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ABSTRACT 

 

The melting of ice mass and glaciers worldwide has been mentioned as one of the most 

prominent indicators of climate change (IPCC 2014). Glaciers, excluding Greenland and the 

Antarctic region, have been reported to undergo rapid changes in response to climate change 

(Vaughan et al., 2013) and  the consequences of their mass loss are of global significance. 

Additionally, melting glaciers pose a variety of risks such as glacial lake outburst floods 

(GLOF) and contamination of nearby water bodies due to toxic substances present in the 

glaciers (Nagorski et al., 2014; Hock et al., 2019). Glacier ice thickness distribution gives an 

idea of total water capacity maintained by a glacier at a given time, which is crucial for 

quantifying glacial ice melt and used in many glaciological applications. Thus, it is important 

that glacier ice thickness be monitored globally (Huss et al., 2008; Gabbi et al., 2012; Jouvet 

et al., 2009; Allen, Schneider, and Owens 2009; Linsbauer et al., 2016). Given that the field-

based approaches are limited to only a few accessible glaciers, it is necessary to develop 

alternate approaches to estimate ice-thickness distribution globally. Glacier ice thickness 

modelling approaches provide an alternative to glacier monitoring where the ground-based 

surveys are difficult to carry out.  

 

In the present research, a physics-based glacier ice thickness model has been presented which 

uses remotely sensed glacier surface velocity. To estimate the glacier surface velocity, a new 

algorithm for automated glacier feature tracking named as SWIFT (Spatially varying WIndow 

based maximum likelihood Feature Tracking) has been proposed. This algorithm utilises both 

optical data (to determine the window size) and Synthetic Aperture Radar (SAR) data (to 

perform feature tracking). The proposed glacier feature tracking algorithm uses a spatially 

varying window size unlike other existing softwares like SNAP, SARscape, CIAS and COSI-

Corr that cannot provide the flexibility of spatially varying window sizes. Moreover, this 

method for estimation of window size can be implemented in combination with other existing 

feature tracking methods. The proposed glacier surface velocity tracking algorithm has been 

tested for three different glaciers (South Glacier, Chhota Shigri Glacier and Tasman Glacier) 

for which the field measured data were available for validation. The methodology has been 

demonstrated with a variety of SAR and optical satellite data. Moreover, the effect of different 

satellite data characteristics on glacier surface velocity estimation have been explored to prove 

the effectiveness of the technique. The obtained results for all the three study glaciers indicate 
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that the proposed spatially varying window size based estimates shows consistent improvement 

over spatially fixed window size based estimates. Moreover, the performance evaluation 

against the normalized cross correlation method (NCC) with calibrated window size revealed 

the better performance of the proposed feature tracking approach (no calibration required) in 

the middle and upper zones of the three study glaciers. This indicates that the proposed glacier 

feature tracking method holds potential for feature tracking in glaciers with no prior field 

information available. 

 

The proposed model to estimate glacier ice thickness is named GATHI (GlAcier ice THIckness 

distribution using remote sensing) which requires only remotely sensed inputs such as surface 

velocity and DEM. The performance of the model was assessed through application in four 

study glaciers. Along with the ice thickness modelling, GPR based ice thickness measurement 

over Patsio Glacier has been collected. This data which has been used for ice thickness model 

validation in this study shall be also useful for future glacier ice thickness modelling studies. 

 

To explore the applicability of the ice thickness model to glaciers without any field ice 

thickness measurements available, two different scenarios were considered. In scenario 1, the 

transferability of the model parameter from one glacier (with available field observations) to 

other glaciers sharing similar characteristics (with no available field measurements) was 

explored. These observations revealed that for the ice thickness model application, the two 

calibrated model parameters A =3.8*10-24 and n =3 can be assumed to be constant for temperate 

type glaciers. In scenario 2, considering that the geometry-based parameter f cannot be 

replicated from one glacier to other, potential for field-data-independent calibration 

(Ramsankaran et al., 2018) was explored. The obtained results showed that the field-data-

independent calibration led to noticeable improvement in mean error of the ice thickness. 

Accordingly, the error in estimated ice thickness was reduced by 5-17% (of mean observed ice 

thickness) when calibrated shape factor was used instead of the uncalibrated shape factor.  

 

To explore the effect of calibration data on the ice thickness model, the model’s sensitivity was 

evaluated towards observation’s spatial and quantity-related characteristics. The result 

indicates that, although it is convenient from the logistical point of view, survey configurations 

where low elevations are sampled should be avoided, or at least should be complemented with 

measurements gathered along the glacier central flowline. 
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In the present study, the proposed ice thickness model has been developed and tested over four 

study glaciers located in different regions around the world. The model along with the self-

calibration approach showed noticeable improvements over the uncalibrated modelled 

estimates. Moreover, the approach does not require extensive parameterization or field data. 

Hence, it has a significant potential for ice thickness estimation over data-scarce glaciers. 

However, further experiments need to be carried out to examine the implementation capability 

of the proposed ice thickness model at regional scale considering the factors such as availability 

of data and computational efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

GRAPHICAL ABSTRACT 

 

 

 

 

                

                   

            

 
 
  
 
 
  
 
 
  
  
 
 
 
 
  
 
 
  
 
 
 

 
 
  
 
 
 
  
  
  
 
 
  

  
 
 
 
 

 
 
  
  
 
  
 
 
 

 
 
  
  
 
 
  
  
 
  
 
 
  
 

  
 
  
  
 
  
 
 

                          

                
                             

                         

                        

 m 

 m y 

  

 

 

  



vii 

 

ACKNOWLEDGEMENT 

 

"A dream does not become reality through magic; 

 it takes sweat, determination, and hard work." 

 

First of all, I would like to express my sincere gratitude to my supervisor at IITB, Prof. RAAJ 

Ramsankaran who has helped me to evolve as a better researcher through my PhD journey. His 

insights, valuable suggestions and continuous support which made me strive towards 

perfection. Over the years, I have learnt different aspects of research through numerous one to one 

conversations specially during the later stages of my PhD. Through his keen personal involvement 

in each of his student he has not only helped me evolve as a researcher but also added to my personal 

growth.   

Jeff, has also been very supportive and encouraging supervisor and mentor to me. His guidance 

always made sure keeping me focused on the quality as well as the deadlines of my work. His 

concise but helpful feedback at every stage of my research, helped not only to get a different 

perspective on my research but also improved the quality of my research and documentation work.  

I hope that I get both of my supervisors’ sound advice throughout my future career.  

Besides my advisors, sincere thanks also go to the rest of my PhD review committee: Prof. E. 

P. Rao, Prof. Avik Bhattacharya, Prof. Chris Rudiger and Prof. Eswar Rajasekaran for their 

insightful and critical comments that has helped my thesis reach to the present shape.  

Special thanks to the IITB-Monash Research Academy who made this PhD possible. The staff 

at the academy have provided a home like feel where Nancy acted as our caretaker. Jayashree, 

Kuheli, Laya who never get tired of clearing my doubts (which are a lot!). I also thank Kuheli 

and Kiran who handled all my finance related issues.  

I thank my fellow lab mates (H-RSA Group): Ankur sir, Ashish sir, Anita di, Antara, Amol, 

Estifanos, KD, Sujith sir, Navin, Pratiksha, Sathya, Shruthi di, Swathy, Smarika, Jaya, Vivek, 

Shivraj sir and Vishveswaran for fun filled conversations which always led to improve my 

writing, presentation or research skills.  

A significant part of my PhD includes the GPR surveys at the Himalayan Glaciers. I thank all 

of my team members specially RAAJ sir for making this possible. I am also thankful to my 

fellow researchers, KD, Ankur sir, Parla, Smarika, Anisha, Vivek, Navin, Anirudha, Yogesh, 

Thupstan sir and Som who made these trips entertaining as well. My special thanks to all the 

porters during my fieldwork who helped our team to cope with the difficulties during the treks 



viii 

 

and surveys specially near the crevasses. All through the climb, porters replenished the supplies 

of essential goods.  

I am very grateful to IITB-Monash Research Academy, IRCC and Civil department, IIT 

Bombay for providing monetary support during my research work. 

My friends whom I met through IITB Monash academy, Debo, Tagori, Uzma, Priyanka, 

Chandrima and Niti, have shared this joint PhD program’s experience and accompanied me 

through the program’s challenges and perks. 

I would like to express my deepest gratitude to my parents Mummy and Papa for their 

unconditional love and continuous support throughout my life. You have motivated me at my 

lowest low. You both are the pillars of my life. I convey my special acknowledgment to my 

brother Rahul and adorable sisters Nina and Buttu who reminded me prime concern ‘Do not 

deviate, focus and finish’. No matter how far we were, your conversations never made me feel 

like away from home and thus made me stay happily at the hostel and work more productively. 

Last but not the least, I would like to thank my husband, best friend, and fellow partner in the 

glacier expedition, KD, whom I met at IITB during the course of my PhD and has been my 

silent partner since then. Whether professional or personal he has been equally understanding 

and supportive towards my goals. He has taught me to be more organized in the way I work.  

I thank you all for being in my life!  

Though unexpected, I would like to thank COVID-19 which almost put my thesis work to 

stagnation but also helped me realize the importance of social life and what impact it has on 

our mental wellbeing. It has also made me realize the importance of facilities like high-speed 

internet and excellent hostel facilities given to us at the campus which we took for granted.  

Above all, I owe this research to the Almighty God for bestowing me the strength and 

perception to undertake this research task and enabling me to its completion.  

 

 

 

 

 



ix 

 

CONTENTS 

Declaration ii 

Abstract iii 

Graphical Abstract vi 

Acknowledgement vii 

Contents ix 

List of Figures xiii 

List of Tables xviii 

Abbreviations xix 

Symbols and Notations xxi 

Chapter 1 Introduction 1-1 

   1.1    Motivation 1-1 

   1.2    Problem Statement 1-2 

   1.3    Aim and Objectives of the Study 1-4 

   1.4    Scope of the Work 1-5 

   1.5    Organisation of the thesis 1-5 

Chapter 2 Theoretical Background 2-1 

   2.1 Glacier Formation 2-1 

   2.2 Glacier Mass Balance 2-1 

   2.3 Principle of Mass Conservation 2-2 

   2.4 Driving  tresses and Glens’s Ice Flow Law 2-4 

      2.4.1 Isotropic Creep of Ice 2-5 

   2.5 Driving Stress Under Perfect Plasticity Assumption 2-7 

   2.6 Stokes Equations in Glaciology 2-7 

   2.7 Stokes Equations and Glacier Mechanics 2-8 

   2.8 Shallow Ice Approximation 2-10 

   2.9 Chapter Summary 2-11 

Chapter 3 Literature Review 3-1 

   3.1 Approaches to Modelling Glacier Ice Thickness 3-1 

      3.1.1 Full-Stokes based Approaches 3-1 

      3.1.2 Higher Order Approaches 3-4 



x 

 

      3.1.3 Shallow Ice Approximation based Approaches  3-4 

         3.1.3.1 Mass-conservation based Approaches 3-5 

         3.1.3.2 Shear-stress based Approaches 3-8 

         3.1.3.3 Velocity based Approaches 3-9 

         3.1.3.4 Neural Network based Approaches 3-10 

         3.1.3.5 Minimisation based Approaches 3-10 

         3.1.3.6 Estimating Spatially Distributed Ice Thickness 3-11 

         3.1.3.7 Glacier Ice Thickness at large Scale 3-11 

      3.1.4 Summary of Ice Thickness Modelling Approaches and Challenges 3-13 

   3.2 Approaches to Glacier Surface Velocity Estimation 3-17 

      3.2.1 Synthetic Aperture Radar (SAR) Interferometric Techniques 3-18 

      3.2.2 Image Matching Techniques 3-18 

      3.2.3 Summary of Glacier Surface Velocity Estimation Techniques and  3-21 

               Challenges  

   3.3 Research and Knowledge Gaps 3-21 

   3.4 Chapter Summary 3-23 

Chapter 4 Study Glaciers and Dataset 4-1 

   4.1 Study Glacier 4-1 

      4.1.1 Location and Climate  4-1 

      4.1.2 Geometry and Surface Morphology 4-3 

   4.2 Remote Sensing Datasets 4-5 

      4.2.1 Optical Dataset 4-5 

      4.2.2 SAR Dataset 4-6 

   4.3 Ancillary Dataset 4-7 

   4.4 In-situ Dataset 4-8 

      4.4.1 Available Glacier Surface Velocity and Ice Thickness Dataset 4-8 

         4.4.1.1 Velocity 4-8 

         4.4.1.2 Ice Thickness 4-8 

      4.4.2 GPR based Glacier Ice Thickness Measurements 4-9 

         4.4.2.1 Differential Global Navigation Satellite System (DGNSS) Data 4-11 

         4.4.2.2 Snow and Debris Thickness 4-11 

         4.4.2.3 Measured Ice Thickness 4-12 

      4.4.3 Data Quality 4-15 



xi 

 

   4.5 Chapter Summary 4-16 

Chapter 5 Glacier Surface Velocity Estimation 5-1 

   5.1 Methodology 5-1 

      5.1.1 Automated Determination of Window Size 5-1 

      5.1.2 SAR Feature Tracking 5-4 

   5.2 Results and Discussions 5-5 

      5.2.1 Window Size Determination 5-5 

      5.2.2 Glacier Surface Velocity Estimates 5-8 

         5.2.2.1 South Glacier 5-8 

         5.2.2.2 Chhota Shigri Glacier 5-13 

         5.2.2.3 Tasman Glacier 5-18 

      5.2.3 Effect of the Difference between Spatial Resolution of Optical and  5-22 

               SAR Data  

      5.2.4 Validation Over Stable Terrain 5-23 

      5.2.5 Performance Evaluation against Normalized Cross Correlation (NCC) 5-24 

               Method  

      5.2.6 Comparison with Spatially Fixed Window Size based Maximum  5-27 

                Likelihood Feature Tracking  

   5.3 Summary 5-29 

Chapter 6 Modelling of Glacier Ice Thickness 6-1 

   6.1 Ice Thickness Modelling Framework 6-1 

      6.1.1 Model Parameters 6-4 

         6.1.1.1 Flow Rate Factor (A) 6-4 

         6.1.1.2 Glen's Law Exponent (n) 6-5 

         6.1.1.3 Shape Factor (f) 6-6 

      6.1.2 Sensitivity Analysis 6-6 

      6.1.3 Model Calibration 6-7 

   6.2 Results and Discussions 6-7 

      6.2.1 Ice Thickness Sensitivity to Input Parameters 6-8 

      6.2.2 Ice Thickness Sensitivity to Remotely Sensed Glacier Surface   6-9 

               Velocity  

     6.2.3 Spatial Distribution of Ice Thickness Estimates 6-9 

         6.2.3.1 South Glacier 6-9 



xii 

 

         6.2.3.2 Chhota Shigri Glacier 6-16 

         6.2.3.3 Patsio Glacier 6-18 

         6.2.3.4 Tasman Glacier 6-21 

      6.2.4 Model Application 6-23 

         6.2.4.1 Scenario 1 6-24 

         6.2.4.2 Scenario 2 6-24 

      6.2.5 Model Sensitivity to Varying Data Availability 6-26 

         6.2.5.1 Overall Performance 6-29 

         6.2.5.2 Influence of the Distribution of Ice Thickness Observations 6-31 

         6.2.5.3 Influence of Availability of Ice Thickness Observations 6-32 

   6.3 Comparison with Existing Approaches 6-34 

   6.4 Sources of Error 6-37 

   6.5 Chapter Summary 6-38 

Chapter 7 Summary, Conclusion and Future Perspectives 7-1 

   7.1 Summary and Major Conclusions 7-1 

      7.1.1 Glacier Surface Velocity Estimation 7-1 

      7.1.2 Ice Thickness Modelling using Remotely Sensed Glacier Surface  7-4 

               Velocity  

   7.2 Limitations of the Work 7-6 

   7.3 Major Contributions from this Thesis 7-6 

   7.4 Future Perspective 7-7 

Publications by the Candidate till Date  

References   

Appendix A1  

Appendix A2  

Appendix A3  

Appendix A4  

Appendix A5  

Appendix A6  

  

 

 

 



xiii 

 

LIST OF FIGURES 

S. No. Title Page No. 

Figure 2.1 Accumulation and ablation processes in a typical valley glacier 

(Hooke, 2005) 

2-3 

Figure 2.2 Gravitational forces composing the driving stress: (a) the 

down-slope component of weight, (b) the pressure gradient 

force, and (c) the combination (Hooke, 2006) 

2-4 

Figure 2.3 Schematic showing the different stress components acting on a 

small piece of glacier ice (Source: AntarcticGlaciers.com) 

2-9 

Figure 3.1 Flowchart depicting different components of a general ice flow 

model (Le Meur et al., 2004) 

3-2 

Figure 4.1 Locations of the study glaciers:  South Glacier (Canada), Patsio 

Glacier (India), Chhota Shigri Glacier (India), and Tasman 

Glacier (New Zealand) 

4-2 

Figure 4.2 Google earth imagery of the study glaciers(a) South Glacier, 

(b) Chhota Shigri, (c) Patsio Glacier and (d) Tasman Glacier. 

4-4 

Figure 4.3 Locations of the ice thickness data of the study glaciers taken 

from available literature (a-c) and collected during field survey 

(d) depicting their spatial distribution. a) For South Glacier the 

surveyed locations are spread across the whole glacier. (b-d) 

surveyed location of Chhota Shigri Glacier, Tasman Glacier 

and Patsio Glacier, respectively. 

4-9 

Figure 4.4 Survey locations of Profiles 1-4 (shown in blue) over Patsio 

Glacier 

4-12 

Figure 4.5 Radar-gram of profile 1 (a) before and (b) after processing, and 

processed radargrams of profiles 2-4 (c-e). The yellow line 

denotes the depth (in m) of bedrock topography. 

4-14 

Figure 4.6 Observed ice thickness at the surveyed profiles of Patsio 

Glacier. 

4-15 

Figure 5.1 Proposed feature tracking algorithm (SWIFT) for glacier 

surface velocity estimations using optical and SAR imagery. 

5-2 



xiv 

 

Figure 5.2 Segmented image of Tasman Glacier using ASTER (band 1-3). 

The highlighted segments in yellow are those segments inside 

the glacier boundary which merged with a large segment 

outside the glacier area. 

5-6 

Figure 5.3 Window size distribution of Chhota Shigri Glacier using 

optical images of a) Oct, 2009 and b) Oct, 2010. c) The 

statistical distribution of surface velocity estimates using 

spatially varying window size obtained from a) & b). 

5-7 

Figure 5.4 Spatial distribution of the estimated surface velocities of South 

Glacier a) for 2005-06 and b) for 2014-15. The arrows show 

the direction of estimated velocity at every 200m. 

5-9 

Figure 5.5 Estimated velocities along the central flowline of South Glacier 

for period a) 2005-06 and b) 2014-15. The field measurements 

close to the study period are also shown (Flowers et al., 2011; 

Farinotti et al., 2017). c) Zonal statistics of South Glacier 

estimates 

5-11 

Figure 5.6 Boxplot of surface velocity estimates of South Glacier for 

period a) 2005-06 and b) 2014-15. 

5-13 

Figure 5.7 a) Spatial distribution of the estimated surface velocity for 

period 2009 -10 after smoothing. Circled areas of 1, 2 and 3 

show the three zones with high velocity. b) Estimated and 

observed glacier annual surface velocity along the central flow 

line. c) Zonal statistics of Chhota Shigri Glacier velocity 

estimates for different zones. 

5-14 

Figure 5.8 Glacier wide mean surface velocity trend of Chhota Shigri 

Glacier (field and estimated) for period 1987-2010. The glacier 

surface velocity estimates (period Oct 2003-Oct 2009) are 

taken from Tiwari et al., 2014. *Field measurements are taken 

from Dobhal et al., (1995) (period 1987-89) and Dr Farooq 

Azam (period 2009-10). **Estimated mean glacier surface 

velocity by the proposed method (Oct 2009 - Oct 2010). 

5-16 

Figure 5.9 a) Direction of the estimated velocity of Chhota Shigri glacier 

during the year 2009-10. The direction are shown at 300m 

5-17 



xv 

 

spacing. Regions I, II and II indicate the areas with estimated 

flow direction mismatches the aspect map. b) Aspect map of 

the glacier. 

Figure 5.10 Spatial distribution of velocity estimates of Tasman Glacier for 

a) period 2005-06 using Envisat C-band VV polarized data and 

b) period 2007-08 using ALOS PALSAR L-band HH polarized 

data. Circled areas 1, 2 and 3 (in black) represent erroneous 

patches with unrealistic high surface velocity values. 

5-18 

Figure 5.11 Difference between the velocity estimates and reference 

velocity (source: Farinotti et al., 2017), where the velocity 

estimates have been calculated for a) 2005-06 using Envisat (C-

Band) without limiting the maximum window size, b) 2005-06 

using Envisat (C-Band) after limiting the maximum window 

size. c) 2007-08 using ALOS PALSAR (L-Band) after limiting 

the maximum window size. Positive values show the 

overestimation and negative values show underestimation by 

the proposed approach. 

5-19 

Figure 5.12 Estimated velocities of Tasman Glacier for period 2005-06 and 

2007-08 compared with the field measurements close to the 

study period (source: Purdie et al., 2018). 

5-20 

Figure 5.13 Zone wise mean velocity estimates for the Tasman Glacier. 5-21 

Figure 5.14 A comparative plot of proposed velocity estimates and cross 

correlation based velocity estimates (at best performing 

window size) of:  a) South Glacier for period 2005-06, b) 

Chhota Shigri Glacier for period 2009-10, and c) Tasman 

Glacier for period 2007-08. 

5-26 - 5-27 

Figure 5.15 A comparative plot of proposed velocity estimates at spatially 

varying window size (SVWS) and spatially fixed window size 

(SFWS): a) South Glacier for period 2005-06, b) Chhota Shigri 

Glacier for period 2009-10, and c) Tasman Glacier for period 

2007-08. 

5-28 

Figure 6.1 Proposed methodology for estimation of spatially distributed 

glacier ice thickness using remotely sensed inputs. 

6-3 



xvi 

 

Figure 6.2 Average linear sensitivity plot of the ice thickness model input 

parameters. 

6-8 

Figure 6.3 a) Spatial distribution of estimated glacier ice thickness of 

South Glacier. b) Estimated glacier ice thickness along the 

central flowline and various cross section profiles of the 

glacier.  

6-11 - 6-15 

Figure 6.4 a) Spatial distribution of estimated glacier ice thickness of 

Chhota Shigri Glacier. b) Estimated glacier ice thickness along 

the central flowline and various cross section profiles of the 

glacier. 

6-16 - 6-18 

Figure 6.5 a) Spatial distribution of estimated glacier ice thickness of 

Patsio Glacier. b) Estimated glacier ice thickness along the 

central flowline and various cross section profiles of the 

glacier. 

6-19 - 6-20 

Figure 6.6 a) Spatial distribution of estimated glacier ice thickness of 

Tasman Glacier. b) Estimated glacier ice thickness along the 

central flowline and various cross section profiles of the 

glacier. 

6-21- 6-22 

Figure 6.7 Cross-sections used for calculating average shape factor of a) 

South Glacier, b) Chhota Shigri Glacier, c) Tasman Glacier and 

d) Patsio Glacier. 

6-26 

Figure 6.8 Profile layout for the 10 experiments considered in this study. 

Profiles indicate locations for which measured ice thickness is 

available. For each experiment (exp01 to exp10), a given subset 

of profiles was available for model calibration (red) whilst the 

remaining subset was used for validation (grey). Experiments 

01 to 04 refer to peculiar configurations (see note within each 

panel) whilst experiments 05 to 10 consist of random selections 

of a given subset of profiles. The example refers to South 

Glacier, which is considered in all the experiments presented in 

the study. 

6-27 

Figure 6.9 (a) Standard deviation of the difference between modelled and 

observed ice thickness at the locations of profiles that were 

6-31 



xvii 

 

used for model validation. (b) Deviations (dev) between 

modelled and observed ice thickness for the locations used for 

model calibration and validation. (c) same as (b) but deviations 

are expressed in absolute terms. Boxplots show the 95% 

confidence interval (whiskers), the interquartile range (box), 

and the median (lines within box). All values are expressed 

relatively to the mean ice thickness of the corresponding 

glacier. 

Figure 6.10 Distribution of model absolute deviation (a) and actual 

deviation (b) when the ice thickness observations used for 

calibration show a peculiar spatial distribution. The individual 

boxplots discern the situations in which the observations are 

biased towards low elevations (Ex01), the thickest parts 

(Ex02), the flattest parts (Ex03) of the glacier. In Ex04, only 

observations along a longitudinal profile are provided for 

calibration. Values are given relatively to the mean glacier 

thickness. 

6-32 

Figure 6.11 a) Absolute deviation and b) actual deviation between modelled 

and observed ice thickness resulting from Ex05 to Ex10.  

6-33 

Figure 6.12 Comparative boxplot of the error (in m) from the proposed 

model (GATHI) and the modelled estimates taken from 

Farinotti et al., (2019) for a) South Glacier, b) Chhota Shigri 

Glacier, c) Patsio Glacier, and d) Tasman Glacier. 

6-37 

 

 

 

 

 

 

 

 

 

 



xviii 

 

LIST OF TABLES 

S. No. Title Page No. 

Table 3.1 A list of some key studies distributed models available for 

glacier ice-thickness estimation based on SIA concepts. 

3-16 

Table 4.1 Details of the study glaciers. 4-3 

Table 4.2 Optical dataset used to determine window size for glacier 

velocity estimation. 

4-6 

Table 4.3 SAR dataset used for glacier feature tracking dataset used for 

glacier feature tracking to estimate glacier surface velocity 

(horizontal). 

4-7 

Table 4.4 SAR dataset used for glacier feature tracking dataset used for 

glacier feature tracking to estimate glacier surface velocity 

(vertical). 

4-7 

Table 4.5 Details of the GPR data acquisition parameters. 4-10 

Table 4.6 Details of the surveyed profiles shown in Figure 4.4. 4-13 

Table 5.1 Summary of zone wise RMSE of the proposed feature tracking 

approach for all three study glaciers. The overall RMSE and 

bias is also presented for each study period. The different zones 

are shown in Figures. 4.1(a-c). 

5-12 

Table 5.2 Estimated displacements for each study glacier over stable 

region. 

5-23 

Table 5.3 Zone wise RMSE of the normalized cross correlation (NCC) 

based method CIAS (at best performing window size) for the 

study glaciers. 

5-27 

Table 6.1 Summary of estimated and observed glacier wide average 

shape factor for study glaciers. The estimated average ice 

thickness (havg_cs)  and shape factor at each cross-section have 

been used to calculate the estimate of average shape factor 

(fcs_avg). 

6-25 

Table 6.2 Overview of the experiments per glacier. For any glacier, “x” 

indicates that the particular experiments were performed. ℎ̅  is 

the mean glacier ice thickness considered for the analysis. 

6-29 

 



xix 

 

ABBREVIATIONS 

 

Abbreviation  Description 

ALOS  Advanced Land Observing Satellite 

ALS Average Linear Sensitivity 

ANN  Artificial Neural Network 

AR5  Fifth Assessment Report 

ASTER  Advanced Spaceborne Thermal Emission and Reflection Radiometer 

CDEM Canadian Digital Elevation Model 

CFL Central Flowline 

DEM  Digital Elevation Model 

DGNSS  Differential Global Positioning System 

DLR German Aerospace Center 

ELA  Equilibrium Line Altitude 

GATHI GlAcier ice THIckness distribution using remote sensing 

GIS  Geographic information system 

GlabTop  Glacier Bed Topography 

GLIMS  Global Land Ice Measurements from Space initiative 

GLOF  Glacial lake outburst floods 

GPR  Ground Penetrating Radar 

GSI  Geological Survey of India 

HKH  Hindu Kush Himalayan 

IDW  Inverse Distance Weighting 

InSAR  Interferometric SAR 

ITMIX  Ice Thickness Model Intercomparison eXperiment 

IH  Indian Himalayan 

IPCC  Inter-Governmental Panel on Climate Change 

ITEM  Ice Thickness Estimation Method 

m a.s.l  Meters above sea level 

NASA  National Aeronautics and Space Administration 

RISAT  Radar Imaging Satellite 

RGI  Randolph Glacier Inventory 

RMSE  Root Mean Square Error 



xx 

 

SAR  Synthetic Aperture Radar 

SCE Shuffle Complex Evolution  

SIA  Shallow Ice Approximation 

SPOT  atellites Pour l’Observation de la Terre 

SRTM  Shuttle Radar Topography Mission 

SSA  Shallow-Shelf Approximation 

SWIFT Spatially varying WIndow based maximum likelihood Feature Tracking 

USGS  United States Geological Survey 

WGI  World Glacier Inventory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxi 

 

SYMBOL AND NOTATIONS 
 

Symbol and Notation Description 

�̇� The rate of ice accumulation or melting at a location on the glacier 

surface 

B the total glacier net balance 

�̅� the specific net balance 

H/h Ice thickness 

ℎ̅   Mean ice thickness 

u components of ice velocity along x direction 

v components of ice velocity along y direction 

w components of ice velocity along z direction 

us components of surface ice velocity along x direction (along glacier 

flowline) 

vs components of surface ice velocity along y direction (across glacier 

flowline) 

ws components of surface ice velocity along z direction (vertical) 

τ𝑑 Driving stress 

ρ Density of ice 

𝑔 Gravitational acceleration due to gravity 

τ𝑏 Basal shear stress 

𝑓 Shape factor 

α Surface slope 

β Bed slope 

∈̇ Shear strain 

𝐴 Creep parameter 

𝑛 Creep or Glen’s flow law exponent 

τ Shear stress 

f
cs

 Shape factor at a given cross section 

fcs_avg Average of the shape factor estimated at different cross sections 

f
cs_avg_observed

 Average of the shape factor observed at different cross sections 

h
avg_cs

 Average of the ice thickness estimated at different cross sections 



xxii 

 

w
cs

 Width of glacier at a given cross section 

𝑃 Pressure 

∆ℎ Elevation range 

𝑢b Basal ice flow velocity 

𝑑𝑞

𝑑𝑥
 Flux divergence along flowline 

k Total number of pixels in a block 

  Multi-looking factors 

𝑇 Temperature 

𝑞�̅� Mean specific ice flux at point i 

𝑞𝑖 ice flux at point i 

 

 

 



CHAPTER 1 
 

1-1 

 

1 INTRODUCTION 

This thesis presents a physics-based glacier ice thickness model for data scarce regions through 

utilization of remotely sensed glacier velocity information. The methodology for remote sensing 

based glacier surface velocity estimation and ice thickness estimation model were developed from 

the perspective of model independence from in-situ observations. The methodology has been 

demonstrated with a variety of Synthetic Aperture Radar (SAR) and optical satellite data. 

Moreover, the effect of different satellite data characteristics on glacier surface velocity estimation 

have been explored to prove the effectiveness of the technique. The proposed ice thickness 

estimation model was tested for four study glaciers distributed around the world.  

1.1 Motivation 

The recent Inter-Governmental Panel on Climate Change (IPCC) in its Fifth Assessment Report 

(AR5) highlighted the melting of ice mass and glaciers worldwide as one of the most prominent 

indicators of climate change (IPCC 2014). Glaciers, excluding Greenland and the Antarctic region, 

have been reported to undergo rapid changes in response to climate change (Vaughan et al., 2013). 

Although they contain only a fraction (~1%) of the ice volume worldwide (Lambeck et al., 2014), 

the consequences of their mass loss are widespread and of global significance. Glacier changes 

affect global trends in freshwater availability, have dominated cryospheric contributions to recent 

sea level changes, and are anticipated to affect regional water resources over the twenty-first 

century (IPCC 2014).  

In mountain regions glacier melt contributes freshwater to rivers. In countries like China, India, 

and other parts of the Asian continent, many rivers are fed predominantly by snowmelt from the 

Himalaya, with a large part of river flow coming from melting glaciers towards the end of summer. 

Therefore, a rapid change in melting rate of these glaciers can heavily affect streamflow. 

Additionally, melting glaciers pose a variety of risks such as:  

1. Outbursts of glacial lakes resulting in acute damage to local population due to extreme 

water discharges that may lead to a tremendous amount of socioeconomic loss, especially 
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for mountainous regions of the world. Past events include glacial lake outburst floods 

(GLOF) in Peru, (Lliboutry et al., 1977; Reynolds, 1992; Frey et al., 2018), British 

Columbia (Clague and Evans 2000), the Himalayas (Vuichard and Zimmermann, 1987; 

Yamada, 1998; Richardson and Reynolds, 2000), Central Asia (Popov, 1997) and North 

America (O’Connor and Costa, 1993; Evans and Clague, 1994; Clague and Evans, 2000). 

Many of these events were reported to have catastrophic effects. 

2. Glacial rivers contamination which can have lasting and latent effects on remote areas. For 

example, melting Himalayan glaciers have been shown to contain organic pollutants while 

glaciers in the inland Tibetan Plateau are known to contain chemically toxic discharge 

(Zhang et al. 2017). Increased meltwater due to warming temperatures and extreme rainfall 

could lead to greater glacial river discharge, which would detach and transport higher levels 

of these chemicals. 

Glacier ice thickness distribution gives an idea of total water capacity maintained by a glacier at a 

given time, which is crucial for quantifying glacial ice melt, and consequently their contribution 

to the above-mentioned risks and sea-level rise (Helfricht et al. 2019). Glacial ice thickness is also 

a fundamental parameter used in many glaciological applications, such as identification of 

potential future lake formation, glacial evolution modeling, runoff projection, and modelling the 

past, present and future condition of glaciers etc. Consequently, it is important that glacier ice 

thickness be monitored globally (Huss et al. 2008; Gabbi et al. 2012; Le Meur et al. 2007; Jouvet 

et al. 2009; Allen, Schneider, and Owens 2009; Frey et al. 2010; Paul and Linsbauer 2012; 

Linsbauer et al. 2016). 

1.2 Problem Statement 

The field measurement techniques to find glacier ice thickness include ice core drilling and 

geophysical techniques.  Ice core drilling is a technique which serves as the most direct way to 

find the glacier ice thickness and to study subsurface processes. However, this is a cumbersome 

procedure involving huge manpower, time and cost. There have been several studies using ice core 

drilling to estimate the glacier ice thickness (eg. Athabasca glacier, Savage and Paterson., 1963; 

Ross Ice Shelf, Zagorodnov et al., 2014). Inferred methods include geophysical techniques such 

as Ground Penetrating Radar (GPR) for glacier ice thickness mapping in a non-destructive way. 
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However, these methods are also expensive, laborious and difficult due to logistical reasons, 

meaning that they can only be conducted during times of the year with favorable weather 

conditions. Moreover, determination of complete glacier wide ice thickness cannot be carried out 

directly but is necessarily linked to interpolation or extrapolation of direct (point) measurements.  

Glacier thickness has been estimated around the world using ground-penetrating radar (GPR) (eg. 

Schaufelferner Glacier, Andrea Fischer, 2009; Degenhardt, 2009; Chhota Shigri Glacier, Azam et 

al., 2012; Tianshan glaciers, Wang et al., 2013; Svalbard glaciers, Saintenoy et al., 2013; Navarro 

et al., 2014 and other studies). The Himalayan region, due to its highest mountain ranges in the 

world, contains glaciers of the most inaccessible nature. In this region only a few field-based 

estimates (e.g. Gergan et al. 1999; Azam et al. 2012; Singh et al. 2012) are available, based on 

GPR measurements to estimate the ice-thickness and bedrock topography. Other field-based 

measurements can be used to estimate ice thickness with less expensive instrumentation (viz. 

stakes), such as mass balance and velocity, but these also suffer from accessibility. While these 

methods are limited to easily accessible glaciers, they are very useful for validation purpose. 

Given that field-based approaches are limited to only a few accessible glaciers, it is necessary to 

develop alternate approaches to estimate ice-thickness distribution globally. Glacier ice thickness 

modelling approaches are known to complement the GPR based measurements where sparse 

observations are available. Elsewhere, these approaches provide an alternative to glacier 

monitoring where the ground-based surveys are difficult to carry out. A variety of glacier ice 

thickness models have been developed and can be classified according to a range of criteria 

including spatial and physical process representation and the nature of outputs given by the models. 

These approaches are based on either empirical relationships, simple physical models or complex 

models of ice dynamics and its variant. The physics-based models incorporate processes that 

closely represent glacial dynamics and thus can be more robust in representing a range of 

conditions, however they require certain field-based information which does not exist for every 

glacier. Considering the data scarcity over inaccessible glaciers, extraction of these information 

using simple and efficient approaches is needed.  

To replace the field-based information required by the ice thickness models, satellite remote 

sensing can provide a suitable alternative. Moreover, it permits real-time, year-round and long-
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term monitoring of the glaciers. Since the launch of the first remote sensing satellite, remote 

sensing has proven to be valuable using data in different forms such as multispectral (e.g. Landsat, 

QuickBird), hyperspectral (e.g. Hyperion, AVIRIS) and microwave (e.g. RISAT-1, RADARSAT-

1 & 2, ERS-1 &2, ENVISAT, ALOS PALSAR and TanDEM-X). The glacier-surface velocity, 

one of the important inputs to ice thickness modelling, can be easily retrieved using these remote 

sensing datasets. However, the retrieval method needs to be explored in the case of limited or no 

prior field information being available. Herein the proposed research is aimed to develop an ice 

thickness model based on remotely sensed inputs such as glacier-surface velocity, thus describing 

the glacier physics while utilizing the potential of ever evolving remote sensing technology. 

1.3 Aim and Objectives of the Study 

The primary aim of this research is to model the ice thickness distribution of glaciers using 

remotely sensed velocity due to the limitations identified above. Based on a detailed review of the 

literature and thus identified research gaps given in Chapter 3, the following research objectives 

have been formulated.  

1. To develop a remote sensing-based feature tracking algorithm to estimate glacier surface 

velocity where optical data is used for window size determination and SAR data is used for feature 

tracking. The sub-objectives are:  

• To develop an automated window size determination technique using optical data, to be 

useful SAR speckle feature tracking to estimate glacier surface velocity. 

• To investigate the effect of different SAR and optical-data characteristics on the proposed 

feature tracking algorithm for glacier surface velocity estimation. 

• To assess the performance against the existing methods for glacier surface velocity 

estimation. 

2. To develop a physics-based glacier ice thickness model to estimate spatially distributed ice-

thickness using remote sensing inputs. The sub-objectives are: 

• To study the accuracy and performance of the proposed remote sensing-based glacier ice 

thickness model against field data and other modelling approaches respectively. 
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• To explore the model applicability for glaciers with different distribution of available field 

measured ice thickness information. 

1.4 Scope of the Work 

This study focused on glacier ice thickness model development using remote sensing data for data 

scarce regions, based on the Shallow Ice Approximation where longitudinal and other horizontal 

stresses are not considered. The remotely sensed inputs such as glacier surface velocity, surface 

topography and glacier outlines were considered. From these, only the glacier surface velocity was 

estimated with a focus on automation, while the other inputs such as DEM and glacier boundary 

have been taken from freely available sources and not been considered for further improvements 

in terms of quality and accuracy. The ice thickness estimation model was tested for various valley 

type glaciers, representing the majority of non-polar glacier types located in various climatic zones. 

The proposed ice thickness model has not been tested for glacier types such as cirques and 

piedmont glaciers.  The physics in the model is also applicable to these glaciers so one can apply 

this model to these glacier types, however, need to be cautious. 

1.5 Organisation of the Thesis 

The research encompassed in this thesis is divided into seven chapters. Chapter 2 presents a brief 

overview of the fundamental processes involved in glacier dynamics. These include underlying 

principles, laws and their characteristics under certain assumptions as manifested in the existing 

categories of ice thickness models. This is followed by the Stokes equations which explain 

complex dynamic glacier processes, with the chapter ending with an introduction to the shallow 

ice approximation, which is the basis of the majority of ice thickness models available. 

Chapter 3 presents a review of the state-of-the-art literature in studies of glacier ice thickness 

estimation based on the shallow ice approximation. Extensive discussions were constrained to 

physics-based model studies. The chapter concludes with the research gaps identified.   

A detailed description of the four study glaciers and the data used in this thesis is presented in 

Chapter 4. Some critical topographical aspects and climate characteristics of these glaciers has 

been presented to understand the variability among the study glaciers. The study glaciers presented 
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in this chapter are common to both the glacier velocity estimation in Chapter 5 and the ice thickness 

modelling in Chapter 6. The remote sensing and in-situ data used for glacier velocity estimation 

and ice thickness modelling were described in detail. In addition to freely available in-situ datasets 

used for validation, the in-situ glacier ice thickness data collected for this thesis via an extensive 

field survey at one of the study glaciers (Patsio Glacier) is described. To maintain the flow of the 

thesis, the estimated velocity used as one of the inputs to ice thickness model is described in 

Chapter 6.  

The remote sensing based glacier surface velocity estimation component of this thesis is described 

in Chapter 5. At first, the theoretical background pertaining to development of the method for 

automatic determination of window size for image matching is given. Subsequently, the complete 

framework to estimate glacier surface velocity is presented and implemented for the study glaciers. 

Furthermore, the results from inter-comparison of the newly developed framework with other 

widely used methods were also reported.  

Chapter 6 presents the modelling framework, application and assessment of the proposed ice 

thickness model. Following this, the estimation capabilities have been explored via the 

performance analysis for the four study glaciers. Moreover, a number of experiments were 

undertaking, seeking for possible improvements and automation, which is important for large scale 

application.  

Chapter 7 summarizes the major contributions and conclusions of this thesis along with the 

limitations of the research. It concludes with a discussion on the future perspectives for each major 

research component of this thesis. 
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2 THEORETICAL BACKGROUND 

This chapter presents the basic concepts that represent the current understanding of glacier 

dynamics from an ice thickness modelling perspective. A wide range of processes which 

form the basis of existing physics-based ice thickness modelling approaches are described. 

These concepts are later used in the formulation of ice thickness modelling framework given 

in chapter 6. The following sections introduce the primary processes observed in a glacier 

system. Starting from an already formed glacier, the basics of glacier mechanics are presented 

based on glacier mass balance, which involves ice flow and the forces acting on a glacier. 

The chapter is organized such that simple individual components are given before proceeding 

to the complex representation of glacier system. 

2.1 Glacier Formation 

A glacier forms when snow melts and refreezes, or is compressed, to form ice. Once formed, 

glaciers flow under their own weight, channeled along constrained routes that are defined by 

the underlying bedrock. The ice moves by stretching in the flow direction, and by shearing 

or sometimes sliding over the bedrock. The velocity of ice flow is determined by several 

parameters such as glacier geometry, temperature, basal conditions, and the underlying stress 

(Cohen et al., 2018; Wu et al., 2019). Basal conditions determine whether sliding can occur 

and at what rate. Moreover, the driving force acting on the glacier is proportional to the ice 

thickness and surface geometry (Hughes et al., 2003; Wohland et al., 2016). Moreover, flow 

rates depend strongly on temperature; ice at 0°C flows much faster than at -10°C (Cuffey and 

Patterson, 2004). Consequently, theoretical models of glaciers must get both the dynamics 

and thermodynamics right if they are to approach reality.  

2.2 Glacier Mass Balance 

The glacier mass balance refers to changes in the mass of the glacier and the distribution of 

this change in space and time particularly, allowing the change in mass in a given year to be 

estimated (Cuffey and Paterson, 1994). The measure for this change is the specific balance 

rate, defined as the rate at which mass is added to or removed from a glacier. The rate of ice 

accumulation or melting at location x on the glacier surface is denoted as �̇� (kg m-2 yr-1). The 
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sum of mass gain (accumulation) and mass loss (ablation) during a certain time span is 

therefore defined as the net balance.  

In a hydrological year, which is considered from 1 October to 30 September, b can be 

evaluated by integrating over time interval t1 to t2 such that  

 𝑏(𝑥) = ∫ �̇�(𝑥, 𝑡)𝑑𝑡
𝑡2

𝑡1
. (2.1) 

This net balance is the mass gain or loss at a location x on the glacier surface. Therefore b(x) 

describes the spatial distribution of mass balance over the glacier surface. Integrating this 

function over the glacier surface area S leads to the total glacier net balance B (kg) such that 

 𝐵 = ∫ 𝑏(𝑥)𝑑𝑆
 

𝑆

. (2.2) 

The glacier net balance is the sum of accumulation and ablation over the whole glacier 

surface, and therefore the volume change of the glacier. Dividing the total mass balance by 

the glacier surface area gives the average net balance otherwise known as the specific net 

balance �̅� (Kg m-2) by 

 �̅� =  
𝐵

𝑆
. (2.3) 

In general, these mass balance terms are stated in terms of water equivalent, so that 

comparisons can be made between different glaciers and years. When B is positive, the 

glacier is said to have a positive mass balance; if this condition persists for some years the 

glacier will advance. If it is negative it will retreat.  

2.3 Principle of Mass Conservation 

The principle of mass conservation states that the changes in ice thickness at any point must 

be due to the flow of the ice and local snowfall or loss due to melting. This conservation of 

mass is expressed by the continuity equation. Many important characteristics of glacier flow 

and evolution are manifestations of the requirement that mass be conserved. Figure 2.1 shows 

the accumulation and ablation processes in a typical valley glacier (Hooke, 2005). The 

vertically integrated continuity equation during long-term evolution of an ice mass, or its 

steady-state properties, can be represented by the relation (Cuffey and Patterson, 2004) 
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𝜕𝐻

𝜕𝑡
=  𝑏𝑖 −  

𝜕𝑞

𝜕𝑥
 , (2.4) 

where the flux q = uH is the flux averaged over depth, H is the ice thickness and bi is the 

mass balance (m/yr). The underlying approximation here is i) a negligible internal mass 

balance compared to the surface and basal ones, and ii) a uniform ice density. The flux 

averaged over depth is essentially indistinguishable from qi (flux at the surface) in an ablation 

zone or for a large ice sheet. However, for a total ice thickness of ~200 m, this error can 

contribute to about 6% uncertainty (Cuffey and Patterson, 2004).  

It follows that the flux can also be represented as  

 
𝜕𝑞

𝜕𝑥
=  𝑏𝑖 −  

𝜕𝐻

𝜕𝑡
, (2.5) 

 

where the right hand side represents the apparent mass balance term, which according to 

kinematics is equivalent to  

 

Figure 2.1 Accumulation and ablation processes in a typical valley glacier (Hooke, 2005). 
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 𝑏𝑖 − 
𝜕𝐻

𝜕𝑡
=  𝑤 −  𝑢

𝜕𝐻

𝜕𝑥
−  𝑣

𝜕𝐻

𝜕𝑦
, (2.6) 

where u, v, and w are the components of ice velocity along the x, y and z direction, 

respectively. If w > 0, upward flow raises the surface unless the ice is removed by ablation 

(b < 0). Conversely, flow downwards, that is, w < 0 lowers the surface unless ice is 

accumulated. Additionally, the surface also rises or falls as the horizontal flow (u, v) 

transports surface features along the glacier.  

2.4 Driving Stresses and Glens Ice Flow Law 

Under gravitational force, the glacier flows due to two different reasons: i) pressure gradients 

in the glacier and ii) the sloping glacier bed. A simple case with a parallel-sided slab of ice 

and thickness H, resting on a rough plane of slope α is shown in Figure 2.2a. If the length 

and width of the slab are assumed to be long compared to H and a column of ice with unit 

cross-section is kept perpendicular to the rough plane, the component parallel to the plane 

due to weight of the column is the driving stress, τd,. (Nm-2) of the glacier. For equilibrium, 

resisting forces must balance the driving stress. On most glaciers, the largest resisting force 

is the basal drag, being the shear stress τb (also referred to as the basal shear stress) across the 

base of the column. Thus 

 τ𝑑 = ρg𝐻 and τ𝑏 = 𝑓τ𝑑 , (2.7) 

where f denotes a number usually of order one. Figure 2.2b and Figure 2.2c represent this 

stress component for ice mass with different basal and surface characteristics. 

 

Figure 2.2 Gravitational forces composing the driving stress: (a) the down-slope component 

of weight, (b) the pressure gradient force, and (c) the combination (Hooke, 2006). 
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An ice mass resting on a horizontal surface at its base but having a surface slope of α 

represents an ice sheet or the lower zone of a large mountain glacier (Fig. 2.2b). The driving 

stress here is balanced by the basal drag such that  

 𝜏𝑑 = −𝜌𝑔𝐻
𝜕𝑆

𝜕𝑥
=  𝜌𝑔𝐻 tan 𝛼 𝑎𝑛𝑑 𝜏𝑏 = 𝑓𝜏𝑑  , (2.8) 

where f denotes a constant of proportionality (unitless) and a number usually of order one. A 

real glacier does not match either of these simple cases, but the precise shape has little 

influence on the force that drives flow. At depth in any glacier, there is always a horizontal 

gradient of hydrostatic head proportional to −
𝜕𝑆

𝜕𝑥
 = tan α, where S is the elevation of the ice 

surface and α is the surface slope. This means that a vertical column will always be pushed 

by a horizontal driving stress of magnitude τd = ρgH tan α, regardless of the bed slope. Gravity 

therefore always pushes a glacier horizontally, in the direction of the downward surface 

slope.  

For Fig 2.2c where the glacier rests on a small bed slope β, and the surface is inclined at angle 

α, the driving force τd is balanced in part by the uphill basal drag such that  

 [ρgH sin β] δx − ρgH [
𝜕𝐻

𝜕𝑥
] δx = fτ𝑏δx. (2.9) 

For small angles 
𝜕𝐻

𝜕𝑥
 = β −α and sinβ = β. Thus, reducing to 

 τ𝑑 ≈ ρgHα and τ𝑏 = fτ𝑑. (2.10) 

Therefore, provided that the slopes are small, τd is the same as for a parallel-sided slab or a 

flat bed, as long as α refers to the surface slope.  

2.4.1 Isotropic Creep of Ice   

Previous experiments (Glen, 1965) on the behavior of ice show that, at stresses during normal 

glacier flow (~ 50 to 150 kPa), the relation between a dominant shear stress τ and the 

corresponding shear strain rate follows the power law 

 ∈̇= 𝐴τ𝑛, (2.11) 
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where n (unitless), the creep exponent, is approximately constant. However, the creep 

parameter A (unitless) depends strongly on temperature, grain size and impurity level of 

material. This is known as Glen’s Law. Through measurements performed using strain rates, 

the determined values of n range from 1.5 to 4.2 (Weertman 1973; Weertman 1983), with a 

mean of about 3. This is most consistent with field data, whereby analyses of glacier 

dynamics usually assume that n = 3. Such a high value for n means that glacier flow differs 

markedly from that of a Newtonian viscous fluid.  

The state of stress in glaciers can be complex, with combined shear and normal stresses acting 

in all three dimensions. The creep relation given by Eq. 2.11 applies only to simple cases 

where one component of stress is applied. Assuming that ice is incompressible, isotropic and 

each strain rate component is assumed to be proportional to its corresponding deviatoric 

stress component  

 ∈̇𝑗𝑘= λτ𝑗𝑘 ,  (2.12) 

where λ is the proportionality. In isotropic ice, the effective viscosity does not depend on the 

strain orientation. Thus, λ has the same value for all x, y and z components, although it varies 

along the glacier depending on factors like stress and temperature. A creep relation for 

complex stress systems must connect quantities that describe the overall state of stress and 

strain rate. Nye (1953), proposed that the effective stress and strain rate follow the observed 

power-law behavior for ice (Eq. 2.11), so that 

 ∈̇𝐸= 𝐴 τ𝐸
𝑛,  (2.13) 

where ∈̇𝐸 and  τ𝐸 are the second invariants of ∈̇ and  τ𝐸. From Eq. 2.12 and 2.13, the strain 

rates depend on deviatoric stresses according to  

 ∈̇𝑗𝑘= Aτ𝐸
𝑛−1τ𝑗𝑘. (2.14) 

This is known as the generalized Glen’s Law or the Nye-Glen Isotropic Law, the most 

commonly used creep relation for glacier ice.  
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2.5 Driving Stress Under Perfect Plasticity Assumption 

When the surface of a glacier is assumed to be a smoothed mirror of the underlying bed 

(Oerlemans 2001), then the thickness of the ice is largely governed by its surface slope 

(steeper the surface corresponds the thinner the ice and vice versa). Moreover, if ideal 

plasticity of the ice is assumed, basal sliding can be neglected, and the glacier width is much 

larger (~ 10 times) than its ice thickness, meaning the ice thickness H depends on the slope 

α and basal shear stress τ𝑏 according to  

 𝐻 =  𝜏𝑏 (𝜌𝑔𝑓 𝑠𝑖𝑛 𝛼), (2.15) 

where 𝜌 is the density of the ice, 𝑔 the acceleration due to gravity, and 𝑓 is the factor which 

represents the shape of the cross section; specifically the ratio between the cross-sectional 

area of the glacier and its perimeter and is related to the friction of a real glacier with the 

valley walls. The value of 0.8 is typical for valley glaciers and can be smaller for other glacier 

types (Paterson 1994). The relation has two main implications i) the smaller the slope, the 

thicker the ice and ii) that thickness is increasingly sensitive to surface slope toward smaller 

values of slope. When Eq. 2.15 is used to calculate glacier thickness, τ𝑏 must be derived by 

another means. While a constant value of 1 bar (105 Pa) often serves as a good starting point 

(Binder et al. 2009, Clarke et al. 2009), Haeberli and Hoelzle (1995) used the glacier-specific 

empirical relation proposed by Maisch and Haeberli (1982). The relation is based on the 

analysis of topographic parameters from previously existing late-glacial ice bodies (found to 

be rather similar in size and shape to today’s glaciers) and thus based on real glacier beds. It 

relates τ to the elevation range ∆ℎ of a glacier using a quadratic regression to all data points 

such that 

 𝜏 =  0.005 + 1.598∆ℎ − 0.435∆ℎ2.  (2.16) 

2.6 Stokes Equations in Glaciology 

The Stokes equations in glaciology are a simplified version of the Navier-Stokes equations, 

which are the general equations in computational fluid dynamics for simulating fluids like 

air or water. Combining the Glen’s ice flow law (Eq 2.14) with the fundamental physical 
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principles of conservation of momentum and mass gives the Stokes equations, which 

determine the velocity vector u = (ux, uy , uz ) and pressure P such that 

 −∇ 𝑃 +  ∇ (𝜂(∇𝐮 + (∇𝐮)𝐓)) + 𝜌𝒈 =  𝟎 (2.17a) 

 𝛁. 𝐮 = 𝟎 ,  (2.17b) 

Where the density is denoted by ρ and 𝑔 is the gravitational force. An additional equation for 

the temperature T is omitted here since this thesis is focused on the Stokes equations and 

describing the movement of the ice surface, where the temperature of ice is generally 

assumed to be constant. This also limits the flow rate factor (creep parameter) A as a constant. 

It shall be noted that the term ’Stokes equations’ usually refers to the linear Stokes equations. 

In the case of a power law fluid, Eq. 2.17 along with Glen’s law are sometimes called the p-

Stokes equations, where p refers to the power law parameter equal to 1/n +1. In glaciology, 

Eq 17a and 17b are usually called the full Stokes equations, since approximate models 

neglecting a few stress components are common.  

Ice sheet flow is not only a non-linear flow, it is also a free surface flow. The surface position, 

h, of the ice mass is given by the surface evolution equation described by Eq. 2.6. Here, the 

net accumulation of ice (snow) at the ice surface depends on climate data such as precipitation 

and surface air temperature. The velocity thus determines the ice surface, and the surface 

shape in turn influences the velocity. As the Stokes equations are stationary, the time 

evolution of the (isothermal) glacier or ice sheet is determined by the evolution of the surface. 

2.7 Stokes equations and Glacier Mechanics 

The glacier ice dynamics is completely represented by the Stokes equation which includes 

all components of the stress tensor acting on the glacier. These nine principle stress 

components, including longitudinal (stretching and compressional) and transverse stresses 

(such as drag against the valley sides), are shown in Figure 2.3.  

The full-Stokes model considers the three laws as follows: 

a. Conservation of Mass, 

b. Conservation of linear momentum, and 

c. Conservation of angular momentum. 
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If the conservation of mass and momentum is represented in terms of velocity components, 

and the glacier ice is assumed to be incompressible, then the full-Stokes equations can be 

expressed as 

 
𝜕𝑃

𝜕𝑥
−

𝜕

𝜕𝑥
(2𝜂

𝜕𝑢

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝜂 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)) −  

𝜕

𝜕𝑧
(𝜂 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)) = 0  (2.18) 

 
𝜕𝑃

𝜕𝑦
−

𝜕

𝜕𝑥
(𝜂 (

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)) −

𝜕
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(2𝜂

𝜕𝑣

𝜕𝑦
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𝜕

𝜕𝑧
(𝜂 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
)) = 0 (2.19) 

 
𝜕𝑃

𝜕𝑧
−

𝜕

𝜕𝑥
(𝜂 (

𝜕𝑤

𝜕𝑥
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𝜕𝑢

𝜕𝑧
)) −

𝜕

𝜕𝑦
(𝜂 (

𝜕𝑤

𝜕𝑦
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𝜕𝑣

𝜕𝑧
)) −

𝜕

𝜕𝑧
(2𝜂

𝜕𝑤

𝜕𝑧
) =  −𝜌𝑔  (2.20) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0, (2.21) 

where u, v, w represents the velocity along the x, y, and z directions, respectively. 𝜂 is the 

viscosity, 𝜌 is the density of ice, g the gravitational acceleration, and P denotes the pressure 

acting on the glacier at a particular location. Moreover, x represnts the direction along the 

 

Figure 2.3 Schematic showing the different stress components acting on a small piece of 

glacier ice (Source: AntarcticGlaciers.com). 
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glacier length, y represnts the direction across the glacier, and z represent the vertical 

direction. Observations by Glen (1952) suggest that the viscosity depends on temperature 

and effective strain rate. Due to the velocity dependence of the viscosity, the Full Stokes 

equations are highly non-linear. 

From the modelling perspective, a full-Stokes based model is an accurate differential 

equation model that includes all the relevant ice flow dynamics. Such a model is considered 

to be the most accurate available, capable of describing highly dynamic ice sheets, including 

ice streams, ice shelves, and grounding line migration. Solutions obtained with full-Stokes 

models often agree well with data wherever available, or can be used in inverse models to 

identify unknown boundary conditions such as sliding parameters (Isaac et al., 2015). 

However, their application to evolution over large domains and for long time intervals is not 

yet possible, because their high level of physical model accuracy requires substantial 

computational resources (time and memory). For large scale simulations, high computational 

requirements restrict the application of these models to smaller timescale and glaciers sizes. 

To model the ice sheet behavior on longer timescales, approximations to the full-Stokes 

model are used. The equations listed above represent the ice sheet dynamics and can be 

applied to mountain/valley type glaciers by certain assumptions/modifications in the existing 

equations for ice sheet modelling. Considering that a mountain/valley type glacier as a 

simplified form of an ice sheet which has negligible width to thickness ratio, the equations 

are modified to represent mountain/valley type glaciers by neglecting the different types of 

stresses such as longitudinal, transverse and the vertical stress components. 

2.8 Shallow Ice Approximation 

The Shallow Ice Approximation (SIA), better known as the simplified version of the full 

stokes equations, can be derived if the stress tensor along the y and z direction is ignored. 

This gives the relation 

 
𝜕𝑃

𝜕𝑥
−

𝜕

𝜕𝑧
(𝜂 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)) =  0      and (2.22) 

 
𝜕𝑃

𝜕𝑧
= −𝜌𝑔 . (2.23) 
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“Shallowness” in the SIA refers to the assumption that the depth to width ratio of a glacier is 

small in glaciology. The SIA is the simplest approximation of the full-Stokes equations that 

is commonly used in glacier modelling approaches. The assumption made here is that shear 

stress at the glacier base is purely balanced by the driving stress due to gravity. Out of all the 

stresses acting on the glacier/ice mass it considers only one stress, that is, the basal shear 

stress. Another assumption is that the longitudinal stress is negligible. Due to neglecting the 

longitudinal stress, the accuracy of the SIA decreases when the contribution of basal slip to 

ice velocity increases. 

2.9 Chapter Summary  

This chapter has presented a brief overview of the principles and laws involved in modelling 

glaciers. A wide range of processes such as glacier mass balance and ice flow have been 

covered here, representing different aspects of glacier dynamics. Subsequently, the Stokes 

equations have been presented, being a complex representation of glacial processes that 

includes all the other listed processes. The concepts presented here are crucial to the 

formulation of the proposed ice thickness modelling framework in this thesis. Moreover, the 

underlying simplifications mentioned during the mathematical formulation of these real-

world processes gives an idea of the implications when implementing these. The chapter ends 

with the shallow ice approximation which is the basis of the majority of the ice thickness 

models present. As a way forward, in chapter 3, the state of art review of approaches to 

glacier ice thickness modelling are presented, being essentially built upon single or a 

combination of the concepts presented in this chapter. Thus, this chapter will help in 

identifying the underlying strengths and limitations of each approach.  
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3 LITERATURE REVIEW 

This research aims to design and develop a remote sensing based distributed glacier ice 

thickness model for data scarce regions where no in-situ measurements are available. This 

chapter reviews the state-of-the-art in remote-sensing-based glacier ice thickness estimation 

and remote-sensing-based glacier surface velocity estimation, being two major components 

of this thesis. The chapter is organized such that the focus on the specific objectives of this 

thesis is maintained. The first two sections present an exhaustive set of studies categorized 

based on model complexity, followed by implementation schemes catering to the challenges 

commonly incurred in the field of glaciology.  

3.1 Approaches to Modelling Glacier Ice Thickness 

The ice thickness distribution of a glacier, ice cap, or ice sheet is a fundamental parameter 

for many glaciological applications (Farinotti et al., 2009). It determines the total volume of 

the ice body, which is crucial to quantify water availability or sea-level change and provides 

the link between surface and subglacial topography, which is a prerequisite for ice-flow 

modelling studies (Farinotti et al., 2017). Despite this importance, knowledge about the ice 

thickness of glaciers and ice caps around the globe is limited which is mainly due to the 

difficulties in measuring ice thickness directly. 

To overcome this problem, several approaches have been developed to infer the ice thickness 

distribution. This section is dedicated to a discussion on the available approaches for glacier 

ice thickness modelling at different level of modelling complexity.  

3.1.1 Full-Stokes based Approaches 

The approaches to glacier/ice sheet modelling based on Stokes equation (here after referred 

to as full-stokes) provide the best possible description for complex fluids such as ice. Initially 

developed to solve ice sheet simulation processes, it was then evolved to accommodate 

glacier modelling as well. Elaborate studies using the Stokes equation have simulated various 

characteristics of glaciers (ice sheets), including ice velocity (Duan et al., 2012; Zhang et al., 

2013; Wu et al., 2020), evolution of glacier characteristics such as length, ice-thickness, and 
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volume (Duan et al., 2012, Ren and Leslie, 2011), mass balance (Carr et al., 2007, Jarosch et 

al., 2013), ice temperature (Zhang et al., 2013, Zhen et al., 2016), glacier hydrology (Pattyn 

et al., 2009, Denis et al., 2010), basal sliding (Zmitrowicz, 2003) and glacier surge (De Paoli 

and Flowers., 2009; Dunse et al., 2011; Flowers et al., 2011).  

The basic constituents of an ice flow model following physical principles such as 

conservation laws (mass, momentum, energy) is shown in Figure 3.1. At the ice/atmosphere 

interface, a mass balance and/or energy exchange function as well as the stress values are 

prescribed. The mass balance is either directly measured in the field or reconstructed from 

meteorological data which is a systematic representation of local climate using regional 

climate models. Boundary conditions are prescribed under various forms at the limit of the 

domain i.e. at the glacier boundary. The initial conditions include a specific rheology for the 

ice, initial ice-thickness, and bedrock topographies. Solving the ensuing system of equations 

yields either the glacier geometrical characteristics (such as thickness, extent etc.) through 

time, or some specific fields at a given time like velocity or stress throughout the domain. 

Implementation of these modelling approaches for ice masses of complicated shape requires 

numerical methods such as finite element methods (Zienkiewicz, 1971).  

 

Figure 3.1 Flowchart depicting different components of a general ice flow model (Le Meur 

et al., 2004). 
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The boundary conditions represent the geological, hydrological and thermal conditions of a 

glacier. The required boundary conditions for the   based problems in glaciology can be 

divided into two categories: upper and lower boundary conditions. Both include the surface 

elevation, ice mass velocity, thermal properties of ice, and viscosity at the glacier boundary. 

A common approach for modelling alpine glaciers is to synthesize the lower boundary 

condition using a Weertman-type sliding law (Weertman, 1964) in which the basal sliding 

velocity is proportional to basal drag (for example Le Meur and Vincent, 2003; Jouvet et al., 

2011).  The calculation of basal drag which corresponds to the sum of all basal resistive 

forces (Van der Veen and Whillans, 1989) is facilitated by numerical approximations. 

The viscous properties of the glacier ice are mainly temperature dependent and thus modelled 

using a thermodynamic model of ice (glacier or ice sheet) to calculate its value. This thermal 

equation is derived from the energy conservation equation and includes conduction and 

advection in three-dimensional space. This problem is solved using Finite Element Methods 

(FEMs) such as the Streamline Upwind Petrov‐Galerkin (SUPG) method (Gresho and Sani, 

2000a). Numerical solutions of the complete full-stokes equations are commonly obtained 

using the finite element method based on the code Elmer (http://www.csc.fi/elmer). 

Important ice sheet characteristics such as ice thickness, surface elevation or surface velocity 

are most efficiently derived from instruments operating at different spatial resolutions and 

deployed at different timestamps (Morlighem et al., 2011). However, their combined use into 

the modelling approaches generally complicates the application where the available data sets 

derived from airborne and satellite platforms operating at different spatial resolution are not 

consistent with one another. 

The full-stokes ice flow models facilitate a non-steady-state assumption and work in a 

transient mode. These models can be effectively applied for complex modelling at high 

spatial resolution. Studies show that these models provide detailed understanding of every 

aspect of glacial processes and a more realistic picture of underlying processes. However, its 

application is limited to only a few glaciers due to both the inputs required and the complexity 

of the modelling process. Moreover, they require boundary conditions which are often not 

http://www.csc.fi/elmer
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available for inaccessible glaciers. The limited number of full-stokes based studies in glacier 

modelling expresses the underlying challenges for model implementation.  

3.1.2 Higher order approaches  

Comparatively simpler versions of the full-stokes models have been developed, also known 

as higher-order (HO) models. These models can be broadly categorised as: 

1) Blatter‐Pattyn’s (BP) higher‐order model (Pattyn, 2003), and 

2) MacAyeal’s shelfy‐stream model or Shallow Shelf Approximation (SSA) model 

(MacAyeal, 1989). 

Zekollari et al., (2013) used a finite difference approximation based on Blatter/Pattyn type 

(Blatter, 1995; Pattyn, 2003; Furst et al., 2011). It solves for 3D momentum balance 

according to the Multilayer Longitudinal Stresses approximation (Hindmarsh, 2004). The 

model includes longitudinal as well as transverse stress gradients. In contrast to the full-

stokes models, the HO solution assumes cryostatic equilibrium in the vertical direction and 

neglects the resistive stresses along the vertical direction. The model solves only for the 

horizontal component of velocity under the assumption that horizontal gradients of the 

vertical velocity are small with respect to the vertical gradient of the horizontal velocity. This 

HO model is found to be accurate only to first order. Accordingly, it does not resolve the 

intricate details of the flow pattern at higher horizontal resolutions. However, the 

discretization scheme used here makes extensive use of information on varied grid points 

(Furst et al., 2011).  Even though model inputs were used at a spatial resolution of 25m for a 

good numerical convergence, it was suggested that results should be interpreted at a lower 

horizontal resolution of 100–200 m. In addition, a final smoothing of this field was required 

to follow with the approximations underlying the flow model. Importantly, Morlinghem et 

al., (2010), through implementation of higher order models for Pine Island Glacier, suggested 

that full-stokes is not required everywhere to model ice sheet flow or ice shelf flow. 

3.1.3 Shallow Ice Approximation based Approaches 

Recently, the number of ice thickness estimation approaches has increased at a fast pace. 

Pertaining to modelling simplicity of the Shallow Ice Approximation (SIA), this category of 

approaches has become dominant over the last few years.  
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Existing studies show that even though full-Stokes and higher order models are useful for 

detailed investigation of different aspects of glaciers and ice sheets, they are limited to 

individual glaciers. Moreover, studies on the grounding zone of large ice shelves have 

revealed that for small basal motion the width of the transition zone is of the same order of 

magnitude as the ice thickness, so that the grounding zone is reduced to a grounding line and 

the shallow-ice approximation still holds, provided that there is no passive grounding of the 

ice shelf. A full derivation of the Stokes balance equations is not necessary; it suffices to 

calculate the longitudinal stress deviator along the grounding line and prescribe a longitudinal 

stress gradient (Van der Veen, 1987). 

The SIA based approaches can be divided into several categories based on the basic 

principles adopted in individual models and on the nature of inputs. These approaches include 

data such as surface velocities and mass balance (for example Morlighem et al., 2011; 

McNabb et al., 2012; Clarke et al., 2013; Farinotti et al., 2009; Huss and Farinotti, 2012; 

Gantayat et al., 2014; Brinkerhoff et al., 2016), as well as approaches that make use of 

iterative and relatively more complex forward models of ice flow (for example van Pelt et 

al., 2013; Michel et al., 2013, 2014), or statistical methods based on neural networks (Clarke 

et al., 2009; Haq et al., 2014). These approaches are discussed categorically by highlighting 

their key features, scope of improvement and limitations from their application perspective.  

3.1.3.1 Mass-conservation based Approaches 

Early approaches that consider mass conservation and ice flow dynamics go back to Budd 

and Allison (1975) and Rasmussen (1988) which were later further developed by Fastook et 

al., (1995) and Farinotti et al., (2009b). Farinotti et al., (2009) proposed an approach to 

calculate glacier ice thickness distribution by calculating ice balance fluxes through cross 

profiles along the glacier and applying the flow law of Glen (1955). A limitation of the 

approach is the time-consuming preparation of the input-data, as central flow lines (Linsbauer 

et al., 2012) or catchment areas for each glacier branch (Farinotti et al., 2009) need to be 

digitized manually. Moreover, the apparent mass balance was parametrized using long term 

field-based mass balance data collected for Alps glaciers.  Thus, the availability of apparent 

mass balance data hinders its implementation where mass balance studies have not been 

carried out. It is thus necessary to explore alternative way to get apparent mass balance data.  
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This approach was successively extended by Huss and Farinotti (2012), who presented the 

first estimate for the ice thickness distribution of every single glacier on Earth by first 

providing distributed ice thickness for all the glaciers listed in Randolph Glacier Inventory 

(RGI) 2.0. Conversely, alternative methods based on more rigorous inverse modelling of 

glacier ice flow have often focused on inferring additional properties at the glacier base, 

besides ice thickness (for example Raymond-Pralong and Gudmundsson, 2011; Mosbeux et 

al., 2016).   

Morlighem et al., (2011) adopted a new approach to obtaining a high resolution map of ice 

thickness by combining sparse ice thickness data collected by airborne radar sounding 

profilers and high resolution ice velocity derived from Interferometric Synthetic Aperture 

Radar (InSAR). One of the aims was to present an alternative to the traditional mapping of 

ice thickness with kriging, which has some serious limitations for ice sheet applications. 

Following the mass conservation law that conserves mass and minimizes the departure from 

observations. This approach was applied to the case of Nioghalvfjerdsfjorden Glacier, a 

major outlet glacier in northeast Greenland that has been relatively stable in recent decades. 

The final interpolated data showed high accuracy and found to be lying within 5% of the 

original data. These thickness maps can be directly used in high spatial‐resolution, higher‐

order ice flow models. It has proven to be most effective for ice sheet models containing fast 

flowing regions. The technique however requires information on apparent mass balance data, 

and dense measurements of ice velocity in addition to radar based ice thickness data which 

makes it complex and limits its applicability to inaccessible and slow moving glaciers (such 

as valley type glaciers in Himalaya). Moreover, ice sheet characteristics such as ice thickness, 

surface elevation or surface velocity are most efficiently derived from airborne and satellite 

platforms carrying instruments operating at different spatial resolutions and at different time. 

Consequently, data sets are not always consistent with one another which may complicate 

their combined use in numerical ice sheet models. 

Mcnabb et al., (2012) presented a method, based on conservation of mass, for estimating 

spatially distributed glacier ice thickness and bed topography. The method requires several 

input data such as DEM, surface velocities, surface mass-balance rates, rate of surface 

elevation change, and ice thickness at the boundary of the area of interest. Using this method, 
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they presented a high-resolution bed topography map for Columbia Glacier. The mean 

difference between measured and calculated ice thickness observed was found to be good i.e. 

5m, and with an RMSE of 44m. However, the required model inputs limits the method 

applicability to certain glaciers where those data have been collected. 

Clarke et al., (2013) independently implemented the Farinotti et al., (2009) approach by 

considering ice thickness estimation as an optimization problem. The final ice thickness 

estimate calculation was preceded by delineation of the ice flow drainage basin which was 

performed manually. Applied to the western Canadian Glaciers, model validation included 

field measurement of surface elevation change between 1985–99 (Schiefer et al., 2007) to 

incorporate the ice thickness changes that have occurred between the measurement and the 

estimation date.  However, due to limitations with the available dataset, they have applied 

less accurate and more coarsely resolved elevation dependent estimates (Schiefer et al., 2007) 

to obtain the ice thickness change correction.  

Recently, Furst et al., (2017) presented a two-step approach to ice thickness estimation which 

is based on Elmer/Ice (Gagliardini et al., 2013) and mass conservation (Morlighem et al., 

2011). In both steps, the observed ice thickness was used to constrain the estimates. The study 

presented ice thickness estimates as well as an error map calculated using error propagation 

(of inputs) for the Svalbard Glaciers. The error estimates show an aggregate uncertainty of 

at least 25 % in the reconstructed ice thickness for glaciers with very sparse or no 

observations. 

The surface mass balance (SMB) field is one of the prerequisites for mass conservation 

approaches. Moreover, it is not directly measurable via remote sensing methods. The field 

measured SMB, which is generally sparse, can be used to determine elevation changes that 

are extrapolated using a local Digital Elevation Model (DEM)(Farinotti et al., 2009). 

Alternatively, the field measured SMB are exploited to validate parametric SMB approaches 

(Möller et al., 2016).  

Efforts have been made towards using ice velocity (usually field based velocity 

measurements) to infer ice thickness. Rasmussen (1988) used this approach on Columbia 

Glacier using a finite difference scheme. Fastook et al., (1995) used a fourth-degree 
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polynomial derived from the Shallow Ice Approximation (SIA) to calculate the ice thickness 

of Jakobshavn Isbræ, in West Greenland. Warner and Budd (2000) employed the SIA to 

calculate the ice thickness over the Antarctic Ice Sheet using mass flux conservation. 

Farinotti et al., (2009) employed a method derived from the same principle, to determine the 

ice volume of Swiss alpine glaciers. All these studies, however, suffered from significant 

deviations from the original thickness data, i.e., by hundreds of meters (Fastook et al., 1995; 

Warner and Budd, 2000), and an average of 25% of mean ice thickness (Farinotti et al., 2009). 

3.1.3.2 Shear-stress based approaches 

The shear-stress based approaches are a class of approaches that rely on simple empirical 

relationships between shear stress and the glacier ice thickness. Nye (1952), noted that for 

the case of an idealized glacier of infinite width, ice thickness can be calculated from the 

surface slope using estimates of basal shear stress and assuming perfect plastic behaviour. 

Nye (1965) successively extended these considerations to valley glaciers of idealized shapes. 

Later Li et al., (2012) additionally accounted for the effect of side drag from the glacier 

margins.  

Haeberli and Hoelzle (1995) first suggested that shear stress can be estimated from the glacier 

elevation range, with the corresponding parameterization used in a series of recent studies 

(for example Paul and Linsbauer, 2011; Linsbauer et al., 2012; Frey et al., 2014; 

Ramsankaran et al., 2018). Common to these approaches is the assumption of a constant basal 

shear stress. 

Linsbauer et al., (2009) generated hydrologically consistent DEMs (using Topogrid) from 

elevation contours/points and other vector data (Hutchinson, 1989), resulting in concave-

shaped landforms. Such results mimic the typical parabolic shape of glacier beds without 

explicitly considering mass fluxes. 

Frey et al.,  (2014) compared the ice thicknesses derived from with GlabTop2 and the HF-

model to 86 local point ice thicknesses estimates derived from GPR measurements across six 

glaciers in the Himalaya-Karakoram (HK) region. The average differences between the 

models and the measurements was 25.7m for GlabTop2 and 19.0 m for the HF-model; the 

RMSE of all validation points were observed to be similar for both Glaptop2 and the HF-
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method. The negative mean differences indicate an underestimation of the ice thicknesses by 

both models, which to a certain extent is caused by glacier changes between the dates of the 

measurements and the acquisition dates of the DEM and the glacier outlines used by the 

models. The errors and artifacts in the input data and simplifications and parameterizations 

in the models might also account for the differences. In addition, uncertainties related to the 

measurements (resolution, interpretation, and spatial reference of GPR data) and their 

digitalization influence the results of the validation. Another factor leading to differences 

between measured and modelled ice thicknesses is the comparison of local ice-thickness 

measurements with model results on a 90m grid, which can cause large differences, 

particularly at the steep margins of glacier beds. 

There exist general sources of uncertainties in both of the approaches due to the level of 

accuracy of glacier outlines and the DEM used. These input data uncertainties affect the 

results of each method. When compared against field measurements which were available 

for only a few study glaciers, locally large differences were noted. However, in some cases 

these model approaches (GlabTop2 and HF) agree in terms of trend but exhibit large 

difference to the measured ice-thicknesses. The average difference between GlabTop2 and 

the HF-model for the 86 validation points was −6.6m or −4.1% with a standard deviation of 

41 m. Huss and Farinotti, (2012) suggest that approaches which take the three-dimensional 

shape of the glacier surface into account can be considered as superior. 

3.1.3.3 Velocity based approaches 

This category of approaches are based on the integrated form of Glen’s ice flow law (Glen, 

1955). To estimate ice thickness h, the flow law can be represented as  

 h =
𝑛+1

2A

𝑢s−𝑢b

𝜏𝑛
 , (3.1) 

where us and ub are the surface and basal ice flow velocities respectively, or to replace q in 

the mass continuity equation with the depth averaged profile velocity u (since q = uh). In 

these cases, an assumption relating us to ub or u is required because ub is an unknown quantity 

and cannot be measured directly. This approach has been implemented by few studies over 

Gangotri Glacier, India (Gantayat et al., 2014) and over 13 selected glaciers worldwide 
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(Farinotti et al., 2017). Though a simple approach, these methods cannot be used for glacier 

evolution investigations. 

3.1.3.4 Neural Network based Approaches 

As implied by the name this class of approaches utilise an artificial neural network (ANN) to 

estimate the underlying glacier bedrock by training the network with the surrounding glacier 

free topography. These approaches were aimed to reduce the dependence on site-specific 

information during the modelling.  

Clarke et al., (2009) applied this approach for the first time in the Mount Waddington area in 

British Columbia and Yukon, Canada. In this approach, the multi-layer feed forward ANN 

was used to transfer the characteristics of current ice-free glacier beds to present-day glaciers. 

This method yielded a plausible subglacial topography with a representative RMSE of ±70 

m. 

Haq et al., (2014) used additional topographical information such as slope and DEM along 

with an ANN to train the ice thickness model. This method was tested over the Gangotri 

Glacier located in the Indian Himalayas. However, due to non-availability of direct field 

measurements, this study does not provide errors in estimated ice thickness. 

Though requiring limited inputs, these approaches are computationally intensive when 

applied to large glaciers (Clarke et al., 2009; Haq et al., 2014). Since the geological and 

environmental settings vary spatially, it logically follows that a neural network trained to 

estimate ice thickness in a particular geographical region may not perform well if applied to 

another region (Clarke et al., 2009). 

3.1.3.5 Minimisation based approaches 

Glacier ice thickness approaches that fall within this category consider the ice thickness 

estimation (via inversion) as a minimization problem. The minimization in the estimated ice 

thickness is achieved through defining a cost function that corrects for the difference between 

the estimated and observed quantity. The observable quantity here generally includes surface 

elevation (Leclercq et al., 2012; Michel et al., 2013; Van Pelt et al., 2013), which can be 

obtained from a DEM derived from either optical or SAR imagery. Additional constraints 
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such as zero ice thickness outside the glacier boundaries and if available, surface flow 

velocities, are used in inversion of bed rock estimations. Starting with an initial guess, a 

forward model for glacier ice flow is then used to predict the target quantity. The difference 

between estimates and observations is utilised to further update the estimates, which is 

repeated iteratively to achieve minimal deviation from the observation. The forward model 

generally considers mass conservation (Farinotti et al., 2017; Furst et al., 2017) and often 

relies on a higher-order representation of ice dynamics (for example Gagliardini et al., 2013). 

3.1.3.6 Estimating spatially distributed ice thickness 

Vital to model performance and accuracy is the approach to modelling and the 

implementation technique to generate spatially distributed ice thickness (McNabb et al., 

2012). Unlike the full-Stokes or higher order modelling approaches which provide grid-wise 

ice thickness, a majority of SIA based approaches have presented a spatially distributed ice 

thickness map by extrapolating/interpolating the modelled ice thickness.  This is 

accomplished by generating spatially distributed ice thickness from the estimated ice 

thickness central flowline (Farinotti et al., 2009; Morlingham et al., 2011; Brinkerhoff et al., 

2016), adjacent flowlines (McNabb et al., 2012) or interpolation of few selected points over 

the glacier (Frey et al., 2014; Ramsankaran et al., 2018). This simplifies and reduces the 

computing time of the modelling approaches. Also, considering that the SIA based 

estimations are more likely to be accurate near the central flowline of the glacier (Cuffey and 

Patterson, 2004), where longitudinal stresses are dominant, it is reasonable to generate 

spatially distributed ice thickness starting from the central flowlines.   

3.1.3.7 Glacier ice thickness estimation at large scale 

The above-mentioned approaches based on the SIA, when implemented for large scale, 

involve a variety of implementation level changes to get a simplified version of the individual 

existing models. These changes involve change in parameterization technique or some 

additional assumptions. 

Huss and Farinotti (2012) presented the first global estimated volume and thickness 

distribution of all glaciers worldwide following RGI 2.0. By combining glacier outlines with 

digital elevation models, they calculated glacier‐specific distributed thickness based on an 
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inversion of surface topography using the principles of flow dynamics. Extending the 

approach presented earlier by Farinotti et al., (2009), where the parameterization of mass 

balance gradient using long term mass balance data of Swiss glaciers, the parameterization 

additionally included continentality index (which describes mass balance distribution based 

on the closeness to the sea or a continent) of each glacier.  This continentality index is 

calculated using relations between geographical latitude and a reference equilibrium line 

altitude (ELA). Climatic inputs such as air temperature was taken from NCEP reanalysis 

data, which could contribute to uncertainties. 

Frey et al., (2014) estimated glacier ice thickness and volume for the complete glacier 

inventory (RGI 4.0) of the 28,000 glaciers in the Himalaya Karakoram region (containing 

glacier coverage of ~40,775 km2), over the period 2000–2010.  One volume-area scaling 

based approach and two spatially distributed models (GlabTop2 and Huss and Farinotti, 

2012) were used to estimate the ice thickness and volume. However, the volume-area scaling 

approach was used to estimate mean ice thickness and volume because of its lumped type 

model approach. For the GlabTop2 model a constant shape factor parameter was used for all 

of the glaciers whereas for Huss and Farinotti (2012) no changes in model implementation 

were carried out. Due to limited information available for the Himalaya Karakoram region, 

the obtained results were validated with ice thickness measurements available for only six 

glaciers.  

Helfricht et al., (2019) presented a calibrated ice thickness model for glaciers in the Austrian 

Alps. It was based on the model presented by Huss and Farinotti (2012). The field data of 

three glaciers were used to calibrate the ice thickness model to provide improved ice 

thickness data. The obtained optimal model parameters through calibration were applied on 

a regional scale to derive an up-to-date glacier ice volume estimate for Austria. Through 

cross-validation between modelled and measured point ice thickness measurements, model 

uncertainty of 25–31% of the measured point ice thickness was estimated. Comparison of the 

modelled and measured average glacier ice thickness revealed an underestimation of 5% with 

a mean standard deviation of 15% for the glaciers with calibration data.  
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Farinotti et al., (2019) presented a consensus of estimated ice thickness and volume of 

220,000 glaciers around the world by consolidating five different model estimates. An 

ensemble of estimated ice thickness was generated for all the study glaciers around the world. 

All five models were implemented with modifications.  

• Model 1 (HF Model): Based on Huss and Farinotti (2012) was calibrated to the 

available ice thickness measurements by optimizing parameters specific to each RGI 

region. No model tuning was performed to reproduce ice thickness observations of 

individual glaciers.  

• Model 2 (GlabTop2): Based on Frey et al., (2014) was empirically derived via a cross-

validation experiment that utilised field measurements.  

• Model 3 (OGGM): Based on Farinotti et al., (2009) but based on gridded climate data 

(Harris et al., 2014) to estimate the mass balance and not on linear mass balance 

gradient. The parameter calibration was performed for two parameters (ice thickness 

interpolation parameters and creep parameter) with the others kept constant and the 

same set of parameters used globally.  

• Model 4: Based on Furst et al., (2017) but only the calibration using ice thickness was 

performed by skipping the calibration for velocity. This was due to the input 

constrained design of this study. Moreover, the required information on surface mass 

balance (SMB) for each glacier was taken from the Global Glacier Evolution Model 

(Huss and Hock, 2015). The long term averaged SMB was interpolated and carried 

out separately for land terminating and marine terminating glaciers.  

• Model 5 (GlabTop2 IITB version): Based on Ramsankaran et al., (2018). Due to no 

direct ice thickness observations available for the study region, a set of 31 simulations 

were performed by varying the shape factor parameter in the interval from 0.6 to 0.9 

with an interval of 0.01. An average of these 31 simulations was taken as the final 

estimated ice thickness. 

3.1.4 Summary of Ice Thickness Modelling Approaches and Challenges  

This section presents a summary of the current efforts and challenges to estimate the glacier 

ice thickness using remotely sensed information. The afore mentioned studies on ice 
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thickness modelling approaches give a significant insight to the expectations in the quality 

of ice thickness estimates as and when the nature of inputs vary.  Though a variety of 

approaches based on different model complexities exist, the prevailing large number of 

studies based on the SIA category models show a potential for simple and efficient 

application.  

Particularly for SIA based approaches, a variety of existing modelling approaches for glacier 

ice thickness estimation has been discussed. Since these models have been designed and 

tested for a different study area and different input data, a common platform to make a 

detailed comparison among these is needed.  In this context, the Working Group on glacier 

ice thickness estimation has initiated the Ice Thickness Models Intercomparison eXperiment 

(ITMIX). So far, this experiment has conducted a coordinated comparison between existing 

models capable of estimating the ice thickness distribution of glaciers and ice caps using 

surface characteristics (Farinotti et al., 2017). The accuracy of individual approaches was 

assessed in a unified manner, along with the strengths and shortcomings of individual models. 

However, availability of consistent input data remains a challenge, having large temporal 

differences. Additionally, the data used for validation were provided by different independent 

groups, and so the underlying uncertainty could not be standardized for the study. Table 3.1 

lists the details of the studies carried out using the modelling approaches falling under SIA. 

In the case of multi input based modelling approaches (such as McNabb et al., 2012) further 

problem emerged. The greater the number of inputs, the greater the temporal differences 

between them which leads to uncertainty in the estimates due to inconsistent timestamps of 

the input data. This was majorly due to limited temporal coverage of available remote sensing 

data. 

When analysed with respect to observed ice thickness measurements for the 21 selected 

glaciers around the world. Large variations in the modelled estimates were observed at 

individual level. However, models within the same category showed the same trend. This 

seems reasonable for the minimization approaches which are based on diverse forward 

models or for the mass conserving approaches and velocity based approaches which differ 

significantly due to varying implementation schemes. The same was observed for shear-

stress-based approaches particularly due to prominent differences in estimates for ice caps. 
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Importantly, it was found that the average solution matched the field measurements well for 

most of the study glaciers, with an average deviation of less than 10 %.  This increase in 

prediction accuracy is expected for an unbiased model ensemble. However, generating an 

ensemble of model estimates is an unrealistic approach for frequent monitoring and for 

operational purposes. 

The studies mentioned in the previous sections also represent the challenges in modelling of 

ice thickness with limitations in the in-situ data available. Considering the current situation 

of available data, the challenges posed to glacier modellers include: 

• Limited data for validation: The existing measurements of ice thickness are few and 

their usefulness for testing the ice thickness estimation method still remains an open 

ended question.  For ice-thickness measurements, a standardised, open-access 

database has been launched (Gärtner-Roer et al., 2014), and its gradual growth 

already justified an updated release. Despite this international effort, many thickness 

measurements remain unpublished. For example, ice thickness measurements of the 

Himalayan glaciers, which are considered as the third pole, are not available in the 

freely accessible glacier thickness database (GlaThiDa).  

• Spatial distribution of the available datasets: Existing knowledge of the actual ice 

thickness is also limited with respect to spatial coverage over the individual glaciers. 

Following the freely accessible worldwide glacier ice thickness database 

(GärtnerRoer et al., 2014), only few glaciers are surveyed with full spatial coverage. 

Moreover, the majority of glaciers have field data available for only a few cross 

sections (less than 5) and these are located in the lower region of the glacier (ablation 

region).  

Temporal coverage of the available measurements: The existing measured ice 

thickness data also exhibits temporal limitations. The data is either collected at a 

single timestamp or it is collected over parts of the glaciers surveyed separately at 

different time periods. For example, field measurement for the Tasman glacier were 

collected in the early 1970s. This when combined with temporal constraints of 

available remote sensing datasets is a challenge to glacier modellers. When the 

timestamp of available ice thickness measurements does not coincide with the remote 
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sensing data (such as synthetic aperture radar (SAR) and optical data) used for 

modelling, uncertainty is introduced in the modelled estimates. 

 

SMB- surface mass balance, Vel- Glacier surface velocity, DEM- Digital Elevation Model, OL- outline of 

glacier, FL- flowlines, 
𝝏𝒉

𝝏𝒕
.Ice thickness change or equivalently surface elevation changes, H- Glacier ice 

thickness. 

 

*ASTER DEM is generate using mosaic of multi temporal images so it does not represent any specific 

timestamp. 

Table 3.1 A list of some key studies distributed models available for glacier ice-thickness 

estimation based on SIA concepts. 

Model 

Category 
Study Study Area Model Inputs 

Timestamp of 

input data 

used for 

modelling 

Timestamp of 

observed data 

used for 

validation 

Mass conservation 
approaches 

Farinotti et al., 
(2009) 

Alpine glaciers DEM, OL 1929-2007 1990-2007 

Huss and 

Farinotti (2012) 
All glaciers in RGI 2.0 DEM, OL 

SRTM(2000) and 

ASTER* 
1990,2003,2009 

Clarke et al., 

(2013) 

Western Canadian 

Glaciers 

DEM, OL, SMB, 

Vel 
2005 1959-1960 

Morlighem et al., 
(2011) 

Nioghalvfjerdsfjorden 
Glacier 

DEM, OL, SMB, 
Vel 

1996 
1997, 1999, 2004 and 

2010 

McNabb et al., 
(2012) 

Columbia Glacier, Alaska 
DEM, OL, H, Vel, 

𝜕ℎ

𝜕𝑡
 

1984–2011 2010 

Fürst et al., 
(2017) 

Svalbard Glaciers 
DEM, OL, SMB, 

Vel, 
𝜕ℎ

𝜕𝑡
 

1983–2013 1983–2013 

Velocity based 

approaches 

Gantayat et al., 

(2014) 
Gangotri Glacier DEM, OL,Vel 2009–2010 1971–1972 

Perfect plasticity, 
shear-stress based 

approaches 

Linsbauer et al., 
(2012) 

All Swiss Glaciers DEM, OL,FL 1985,1991, 1995 
2003; 2006-2007; 1988-

1998 

Frey et al., (2014)  

 
Himalayan-Karakoram DEM, OL 2000 2000–2009 

Ramsankaran et 
al., (2018) 

Chhota Shigri Glacier DEM, OL,Slope 2013 2009 

Haq et al., (2014)  Gangotri Glacier, India DEM, OL 2010 
Validated using other 

modelled estimates 

Brinkerhoff et al., 

(2016) 

Storglaciären (Sweden), 

Synthetic glacier and 

Jakobshavn Isbræ 
Greenland Ice-sheet 

DEM, OL, SMB, 

Vel, 
𝜕ℎ

𝜕𝑡
 

1958-2007 2009-2018 
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The mass balance and ice flow law based approaches are capable of modelling present and 

future evolution and thus are popularly applied. However, they suffer from complex 

parametrization or require ice thickness data. With the limited availability of field 

measurements, these approaches need to be fortified with remotely sensed observation at its 

best. Moreover, irrespective of the modelling approach used, the absence of accurate 

estimations of ice thickness over the entire surface of the glacier is the main constraint to 

accurately simulating future changes (for example, Beniston et al., 2018; Vuille et al., 2018). 

Apart from DEM which is readily available at global scale, the remotely sensed glacier 

surface velocity is one of the evolving fields for the researchers to create simple but effective 

approaches to glacier ice thickness estimation at large scale. 

3.2 Approaches to Glacier Surface Velocity Estimation  

Glacier velocity is one of the paramount variables that impacts glacier dynamics. Glacier 

velocity is of three types: surface velocity, sub-surface velocity and basal sliding velocity. 

Among these, surface velocity can be conveniently monitored using remote sensing 

technology. Moreover, glacier surface velocity at annual or decadal scale represents the 

overall stress regime of a glacier, which in turn is an indicator of its geometric characteristics 

like glacier ice thickness (Anderson et al., 2015). Thus, it is one of the important parameters 

that helps modelling glacier ice thickness and its evolution. Moreover, surface velocity can 

also distinguish active from inactive ice on debris-covered glaciers, identify glacier surge 

events, and even infer basal conditions. However, there remain challenges to routine 

monitoring of glacier surface velocity globally.  

Existing approaches for glacier surface velocity monitoring include ground surveys, 

Synthetic Aperture Radar (SAR) Interferometric techniques and image matching techniques 

using optical or SAR imagery. The ground-based survey is the most accurate method but 

confines the measurements to limited parts of a glacier due to logistical reasons and can only 

be conducted during a specific time of year and when there are favourable weather 

conditions. The latter two techniques are discussed in the subsequent sections.  
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3.2.1 Synthetic Aperture Radar (SAR) Interferometric Techniques 

Studies have shown the potential of the Interferometric SAR (InSAR) technique for glacier 

velocity estimation (Palmer et al., 2011; Kumar et al., 2011; Chae et al., 2017; Sánchez-

Gámez and Navarro 2017). Though the precision of velocity estimation through InSAR can 

reach up to millimetres per day, its successful application is often limited by phase noise and 

large displacements over time (Pritchard et al., 2005; Joughin et al., 2010). 

3.2.2 Image Matching Techniques 

The image matching techniques for glacier velocity estimation are used to calculate the shift 

in a glacier and is derived from the best match between corresponding pairs of images. The 

criteria for matching can be different such as cross correlation and maximum likelihood. 

The cross correlation based techniques come in different variants. The most commonly 

applied and simplest approach out of these is the normalized cross correlation (NCC), with 

the peak of the cross-correlation surface indicating the displacement between the images. The 

normalization of the cross-correlation works relatively better for images with different 

illumination conditions. Because this method operates in the spatial domain (as a convolution 

operation), the computation is high compared to computations in the frequency domain, and 

is easily affected by variability in digital numbers. This means that for NCC to perform better, 

both images must have same spread of digital numbers. This is a major drawback of the 

method for applications in glaciology. The glacier areas usually contain a variety of surface 

features such as dry snow, wet snow, debris and black rocks, which introduces large 

differences in digital numbers. This, when not met in the other image, can cause problems 

with the matching performance.  

The cross-correlation can also be computed in the frequency domain using the convolution 

theorem where the Fourier transform of one image is multiplied with the complex conjugated 

Fourier transform of the second image (Heid and Kaab, 2012). Moreover, Fitch et al., (2002) 

developed a method called orientation correlation. Haug et al., (2010) showed that this 

method is well suited for deriving ice shelf velocities. The orientation images are calculated 

using signum function. These orientation images are then matched using cross-correlation 

operated in the frequency domain and phase correlation. The orientation correlation is found 
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to be illumination invariant (Fitch et al., 2002) and the correlation is not affected by uniform 

areas.  

Following Heisenberg's uncertainty principle, the frequency domain methods of all variants 

are expected to perform worse when compared to the spatial domain methods on small 

window sizes  due to lower signal to noise ratio (Heid 2011). However, the small window 

sizes may in some cases be useful for measuring glacier displacements, especially for shear 

zones or where glaciers flow over barriers, and for small glaciers (Heid and Kaab, 2012). 

The other category of image matching techniques is based on maximum likelihood (ML) 

criteria of matching. According to the definition of the ML motion estimation (Erten et al., 

2009), the matching algorithm performance is directly obtained through maximizing the 

conditional density function (CDF) of two matched blocks. This matching results in a 

displacement vector representing the shift between the matched blocks. Here, blocks are 

obtained from two intensity SAR images Y and X of size M × N acquired over the same area 

at times t1 and t2.  

From the remote sensing data perspective, both SAR and optical imagery can be utilized to 

carry out image matching techniques. Using SAR, the glacier velocity can be estimated by 

tracking the amplitude (Derauw, 1999; Strozzi et al., 2002b; Ciappa et al., 2010; Riveros et 

al., 2013), intensity (Ruan et al., 2013; Sanchez-Gamez and Navarro 2017; Yellala et al., 

2019), speckle (Short and Gray 2005) or coherence (Strozzi et al., 2002) of the images. The 

SAR image pairs used in these studies have been either separated by a few days or a few 

months. Yellala et al., (2019) successfully demonstrated an application of SAR-based feature 

tracking using yearly SAR dataset. Likewise, optical images have also been used for glacier 

feature tracking by tracking the digital numbers that represent visual features spread over the 

glacier surface (Kaab et al., 2002; Scherler et al., 2008; Heid and Kaab, 2012; Messerli and 

Grinsted, 2015, Fahnestock et al., 2016). The use of optical images often suffers due to the 

presence of cloud cover over the glaciated regions. The studies using either SAR or optical 

data consider the correlation between two temporal images as a similarity measure to estimate 

the shift between images. Earlier, there were some improvements in the cross-correlation 

based glacier feature tracking using techniques like Particle Image Velocimetry (Patel et al., 
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2019) and Thin Plate Spline (Ruan et al., 2013) to minimize the errors. Apart from the 

correlation, other similarity measures such as maximum likelihood have been used to study 

glacier flow using remote sensing data (Erten et al., 2009). Erten et al., (2009) and Deledalle 

et al., (2010) performed a comparative study to assess the accuracy of maximum likelihood 

based tracking with classical correlation based tracking and found the former to be the more 

robust approach.  

A basic concern for any image matching based feature tracking algorithm, including the 

above-mentioned image matching based approaches is to determine an optimum window size 

for image matching. Particularly, the successful application of these methods strongly 

depends on the selected window size (Strozzi et al., 2002; Cai et al., 2017; Paul et al., 2017). 

Moreover, studies by Huang et al., (2011) and Turrin et al., (2013)  have shown that use of a 

different window size in feature tracking leads to different velocity estimates for the same 

glacier. With an uncertain image matching window size, the velocity estimates have to be 

presented either at different window sizes (Huang and Li, 2011; Schubert et al., 2013; Chen 

et al., 2016) or at a window size which is calibrated using known glacier velocity information 

(Riveros et al., 2013). At present, calibration of window size is a challenge where no glacier 

velocity measurements are available. This may introduce a significant level of uncertainty in 

the remote sensing based glacier velocity estimation. Studies indicate sincere efforts towards 

automation of the feature tracking procedure with variable window sizes using iterative 

algorithms (Debella-Gilo and Kääb, 2012; Nagler et al., 2015; Euillades et al., 2016), with 

complex processing involving multiple datasets (Ahn and Howat, 2011) or focussing on the 

error reduction.  

Recent study by Altena and Kaab (2020) implemented NCC using ensemble matching of 

repeat satellite images. Similarly, Li et al., (2021) proposed a cross-correlation stacking 

method by deriving offsets after averaging the NCC stack of a series of consecutive pairwise 

NCCs.  

Studies based on glacier velocity estimates for a large region (for example, MEaSUREs) 

often misinterpret estimates for small glaciers due to globally selected window sizes that are 

usually too large for their dimensions. Glacier velocity estimates using very large window 
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sizes (for example 256 x 256 pixels or 512 × 512 pixels) have generally performed well for 

large structures/features, but are not applicable to small (for example, ~ 500 m width) 

glaciers, nor do they provide information in textured zones such as shear zones (Strozzi et 

al., 2002; Paul et al., 2015).  

3.2.3 Summary of Glacier Surface Velocity Estimation Techniques and Challenges  

This section presents a summary of the current efforts and challenges to estimate the glacier 

surface velocity using remote sensing. It is shown through the studies on glacier velocity 

estimation techniques that development has reached saturation, whereby all the existing 

techniques suffer from similar limitations such as significant changes in the glacier surface 

over time affecting the estimation capability. However, less has been done in the direction of 

a glacier specific adaptive automation of the estimation techniques focussing on the glacier 

velocity estimation with no prior field observations available. Moreover, small glaciers 

should also be given proper consideration while estimating glacier velocity at large scale.  

Like ice thickness measurements, the  glacier surface velocity field measurements also suffer 

from problems such as scarcity (both in time and space) due to inaccessibility of glaciers. 

Most often, the discrete GPS measurements taken at installed stakes under sample the 

velocity field in a spatial sense (Voytenko et al., 2012). This hampers the detailed validation 

of estimated velocities. 

3.3 Research and Knowledge Gaps 

The freely accessible database of worldwide glacier thickness observations (Gärtner-Roer et 

al., 2014) and the modelling studies which use field measurement for validation show lack 

of a sufficient and consistent database. The sparse measurements from the field-based 

surveys for glacier ice thickness. The surveyed glaciers even suffer from uneven distribution 

of the collected data points. Very few glaciers are surveyed completely providing a glacier 

wide ice thickness measurement. Additionally, measured data is limited to one timestamp 

due to logistical reasons, making it difficult to undertake detailed model evaluation. 

Accordingly, this thesis will develop a purely-remote-sensing based , spatially distributed 

glacier ice thickness model. 
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Based on the review of state of art approaches to glacier ice thickness estimation, it is evident 

that in spite of recent attempts to address this knowledge gaps, the findings still show high 

level of uncertainties. Moreover, the present techniques require improvement for 

applicability to data scarce regions. The research gaps which needs attention are summarized 

as follows: 

1. There is a serious lack of in situ measurements and reliable modelled glacier ice 

thickness estimates, severely hampering the scientific knowledge about the state of 

glaciers especially Himalayan Glaciers (Bolch et al., 2012). This means that there is 

a need to monitor glaciers (both spatially and temporally) in order to contribute 

towards existing knowledge to have an accurate understanding of glacier evolution. 

2. Empirical approaches like the volume-area (V-A) scaling method used in several 

studies worldwide seem to be fast and convenient but are not recommended for use 

on individual glaciers (Bahr et al., 2015). Therefore, to study glaciers at an individual 

level it is required to develop a model which has the capability to represent individual 

glaciers. Physical models based on mass conservation and ice flow laws provide 

better estimates of glacier ice thickness then empirical approaches, but they require 

either large set of inputs or complex set of parametrization using field measurements 

which are not available for inaccessible glaciers. 

3. To find alternative ways to model glacier ice thickness and reduce the dependency on 

field observations, the focus needs to be on remote sensing based derivation of glacier 

processes such as glacier flow. The glacier surface velocity can be derived from 

remote sensing techniques however the identification of optimal window size remains 

dependent on the prior knowledge of glacier flow. Moreover, the spatial variation of 

glacier feature should be taken into account for a more realistic glacier velocity 

estimation. This has not been explored so far. 

4. Temporal differences between modelled and observed ice thickness affects the 

reliability of model assessment. Though the limited temporal coverage of different 

remote sensing data is an inevitable challenge (for example, it is difficult to get 

optical, SAR imagery and DEM for the same time stamp), efforts should be made to 

incorporate the surface level changes occurring in between these temporal gaps. 
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5. Studies (Rasmussen 1988; Furst et al., 2017) have suggested that the field measured 

data can be useful to improve the ice thickness model estimations. Thus, thorough 

investigation need to be conducted to study the impact of the nature (spatial 

distribution as well as quantity) of the collected field data on a ice thickness 

estimation model. 

3.4 Chapter Summary 

This chapter provided an overview of the state-of-the-art in approaches to glacier ice 

thickness modelling as well as glacier surface velocity estimations. First, the approaches to 

ice thickness modelling were discussed with a special focus on the opportunities of the 

approaches towards a simple field-data-independent implementation. The model complexity, 

number of model inputs required, and limitations were also discussed. Additionally, model 

implementation techniques critical to model performance were highlighted. Second, progress 

in remotely sensed glacier velocity estimation techniques and their evolution through time 

were critically examined. The challenges in the existing approaches to velocity estimation 

for data scarce regions were highlighted and the opportunities to incorporate of new ways to 

automate the glacier surface velocity estimation was summarized. Accordingly, the 

developed algorithm for glacier surface velocity estimation is presented in chapter 5. 

Following this,  chapter 6 describes the overall glacier ice thickness (which includes glacier 

velocity as one of the inputs) developed in this thesis. 
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4 STUDY GLACIERS AND DATASET 

This chapter presents the details of the study glaciers for which the glacier velocity estimation 

and ice thickness modelling was carried out in this thesis. The remote sensing as well as in-situ 

datasets used for the estimation, calibration and validation are also presented, corresponding to 

glacier surface velocity estimation in chapter 5 and ice thickness modelling in chapter 6. While 

a brief overview is given of all available data, field data collected specifically for validation of 

ice thickness modelling as part of the work in executing this thesis has been discussed in detail. 

4.1 Study Glaciers 

4.1.1 Location and Climate 

The area under consideration for the proposed research includes different glaciers widely 

spread along different climatic regions. The glaciers that were selected to study the 

performance of the proposed glacier tracking algorithms are South Glacier, Patsio Glacier, 

Chhota Shigri glacier, and Tasman glacier (Figure 4.1). These glaciers also represent 

different debris cover (debris free glaciers to heavily debris covered) conditions as well as 

show a variety of sizes (glacier length of 3km to 30 km). Selecting glaciers of varying size 

also serves a purpose to efficiently test the developed method of window size estimation 

(more details in Chapter 5). Since previous studies on glacier velocity estimates for a large 

region (section 3.2.2) have shown that using very large window sizes have generally 

performed well for large structures/features but may not be applicable to small glaciers. 

The South Glacier is located in the Donjek Range of the St Elias Mountains, southwest 

Yukon, Canada. It is a small surge-type glacier (Paoli and Flowers 2009) with reported surge 

events during early 2000. This glacier is influenced by sub-arctic continental climate.  

The Patsio Glacier and Chhota Shigri Glacier are located in the Western Himalayas, India. 

The Patsio Glacier lies in the Bhaga River Basin while Chhota Shigri lies in the Chandra 

River Basin. Though both lie in the Western Himalayan region, Chhota Shigri Glacier, which 

is one of the bench mark glaciers of the Himalayas, has a different climate regime to that of 

the Patsio Glacier; one is situated on the northern slope of Pir-Panjal while the other is in the 
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Greater Himalayan region otherwise known as the extend region of Zanksar where the 

precipitation gradient differs from the Pir-Panjal region.  

 

 

The Tasman Glacier is located in the Southern Alps and is the largest glacier of New Zealand. 

The region is dominated by marine west coast climate. Surrounded by New Zealand's highest 

peaks, numerous tributary glaciers contribute to this glacier system. These glaciers have been 

chosen to represent a variability in the following aspects: glacier complexity, debris 

coverage, size and climatic region (Table 4.1). 

Based on the availability of filed measurements for glacier velocity and ice thickness, three 

glaciers have been chosen for velocity estimation and validation (Chapter 5). Whereas four 

glaciers (Patsio Glacier) were chosen for estimation and validation of ice thickness. In 

 

Figure 4.1 Locations of the study glaciers:  South Glacier (Canada), Patsio Glacier 

(India), Chhota Shigri Glacier (India), and Tasman Glacier (New Zealand).  
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particular, the fourth glacier (Patsio Glacier) has only ice thickness data (which is recently 

collected by our glaciology team) but no velocity data measurements. This led to leave Patsio 

Glacier from (Chapter 5: velocity estimation) but include in the (Chapter 6: ice thickness 

estimation).   

Table 4.1 Details of the study glaciers. 

Glacier Lat/Long Length 
Debris 

Coverage 
Orientation Country 

Elevation 

Range (m) 

South 

Glacier 

60.88º N 
4 km No South Alaska 1970-2960  

139.12º W 

Patsio 

Glacier 

32.4º N 
3 km Yes North India 4875–5694 

77.41º E 

Chhota 

Shigri 

Glacier 

32.24º N 
9 km Yes North India 4050-6263  

77.51º E 

Tasman 

Glacier 
32.75º N 

25 km Yes South 
New 

Zealand 
3870-5500  

77.33º E 

 

4.1.2 Geometry and Surface Morphology 

South Glacier is a small glacier being about 4 km long and around 700 m wide, and is totally 

free of debris. With an average slope of 13º, it lies within the altitude range of 1970-2960 m.  

Patsio Glacier is also a small glacier extending up to a length of ∼2.7 km and covers an area 

of ∼2.37 km2. This glacier lies within the altitudinal range of 4875–5694 m a.s.l with an 

average elevation of 5342 m a.sl. The glacier wide average slope is 22º. Unlike other nearby 

glaciers, the Patsio Glacier has few medial moraines. 

The Chhota Shigri Glacier is a medium sized glacier about 9 km long with an average width 

of 800 m. This glacier has mild debris cover. Its average slope is 17º and elevation range lies 

between 4050 m and 6263 m.   

Tasman Glacier extends up to a length of about 25 km with an average width of about 1300 

m. The average surface slope of the glacier is 5.4º and the elevation ranges from 3870 m to 

5500 m. Frequent rock avalanches help sustain a relatively thick debris cover on this glacier, 
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which terminates in the proglacial Tasman Lake. A google earth image showing the top view 

of all four study glaciers is given in (Figure 4.2). 

 

 

 

Figure 4.2 Google earth imagery of the study glaciers(a) South Glacier, (b) Chhota 

Shigri Glacier, (c) Patsio Glacier, and (d) Tasman Glacier. 
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4.2 Remote Sensing Datasets 

To carry out glacier surface velocity estimation for all four of the study glaciers, both 

optical and SAR remote sensing imagery was utilized. The detailed methodology 

involving these datasets is described in chapter 5. Since these data were involved in two 

different steps, the optical and SAR data are discussed separately. Sincere efforts have 

been made to gather these data for each individual glacier at a common timestamp and 

similar spatial resolution. However, data inconsistencies remain due to problems such as 

cloud cover and limited temporal coverage of freely accessible data.   

4.2.1 Optical Dataset 

The optical dataset was used in the first step of the glacier velocity estimation to determine 

the window size for image matching. The choice of optical imagery to find scale of feature 

tracking was bound by the condition that the imagery should have the same resolution as 

the SAR dataset, and that they should be temporally overlapped with the corresponding 

SAR images. Images acquired during or nearby the end of ablation season (September for 

South Glacier, Patsio Glacier and Chhota Shigri Glacier; March for Tasman Glacier) were 

used to achieve maximum snow free coverage on the glaciers. However, due to 

unavailability of any cloud free ASTER data covering South Glacier in the ablation 

period, data from a different season had to be used. The optical data used is of March 

2006. The optical datasets used to perform image segmentation and determine the window 

size for SAR image matching are listed in (Table 4.2). 

It should be noted that the reason to use different data sets was their availability during 

the study period. The data mentioned in Table 4.2 were taken as orthorectified products 

which is a standard requirement for glacier feature tracking methods. No additional 

processing was done in this study. 
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Table 4.2 Optical dataset used to determine window size for glacier velocity estimation. 

 

4.2.2 SAR Dataset 

The SAR dataset was used to perform the second step of glacier velocity estimation. To 

preserve the applicability of the velocity estimation technique, the SAR imagery used should 

have the same radar acquisition parameters. The SAR SLC data used in the study are listed 

in Table 4.3 and Table 4.4. It should be noted that the Sentinel 1 data for South Glacier gives 

an effective resolution of 15m (instead of 20m). This is due high latitude (near polar region) 

of the glacier location.  The main aim of the thesis was to model the ice thickness of glaciers 

where the time scale of the underlying process is large for e.g., one year or more. 

Accordingly, to estimate the glacier velocity suitable for ice thickness modelling, a time 

period of 1 year was chosen. This was also done to eliminate any seasonal velocity variation 

in the estimated velocity which would affect comparison with the long term averaged annual 

velocity data. Since the feature tracking was performed on SAR imagery it was preferable to 

use L-band due to its better radar signal penetration, which increases the correlation between 

two long-interval images (Rignot et al., 2001, Nakamura et al., 2007). Using L-band also 

Glacier 
Satellite & 

(Sensor) 
Date Path/Row 

Band No (Spectral 

Region) 

Spatial 

Resolution 

South Glacier 

Terra 

(ASTER) 
Mar 02, 2006 204/717 

VNIR 

3* (0.76 - 0.86 µm) 
30 m 

Landsat 8 

(OLI) 

Aug 29, 

2013 
061/017 

PAN 

8 (0.5 - 0.68 µm) 
15 m 

Landsat 8 

(OLI) 

Nov 20, 

2014 
061/017 

PAN 

8 (0.5 - 0.68 µm) 
15 m 

Chhota Shigri 
IRS P6 

(LISS-III) 

Oct 13, 2009 

095/048 

VNIR 

2 (0.52 - 0.59 µm) 

3 (0.62 - 0.68 µm) 

4 (0.77 - 0.86 µm) 

SWIR 

5 (1.55 - 1.70 µm) 

 

24 m 

Oct 08, 2010 

Patsio Glacier 
Sentinel2  

(MSI) 

Sept 12, 

2017 

Patsio 

Glacier 

VNIR 

Band 2 (0.49 - 0.60 

µm) 

8a(0.86 -0.60 µm) 

20 m 

Tasman 

Glacier 

Terra 

(ASTER) 
Jan 24, 2006 223/604 

VNIR 

1 (0.52 - 0.60 µm) 

2 (0.63 - 0.69 µm) 

3 (0.76 - 0.86 µm) 

15 m 
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tackles the problem of decorrelation in snow-covered areas but can be affected by the wetness 

of snow (Casey et al., 2016); this aspect could not be explored in this study because the snow 

wetness conditions were unknown for the study glaciers during the study period. The limited 

availability of the freely available L-band ALOS data has led to usage of C band wherever 

L-band was not available. The polarization of the available SAR dataset for the chosen study 

periods were limited to only single pol (either VV or HH) and no other dual pol data was 

available, restricting the ability to investigate the effect of polarization in the feature tracking.  

Table 4.3 SAR dataset used for glacier feature tracking to estimate glacier surface velocity 

(horizontal). 

Table 4.4 SAR dataset used for glacier feature tracking dataset used for glacier feature 

tracking to estimate glacier surface velocity (vertical). 

 

 

 

 

 

 

 

Glacier Satellite Time 1 Time 2 Polarization Pass 
Spatial 

Resolution 

South 

Glacier 

Envisat Dec-2005 Dec-2006 VV Descending 20 m 

Sentinel 1 Oct-2014 Oct-2015 VV Descending 15 m 

Chhota 

Shigri 
Envisat Sept-2009 Sept-2010 VV Descending 20 m 

Patsio Sentinel 1 Oct-2016 Oct-2017 HH Descending 20 m 

Tasman 

Envisat Mar-2005 Mar-2006 VV Descending 20 m 

ALOS 

PALSAR 
Mar-2007 Mar-2008 HH Descending 12.5 m 

Glacier Satellite Time 1 Polarization Pass 
Spatial 

Resolution 

South 

Glacier 

Sentinel 1 Oct-2014 VV Ascending 15 m 

Sentinel 1 Oct-2015 VV Descending 15 m 

Chhota 

Shigri 

Envisat Sept-2009 VV Descending 20 m 

Envisat Sept-2010 VV Ascending 20 m 

Patsio 
Sentinel 1 Oct-2016 HH Ascending 20 m 

Sentinel 1 Oct-2017 HH Descending 20 m 

Tasman 
Envisat Mar-2005 VV Ascending 20 m 

Envisat Mar-2006 VV Descending 20 m 
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4.3 Ancillary Dataset 

Apart from satellite imagery, other datasets such as a DEM and the glacier boundary were 

also used. The freely available Shuttle Radar Topography Mission (SRTM) 1 second DEM 

was used to derive slope for the glaciers as well as to orthorectify the SAR imagery used in 

glacier feature tracking. Due to the lack of SRTM data above 60° North, the Canadian Digital 

Elevation Model (CDEM) was used for South Glacier. Glacier outlines were taken from the 

latest version of the Randolph Glacier Inventory (RGI 6.0).  

4.4 In-situ Dataset 

The data collected as part of this thesis for calibration (only ice thickness estimates) and 

validation (both velocity estimates and ice thickness estimates) is given in this section. A 

brief introduction is provided for additional data taken from literature and through personal 

communication. However, a detailed description of the data collected for Patsio Glacier 

through a dedicated GPR survey performed during 2017 is given.  

4.4.1 Available Glacier Surface Velocity and Ice Thickness Dataset 

4.4.1.1 Velocity 

The glacier surface velocity measurements collected over the study glaciers were taken from 

different sources as mentioned in Farinotti et al. (2017). It should be noted that these surface 

velocity measurements are only the horizontal velocities which are used for validation in this 

study. The vertical component of glacier surface velocity is not available for validation. For 

South Glacier, the velocity data was obtained from Flowers et al. (2011), which was collected 

during the years 2005-2014.  For Chhota Shigri Glacier, the field measured glacier velocity 

information was obtained from Azam et al. (2012), which was collected during the years 

2009-10. Likewise, for Tasman Glacier, the reference glacier velocity data as reported by 

Farinotti et al. (2017) and Purdie et al. (2018), collected during the years 2000-2011, was 

used for validation. 

4.4.1.2 Ice Thickness 

The ice thickness measurements for three study glaciers (South Glacier, Chhota Shigri 

Glacier and Tasman Glacier) were taken from the freely available Glacier Thickness 

Database (GlaThiDa) 3.0.1 (Gärtner-Roer et al., 2014). The ice thickness data collected for 
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Patsio Glacier is described in section 4.4.2. The spatial distribution of these data is shown in 

Figure 4.3.  

 

Figure 4.3 Locations of the ice thickness data of the study glaciers taken from available 

literature (a-c) and collected during field survey (d) depicting their spatial distribution. a) For 

South Glacier the surveyed locations are spread across the whole glacier. Surveyed location 

of Chhota Shigri Glacier (b), Tasman Glacier (c) and Patsio Glacier (d). 

a) b) 

Survey 

Locations 

a)                                                                                                              

Survey 

Locations 

Survey 

Locations 

Survey 

Location

s 

c)                                                                                     d)                                                                               



CHAPTER 4 

4-10 

 

4.4.2 GPR Based Glacier Ice Thickness Measurements 

The ground penetrating radar (GPR) survey was carried out using a Geophysical Survey 

Systems Inc. (GSSI) SIR 3000 system. Data was collected with a Multiple Low Frequency 

(MLF) antenna at central frequency of 35 MHz for four profiles (Figure 4.4d) over the surface 

of Patsio Glacier during July 2017.  

Considering the parameters adopted in earlier studies conducted in the Himalayan region (eg. 

Mishra et al., 2018; Singh et al., 2012; Singh et al., 2018; Swain et al., 2018) and the 

recommendations for deep sub-surface investigations using low frequency antenna given in 

the GSSI RADAN 7.0 manual, the GPR parameters were chosen for this study. Accordingly, 

this survey was carried out in point-mode in which the transmitter and receiver were shifted 

together in steps of 1 m, throughout. The receiver and transmitter antenna were separated by 

a constant distance of 2m to avoid any signal interference. The input parameters to the GPR 

system during data collection for dielectric constant are summarized in Table 4.5, including 

samples per scan, stacking and other details.  

 Table 4.5 Details of the GPR data acquisition parameters. 

GPR parameter Setting Remarks 

Antenna central frequency 35MHz - 

Antenna separation 2m - 

Samples/scan 2048 To ensure finer depth 

profile of scans. 

Stacking 64 To reduce the effect of 

noise from individual 

signals. 

Dielectric constant 3.14 - 

Radar velocity in ice 0.168 m/ns - 

Range 4500ns - 

High pass filter (IIR) 10 MHz - 

Low pass filter (IIR) 105 MHz - 
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The raw GPR data collected during the survey was processed using GSSI-RADAN v7.0, a 

propriety software by GSSI. Processing steps common to almost all ground penetrating radar 

based surveys (Mishra et al., 2018; Singh et al., 2012) were conducted and included the 

following: (1) horizontally appending individual data files comprising multipart survey lines; 

(2) static position correction also known as time zero correction to bring air-wave return to 

the top of the scan time window; (3) application of an infinite response filter with a 10/105 

MHz filter for the 35 MHz survey data; (4) background removal and (5) auto gain adjustment. 

Additional processing steps, effective for noise removal in geophysical surveys of glaciers, 

included (6) migration, and (7) deconvolution.  These additional processing steps are 

discussed below: 

Migration - The radar antenna radiates energy with a wide beam width pattern such that 

objects few meters away may be detected. Consequently, objects of finite dimensions may 

appear as hyperbolic reflectors on the radar-gram. Objects or layers beneath may be obscured 

by shallower objects above them. This causes diffracted reflections of radar energy and can 

mask other reflections of interest and cause misinterpretation of the depth being measured. 

To avoid this misinterpretation, following some previous studies on glacier ice thickness 

measurements (Jouvet et al., 2009; Jouvet et al., 2011; Bohleber et al., 2017), migration has 

been applied to the collected data.  

Deconvolution - This filtering method was used to remove the noise due to multiple 

reflections between subsurface objects (Singh et al., 2012; Lapazaran et al., 2016).  

4.4.2.1 Differential Global Navigation Satellite System (DGNSS) Data 

Locations of the GPR survey were precisely measured using the Geo-XH GNSS system in 

differential mode. A base station was established at a stable region near the glacier snout. 

After standard post processing using the post-processed kinematic (PPK) module in Trimble 

Business Centre V4.1, the horizontal accuracy of the measured locations was found to be 5-

10 cm. 

4.4.2.2 Snow and Debris Thickness 

Snow depths over the surveyed profiles (1 - 4) were measured through a snow profiler placed 

at the same locations where the GPR data were collected. These measurements were 
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performed simultaneously during the GPR and DGNSS survey. Snow thickness varied 

between 25 and 260 cm. The debris thickness was measured only at Profile 1 as other profiles 

were free of debris. This depth information was used for adjusting the field measured ice 

thickness 

 

Figure 4.4 Survey locations of Profiles 1-4 (shown in blue) over Patsio Glacier 

The uncertainty of ice thickness estimates from the GPR measurements can be due to two 

factors: radar wave velocity of the GPR signal c and the two-way travel-time t (Lapazaran et 

al., 2016). Thus, the total uncertainty in ice thickness (
 𝛥𝑑

𝑑
) was estimated as 

Following Mishra et al., (2018), uncertainty in 𝛥𝑐 was assumed to be ~7%. Likewise, 𝛥𝑡 

was assumed to be the width of positive and negative wave reflections that occurs on the 

glacier bed region (Mishra et al., 2018). The 𝛥𝑡 was measured to be 15 nanoseconds for the 

survey profiles. 

 

  𝛥𝑑

𝑑
=  √(

𝛥𝑐

𝑐
)

2

+  (
𝛥𝑡

𝑡
)

2
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4.4.1.3 Measured Ice Thickness 

The processed radar-gram for four survey profiles are shown in (Figure 4.5). For illustration, 

Figure 4.5a and Figure 4.5b show the raw radar-gram and processed radar-gram respectively 

for Profile 1. The raw radar-gram shows noise with more pronounced bands of constant 

horizontal reflections (Figure 4.5a) which were significantly reduced after the processing 

(Figure 4.5b). Similar processing steps were followed for each profile. Figure 4.5c-e show 

the processed radar-gram of the Profiles 2-4 respectively. To identify the bed profile, the 

standard procedure (GSSI RADAN 7.0 manual) was followed using RADAN software. First 

the strong reflections were identified along the scans which represent the contrast in the two 

mediums (here its ice and bedrock). Second, the exact location was determined by following 

the RADAN 7.0 manual for geoprocessing applications. Here the yellow line in figure 4.5 

was delineated manually using the pick tool where a search is performed (by the software) 

on all of the scans between the left and right inside edges of the mouse cursor to locate the 

maximum amplitude.  It should be noted that the thickness due to snow and debris measured 

at different profiles have been subtracted from the field measured ice thickness from GPR at 

the respective locations. This was done to facilitate an equitable comparison with the 

modelled ice thickness estimates.  The ice thickness obtained from the radar-gram (after 

adjusting for snow and debris thickness) of the surveyed profiles is shown in Figure 4.6. It 

shall be noted that these GPR based cross-section profiles (Figure 4.6) do not exhibit a 

parabolic shape, which is possibly because the surveyed profiles do not cover a full cross-

section of the glacier. Table 4.6 gives the key statistics of each surveyed profile.  The 

uncertainty in the GPR derived ice thickness was estimated to be ±7.8%.  

Table 4.6 Details of the surveyed profiles shown in Figure 4.4. 

Survey 

Profile 

Mean Measured Ice Thickness Mean Elevation Length 

Profile 1 36 m 5020 m 300 m 

Profile 2 53 m 5075 m 115 m 

Profile 3 57 m 5090 m 260 m 

Profile 4 103 m 5200 m 260 m 
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Figure 4.5 Radar-gram of profile 1 (a) before and (b) after processing, and processed radar-

grams of profiles 2-4 (c-e). The yellow line denotes the depth (in m) of bedrock 

topography. 

a) 
b) 

c) d) e) 
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Figure 4.6 Observed ice thickness at the surveyed profiles of Patsio Glacier. 

 

4.4.3 Data Quality 

The data used for validation of ice thickness modelling varied in terms of nature of collection. 

For example, South Glacier was surveyed using airborne radar due meaning that data was 

available for whole glacier area, whereas for the other glaciers, the data collected using 

ground penetrating radar was limited to certain cross sections. This constrained coverage 

affects the detailed evaluation the glacier wide ice thickness estimation. Certain additional 

uncertainties remain due to the velocity of the flight during the airborne radar survey. Apart 

from this, for some glaciers the data was gathered in a long span of time. For example, the 

velocity data available for South Glacier was collected over 2005-2014. Several stakes were 

Patsio 
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measured for intermediate duration, and the average for the same was mentioned. 

Additionally, the timestamp of ice thickness data available for validation also affects the 

modelling. For example, Tasman Glacier’s ice thickness observation was available only for 

the year 1971, for which the required remote sensing datasets were not available.  

4.5 Chapter Summary 

This chapter presented an overview of the four study glaciers common to velocity as well as 

ice thickness modelling and the data that were used to set up and validate the experiments 

outlined in this thesis.  The optical and SAR data described in this chapter were used to 

estimate the glacier surface velocity in Chapter 5. This velocity was then used along with the 

DEMs to estimate the ice thickness distribution over the study glaciers in Chapter 6. All the 

remote sensing data listed above are freely available. The timestamp of the available ice 

thickness dataset (used for model validation) majorly determined the timestamp of the 

remotely sensed input data gathered.  
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5 GLACIER SURFACE VELOCITY ESTIMATION 

The main objective of this thesis is to model the glacier ice thickness distribution using 

remotely sensed velocity. The literature review revealed several gaps in the utilization of 

remote sensing for ice thickness and glacier velocity estimations. Accordingly, to estimate 

this glacier surface velocity irrespective of the field data availability, the proposed remote 

sensing based feature tracking algorithm is presented in this chapter. This feature tracking 

algorithm was applied to the study glaciers and its performance was assessed over South 

Glacier, Chhota Shigri Glacier and Tasman Glacier for which the glacier surface velocity 

field measurements are available for validation. Additionally, several different remote 

sensing datasets were assessed for implementation capability of the proposed feature tracking 

algorithm and contribution towards automation explored.  

5.1 Methodology 

The proposed feature tracking algorithm SWIFT (Spatially varying WIndow based 

maximum likelihood Feature Tracking) (Figure 5.1) comprises two stages:  i) determination 

of the spatially varying window size from optical image based on the Object Based Image 

Analysis (OBIA) concept, and ii) image matching based feature tracking using the maximum 

likelihood of SAR speckle as similarity measure. The proposed algorithm for feature tracking 

uses a spatially varying window size which cannot be provided by existing software like 

SNAP, SARscape, COSI-Corr. 

5.1.1  Automated Determination of Window Size 

To find the optimum window size distribution for image matching, the concept of Object 

Based Image analysis (OBIA) has been used. Using this approach, the glacier is divided into 

homogeneous regions called segments. This segmentation is done at a scale determined as 

optimum by the approach presented in Dragut et al. (2010), where the optimal scale of 

segmentation was identified from the peak rate of change of local variance (ROC-LV) in the 

image. Here the segmentation was performed using a bottom-up approach of region- 

growing segmentation (Dragut et al., 2010), in which, starting from one pixel, the segment 
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grows in size; the growth is defined by the scale that controls the homogeneity of the resulting 

segments.  Once the segment properties exceed the heterogeneity threshold (as determined 

by the scale), this growth stops. Additional constraints can be provided by giving weight to 

shape and compactness of the resulting segments. The weights given to the shape factor 

indirectly signifies how much spectral information should be used. Conversely, the weight 

given to the compactness factor signifies the degree of compactness of the segments’ shape 

(Definiens Developer, 2007). 

Assuming that the glacier features can be of varying shapes which are rarely compact, the 

shape and compactness of segments are not considered in the present study, thus giving 

 

Figure 5.1 Proposed feature tracking algorithm (SWIFT) for glacier surface velocity 

estimations using optical and SAR imagery. 
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weight only to the pixel values (also known as digital number) in the optical image. It is 

certain that some glacier surface features can be described in a fractal form as they have 

specific shapes. However, to track all the features of known as well as unknown shape using 

fractal forms may lead to bias towards known features. Moreover, this weight assignment 

was checked manually through visual analysis at the initial processing stage. However, no 

quantification could be done at this stage due to insufficient field information and non-

availability of high-resolution optical dataset. The image segmentation was performed on 

optical imagery falling in the same season as that of the SAR images to reduce any seasonal 

disturbances contributing to errors in the feature tracking.  

A segmented image contains different shape and size segments. To calculate the window size 

for image matching, geometric properties like length and width of segments have been 

utilized in the present study. To avoid complexity, instead of matching ‘segments’ which are 

irregular in nature, a simplified square size window was chosen to perform image matching 

without any major loss in information. The square window, which closely matches the 

segment’s geometry is referred to as the window size (WS). Since the segments may vary in 

geometry over the glacier, the window size was kept as a spatially varying parameter. The 

main advantage of having a spatially varying window size(s) over that of a fixed window 

size is that different sized features can be tracked more accurately, with window size(s) 

closely corresponding to actual features over the glacier surface. Additionally, a constraint 

was applied to the window size distribution in which only window sizes less than or equal to 

the average width of the glacier were considered. Window sizes greater than this were 

discarded to avoid any unrealistic large values of window size. Here, the average width of 

the glacier was calculated by taking the cross sectional width at different locations of the 

glacier’s main trunk to approximate the average width of the glacier. This step should not be 

interpreted as manual selection. As with the advent of GIS tools, and freely available datasets 

containing glacier polygons, automated calculation of glacier geometries such as length and 

width are possible (Pfeffer et al., 2014; James and Carrivick, 2016). This window size 

selection technique is independent of glacier type or its environment setting, thus this 

technique is applicable to the glaciers in any setting. 
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5.1.2  SAR Feature Tracking 

A multiplicative speckle model-based SAR feature tracking algorithm was implemented to 

estimate glacier surface velocities, where images are compared based on maximum 

likelihood of SAR speckle. Speckle, which is inherently present in every SAR image gives 

useful information about the glacier surface characteristics.  This speckle can be tracked in 

time-lapse SAR imagery and thus helps estimate glacier flow.  

Before performing the image matching, geometric distortions in SAR images due to side 

looking viewing geometry have been corrected using the freely available SRTM 30 DEM. 

The geometric co-registration of the SAR dataset has been addressed during DEM assisted 

co-registration (Nitti et al., 2010; Sanchez-Gamez and Navarro, 2017) in Terrain Correction 

with an RMSE threshold of 0.3 (of pixel size) in the co-registration. It should be noted that 

all the processing was performed for feature tracking on a subset of SAR imagery (not the 

full scene) for efficient data processing. All SAR imagery (Chapter 4.3) except the ALOS 

PALSAR image (which was already terrain corrected) were processed via the freely available 

Sentinel Application Platform (SNAP) toolbox. Readers are referred to the SNAP user guide 

for a detailed description of this process. 

Assuming that the blocks to be matched between two SAR images X and Y of size m × n 

share a common region at two annually separated time periods T1 and T2. For each 

block/matching window, the distribution of Maximum Likelihood (ML) estimators was 

calculated for different candidate shifts between the two images. The maximum likelihood 

estimate (vML) of velocity vi was obtained by maximizing the cumulative distribution 

function (CDF) function (ρ) for each block i according to 

 ρ (xij|yij
, vi), (5.1) 

where xij and y
ij 

are the pixels corresponding to block X and Y respectively. The above 

function can also be represented in terms of block size by the objective function 
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 ∑ ln y
ij

k
j=1 + ln xij - 2 ln( xij+ y

ij
) - 

ln xij

N
, (5.2) 

where k is the total number of pixels in a block and N is the multi-looking factor. 

Following Debellagilo and Kaab (2010), sub-pixel interpolation has been undertaken to 

achieve sub-pixel precision of 1/4th of a pixel by capturing the displacements smaller than 

the spatial resolution of the input satellite images.   

The horizontal displacements were derived by following Strozzi et al. (2002) and Sanchez-

Gamez and Navarro (2017) to facilitate the comparison with ground based field measurement 

of horizontal glacier velocity. From the azimuth and slant range displacements, the net 

displacement is calculated using the relation 

 Net Displacement = √(Rx∆x)2 + (Ry∆y)2, (5.3) 

where Rx and Ry are the pixel spacing in azimuth and slant range directions, ∆x and ∆y are 

the displacements in azimuth and slant range directions. The velocities outside the 3*Inter 

Quartile Range (IQR) have been removed as outliers from the estimates (Figure 5.2). The 

blank patches have been filled using a mean filter where the kernel size is kept the same as 

the window size distribution. This filtering approach has been chosen to eliminate the 

subjectivity of choosing a smoothing filter for individual glaciers. 

5.2 Results and Discussions 

This section describes the window size obtained for different study glaciers, followed by the 

results of estimated glacier surface velocity. Experiments were carried out to investigate the 

effects due to input data characteristics and spatially varying window size over spatially fixed 

window size. Finally, a comparison of the velocity estimates with the cross correlation based 

feature tracking method is discussed.  

5.2.1 Window Size Determination 

Following the methodology discussed in section 5.1.1, a spatially varying window size has 

been determined for each study glacier. It was found during image segmentation that the 
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segments sometime merged with areas outside of the glacier due to very low/no contrast 

between the glacier and its surroundings (Figure 5.2). This results in a very large window 

size, which could be as large as the size of the glacier itself. To control this, the constraint on 

maximum window size as mentioned in section 5.1.1 has been applied to all three study 

glaciers used in this chapter. Consequently, significant improvement in the estimated velocity 

was observed for Tasman Glacier, as reported in section 5.2.3. However, for the other two 

glaciers (South Glacier and Chhota Shigri Glacier) no changes were observed due to the 

absence of segments merging with the background. 

Sometimes due to cloud cover, using an optical image of the desired acquisition period may 

not be possible. Thus, to investigate possible alternatives, a comparison was made between 

the window size distributions from optical images acquired at two different time periods (T1 

& T2) a year apart. For illustration purpose, the window size distribution obtained for the 

Chhota Shigri Glacier from the images acquired in 2009 and 2010 ablation period are shown 

in Figure 5.3a-b. The results obtained indicate a similar trend of window size distribution for 

both images. 
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Figure 5.2 Segmented image of Tasman Glacier using ASTER (band 1-3). The highlighted 

segments in yellow are those segments inside the glacier boundary which 

merged with a large segment outside the glacier area. 
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Figure 5.3 Window size distribution of Chhota Shigri Glacier using optical images of a) Oct, 

2009 and b) Oct, 2010. c) The statistical distribution of surface velocity estimates 

using spatially varying window size obtained from a) & b). 
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This portrays that the window size from the same season’s imagery (a year apart) leads to a 

similar window size distribution. Furthermore, the similarity due to the two window sizes 

was also reflected in the estimated velocity (Figure 5.3c).  Based on this analysis it is evident 

that choosing either T1 or T2 optical imagery did not have a significant effect on the 

estimates. It is also observed that for a medium sized glacier such as Chhota Shigri Glacier, 

the window size barely crosses 80 x 80 pixels, which gives an idea of range of window sizes 

that can be used for medium sized glaciers. However, this observation needs to be verified 

by extensive testing of the algorithm.  Similar results were obtained for South Glacier (see 

Appendix- A3), supporting the similarity in window size distribution from two optical 

images of different time. This analysis could not be performed for Tasman Glacier, since 

only one optical image was available during the study period. 

5.2.2  Glacier Surface Velocity Estimates 

5.2.2.1 South Glacier 

Here, the proposed feature tracking approach (Figure 5.1) has been implemented for two time 

periods; 2005-06 and 2014-15. Accordingly, the available ASTER (Mar 02nd, 2006) and 

Landsat 8 (Nov 20th, 2014) images were used to determine the spatially varying window sizes 

respectively for the 2005-06 and 2014-15 time periods. The final spatial distributions of the 

estimated surface velocity for the two time periods are shown in Figure 5.4a and b. 

As reported by De Paoli and flowers (2009), South Glacier can be divided into three zones 

(Figure 4.1a) based on morphology and glacier dynamics: i) crevasse free and smooth lower 

zone (less than 1700m from snout), ii) extensive crevasses and undulating surface middle 

zone (1700-3000m from the glacier snout), and iii) upper zone (3300m and beyond from 

snout) with crevasses and undulating zone in association with prominent icefall. The zone 

wise and overall error statistics for all three study glaciers are given in Table 5.1. The overall 

RMSE of the surface velocity estimates of South Glacier for the periods 2005-06 and 2014-

15 with respect to the glacier wide stake measurements given by Flowers et al. (2011) were 

13.25 m/yr and 12.8 m/yr respectively (Table 5.1). Here the overall bias for these periods 

were 9.5 m/yr and 11 m/yr respectively (Table 5.1).  
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The uncertainty in the proposed surface velocity tracking includes: i) uncertainty due to the 

spatial resolution of the SAR image pair, and ii) uncertainty due to the co-registration error 

between these image pairs. The former is dependent upon the spatial resolution of the input 

SAR images while the latter is reported as the RMSE obtained after the DEM assisted co-

registration (Section 4.2). The combined uncertainty is presented as a summation in 

quadrature which is ± 5.28 m/yr for both study periods being 2005-06 and 2014-15.  

Figures 5.5a and b show the estimated and observed surface velocities along the glacier 

central flowline. Due to unavailability of field measurements for the same year, the estimated 

glacier surface velocity has been compared with the adjacent year’s field observations. This 

is based on the assumption that annual velocity does not change significantly from year to 

year on this glacier. For both time periods, higher surface velocities were captured in the mid 

and upper zones of the glacier (Figures 5.5a and b), where a surge has been reported earlier 

 

 

Figure 5.4 Spatial distribution of the estimated surface velocities of South Glacier a) for 

2005-06 and b) for 2014-15. The arrows show the direction of estimated velocity 

at every 200m.  
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(Johnson and Kasper, 1992; De Paoli and Flowers, 2009). However, the lower zone which is 

nearly dormant has not been represented well for both time periods (2005-06 and 2014-15) 

as revealed by higher RMSEs in this zone (Table 5.1: South Glacier). From the spatial 

distribution of surface velocity estimates (Figures. 5.4a and b) and the comparative plot of 

the estimated and observed surface velocities (Figures. 5.5a and b), it is evident that the 

surface velocities are significantly overestimated in the lower zone. Here, a high value of 

deviation from the observed velocity in the surface velocity estimates can be attributed to the 

limitation of least measurable displacement at present level of sub-pixel precision (1/4th of a 

pixel) which exceeds the actual displacement (~0.5 m). 

The zonal statistics of the surface velocity estimates for each time period are shown in Figure 

5.5c. For all the zones, the min-max range were similar for both study periods. However, 

from mean surface velocities, it appears that for the year 2014-15 all the zones exhibited 

almost identical surface velocities, which is not consistent with the reported behavior of this 

glacier (Depaoli and Flowers, 2009). One of the possible reasons could be the distribution of 

window sizes ranging from 5  5 pixels to 20  20 pixels (Appendix-A2b) which are smaller 

compared to the window size distribution for period 2005-06, which is 5  5 pixels to 46  

46 pixels (Appendix-A2a). These smaller window sizes (which are dominant in the lower 

zone) can introduce noise in the velocity estimates (Kanade et al., 1994). At the same time, 

for the year 2005-06, the upper and middle zones showed relatively higher mean velocities 

than the lower zone, as reported by DePpaoli and Flowers (2009).   

For both study periods (2005-06 and 2014-15) similar overall RMSE values were observed 

(Table 5.1), in spite of the fact that the optical data used were of different wavelengths. 

Specifically, the ASTER band 3 (VNIR) was used for 2005-06 while the Landsat 8 PAN 

band was used for 2014-15. This shows that the proposed feature tracking approach is robust 

even when we use different optical datasets. As the SAR data used for these study periods 

are of the same wavelength (C-band), a similar investigation for different SAR wavelengths 

could not be performed due to unavailability of other SAR datasets and could be a matter of 

investigation for future studies. 
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Figure 5.5 Estimated velocities along the central flowline of South Glacier for period a) 

2005-06 and b) 2014-15. The field measurements close to the study period are 
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also shown (Flowers et al., 2011; Farinotti et al., 2017). c) Zonal statistics of 

South Glacier estimates 

A significant decrease in feature tracking performance was observed when the window size 

for a given time period was used to estimate the surface velocities for other time periods, 

specifically when the temporal distance between those time periods was large. For example, 

using the 2005-06 window sizes for estimating velocities for the period 2014-15 led to 

significant degradation in feature tracking performance. This could be due to the significant 

changes in glacier surface conditions during this ten-year period, which is reflected in the 

different window size distribution for these periods (see Appendix- A2). This observation 

suggests that optical images selected for window size determination, when far apart from the 

study period, may fail to capture the glacier surface conditions during that period.  

Table 5.1 Summary of zone wise RMSE of the proposed feature tracking approach for all 

three study glaciers. The overall RMSE and bias is also presented for each study 

period. The different zones are shown in Figures. 4.1(a-c). 

Glacier Period Lower Mid Zone Upper Overall 

RMSE (m/yr) RMSE 

(m/yr) 

BIAS 

(m/yr) 

South Glacier 2005-06 16 8 12.2 13.25 9.5 

2014-15 19 7 11.7 12.8 11 

Chhota Shigri 2009-10 11.4 16.9 - 15.32 3.2 

Tasman Glacier 2005-06 148.8* 41 - 71 28.81 

2007-08 48.1* 70 - 67.1 13.14 

*RMSE has been calculated from one stake measurement. 

Particularly if the glacier surface conditions have changed notably between this period i.e. 

study period and the selected time stamp of the optical image.This can degrade the 

performance of the proposed feature tracking approach. In general, this is not the case when 

the temporal separation between the optical images (used for window size estimation) and 

the SAR images (used for feature tracking) is approximately one year, provided there is 

negligible change in surface conditions. This finding implies that the choice of the time stamp 
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of the optical image is a function of the change in glacier surface conditions. Figure 5.6 shows 

the glacier wide statistical distribution of velocity estimates for the period 2005-06 and 2014-

15. The 2014-15 estimates show a slight acceleration (~13%) in mean velocity from 2005-

06 estimates. 

5.2.2.2 Chhota Shigri Glacier  

The surface velocity estimates for Chhota Shigri Glacier for the period 2009-10 have also 

been calculated using the proposed methodology and compared with the field based velocity 

measurements. Here the window size distribution has been calculated from IRS LISS-III 

imagery of Oct 13, 2009 (Table 4.3) supported by the fact that choosing either 2009 or 2010 

imagery lead to similar velocity estimates. Figure 5.7a shows the spatial distribution of 

estimated surface velocity where higher surface velocities can be seen near the snout. 

Assuming a direct relationship between surface velocity and glacier ice thickness (Cuffey 

and Paterson, 2010), the peak velocity estimates in middle zone shown as circled areas 1 & 

 

Figure 5.6 Boxplot of surface velocity estimates of South Glacier for period a) 2005-06 and 

b) 2014-15. 
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2 (Figure 5.7a) are in agreement with the maximum glacier ice thickness distribution 

estimated by Huss and Farinotti (2012).  

Figure 5.7 a) Spatial distribution of the estimated surface velocity for period 2009 -10 after 

smoothing. Circled areas of 1, 2 and 3 show the three zones with high velocity. 

b) Estimated and observed glacier annual surface velocity along the central flow 

line. c) Zonal statistics of Chhota Shigri Glacier velocity estimates for different 

zones. 
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However, the circled area 3 in the lower zone shows a very high surface velocity trend, which 

is not in agreement with the ice thickness estimates reported by Huss and Farinotti (2012). 

These high values appear to be an indication of an external contribution (like 

avalanches/landslide) during the study period leading to significant changes over the glacier 

surface which is reflected as the erroneous surface velocity estimates. The presence of active 

avalanches/landslide sites (see Appendix-A1) in the lower zone has been verified by 

observations made during visits to Chhota Shigri Glacier by field experts. 

Figure 5.7b shows comparison of surface velocity estimates with the field measurements 

along the central flow line of the glacier. It should be noted that the distance is measured 

from the snout of the glacier. There is a huge difference in the estimated and observed surface 

velocity at a distance of 2500-3000 m from the snout (Figure 5.7b), which also coincides 

with circled area 3 in Figure 5.8a. The overall RMSE of surface velocity estimates of the 

Chhota Shigri Glacier (excluding the circled area 3) was 15.32 m/yr, whereas the overall bias 

was 3.2 m/yr (Table 5.1: Chhota Shigri Glacier). Likewise, the uncertainty in the surface 

velocity estimation for this glacier (i.e. ± 3.9 m/yr) has been calculated in a similar manner 

as that for South Glacier. 

Figure 5.7c shows the zone wise statistics of the surface velocity estimates. The min–max 

range of estimated velocities lie within the range of previously reported estimates for this 

glacier by Gantayat et al. (2017). However, the maximum velocity in the lower zone was 

high (~80 m/yr) when compared with field values in this zone (~30 m/yr), as shown in Figure 

5.7b. The possible reason has been discussed earlier in this section pertaining to the circled 

area 3 (Figure 5.7a). The estimated mean velocity in the upper, middle and lower zones are 

35 m/yr, 45 m/yr and 32 m/yr respectively (Figure 5.8c). The mean of lower zone estimates 

(32 m/yr) and the middle zone (45 m/yr) were found to be close to the observed velocities in 

the respective zones (20-35 m/yr in the lower zone; 35-45 m/yr in the middle zone). The 

upper zone estimates could not be evaluated because of unavailability of field measurement 

over this zone.  
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A number of studies have reported mean surface velocity (annual) of Chhota Shigri Glacier 

for intermittent periods between 1987 and 2010. The surface velocity estimates obtained by 

the proposed method agree with this reported trend as shown in Figure 5.8. It is also observed 

that the mean velocity of this glacier has not changed much during these 23 years indicating 

that the glacier is more or less stable. 

The knowledge of Chhota Shigri Glacier’s surface conditions and flow behavior from field 

experts has made it possible to further analyze the directional aspects of the velocity 

estimates. The direction of surface velocity estimates shows an agreement with the aspect 

direction (Figure 5.9b) along the main trunk of the glacier, which follows Northwest-North-

Northeast directions. However, the direction in the tributary in regions I & III (Figure 5.9a) 

was not well captured, which shall be attributed to large displacements in these regions due 

 

Figure 5.8 Glacier wide mean surface velocity trend of Chhota Shigri Glacier (field and 

estimated) for period 1987-2010. The glacier surface velocity estimates (period 

Oct 2003-Oct 2009) are taken from Tiwari et al., 2014. *Field measurements are 

taken from Dobhal et al., (1995) (period 1987-89) and Dr Farooq Azam (period 

2009-10).  **Estimated mean glacier surface velocity by the proposed method 

(Oct 2009 - Oct 2010). 
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to steep slopes. The directional behavior of the estimated surface velocities in region II is 

interesting (Figure 5.9a), because it highlights the presence of a number of avalanche-prone 

cliffs to the right, contributing to apparent periodic glacier flow. There are four sites in region 

II which are affected by avalanches/landslide (see Appendix- A1) as identified from the 

Google Earth image collections available during the study period. Thus, in region II the 

dominant direction of the surface velocity is obtained as the Northwest direction instead of 

the North direction as represented by the aspect map (Figure 5.9b). 

 

 

Figure 5.9 a) Direction of the estimated velocity of Chhota Shigri Glacier during the year 

2009-10. The direction are shown at 300m spacing. Regions I, II and II indicate 

the areas with estimated flow direction mismatches the aspect map. b) Aspect 

map of the glacier. 
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5.2.2.3 Tasman Glacier  

The spatial distributions of the estimated surface velocities for the period 2005–06 and  2007–

08 are shown in Figure 5.10. Due to scarce cloud-free optical images during the study period, 

a common optical image (Dated: Jan 24, 2006) was used to calculate window size for both 

study periods. A smooth transition of glacier velocity is observed from the glacier head to 

the terminus. However, a few noisy patches near the confluence zone (Figures. 5.10a–b) can 

be easily seen, indicating mismatches in the estimated and observed values. 

 

Figure 5.10 Spatial distribution of velocity estimates of Tasman Glacier for a) period 2005-

06 using Envisat C-band VV polarized data and b) period 2007-08 using ALOS 

PALSAR L-band HH polarized data. Circled areas 1, 2 and 3 (in black) represent 

erroneous patches with unrealistic high surface velocity values. 

A few gaps have been found in the estimates across the debris-covered regions of the glacier. 

Upon close inspection, these are the same regions in which segmentation has resulted in large 

segments due to merging of glacier segments with the background area of the glacier, as 

shown in Figure 5.2. While setting a limit on the maximum window size led to a large 

reduction in gaps, it also eliminated high values of surface velocity estimates (>1000 m/yr). 

The surface velocity estimates of the proposed method were compared with a) a spatially 

distributed long-term decadal surface velocity map for the period 2000-2011 (Farinotti et al., 
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2017), derived from field measurements as well as remote sensing based estimates (for more 

details readers are referred to Purdie et al., 2018) and b) point-wise field measurements 

collected during 2007-09 (Purdie et al., 2018). 

The difference between the obtained surface velocity estimates and the spatially distributed 

decadal velocity estimates (considered as reference) given by Farinotti et al. (2017) are 

shown in Figures 5.11a-c. Figure 5.11a shows the difference map for the period 2005-06 

where the velocity was estimated without limiting the window size. After limiting the 

maximum window size, the velocity estimates for the same period were compared with the 

reference velocity map and the resulting difference map shown in Figure 5.11b.  

Figure 5.11 Difference between the velocity estimates and reference velocity (source: 

Farinotti et al., 2017), where the velocity estimates have been calculated for a) 

2005-06 using Envisat (C-Band) without limiting the maximum window size, b) 

2005-06 using Envisat (C-Band) after limiting the maximum window size. c) 

2007-08 using ALOS PALSAR (L-Band) after limiting the maximum window 

size. Positive values show the overestimation and negative values show 

underestimation by the proposed approach. 

Setting a limit on maximum window size shows significant improvement in the velocity 

estimates as the velocity difference reduced from ~300 m/yr to ~150 m/yr (Figures. 5.11a 

and b). Therefore, for the period 2007-08 the surface velocities were estimated only after 
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limiting the maximum window size and plotted. The corresponding difference map with 

reference velocity is shown in Figure 5.11c. Estimates for 2007-08 (Figure 5.11c) showed a 

smoother transition between the different velocity ranges, as expected from an ideal glacier 

flow. This could be due to higher signal penetration of L-band (used for 2007-08 estimates), 

which gives less noisy velocity estimates when compared to C-band (used for period 2005-

06).  

It appears that the high difference (e.g., figure 5.11b and c) is more likely due to the noise 

issues in the original data (pre-processing) than feature tracking mismatch. The reason being, 

for different data type (C-band: figure 5.11b and L-band: figure 5.11c) the magnitude of 

errors in estimated velocities vary. 

Following this, a point-wise comparison of the proposed method with field measurements 

(Purdie et al., 2018) is shown in Figure 5.12. For the study period 2005-06, large deviation 

from field data was observed in the lower zone, which also represents the debris cover region 

with erroneous patches 1, 2 & 3 (Figure 10a). The estimates for period 2007-08 were 

consistently closer (for lower as well as middle zones) to the field measurements.  

 

Figure 5.12 Estimated velocities of Tasman Glacier for period 2005-06 and 2007-08 

compared with the field measurements close to the study period (source: Purdie 

et al., 2018). 
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The overall RMSE for Tasman Glacier (Table 5.1) during 2005-06 and 2007-08 was 71 m/yr 

and 67.1 m/yr respectively. Overall, the bias of the velocity estimates for period 2005-06 and 

2007-08 was 28.81 m/yr and 13.14 m/yr respectively (Table 5.1). The uncertainty in velocity 

estimates for the period 2005-06 was 5.14 m/yr. For the period 2007-08 the uncertainty in 

the velocity estimates was 0.14 m/yr. The uncertainty for this period was very low because 

the uncertainty due only to spatial resolution of SAR imagery has been reported, while the 

uncertainty due to co-registration error could not be reported. Here, the error in co-

registration could not be calculated for the particular image pair because the DEM based co-

registration was not performed on the SAR images (Chapter 4), and because the Ground 

Control Points (GCPs) were not available.   

Zone wise statistics of the surface velocity estimates are shown in Figure 5.13. In each zone, 

estimates for the period 2005-06 showed a higher range of velocity (min-max), pertaining to 

the presence of noise (Figure 5.10b). The mean in the lower zone (also the debris covered 

zone) was well represented for both periods 2005-06 and 2007-08. In this zone, the mean 

estimates for both periods 2005-06 and 2007-08 were closer to observed velocity (Table 5.1: 

Tasman Glacier), showing the reduced effect of the erroneouos patches (Figure 5.10a and b).  

Use of a common optical image for both study periods 2005-06 and 2007-08 has aided to 

investigate the effect of different SAR data on the proposed feature tracking performance. 

 

Figure 5.13 Zone wise mean velocity estimates for the Tasman Glacier. 
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The Tasman Glacier is a relatively smooth (less steep) glacier whose surface velocity has 

been reported to have no measurable change during 2002-05 (Herman et al., 2011).  

Assuming that during 2005-2008 there were no significant changes in glacier flow behavior, 

the effect of SAR wavelength on the feature tracking has been investigated. It is interesting 

to see that L-band (Figure 5.13: Estimated (2007-08)), which has more penetration through 

the glacier, captured the surface velocity more accurately as compared to the C-band based 

estimates (Figure 5.13: Estimated (2005-06)). A higher value of RMSE and bias in the C-

band estimates can be attributed to the sensitivity of C-band for surface roughness. The effect 

of SAR polarization could not be studied due to unavailability of different polarization data 

in L- and C-Band products for the study period (Table 4.3). 

5.2.3  Effect of the Difference between Spatial Resolution of Optical and SAR Data 

To study the impact of difference between optical and SAR data resolution on the estimated 

glacier velocity, two sets of SAR-optical pairs were assessed. The first set (case 1) represents 

the data for South Glacier during 2005-06 where the optical data resolution was 30 m and 

SAR resolution was 20 m. The other set (case 2) represents the data for South Glacier during 

2014-15 where the resolution of both optical as well SAR was the same i.e. 15 m. Considering 

that both the SAR data in case 1 and 2 are C-band, if assumed to be the same, and the 

difference in the quality of velocity estimates (between case 1 and 2) is mainly due to the 

resolution of optical imagery.  

In case 1, the optical imagery of coarser resolution (with respect to SAR data) led to better 

estimates both in terms of magnitude and direction of estimated velocity (Figure 5.5 a). 

However, in case 2, the optical imagery of similar resolution (with respect to SAR data) led 

to poorer velocity estimates both in terms of magnitude and direction (Figure 5.5 b) and 

Similarly, higher error in the stable region outside the glacier (Table 5.2) was observed for 

case 2. The difference between these two cases is that due to finer resolution of optical 

imagery (in case 2), the smaller surface feature may also be visible which can not be seen in 

the case 1 imagery. However, these smaller features have a higher tendency to change over 

time and thus leading to error in the estimates. On the other hand the coarser optical imagery 

may have led to more smooth features which are less likely to introduce error in the estimated 
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velocity. Moreover, the coarser resolution optical imagery and comparatively higher 

resolution SAR data can be expected to work in sync due to the penetration capability of 

SAR data which also reduces the effect of surface features leading to error in estimated 

velocity. Although it is theoretically convincing that a coarser image would produce smooth 

velocity and fine resolution may introduce errors, an attempt was made in this study to 

evaluate it in a quantitative manner when there is a difference of spatial resolution in input 

data (optical and SAR). 

5.2.4  Validation Over Stable Terrain 

Another component for validation of estimated glacier surface velocity is analysis over stable 

ground.  Here, the ice-free ground outside the glacier is assumed to be stable (Altena et al., 

2019; Sattar et al., 2019) and the estimated displacements for each study glacier over this 

stable region summarized in Table 5.2. The median 95% confidence interval was found to be 

3.7 m/yr (for all the three study glaciers combined) in stable areas. This average displacement 

obtained in the stable area are well within the acceptable limits considering the range of 

velocity for the study glacier between ~30-150 m/yr.  This estimated velocity in the stable 

area can be due to errors present in 1) the feature tracking method or 2) ionospheric errors in 

the input dataset (Yan et al., 2013).  

Table 5.2 Estimated displacements for each study glacier over stable region. 

Glacier  Study 

Period 

Estimated velocity in stable areas (at 95% confidence 

interval) in m/yr 

South Glacier 2005-06 2.4 

2014-15 3.9 

Chhota Shigri 

Glacier 
2009-10 4.2 

Tasman Glacier 2005-06 3.9 

2007-08 4.4 

 

The datasets used in the study vary in terms of sensors and processing quality and thus may 

exhibit different level of ionospheric errors associated with them. The highest estimates were 
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observed for Tasman Glacier for the period 2007-08 (4.4 m/yr) where the L-band SAR data 

used is expected to contribute to errors due to higher sensitivity to ionospheric errors (Meyer 

and Nicoll, 2008). 

5.2.5  Performance Evaluation against Normalized Cross Correlation (NCC) Method 

The performance of the proposed ML-based feature tracking method with spatially varying 

window size has been compared with the cross-correlation-based method that has a spatially 

invariable window size. The NCC was chosen to compare the results from the proposed 

feature tracking algorithm since it is most widely used. Both methods perform image-

matching in the spatial domain. The latter is based on the normalized cross-correlation (NCC) 

image analysis that was implemented in Correlation Image Analysis Software (Heid and 

Kaab, 2012). The same SAR data pairs (Table 4.3) have been used in both methods. Since 

the proposed method uses a spatially varying window size for image matching, the NCC-

derived estimates have been calculated for different standard window sizes (32 x 32, 64 x 64, 

and 128 x 128 pixels) and subsequently compared with the proposed method. The search 

window size was maintained at 100 x 100 pixels for both the NCC and the proposed method. 

Any gaps in NCC estimates were filled using the Inverse Distance Weighted (IDW) 

interpolation. This analysis was performed for all three study glaciers for the available dataset 

(Table 4.3). Although, the NCC estimates at different window size (32 x 32 pixels, 64 x 64 

pixels, and 128 x 128 pixels) have been used for comparison (See Appendix- A4), to ease the 

interpretation only the best performing window size (NCC) for each glacier and the proposed 

method’s estimates are shown in Figures. 5.13a to c.  

A summary of zone wise and overall RMSE of the NCC based approach for the study glaciers 

is given in Table 5.3. Comparison of the RMSEs from Table 5.1 and Table 5.3 indicates that 

the middle and upper zone were estimated more accurately by the proposed approach than 

the NCC based approach, where the NCC approach tends to fail due to low contrast 

(increased snow cover) on the glacier surface. However, the NCC estimates outperformed 

the proposed approach in the lower zone of the South Glacier. For the lower zone of the 

Tasman Glacier, similar conclusions could not be derived because the RMSEs were 

calculated from only one stake measurement. Here, the proposed method was observed to be 
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sensitive to highly textured areas, especially the lower zone which is a highly textured zone 

due to debris cover and/or surface melting. This observation is also conveyed in Figures 5.14a 

to c. Overall, when compared with the best results of the NCC method (which requires 

calibration), the proposed approach was in close agreement for the South Glacier and 

performed better in case of Chhota Shigri Glacier and Tasman Glacier (Table 5.1 and Table 

5.3).  

It is noteworthy that the best window size in the NCC method was different for each glacier 

(Figs 5.14(a-c)); it can be obtained only in the presence of field measurements; and it is 

spatially invariant over the glacier surface. Conversely, the window size used in the proposed 

approach is automatically identified; it does not require field measurements; and it varies 

over the glacier surface. This demonstrates the advantage of the proposed approach over the 

NCC-based approach. 

Apart from CIAS, another NCC based method (COSI Corr) provides an option of varying 

the window size, e.g., initial can be 128 and final can be 32 with user-defined step for 

changing window size. However, this variation (user-defined step) is limited to powers of 2 

(22, 23, 24… and so on). Moreover, the output is still generated using a spatially fixed window 

size which lies between the initial and final window size. Moreover, this method implies 

application of NCC in the Fourier domain, whereas the proposed feature tracking method 

works on the spatial domain. If comparing the proposed method (in spatial domain) and NCC 

(in Fourier domain), the results may differ due to the domain itself. As the aim here is to 

assess the improvement due to spatially distributed window size, the comparison in different 

domain (COSI Corr) does not seem useful here and it has not been performed in the study.    
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Figure 5.14 A comparative plot of proposed velocity estimates and cross correlation based 

velocity estimates (at best performing window size) of:  a) South Glacier for 

period 2005-06, b) Chhota Shigri Glacier for period 2009-10, and c) Tasman 

Glacier for period 2007-08. 

 

Table 5.3 Zone wise RMSE of the normalized cross correlation (NCC) based method CIAS 

(at best performing window size) for the study glaciers. 

 

 

 

*RMSE has been calculated from one stake measurement. 

5.2.6  Comparison with Spatially Fixed Window Size-Based Maximum Likelihood 

Feature Tracking 

To investigate any possible improvement due to a spatially varying window size, the 

performance of the proposed ML-based feature tracking method having a spatially varying 

window size (SVWS) has been compared with the spatially fixed window size (SFWS) 

implemented with the same ML-based feature tracking method. The same SAR data pairs 

(Table 4.3) have been used in this analysis. For the latter method (i.e. SFWS) the standard 

window sizes have been used (32 pixels × 32 pixels and 64 pixels x 64 pix pixels). Unlike 

the previous comparison made in Section 5.2.3, the SVWS performed consistently better in 

all three zones for all three study glaciers (Figure 5.15).  

Glacier Period 

RMSE (NCC) 

 in m/yr 

Lower 

Zone 

Mid 

Zone 

Upper 

Zone 
Overall 

South Glacier 
2005-06 5.5 7.3 18.2 9 

2014-15 5.4 14 11 12.8 

Chhota Shigri 2009-10 20.5 21 - 20.8 

Tasman Glacier 
2005-06 2.4* 115.8 - 105 

2007-08 2.9* 175.9 - 160 
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Figure 5.15 A comparative plot of proposed velocity estimates at spatially varying window size 

(SVWS) and spatially fixed window size (SFWS):  a) South Glacier for period 

2005-06, b) Chhota Shigri Glacier for period 2009-10, and c) Tasman Glacier for 

period 2007-08. 
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For South Glacier, the spatial distribution of field measurements was well spread across the 

glacier covering each zone (lower, middle, and upper). The smaller window size gave closer 

estimates to the field measured velocity in the lower zone and the larger ones gave closer 

estimates to the field measured velocity in the upper zone. 

SVWS gave a variety of window sizes in addition to the standard window sizes (32 x 32 

pixels or 64 x 64 pixels etc), being what existing feature tracking software (such as COSI-

Corr and SARscape) provide, thus facilitating more flexibility in the feature tracking. 

5.3 Summary  

An automated and spatially varying feature tracking algorithm useful for glacier surface 

velocity estimation was presented. The proposed algorithm considers both optical (for 

window size estimation) and SAR data (feature tracking) to estimate glacier surface 

velocities. The proposed method uses spatially varying window size and is different from the 

existing variable window size techniques (Heid and Kaab, 2012) where the window size can 

be varied at different iterations but still the window size is spatially fixed or invariant. The 

feature tracking algorithm was tested for three study glaciers.  

The proposed feature tracking method was evaluated for any possible impact of input data 

characteristics on the estimated glacier surface velocity.  The characteristics of input data 

taken into consideration were the difference in the spatial resolution of input data and the 

timestamp of the data. 

Comparison of the velocity estimates using proposed method and the normalized cross 

correlation based revealed improvements due to the proposed method. Zone wise analysis 

revealed the better performance of the proposed approach in the middle and upper zones 

while in the lower zone, the method gave relatively higher RMSEs when compared to the 

best performing NCC (CIAS) estimates. Here, the main advantage of the proposed approach 

is the automated estimation of spatially varying window size.  Thus, by applying this 

technique will serve a relatively better estimate for glacier specific window sizes could not 

be obtained. Moreover, when compared with spatially fixed window size based feature 
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tracking, the proposed spatially varying method gave better velocity estimates for each of the 

three study glaciers. 

The feature tracking algorithm focuses on automation rather than computational efficiency. 

However, computationally, this tracking approach does not pose any severe limitations and 

it is dependent upon the size of the glacier and the window size generated. For example, with 

a 4.6 GHz Intel® Core i7- 8700 CPU of 16 GB RAM, the total Central Processing Unit 

(CPU) time (applicable to both parallel and serial processing) may vary from several minute 

to few hours because of the spatially varying window size and glacier size. Similar to other 

NCC based methods, large intra annual changes on the glacier surface and co-registration 

errors are the factors that limit the accuracy of this feature tracking approach.  Nevertheless, 

the proposed glacier feature tacking method holds potential for regional and global scale 

feature tracking in glaciers with no prior field information available. 
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6 Modelling of Glacier Ice Thickness 

This chapter presents the ice thickness estimation modelling framework, its application, 

and assessment. The estimation capabilities have been explored via the performance 

analysis for four study glaciers. Seeking for the possible improvements towards data 

scarce as well as data deprived glacier ice thickness modeling, a number of experiments 

has been designed and evaluated.  

6.1 Ice Thickness Modelling Framework 

The proposed glacier ice thickness model consists of estimating a distribution of the 

glacier surface velocity mentioned in Chapter 5, using which the ice flux was computed. 

The flux was then converted to an ice thickness using Glen’s flow law (Glen, 1958) and 

represented over the entire glacier. The theoretical background is as follows: 

According to the principle of mass conservation (Eq. 6.1), the mass-balance distribution 

b (m/yr), should be balanced by the ice-flux divergence (
𝑑𝑞

𝑑𝑥
) where x represents distance 

along the flowline direction. Moreover, the residual should reflect in surface elevation 

change with time t (
𝑑ℎ

𝑑𝑡
) of the glacier.  

 
𝑑𝑞

𝑑𝑥
= 𝑏 −

𝑑ℎ

𝑑𝑡
 (6.1) 

dh/dt is the rate of ice-thickness change expressed in m/yr, b is the annual mass gain or 

loss (mass balance) at the surface in m.w.e and q is the ice flux. The ice flux divergence 

𝑑𝑞

𝑑𝑥
 (in m/yr) in Eq. 6.1 can also be calculated from Eq. 6.2, where the right hand side term 

denotes the apparent mass balance (Hooke, 2005). 

 
𝑑𝑞

𝑑𝑥
=  −𝑤𝑠 + 𝑢𝑠𝑡𝑎𝑛 (6.2) 

where 𝑤𝑠=vertical velocity (m/yr), 𝑢𝑠=horizontal velocity (m/yr),  = slope of the glacier 

surface. The ice thickness at a pixel i (ℎ𝑖) can then be inferred from the mean specific ice 

fluxes at corresponding pixel i (𝑞�̅�) by inversion of Glens flow law using Eq. 6.3  

 ℎ𝑖 = √
𝑞�̅�(𝑛 + 2)

2𝐴(𝑓𝜌𝑔𝑠𝑖𝑛𝛼)𝑛

n+2

 (6.3) 
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where, 𝛼 is the glacier surface slope, 𝜌 and g are constants and denote the ice density and 

acceleration due to gravity, respectively. The other parameters A (flow rate factor), n 

(Glen’s law exponent) and f (shape factor) are calibration parameters.  

Figure 6.1 shows the proposed methodology for estimation of the spatially distributed 

glacier ice thickness using remotely sensed inputs. The estimated glacier surface velocity 

(Chapter 5) was used as one of the inputs to the ice thickness model as us. Similarly, 

another input ws was estimated following the workflow given in Figure 6.1 and 

additionally following Yang et al., (2020) to calculate the vertical component of the 

surface velocity (ws). Overall, the 3D displacement was determined using the azimuth and 

line of sight offsets derived from ascending and descending imagery. The 3D 

displacement was calculated by solving for the equation in matrix form (Yang et al., 

2020), 

 BX = L (6.4) 

where B is a function of azimuth angle and look angle of the SAR imagery, X represents 

the three-dimensional displacement (north, east and vertical direction) and L represents 

the displacements in line of sight displacement and azimuth displacement for ascending 

and descending pass. 

Following Farinotti et al., (2009), the calculated flux (𝑞𝑖) was normalized with the local 

glacier width that is relevant for the ice discharge in order to obtain the mean specific 

value of the ice flux (𝑞�̅�) along the central flowline. The other input i.e. the DEM was 

taken from the freely available DEMs (Chapter 4) over the study glaciers. The difference 

in timestamp of input data and the field measured data may introduce some error in the 

estimates caused by the surface changes occurring during the time period. To eliminate 

this error, the glacier surface topography (represented by DEMs) has been adjusted to 

compensate for any temporal changes in the glacier surface elevation. This adjustment 

was performed using the reported ice thickness change values (in m/yr) for the study 

glaciers close to the study period. 
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The physics-based glacier ice thickness models based on Shallow Ice Approximation, 

such as the one proposed in this study neglects the transverse stresses which come into 

play near the glacier side walls but do not dominate near the central flowlines. Under this 

assumption it is valid to say that the model results are expected to agree well near the 

glacier central flowline. To estimate a glacier wide distributed ice thickness, the ice 

thickness distribution has been synthesized according to the expected (a parabolic) cross-

sectional profile geometry. Following Farinotti et al., (2009), the spatially distributed 

glacier ice thickness for the study glaciers has been estimated using interpolation 

Figure 6.1 Proposed methodology for estimation of spatially distributed glacier ice thickness 

using remotely sensed inputs.  
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technique. Here, the modelled ice thickness at the central flowline was interpolated to get 

spatially distributed glacier ice thickness. An inverse distance averaging technique was 

used for interpolation, weighting the individual interpolation nodes with the inverse of 

the squared distance from the considered point. Here, the glacier outline is used as a 

boundary condition with zero ice thickness. The local surface slope is filtered with a lower 

slope limit of 5º to prevent an overestimation of ice thicknesses in very flat zones. Finally, 

the calculated ice thickness is smoothed with a Gaussian filter to remove any outliers. 

6.1.1 Model Parameters 

In this section, the characteristics and commonly observed range of values of the three 

model parameters are described.  

6.1.1.1 Flow Rate Factor (A) 

The flow rate factor A appears in the Glen’s flow law where shear stress τ is related to 

shear strain rate by a power law. It depends on temperature, crystal fabric, water content, 

and other variables, A can be represented by the relation 

 𝐴 = 𝐴∗ exp(−
𝑄𝑐

𝑅
[

1

𝑇ℎ
−

1

𝑇∗
]). (6.4) 

Where T∗ = 263+7×10−8 P; Th = T +7×10−8 P; 𝑄𝑐 = Q− if Th < T∗; 𝑄𝑐  = Q+ if Th > T∗. 

Here T denotes Kelvin temperature. The coefficient A∗  is the pre-factor, and Q− the low-

temperature activation energy for creep distinct from the effective activation energy 

above -10 ºC, is referred to as Q+. A∗ is the value of A at −10 ºC and Q+ the apparent 

activation energy in warm ice (T > -10 ºC), are calibration parameters which have been 

identified through several modelling (for glaciers and ice sheets) based studies (Cuffey 

and Paterson 2010). 

Comparisons between experimental data (Barnes et al., 1971; Goldsby and Kohlstedt 

2001) suggest that the activation energy for ice creep increases at temperatures above −10 

ºC. As temperature increases, grain boundaries become wider and contain more liquid; 

these changes facilitate grain-level sliding, diffusion along grain boundaries, and grain-

boundary migration.  

However, field data show a large variability of A not accounted for by temperature. 
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Hydrostatic pressure depresses the melting point of ice. The laboratory experiments on 

the total effect of pressure (Weertman 1973b; Durham et al., 1997) imply the similar 

dependency of A on pressure as for the temperature shift. Therefore, it can be assumed, 

as also suggested by Rigsby (1958), that hydrostatic pressure does not affect the creep 

relation except through its influence on the melting point. 

The water content can influence the viscosity of temperate glaciers significantly (Vallon 

et al., 1976, Duval 1977). Water softens polycrystalline ice by facilitating adjustments 

between neighbouring grains with different orientations through processes like grain-

boundary sliding and melting and refreezing. Within temperate glaciers the water content 

varies because of differences in porosity, melt rate, and drainage. According to Duval’s 

relation (Duval 1977), formulated through laboratory experiments on samples taken from 

a temperate glacier, a factor-of-three increase of A corresponds to a change of water 

content from zero to 1.1%. 

The commonly used value for glacier (recommended values of A at n=3) fall in range of 

10-24 Pa-3 s-1 (Cuffey and Paterson, 2010).  The results through the calibrations of full-

stress models against large-scale flow suggests, at n=3, the value of A to be 2.4×10−24 Pa−3 

s−1. The temperate glaciers considered for the calibration represent glaciers from Iceland, 

Alps, Scandinavia, and Alaska. Moreover, a compiled list of A values derived from field 

analysis and laboratory experiments (Budd and Jacka 1989) at different temperatures can 

be found in Cuffey and Paterson (2010).  The value of A =3.24×10-24 Pa-3 s-1 and A = 

2.32×10-24 Pa-3 s-1 is usually adopted for glacier ice thickness modelling based studies 

(Farinotti et al., 2009; Gantayat et al., 2014) referring to temperate and valley glaciers 

respectively. However, few studies have reported different values of A which vary 

significantly from the recommended values. For instance, a rate factor of ~10-26 Pa–3 s–1 

(Chandler et al., 2008)  and 1.6×10–24 Pa–3 s–1 (Zekollari et al., 2013) has been also 

reported by via simulation of ice flow with a higher-order 3-D model for glaciers in Alps.  

6.1.1.2 Glen’s Law Exponent (n) 

The Glens law exponent n is degree of non-linearity in the stress strain relation given by 

Glen (1958). Through analyses of the covariation of strain rate and stress in glaciers the 

values of n range from 1.5 to 4.2 (Weertman 1973b, Table 3.2; Weertman 1983, Table 

3.1), with a mean of about 3. It shall be noted that in all such studies, stress is not measured 
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but inferred from the balance of forces. Studies carried out in Antarctic ice indicate an n 

value in the range 2 to 3. On the other hand, in grounded glaciers (originating as well as 

terminating on land) flowing by simple shear deformation on inclined planes (such as 

valley glaciers), the strain rate varies over depth with a pattern that depends on n.  For 

these glaciers, the data collected by Raymond (1980) best describes a value of n = 3 to 4. 

6.1.1.3 Shape Factor (f) 

The shape factor parameter is a non-measurable, dimensionless physical parameter that 

depends upon glacier cross-section profile and valley shape (Cuffey and Paterson 2010). 

It inherently accounts for the drag due to side walls and glacier bed on the ice flow. Nye 

(1965) gave a quantitative way to apprehend this parameter where f is defined as a 

function of glacier width (wcs) and ice-thickness (hcs) along the central flowline by the 

relation 

 𝑓𝑐𝑠 =
2

π
arctan (

𝑤𝑐𝑠

2ℎ𝑐𝑠
). (6.5) 

In this case, f assumes a value between 0 (channel of infinite depth) and 1 (channel of 

infinite width) (Nye, 1965). The value of f generally ranges between 0.60 and 0.90 for 

valley glaciers (Cuffey and Paterson 2010). 

6.1.2 Sensitivity Analysis 

As a preliminary step to provide insights, such as identifying sensitive and insensitive 

parameters, before attempting calibration and application, it is considered essential to 

know the sensitivity of simulations to the ice thickness model parameters. In this regard, 

to identify the parameters to which the modelled ice thickness is sensitive, the sensitivity 

has been evaluated using Average Linear Sensitivity (ALS) method (Nearing et al., 1989) 

which is found to be suitable to assess models having parameters values of different 

orders of magnitude. This is a local sensitivity approach, and it is estimated by changing 

the value of the parameter under examination, while all other parameters are kept 

constant. The ALS index is calculated using the relation,   

 𝐴𝐿𝑆 =
(ℎ2−ℎ1)

ℎ
(𝐼2−𝐼1)

Ī

. (6.6) 
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Where, I1 and I2 are the minimum and maximum values of the parameter under 

consideration, and h1 and h2 are the values of model output (here ice thickness h) for the 

corresponding input values.  Ī is the mean of I1 and I2, and ℎ is the mean of h1 and h2. The 

sign of ALS represents the nature of correlation between the model output and the 

individual parameter. Following Nearing et al., (1989), the sensitivity to model 

parameters are categorized as high moderate or less sensitive where the output (i.e. ice 

thickness) is highly sensitive to a parameter if ALS≥1, moderately sensitive when 0.5 ≤ 

ALS < 1 and less sensitive when ALS < 0.5.  

6.1.3 Model Calibration 

The ice thickness model parameters (A, f, n) are calibrated using Shuffle Complex 

Evolution (SCE) method (Duan et al., 1992) to find the glacier specific optimal set of 

model parameters where evolution of model parameters is achieved through multiple 

complex shuffling based on the simplex search method (Nelder and Mead, 1965).  

6.2 Results and Discussion 

In this section, the application and performance evaluation of proposed ice thickness 

model application named GATHI (GlAcier ice THIckness distribution using remote 

sensing) is discussed. The word ‘gathi’ in Hindi means ‘speed’ which also reflects the 

velocity based approach to the proposed ice thickness model. Following the sensitivity 

analysis of the modelled ice thickness estimates towards model inputs, the performance 

of the ice thickness estimation model was subsequently assessed through application in 

four study glaciers. To explore the applicability of the ice thickness model to glaciers 

without any field ice thickness measurements available, two different scenarios were 

considered. In scenario 1, the transferability of the model parameter from one glacier 

(with available field observations) to other glaciers sharing similar characteristics (with 

no available field measurements) was explored. In scenario 2, considering that the 

geometry-based parameter f cannot be replicated from one glacier to other, potential for 

field-data-independent calibration (Ramsankaran et al., 2018) was explored. Furthermore, 

to explore the effect of calibration data on the model, the model’s sensitivity was 

evaluated towards observation’s spatial and quantity-related characteristics. This 

evaluation was performed through set of 10 experiments. Lastly, a comparison with some 

of the existing models applied at global scale is also discussed.  
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6.2.1 Ice Thickness Sensitivity to Input Parameters 

Figure 6.2 shows the sensitivity of the ice thickness towards the three model parameters. 

The range of the model parameters used for this analysis have been taken from reported 

values where n is varied from 3 to 4, f from 0.6 to 0.9, A from 1.6*10-26 Pa–3 s–1 to 3.2*10-

24 Pa–3 s–1. From Figure 6.2 it is observed that the model is extremely sensitive to the 

Glen’s law exponent (n), moderately sensitive to shape factor (f) and less sensitive to flow 

rate factor (A).   

Furthermore, the sensitivity at different range of each model parameter (at 10%, 20% 

variation from base value) is investigated. It was found that the modelled ice thickness is 

more sensitive to lower values of shape factor (at -10%  or -20% from base value) than 

the higher values (at +10% or +20% from base value). Which implies that for lower values 

of f  (which corresponds to narrow and deeper regions of the glacier) the modelled ice 

thickness can be expected to show large deviations. Similar variations in sensitivity of ice 

thickness towards other parameters (n and A) were not observed. Through sensitivity 

analysis using ALS index, the modelled ice thickness is found to be sensitive towards the 

model parameters (based on material properties: A and n; based on geometry of glacier: 

f) at different level of sensitivity and thus required to be calibrated. 

 

Figure 6.2 Average linear sensitivity plot of the ice thickness model input parameters. 
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6.2.2 Ice Thickness Sensitivity to Remotely Sensed Glacier Surface Velocity 

The sensitivity of the estimated ice thickness due to  the estimated glacier surface velocity 

was assessed by varying the input velocity by +10%, +20%, -10%, and -20% respectively. 

Unlike the model parameters which are constant across the glacier, the input glacier 

velocity varies spatially. Thus, the change in estimated ice thickness due to change in 

input velocity was observed to vary across the glacier. The percent change in ice thickness 

due to +10% change in the input velocity showed a mean of 8.2%. Similarly, percentage 

change in estimated ice thickness due to change in input velocity by +20%, -10% and -

20% showed a mean of 10%, 7.4% and 9.1% respectively. In all the above, the range of 

the percentage change in estimated ice thickness remained constant with maximum of 

140%. Minimum values were observed near the glacier central flowline whereas higher 

values were observed near the glacier boundary which shows that the estimated ice 

thickness is more sensitive at these locations.  

6.2.3 Spatial Distribution of Ice Thickness Estimates 

The model parameters are calibrated using all the available ice thickness data for a glacier 

irrespective of the spatial distribution. For each of the study glaciers, the calibrated model 

parameter is found to be different from the commonly used values. Specifically, glacier 

specific calibrated parameters are n = 3.1, A = 3.28*10-24 Pa-3 s-1, f =0.64 (South Glacier); 

n =3.6, A = 1.5*10-24 Pa-3 s-1, f = 0.65 (Chhota Shigri Glacier); n = 3.4, A = 5.6*10-24 Pa-

3 s-1, f =0.78 (Patsio Glacier); n =3.2, A = 5.1*10-24 Pa-3 s-1, f =0.65 (Tasman Glacier). 

Through the calibrated model the achieved accuracy for study glaciers is 0m (South 

Glacier), ~10m (Chhota Shigri Glacier and Patsio Glacier) and ~120m (Tasman Glacier). 

Where the accuracy is represented by the mean error. 

6.2.3.1 South Glacier 

Spatially distributed ice-thickness estimates of the South Glacier obtained from the 

proposed model simulations using calibrated model is shown in Figure 6.3a. The 

horizontal and vertical velocity used as input are given in Chapter 5 (for period 2014-15) 

and Appendix-A5 respectively. To compare with the measured ice thickness observed in 

2011, the DEM has been adjusted considering a surface elevation change of -0.5 m/yr 

reported by Wheler (2009) for South Glacier. It can be observed that the ice-thickness is 

not uniform across the glacier, which varies from 0 to 220 m. Zero ice-thickness is 

observed at boundary pixels and maximum ice-thickness of 220 m is observed at central 
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flow line that lies near to the reported Equilibrium Line Altitude (ELA) of 1050 m (De 

Pauli and Flowers, 2009). This is a significant observation to mention, which indicates 

the correctness of the model results in view of the fact that the maximum ice thickness 

generally occurs near to ELA (Hooke 2005). It is also observed that ice-thickness along 

the central flowline of the glacier is having local maxima. This is realistic because along 

the central flow line the rate of glacier flow is faster, leading to higher mass contributions 

and thus, resulting in higher ice-thickness. Likewise, it is found that the derived ice-

thickness pattern across the glacier agrees well with the empirical relation between the 

width and ice-thickness of a glacier which says that wider the glacier, more the depth 

(Frey et al., 2010). 

Figure 6.3b shows the proposed model estimates of ice thickness at the central flowline 

(CFL) and at different cross sections (CS1-CS16) of the glacier. At these profiles, the 

available observed ice thickness data available at glacier ice thickness database is also 

shown. The RMSEs obtained for each cross section are CS1: 27m, CS2: 56m, CS3: 63m, 

CS4: 29, CS5: 31m, CS6: 38m, CS7: 24m, CS8: 42m, CS9: 24m, CS10: 21m, CS11: 28m, 

CS12: 26m, CS11: 27m, CS14: 31m, CS15: 37m, CS16: 12m. The obtained RMSE along 

the CFL is 40m. The estimated ice thickness showed good agreement in the middle region 

of the glacier (mean RMSE ~25m). However, at lower elevations near the snout, the 

estimated ice-thickness is found to be in the order of 50-70 m. The obtained RMSE at 

upper parts of the glacier (CS1 to CS7) are found to be similar to the reported estimates 

by HF model (Model1: Farinotti et al., 2019) which is a similar ice-flux based method 

where flux is calculated using mass balance gradient instead of glacier surface velocity. 

However, the RMSEs at lower reaches are found to be slightly higher than the estimates 

reported by HF model. The probable reason behind this can be the suggested surge 

conditions (De Paoli and Flowers, 2009) at the lower region of the glacier which affects 

the glacier velocity estimates.  
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(b) 

Figure 6.3 a) Spatial distribution of estimated glacier ice thickness of South Glacier. b) 

Estimated glacier ice thickness along the central flowline and various cross 

section profiles of the glacier.  
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6.2.3.2 Chhota Shigri Glacier 

The Spatially distributed ice-thickness estimates of the Chhota Shigri Glacier obtained 

from the proposed model simulations using calibrated parameterization is shown in 

Figure 6.4a. The horizontal and vertical velocity used as input are given in Chapter 5 and 

Appendix-A5 respectively. From Figure 6.4a it can be observed that the ice-thickness 

varies from 0 to 330 m and exhibits maximum ice-thickness at central flow line that lies 

near to the reported Equilibrium Line Altitude (ELA) of 4950 m a.s.l. (Azam et al., 2012). 

This location of maximum ice thickness corresponds closely to other existing studies on 

this glacier (Ramsankaran et al., 2018; Farinotti et al., 2019).  

Figure 6.4b shows the proposed model estimates of ice thickness at the central flowline 

(CFL) and at different cross sections (CS1-CS5) of the glacier. The RMSEs obtained for 

each cross section are CS1: 36m, CS2: 49m, CS3: 46m, CS4: 48, CS5: 29m. At these 

profiles, the available observed ice thickness data reported by Azam et al., (2012) is also 

shown. The estimated ice thickness agrees closely with the observed ice thickness along 

CS5 however it is overestimated for the remaining profiles by average deviation of 42m. 

This deviation however is slightly less when compared with the HF method (Model1: 

Farinotti et al., 2019) which underestimates the ice thickness at CS1 and CS2 by ~49m. 

This difference in the estimates could be due to the fact that the present model estimates 

consider the surface elevation changes between time period of estimates and the time 

period of the field measurement. 

 

Snout µ

(a) 
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(b) 

Figure 6.4 a) Spatial distribution of estimated glacier ice thickness of Chhota Shigri 

Glacier. b) Estimated glacier ice thickness along the central flowline and 

various cross section profiles of the glacier. 

6.2.3.3 Patsio Glacier 

Spatially distributed ice-thickness estimates of the Patsio Glacier obtained from the 

proposed model using calibrated parameterization is shown in Figure 6.5a. The horizontal 

and vertical velocity used as input are given in Appendix-A6 and Appendix-A5 

respectively. Here the velocity could not be validated since there is no field data available 

for surface velocity of Patsio Glacier. From Figure 6.5a, it can be observed that the ice-

thickness is not uniform across the glacier, which varies from 0 to 165 m.  The maximum 

ice-thickness of 220 m is observed at central flow line that lies near to the middle of the 

glacier with widest cross section.  

Figure 6.5b shows the proposed model estimates of ice thickness at the central flowline 

(CFL) and at different cross sections (CS1-CS3) of the glacier. At these profiles, the 

measured GPR based ice thickness data collected during the study is also shown. The 

RMSEs obtained for each cross section are CS1: 23m, CS2: 20m, CS3: 22m. The obtained 
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RMSE along the CFL is 31m. At lower elevations near the snout, the estimated ice-

thickness is found to be in the order of 40 m as reported by existing studies and the field 

measurement performed in this study (Kumar et al., 2020). Likewise, the reported 

estimates by HF model (Model1: Farinotti et al., 2019) show similar RMSEs (of 22m) for 

these cross sections. 

 

(a) 

Snout 

µ
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(b) 

Figure 6.5 a) Spatial distribution of estimated glacier ice thickness of Patsio Glacier. b) 

Estimated glacier ice thickness along the central flowline and various cross 

section profiles of the glacier. 
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6.2.3.4 Tasman Glacier 

Spatially distributed ice-thickness estimates of the Tasman Glacier obtained from the 

proposed model simulations using calibrated parameterization is shown in Figure 6.6. 

The horizontal and vertical velocity used as input are given in Chapter 5 (for period 2005-

06) and Appendix-A5 respectively. It can be observed that the ice-thickness is not 

uniform across the glacier, which varies from 0 to 790 m. Maximum ice-thickness of is 

observed at central flow line that lies near to the reported Equilibrium Line Altitude 

(ELA) (Hart 2014) which is closer to CS2 (Figure 6.6a).  

Figure 6.6b shows the proposed model estimates of ice thickness at the central flowline 

(CFL) and at two cross sections (CS1 and CS2) of the glacier. RMSEs of 242m (each) is 

observed at these two profiles when compared with available ice thickness data. 

Overestimation is observed at CS2 while at CS1 an underestimation was observed.  
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(b) 

Figure 6.6 a) Spatial distribution of estimated glacier ice thickness of Tasman Glacier. b) 

Estimated glacier ice thickness along the central flowline and various cross 

section profiles of the glacier. 

 

Firstly, cross glacier profiles for the Tasman Glacier are complicated by multiple 

tributaries delivering mass into the Tasman Glacier catchment (for example, Rudolf and 

Darwin Glaciers). Secondly, an important control on maximum ice thickness in the model 
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is the surface slope. The relation between estimated ice thickness and the input surface 

slope indicates that for small surface slopes ice thickness (h) is increased in order to 

maintain the same ice volume. As the slope approaches zero h tends to infinity. For the 

Tasman Glacier, surface slopes near the terminus are low which induces this 

overestimation. Moreover, these estimates are found to be better than that of HF model 

(Model 1: Farinotti et al., 2019) which is observed to have higher overestimation for the 

glacier. This indicates that the model parametrization through the glacier surface velocity 

(present model) outperforms the parameterization through mass balance gradient (Model 

1: Farinotti et al., 2019). The simple assumption that the ice flux is distributed linearly 

with distance from the margin in each elevation band may be inaccurate. That is, the linear 

assumption doesn't provide enough ice flux in the glacier center and so underestimates 

ice thickness there. One more reason for the deviation from model1 (Farinotti et al., 2019) 

is that the DEM used in this model for this glacier represents the surface topography for 

year from 2000 which is different from the time period of the observed ice thickness (refer 

to chapter 4). Thus, the surface topography obtained from the DEM was adjusted to 

incorporate the average surface elevation change (also equivalent to average mass loss in 

m) (Watson, 1995) between the modelled and observed period. 

A similar positive bias in the estimated ice thickness is observed in all the study glaciers. 

The positive bias in input estimated glacier velocities seems less likely to be the reason 

for positive bias is found in the estimated glacier thickness, since the bias in estimated 

velocity is positive throughout while the bias in estimated ice thickness shows both trends 

(positive as well as negative). The incompetence in correctly estimating ice fluxes from 

the apparent mass balance may be due to the steady state assumption (Rabatel et al., 

2018). This implies that if the glacier is not in steady state, the ice flux calculations will 

be affected so will the ice thickness estimates. 

6.2.4 Model Application 

In this section, the capability of the ice thickness model application is explored for 

glaciers without any field ice thickness measurements available. For such cases, the 

transferability of the model parameter from one glacier (with available field observations) 

to other glacier sharing similar characteristics (with no available field measurements) is 

explored. Similar experiments with the shape factor parameter could not be synthesized 

because of its dependency on the glacier geometry (width to thickness ratio) which is 
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rather glacier specific and requires ice thickness measurements. Furthermore, considering 

that the geometry-based parameter f cannot be replicated from one glacier to other, 

potential for its field-data-independent calibration is explored. 

6.2.4.1 Scenario 1 

In this scenario, the transferability of calibrated model parameters among similar glaciers 

is explored. For this analysis, all the four study glaciers are considered which can be 

categorized as temperate type glaciers thus sharing similar temperature conditions. Due 

to similar temperature conditions, it can be fairly assumed that the material properties of 

ice (which is predominantly dependent on temperature) is same for all glaciers. Following 

this hypothesis, the Glen’s flow law parameters A and n can be expected to be constant 

among the temperate type glaciers. In this sub-scenario, the aim is to investigate whether 

the calibrated model parameters (A and n) can be used for other glaciers with similar 

material properties (here temperate type glaciers). Keeping shape factor (f) as fixed (at 

the standard value of 0.8), the other model parameters are calibrated using the SCE 

calibration approach. It was found that the calibrated Glen’s flow law parameters (A 

=3.8*10-24 and n =3) are same for all the four study glaciers. These observations suggest 

that for the ice thickness model application, the calibrated parameters A (=3.8*10-24) and 

n (=3) can be assumed to be constant for a temperate type glacier. 

6.2.4.2 Scenario 2 

Unlike the model parameters A and n which are dependent on material properties of 

glacier ice, the shape factor parameter depends on the glacier geometry (ratio of glacier 

width and thickness at a particular cross-section) and is glacier specific. In case of 

application to data scarce glaciers, this parameter is estimated using a self-calibration 

approach (Ramsankaran et al., 2018) which does not require field measurements. Firstly, 

the spatially distributed average ice-thickness (havg) of the glacier has been calculated 

from model run by varying shape factor values ranging between 0.6 and 0.9 at an interval 

of 0.01 (and using calibrated values for A and n from scenario 1). Following this, shape 

factor at different cross-sections (fcs) using Eq 6.5 has been calculated using the maximum 

havg at each cross-section i.e. havg_cs and width of corresponding cross-section, wcs. Based 

on the above obtained shape factor at each cross-section, glacier-wide average shape 

factor favg (considered as optimal shape factor) has been calculated by simple averaging.  
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Table 6.1 summarizes the estimated (f
cs_avg

) and observed (f
cs_avg_observed

) glacier-wide 

average shape factor for each study glacier. 

Table 6.1 Summary of estimated and observed glacier wide average shape factor for 

study glaciers. The estimated  average ice thickness (havg_cs)  and shape factor at 

each cross-section have been used to calculate the estimate of average shape factor 

(f
cs_avg

). 
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Profile 
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1 
338 

146 0.55 

0.82 0.87 

2 
730 

106 0.82 

3 1085 101 0.88 

4 
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91 0.90 

5 
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93 0.89 
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96 0.84 

7 810 89 0.86 
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1 404 
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0.56 

0.65 0.68 

2 831 
288 

0.61 

3 1144 
244 

0.74 

4 1059 
242 

0.73 

5 676 242 0.60 
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 1 360 55 
0.81 

0.77 0.76 2 370 70 
0.77 

3 560 120 0.74 

T
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m
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G
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ci
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1 1248 508 0.57 0.66 0.61 

2 1770 363 0.75 

 

Figure 6.7 shows the cross-section used for calculating cross-sectional shape factor. The 

cross-sections to estimate the shape factor were taken every 100m for South Glacier. For 

remaining glaciers, only those cross-sections were used which had observed ice thickness 

information. For all the study glaciers the mean estimated fcs_avg is found to be close with 
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the mean observed shape factor f
cs_avg_observed. The error in estimated ice thickness was 

reduced by 5-17% (of mean observed ice thickness) when calibrated shape factor was 

used instead of the uncalibrated shape factor. Here the other two model parameters (A and 

n) were kept constant.  

 

6.2.5 Model Sensitivity to Varying Data Availability  

This section presents the results obtained through different experiments designed to 

explore the capability of the ice thickness model to extract information from limited 

subsets of ice thickness observations. These set of dedicated experiments, also investigate 

whether the spatial distribution of the field measured ice thickness has a noticeable 

influence on the model results, possibly leading to recommendations for the configuration 

of future data acquisitions. The main idea was to perform a set of experiments in which 

different subsets of the thickness observations are available for model calibration, and in 

which the ice thickness of the remaining profiles had to be estimated. Individual 

experiments are described in the following subsections. These analyses provide answer 

to the question: whether the proposed model capable of extracting information from 

sparse ice thickness observations or not? 

Experiment Design: 

A total of 10 experiments were defined. In each of these experiments, a different subset 

of profiles was defined investigating the effect of some peculiar layouts for the spatial 

distribution of the profiles available for calibration (Ex01 to Ex04), as well as the effect 

    a)                                    b)                       c)                                       d) 

Figure 6.7 Cross-sections used for calculating average shape factor of a) South Glacier, 

b) Chhota Shigri Glacier, c) Tasman Glacier and d) Patsio Glacier. 
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of the amount of data available for calibration (Ex05 to Ex10). The remaining profiles 

were only used for the validation of the results. These experimental designs and the 

performance metrics used are identical to those used in the ITMIX2 experiment (Farinotti 

et al., 2020) however is implemented on a single model (rather than 13 models) and 

smaller set of study glaciers, that is, four glaciers (instead of 23). Figure 6.8 visualizes 

the different layouts for the example of South Glacier. 

 

Figure 6.8 Profile layout for the 10 experiments considered in this study. Profiles indicate 

locations for which measured ice thickness is available. For each experiment 

(exp01 to exp10), a given subset of profiles was available for model 

calibration (red) whilst the remaining subset was used for validation (grey). 

Experiments 01 to 04 refer to peculiar configurations (see note within each 

panel) whilst experiments 05 to 10 consist of random selections of a given 

subset of profiles. The example refers to South Glacier. 
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Experiment 01: (low-elevation-parts) considers the scenario in which the available 

profiles are gathered towards the glacier’s lowermost elevations. Such a configuration is 

sometimes encountered for ground-based ice thickness surveys (for example Hagg et al., 

2013; Feiger et al., 2018) when the access to higher elevations is hampered by logistics 

or safety constraints. For any glacier, the experiment was produced by selecting those 

profiles that are located in the lowest quarter of the glacier’s elevation range. 

Experiment 02: (thickest-parts) represents the configuration in which the available 

profiles are located in the thickest parts of the glacier. To do so, all profiles were ranked 

according to the maximal ice thickness measured within each profile, and the first quarter 

of the so-ranked profiles was chosen. 

Experiment 03: (flat-parts) in this configuration, the available profiles are located in the 

flat parts of the glacier. Here, due to easier logistics and accessibility, ground-based ice 

thickness surveys are common. The local surface slope used in the experiment was 

calculated using the available DEMs. It should be noted that the longitudinal profile was 

excluded from this analysis since it covers the whole range of slope profiles over the 

glacier. 

Experiment 04: (longitudinal profile) only provided the longitudinal profile for 

calibration. This configuration is sometimes encountered for airborne surveys of valley 

glaciers (for example Gourlet et al., 2016), when aircraft’s inability to move prevents the 

movement along the cross sections.  

Experiments 05-07 (80% of total available profiles) are three different layouts in which 

80% of the available profiles are randomly chosen for calibration. Similarly, Experiments 

08-10 (50% of total available profiles) are three random arrangements of layouts 

constituting 50% of the available profiles. Further smaller subsets (such as 20% of total 

available profiles) of the available profiles were not considered here due to very small 

number of samples (i.e. less than or equal to one profile). 

In all the following analyses, the model performance for a given experiment was 

evaluated against those ice thickness observations that were not used for calibration. 

Deviations are expressed as “model minus observation”, so the negative values indicate 

that the model underestimates the ice thickness and vice versa. Since no information was 
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available on the quality of the ice thickness observations, the observations are all 

considered to be error free for the calculations. It should be noted that the observations of 

a glacier often come from an individual field survey and thus the systematic errors are 

difficult to eliminate. To enable direct comparison between modelled thicknesses (which 

are gridded) and observed thicknesses (which can be available at any point location), the 

observed thicknesses are first rasterized on the modelling grid. For every grid-cell, this is 

done by computing the arithmetic average of all observations that fall within that cell. To 

allow for comparaison between glaciers of different size and ice thickness, the 

error/deviations are expressed as percentage deviations from the mean thickness. Table 

6.2 summarizes the experiments implemented for each glacier and lists the mean ice 

thickness (ℎ̅)  of the glaciers used to analyse the results. 

Table 6.2  Overview of the experiments per glacier. For any glacier, “x” indicates that 

the particular experiments were performed. �̅�  is the mean glacier ice 

thickness considered for the analysis. 

 ℎ̅ (m) Ex01 Ex02 Ex03 Ex04 Ex05-

07 

Ex08-

10 

Total no. of  

Experiments 

South Glacier 60.9 x x x x x x 10 

Patsio Glacier 50 x x x x x x 10 

Chhota Shigri 

Glacier 

102.7 x x x x x x 10 

Tasman Glacier 163.1 x x x   x 06 

 

6.2.5.1 Overall Performance 

The overall performance of the model from these 10 experiments can be characterised by 

three indicators: (1) the spread 𝜎𝑛 between individual solutions at profiles that were not 

used for calibration, (2) the deviation Δhn between modelled and observed ice thickness 

at profiles that were not used for calibration, and (3) the deviation Δhc between modelled 

and observed ice thickness for profiles that were available for calibration. 

The first indicator 𝜎𝑛, quantifies the degree to which similar solutions are produced when 

different calibration data are provided. The value of 𝜎𝑛 was computed for each location, 

which is determined by the difference between modelled ice thickness ℎ𝑚 and observed 

ice thickness ℎ𝑜 (for all experiments) during which that point was not available for 
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calibration (that is a set of up to 10 values), divide by the mean ice thickness ℎ̅ of the 

considered glacier, and compute the standard deviation of the so-obtained differences, 

 𝜎𝑛 = stddev 〈
ℎ𝑚− ℎ𝑜

ℎ̅
〉. (6.7) 

High values suggest that a given model is very sensitive to these data, with very different 

results being provided depending on which subset of profiles was used for calibration. 

Extremely low values, instead, indicate that the calibration procedure is insensitive to the 

input. Moderate values might thus be preferential as they hint at a compromise between 

model robustness and sensitivity.  

Figure 6.9a shows the distribution of 𝜎𝑛  when the quantity is pooled across all the 

glaciers. The value of 𝜎𝑛 was found to be 35% the mean ice thickness which is similar to 

that observed for models Morlighem and Farinotti. This value is higher when compared 

with that of comparatively more rigorous models such as Brinkerhoff, Gantayat, 

GilletChaulet, Rabatel, VanPeltLeclerq and Werder (Farinotti et al., 2020), which all have 

𝜎𝑛 medians below 13%. A possible reason behind this low median 𝜎𝑛  can be the fact that 

these models contain more than one level of error minimization steps through use of ice 

thickness, velocity, and mass balance datasets. The  distribution of Δhc, centred around 

zero (Figure 6.9b: Calibration) indicates a systematic overestimation of the actual 

thickness. The distribution of Δhc also reveals that the model allow the thickness to 

fluctuate around the measured thickness (the interquartile range is in the order of 30% to 

40%) rather than aiming at matching the calibration data exactly. The present model 

exhibits  interquartile range of Δhc which is higher when compared to data intensive 

models which aim at matching the calibration data exactly.  This is the expression of a 

compromise between agreement with observations which can be affected by unknown 

uncertainties and biases and internal model consistency which is governed by the 

conservation of mass. This observation also suggests that even a limited subset of ice 

thickness observations is effective in constraining the mean ice thickness and glacier 

volume predicted by the model. Finally, the indicator Δhn quantifies the model 

capabilities of correctly predicting the ice thickness at unmeasured locations. The 

distribution of Δhn is shown in (Figure 6.9b: Validation) and reveals that the median 

deviations remain nearly unchanged and is centred around zero. This observation can be 

interpreted as a confirmation that the implemented calibration procedure is unbiased.  
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6.2.5.2 Influence of the Distribution of Ice Thickness Observations 

The effect that the spatial distribution of the ice thickness observations has on the model 

performance is quantified through experiments Ex01 to Ex04. Figure 6.10 (a-b) shows 

the deviation between modelled and observed ice thickness at profile locations that were 

not used for calibration. 

The experimental configurations using low-elevation parts (Ex01) and thickest parts 

(Ex02) show somewhat higher absolute deviations than the situations in which the 

available observations are biased towards flattest parts (Ex03) and longitudinal profile 

only (Ex04) of the glaciers (Figure 6.10a). The effect is particularly visible where the 

median absolute deviation for Ex04 is lowest. The error introduced by using low-

elevation parts (Ex01) can be mainly due to an overestimated shape factor which is 

representative of the lower region (commonly the shallow most region and high shape 

factor) of glacier while other part of the glacier (with lower value of shape factor) are mis 

represented. Together, the result indicates that, although it is convenient from the 

logistical point of view, survey configurations in which low elevations are sampled 

should be avoided, or at least complemented with measurements gathered along glacier 

flowline. 

a) b) c) 

Figure 6.9 (a) Standard deviation of the difference between modelled and observed ice 

thickness at the locations of profiles that were used for model validation. (b) 

Deviations (dev) between modelled and observed ice thickness for the locations 

used for model calibration and validation. (c) same as (b) but deviations are 

expressed in absolute terms. Boxplots show the 95% confidence interval 

(whiskers), the interquartile range (box), and the median (lines within box). All 

values are expressed relatively to the mean ice thickness of the corresponding 

glacier. 
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Figure 6.10b shows the under and over estimation observed for the four experiments. 

Ex01, Ex02 and Ex04 show an underestimation by the model for the validation region of 

the study glaciers. Ex03 on the other hand shows a remarkably opposite behavior and 

shows and overestimation. This is perhaps due to the fact that the flattest part in the 

sampling also covers the part where measured ice thickness is the highest for the glaciers 

and thus overestimated ice thickness is observed for the validation region. 

 

6.2.5.3 Influence of the Availability of Ice Thickness Observations 

The available ice thickness observations are generally sparse which raises an important 

question is how the ice thickness model performs to the amount of ice thickness data 

available for calibration. Figure 6.11 shows how the absolute deviation between modelled 

and observed ice thickness evolves for Ex05 to Ex10, i.e. during the experiments in which 

the availability of profiles used for model calibration is reduced. As expected, the 

deviations increase when fewer observations are available. The results show that the 

median absolute deviations increase from 31% of the mean ice thickness when 80% of 

the measured profiles are retained for calibration (experiments 05-07), to 38% when 50% 

of the profiles are retained (experiments 08-10). This show a less pronounced decrease in 

performance when fewer data are available. This displays less sensitivity to the 

a) b) 

Figure 6.10 Distribution of model absolute deviation (a) and actual deviation (b) when the 

ice thickness observations used for calibration show a peculiar spatial 

distribution. The individual boxplots perceive the situations in which the 

observations are biased towards low elevations (Ex01), the thickest parts (Ex02), 

the flattest parts (Ex03) of the glacier. In Ex04, only observations along a 

longitudinal profile are provided for calibration. Values are given relatively to 

the mean glacier thickness. 
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availability of observations. Note, however, a substantial increase in outliers when 

reducing the data availability from 80% of profiles retained to 50%; the 95% confidence 

interval increases from 87.8% the mean ice thickness to 161.3%. The consistency between 

various experiments could be both due to model stability (i.e. the model’s capability of 

extracting information from limited ice thickness observations) or due to the model’s 

calibration strategy not being able to take various profile configurations fully into 

account.  

 

Aiming at characterising the degree to which the proposed ice thickness model can benefit 

from sparse in-situ thickness observations.  Considering the 10 different experiments 

conducted over set of four glaciers to infer the effect that both availability and spatial 

distribution of ice thickness observations have on model performance. The main results 

of the experiments can be summarised as follows: 

• The model showed significant variabilities in the results of different experiments 

in the order of 57% the mean ice thickness which corresponds to flexibility of the 

calibration procedure adopted here. Whilst low variabilities are an indication for 

model robustness, it also seems to reflect lack of flexibility in the calibration 

procedure.  

• It is observed that a few observations are sufficient to correctly capture the mean 

glacier thickness (Figure 6.9). This can be observed from the bias in model which 

does not shift between the experiments when the amount of observations are 

varied and reduced upto 20%. This is of particular importance to the researchers 

a) b) 

Figure 6.11 a) Absolute deviation and b) actual deviation between modelled and observed ice 

thickness resulting from Ex05 to Ex10.  
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or end users who depend on the glaciers’ total stored volume instead of spatial 

distribution of ice thickness.  

• The spatial distribution of the ice thickness observations has only a small amount 

of effect on the estimated ice thickness (Figure 6.10). The only configuration that 

should be avoided is the one in which calibration is done using the observations 

from the lowest parts of a glacier. Although convenient due to the logistics 

reasons,, this configuration tends to over-sample thin glacier parts thus resulting 

in a bias towards overestimated ice thickness. On the contrary, a preferential 

sampling along the glacier flowline prevents large deviations, successfully 

constraining the total glacier volume. 

6.3 Comparison with Existing Approaches 

The proposed ice thickness model estimates were compared with the existing variants of 

models that have been applied globally (Farinotti et al., 2019).  Considering an 

operational scenario where complete and accurate knowledge of model parameters may 

not be available. The estimated ice thickness following scenario 2 (fixed A, n and glacier 

specific calibrated f) was used for this comparison. Furthermore, these results were 

compared with the existing approaches to ice thickness estimation implemented at global 

scale (Farinotti et al., 2019). Figure 6.12 shows the boxplots of the errors in the estimates 

(mean deviation from observed ice thickness) for these models. Deviations are expressed 

as ‘model minus observation’, where negative values indicate underestimation of ice 

thickness.  The estimated ice thickness by the proposed model of each study glacier was 

compared with the models included by Huss and Farinotti (2012): Model 1, Frey et al., 

(2014) : Model 2, Maussion et al., (2019) : Model 3, Fürst et al., (2017): Model 4 and 

Ramsankaran et al., (2018) : Model 5. All the models infer the ice thickness distribution 

from surface characteristics (such as elevation and slope), an estimate of the glacier mass 

balance and principles of ice flow dynamics. A description of the  individual models used 

for comparison are described as follows:  

Model 1 (Huss and Farinotti 2012) - The ice volume flux across individual cross sections 

is estimated by integrating the surface mass balance of the corresponding area. The 

method eliminates the necessity of a steady-state assumption while estimating the 

difference of mass balance and ice thickness change collectively rather than imposing 
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constraints on the two terms separately. All calculations are performed on elevation 

bands. Mean elevation-band thickness is then extrapolated to a spatially distributed field 

by considering local surface slope and the distance from the glacier margin.  

Model 2 (Frey et al., 2014) – also referred to as GlabTop2, the final ice thickness 

distribution is derived from interpolation of the randomly selected points and the 

condition of zero ice thickness at the glacier margin. The procedure by which the random 

points are selected has an influence on the shape of the obtained bedrock topography. 

Model 3 (Maussion et al., 2019) - The major difference between Maussion and the 

approaches Model 1 is that the surface mass balance is not prescribed as a linear function 

of elevation but with a temperature-index model which is derived from climate data 

(Marzeion et al., 2012). 

Model 4 (Fürst et al., 2017) - The forward model is based on Elmer/Ice (Gagliardini et 

al., 2013) and the mass conservation approach of Morlighem et al., (2011). It is a 

minimization based approach, where the cost function is not linked to surface elevations 

but the function penalizes negative ice thickness values, the mismatch between modelled 

and observed surface velocities, the mismatch between modelled and observed surface 

mass balance, and strong spatial variations in ice thickness or surface velocities.  

Common to all five models, all ice thickness estimates refer to the glacier outlines taken 

from the RGI version 6.0. For every glacier, the surface topography was extracted from 

the hole-filled Shuttle Radar Topography Mission (SRTM) DEM version 4 (Patsio 

Glacier, Chhota Shigri Glacier, Tasman Glacier) and the Arctic DEM version 2.0 (South 

Glacier). More detailed description of the above five models is given in Farinotti et al., 

(2019).  To have a more reliable comparison between these five models and the proposed 

one, same DEMs were used to estimate ice thickness from the proposed ice thickness 

model. Figure 6.12(a-d) show the boxplot of the error in estimated ice thickness for each 

glacier by the proposed model and the five above mentioned models. A side-by-side 

comparison figure was not given for model inter-comparison since a more quantitative 

statistical comparison was given which was adapted (and is widely accepted in glaciology 

community) in recent study (Farinotti et al., 2019) where different types of glaciers (with 

different amount of validation data available) are used in the comparison.  From both the 

distribution of error and their corresponding median, it is evident that no single model is 
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found to give best estimates consistently for all the study glaciers. The proposed model 

can be seen to be least biased specially for Tasman Glacier (Figure 6.12d). When 

compared with Model 1 (Farinotti et al., 2009), the proposed model gave slightly less 

error for Chhota Shigri and Patsio Glacier (Figure 6.12b and c). However, higher error 

was observed for South Glacier with overestimation in the estimated ice thickness. This 

could be due to the previously reported surge conditions for South Glacier (Pauli and 

Flowers 2009) which introduces error in the ice flux derived from glacier surface velocity 

which leads to overestimating the flux and thus ice thickness. On the other hand, the error 

in Tasman Glacier is significantly less when compared with Model 1 estimates.  One of 

the factors responsible could be the glacier profiles for the Tasman Glacier are 

complicated by multiple tributaries delivering mass into the Tasman Glacier catchment 

(for example, Rudolf and Darwin Glaciers). The simple assumption in the Model1 that 

the ice flux is distributed linearly with distance from the margin in each elevation band 

may be inaccurate. Whereas such linear assumption is not present in the proposed model. 

Considering, a rigorous parameterization that was carried out for Model1, utilizing the 

available field measurements (Farinotti et al., 2019) in the same region, the proposed 

model offers a simple approach to model parameterization and performed better for 

Tasman Glacier. More specifically, the former model undertook the parameterization by 

minimizing the misfit (i) the region-by-region average of the mean deviations of all points 

of the glacier, (ii) the glacier-area-weighted average of the mean deviation over all points 

of the glacier, (iii) the average of the difference between calculated and reported mean 

ice thickness, and (iv) the glacier-area-weighted average of the difference between 

calculated and reported mean ice thickness. However, the proposed model adopted 

simpler as well as glacier specific shape factor parametrization approach with universally 

calibrated Glen’s flow parameters (A and n) as described in Section 6.2.3 scenario 2, and 

the inputs used were captured through remote sensing which gave a better representation 

of glacier dynamics.  

In general, the error distribution obtained from the GATHI model (Figure 6.12) was found 

to be comparable to the other models for three study glaciers (South Glacier, Chhota 

Shigri Glacier and Patsio Glacier). Whereas, the GATHI model was seen to be least 

biased (among the other models) for Tasman Glacier. Apart from the difference in 

modelling approach, one of the possible reasons for relatively lesser performance could 
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be the large difference in the timestamp of model inputs and validation data used for these 

five models. 

6.4 Sources of Error 

The uncertainties often lead to biased estimates even for calibrated ice thickness models, 

especially when appropriate calibration data for model are rarely available (Helton et al. 

2010). The uncertainties involved in a modelling process can be classified by the source 

model component (Liu and Gupta, 2007). 

1. Modelling errors: Models use various assumptions and approximations to characterize 

a complex real-world system which introduces some inherent error in the system. The 

computational implementation which requires discretization (over space) also contributes 

 

Figure 6.12 Comparative boxplot of the error (in m) from the proposed model (GATHI) 

and the modelled estimates taken from Farinotti et al., (2019) for a) South 

Glacier, b) Chhota Shigri Glacier, c) Patsio Glacier, and d) Tasman Glacier. 

a) b) 

c) d) 
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to this error. If the model conceptualization is inadequate, that is, physically significant 

processes are ignored, major errors may follow. 

Specifically, for the present study, the modelled ice thickness is affected due to inherent 

assumptions such as Shallow Ice Approximation and the ice flux calculated from apparent 

mass balance.  

2. Parameter errors: Parameters represent system properties continuously varying over 

space and time. Due to the spatiotemporal aggregation of parameters required for practical 

uses, the real world heterogeneity is inadequately represented quite often. Additionally, 

most parameter values cannot be directly measured in the field (such as basal shear stress) 

or vary continuously (temperature conditions and ice properties) making measurements 

expensive. For instance, ice density is very hard to monitor in the field. The indirect 

estimation methods employed, such as expert knowledge or model calibration, introduce 

uncertainty due to the ambiguity of the optimal parameter choice (Beven, 2007). For 

example, while modelling the ice thickness, the shape factor parameter which represents 

the nature of cross section at a given location, is aggregated (over the glacier) and a 

generalized value is used. This aggregated value can lead to over or under estimation of 

the ice thickness.  

3. Data or measurement errors: The uncertainty caused by model inputs fall into this 

category. They can be attributed to errors in the measuring device or the incompatibility 

of the observation scale and corresponding model estimates which may require spatio-

temporal aggregation or interpolation (Waller et al., 2018). The errors associated with the 

location of the field measured data collected can also add to uncertainty in the ice 

thickness estimates for a given location (Martín-Español et al., 2016). For example, an 

over estimation in input velocity can lead to over-estimated ice thickness distribution. 

Similarly, errors in the used DEMs can propagate as the input slope and thus affect the 

output i.e. estimated ice thickness. 

6.5 Chapter Summary  

This chapter presented an overview of the proposed ice thickness modelling framework 

developed in this thesis for glacier ice thickness estimation using remote sensing inputs. 

First, the concept of mass continuity was briefly introduced. Following this, the ice 

thickness modelling was presented in detail. Starting with sensitivity analysis of ice 
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thickness towards model parameters, the subsequent sections evaluated the performance 

of the ice thickness estimation model through application on four study glaciers. The 

capability of the ice thickness model application was explored via two different scenarios 

for glaciers without any field ice thickness measurements available.  the transferability of 

the model parameter from one glacier (with available field observations) to other glacier 

sharing similar characteristics (with no available field measurements) is explored. 

Furthermore, considering that the geometry-based parameter f cannot be replicated from 

one glacier to other, potential for its field-data-independent calibration is explored. 

Accordingly, this self-calibration of the shape factor parameter showed varied level of 

improvements for the study glaciers in the mean error (upto 12% of mean thickness) over 

the commonly adapted shape factor value. Furthermore, to explore the effect of 

calibration data on the model, the model’s sensitivity was evaluated towards observation 

spatial and quantity-related characteristics. This evaluation was performed through set of 

10 experiments. Overall, the effect of the spatial distribution and amount of the field 

measurement available for calibration was seen on model performance. This evaluation 

revealed that the model is sensitive to data availability with most useful results observed 

when for Ex04 where the calibration was performed using data along the flowline. Lastly 

a comparison with existing models applied at global scale was discussed.  
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7 SUMMARY, CONCLUSION AND FUTURE 

PERSPECTIVES 

The principal aim of this thesis was to develop a simple model for estimation of 

distributed glacier ice thickness by using purely remote sensing dataset and eliminate the 

use of field measurements. An effort was made to introduce field-data-independence at 

every major step. The proposed methodology for glacier velocity as well as ice thickness 

estimation were developed and tested over four study glaciers.  Specifically, the following 

objectives were addressed:  

• Development of a remote sensing based automated feature tracking algorithm to 

estimate glacier surface velocity.  

• Development of a physics-based glacier ice thickness model to estimate spatially 

distributed ice-thickness using remote sensing inputs.  

Next section outlines the progress made towards achieving this goal and major 

conclusions drawn aligned with the above-mentioned objectives. 

7.1 Summary and Major Conclusions 

7.1.1 Glacier Surface Velocity Estimation 

A new algorithm for glacier feature tracking named as SWIFT (Spatially varying 

WIndow based maximum likelihood Feature Tracking) has been developed where an 

automatic window size estimation technique is introduced. This algorithm utilises both 

optical data (to determine the window size) and SAR data (to perform feature tracking). 

The proposed glacier feature tracking algorithm uses a spatially varying window size 

unlike other existing softwares like SNAP, SARscape, CIAS and COSI-Corr that cannot 

provide the flexibility of spatially varying window sizes, being one of the main 

contributions by this study. Moreover, this method for estimation of window size can be 

implemented in combination with other existing feature tracking methods. The proposed 

glacier surface velocity tracking algorithm has been tested for three different glaciers 

(South Glacier, Chhota Shigri Glacier and Tasman Glacier). The obtained results from 

the performance evaluation through variety of experiments are discussed as follows: 

a) Performance evaluation against normalized cross correlation method (NCC) 
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The NCC was chosen to compare the results from the proposed feature tracking algorithm 

since it is most widely used. Zone wise analysis for each glacier was carried out by 

comparing the velocity estimates from the proposed approach and the best performing 

NCC based estimates. Here, the best performing NCC based estimates were obtained by 

calibration of window size using field measured velocity data. Results revealed the better 

performance of the proposed feature tracking approach in the middle and upper zones. 

Whereas in the lower zone, the proposed method gave relatively higher RMSEs. Here, 

the main advantage of the proposed approach is the estimation of a spatially varying 

window size without using field data. The results indicate that this proposed technique 

can provide a better estimate for a glacier where glacier specific window sizes could not 

be obtained. The present method uses spatially varying window size and is different from 

the existing variable window size techniques (Heid and Kaab, 2012) where the window 

size is varied at iterations but still the window size is spatially constant. This window size 

selection technique is independent of glacier type or its environment setting, thus this 

technique can be applied to the glaciers in any setting. 

b) Impact of the timestamp of optical data used 

An assessment was carried out for potentially alternate timestamp of optical data that 

could be used (when the data is not available for given study period) in the velocity 

estimation. Results obtained for South Glacier demonstrates that the proposed method is 

robust towards the choice of optical data given that the timestamp of the optical data is at 

annual separation from the study period. Here, an implicit assumption was made that there 

is negligible or no change in the glacier surface within a year.  Whereas large temporal 

differences (~10 years from the study period) led to larger errors in the estimated 

velocities. This is probably due to noticeable changes occurring over the glacier surface 

during such large time period which invalidates the aforementioned assumption. 

c) Impact of SAR data bandwidth 

An analysis of the impact of SAR data bandwidth on the estimated velocities confirmed 

the appropriateness of longer wavelength data such as L-band. The results obtained for 

Tasman Glacier indicated that L-band (with HH Pol) performed better than C-band (with 

VV Pol) in debris covered region with less gaps in velocity estimates and glacier wide 
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higher accuracy. However, due to limited polarity of data available, the effect due to 

different polarization in SAR data could not be explored in this study. 

d) Effect of the difference between spatial resolution of SAR and optical data  

An analysis was performed to examine the impact on glacier velocity estimation due to 

difference in the spatial resolution of the SAR and optical imagery. For this analysis, 

South Glacier was considered because the required combination of the SAR and optical 

data pair were available for the glacier. In the first case, the optical imagery of coarser 

resolution with respect to SAR data (optical data:  ASTER; SAR data: ENVISAT) led to 

better estimates both in terms of magnitude and direction of the estimated surface 

velocity. However, in the second case, the optical imagery of similar resolution with 

respect to SAR data (optical data:  Landsat 8; SAR data: Sentinel 1) led to comparatively 

poorer velocity estimates both in terms of magnitude and direction of the estimated 

velocity. The relatively better performance in Case-1 could be due to the fact that the 

optical data at coarser resolution is relatively free from smaller glacier surface features 

which could be considered as noise. Similarly, the finer resolution SAR data due to its 

surface penetration capability can also be considered to be free from the smaller glacier 

surface features which may lead to noise. Thus, this SAR and optical data pair (Case-1) 

can synergistically lead to better estimate. 

e) Comparison with spatially fixed window size-based maximum likelihood feature 

tracking 

The performance of the proposed feature tracking method which uses a spatially varying 

window size (SVWS) was compared with the estimates obtained when spatially fixed 

window size (SFWS) was used. Both SVWS and SFWS were implemented with the 

proposed maximum likelihood-based feature tracking method. For the latter case (i.e. 

SFWS) the standard window sizes have been used (i.e., 32 pixels × 32 pixels and 64 pixels 

× 64 pixels). The obtained results indicate that the SVWS based implementation performs 

consistently better for all the three study glaciers.  

The proposed feature tracking algorithm focuses on automation rather than computational 

efficiency. However, computationally, this tracking approach does not pose any severe 

limitations and it is dependent upon the size of the glacier and the window size generated. 
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For example, with a 4.6 GHz Intel® Core i7- 8700 CPU of 16GB RAM, the total Central 

Processing Unit (CPU) time (applicable to both parallel and serial processing) may vary 

from several minute to few hours because of the spatially varying window size and glacier 

size. Similar to other NCC based methods, large intra annual changes on the glacier 

surface limit the accuracy of this feature tracking approach. Nevertheless, the proposed 

glacier feature tracking method holds potential for feature tracking in glaciers with no 

prior field information available. 

7.1.2 Ice thickness Modelling using Remotely Sensed Glacier Surface Velocity 

The proposed ice thickness model is named GATHI (GlAcier ice THIckness distribution 

using remote sensing) which requires only remotely sensed inputs such as surface velocity 

and DEM. Following the sensitivity analysis of the modelled ice thickness estimates 

towards model inputs, the performance of the ice thickness estimation model was 

subsequently assessed through application in four study glaciers. To explore the 

applicability of the ice thickness model to glaciers without any field ice thickness 

measurements available, two different scenarios were considered. In scenario 1, the 

transferability of the model parameter from one glacier (with available field observations) 

to other glaciers sharing similar characteristics (with no available field measurements) 

was explored. In scenario 2, considering that the geometry-based parameter f cannot be 

replicated from one glacier to other, potential for field-data-independent calibration 

(Ramsankaran et al., 2018) was explored. Furthermore, to explore the effect of calibration 

data on the model, the model’s sensitivity was evaluated towards observation’s spatial 

and quantity-related characteristics. This evaluation was performed through set of 10 

experiments. Lastly, a comparison with some of the existing models applied at global 

scale was also discussed. The obtained results are discussed as follows: 

a) Model application to glaciers where no field measured ice thickness is available 

Interesting similarities in the model parameters were noticed while investigating the 

transferability of calibrated model parameters among similar glaciers under scenario 1. 

For this analysis, all the four study glaciers were considered which can be categorized as 

temperate type glaciers thus sharing similar temperature conditions. Due to similar 

temperature conditions, it can be fairly assumed that the material properties of ice (which 

is predominantly dependent on temperature) is same for these glaciers. Following this 
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hypothesis, the two Glen’s flow law parameters used in the proposed GATHI model (A 

and n) can be expected to be constant among the temperate type glaciers. This was 

confirmed when the obtained calibrated Glen’s flow parameters (A =3.8*10-24 and n =3) 

were same for all the four study glaciers. Here, the other parameter f (which is dependent 

on glacier geometry) was kept constant at the standard value of 0.8. These observations 

revealed that for the ice thickness model application, the calibrated parameters A =3.8*10-

24 and n =3 can be assumed to be constant for temperate type glaciers. Results obtained 

from scenario 2 showed that the field-data-independent calibration led to noticeable 

improvement in mean error of the ice thickness. The error in estimated ice thickness was 

reduced by 5-17% (of mean observed ice thickness) when calibrated shape factor was 

used instead of the uncalibrated shape factor. Here the other two model parameters (A and 

n) were kept constant. 

b) Effect of calibration data on the ice thickness model performance 

Different experiments were designed in this study to explore the capability of the ice 

thickness model to extract information from limited subsets of ice thickness observations. 

These set of dedicated experiments, also investigate whether the spatial distribution of 

the field measured ice thickness has a noticeable influence on the model results, possibly 

leading to recommendations for the configuration of future data acquisitions. The main 

idea was to perform a set of experiments in which different subsets of the thickness 

observations are available for model calibration, and in which the ice thickness of the 

remaining profiles had to be estimated. Altogether, the result indicates that, although it is 

convenient from the logistical point of view, survey configurations in which low 

elevations are sampled should be avoided, or at least complemented with measurements 

gathered along glacier flowline. 

c) Comparison with the existing models applied at global scale  

The error in the estimated ice thickness for each glacier by the proposed GATHI model 

was compared with five models (Model-1: Huss and Farinotti (2012), Model-2: Frey et 

al., (2014), Model-3: Maussion et al., (2019), Model-4: Furst et al., (2017), Model-5: 

Ramsankaran et al., (2018) used in Farinotti et al., (2019) for global scale ice thickness 

estimation. From both the distribution of error and their corresponding median values, no 

single model was found to give best estimates consistently for all the study glaciers, which 
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is consistent with conclusions given by Farinotti et al., (2019). In general, the error 

distribution obtained from the GATHI model was found to be comparable to the other 

models for three study glaciers (South Glacier, Chhota Shigri Glacier and Patsio Glacier). 

Whereas, the GATHI model was seen to be least biased (among the other models) for 

Tasman Glacier. Apart from the difference in modelling approach, one of the possible 

reasons for relatively lesser performance could be the large difference in the timestamp 

of model inputs and validation data used for these five models.  

7.2 Limitations of the Work 

Considering the challenges in field-based observations, following limitations are 

encountered in the present study. 

• Due to limitations in the available SAR data such as polarization, the effect of 

SAR polarization over the glacier feature tracking approach could not be explored 

in this study. 

• The developed approach for feature tracking was compared with the NCC method 

which forms the basis of the existing softwares such as CIAS, COSI CORR, 

SARscape and SNAP, however a one-to-one comparison with all the existing 

software has not been performed in this study. 

• The observed ice thickness data used for validation that has been taken from the 

most compiled freely accessible Glacier ice Thickness Database (GlaThiDa). 

However, no specific information was available on the accuracy of these ice 

thickness observations. Thus, the observations are all considered to be error free 

for the calculations. While average deviations over multiple points remain 

unaffected; it is acknowledged that error-free observations are not realistic. This 

is because the observations of a given glacier often stem from an individual field 

campaign, and systematic interpretation of errors are thus difficult to exclude. 

• By definition, the shape factor varies over a glacier. However, in the present study 

to maintain simplicity, the proposed GATHI model considers a single value of 

shape factor for a glacier.  

7.3 Major Contributions from this Thesis  

The present study resulted in the following contributions to the field of remote sensing of 

glaciers. 
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• Developed an algorithm useful for glacier velocity estimation which provides 

flexibility in terms of spatially varying window size unlike other existing 

softwares. 

• Developed an automated window size determination technique useful for feature 

tracking, to estimates surface velocity of the glaciers where no field measured data  

is available. 

• Developed a physics-based ice thickness model (GATHI) which requires only 

remote sensing inputs such as annual glacier surface velocity and DEM. 

• Collected the ice thickness data for Patsio Glacier in a data scarce region like 

Himalaya shall be useful as validation data for future glacier ice thickness 

modelling studies.  

7.4 Future Perspectives 

This section lists some of the immediate future directions in which the research initiated 

in this thesis could be advanced: 

• The developed feature tracking algorithm can be rigorously tested for glaciers 

with varying level of debris cover and glaciers in the polar region such as marine 

terminating glaciers. This will help us in assessing the potential of global scale 

applicability of the developed glacier surface velocity estimation algorithm. 

• Automation of the proposed feature tracking algorithm should be explored to 

make it more efficient for large area. 

• The model structure of the ice thickness estimation model can be further improved 

by considering the effect of debris cover in the model. This work will dramatically 

improve the applicability of ice thickness model for debris covered glaciers.  

• The present study has been carried out for four glaciers representing different 

glacier characteristics (size, orientation) and different climatic regions. A few 

more glaciers from the same region would certainly add to the validation. A more 

rigorous testing at a regional scale shall be conducted in this regard. Moreover, 

further experiments need to be carried out to examine the implementation 

capability of the proposed ice thickness model at regional scale considering the 

factors such as availability of data and computational efficiency. 
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• Including a spatially distributed shape factor instead of a glacier wide average 

value, which is realistic representation of different cross sections, should be 

explored in future research to improve upon the ice thickness estimation. 
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Appendix-A1 

Google earth imagery of Chhota Shigri glacier dated 10th October, 2010. The boxes show the 

sites receiving contribution from rock fall and/or avalanches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix-A2 

Window size distribution of South Glacier for period a. 2005-06 and b. 2014-15. Darker regions 

represent a smaller window size. Legend shows the window size in pixel x pixel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix-A3 

Window size distribution of South Glacier using optical imagery of a) Aug, 2013 and b) Nov, 

2014. 
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Appendix-A4 

Comparative plot of proposed velocity estimates and cross correlation based velocity estimates 

(at standard window sizes of 32 x32, 64 x 64 and 128 x 128 pixels) of study glaciers: a) South 

Glacier for period 2005-06, b) Chhota Shigri Glacier for period 2009-10, and c) Tasman 

Glacier for period 2007-08.   

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix-A5 

Estimated vertical velocity ws (in m/yr) for the four study glaciers. 

 

 

 

 



Appendix-A6 

Estimated glacier surface velocity of Patsio Glacier calculated using the proposed SWIFT 

(Spatially varying WIndow based maximum likelihood Feature Tracking) algorithm in 

Chapter 5. The velocity represents the estimates for period 2016-17 calculated using optical 

data in chapter 4. 
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