incongruity between daily pre-

cipitation and monthly GRACE TWS change observations. Also, the monthly

TWS change provided the information of integrated water storage change over

a period and may attenuate or cancel out the small magnitude change of sur-
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face soil water through the averaging. However, SMOS and GRACE data

imparted opposite water variations in east Australia, where SMOS decreased

the soil moisture and GRACE increased the soil moisture. Similar conflicting

increments were found for the shallow- and deep-layer soil moisture between

GRACE and SMOS data. Figure 3-2(c) shows the analysis increments from

both SMOS and GRACE through joint assimilation. The adjustments of top-

and shallow layer soil water storage were dominated by SMOS data, similar to

SMOS-only assimilation trends but with a reduced amplitude of change. This

is probably because the EnKS smoothed the adjustments over a month instead

of providing an instantaneously update.

Figure 3-2: Averaged analysis increments to individual water storage components
(top-, shallow-, deep-layer soil water, groundwater storage, and total water storage)
in percentage (𝑥𝑎-𝑥𝑜)/𝑥𝑜 in March and September: (a) contributions of SMOS data
; (b) contributions of GRACE data; and (c) contributions of the combination of
SMOS and GRACE data.
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In the SMOS-only assimilation, groundwater storage was not included

in the state vector. The analysis increments of groundwater and TWS were

caused by the other updated states and model physics. Therefore, assimilat-

ing SMOS data alone can greatly impact other states such as groundwater

and TWS. However, the analysis increments for groundwater and TWS from

the joint assimilation were similar to the increments from GRACE-only as-

similation. The magnitude of increments of the joint assimilation was slightly

smaller than the GRACE-only assimilation, owing to the inconsistent incre-

ments from SMOS data. Thus, assimilating SMOS or GRACE data alone can

lead to different water variations for different water layers. Overall, SMOS

mainly contributed to update the top- and shallow-layer soil water estimates,

while GRACE dominated groundwater and TWS estimates.

3.3.2 Consistency with satellite retrievals

The top soil layer relative wetness estimated from open-loop model simula-

tion and different assimilation experiments were compared with SMOS-derived

near-surface SM (Figure 3-3(a)). GRACE-derived TWS anomalies were com-

pared to model-simulated monthly TWS anomalies with and without the as-

similation of satellite observations (Figure 3-3(b)). The 0.5∘ model-simulated

TWS anomalies were aggregated over each 3∘ mascon to compare with GRACE

data. It is expected that the assimilation of observations would bring model

estimates closer to the observations and 99% of correlations passed the signifi-

cance test. The averaged correlation of SM from SMOS-only assimilation and

SMOS data improved to 0.88 and 0.86 for EnKF-SMOS and EnKS-SMOS,

respectively (Table 3.1). Similarly, the correlation of TWS from GRACE-only

assimilation and GRACE data improved from 0.57 to 0.75 and the root mean

square (RMS) error was reduced by 15 mm on average. This merely demon-

strates that the assimilation had the intended effect.

The SM estimates from the GRACE-only assimilation can be compared

with SMOS data as an independent evaluation to investigate any potential
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Figure 3-3: Consistency with SMOS and GRACE data: (a) correlations of model-
simulated top-layer soil relative wetness with SMOS data; (b) correlations of model-
simulated TWS anomalies with GRACE data (Open-loop: open-loop model simula-
tion; EnKS-SMOS: assimilation of SMOS only using EnKS; EnKS-GRACE: assimi-
lation of only GRACE using EnKS; EnKS-Joint: joint assimilation. Time series for
point A and B are shown in Figure 5.)

degradation of GRACE data on surface soil moisture estimation. The results

showed that assimilating GRACE data alone overall had no improvement on

estimating surface SM and slightly degraded the correlation of SMOS data for

more than half of the grid cells (Table 3.1), compared with the open-loop model

simulation. Therefore, assimilating only GRACE data did not produce more

accurate estimates of surface soil moisture. On the other hand, assimilating

only SMOS data degraded correlation with GRACE TWSA compared to open-

loop estimates, with only 30% of the grid cells showing an improved correlation

(Table 3.1). Evidently, assimilation of SMOS data alone also did not improve
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Table 3.1: Spatial-averaged correlation of relative wetness and TWS with SMOS
and GRACE data for open-loop model simulation and different data assimilation
experiments over the Australian continent

Open- EnKF EnKS EnKS Joint Joint Joint
loop SMOS SMOS GRACE (𝜖,𝜁) (2𝜖,𝜁) (2𝜖,0.5𝜁)

Mean 𝑟𝜔 0.69 0.88 0.86 0.69 0.84 0.81 0.8
Mean 𝑟𝑚𝑠𝑒𝜔 (%) 0.21 0.12 0.13 0.22 0.14 0.15 0.16
𝑟𝑎𝜔 > 𝑟𝑜𝜔(%) NA 94 94 35 94 93 93

Mean 𝑟𝑡𝑤𝑠 0.57 0.39 0.55 0.75 0.64 0.69 0.76
Mean 𝑟𝑚𝑠𝑒𝑡𝑤𝑠 (cm) 6.80 7.28 6.64 5.04 6.27 5.98 5.47
𝑟𝑎𝑡𝑤𝑠 > 𝑟𝑜𝑡𝑤𝑠 (%) NA 30 46 97 70 85 95

𝑟𝜔/𝑟𝑚𝑠𝑒𝜔 : correlation/root mean square error of relative wetness;
𝑟𝑡𝑤𝑠/𝑟𝑚𝑠𝑒𝑡𝑤𝑠: correlation/root mean square error of TWS;
𝑟𝑎 − 𝑟𝑜: correlation improvement against open-loop model simulations.
𝜖: SMOS error; 𝜁 :GRACE error.

the estimation of TWS, with a decrease of 0.16 in averaged correlation when the

EnKF was used. Therefore, assimilating SMOS data alone can considerably

degrade the estimation of TWS.

The joint assimilation achieved similarly good agreement with SMOS data

and GRACE data as the SMOS-only assimilation and the GRACE-only assim-

ilation, respectively. Figure 3-4(a) and (b) shows the time series of the top soil

layer relative wetness and TWSA before and after the assimilation at Yanco

(located in the south of the Murray-Darling Basin), illustrating the improve-

ment in consistency with SMOS and GRACE data. The joint assimilation

sometimes showed less agreement with GRACE data than GRACE-only as-

similation, such as Point B in Figure 3-3(b). In other cases, the consistency

was improved with the joint assimilation at Point A. The decrease in correla-

tion could be caused by the inconsistent trends between rainfall, SMOS and

GRACE, as shown in Figure 3-5(a)-(c). Figure 3-5(e)-(h) shows time series

of GRACE, SMOS, rainfall and model-simulated TWS at Points A and B.

The results show that the same trends between rainfall, SMOS and GRACE

can result in improved agreement with GRACE data. However the agreement

degraded at Point B, where GRACE observed TWS increased but no precipi-
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Figure 3-4: Time series of SM and TWSA for Yanco before and after the assimi-
lation: (a) model simulated top-layer soil relative wetness and its consistency with
SMOS retrievals, in-situ soil moisture measurements and rainfall data; (b) consis-
tency between model-simulated TWS anomalies and GRACE data.

tation and soil moisture increased over time.

3.3.3 Evaluation against near-surface soil moisture mea-

surements

Model-simulated top soil layer relative wetness values were compared with

in situ measurements of SM at 5-10 cm depth. Assimilating only SMOS data

significantly improved model-estimated near-surface SM compared to the open-

loop estimates, by up to 0.32 in correlation (Figure 3-6(a)), but a few sites

located close to the water body or in densely vegetated areas showed slightly

lower correlations after assimilation. SMOS observations in these locations

(e.g. Dry River, Howard Spring and Tumbarumba) showed poor correlation

with the 𝑖𝑛 𝑠𝑖𝑡𝑢 measurements. Overall, the EnKS produced slightly better

correlations with 𝑖𝑛 𝑠𝑖𝑡𝑢 observations than the EnKF.
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Figure 3-5: Inconsistent trends between rainfall, SMOS and GRACE data over 2010
to 2013: (a) annual trend of rainfall; (b) annual trend of SMOS observed soil relative
wetness; (c) annual trend of GRACE observed TWSA; (d) annual trend of model-
simulated TWSA through joint assimilation; (e) GRACE observed TWSA compared
with model simulated TWSA at point A; (f) SMOS SM and rainfall observations at
Point A; (g) GRACE observed TWSA compared with model simulated TWSA at
point B; (h) SMOS and rainfall observations at Point B.

The assimilation of only GRACE data did not strongly change the cor-

relation of surface SM with the in-situ measurements and was overall not

beneficial. Only one grid cell (Adelong Creek; Figure 3-1) showed better cor-

relation than other assimilation experiments. This may have been the standing

water effect on SMOS SM retrieval. Since microwave brightness temperature
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Figure 3-6: Correlation of model-simulated soil moisture with in-situ observations
(𝑟𝑜: correlation of open-loop model simulation; 𝑟𝑎: correlation after assimilation;
yellow dots: the assimilation of SMOS only using EnKF; red dots: the assimilation
of SMOS only using EnKS; blue dots: the assimilation of GRACE only; green dots:
joint assimilation): (a) correlation of surface soil moisture at 0-10 cm against in-situ
measurements from OzFlux, OzNet and CosmOz network; (b) correlation of shallow
root zone soil moisture at 0-30 cm against in-situ measurements from OzNet; (c)
correlation of deep root zone soil moisture at 30-90 cm against in-situ measurements
from OzNet; (d) correlation of full root zone soil moisture at 0-90 cm against in-situ
measurements from OzNet.

has a high sensitivity to open water, a small fraction of water bodies within the

footprint can result in a considerable overestimation of retrieved SM (Ye et al.,

2015). Joint assimilation generally improved the near-surface SM estimates in

most locations, with the same efficiency as the SMOS-only assimilation. The

largest improvement was up to 0.27 (Figure 3-6(a); Table S2). Only one grid

cell showed a decrease in correlation by 0.1 when compared with the open-loop

simulation (CosmOz Tumbarumba site located in a wet forest environment

Figure 3-1).

3.3.4 Evaluation against root-zone soil moisture measure-

ments

Root-zone SM measurements from the OzNet Network at 0-30 cm, 30-90

cm and 0-90 cm depths were used to evaluate the model-simulated shallow- and

deep-layer soil water storage estimates. Figure 3-6(b-d) show that assimilating

surface SM data from SMOS led to improved soil moisture at different depths,

in particular shallow layer soil moisture estimates. An average increase in
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correlation of 0.15 (Table S3) was found at shallow root zone SM estimates

with both EnKF and EnKS. Assimilation of GRACE data only showed more

impacts on improving root zone SM than surface SM estimation, with an

increase in correlation by up to 0.29 (Figure 3-6(d), Table S3). The joint

assimilation combined the information of both surface SM and TWS variation

and showed its capability to estimate the shallow-layer soil moisture better

than the other three assimilation experiments. The resulting SM estimates

showed an increase of 0.1 in correlation at both shallow and deep layer soil,

as well as the full root zone.

3.3.5 Evaluation against groundwater level measurements

Assimilating only GRACE significantly improved the correlation with

groundwater level measurements against model open-loop, as shown in Fig-

ure 3-7(a). The correlation is increased by an average 0.1 and up to as much

as 0.9 for individual grid cells. Improved agreement between model-estimated

groundwater storage change and groundwater level measurements further em-

phasised the benefit of GRACE TWS assimilation for deeper water stores.

Figure 3-7(c) illustrates the improvement of the groundwater storage anoma-

lies estimated for the Murray-Darling Basin after assimilation of GRACE data

for an extended 12-year period. The magnitude of the groundwater storage

changes is intensified due to the assimilation of GRACE data, with greater

depletion in dry periods (2006 to 2010) and greater increases during wet pe-

riods (2010 to 2013) over the basin. The correlation was improved from 0.50

to 0.80. Note that the actual units vary between the assimilation results and

bore data, since specific yield was too uncertain to attempt a conversion from

water storage to groundwater level.

Figure 3-7(b) shows the locations where the joint assimilation performed

better than the GRACE-only assimilation. The majority of grids showed im-

proved correlation than GRACE-only assimilation with an improvement in

correlation by up to 0.4. In particular, improved correlation was found in
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the areas where opposing trends in SMOS SM and GRACE TWS were ob-

served. This indicated the potential to simulate the water loss caused by

the groundwater extraction, which is not represented in the model. Figure

3-7(d) shows the comparison of simulated groundwater storage change from

the GRACE-only assimilation and the joint assimilation at Point C in Figure

3-7(b). This point is located in the agriculture area and has moderate rain-

fall. However, the relative wetness of soil is over 0.6 at all time (Figure 3-7(d)

top panel). Groundwater bore data showed a decrease in water level during

January to April 2011, while GRACE observed no significant change in TWS

and the soil moisture increased. The joint assimilation picked up this decrease

in groundwater but no decrease was estimated with the assimilation of only

GRACE data. Events with a similar decrease occurred in January to April

2012 and July to September 2012, and a larger magnitude of groundwater de-

crease occurred in the joint assimilation than in the GRACE-only assimilation.

Overall, joint assimilation appeared to impart the benefits of the combination

of GRACE TWS and SMOS SM as constraints and improved the accuracy of

the model-simulated groundwater storage dynamics.
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Figure 3-7: Correlation increments (𝑟𝑎-𝑟𝑜) of model-simulated groundwater storage
anomalies with in-situ water level measurements: (a) the correlation increments of
the assimilation of GRACE data alone compared to model open-loop run (blue: im-
proved; red: degraded;); (b) correlation increments of the joint assimilation compared
to the assimilation of GRACE data alone; (c) time series of averaged groundwater
storage simulation of Murray-Darling Basin and in-situ water level measurements;
(d) improvement of joint assimilation compared with the assimilation of GRACE
data alone at Point C (top panel: GRACE observed TWSA and SMOS observed rel-
ative wetness; bottom panel: model-simulated groundwater storage anomalies and
in-situ water level measurements).

3.3.6 Evaluation of evapotranspiration and streamflow

Assimilating SMOS data at daily time step (EnKF-SMOS) showed the

biggest impact on improving ET estimates compared to other experiments with

an average correlation of 0.83 (Table S4). Conversely, assimilating GRACE

data slightly degraded the correlation for most of the points (i.e. 56%). Al-

though the joint assimilation did not significantly improve the ET, the pro-

portion of degradation was reduced compared with other experiments. Assim-
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ilating SMOS and GRACE data slightly improved the accuracy of streamflow

simulation with average correlation of 0.86 from 0.81 (Table S4). The joint

assimilation showed improved correlation for 70% of the grid cells and the

correlation increased by up to 0.17 against model open-loop simulation.

In this section, model simulated surface soil moisture, root-zone soil mois-

ture, groundwater, TWS, ET and streamflow were evaluated with both in situ

and satellite observations. Figure 3-8 summarises the independent evaluation

of individual water balance component. Overall, joint assimilation resulted in

more accurate estimation of soil moisture profile at different depths, unlike the

assimilation of only one of the two data sets. (Figure 3-8(a-c)). Assimilating

GRACE data only did not always produce accurate soil moisture estimates and

overall less beneficial than either joint or SMOS-only assimilation. Assimilat-

ing SMOS SM did not improve the correlation between the model-simulated

groundwater storage and the in situ water level measurements. Indeed, the

correlation reduced for most of the grid cells compared to the open-loop esti-

mates (Figure 3-8(d)). The joint assimilation show marginal improvement on

ET and streamflow. Notably, though, the joint assimilation had reduced im-

pact on ET and streamflow performance than single-source data assimilation

(i.e. reduced proportion of correlation decrease).

3.4 Discussion

3.4.1 Disaggregation of monthly integrated water storage

The objective of the joint assimilation was to combine the information

from both SMOS and GRACE data to better estimate the water budget and

its variations. An important challenge in the assimilation was to allow for

the disparity in temporal resolution and spatial resolution at both the vertical

and horizontal scales between SMOS data, GRACE data and model states.

In this study, the EnKS-based assimilation framework with a one-month as-

similation window successfully disaggregated the monthly GRACE signals into

54



SECTION 3.4 CHAPTER 3. JOINT ASSIMILATION

daily analysis increments for each water store. Unlike the (GRACE-only) data

assimilation using a filter-based approach (Eicker et al., 2014; Tangdamrong-

sub et al., 2015) to update model estimates monthly or update daily estimates

by interpolating GRACE data, our EnKS-based assimilation simultaneously

updates all daily model states in a month using the monthly GRACE data.

Different from the approaches of Zaitchik et al. (2008) and Li et al. (2012) with

an even increment for each day, the increments applied over each day of the

month were different, thus accounting for temporal error correlations in our

method.

The assimilation of GRACE data improved the consistency between model-

estimated and GRACE TWS. The clearest improvements were seen in western

and southeastern Australia (Figure 3-3(b)). The magnitude of TWS change

derived from GRACE was larger than modeled estimates. Hence, assimilat-

ing GRACE TWS amplified changes in storage and made trends in water loss

or gain more distinct (Figure 3-4(b)). The joint assimilation of SMOS and

GRACE data sometimes led to reduced agreement with GRACE data due to

the conflicting constraints. Houborg et al. (2012) also found that the average

amplitude of the TWS change from the open-loop model was smaller than the

GRACE TWS observations and the adjustments of water can be subdued by a

limited water storage capacity in the model to accommodate the adjustments.

The integrated water storage change estimates from GRACE data were parti-

tioned into increments for different water stores through the error correlation

structure (Figure 3-2). In the joint assimilation, the adjustments of soil water

stores were dominated by SMOS data, while the contributions to groundwater

and TWS were mainly from GRACE data. However, assimilation of SMOS

alone can result in considerable changes in TWS. Our study appears to be the

first to compare GRACE TWS with TWS estimates after the assimilation of

near-surface SM only. The results illustrate that introducing SM observations

may lead to improved near-surface and shallow SM estimates, but degraded

deeper SM, groundwater and total TWS estimates. Thus, the relative weight-
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ing between SMOS and GRACE data is critical in the joint assimilation. In

the experiment of changing the relative weighing between two data sets, we

found that model-simulated TWS was sensitive to both SMOS and GRACE

data (Table 3.1). Amplifying SMOS uncertainty and attenuating GRACE

uncertainty to accommodate their different dynamic range and observation

frequency resulted in a better consistency with GRACE data: the correlation

increased from 0.64 to 0.76 and another 25% additional grid cells achieved bet-

ter correlation than the open-loop simulation. This suggested that SMOS data

dominated the original analysis adjustments in the joint assimilation configu-

ration. One likely reason is that the adjustments of TWS came from 10 SMOS

observations per month but only one GRACE observation. It also appears

that SMOS SM errors may be greater than indicated by the retrieval error

estimates. The relative weighting between SMOS and GRACE data needs to

be further investigated to optimize their combined use.

In this study, 3∘ × 3∘ GRACE mascon solutions were used, but the TWS

and groundwater change can be highly heterogeneous inside each mascon. Fig-

ure 3-5(c) and (d) compare the annual trend of TWS variation from GRACE

and the joint assimilation. The results demonstrated that the joint assimila-

tion produced more detailed spatial variability compared with GRACE mascon

data. This is due to the model forward run with high resolution forcing data

and the constraints from SMOS data. The joint assimilation showed good

consistency with GRACE data, except for east coast Australia where GRACE

uncertainties were relatively large. The joint assimilation also showed better

correlation with GRACE TWS in north central Australia compared to the

assimilation of only GRACE. This is illustrated in Figure 3-5(e) and (f): the

dashed line indicates that SMOS assimilation enhances the analysis by adding

or removing more water in the system when SMOS has the same trend in

TWS as GRACE. This occurs if the TWS change is mainly due to the soil

water variation. Therefore, assimilating SMOS and GRACE together appears

to impart more detailed spatial information on the distribution of water, in-
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ducing the downscaling of coarse GRACE signals. The TWS estimates with

improved spatial resolution from the joint assimilation offers a new tool for

monitoring total water storage change with distinct benefits over the original

GRACE data.

3.4.2 Impact on soil moisture profile estimates

The joint assimilation was able to improve the soil moisture estimation in

different layers (Figure 3-8(a)-(d)). The improved SM correlation at four con-

trasting depths demonstrates the benefits of joint assimilation on improving

the vertical soil moisture profile estimates. In particular, the joint assimila-

tion stood out from the assimilation of only either SMOS or GRACE data

in improving root-zone SM estimates. Assimilating SMOS data with EnKF

was less robust than EnKS in improving shallow- and deep-layer soil mois-

ture. The EnKF corrected the model states instantly as observations became

available, while the EnKS updated all previous states back to the first day

of the month. The EnKS smoothed water storage estimates over the month,

preventing incurring spikes in the updated states and eliminating the impact

of noisy observations. Moreover, deeper layer soil water storage or TWS re-

sponded slower to precipitation than surface SM, resulting in a time lag with

the variation of surface SM. The EnKS with an assimilation window therefore

appears more suitable for correcting the states that respond over the course of

days or months, such as deep soil water, groundwater and TWS.

SMOS observations can also provide supplementary information about

the water inputs and can mitigate errors in precipitation estimates for areas

with sparse monitoring stations. As illustrated in Figure 3-5(a), the positive

trend in rainfall evident in north-west Australia was less than observed in both

SMOS and GRACE (Figure 3-5(b)-(c)), suggesting the error lay in the precip-

itation data (there are very few rain gauges in this dry and sparsely populated

region). An example of comparison between precipitation, in-situ measure-

ments and SMOS data at Yanco in Figure 3-4(a) showed that the joint assim-
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ilation resulted in a higher more soil moisture predicion during July-October

as well as January-April in both 2010 and 2012, consistent with in-situ mea-

surements. However, no significant rainfall events were recorded, indicating an

error in precipitation estimates or that there was another source inputs water

from such as irrigation. Therefore it appears feasible that the SMOS data can

correct errors in the precipitation estimates and detect other source of water

inputs, resulting in more accurate estimates of the soil moisture profile. This

may have considerable value for agricultural water resource management and

drought monitoring.

3.4.3 Impact on groundwater estimates

Similar to Zaitchik et al. (2008), Houborg et al. (2012), and Tangdam-

rongsub et al. (2015), we found that assimilating GRACE data successfully

mitigated the model deficiency in groundwater simulation and led to major

improvements in estimating groundwater storage. The correlation with in-

situ groundwater level measurements was further improved for the majority of

grid cells by the joint assimilation, compared to the GRACE-only assimilation.

Integrating SMOS data most likely constrained the magnitude of groundwa-

ter storage change from TWS changes with more accurate soil water storage

estimates. Where they occurred, the opposite trends between GRACE and

SMOS provided extra information on the exchanges between soil water and

groundwater. This may help quantify groundwater extraction over large areas

(Rodell et al., 2009). In addition, the SMOS data helped to refine the spatial

pattern of soil and groundwater storage changes derived from GRACE data.

Long et al. (2016) found that groundwater depletion estimated from GRACE is

likely to be overestimated. They highlighted the importance of incorporating

a priori information to refine spatial patterns of GRACE signals. The joint

assimilation is less efficient if large water storage changes occur as a result

of lateral flow from neighboring cells, e.g. through large rivers or ice mass

changes. In such cases, the responsible processes need to be quantified and in-
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cluded (van Dijk et al., 2014a). Overall joint assimilation efficiently improved

estimates of groundwater change, potentially resolving the lack of groundwater

observations at large scales over much of the world.

3.4.4 Impact on evapotranspiration and streamflow

The joint assimilation framework proposed in this study explicitly ac-

knowledges uncertainty in the model forcing data (precipitation, temperature

and radiation) and does not conserve mass and energy with respect to the

original estimates. While the lack of water balance is not a problem for some

applications, there is potential that estimates of other water balance terms

may be degraded through data assimilation to compensate for model structural

and/or input errors. To investigate this, we evaluated the resulting streamflow

and ET with in-situ measurements. We found no degradation on both ET and

streamflow estimates after the joint assimilation (Table S4), Figure 3-8(e)-(f)).

Despite differences in scale, for most locations there was in fact a slight im-

provement in correlation with ET and streamflow observations and reduced

degradation after the joint assimilation as compared to single-observation as-

similation experiments (i.e. from 56% to 18% and 31% to 23%, Table S4). The

differences of ET and streamflow between assimilation results and open-loop

are small, since the fluxes are often reproduced reasonably well in model open-

loop with an average correlation of 0.78 and 0.81, respectively (Table S4). The

overall marginal improvement may be due to several factors, including a lack

of analysis update on water flux terms, weak coupling strength with soil water

storage, and ’smoothed’ variation in the monthly data evaluation.

Evapotranspiration estimates were observed to improve in the EnkF-

SMOS experiment with an increase in correlation of up to 0.44 (i.e. from

0.46 to 0.90) compared to open-loop estimates. This is likely because the ET

estimates were updated indirectly through updated analysis of soil moisture

at daily time step, while they were only adjusted at the beginning of a month

with the analysis states at the end of thee month in the EnKS. Assimilating
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GRACE data alone had no positive impacts on the estimation of ET with

a slight degradation for most of the locations. Tangdamrongsub et al. (2015)

also found that assimilating GRACE data had no significant impact on stream-

flow estimation, since monthly GRACE data cannot help to capture the larger

peaks of individual streamflow events. To further improve other variables in

the water cycle, an approach incorporating the ET, runoff and precipitation

in the adjustment would be considered in future work.

3.5 Conclusions

The accuracy of vertical soil moisture profile, groundwater storage and

total water storage estimates from hydrological modeling was significantly im-

proved through the joint assimilation of satellite-observed near-surface SM

from SMOS and TWS from GRACE. The joint assimilation produced more

accurate estimates of the key elements of water cycle than the assimilation of

only one of the satellite observations, without degradation of streamflow and

ET estimates. It improved the performance of GRACE-only assimilation by

integrating near-surface water distribution at a finer scale from SMOS, while

limiting the degradation of deeper storage estimates caused by the assimilation

of SMOS alone.

All of the individual water storage components for different land cover

types were updated at daily time steps over a one-month assimilation window,

incorporating the information from both GRACE and SMOS data through

temporal error correlations. SMOS provided temporal and spatial varying con-

straints on near-surface SM and shallow-layer SM estimates from the model.

However, assimilating only SMOS SM data degrades the correlation with

GRACE TWS data and in situ groundwater level measurements, especially

when an EnKF is used. GRACE TWS data mostly contributed to correcting

model simulated deep-layer SM and groundwater storage values in the assim-

ilation, also imparting overall constraints on monthly TWS estimates.
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Moreover, having constraints on both TWS and near-surface SM can help

to mitigate the lack of rain gauges in remote areas and may even help to quan-

tify the impacts of large-scale groundwater extraction. We found that the error

in the precipitation data used to force the hydrological model can be corrected

through the use of higher resolution SMOS SM observations when both TWS

and SMOS show similar increase trends but there was no or low precipitation

observed, resulting in more detailed spatial patterns of near-surface soil water

variations. The joint assimilation can also detect groundwater loss due to ex-

traction for irrigation purpose, if SMOS shows strong increase in soil wetness

but there is no increase in TWS and precipitation.

Integrating SMOS SM and GRACE TWS together successfully combined

the strengths of each information source and largely mitigated against their

weaknesses. The improved individual water storage estimates offer potential

for drought and groundwater monitoring, as well as water cycle reanalysis

applications.
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Figure 3-8: Performance of four assimilation experiments on improving different
water balance components and statistics of correlation increments (difference between
assimilation and open-loop model simulation) (a) surface soil moisture, (b)-(c) root
zone soil moisture at different depths, (d) groundwater, (e) evapotranspiration and
(f) streamflow. (The red lines connect the median value of the correlation increments;
the blue bars show the interquartile range and the range of correlation increments.)
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Chapter 4

Improved global root-zone soil

moisture estimates

Most ecohydrological and agricultural dynamics are related to, and often de-

pend upon the root-zone soil moisture. Accurate estimation of global root-

zone soil moisture is critical for predicting vegetation conditions but challeng-

ing without direct measurements. Since significant improvements in root-zone

soil moisture estimation are found in Australia after the joint assimilation of

GRACE and SMOS data, we implemented our proposed joint assimilation

framework globally with further amendment in method and spatial resolution.

This chapter shows the global results of the joint assimilation of GRACE and

SMOS retrievals. The accurate estimation of root-zone soil moisture through

joint assimilation is of potentially great value for anticipating vegetation green-

ness and productivity. This chapter is based on the material published in

Hydrology and Earth System Sciences:

Tian, S., Renzullo, L. J., van Dijk, A. I., Tregoning, P., Walker, J. P. (2019).

Global joint assimilation of GRACE and SMOS for improved estimation of

root-zone soil moisture and vegetation response. Hydrology and Earth System

Sciences, 23(2), 1067–1081
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Abstract

The lack of direct measurement of root-zone soil moisture poses a chal-

lenge to the large-scale prediction of ecosystem response to variation in soil

water. Microwave remote sensing capability is limited to measuring moisture

content in the uppermost few centimetres of soil. GRACE (Gravity Recovery

and Climate Experiment) mission detected the variability in storage within

the total water column. However, root-zone soil moisture cannot be sepa-

rated from GRACE-observed total water storage anomalies without ancillary

information on surface water and groundwater changes. In this study, GRACE

total water storage anomalies and SMOS near-surface soil moisture were jointly

assimilated into a hydrological model globally to better estimate the impact

of changes in root-zone soil moisture on vegetation vigour. Overall, the ac-

curacy of root-zone soil moisture estimates through the joint assimilation of

surface soil moisture and total water storage retrievals showed improved con-

sistency with ground-based soil moisture measurements and satellite-observed

greenness when compared to open-loop estimates (i.e. without assimilation).

For example, the correlation between modelled and in situ measurements of

root-zone moisture increased by 0.1 (from 0.48 to 0.58) and 0.12 (from 0.53

to 0.65) on average for grasslands and croplands, respectively. Improved cor-

relations were found between vegetation greenness and soil water storage on

both seasonal variability and anomalies over water-limited regions. Joint as-

similation results show a more severe deficit in soil water anomalies in eastern

Australia, southern India and eastern Brazil over the period of 2010 to 2016

than the open-loop, consistent with the satellite-observed vegetation greenness

anomalies. The assimilation of satellite-observed water content contributes to

more accurate knowledge of soil water availability, providing new insights for

monitoring hidden water stress and vegetation conditions.
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4.1 introduction

Water is a growth-limiting resource that impacts over 40% of Earth’s

vegetated surface (Nemani et al., 2003). Vegetation productivity and water

stress are strongly coupled by the interactions between soil moisture, photo-

synthesis, transpiration, interception and hydraulic redistribution (Porporato

et al., 2004). The amount of water available to support plant growth and

buffer against rainfall deficiencies largely determines the length of the growing

period (Leenaars et al., 2018). Rooting depth as an essential parameter in

hydrologcial modeling to regulate correct simulation of subsurface processes

have been estimated based on various scientific hypotheses due to the lack of

direct measurements (Wang-Erlandsson et al., 2016; Yang et al., 2016). Al-

though some vegetation species have roots that can grow to tens of metress

depth (Canadell et al., 1996), most plants have roots that are contained in

the upper 2m of the soil column, and thus cannot access the deeper water

stores (Tokumoto et al., 2014). For example, Dunne and Willmott (1996) de-

rived a global distribution map of plant-extractable soil water capacity based

on soil-water retention properties, soil texture and organic content estimates

and found that less than 150 mm of the water capacity can be accessed by

the plants over 90% of the vegetated area. The duration of water stress and

the vertical distribution of soil moisture determine the vegetation vigour to

a large extent in drylands (Canadell et al., 1996). Stress due to limited soil

water can trigger a reduction in photosynthesis, which in turn leads to reduced

productivity and increased vegetation mortality. The increasing deficit in deep

soil water under a changing climate may further intensify ecological droughts

during the growing season (Schlaepfer et al., 2017). There is a compelling need

to quantify the vegetation responses to water scarcity for improved assessment

of climate change impacts at large scales (Breshears et al., 2005).

Wang et al. (2007) and Santos et al. (2014) investigated different responses

of vegetation vigor to ground-based root-zone soil moisture observations at dif-
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ferent depths. There are limited studies on the impacts of soil water availability

on the functions in terrestrial ecosystems at regional to global scale due to the

absence of widespread direct observations of root-zone soil moisture. Soil mois-

ture simulations and satellite water content observations from the uppermost

soil layer to the total water column have been used to quantify the water driven

surface vegetation greenness variability (Laio et al., 2001; Wang et al., 2007;

Andela et al., 2013; Chen et al., 2014; Yang et al., 2014; Xie et al., 2016a).

However, model-simulated soil moisture profile estimates are highly uncertain

due to the necessary simplification of processes and parameterization (Porpo-

rato et al., 2004). Soil moisture observations from in situ monitoring networks

or satellite observations are generally spatially, vertically and temporally con-

strained by the instruments. Satellite soil moisture retrievals from microwave

sensors such as SMOS (Soil Moisture and Ocean Salinity) only provide the

soil moisture in the uppermost soil layer and are limited by the errors intro-

duced by soil type, canopy cover and surface roughness (Houser et al., 1998;

Narayan et al., 2004). In contrast, the GRACE (Gravity Recovery and Cli-

mate Experiment) mission provided integrated water storage change including

water above and under the surface through mapping anomalies in the chang-

ing Earth’s gravity field (Tapley et al., 2004). It has been demonstrated that

GRACE-observed total water storage anomalies can explain changes in surface

greenness both interannually and seasonally without time lag over Australia

(Yang et al., 2014). Conversely, Chen et al. (2014) found that vegetation green-

ness typically lags soil moisture at less than 10 cm depth by one month over

mainland Australia using merged satellite soil moisture products (Liu et al.,

2012b). This discrepancy in the time lags indicates that vegetation responds

differently to variations in surface soil moisture and total water storage. The

quantification of vegetation response to soil water availability at large scale

therefore remains challenging without accurate soil moisture profile estima-

tions.

Observations of near-surface soil moisture have been successfully inte-
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grated into land surface models to correct model deficiencies on simulating soil

moisture using various assimilation techniques (Walker and Houser, 2001b;

Sabater et al., 2007; Crow et al., 2008; Renzullo et al., 2014; Dumedah et al.,

2015). Active/radar and passive/radiometer observations were jointly assimi-

lated to improve surface soil moisture and root-zone soil moisture with opti-

mal accuracy and spatial coverage by Draper et al. (2012) and Lievens et al.

(2017). Significant improvements were mainly found for shallow root-zone es-

timation at 0-30 cm (Draper et al., 2012; Renzullo et al., 2014), with less

benefit for deeper soil layers. Conversely, GRACE-observed total water stor-

age anomalies were successfully assimilated or otherwise combined with model

simulations for improved deep soil and groundwater estimation (Zaitchik et al.,

2008; van Dijk et al., 2014a; Tangdamrongsub et al., 2015; Khaki et al., 2017;

Schumacher et al., 2018; Girotto et al., 2017; Tangdamrongsub et al., 2018),

but with typically marginal improvements for surface and shallow soil mois-

ture (Li et al., 2012; Girotto et al., 2017; Tian et al., 2017; Tangdamrongsub

et al., 2018; Shokri et al., 2018). This is due to the highly variable nature

of near-surface and shallow soil moisture in space and time, which has little

influence on the GRACE signal. Recently, near-surface soil moisture and to-

tal water storage observations were jointly assimilated into a water balance

model over Australia and demonstrated to consistently improve water stor-

age profile estimates, especially in the root-zone soil moisture estimates (Tian

et al., 2017). The use of satellite-observed daily near-surface soil moisture has

been demonstrated to better disaggregate shallow soil moisture and groundwa-

ter change from GRACE-observed total water storage change because of the

different temporal dynamics.

In this study, satellite-observed soil moisture and changes in total water

storage were jointly assimilated into a global water balance model following

the approach of Tian et al. (2017) and extended with several further inno-

vations. We investigated the impacts of assimilating satellite water content

retrievals on the estimation of surface and root-zone soil moisture and evalu-
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ated with ground-based soil moisture measurements. The relationship between

vegetation vigor and soil water availability was assessed with satellite-observed

greenness and root-zone soil moisture estimates for different vegetation types.

The performance of the joint assimilation is compared against the open-loop

model and alternative assimilation methods. The annual trends of root-zone

soil water storage anomalies are compared with the trends in vegetation green-

ness anomalies to investigate the potential of using accurate information of soil

water availability for explaining and anticipating vegetation greenness and pro-

ductivity.

4.2 Materials

4.2.1 Ecohydrological model

The World-Wide Water (W3) model (van Dijk et al., 2013a) (available

at http://wald.anu.science) is a one-dimensional, grid-based distributed eco-

hydrological model that simulates water balance and water-related vegetation

dynamics. It was adapted from the Australian Water Resources Assessment

Landscape (AWRA-L) model (van Dijk, 2010a; Frost et al., 2016). Precipita-

tion is assumed to be the only water input into the system. The precipitation

enters the grid cell through the vegetation and soil moisture stores and ex-

its the grid cell through evapotranspiration, run-off or groundwater discharge

(Frost et al., 2016). Each grid cell contains a mix of land cover classes (Hydro-

logical Response Units; HRUs) and is conceptualized as a catchment that does

not laterally exchange water with neighbouring cells. Different vegetation has

different degrees of access to soil water. Soil and vegetation water and energy

fluxes were simulated separately for deep-rooted and shallow-rooted vegeta-

tion to consider different rooting and water uptake behaviour. The soil water

store was partitioned into three layers, namely, top, shallow and deep soil to

describe the plant available water, approximately 0–5cm, 0.05–1m, and 1–10m

in depth respectively. A simple groundwater model is used to simulate uncon-
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fined groundwater storage considering deep drainage from soil water, capillary

rise and groundwater evaporation and discharge. The unconfined groundwater

and surface water stores were simulated at grid cell level.

A 0.25∘ × 0.25∘ global gridded Multi-Source Weighted-Ensemble Precip-

itation (MSWEP) data set derived by merging gauge, satellite and reanaly-

sis data (Beck et al., 2017) was used as the only water input in the system.

The 0.5∘ × 0.5∘ WFDEI (WATCH Forcing Data methodology applied to ER-

AâĂŘInterim) meteorological forcing data set (Weedon et al., 2014) used in

this study including radiation, air temperature, wind speed, and surface pres-

sure, and these were resampled to be consistent with the resolution of pre-

cipitation at 0.25∘. The soil water balance of the W3 model was simulated

globally on a daily basis with a spatial resolution of 0.25∘ × 0.25∘.

4.2.2 Land cover types

The 2010 land cover types of each pixel were characterized by the MODIS

(Moderate Resolution Imaging Spectroradiometer) global IGBP (International

GeosphereâĂŞBiosphere Programme) land cover classifications (MCD12Q1) at

5′×5′ resolution (Channan et al., 2014). The number of pixels at 5′×5′ resolu-

tion for each land cover type in the entire corresponding 0.25∘×0.25∘ grid cells

were counted to determine the sub-pixel heterogeneity. If the land cover type

is identical for the corresponding model grid cell, the land cover type of this

model grid cell is considered to be homogeneous. Model grid cells with multiple

land cover types and over 60% grassland were defined as grassland-dominated

mixed vegetation. Similarly, model grid cells with mostly forest were classified

as forest-dominated pixels. Grid cells with multiple different land covers were

classified as mixed land cover. The forest cover of each 0.25∘ × 0.25∘ grid cell

was calculated with the percentage of forest (including evergreen, deciduous

and mixed forest) pixels to investigate the impact of woody vegetation on soil

moisture estimation.
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4.2.3 Satellite-observed water content

Satellite-observed near-surface soil moisture from SMOS and total water

storage from GRACE were used in this study. GRACE tracked the water

movement from space by measuring the changes in the distance between the

twin satellites caused by surface mass variations (Tapley et al., 2004). The

JPL RL05M mass concentration (mascon) GRACE solutions (Watkins et al.,

2015) were used to constrain model-simulated total water storage (i.e. the in-

tegration of surface water, soil water at three layers and groundwater stores).

The GRACE data were represented on a 0.25∘ grid but they represent native

resolution of 3∘ × 3∘ equal-area caps. In contrast with sensing the integrated

water content, SMOS characterizes global temporal change of near-surface (0

- 5 cm) soil moisture from the microwave brightness temperature observations

every three days (Kerr et al., 2010). The 0.25∘ Level-3 global daily soil mois-

ture retrievals from CADTS (Centre Aval de Traitement des DonnÃľes SMOS,

https://www.catds.fr) (Jacquette et al., 2010; Kerr et al., 2013) for ascending

and descending orbits were averaged over the overlapping area. The tempo-

rally and spatially varying uncertainties of GRACE and SMOS retrievals were

provided as part of their respective products, and were used to investigate ob-

servation error variance-covariance matrices in the assimilation method. The

relative error was calculated as the ratio of the uncertainty over the absolute

value for both GRACE and SMOS retrievals for each grid cell at each time

step. The average uncertainties for SMOS and GRACE observations were cate-

gorized based on land cover types to investigate the relative weighting between

observations in the assimilation (Fig. 4-1).

4.2.4 International Soil Moisture Network

Iin situ soil moisture observations at different depths available from the

International Soil Moisture Network (ISMN) (Dorigo et al., 2011) were used to

evaluate the performance of model-simulated soil moisture for the uppermost
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Figure 4-1: Averaged relative error of satellite-observed water content in different
land cover types for: (a) SMOS-derived soil moisture; (b) GRACE-derived total
water storage.

soil layer and root-zone. An additional level of quality control was imposed here

on the ISMN data to eliminate those sites with less than 2 years data record,

having persistently low or high values, or possessing inexplicable spikes or

breaks in the time series. In total 164 stations from 19 measurement networks

provided near-surface (0 – 5 cm) soil moisture observation globally, while 197

station from 15 networks provided root-zone soil moisture at 0 – 1 m (Fig.

4-2). Hourly observations were averaged over a 24-hour period to give daily

moisture measurements. Stations with multiple measurements for soil moisture
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within 1 m depth were aggregated to soil moisture at 0–1 m. The 98𝑡ℎ and 2𝑛𝑑

percentiles of the data records for each site were assumed to represent the field

capacity and wilting point required for the calculation of relative wetness.

Figure 4-2: Distribution of in situ near-surface and root-zone soil moisture sites
from the International Soil Moisture Network (ISMN) overlaid on the background of
MODIS IGBP (International GeosphereâĂŞBiosphere Programme) land cover clas-
sifications (MCD12Q1).

4.2.5 Satellite-observed greenness

The MODIS 0.05∘ monthly normalized difference vegetation index (NDVI)

product (MOD13C2) (Didan, 2015) derived from atmospherically-corrected

reflectance in red and near-infrared wavelengths were used as a simple and

robust indicator for vegetation greenness. The MOD13C2 NDVI data were

aggregated to 0.25∘ to be comparable with model simulations from January

2010 to December 2016. Areas of the Earth’s surface that never exceeded a

maximum NDVI value of 0.2 over this period were masked as barren land.
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4.3 Method

4.3.1 Data assimilation

SSatellite-derived total water storage and near-surface soil moisture were

jointly assimilated into the global W3 model from 2010 to 2016. Systematic

differences between model and observations need to be removed to ensure

optimal performance of the assimilation method (Evensen, 1994; Dee, 2005;

Renzullo et al., 2014). Since the W3 model only specifies soil water storage in

water depth (mm) rather than prescribing a physical thickness of the soil layers

and porosity, the model-simulated soil water availability cannot be directly

compared with SMOS soil moisture retrievals in volumetric fraction. To resolve

the inconsistency between model and satellite observations in representing the

near-surface soil water availability, both SMOS retrievals and W3 simulated

top-layer soil water storage (𝜃𝑡) were converted to relative wetness (𝑤𝑡) (0-1)

with respect to the dry (𝜃𝑤𝑡) and wet (𝜃𝑓𝑐) extremes over the 7-year period,

calculated as the 2𝑛𝑑 and 98𝑡ℎ percentiles, respectively (Eq. 4.1).

𝑤𝑡 =
𝜃𝑡 − 𝜃𝑤𝑡

𝜃𝑓𝑐 − 𝜃𝑤𝑡
(4.1)

For total water storage, it was a simple matter of adding the W3 model-

simulated total water storage averaged over 2004 – 2009 to the GRACE-

observed water storage anomaly for absolute total water storage values.

Due to the disparity in temporal and spatial resolution and measurement

depths between SMOS and GRACE, these contrasting satellite water content

observations were assimilated using an ensemble-based Kalman smoother ap-

proach with a one-month window, following the approach of Tian et al. (2017).

Total water storage together with soil moisture data were used to constrain

model-simulated water storage components formed as the state vector 𝑥, in-

cluding vegetation water and soil water (top, shallow, and deep layer) for each

hydrological response unit, surface water (rivers, lakes) and unconfined ground-
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water. The observation vector 𝑦 consisted of the available daily SMOS surface

soil moisture and the GRACE total water storage in a month at each grid.

Model error variance 𝑃 𝑓 was derived from 100 ensemble members of the state

variable, generated through the perturbation of precipitation, radiation and

air temperature data. The analysis states 𝑥𝑎 were updated with the forecast

states 𝑥𝑓 and the weighted difference between the observations and forecasts

at the end of every month (Eq. 4.2), i.e.,

𝑥𝑎𝑖 = 𝑥𝑓𝑖 + 𝑃 𝑓𝐻𝑇 (𝐻𝑃 𝑓𝐻𝑇 +𝑅)−1
[︁
𝑦 −𝐻(𝑥𝑓𝑖 ) + 𝜖𝑖

]︁
, 𝑖 = 1, . . . , 100 (4.2)

The matrix 𝑃 𝑓𝐻𝑇 (𝐻𝑃 𝑓𝐻𝑇 +𝑅)−1 above, known as the Kalman gain, deter-

mines the degree of influence that observation 𝑦 has on changing the model

forecast state, 𝑥𝑓 .

Spatially and temporally varying uncertainties from GRACE and SMOS

products, characterised by 𝑅, were used in the assimilation to represent the

observation error covariance matrix. Tian et al. (2017) applied an artificial

weighting factor to the uncertainties of GRACE and SMOS data to compensate

the over-adjustment from SMOS due to the inconsistency in units between

SMOS and GRACE data. In this study, the first part of the observation

operator 𝐻 converts SMOS soil moisture retrievals firstly into relative wetness

(Eq. 4.1) and then to available water content (in mm) for the upper most soil

layer. The field capacity and wilting point from model simulations for the top

5 cm were applied to both soil wetness and uncertainties. No further weighting

factor was required between GRACE and SMOS data after converting SMOS

data to equivalent water height. Both ascending and descending SMOS soil

moisture retrievals were used to improve the spatial coverage. The second part

of the observation operator computes the monthly mean from the sum of daily

water storage components in the state vector. The state variables for the next

time step of the model forward run were initialized with the analysis states.

The open-loop run (without assimilation of any observation), the assimi-

74



SECTION 4.3 CHAPTER 4. GLOBAL JOINT ASSIMILATION

lation of soil moisture alone and the assimilation of total water storage alone

were also evaluated to examine different impact of different satellite data on

soil moisture profile adjustments. The same ensemble Kalman smoother was

applied to the assimilation of SMOS alone (SMOS-only) and the assimilation

of GRACE alone (GRACE-only) to compare with the joint assimilation. Since

the uncertainty in SMOS data varies considerably between land cover types,

another joint assimilation experiment (Joint-landcover) was conducted where

SMOS uncertainties were increased by 50% of the reported value over dense

forest area (tree cover > 0.7) was implemented to identify any possible under-

estimation of SMOS uncertainties in forest regions.

4.3.2 Evaluation of soil moisture estimates

Estimates of soil water content in the uppermost soil layer (0–5 cm) and

root-zone (0–1 m) after the joint assimilation were evaluated against in situ

soil moisture observations from ISMN. The in situ stations within the corre-

sponding model grid cell were aggregated to represent the soil moisture at 0.25∘

scale. The in situ soil moisture monitoring sites were grouped based on land

cover type of the corresponding model grid cell. Both model-simulated and

observed soil moisture were transformed to relative wetness to resolve differ-

ences in units and depths between model simulations and in situ observations

(Eq. 4.1). The performance of soil moisture estimation was statistically evalu-

ated with Pearson correlation (𝑟) and root-mean-square error (RMSE) for the

open-loop and different assimilation experiments.

4.3.3 Analysis of vegetation response to root-zone soil

moisture

In this study, satellite-observed vegetation greenness were used as an in-

dependent evaluation of root-zone soil moisture estimates in water-limited re-

gions. 30 years of monthly potential evapotranspiration and precipitation data
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were used to derive the aridity index. The aridity was simply calculated by

averaging the fraction of months that potential evapotranspiration exceeded

precipitation in a year. The humid regions with aridity index less than 0.4 were

masked out in the evaluation. The correlations between satellite-observed veg-

etation greenness and soil water storage from different sources were calculated

for comparison. The deseasonalized NDVI and soil water storage were derived

to investigate the impacts of data assimilation on simulating seasonal cycle and

anomalies. The estimation of soil water availability used in the comparisons

included SMOS soil moisture, GRACE total water storage, model simulated

root-zone soil moisture via the joint assimilation, and the precipitation-based

soil moisture estimates from the antecedent precipitation index (API). The

API was calculated using the MSWEP precipitation data with a constant de-

cay coefficient of 0.9 (Hooke, 1979). API was used as it better represents the

cumulative effects of precipitation than individual rainfall events on vegetation

response. The statistical improvement in correlation was used as an indicator

for enhanced performance on simulating seasonal pattern and the deviation of

monthly mean.

The soil water availability at the integrated depth that has the maxi-

mum correlation with NDVI best explains the changes in surface greenness at

each grid cell, so-called vegetation-accessible storage (Tian et al., 2019). The

correlation of monthly NDVI and soil moisture estimates integrated over dif-

ferent depths after joint assimilation were calculated. The soil water storage

estimates were integrated at four depths: near-surface (0–5cm), shallow-root

zone (0–1m), deep-root zone (0–10m) and total water column. Annual trend

of the accessible storage anomalies relative to monthly means were calculated

to determine the area under soil water stress. Linear trend analysis was also

applied to the annual average NDVI anomalies to investigate the consistency

between vegetation greenness and soil water storage. The trends in accessi-

ble storage derived from the open-loop and joint assimilation were compared

with the trends in NDVI to investigate the change in annual trend after data
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assimilation.

4.4 Results

4.4.1 Near-surface and root-zone soil moisture estima-

tion

SMOS soil wetness and W3 top-layer soil wetness from open-loop and data

assimilation were compared with the in situ near-surface soil wetness observa-

tions from ISMN (Fig. 4-3). Satellite observations of soil moisture (SMOS)

were generally better correlated with in situ soil moisture observations over

non-forest areas than open-loop simulations (Fig. 4-3a). However, as the

fraction of tree cover increases, the relative performance changes and model

simulations tend to be better correlated with in situ measurements than SMOS

observations. The joint assimilation of both SMOS and GRACE observations

(Fig. 4-3b) shows improved correlation with in situ measurements compared

with the model open-loop over the majority of the sites where SMOS obser-

vations better correlated with in situ measurements. This improvement is due

to data assimilation bringing the model and SMOS soil moisture into better

agreement for these sites, as illustrated in Fig. 4-3c for a grassland site. On

the other hand, joint assimilation largely reduces the degradation on surface

soil moisture over forest sites where SMOS retrievals are less accurate than

model simulations (dark green dots in Fig. 4-3a and time series in Fig. 4-3d).

The impact of data assimilation on W3 model performance is further illus-

trated in Fig. 4-4. For near surface soil moisture (Fig. 4-4a), the assimilation

of SMOS observations alone (SMOS-only) shows more sites with improved

correlations and reduced RMSE against model open-loop. The assimilation of

GRACE data alone had little impact on surface soil moisture estimation. Joint

assimilation of SMOS and GRACE with SMOS observations down-weighted

for ISMN sites in forest (high tree cover) areas (plot labeled ’Joint-landcover’)
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Figure 4-3: Assessment of near-surface soil moisture estimation with ISMN in situ
measurements from 2010 to 2015: (a) correlations of SMOS soil moisture retrievals
with in situ measurements (y-axis) compared against open-loop (x-axis); (b) corre-
lation of near soil moisture estimates after the joint assimilation with in situ mea-
surements (y-axis) compared against model open-loop (x-axis) ; Each ISMN site
is characterised by the fraction of tree cover within the corresponding 0.25∘ cell.
(c) and (d) time series of simulated surface soil moisture before and after the joint
assimilation over grassland and forest dominated region.

was observed with less degradation sites than joint assimilation with original

SMOS uncertainties (’Joint’).

Data assimilation resulted in significant improvements in W3 root-zone

soil moisture estimation over the majority of sites (Fig. 4-4b). In contrast to

surface soil wetness, SMOS and GRACE observations both impacted deeper

soil wetness estimation considerably. Simulation of soil wetness over the root-

zone (0–1m) in the joint assimilation was less affected by forest cover compared

to the near-surface soil wetness, as evident from the high degree of similarity

between the ’Joint’ and ’Joint-landcover’ plots (Fig. 4-4b). This suggests

no significant difference in performance as a result of down-weighting SMOS

influence over forest regions.

Table 4.1 summarises W3 model soil moisture estimation performance
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Figure 4-4: Performance of surface and root-zone soil moisture estimates from four
data assimilation scenarios against open-loop: correlation (𝑟) and root mean-squared
error (RMSE) change after the assimilation(𝑟𝑎 − 𝑟𝑜, RMSE𝑎-RMSE𝑜; 𝑎: after as-
similation, 𝑜: open-loop) in (a) surface soil moisture estimation; (b) root-zone soil
moisture estimation. The four scenarios include: SMOS-only as the assimilation of
SMOS data alone, GRACE-only as the assimilation of GRACE data only, Joint as
joint assimilation of SMOS and GRACE, Joint-landcover as increasing SMOS uncer-
tainty in forest regions in the joint assimilation. The points in the scatter plots are
colour coded such that: blue indicates ISMN sites where improvement was observed
in both correlation and RMSE; green indicates sites where there was improvement in
correlation, but not in RMSE; yellow indicates those sites where there was improved
RMSE, but not correlation; and red indicating sites where assimilation resulted in
degradation in both correlation and RMSE.

for both near-surface and the root-zone for different land cover types. On

average, the correlation with in situ observations increased for both surface

and root-zone soil moisture estimates compared to model open-loop. The

improvements in surface soil moisture estimates were mainly over croplands

(i.e. CP and CV) and grassland dominated areas (i.e. GS and GD), with

changes in correlation, 𝑟𝑎 − 𝑟𝑜, as high as 0.44 for cropland. Correlation in

model surface soil moisture estimates over savannas and forest areas decreased

relative to open-loop simulations. Data assimilation improved root-zone soil

moisture estimates for most land cover types with up to 0.38 increase over mix-

types areas and an average change in correlation of 0.1 for croplands (from 0.59

to 0.69) and grass-dominated areas (from 0.54 to 0.64).
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Figure 4-5: Time series of vegetation responses (NDVI) to soil water storage over
different integrated depths across land vegetation types before (𝑟𝑜, red curves) and
after the joint assimilation (𝑟𝑎, blue curves). The location of each site is shown in
Figure 1.
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4.4.2 Relation between vegetation greenness and soil wa-

ter availability

Monthly water storage integrated to different depths, from the uppermost

soil layer to total soil column, were compared with satellite-observed greenness.

The response of vegetation greenness to water storage at different depths is

illustrated for selected sites over six land cover types in Fig. 4-5. Significant

differences in soil water variability were found between the joint assimilation

and open-loop estimates in all sites (Fig.4-5), in particular deep-root zone and

total water column. The temporal pattern in greenness and water storage

time series was characterized for open-loop and joint assimilation estimates

by correlation, 𝑟𝑜 and 𝑟𝑎 respectively. As an example, the grassland site in

northern China responded more strongly to the availability of near-surface soil

water (higher correlation) than deep soil water and total water storage (Fig.

4-5a). This suggests a shorter time lag between surface soil water availability

and surface greenness. Stronger correlations between NDVI and near surface

soil water storage were found to have increased by 0.15 after assimilation (i.e.

𝑟𝑎 − 𝑟𝑜 = 0.15). Greenness of the savannas site in eastern Brazil and the

cropland site in southern Australia showed a similar seasonal pattern (corre-

lation) to water storage over all depths (Fig. 4-5b and 4-5c). The largest

change in correlation as a result of joint assimilation was observed for the

Brazil savannas site (Fig. 4-5b) (𝑟𝑎 − 𝑟𝑜 > 0.4) for shallow- and deep- water

storage. NDVI in shrublands and forest sites with deeper roots showed higher

correlation with deep soil water and total water storage availability, such as

the evergreen broadleaf forest in Nigeria, shrubland in northern Mexico and

deciduous broadleaf forest in southern Bolivia (Fig. 4-5d to 4-5f).

Significant increases in correlation between W3 water storage and vegeta-

tion greenness resulted from the joint assimilation of SMOS and GRACE data.

Fig. 4-6a shows the maximum change in correlation between the seasonal cy-

cle of NDVI and soil water storage at different integrated depths. Increases
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in correlations between the seasonality of NDVI and soil water storage after

the joint assimilation were observed globally, most notably in the high lati-

tudes of the northern hemisphere, where increases in correlation over 0.5 were

widespread. This is due to the joint assimilation bringing the seasonality of soil

water availability into better agreement with greenness. Significant increases

in the correlation between NDVI anomalies and root-zone soil water anomalies

by 0.2 were widely observed over the semi-arid and arid regions after the joint

assimilation (Fig. 4-6b). The result shows that the deviations of root-zone soil

water to monthly mean can be better simulated after the joint assimilation

with improved consistency with vegetation greenness anomalies.

Figure 4-6: Maximum change in correlation (𝑟𝑎− 𝑟𝑜, 𝑟𝑎: joint assimilation, 𝑟𝑜 open-
loop) of (a) the seasonal cycle of vegetation greenness and soil water storage over
different integrated depths; (b) the anomalies of vegetation greenness and soil water
storage over different integrated depths.

Having established that joint assimilation improved soil water estimation
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and the correlation with vegetation response globally, we explored the sources

of the improvements. The correlation between NDVI and soil water content

estimates from API, SMOS, GRACE and W3 were computed globally (Fig.

4-7). API showed a correlation with NDVI of ∼ 0.5−0.6 over major dry lands

and high latitude regions, except for western and southern Australia and North

America (Fig. 4-7a). Near-surface soil moisture estimates from SMOS showed

strong positive correlation with vegetation conditions over tropical grassland

and savannas regions, but strong negative correlation over eastern America

and Europe (Fig. 4-7b). Vegetation growth over tropical regions showed clear

wet and dry seasonal patterns closely related to the variability of total water

storage from GRACE (Fig. 4-7c). The correlation of derived accessible soil

water storage (from joint assimilation) shows the strongest correlation with

NDVI (Fig. 4-7d) in the semi-arid and arid regions compared to other water

content estimates. The negative correlations over western Australia between

vegetation conditions and precipitation and surface soil moisture were not ob-

served in GRACE-observed total water storage and joint assimilation derived

accessible storage. This indicates that the vegetation here mainly responds to

the availability of deep soil moisture. The vegetation conditions were found

to be less responsive to the soil moisture availability in Europe and North

America since water is not the only limiting factor to the vegetation growth.

4.4.3 Trends in soil water availability and vegetation re-

sponse

The soil water anomalies estimated from the W3 open-loop and joint as-

similation from January 2010 to December 2016 was compared with the global

vegetation greenness anomalies over the same period and clear differences in

the magnitude of soil water storage change and high spatial variability were

observed globally (Fig. 4-8a and 4-8b). For example, a decrease of soil wa-

ter storage was simulated in open-loop simulations over southern Mexico and
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Figure 4-7: Vegetation response to different sources of soil water availability as in-
dicated by: the correlation between monthly NDVI and (a) antecedent precipitation
index (API), (b) SMOS surface soil moisture retrievals, (c) GRACE total water stor-
age change retrievals, and (d) vegetation-accessible water storage derived after the
joint assimilation.

northeastern China. However joint assimilation results showed an increase in

soil water storage anomalies for these same regions. Differences in water stor-

age anomalies change between open-loop and joint assimilation (Fig. 4-8c)

could be over 10 mm/yr, and were most noticeable over southeast Asia and

Australia.

Clear decreasing trends in NDVI anomalies (more than 0.025 units per

year) were observed over central and eastern Australia (Fig. 4-8d), while

decreasing trends in soil water availability of over 10 mm/yr were found in

both model open-loop and joint assimilation estimates. A greater decrease of

soil water storage was inferred in central and eastern Australia through joint

assimilation than from the open-loop. Similarly, the deficit in accessible root-

zone soil water storage estimated through joint assimilation aligned well with

the dramatic decrease in vegetation greenness in eastern Brazil, southern India

and southern Africa. The joint assimilation resulted in estimated increases in

soil water storage that were globally much more consistent with increased

greenness than the open-loop simulations.
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Figure 4-8: Change of soil water availability and vegetation greenness from 2010 to
2016: linear trends of accessible water storage anomalies estimated from (a) model
open-loop and (b) joint assimilation; (c) difference in trends between joint assimila-
tion and model open-loop; (d) linear trends of NDVI anomalies.

4.5 Discussion

We found that global modelling of root-zone soil moisture can be im-

proved substantially through the joint assimilation of GRACE total water

storage and SMOS soil moisture retrievals. This is consistent with previous

findings for Australia (Tian et al., 2017). Corrections to near-surface soil mois-

ture estimates resulted mainly from the assimilation of SMOS soil moisture.

Uncertainties in SMOS soil moisture retrievals, e.g. related to errors in surface

roughness and vegetation cover characterisation, influenced the accuracy of the

estimation through the weights of the Kalman gain (Eq. 4.2). Therefore, in

locations where satellite soil moisture estimates were observed to be more ac-

curate than the W3 model open-loop simulations (e.g. grassland and cropland

areas), the assimilation of these data improved the agreement between model

estimates of near-surface soil moisture and in situ observations. However, as-

similation of SMOS degraded model estimation for grid cells dominated by

forest or mixed land cover types, most likely due to the underestimated SMOS

uncertainties. The SMOS relative errors for each cover type ranged from 7–

15% at median values, but was as high as 50% for full forest coverage regions

85



CHAPTER 4. GLOBAL JOINT ASSIMILATION SECTION 4.5

(Fig. 4-1a). The average relative errors for SMOS for over 50% of the in situ

sites with mixed land cover types were only 9% (Table 4.1), indicating a po-

tential under-estimation of SMOS error in those grid cells. By increasing the

uncertainty of SMOS observations for forest areas, thus reducing their influ-

ence on assimilation, the number of sites with degraded model estimation was

reduced (Fig. 4-4a). This suggests that reported uncertainties associated with

the SMOS product are likely underestimated for densely vegetated areas.

The suitability of ISMN in situ soil moisture measurements for evaluation

needs to be considered in interpretation. The quality of the data records,

the sparseness of network coverage, uneven distribution globally (e.g. heavily

skewed to North America), as well as the representativeness of a single site, or

very small number of sites within a model or satellite pixel (∼ 0.25∘ × 0.25∘)

are important contributing factors to the evaluation statistics. For example,

there were considerably fewer ISMN sites in dense vegetation cover area (e.g.

Table 1 WS, EN,DB and MF) than other cover types (i.e. 11 out of 167), and

therefore should be a consideration in comparing average performance metrics

across cover types. Also, by careful inspection of the in situ data and removal of

any sites with large gaps in the temporal coverage or with unrealistic temporal

behaviour (e.g. abrupt changes between dramatically contrasting moisture

states), model evaluation could only be conducted with a subset of only 70%

of the full complement of ISMN data that was believed to be of better quality.

Given the paramount importance of these data in evaluation of model and

satellite products in general, it is critical that the ISMN and similar in situ

measurement networks are maintained, but rigorous quality control is equally

important.

The assimilation of GRACE data had marginal impact on W3 near-surface

soil moisture simulation (Fig. 4-4a). In contrast to the SMOS product, uncer-

tainties in GRACE data were less variable in terms of relative error across land

cover type, with error between 10–15% on average (Fig. 4-1b). The majority

of the modelling grid cells showed improved correlation and reduced RMSE of
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root-zone soil moisture as a results of joint assimilation of GRACE and SMOS,

not only in the grassland-dominated sites but also for mixed land cover types.

The improved root-zone soil water estimation in the joint assimilation could

be linked to the Kalman smoother, which used the SMOS (daily) data to

temporally disaggregate the GRACE-observed (monthly) total water storage.

Therefore, not only does the joint assimilation of SMOS and GRACE obser-

vations vertically redistribute the water storage change into different W3 soil

layers, it also redistributes the change temporally based on different dynamics

of the soil moisture signal at the different depths.

Root-zone soil moisture varies considerably in space, as do plant root-

ing depth and soil physical properties. This makes it a challenge to compare

model estimates over a cell and in situ measurements at point scale. Remotely

sensed vegetation greenness can serve as a surrogate for water availability in

water-limited regions of the world. MODIS NDVI was used as an independent

dataset to evaluate root-zone soil moisture simulations. Significant increases

in correlation were found globally after joint assimilation (Fig. 4-6). The im-

provements over temperate regions are due to better consistency with NDVI

seasonality (Fig. 4-6a). The increased correlation between root-zone soil wa-

ter storage anomalies and vegetation greenness anomalies in semi-arid to arid

regions is encouraging as it may result in improved capability for forecasting

drought and vegetation productivity in dryland ecosystems.

The response of vegetation to water availability at different depths varies

according to vegetation type and climate. For example, grasslands over the

western U.S. and northeastern China showed strong correlation with SMOS

near-surface soil moisture retrievals and modelled surface soil moisture, but

weak correlation with GRACE-observed total water storage (Fig. 4-5a and

4-7). On the other hand, grassland in Sahel showed the same relative response

to water availability at different depths but higher correlation with deep soil

availability (Fig. 4-7). This appears to be due to the relatively deep root

zone and lesser water holding capacity (Leenaars et al., 2018). Identifying
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the soil layers that contribute most to the temporal behaviour of vegetation

greenness is critical for understanding the impacts of water stress on the terres-

trial ecosystem. The variation of soil water storage at plant accessible depths

strongly reflected vegetation conditions over most of the globe except for part

of North America and Europe (Fig. 4-7d). The SMOS and GRACE observa-

tions both showed negative correlation with the surface greenness over Europe

and eastern North America, where better correlations were found with precip-

itation based index (API, in Fig. 4-7a). This is expected, since is water is not

the primarily and only limiting factor (Nemani et al., 2003; Wu et al., 2015).

Overall, the soil water storage derived from the joint assimilation embodied the

best knowledge of available water content not only from meteorological forcing

data, but also from the SMOS near-surface soil moisture and GRACE total

water storage. Given accurate information of soil water availability, vegetation

vigor and productivity can potentially be predicted (Tian et al., 2019).

A number of severe droughts have occurred during the last decade, in-

cluding the droughts in Sahel, East Africa, California, China and northeastern

Australia. The annual trends in NDVI anomalies and root-zone soil water

storage anomalies from January 2010 to December 2016 showed consistency in

the spatial patterns. After a sharp recovery from the Millennium drought dur-

ing an extremely wet period from 2010 to 2011 (Leblanc et al., 2009; van Dijk

et al., 2013b; Xie et al., 2016b), drought returned to eastern Australia with a

decrease in soil water of over 10 mm/yr estimated from both model open-loop

and joint assimilation (Fig. 4-8a and 4-8b). A decline in NDVI anomalies of

more than 0.025 units per year was observed for the majority of middle and

eastern Australia due to the developing soil water deficit (Fig. 4-8d), which

is likely due to the widespread rainfall deficits caused by the El Niño 2014-16

and further amplified by the Indian Ocean Dipole 2015. Increases in soil wa-

ter deficit were enhanced as a result of assimilating GRACE and SMOS over

eastern Brazil, California and southern India and this was consistent with a

decrease in vegetation greenness in these areas. The stronger signal of water
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storage deficiency compared to the open-loop is mainly attributed to GRACE-

observed decreasing total water storage in agreement with the water storage

deficit observed by GRACE data only Rodell et al. (2018). The severity of

groundwater depletion for irrigation in northern and southern India, as ob-

served by GRACE (Rodell et al., 2009), was also better captured by through

the assimilation of GRACE (Fig. 4-8b). Joint assimilation of GRACE and

SMOS sometimes reversed the direction of change in soil water storage, com-

pared to the open-loop, resulting in better agreement with trends of temporal

pattern in NDVI, particularly in southern Mexico and northeastern China.

4.6 Conclusions

This work has demonstrated that the joint assimilation of GRACE and

SMOS data into an ecohydrological model resulted in a spatial and tempo-

ral redistribution of water storage that significantly improved root-zone soil

moisture estimation over different land cover types globally. In particular,

significant improvements were found in the estimation of root-zone soil wa-

ter availability over grassland and cropland. The joint assimilation optimally

integrated the water dynamics information from SMOS and GRACE and mit-

igated the deficiencies of the individual sources of observation.

Vegetation response to soil water availability at different depths was found

to vary according to ecosystem and climate. The close relationship between

vegetation growth and soil water availability was quantified firstly with the

root-zone soil water estimates through the assimilation of satellite soil moisture

and total water storage retrievals simultaneously. The improved agreement

between vegetation vigor and soil water availability indicates the potential

for improving ecohydrological modelling and forecasting vegetation condition.

Accurate characterization of vegetation response to soil water availability also

provides new insights to help improve monitoring and forecasting drought im-

pacts on ecosystems.
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Chapter 5

Forecasting dryland vegetation

conditions months in advance

Forecasting vegetation vigor in advance is important for effective drought pre-

paredness, especially in arid regions. Root-zone soil moisture, as a strong

regulator of vegetation growth in water-limited areas may be used as a pre-

dictor for vegetation condition. Compared to traditional precipitation-based

predictors, soil moisture can reflect climate conditions over a longer number

of months. The time lag between available soil water storage and vegetation

greenness provides unique benefit to forecast vegetation conditions months in

advance. Using the global root-zone soil moisture estimation approach derived

in Chapter 4, we assess the capability of using soil moisture in forecasting

dryland vegetation conditions. The content of this chapter is based on the

material published in Nature Communications:

Tian, S., van Dijk, A. I., Tregoning, P.,& Renzullo, L. J. (2019) Forecasting

dryland vegetation conditions months in advance through satellite data assim-

ilation. Nature Communications, 10(1), 469
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Abstract

Dryland ecosystems are characterised by rainfall variability and strong

vegetation response to changes in water availability over a range of timescales.

Forecasting dryland vegetation condition can be of great value in planning

agricultural decisions, drought relief, land management and fire preparedness.

At monthly to seasonal time scales, knowledge of water stored in the sys-

tem contributes more to predictability than knowledge of the climate system

state. However, realising forecast skill requires knowledge of the vertical dis-

tribution of moisture below the surface and the capacity of the vegetation to

access this moisture. Here, we demonstrate that contrasting satellite obser-

vations of water presence over different vertical domains can be assimilated

into an eco-hydrological model and combined with vegetation observations to

infer an apparent vegetation-accessible water storage (hereafter called accessi-

ble storage). Provided this variable is considered explicitly, skilful forecasts of

vegetation condition are achievable several months in advance for most of the

worldâĂŹs drylands.

5.1 Main text

The majority of ecosystems globally are persistently or seasonally limited

by water availability (Nemani et al., 2003). Dryland vegetation responds to

rainfall variability in contrasting ways, depending on the timescale of rainfall

variability and the way that this interacts with soil hydraulic properties and

vegetation rooting patterns (Porporato et al., 2004; Wang et al., 2001; Reyer

et al., 2013). Together, these factors determine the vegetationaccessible water

storage capacity. Variations in water availability affect the growth and condi-

tion of grazing land, dryland crops and planted forests, as well as native vege-

tation. Vegetation condition, in turn, affects fire risk (Yebra et al., 2008) and

soil health (D’Odorico et al., 2007) and can contribute to heatwaves through

landâĂŞatmosphere feedback processes (Seneviratne et al., 2010). Forecast-
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ing vegetation condition in response to water availability months ahead would

therefore be of great value for timely mitigation of such impacts.

Unfortunately, for most of the worldâĂŹs dryland areas, rainfall is very

unpredictable (Reynolds et al., 2007) or with low forecast skill at monthly

timescale and beyond. Most climate modes do not persist very long and those

that do, such as the El NiÃśo Southern Oscillation and Indian Ocean Dipole,

tend to achieve comparatively less skill in drier regions (Saji et al., 1999). How-

ever, water stored at and below the surface provides a source of forecasting

skill that can be more influential over longer periods, as has been demonstrated

for streamflow10,11. Soil moisture has a memory that persists for weeks to

months, depending on the relative magnitude of vegetation-accessible storage

and precipitation variability (van Dijk et al., 2013c; Koster et al., 2010). This

suggests the potential to use root-zone soil water availability to forecast vege-

tation condition at large scale. So far, this potential remains unexplored. This

is likely in part because of the lack of accurate knowledge of accessible stor-

age capacity and the low fidelity of hydrological models in estimating vertical

moisture distribution (Jackson et al., 1996; Kleidon, 2004; Fan et al., 2017).

In weather forecasting, assimilation of atmospheric satellite observations mit-

igates model deficiencies to provide better estimates of system state, and this

has been the main driver of remarkable enhancements of weather forecast skill

and lead time (Bauer et al., 2015). Here, we demonstrate that data assimila-

tion can produce similar benefits in ecohydrological forecasting.

Satellite remote sensing has been pivotal to deepening our understand-

ing of water availability and climate change at regional-to-global scale, and

has helped to advance predictive models and decision making (Rodell et al.,

2018). However, satellite observations of water presence are limited to either

the surface (up to 5 cm for soil moisture, e.g., Soil Moisture and Ocean Salinity

(SMOS) mission) or total water column (Gravity Recovery and Climate Ex-

periment (GRACE) mission). The quantification of the vertical distribution

of water storage is extremely difficult over large spatial and time domains due
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to the lack of direct measurement of root-zone soil moisture and groundwa-

ter storage. The accuracy of soil moisture or groundwater storage estimates

separated from total water storage is limited without ancillary data and the

consideration of data uncertainties (Tangdamrongsub et al., 2018). We as-

similated MODIS (Moderate Resolution Imaging Spectroradiometer) satellite

instrument-derived surface water extent (Van Dijk et al., 2016), SMOS near-

surface soil moisture (Kerr et al., 2010) and GRACE total column water storage

(Tapley et al., 2004) into a global ecohydrological model (van Dijk et al., 2013c)

and estimated the vertical distribution of water at the surface (Van Dijk et al.,

2016), in the near-surface soil, shallow root zone (<1 m), deep root zone (>1

m) and in groundwater Tian et al. (2017) (see Methods). Satellite-derived veg-

etation greenness (i.e., the Normalised Difference Vegetation Index (NDVI))

was used as a simple but powerful measure of vegetation condition. In areas of

low-density vegetation, NDVI is generally a strong proxy of vegetation cover

fraction, leaf area and biomass. The average seasonal cycle of greenness is

inherently predictable and was subtracted from the observations, resulting in

greenness anomalies. The monthly greenness anomalies, on the one hand, and

anomalies in water storage integrated over different depths,on the other, were

used to develop a simple forecast model. A skilful lead time was defined as the

forecast period over which rank correlation (𝜌) between accessible storage and

greenness remained relatively high (𝜌>0.60). The results were analysed as a

function of climate dryness at each location, defined as the longterm average

fraction of months for which potential evapotranspiration exceeds precipitation

(see Methods).

We find that larger accessible storage broadly corresponds with slower

decay in forecast skill. Vegetation conditions in the majority of global dryland

can be forecast 3 months in advance from accurate estimates of current soil

water availability.
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Figure 5-1: Accessible storage and vegetation dynamics prediction skill. Relationship
between water availability over different integration depths and vegetation greenness
anomalies over humid to arid regions with dryness indices from 0.3 to 1.0. a Dis-
tribution of global drylands; areas with minimal vegetation(maximum Normalised
Difference Vegetation Index (NDVI) <0.25) and generally high water availability
were masked out in white and grey, respectively. b Fraction of area for accessible
storage capacity in mm (surface water or below-surface) at different dryness levels.
c Fraction of area for the number of months for which skilful (𝜌>0.6) forecasts were
achieved in different dryness levels. d Fraction of area for which skilful forecasts
were possible 3 months in advance using data assimilation (DA), compared to those
achieved using only open-loop model results without any assimilation of satellite ob-
servations (OL), using satellite-derived near-surface soil moisture (Soil Moisture and
Ocean Salinity (SMOS)), using total water storage (Gravity Recovery and Climate
Experiment (GRACE)) and using an index calculated from antecedent precipitation
only (Antecedent Precipitation Index (API))

5.2 Results

Vegetation in dry climatic zones with dryness value over 0.8 (Fig. 5-1a)

generally shows greater accessible storage (>100 mm) and less reliance on sur-

face water than vegetation in more humid zones (Fig. 5-1b). For example,
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vegetation in up to 70% of the more humid areas (dryness index 0.4âĂŞ0.6)

shows greater response to the shallow soil water with less than 50mm of acces-

sible storage, while more than 65% of dryland vegetation (dryness 0.7âĂŞ1.0)

appears to have access to water at >1m below the surface. With increasing

dryness, accessible storage is an increasingly strong predictor of future vege-

tation greenness (Fig. 5-1c). Naturally, forecast skill decayed over time, but

skilful forecasts were often still achieved as long as 3 months ahead. In such

areas, 80% of the vegetation appeared to have access to deeper soil moisture.

Thus, prediction lead time can be broadly interpreted as a measure of vegeta-

tion access to deep water stores.

Alternative forecasts were also developed using an antecedent precipita-

tion index and remotely sensed near-surface soil moisture or total water stor-

age, but these typically provided skilful vegetation forecasts for no more than

1 or 2 months (Fig. 5-1d). Skilful forecasts using soil water availability from

satellite observations or model simulations could be achieved for no more than

20% of the vegetated arid area (dryness >0.6). Estimates of accessible storage

derived through assimilation of satellite observations led to considerably better

forecasts; skilful forecasts were provided for a greater fraction of area for all

dryness categories. This is the result of the integration of satellite observa-

tions of water present near the surface and at greater depth with the process

understanding encoded in the ecohydrological model.

Particularly skilful forecasts and long lead times of over 5 months were

found for interior Northern Australia, corresponding with dry but dominantly

perennial grassland and shrubland showing relatively high accessible storage

(c. 200 mm) (Fig. 5-2). Positive spatial correlation between accessible storage

and lead time is also evident in other regions. Vegetation condition forecasts

in sub-humid and humid regions (dryness <0.5) are generally less robust, par-

ticularly towards higher latitudes. This is as would be expected given that

temperature and radiation will be equal or stronger drivers of greenness than

water availability (Nemani et al., 2003; Wu et al., 2015). Some part of the
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Figure 5-2: Global distribution of (a) maximum accessible storage capacity and (b)
skilful forecast lead time. Unvegetated and wet regions were masked as in Figure 1a.
Lead time is counted from current month (0) to over 5-months. 0-month lead time
implies that skilful greenness predictions can only be made for the current month.

forecast skill can be attributed to the correlation between the average seasonal

cycles of water storage and greenness, particularly in monsoon climates. This

source of forecast skill can be exploited in the absence of water storage in-

formation (see Methods) and can be subtracted from overall skill to highlight

regions where water storage information provides an important contribution

to forecast skill (Fig. 5-3a). The best performing between the climatology

forecast and persistence forecast at each pixel was selected and compared with

our result. Significant improvements were found over regions vulnerable to

droughts and poorly predictable with seasonal patterns.
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Figure 5-3: The 1-month and 3-month forecasts of vegetation condition. a Difference
in correlation (𝜌) between 3-month forecasts using accessible storage (DA-forecast,
𝜌𝐷𝐴) and climatology (NDVI-forecast, 𝜌𝑁𝐷𝑉 𝐼) with greenness observations from
2010 to 2016. (DA: data assimilation, NDVI: Normalised Difference Vegetation In-
dex). bâĂŞg Monthly time series of averaged 1-month and 3-months forecasts of
greenness, compared with observed vegetation greenness over regions A, B and C in
a

Case studies for southern California, central Queensland and the Horn

of Africa illustrate features of the forecasts. Skilful 1-month and 3-month

forecasts of vegetation response to drought conditions from 2011 until 2014
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in California were made (Fig. 5-3b, c). The developing impacts of a multi-

year drought from 2012 onwards in Queensland, Australia, were also forecast 1

month and 3 months ahead (Fig. 5-3d, e). Superior skill to forecast the severe

drought in the Horn of Africa from 2011 to 2012 was demonstrated and cannot

be achieved with the traditional monitoring forecasts even 1 month ahead (Fig.

5-3f, g). Significant improvements with an increase in correlation of more

than 0.2 were achieved with longer lead time compared with NDVI-climatology

forecasts. Forecasts using accessible storage showed a slower decay of forecast

skill than NDVI-based forecasts by more than 0.1 units and maintained a

correlation of 0.8 in 3-month forecasts. A further increase in the historical

assimilation period should help to further improve forecast model skill (see

Methods).

5.3 Discussion

The interplay between soil water availability and the intensification of

drought differs with soil depth and aridity (Schlaepfer et al., 2017). Our study

used plant-accessible storage across dryland areas to explore the relationship

between water availability and dryland vegetation condition. The accessible

storage capacity inferred here is empirically defined and may be less than the

total moisture storage that can be accessed by the deepest-rooted individu-

als within the ecosystem. Rather, our results indicate the soil water store

that empirically best predicts vegetation anomalies for the visually dominant

ecosystem component as observed by remote sensing. Nonetheless, in semi-arid

to arid regions we found spatial patterns that are very similar to previously

reported root-zone storage capacity and rooting depths (Schulze et al., 1996;

Kleidon, 2004; Wang-Erlandsson et al., 2016).

Our estimates of the accessible storage combine soil water dynamics in-

formation captured by multiple satellite sensors through data assimilation. A

stronger response of vegetation greenness to water availability was found using
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accessible storage, when compared against water availability derived from only

satellite observations or the ecohydrological model, and results from previous

studies (Andela et al., 2013; Chen et al., 2014; Yang et al., 2014; Bolten and

Crow, 2012). Our findings suggest that incorporating current soil water avail-

ability, can significantly improve the accuracy of vegetation condition forecasts

3 months in advance for the majority of drylands globally. Such forecasts can

help to improve drought early warning system and reduce economic and en-

vironmental impacts. This capacity may become even more important in the

context of projected increases in the occurrence and severity of drought under

climate change in some regions (Dai, 2013; Trenberth et al., 2014; Sheffield

and Wood, 2008b).

The assimilation of satellite-observed water dynamics into an ecohydro-

logical model enables the estimation of vegetationaccessible storage, providing

insights into dryland ecology as well as providing a basis for seasonal drought

impact forecasting. Knowing how vegetation accesses water below the sur-

face illuminates potential vegetation condition in dry environments and their

buffering capacity to mitigate against droughts of different duration and in-

tensity. This in turn can inform effective action to prepare and manage for

drought.

5.4 Methods

We limited the study region to include only arid to moderately humid

vegetated land, defined by a dryness index of >0.3. We defined dryness as

the average fraction of months that the mean potential evapotranspiration

exceeds mean precipitation. The potential evapotranspiration was calculated

using the PenmanMonteith equation (Monteith, 1981) with 30 years of meteo-

rological data (Beck et al., 2017; Weedon et al., 2014). Greenness was derived

from the MODIS MOD13C2 NDVI product (https://lpdaac.usgs.gov), which

is a monthly composite of cloud-free observations resampled globally to 0.25∘
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resolution. We regarded areas with maximum NDVI <0.25 through time as

unvegetated and excluded them from our analysis. Our study region covered

about 50% of total land area and 90% of the vegetated area.

The World-Wide Water (W3) model(van Dijk et al., 2013c) (http://wald.anu.edu.au/)

simulates water stores and flows in vegetation, surface water, soil and uncon-

fined groundwater systems. The model was driven by global estimates of daily

precipitation (Beck et al., 2017), radiation, air temperature, wind speed, snow-

fall rate and surface pressure (Weedon et al., 2014). Soil and vegetation water

and energy fluxes were simulated independently for deep-rooted vegetation

and shallow-rooted vegetation in each hydrological response unit with differ-

ent aerodynamic control of evaporation and interception capacities. The soil

water store was separated into three unsaturated soil layers, namely, top (0–5

cm), shallow (5–100 cm) and deep (1âĂŞ10 m) layer, where shallow-rooted veg-

etation and deep-rooted vegetation have different degrees of access to moisture

in the different soil layers. The unconfined groundwater store was estimated

with the mass balance from the groundwater storage, deep drainage from deep

soil layer, capillary rise from the groundwater, groundwater evaporation and

groundwater discharge. The W3 model also includes the simulation of canopy

and biomass change coupling with water balance dynamics. The water in the

biomass, surface water, soil and groundwater comprised the total water storage

in the W3 model.

Three contrasting satellite water observations with different penetration

depths from surface to the total water column were used in this study, namely,

surface water extent, near-surface soil moisture and changes in total water stor-

age. The surface water extent was estimated from MODIS 8-day composites

using the reflectance dissimilarity between water and dry surfaces in shortwave

infrared spectral band18, analogous to the microwave method of estimating

water extent using brightness temperature (De Groeve, 2010). The MODIS-

derived surface water extent was assimilated into the W3 model through a

simple nudging approach with a high gain from the MODIS water fraction
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estimations to describe surface water dynamics not reliably simulated by the

model. Monthly 3∘× 3∘ GRACE mascon solutions (Watkins et al., 2015) were

obtained from the Jet Propulsion Laboratory (http://grace.jpl.nasa.gov). In

contrast to GRACE, which has the capability of detecting water storage change

accumulated in the total water column, SMOS can only penetrate the land sur-

face for up to 5 cm. The 0.25∘ × 0.25∘ retrievals of near-surface soil moisture

from the Centre Aval de Traitement des Données SMOS (Kerr et al., 2013)

for both ascending and descending orbits were used to derive the daily av-

eraged soil moisture content and to constrain the model simulated top-layer

soil moisture (0–5 cm). To resolve the disparity in spatial, vertical and tem-

poral resolution, the GRACE and SMOS data were assimilated into the W3

model using an Ensemble Kalman Smoother with a fixed 1-month window

(Tian et al., 2017). A single monthly GRACE observation together with all

the daily SMOS observations within a 1-month window were included in the

observation vector. The state vector was comprised of all model estimates of

daily soil water storage in three layers and groundwater over a month and

updated with GRACE and SMOS simultaneously. The observation operator

including temporal accumulation components enables direct comparison with

the GRACE and SMOS observations. The forecasts of water storage in differ-

ent layers were adjusted with the Kalman gain matrix (Allen et al., 2003) based

on the uncertainties in the W3 model and satellite observations. The model

uncertainties were estimated from the sample covariance computed from 100

ensemble members which were generated through the perturbation of meteoro-

logical forcings (precipitation, air temperature and radiation in this case). The

observation uncertainties were quantified using the spatially and temporally

varying uncertainties in the GRACE and SMOS products. GRACE and SMOS

observations imparted different constraints on the estimation of water storage

at different layers through both model physics and simultaneous adjustment

from varianceâĂŞcovariance structure between model states and observations.

The smoother approach with a 1-month assimilation window also considered
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the temporal correlation between model states to separate water storage change

into different depths based on different temporal dynamics. Data assimilation

produced daily global 0.25∘× 0.25∘ estimates of water in the near-surface soil,

shallow root zone, deep root zone and unconfined groundwater.

The statistical relationships between water storage dynamics and vegeta-

tion greenness anomalies were assessed using Spearman’s rank correlation (𝜌).

The lagged 𝜌 between water storage integrated over different depths and green-

ness anomalies over the subsequent 1 to 12 months was calculated and used

to define an optimal integration depth (in mm of equivalent water thickness),

interpreted as the vegetation-accessible storage. Given accessible storage as

a time-dependent variable, the 98th percentile of the accessible storage over

the study period at each grid was calculated as the maximum storage for the

soil layer that vegetation growth responds to most strongly. The number of

months for which lagged 𝜌 > 0.6 was used as an indicator of skilful forecast

lead time. The specific value of threshold used was based on maximising skil-

ful forecasts. Nevertheless, the area of skilful forecasts remains stable with

changes in threshold values. Alternative predictors tested included an an-

tecedent precipitation index with a constant decay coefficient of 0.9 (Hooke,

1979), the satellite-derived SMOS soil moisture, GRACE total column storage

estimates and the water storage estimates from model open-loop run without

any data assimilation.

A deterministic forecast of the vegetation greenness anomaly 𝑑𝑉 (𝑡) in 𝑡

month’s time was obtained from a linear combination of the ’current’ greenness

anomaly 𝑑𝑉 (𝑡 = 0) and the anomaly in water storage over the determined

optimal integration depth 𝑧, denoted by 𝑆(𝑧, 𝑡 = 0) as follows:

𝑑𝑉 (𝑡) = 𝑑𝑉 (𝑡0) + 𝛽1𝑆(𝑧0, 𝑡0) + 𝛽2 (5.1)

where 𝛽1, 𝛽2 are regression coefficients. Comparison was made with per-

sistence forecasts and climatology forecasts. The persistence forecast sim-

ply assumes the next month having the same anomaly as current month,
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𝑑𝑉 (𝑡) = 𝑑𝑉 (𝑡0). Climatology forecasts use the average of previous available

observations for month (𝑡) as the forecasts. The study period was limited to 6

years by the available observations and forcing data, starting from the launch

of SMOS in 2010 to the end of the forcing data archives at the end of 2015.

Independent hindcast evaluation was achieved by splitting the time series into

three equal segments; the performance for each time segment was calculated

using a forecast model derived from data for the other two time segments.

The averaged seasonal cycle excluding the evaluation period was added to the

predicted greeness anomalies to obtain absolute greenness. The skill of water

storage-derived forecasts was evaluated against the best performance from two

NDVI-based forecasts at each pixel.

104



Chapter 6

Summary and outlook

This research investigated the potential of assimilating satellite water content

retrievals to improve the estimation of water availability and vegetation re-

sponse. It was motivated by the desire to improve drought impacts forecasting

for more efficient agriculture planning and reduced economical and environ-

mental damage. For the first time, total water storage change observed from

space gravity mission and near-surface soil moisture retrievals from microwave

sensor were assimilated jointly into an ecohydrological model. Our efforts of

developing the global joint assimilation framework led to significant improve-

ment in the estimation of root-zone soil water and groundwater storage, which

cannot be directly observed from space. For example, unmonitored water ex-

traction by human activity such as groundwater withdrawals and irrigation

would be detected with our joint assimilation. Accurate estimation of wa-

ter availability can strengthen the forecasting skill on anticipating vegetation

conditions. This chapter presents a summary of the benefits, limitation and

further research directions of this study.
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6.1 Conclusions

6.1.1 Satellite data assimilation

Data assimilation is a powerful technique to combine model simulations

and observations with the consideration of individual uncertainties. The in-

creasing number and accuracy of space-borne sensors provide an unique oppor-

tunity to support and improve land surface modeling. Our study on the joint

assimilation of satellite water content retrievals with different spatio-temporal

scales and different data types contributes to building up the multi-variable

and multi-scale data assimilation techniques for terrestrial systems.

In chapter 3, we demonstrated that the ensemble Kalman smoother is a

more efficient approach to deal with the assimilation of observational data with

different temporal scale than an ensemble Kalman filter. The consideration of

temporal correlation ensures accurate separation of water storage with different

magnitudes of temporal dynamics. For example, surface soil moisture gains

more corrections in daily variations from SMOS observation, while ground-

water gains more correction on seasonal variations from GRACE observations.

The joint assimilation largely mitigates the drawbacks of single-variable assim-

ilation on erroneous redistribution of water storage. The integration of SMOS

data not only helps to better disaggregate the soil water storage from GRACE

TWS data, but also helps to improve the spatial resolution.

Having constraints on both total water storage and near-surface soil mois-

ture ensures more accurate estimates of individual water storage compart-

ments. In particular, the joint assimilation of GRACE and SMOS can help

in the detection of water loss by human activities, such as groundwater ex-

traction and irrigation. Accurate estimates of surface soil moisture can also

mitigate uncertainties in the precipitation forcing, in turn affecting the water

and energy balance. The improved estimation of individual water storage of-

fers potential for drought and groundwater monitoring, as well as water cycle

reanalysis applications.
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6.1.2 Improved estimation of soil water availability

We evaluated the soil moisture estimation for three different layers from

different assimilation experiments with in-situ measurements over Australia in

Chapter 3. The assimilation of SMOS soil moisture retrievals alone enables

more accurate shallow root-zone soil moisture estimation, but barely impacts

on deeper soil moisture estimation. The main benefit of the joint assimilation is

on improving deep root-zone soil moisture estimation which cannot be directly

measured at large scale by either in-situ instruments or satellites.

In Chapter 4, we found that joint assimilation successfully improved root-

zone soil moisture estimations globally, in agreement with in-situ measure-

ments, which in turns, improved the estimation of vegetation response to soil

water availability. The joint assimilation detected more severe deficit in plant

available soil water in eastern Australia and eastern Brazil from 2010 to 2016

than inferred from model open-loop simulations, consistent with the reduced

vegetation greenness observed by the MODIS instruments. Vegetation re-

sponds differently to soil water availability at different depths because of vari-

able vegetation properties, climate regions and soil properties. Given accurate

knowledge of root-zone soil moisture variation, the vegetation greenness and

productivity can be better predicted. Our efforts to improve global root-zone

soil moisture estimation help to address the lack of studies on quantifying the

vegetation response to water availability at large scale. Overall, joint assimi-

lation provided new insights for monitoring and forecasting plant water stress

and vegetation vigor.

6.1.3 Advancing drought impacts

We used the global joint assimilation results to infer an apparent vegetation-

accessible water storage in Chapter 5 to forecast vegetation conditions. The

accessible storage integrated the effect of vertical root distribution, soil proper-

ties, aridity and vegetation type. We found that skillful forecasts of vegetation

107



CHAPTER 6. SUMMARY AND OUTLOOK SECTION 6.2

conditions can be achieved several months in advance for most of the world’s

drylands. Improved forecasting skill was achieved with the use of water avail-

ability information when compared to climatology or persistence forecasts.

Our study demonstrates that joint assimilation not only provides an effective

tool for monitoring and forecasting global water and vegetation dynamics, but

also provides new insights into dryland ecology and drought impact forecast-

ing. Skillful forecasts of drought impacts on vegetation can inform effective

action through agricultural planning, drought relief, water management and

fire preparedness.

6.2 Limitation and future work

Since the model used in this study is a one-dimensional catchment model

without considering lateral water distribution, the assimilation does not in-

clude spatial correlation between grid cells. Although surface water routing

is not included, the assimilation of coarse-scale GRACE data can mitigate

the missing recharge or extraction to large extent. Consideration of spatial

correlation may further improve the water balance estimation through lateral

redistribution of water storage and worth further investigation.

The study period of the joint assimilation was necessarily limited to 7

years period from 2010 to 2016, due to the availability of reanalysis meteoro-

logical forcing dataset and satellite observations. Extension of this period is

preferable for a better understanding of the impacts of water stress on ecosys-

tem. The success launch of the GRACE-FO mission provides an opportunity

to develop an operational the near-real time data assimilation system together

with the continuing SMAP and SMOS missions. Global 10km resolution rain-

fall observations from GPM also provide new opportunities to improve the

spatial resolution of model-data assimilation outputs. Our findings from the

joint assimilation of satellite observations with different types and different

scales also indicate the potential of using more available observational data
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to constrain the land surface model. High-resolution, near-real time global

vegetation conditions forecasting is of great potential value in drought early

warning and water resource management, especially for less developed coun-

tries with inadequate monitoring infrastructure.
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Appendix

The following information are the supplementary materials included in

the publication in Chapter 3.

The catchment boundaries and coincident model grid cells for streamflow

evaluation are shown in Figure S1. Table S1 provides the locations of OzNet,

OzFlux and CosmOz network and their corresponding model grids in the eval-

uation, as well as the number of observations. Table S2 and Table S3 provide

the correlation of model estimated top-layer (0-10cm) and root-zone soil wa-

ter storage (0-30 cm and 0-90 cm) with in situ observations at each grid cell

(corresponding to Figure 6). Table S4 summarises the evaluation results of

streamflow and evapotranspiration estimates against in-situ measurements.
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Figure S1

Figure 6-1: Catchment boundaries and coincident model grid cells for streamflow
evaluation
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Table S1

Table 6.1: Locations of aggregated surface soil moisture in-situ observations

Sites Network No. Obs Latitude Longitude

Alice Springs Mulga OzFlux 1213 -22.25 133.25

A1, A2, A3, A4, A5 Oznet 1043 -35.25 148.25

Arcturus Emerald OzFlux 903 -23.75 148.25

Baldry CosmOz 1007 -32.75 148.75

Daintree OzFlux 726 -16.25 145.25

Daly Pasture, Daly Uncleared, Daly Regrowth OzFlux 1461 -14.25 131.25

Daly CosmOz 938 -14.25 131.25

Dry river OzFlux 1305 -15.25 132.25

Gingin OzFlux 667 -31.25 115.75

Gnangara CosmOz 667 -31.25 115.75

Great Western Woodlands OzFlux 355 -30.25 120.75

Griffith CosmOz 539 -34.25 146.25

Howard Spring OzFlux 1438 -12.25 131.25

K1, K2, K3, K4, K5, K7, K10, K13 Oznet 1376 -35.25 147.75

K6, K8, K11, K12, K14 Oznet 490 -35.25 147.25

M1 Oznet 480 -36.25 148.75

M2 Oznet 484 -35.25 149.25

M3 Oznet 481 -34.75 148.25

M4 Oznet 482 -33.75 147.25

M5 Oznet 335 -34.75 143.75

M6 Oznet 481 -34.75 144.75

M7 Oznet 481 -34.25 146.25

Red Dirt Melon Farm OzFlux 619 -14.75 132.25

Riggs Creek OzFlux 890 -36.75 145.75

Robson CosmOz 1161 -17.25 145.75

Sturt Plains OzFlux 1385 -17.25 133.25

Tea Tree East OzFlux 532 -22.25 133.75

Tullochgorum CosmOz 1113 -41.75 147.75

Tumbarumba OzFlux 365 -35.75 148.25

Tumbarumba CosmOz 899 -35.75 148.25

Wallaby Creek OzFlux 1008 -37.25 145.25

Weany CosmOz 1126 -19.75 146.75

Whroo OzFlux 759 -36.75 145.25

Y10, Y12, Y13 Oznet 1390 -35.25 146.25

Y11 Oznet 830 -35.25 145.75

Y1, Y6 Oznet 806 -34.75 145.75

Y2, Y3, Y4, Y5, Y7, Y8, Y9 Oznet 1435 -34.75 146.25

Yanco CosmOz 1005 -35.25 146.25

132



Table S2

Table 6.2: Correlation of model-estimated surface soil relative wetness compared
with in-situ data

Site Open-loop EnKF-SMOS EnKS-SMOS EnKS-GRACE Joint

A1,A2,A3,A4,A5 0.40 0.47 0.50 0.63 0.51

Alice Springs Mulga 0.66 0.76 0.77 0.67 0.72

Arcturus Emerald 0.53 0.67 0.66 0.57 0.65

Baldry 0.68 0.85 0.86 0.74 0.86

Daintree 0.57 0.67 0.60 0.55 0.61

Daly 0.78 0.81 0.81 0.74 0.77

Daly(CosmOz) 0.85 0.85 0.85 0.80 0.82

Dry River 0.78 0.78 0.77 0.71 0.74

Gingin 0.64 0.64 0.70 0.70 0.68

Gnangara 0.70 0.71 0.75 0.75 0.73

Great Western Woodlands 0.45 0.53 0.55 0.46 0.56

Griffith 0.46 0.60 0.62 0.49 0.59

Howard Springs 0.81 0.80 0.81 0.79 0.80

K1,K2,K3,K4,K5,K7,K10,K13 0.69 0.80 0.83 0.69 0.77

K6,K8,K11,K12,K14 0.70 0.77 0.79 0.71 0.77

M1 0.58 0.67 0.65 0.63 0.67

M2 0.65 0.83 0.80 0.74 0.76

M3 0.62 0.65 0.70 0.49 0.63

M4 0.69 0.78 0.81 0.72 0.80

M5 0.66 0.64 0.78 0.62 0.76

M6 0.43 0.74 0.70 0.72 0.69

M7 0.47 0.68 0.70 0.57 0.71

RDM Farm 0.72 0.71 0.72 0.68 0.69

Riggs Creek 0.52 0.70 0.70 0.63 0.69

Robson 0.76 0.77 0.76 0.78 0.77

Sturt Plains 0.61 0.73 0.74 0.73 0.72

Tea Tree East 0.41 0.54 0.53 0.43 0.49

Tumbarumba 0.65 0.74 0.71 0.81 0.72

Tullochgorum 0.67 0.84 0.87 0.84 0.85

Tumbarumba (CosmOz) 0.63 0.59 0.55 0.65 0.52

Wallaby Creek 0.59 0.63 0.65 0.50 0.65

Weany 0.82 0.83 0.84 0.80 0.83

Whroo 0.50 0.58 0.65 0.64 0.65

Y1,Y6 0.50 0.63 0.64 0.77 0.61

Y10,Y12,Y13 0.60 0.78 0.80 0.63 0.76

Y11 0.54 0.77 0.80 0.59 0.77

Y2,Y3Y4Y5Y7Y8Y9 0.67 0.82 0.84 0.74 0.80

Yanco 0.72 0.71 0.76 0.70 0.79

Average 0.61 0.70 0.72 0.65 0.70
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Table S3

Table 6.3: Correlation of model-estimated root-zone soil water storage compared
with in-situ data

Compared with Oznet data (0-30 cm)

Site Open-loop EnKF-SMOS EnKS-SMOS EnKS-GRACE Joint

A1,A2,A3,A4,A5 0.55 0.77 0.76 0.77 0.77

K1,K2,K3,K4,K5,K7,K10,K13 0.70 0.79 0.81 0.79 0.83

K6,K8,K11,K12,K14 0.63 0.74 0.70 0.76 0.72

M1 0.47 0.78 0.75 0.73 0.77

M4 0.43 0.79 0.77 0.77 0.80

M7 0.50 0.74 0.74 0.75 0.74

Y10,Y12,Y13 0.67 0.65 0.68 0.63 0.64

Y1,Y6 0.23 0.10 0.11 0.30 0.18

Y2,Y3,Y4,Y5,Y7,Y8,Y9 0.45 0.55 0.59 0.59 0.62

average 0.51 0.66 0.66 0.68 0.67

Compared with Oznet data (30-90 cm)

Site Open-loop EnKF-SMOS EnKS-SMOS EnKS-GRACE Joint

A1,A2,A3,A4,A5 0.76 0.42 0.38 0.78 0.66

K1,K2,K3,K4,K5,K7,K10,K13 0.79 0.75 0.79 0.68 0.80

K6,K8,K11,K12,K14 0.10 0.34 0.41 0.06 0.21

M1 -0.21 0.22 0.06 0.08 0.27

M4 0.83 0.72 0.66 0.86 0.78

M7 0.78 0.85 0.83 0.75 0.77

Y10,Y12,Y13 0.58 0.63 0.71 0.65 0.66

Y1,Y6 0.48 0.68 0.56 0.50 0.59

Y2,Y3,Y4,Y5,Y7,Y8,Y9 0.41 0.43 0.41 0.40 0.53

average 0.50 0.56 0.54 0.52 0.58

Compared with Oznet data (0-90 cm)

Site Open-loop EnKF-SMOS EnKS-SMOS EnKS-GRACE Joint

A1,A2,A3,A4,A5 0.78 0.59 0.62 0.87 0.77

K1,K2,K3,K4,K5,K7,K10,K13 0.81 0.83 0.86 0.77 0.86

K6,K8,K11,K12,K14 0.50 0.63 0.67 0.40 0.54

M1 0.05 0.49 0.36 0.34 0.52

M4 0.62 0.66 0.78 0.83 0.80

M7 0.63 0.85 0.86 0.86 0.81

Y10,Y12,Y13 0.67 0.70 0.77 0.71 0.72

Y1,Y6 0.48 0.68 0.56 0.50 0.59

Y2,Y3,Y4,Y5,Y7,Y8,Y9 0.47 0.51 0.52 0.47 0.60

average 0.56 0.66 0.67 0.64 0.69

average 0.56 0.66 0.67 0.64 0.69

134



Table S4

Table 6.4: Evaluation of streamflow and evapotranspiration estimates with in-situ
measurements for open-loop model simulations and different data assimilation ex-
periments

Open-loop EnKF-SMOS EnKS-SMOS EnKS-GRACE EnKS-Joint
Mean 𝑟𝐸𝑇 0.78 0.83 0.80 0.77 0.79
Max 𝑟𝑎𝐸𝑇 − 𝑟𝑜𝐸𝑇 n/a 0.44 0.12 0 0.06
𝑟𝑎𝐸𝑇 > 𝑟𝑜𝐸𝑇 (%) n/a 63 56 0 44
𝑟𝑎𝐸𝑇 = 𝑟𝑜𝐸𝑇 (%) n/a 19 13 44 38

Mean 𝑟𝑄 0.81 0.84 0.84 0.86 0.85
Max 𝑟𝑎𝑄 − 𝑟𝑜𝑄 n/a 0.22 0.19 0.22 0.17
𝑟𝑎𝑄 > 𝑟𝑜𝑄 (%) n/a 64 64 71 70
𝑟𝑎𝑄 = 𝑟𝑜𝑄 (%) n/a 5 7 7 7

𝑟𝑄: correlation or root mean square error of streamflow;
𝑟𝐸𝑇 : correlation or root mean square error of evapotranspiration;
𝑟𝑎 − 𝑟𝑜: correlation improvement against open-loop model simulations.
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