MONASH University

Towards harmonious downscaled soil moisture
maps from the SMAP and SMOS satellites

Sabah Sabaghy

A thesis submitted for the degree of Doctor of Philosophy at
Monash University in 2019

Faculty of Engineering, Department of Civil Engineering






Copyright notice

(© Sabah Sabaghy (2019). Except as provided in the Copyright Act 1968, this thesis may

not be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third
party content included in this thesis and have not knowingly added copyright content to my

work without the owner’s permission.






Synopsis

Recent advances in space-borne remote sensing provides an unprecedented opportunity to
monitor soil moisture at global scale. The European Space Agency (ESA), and National
Aeronautics and Space Administration (NASA) have developed dedicated soil moisture
monitoring missions with a repeat time intervals of 3 days. Both the missions the Soil Mois-
ture and Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP) use L-band
passive microwave (radiometer) remote sensing technology, which is widely accepted as the
most accurate technique to retrieve soil moisture dynamics in time and space. However,
the coarse spatial scale (~40 km) of the SMOS and SMAP radiometer-only soil moisture
products places a limitation on their application. While the 40 km spatial resolution is satis-
factory for hydro-climatological studies, to satisfy the requirements of hydro-meteorological
and agricultural applications soil moisture maps required a spatial resolution finer than 10

km and 1 km, respectively.

Use of fine resolution data on land surface features has been proposed as a solution to
disaggregate the coarse passive microwave soil moisture into high to medium resolutions.
This technique, called downscaling or disaggregation, takes advantage of the strengths of
both passive microwave observations of soil moisture of low spatial resolution and the spa-
tially detailed information on land surface features that either influence or represent soil
moisture variability. Currently, a variety of downscaling techniques exist including radar-,
optical-, radiometer-, oversampling-, soil surface attributes-, data assimilation-, and ma-
chine learning-based methods. These techniques have typically been developed and tested
under differing weather and climate conditions, with no clear guidance on which technique

performs the best.

Varying accuracy of downscaling techniques was found in literature, with studies indepen-
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dently analysing the performance of each downscaling technique using different reference
data sets. Until now, there has been no single study testing the performance of these down-
scaling techniques against a common reference data set. Therefore, this thesis has inter-
compared the performance of existing radar-, optical-, radiometer-, and oversampling-based
downscaled products against an extensive data set representative of south-eastern Australia,
including the Soil Moisture Active Passive Experiment (SMAPEX) airborne soil moisture
maps and OzNet in situ soil moisture measurements. This comparison revealed the rela-
tive strengths and limitations of each downscaled soil moisture. Moreover, this study has
shown that the oversampling-based soil moisture downscaling technique was superior to
other downscaled products in capturing the heterogeneity of reference soil moisture in space
and time. The possible improvement (or deterioration) of each downscaled product was also
assessed by benchmarking their accuracy against the radiometer-only retrievals of SMAP

and SMOS.

The usefulness of merging these products for yielding a better estimate of soil moisture
has been investigated by evaluating different combination scenarios. This has explored
the potential of combining downscaled soil moisture products in generating a more tem-
porally complete accurate sequence of soil moisture estimates than downscaled products
alone. While the merging scheme improved the temporal representativeness of soil mois-
ture products, the analysis found no improvement of combined products in terms of the

spatial representativeness of soil moisture.
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Chapter 1

Introduction

This thesis explored the most appropriate downscaling methodology(ies) for the low res-
olution soil moisture products of the Soil Moisture Active Passive (SMAP) and the Soil
Moisture and Ocean Salinity (SMOS) satellite missions for soil moisture mapping at higher
spatial resolution. It also evaluated the potential for producing a combination of downscaled
soil moisture retrievals. The aim is to achieve a spatial resolution finer than 10 km with a

target accuracy of approximately 0.04 m® m=.

Existing downscaling techniques for high resolution soil moisture mapping were first sys-
tematically and critically reviewed. This review provides the reported accuracy of each
downscaling techniques, which have been independently derived using different data sets.
Consequently, a quantitative assessment of the existing radar-, optical-, oversampling-, and
radiometer-based downscaling approaches was undertaken using an extensive data set col-
lected specifically for that purpose, being the Soil Moisture Active Passive Experiment
(SMAPEXx)-4 and -5 airborne field campaigns, and the OzNet in situ stations. Combinations
of soil moisture retrievals from these different downscaling algorithms were then tested as
a step towards harmonious multi-sensor high resolution soil moisture retrieval for a typical

Australian landscape.

1.1 Importance of soil moisture

Land-atmosphere interactions are affected by soil moisture on a global scale (e.g. Entekhabi

et al., 1996, 2010; Petropoulos et al., 2015), thus exerting an impact upon the climate and

1



Chapter 1 — Introduction

weather (e.g. Entekhabi, 1995; Jung et al., 2010; Lakshmi, 2013; Seneviratne et al., 2010;
Taylor, 2015; Western et al., 2002) by influencing the partitioning of the incoming radiant
energy at the land surface into sensible and latent heat fluxes (Xia et al., 2014). Soil mois-
ture variation also controls the water and energy cycle components through the amount of
evapotranspiration, which affects the soil surface wet and dry patterns that in turn affect
precipitation (Hirschi et al., 2011; Koster et al., 2004). The volume of surface run-off and
groundwater recharge also depends upon the soil moisture by way of the precipitation in-
filtration rate into the soil (Tuttle and Salvucci, 2014). Regional characterization of soil
moisture variability at short time intervals would therefore greatly assist understanding of

the land-atmosphere system.

1.2 Importance of high resolution moisture measurement

Obtaining accurate information on soil moisture at an appropriate temporal and spatial scales
is challenging to achieve with global coverage using traditional approaches, due to the high
spatial and temporal variability of soil moisture. This variation is caused by the heteroge-
neous nature of soil properties, topography, land cover, and meteorology (e.g. rainfall and
evapotranspiration) that vary as a function of scale (e.g. Crow et al., 2012; Vereecken et al.,
2008). Meteorological forcing has a dominant control on the soil moisture spatial pattern
at watershed, regional and continental scales (Crow et al., 2012; Jana, 2010), unlike the
field and point scales where the soil moisture varies due to land cover, topography and soil
properties. Accordingly, fine-scale soil moisture measurements can provide a vital piece
of information for economic, social and environmental planning. Development of field and
watershed scale soil moisture measurements is therefore of benefit to agricultural production
and better understanding of rainfall-runoff responses, respectively (Robinson et al., 2008).
Moreover, measurement of soil moisture at regional and continental scales is important for
interpreting land-surface-atmosphere interactions (Kerr et al., 2001; Robinson et al., 2008).
Figure 1.1 summarizes the temporal and spatial resolution requirements of soil moisture in

a range of application areas.
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Figure 1.1: Summary of spatial and temporal resolution requirement of soil moisture for a
range of applications (Dr. Thomas Jackson and Prof. Dara Entekhabi, personal communi-
cation).

1.3 Statement of problems related to high resolution soil moisture mapping

Remote sensing can capture spatial and temporal patterns of soil moisture in the landscape,
with ow frequency passive microwave remote sensing a proven technology for providing
soil moisture estimates. Particularly useful are passive microwave observations at L.-band
because of their high sensitivity to soil moisture, and their favourable signal-to-noise ratio
(Njoku and Entekhabi, 1996). The ESA as well as the NASA have launched L-band passive
microwave instruments on board the Soil Moisture and Ocean Salinity (SMOS) and Soil
Moisture Active Passive (SMAP) satellites in 2009 and 2015, respectively. However, L-band
radiometers monitor global surface soil moisture at approximately 40 km spatial resolution,
and it is this coarse spatial scale that restricts the range of application of the retrievals to
only hydro-climatological studies (Entekhabi et al., 2008b). Development of a consistent
time series of soil moisture maps at moderate spatial resolution (1 to 10 km) is vital for
SMOS and SMAP soil moisture to be used across a wider range of applications (Entekhabi

et al., 2010), including agricultural production, water resources management and carbon
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cycle studies.

Downscaling, otherwise known as disaggregation, has been proposed as the solution to spa-
tially enhance these coarse resolution soil moisture observations, through association with
complementary observations, or ancillary information about the land surface features at
higher spatial resolution. Such information includes solar reflectance, thermal emission,
passive microwave emissions at a higher frequency, radar backscatter, soil or surface at-
tributes such as topography and soil properties, and land surface modelling. Each of these
ancillary data sources has its own strengths and limitations in terms of, for example, sensi-

tivity to surface soil moisture dynamics and availability.

While a variety of downscaling techniques, otherwise known as disaggregation, have been
proposed to improve the spatial scale of passive microwave derived soil moisture (Peng
et al., 2017), there has been no rigorous test to assess the relative strengths and weaknesses
of their performance. Moreover, combination of the different downscaled soil moisture
products for a consistent time series and better temporal and spatial representation of soil
moisture has not been tested. Consequently, this research first reviewed the strengths and
weaknesses of downscaling techniques based on their pros and cons as well as the accuracy
of each downscaling techniques based on its published, derived from comparison against
typically different reference data sets. The lack of information about the performance of
different downscaled soil moisture products for a specific set of reference conditions stimu-
lated an evaluation of the radar-, optical-, radiometer-, and oversampling-based downscaling
methodologies available, for a typical Australian climate and landscape. These investiga-
tions have helped identify the best downscaling algorithm(s) for application to the SMAP
and SMOS satellites. This research ultimately proposes a combination of the different down-
scaled soil moisture products, demonstrating the potential for a better representation of soil
moisture than from the individual downscaled products alone to produce a consistent time

series of downscaled soil moisture retrievals at a resolution finer than 10 km,
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1.4 Objectives and scope

The principal objective of this research was to determine the most appropriate downscaling
methodology(ies) which yields the best overall soil moisture estimation at higher resolution
based on literature, and direct comparison against each other using a common reference data
set. A technique for combination of downscaled soil moisture retrievals was also developed
for testing the performance of a merged disaggregated soil moisture product, with the aim to
provide a more accurate soil moisture map than that form any of the individual downscaled
products alone. Additional objectives included benchmarking the performance of down-
scaled products against the radiometer-only soil moisture retrievals of SMAP and SMOS.
The intention of this comparison was to reveal if downscaled soil moisture products could
surpass the coarse passive soil moisture estimates in terms of accuracy, and to quantify the

extent of possible improvement (or deterioration).

Reference data used for assessment of radiometer-only products, downscaled products and
combinations include ground measured near-surface soil moisture content from the OzNet
stations (Smith et al., 2012) in the Murrumbidgee catchment and experimental airborne soil
moisture maps collected from the SMAPEx-4 and -5 airborne field campaigns. Coincident
use of airborne and ground based soil moisture measurements for evaluation represents a
significant contribution to address unresolved questions in the soil moisture remote sens-
ing community regarding the reliability of remotely sensed soil moisture evaluation against

sparse in situ soil moisture measurements.

1.5 Outline of approach

This thesis was conducted following three main steps, including: i) systematic review and
comparison of current downscaling techniques based on literature review, ii) inter-comparison
of soil moisture products based on direct comparison of them against each other, and iii)
combination of soil moisture retrievals from different downscaled products to increase the
accuracy of soil moisture maps at finer resolution than 10 km. Steps (i) to (iii) are described

as below and a diagram of the approach is outlined in Figure 1.2.
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Step i) Existing downscaling techniques for high resolution soil moisture mapping were
systematically and critically reviewed. This review revealed the strengths and limitations
associated with each technique, specifically in relation to the suitability and/or applicability
in terms of the accuracy of soil moisture products, and availability of the land surface feature
data, which are the key components in mapping accurate soil moisture. This work involved
preparation of a comprehensive literature survey of downscaling methods and how they
operate to improve soil moisture spatial scale. Subsequently, an overview and discussion on
the advantages, drawbacks and knowledge gaps related to each approach was provided to

highlight the opportunities and challenges related to the research in this field.

Step ii) Airborne L-band passive microwave brightness temperature were collected during
the SMAPEXx-4 and -5 airborne field campaigns, using the PLMR instrument concurrent
with the SMAP and SMOS satellite overpasses. The Polarimetric L-band Multi-beam Ra-
diometer (PLMR) radiometric brightness temperature observations were used to derive a
reference airborne soil moisture data set. The accuracy of the reference airborne PLMR
soil moisture maps were then quantified using INTENSIVE ground soil moisture sampling
data that were conducted concurrent to flight acquisitions. The involvement of this the-
sis candidate in the SMAPEx-4 and -5 airborne field campaigns included intensive in situ
measurement of soil moisture by Hydraprobe Data Acquisition System (HDAS) , collecting
and post-processing the surface roughness measurements, producing daily vegetation water

content maps and evaluation of derived PLMR airborne soil moisture maps.

A range of different radar-, optical-, radiometer-, and oversampling-based downscaling
methods were benchmarked with SMOS and SMAP coarse passive microwave observa-
tions, as well as the data mentioned above to consistently evaluate their performance. This
inter-comparison was undertaken over the Yanco region using the SMAPEx-4 and 5 field
campaign data including the evaluated airborne-derived 1 km resolution PLMR soil mois-
ture maps, and OzNet in situ soil moisture measurements as evaluation references. The
coarse SMAP and SMOS passive soil moisture products were evaluated against each other
and reference data including airborne PLMR soil moisture maps and OzNet in situ mea-
surements. This was to: 1) understand to what extent SMAP and SMOS coarse soil moisture

are correlated, and ii) indicate the improvement of downscaled soil moisture products over
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the coarse passive microwave soil moisture products. The methods assessed as part of this

thesis are as outlined below.

The SMAP soil moisture was downscaled from 36 to 9 km using the radar-based downscal-
ing techniques, including: 1) the baseline active/passive method of SMAP (Das et al., 2014)
and, ii) the Multi-Objective Evolutionary Algorithm (MOEA) by Akbar et al. (2016). The
SMAP baseline active/passive algorithm downscales the SMAP Level 2 brightness tem-
perature (SPL2SMP) using a linear correlation between SMAP Level 2 Radar backscat-
ter (SPL2SMA) and brightness temperature. Soil moisture is then estimated by applying
the radiative transfer model (single channel algorithm, Jackson, 1993) to the downscaled
brightness temperature. These estimates are available at the NASA National Snow and Ice
Data Center Distributed Active Archive Center (NSIDC DAAC) website as SMAP Level 3
Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 3 (SPL3SMAP).
The core of the MOEA technique is a joint cost function which optimizes accuracy and
spatial scale of soil moisture retrieval through giving more weight to the most accurate soil
moisture retrievals from either radar backscatter or brightness temperature. The MOEA
technique was applied to the SMAP Level 2 Radiometer Half-Orbit 36 km EASE-Grid Soil
Moisture, Version 2 and SMAP Level 1C Radar Half-Orbit High-Resolution backscatter
Data on 1 km Swath Grid, Version 1 (SPL1CSO0) pairs.

Two types of physically based optical downscaling techniques were applied to the daily
global SMOS Level 3 radiometric soil moisture retrievals, obtained from i) the SMOS ob-
servations at mean spatial scale of 43 km and posted on the 25 km grid (SMOS operational
MIR CLF31A/D, version 3.00 obtained from the Centre Aval de Traitement des Données
SMOS (CATDS) website) and ii) the SMAP Level 3 Radiometer Global Daily soil moisture
posted on the 36 km EASE-Grid, in order to achieve a 1 km spatial resolution; the Disaggre-
gation based on Physical And Theoretical scale Change (DisPATCh; Merlin et al., 2013) and
the Vegetation Temperature Condition Index (VTCI) (Peng et al., 2015, 2016) approaches

were applied.

The DisPATCh model utilizes the SMOS L3 radiometric soil moisture (SMOS operational,
version 2.8 obtained from the Centre Aval de Traitement des Données SMOS (CATDS) web-



Chapter 1 — Introduction

site) as background, and a high resolution approximation of the Soil Evaporative Efficiency
(SEE) — produced using the MODerate resolution Imaging Spectroradiometer (MODIS) soil
temperature and vegetation index data — to downscale soil moisture to a resolution of 1 km.
This technique was applied to the ascending and descending SMOS soil moisture obser-
vations resulting in two DisPATCh products, the ascending DisPATCh (DisPATChA) and
descending DisPATCh (DisPATChD).

The VTCI technique uses the high resolution VTCI as the downscaling factor. The VTCI
is a thermal based proxy which is used as a drought monitoring index (Wang et al., 2001).
It is calculated based on the triangular/trapezoidal feature space constructed from 4 day
composite MODIS Leaf Area Index (LAI, MCD15A3) at 1 km resolution and the daily
Aqua MODIS day-and night-time land surface temperature difference (MYD11A1).

Downscaled SMAP soil moisture retrievals were also produced at 10 km using the radiometer-
based Smoothing Filter-based Intensity Modulation (SFIM) model applied by Gevaert et al.
(2015). In the SFIM procedure, SMAP Level 2 brightness temperature (SPL2SMP) is down-
scaled to the resolution of the Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR?2) Ka-band observations (~10 km), using a weighting factor. This weight-
ing factor was derived from a ratio between the Ka-band brightness temperature value for
each grid cell at approximately 10 km and the average of Ka-band brightness temperature
across the coarse scale of SMAP brightness temperature observations. From downscaled
SMAP brightness temperature, soil moisture content was estimated through application of

the Land Parameter Retrieval Model (LPRM, Owe et al., 2008).

An oversampling-based technique (Chan et al., 2018) which is based on the Backus-Gilbert
interpolation method (Backus and Gilbert, 1970, 1967) was also used to enhance not only the
spatial scale of SMAP brightness temperature but also its accuracy. The Backus-Gilbert is a
theory of interpolation which provides brightness temperature at 9 km by averaging bright-
ness temperature centered near a particular radius with a relatively short length of intervals.
Soil moisture was then derived by applying a radiative transfer model to the brightness tem-
perature posted onto the 9 km grid. This technique was applied to the morning/descending

and afternoon/ascending SMAP level 1B Radiometer Half-Orbit Time-Ordered brightness
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Temperature products at 47 km x 36 km and resulted in two series of products, the En-

hancedD and EnhancedA, respectively.

Step iii) The final stage of this research was to examine the performance of combined down-
scaled soil moisture products from the various merging scenarios, with a particular expec-
tation of capturing the spatio-temporal dynamic of ground based and airborne soil moisture
more accurately. A Gaussian merging approach, which is also known as the inverse variance
weighted averaging approach (Lee et al., 2016), was used to combine the different sources
of downscaled retrievals. The ESA Climate Change Initiative (CCI) program uses this same
merging scheme to produce the ESA CCI soil moisture data, which is a combination of
various single-sensor active and passive microwave soil moisture products (Dorigo et al.,

2017).

Applying this merging technique to the downscaled soil moisture products is based on as-
suming the soil moisture retrieval error to be independent and that it can be approximated
by normal random variables. Taking the statistical uncertainties in downscaled soil moisture
contents into the soil moisture retrieval procedure, the precision of final retrievals was ex-
pected to depend to a great extent on the accuracy of the initial soil moisture content guess,

the error estimates and the available downscaled data.

1.6 Thesis organization

The research included in this thesis is organized into six chapters. Chapter 2 is a review
of the soil moisture measurement techniques, the importance of soil moisture downscaling,
and existing downscaling techniques for spatial resolution improvement of coarse passive
microwave soil moisture products. This chapter presents a summary of the strengths and
weaknesses of each downscaling technique and a quantitative assessment of their perfor-
mances based on the reported accuracy in current literatures. This work has been published

in the journal Remote Sensing of Environment as a review paper:

Sabaghy, S., Walker, J. P., Renzullo, L. J., and Jackson,T. J. (2018). Spatially en-

hanced passive microwave derived soil moisture: Capabilities and opportunities. 209:551
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- 580, 2018

Chapter 3 gives the description of the study area and key reference data sets used for evalua-
tion of the downscaled and combined soil moisture products in this thesis. It concludes with
an evaluation of the PLMR airborne soil moisture maps against intensive ground sampling
of soil moisture and description of the downscaled soil moisture products used in evalua-
tion and combining method. This work has been submitted to the journal Remote Sensing of
Environment as a data paper. My involvement in this paper was: i) producing the daily vege-
tation water content maps used for PLMR airborne soil moisture retrieval, and ii) evaluating
the derived PLMR airborne soil moisture maps. I was also responsible for intensive HDAS
in situ measurement of soil moisture and surface roughness sampling during the SMAPEx-4
and -5 airborne field campaigns, and post-processing the surface roughness measurements

after the SMAPEX experiments.

Ye, N., Walker, J. P, Wu, X., Jeu, R. de, Entekhabi, D., Gao, Y., Jackson, T. J., Jonard,
F., Kim, E., Merlin, O., Pauwels, V., Renzullo, L., Riidiger, C., Sabaghy, S.., von
Hebel, C., Yueh, S. H., and L. Zhu. The Soil Moisture Active Passive Experiments:

Towards calibration and validation of the SMAP mission. In review.

The inter-comparison of downscaled products benchmarked with the PLMR airborne soil
moisture maps and in situ OzNet measurements is provided in Chapter 4. Preliminary re-
sults from this work were published as an invited peer-reviewed conference paper, with the
full results submitted to the journal Remote Sensing of Environment for review. My role
in this co-authored paper was to set up the collaboration with the relevant research groups
around the world to provide me with downscaled soil moisture products so that I could play
the role of independent broker in doing the comparison. I undertook all the evaluation anal-
ysis (including temporal analysis against the OzNet in situ soil moisture measurements and
PLMR airborne observations, and spatial analysis against the PLMR airborne soil moisture

maps), all the writings and interpretation of results.

Sabaghy, S., Walker, J.P., Renzullo, L.J., Akbar, R., Chan, S., Chaubell, J., Das, N.,
Dunbar, R.S., Entekhabi, D., Gevaert, A., Jackson, T.J., Merlin, O., Moghaddam, M.,
Loew, A., Peng J., Piepmeier, J., Riidiger, C., Stefan, V., Wu, X., Ye, N., and Yueh, S..

11
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Comprehensive analysis of alternative downscaled soil moisture products. In review.

Sabaghy, S., Walker, J.P., Renzullo, L.J., Akbar, R., Chan, S., Chaubell, J., Das, N.,
Dunbar, R.S., Entekhabi, D., Gevaert, A., Jackson, T.J., Merlin, O., Moghaddam, M.,
Peng J., Piepmeier, J., Piles, M., Riidiger, C., Stefan, V., Wu, X., Ye, N., and Yueh,
S. (2017). Comparison of downscaling techniques for high resolution soil moisture
mapping, In Proceedings of IEEE International Geoscience and Remote Sensing Sym-

posium (IGARSS), Fort Worth, Texas, USA, 23-28 July, 2017.

Chapter 5 develops a combination of downscaled products to examine the performance of
an integrated downscaled product in terms of accuracy, compared to the individual down-
scaled products alone. Chapter 6 presents the conclusions of this research and discusses

the direction for future work and research identified based on this research.
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Chapter 2

Review of spatially enhanced passive microwave
derived soil moisture

This chapter provides background knowledge about the soil moisture measurement tech-
niques and importance of soil moisture downscaling, followed by a systematic and criti-
cal review of existing downscaling techniques for high resolution soil moisture mapping.
Strengths and limitations associated with each technique are discussed, specifically in rela-
tion to the suitability and/or applicability in terms of the accuracy of soil moisture products,
and availability of the land surface feature data, which are the key component in mapping
accurate soil moisture. A detailed background of the downscaling methods and how they
operate to improve soil moisture spatial scale are also provided. Subsequently, there is
an overview and discussion on the advantages, drawbacks and knowledge gaps related to
each approach to highlight the opportunities and challenges related to the research in this
field. This review provides a detailed description of the limitations of the various down-
scaling techniques, so as to move forward the development of high resolution soil moisture
mapping from coarse passive microwave observations and summarising the accuracy of the
different approaches. The work in this chapter has been published in Remote Sensing of

Environment (Sabaghy et al., 2018) .
2.1 Soil moisture measurement techniques

Historically, ground sampling was the only possible approach to measuring soil moisture.
However, the sparseness of point measurement stations makes the use of in situ measure-

ments for capturing the spatially variable nature of soil moisture impractical due to their

13
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high maintenance and operation expenses. The need for global soil moisture monitoring
that compliments the sparsely distributed ground measurements has led to the development
of space-borne remote sensing (e.g. Entekhabi et al., 1999, 2010; Kerr et al., 2012; Njoku
et al., 2002), covering the Earth’s surface with a temporal frequency of a few days. Con-
sequently, a number of sensors have been launched on space-borne platforms over the past
four decades to acquire the electromagnetic emission, reflection and/or scattering from the

land surface, but not necessarily designed for soil moisture.

Sensors are classified according to the electromagnetic spectrum in which they monitor the
Earth’s surface. The regions of the spectrum of greatest interest for soil moisture are the
optical and microwave. Optical remote sensing measures the solar reflective (Visible (VIS)
, Near InfraRed (NIR) , and Short-Wave InfraRed (SWIR) bands ) and/or thermal emissive
(Thermal InfraRed (TIR) band ) regions of the electromagnetic spectrum. These measure-
ments have been used to determine spatial soil moisture variations by monitoring changes in
surface albedo (e.g. Dalal and Henry, 1986; Leone and Sommer, 2000; Liu et al., 2002) and
soil heat capacity (Petropoulos et al., 2015). While this information can be observed at a 1
km or better spatial resolution on a (cloud-free) daily basis, the signal is directly related to
only the very top millimetres of the soil surface for bare soil, or to the surface of the leaves
if vegetated. Moreover, the relationship to soil moisture typically depends on evaporative
demand and/or vegetation variation across seasons, which limits the potential application
of optical observations for direct soil moisture retrieval (Petropoulos et al., 2015). These
optical observations also suffer from being attenuated by the atmosphere, and are unable to
provide useful data under cloudy skies. This makes the interpretation of optically-based soil
moisture predictions complicated because data on the surface micro-meteorological and at-
mospheric information is required for corrections (Zhang and Wegehenkel, 2006). Access to
such data is limited at global scale, thus restricting the application of optical remote sensing

for direct soil moisture estimation.

The conversion of remotely sensed solar reflection/albedo data to soil moisture is primarily
based on the color of the soil or vegetation. Thus, information about soil mineral compo-
sition, organic matter, local incidence angle and vegetation type is required (e.g. Wang and

Qu, 2009). For bare soil the determination of soil moisture is limited to observing and in-
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terpreting changes in soil color, with moist soil being darker than dry soil. When there is a
layer of vegetation, observations primarily reflect changes in vegetation color and/or water
in the vegetation. Several land surface indices e.g. Normalized Difference Vegetation Index
(NDVI) by Rouse et al. (1974), Normalized Difference Water Index (NDWI) by Gao (1996),
and Normalized Multiband Drought Index (NMDI) by Wang and Qu (2007) were developed
to suppress vegetation and/or plant color impact. However, their application is limited by

the factors mentioned previously.

The utility of TIR remote sensing for soil moisture mapping has been demonstrated in sev-
eral studies (e.g. Anderson et al., 2007; Friedl and Davis, 1994; Muller and Décamps, 2001;
Schmugge et al., 1980; Verhoef et al., 1996). These studies have shown that while there
is a negative correlation between the diurnal range in surface soil temperature and the sur-
face soil moisture content, moist soil is cooler in daytime and warmer at night-time than
dry soil. This is because the presence of water, which has a greater heat capacity, leads
to moist soil having a greater resistance to temperature change than dry soil. These TIR
techniques, which use the thermal inertia concept for estimation of soil moisture, are often
based on using the TIR imagery in energy balance calculations (e.g. Goward et al., 2002) or
hydrological models (e.g.Coppola et al., 2007; Minacapilli et al., 2009). The thermal inertia
principle correlates changes of soil temperature to changes of soil moisture as well as heat
capacity (e.g. Mallick et al., 2009; van Doninck et al., 2011). Moreover, the TIR data is
either used alone or combined with vegetation indices to adjust for the vegetation impact on
the degree of heat transferred into the soil (Carlson et al., 1994). For example, Hain et al.
(2009) used the TIR-based Atmosphere Land EXchange Inversion (ALEXI) surface energy
balance model (Anderson et al., 1997, 2007; Mecikalski et al., 1999) to estimate available

water fraction, from which volumetric soil moisture was indirectly derived.

Microwave emission (collected by passive sensors) and backscatter (from active sensors,
otherwise known as radars) are directly related to near surface soil moisture (< 5 cm)
through the dielectric contrast between that of liquid water (~80) and dry soil (~4) (Schmugge
et al., 1974). The observations can be made under almost all-weather conditions due to the
atmosphere being transparent at the wavelengths most suitable for soil moisture (X- to L-

band). The difference between the active and passive microwave techniques lies in the

15



Chapter 2 — Review of spatially enhanced passive microwave derived soil moisture

source of the signal; radar observations measure the proportion of a transmitted signal being
backscattered to the sensor proportional to the surface reflectivity and roughness, while the
radiometer observations are measurements of a natural emission proportional to the surface

emissivity and physical temperature (Ulaby et al., 1981).

Active microwave remote sensing of soil moisture has the advantage of being at high spatial
resolution, especially Synthetic Aperture Radar (SAR) which has the capability of observ-
ing the earth’s surface at resolutions as high as 10 m Torres et al. (2012). However, this
high spatial resolution results in a revisit time of 35 days or longer. The temporal repeat
issue has been recently addressed through a constellation of sensors by the ESA; Sentinel-1
consists of two polar orbiting satellites having a global coverage of at least once every 6 to
12 days in Interferometric Wide Swath (IWS) mode (Wagner et al., 2009). The higher tem-
poral resolution of Sentinel-1 SAR observations compared to that of previous SAR missions
improves the feasibility of using SAR radar backscatter for a wider range of soil moisture
applications. Nevertheless, its narrow imaging swath cannot achieve the temporal resolu-
tion of 3 days or better that is required for many soil moisture mapping needs (e.g. Walker
and Houser, 2004; the National Research Council’s Decadal Survey). Radar imagery is
also highly sensitive to surface roughness, vegetation biomass and vegetation water content,
making the direct soil moisture retrieval from radar backscatter alone a complex process.
One solution proposed to overcome this problem is to use temporal change detection ap-
proach (Engman and Chauhan, 1995; Moran et al., 2000; Njoku et al., 2002; Wagner et al.,
1999), which assumes that factors such as surface roughness remain fixed with only the soil
moisture varying. However, to date accurate and global soil moisture retrieval from SAR

backscatter remains a challenge.

Passive microwave emissions at L-band (e.g. Jackson, 1993; Njoku and Entekhabi, 1996;
Schmugge et al., 1974, 2002; Ulaby et al., 1996) have been of great interest because of
their better sensitivity to soil moisture dynamics (Ulaby et al., 1982) than radar and op-
tical observations, and their favourable signal-to-noise ratio. Consequently, the ESA and
NASA have launched dedicated soil moisture missions using L-band passive microwave
instruments aboard the SMOS satellite in 2009 and SMAP satellite in 2015, respectively,

to monitor global surface soil moisture at a temporal resolution of at least 3 days. SMOS
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uses an interferometric radiometer with aperture synthesis by which multi-angular bright-
ness temperature data sets are collected. In contrast, the SMAP radiometer has a scanning
real aperture antenna which provides single angle (~ 40°) but high accuracy brightness tem-
perature observations. Both the SMOS and SMAP satellites have an approximately 40 km
resolution of their brightness temperature measurements, due to the trade-offs in antenna
(aperture) size needed for high resolution and the technical challenge of launching and op-
erating a large antenna in space. As the 40 km spatial resolution restricts the applications to
hydro-climatological studies Entekhabi et al. (2008b), spatial enhancement approaches are
required if the passive microwave missions are to satisfy hydro-meteorological and agricul-
tural applications Entekhabi et al. (2010). Figure 1.1 summarizes the temporal and spatial

resolution requirements of soil moisture in a range of application areas.

No remote sensing technique utilizing a single electromagnetic region or approach can by
itself satisfy the accuracy, spatial and temporal resolution requirements. While L-band pas-
sive microwave can yield accurate estimates of soil moisture content at low resolution, the
radar and optical imagery are capable of high spatial resolution but low accuracy soil mois-
ture; the decreased accuracy of the radar- and optical-based remote sensing of soil moisture
is due to the high impact by features such as surface roughness and vegetation canopy. Con-
sequently, the SMAP satellite had included a radar in its design, to produce an approximately
10 km resolution soil moisture by merging the active and passive microwave data sets and
permitting a compromise on accuracy. But due to a hardware anomaly, the radar transmitter
failed on 7th of July 2015, making the SMAP combination of active and passive microwave

observations no longer possible.

Apart from the SMAP active/passive baseline approach (Das et al., 2014), there have been
a number of other studies that have proposed leveraging the strengths of passive microwave
with that of radar and/or optical observations. This leveraging is possible through a pro-
cess called downscaling or disaggregation. Downscaling methods combine coarse passive
microwave observations with high spatial resolution features obtained from: microwave
remote sensing backscatter observations from active microwave sensors (e.g. Akbar and
Moghaddam, 2015; Das et al., 2011, 2014; Piles et al., 2009b) higher frequency radiometric

observations from passive microwave sensors (e.g. Gevaert et al., 2015; Santi, 2010); visi-
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ble, SWIR and/or TIR observations from optical sensors (e.g. Muller and Décamps, 2001;
Verhoef et al., 1996); and/or soil surface attributes (e.g. Ines et al., 2013; Pellenq et al.,
2003). More recently, data assimilation has been used to combine coarse passive microwave
data into a high resolution hydrological/land surface model (e.g. Reichle et al., 2001, 2017,
Sahoo et al., 2013), and a hydrological/land surface model has been used to train machine
learning techniques for soil moisture downscaling (e.g. Chai et al., 2011; Chakrabarti et al.,
2015, 2016; Srivastava et al., 2013). One advantage of these model-based prediction ap-
proaches is that there is no need for concurrent overpass by other satellites or concern about

lost data due to cloud coverage.

There are also statistical-based downscaling approaches (e.g. Kaheil et al., 2008; Loew and
Mauser, 2008; Mascaro et al., 2010, 2011; Parada and Liang, 2003; Shi et al., 2014b; Ver-
hoest et al., 2015), which provide the possible behaviour of the soil moisture using copula
probability distributions and/or wavelet coefficients. Camps et al. (2008) and Piles et al.
(2009a) have also developed mathematical-based downscaling techniques, which also esti-
mate the possible behaviour of the soil moisture using the Fourier domain. However, such
techniques are out of scope of this review, which provides an overview of downscaling tech-

niques that derive a deterministic pattern of soil moisture at higher resolution.

Static ancillary data

/et n =i] =

Hydraulic Soil Topograph
conductivit texture y

Y

L _>| Downscaling method l—b

Dynamic ancillary data
; ; ; t t t
_ Passive microwave soil / / / y Downscaled soil moisture maps at
moisture/brightness temperature maps finer resolution (1-10 km)
at coarse resolution (~40 km)

Radar Radiometer Optical LSM
backscatter emission Observation prediction

Figure 2.1: Schematic of the downscaling concept using spatially detailed information on
land surface features to distribute coarse scale soil moisture to fine scale.
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2.2 Review of soil moisture downscaling methods

Accurate soil moisture maps at moderate spatial resolutions (1-10 km) are required for re-
gional and local earth system applications. Various downscaling techniques have been pro-
posed for meeting the user requirements on spatial scale and accuracy of soil moisture mea-
surements. A schematic of the general approach to downscaling soil moisture is shown in
Figure 2.1, with Table 2.1 providing a concise overview of the strengths and weaknesses
of each downscaling method by listing each method with its pros/cons. Table 2.2 provides
the reported accuracy of each downscaling technique together with the list of methods, ref-
erences, main inputs, and improvement of downscaled products over the radiometer-only

measurements, as suggested by Merlin et al. (2015).

2.2.1 Microwave-based downscaling techniques

The capability of active and passive microwave observations has been verified for soil mois-
ture mapping since the 80’s (e.g. Dobson and Ulaby, 1986; Ulaby et al., 1982). The Ad-
vanced SCATterometer (ASCAT) aboard the European METeorological OPerational (METOP)
satellite 1s an example of an operational microwave radar which maps soil moisture globally
at coarse resolution of 25 and 50 km Wagner et al. (2013). The ESA CCI active microwave
soil moisture data, which is a merged product created from C-band scatterometers (ERS-
1/2 scatterometer, METOP Advanced Scatterometer), is available at 12.5 km. However,
these products cannot satisfy the spatial resolution requirement of the soil moisture appli-
cations presented in Figure 1.1. Advanced Synthetic Aperture Radar (ASAR) also maps
soil moisture at 1 km, but this product is only available over Australia, southern and central
Africa, and parts of Argentina for the time period between January 2005 and May 2010 (see:
https://www.geo.tuwien.ac.at/mrs/data-viewers/). Accordingly, active
microwave observations alone have not been able to routinely provide accurate high reso-
lution soil moisture estimates (e.g. Paloscia et al., 2013; Walker et al., 2004) globally, but
can contribute valuable information about the geophysical properties of the target scenes
(e.g. Chauhan, 1997; Mohanty et al., 2017). Reliable soil moisture retrieval from passive

microwave remote sensing is limited to the lower frequencies, namely L-band (~1.4 GHz),
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C-band (~6.9 GHz) and X-band (~10 GHz). The higher frequencies such as Ka-band are
not as sensitive to soil moisture as lower frequencies and respond to a very shallow layer of
soil (Calvet et al., 2011; Yee et al., 2017). Conversely, the Ka-band provides observations
at much higher resolution than lower frequencies because the Instantaneous Field of View
(IFOV) which is a spatial resolution measure of the remote sensing system is proportional to
wavelength (Salvia et al., 2011). Therefore, while direct retrieval is unlikely, Ka-band could
be a potential source of information about the surface spatial heterogeneity (e.g. Gevaert

et al., 2015; Neale et al., 1990; Santi, 2010).

The multi-source concept, in which the strengths of each sensor type are utilized, could po-
tentially improve the soil moisture estimation in terms of both accuracy and spatial scale.
Several studies have therefore suggested that the remotely sensed soil moisture from the
passive microwave observations at lower (L-and C-band) frequencies be combined with
backscatter or passive microwave emission at higher (Ka-band) frequency. These combina-

tion techniques are briefly introduced in the radar-and radiometer-based subsections below.

The combination of active/passive microwave observations has been a preferred approach
to downscaling because both sensors respond to changes in the dielectric properties of the
soil. Ulaby et al. (1983) conducted one of the first investigations based on this approach
using L-band radiometer and C-band radar soil moisture estimates over bare soil and corn
fields. They found that it could reduce the estimation error by up to 30% of the reference soil
moisture value. Findings from this pioneering work motivated Theis et al. (1986), O’Neill
and Chauhan (1992), O’Neill et al. (1996) and Chauhan (1997) to propose approaches us-
ing active and passive microwave techniques in compliment to each other, to optimize the
accuracy of the final soil moisture estimates. Theis et al. (1986) used L-band scatterome-
ter data to compensate for the surface roughness impact on the response of L-and C-band
radiometers to soil moisture. This complimentary combination significantly improved the
passive microwave remote sensing of soil moisture over bare fields, especially for L-band
soil moisture retrievals, with R? equal to 0.95. In order to utilize active and passive mi-
crowave data sets in combination, O’Neill and Chauhan (1992) retrieved soil moisture from
a radiative transfer model with radar-derived ancillary data on the vegetation attenuation

parameter. This analysis, which was made for a single field covered by corn, demonstrated
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that the radar derived vegetation attenuation could increase the accuracy of radiometric re-
mote sensing of soil moisture. In another study, O’Neill et al. (1996) used L-band radar
determination of vegetation transmissivity and scattering in a radiative transfer model to es-
timate soil moisture. They reported successful retrieval of soil moisture within about 0.02

m3

m™ of the ground measurements. A dielectric-soil moisture relation was also employed
by Chauhan (1997) to estimate soil moisture from Fresnel reflectivity, derived from radar-
based estimation of vegetation and surface roughness parameters. The capability of passive
microwave remote sensing in delivering soil moisture maps consequently improved, with an

averaged absolute bias of less than 0.05 m* m™.

Radar-based downscaling techniques

Besides using combined passive and active microwave observations as a means of improv-
ing the retrieval of soil moisture measurement, investigations were made for combined
radar-radiometer downscaling techniques. This technique attempts to recover the spatial
detail of the coarse soil moisture/brightness temperature through the association of the sub-
pixeldistribution of land surface features embedded in the radar imagery. However, the sen-
sitivity of backscatter to surface roughness and vegetation is the key limitation for applying
this technique to radiometric soil moisture downscaling (Njoku et al., 2001). To explore this
concept, a radar-radiometer data set was collected by the Passive-Active L-/S-band (PALS)
sensor during the Southern Great Plains Experiment in 1999 (SGP99) . This data set was
used by Njoku et al. (2002) to design a change detection based downscaling algorithm that
employed a linear relationship between the backscatter and volumetric soil moisture (e.g.
Dobson and Ulaby, 1986). The use of relative changes in backscatter reduces the impact of
surface roughness and vegetation on radar signals, and thus on soil moisture estimates (e.g.
Moran et al., 2000; Quesney et al., 2000; Wagner and Scipal, 2000). Narayan et al. (2006)
modified the Njoku et al. (2002) method by using the relative radar response to soil moisture

suggested by Du et al. (2000).

In order to conduct an assessment of the algorithm’s applicability, coincident active mi-
crowave observations and passive microwave derived soil moisture products were simulated

to mimic the gradual wetting and drying conditions. The spatial variability in soil mois-
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ture and vegetation water content were assumed to be the only factors influencing temporal
changes in the radar signals. This method was used by Narayan and Lakshmi (2008) to
downscale space-borne soil moisture estimates from the Advanced Microwave Scanning
Radiometer (AMSR-E) and Tropical Rainfall Measuring Mission (TRMM) Microwave Im-
ager (TMI) with backscatter from the Precipitation Radar (PR) . This study demonstrated
the applicability of the radar-based downscaling technique to represent soil moisture spatial
variability. Through inter-comparison between downscaled TMI and AMSR-E, temporal
coincidence between radar and radiometer observations was found to exist, providing cre-
dence to this approach; soil moisture products from the TMI sensor on the same platform as

the TRMM-PR radar were much better enhanced spatially than those from the AMSR-E.

Research on the integration of radar and radiometer observations for spatially enhanced soil
moisture mapping has not been limited to the physically based approach of Njoku et al.
(2002). For example, Bindlish and Barros (2002) also produced sub-scale brightness tem-
perature prior to soil moisture retrieval by applying a fractal interpolation methodology,
combining radar and radiometric observations. In this approach, the ratio between high
resolution HH-polarized backscatter, and aggregated backscatter to the scale of the coarse
brightness temperature observation, was used as a weighting coefficient to estimate bright-
ness temperature at the same resolution as the backscatter observations. In a further ap-
proach, Zhan et al. (2006) developed a Bayesian disaggregation method that merges radar
and radiometer observations with an initial background soil moisture field. In this study,
using synthetic data from an Observation System Simulation Experiment (OSSE) , the back-
ground states of soil moisture were first derived using direct inversion of coarse brightness
temperature. The uncertainties in the initial soil moisture estimate and the satellite ob-
servations were then used to merge observed and calculated brightness temperature and
backscatter from the background soil moisture using emission and backscatter models, to
get an updated soil moisture field.Wu et al. (2017) subsequently applied this technique to
a time series of experimental aircraft-based radar/radiometer observations collected during
the SMAPEX-3 field campaign Panciera et al. (2014) in south-eastern Australia to produce
1, 3 and 9 km resolution soil moisture maps. Findings from this study revealed that: 1)

the performance of the Bayesian method depended on the accuracy of the radar model, and
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that ii) the Bayesian merging technique performed best over grassland areas with the radar

model used in that study.

The development of radar-based downscaling techniques entered a new phase with the an-
nouncement of a dedicated active/passive microwave satellite for soil moisture, SMAP, in
response to the National Research Council’s Decadal Survey. The SMAP satellite was de-
signed to measure temporally coincident surface emission and backscatter from a radiome-
ter/radar using a single large mesh antenna with a conical scan configuration. The concept of
having a radar and radiometer integrated into a single system was first introduced by Njoku
et al. (2000). The conical scan provides measurements of the Earth’s surface at constant
incidence angle and antenna pattern characteristics across the entire swath. Accordingly,
the data processing, interpretation, and geophysical retrieval become simplified. The SMAP
mission aimed to combine the strengths of the respective radar and radiometer observations
- high spatial resolution for the radar and high sensitivity to soil moisture for the radiometer

- to estimate soil moisture content at an intermediate resolution.

The change detection method of Piles et al. (2009b) was among the first alternative tech-
niques to derive active/passive microwave merged products. Piles et al. (2009b) made use
of the linear correlation between backscatter and soil moisture content for formulating a
disaggregation algorithm which derived relative changes of soil moisture. This approach
produced the spatial variability of soil moisture by updating the radiometer soil moisture
retrieval from the previous observation with the corresponding temporal changes in high
resolution backscatter. The approach was applied to airborne data from PALS for the
SMEXO02 campaign, and to an OSSE. The change detection approach revealed superior-
ity to radiometer-only estimations in terms of both the accuracy and spatial heterogeneity of

soil moisture products.

The active/passive optional algorithm developed by Das et al. (2011) is an extension to the
Piles et al. (2009b) change detection approach. This technique was also developed based
on the linear regression between backscatter and volumetric soil moisture. The major en-
hancement of the active/passive retrieval method over the change detection technique was

the estimation of an absolute soil moisture. Being based on the linear relationship between
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backscatter and passive-based soil moisture products, the successful application of these
techniques depends to a great extent on how well backscatter and soil moisture are corre-

lated (Wu et al., 2014), and how sensitive they are to soil moisture changes.

The SMAP active/passive baseline algorithm by Das et al. (2014), which established a lin-
ear regression between backscatter and brightness temperature for estimation of absolute
soil moisture at 9 km, was an extension of the active/passive optional retrieval algorithm
developed by Das et al. (2011). The baseline algorithm downscaled observed brightness
temperature and then performed the soil moisture retrieval, as opposed to the optional ac-
tive/passive retrieval algorithm that downscaled derived soil moisture at coarse resolution
as described above. An important aspect of the baseline algorithm is that it considers veg-
etation and surface roughness heterogeneity in time and space when calibrating the main
downscaling factor S [K/dB] as an added value to the active/passive retrieval algorithm.

The processing steps of the baseline model currently used by the SMAP science team are

described in Figure 2.2.

Wu et al. (2016) applied the active/passive optional (Das et al., 2011), baseline (Das et al.,
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Figure 2.2: Schematic diagram of the SMAP active/passive baseline algorithm (adapted
from Dr. Xiaoling Wu personal communication).
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2014) and change detection (Piles et al., 2009b) retrieval algorithms to the SMAPEx-3 air-
borne simulation (Wu et al., 2015) of the SMAP data stream to test the robustness of al-
ternate radar-radiometer combination algorithms over a semi-arid region. Findings of this
study revealed that all the alternate algorithms had only small differences in average Root
Mean Square Deviation (RMSD) and could effectively increase the spatial resolution of soil
moisture retrievals from 36 to 9 km. However, the active/passive retrieval algorithm by Das
etal. (2011) showed the best correlation with the reference soil moisture map. Consequently,
Wu et al. (2016) recommended application of the optional active/passive retrieval algorithm

by Das et al. (2011) for global soil moisture mapping.

Montzka et al. (2016) developed a linear relationship between radar-and radiometer-only
soil moisture estimates for calibrating a disaggregation algorithm which enhances the spa-
tial resolution of passive-based soil moisture retrievals. This approach was applied to L-band
radar and radiometer airborne data from the Tereno campaign (Montzka et al., 2012). Per-
formance of this method was compared against the active/passive optional (Das et al., 2011)
and baseline (Das et al., 2014) retrieval algorithms. This analysis revealed superiority of the
baseline algorithm in delivering more accurate high resolution soil moisture to the optional
technique and the new combined radar/radiometer-only soil moisture technique by Montzka
et al. (2016). However, the spatial pattern of retrieved soil moisture from the new combined
radar/radiometer-only soil moisture technique by Montzka et al. (2016) was reported to be

similar to that of the baseline retrievals.

Recently, Riidiger et al. (2016) downscaled an airborne simulation of the coarse scale L-band
brightness temperature at 50 km using ESA’s C-band ASAR backscatter aggregated to 2 km.
This technique included two changes to the active/passive optional algorithm: 1) calibration
of the downscaling factor at higher resolution than the coarse scale of L-band observations
in order to have an adequate number of regression points for establishing a linear relation-
ship, ii) the establishment of a linear regression between the radiometric emissivities and
radar backscatter sensitivities instead of between soil moisture and radar backscatter. The
intention of using backscatter sensitivities and radiometric emissivities was to preserve the
information of vegetation heterogeneity in the downscaling products and to remove the sur-

face temperature impacts, respectively. This downscaling approach resulted in soil moisture
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estimates with errors of 0.06 to 0.12 m®> m™, which are comparable to other downscaling

techniques.

Akbar and Moghaddam (2015) proposed a Combined Active-Passive (CAP) algorithm based
on a joint cost function with adaptive regularization by Monte Carlo numerical simulations.
To increase the reliability of soil moisture retrievals in terms of accuracy, CAP gave more
weight to radiometric soil moisture but without discarding the complimentary radar-based
soil moisture estimates. The novelty of the CAP model was the merging of the same-scaled
and coincident radar and radiometric soil moisture. This approach was demonstrated using
airborne PALS and tower Combined Radar Radiometer (ComRad) acquisitions, resulting
in soil moisture retrievals with accuracy of 0.038 m* m™ for low noise level measurement

scenario.

Radiometer-based downscaling techniques

The downscaling of coarse passive microwave data has not been limited to the use of
backscatter. The use of passive microwave observations at higher frequencies has also been
introduced, with several systems using the same antenna for multi-frequency measurements;
higher spatial resolutions are available from the higher frequencies. One such methodology
is based on the multi-sensor image fusion technique known as SFIM by Liu (2000), initially
applied for increasing the spatial resolution of multi-spectral optical data. The approach
was subsequently applied by Santi (2010) for downscaling brightness temperature obser-
vations from the AMSR-E. Applying the SFIM on pairs of simultaneous Ka- and C-band
acquisitions from the AMSR-E sensor, Santi (2010) reported on the SFIM’s potential for
disaggregating approximately 50 km resolution C-band (6.9 GHz) brightness temperature
to 10 km. Unravelling of spatial variability in soil moisture using this technique is through
heterogeneity captured by the Ka-band (36.5 GHz) brightness temperature at 10 km resolu-

tion in the disaggregation procedure.

The performance of this method for soil moisture downscaling was further evaluated by
de Jeu et al. (2014) and Parinussa et al. (2014). While these studies reported on the algorithm

success in enhancing the spatial variability of soil moisture and in capturing dry and wet
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Figure 2.3: Schematic of the SFIM technique for downscaling coarse passive microwave
brightness temperature to yield a medium resolution soil moisture retrieval.

regions, their analysis revealed that geophysical accuracy of the high resolution products
remained on the same level as that of coarse AMSR-E soil moisture products. Their analysis
also revealed that rainfall impacts on the Ka-band observations could diminish the accuracy
of downscaled soil moisture products. Gevaert et al. (2015) recently corrected the Ka-band
observations for precipitation prior to their use in the SFIM method. This modification
involved the application of a precipitation mask to the Ka-band observations to remove
them from the processing. Disaggregated soil moisture products at 10 km resolution were

subsequently retrieved from the downscaled brightness temperature (see Figure 2.3).

2.2.2 Optical-based downscaling techniques

The association of land surface temperature and vegetation parameters with soil moisture
conditions (Nemani et al., 1993) provides the basis for optical downscaling. Carlson et al.
(1994) and Gillies and Carlson (1995) developed the universal triangle concept (Figure 2.4)
which relates VIS/IR parameters, such as the NDVI and Land Surface Temperature (LST)

, to the soil moisture status. The sensitivity of surface temperature change in response

48



Chapter 2 — Review of spatially enhanced passive microwave derived soil moisture

% Min evaporation

A
Min transpiration

~
N, Tair

Soil surface temperature

=
(=}
o=
=
<
N
P
en
[
>

Max evapgration Wet edge

T min

Max transpiration

v

VI min VI max

Normalized Difference Vegetation Index (NDV1)

Figure 2.4: Triangle/Trapezoid concept of the LST/VI feature space (adapted from
Petropoulos et al., 2015 and Merlin et al., 2012).

to soil moisture is considered to be different depending upon the surface conditions (e.g.
canopy type, density of vegetation cover). This linkage creates a scatter plot of vegetation
index-surface temperature in the shape of a triangle (or a four-sided polygon in the case
that wet and dry edges cross beyond the maximum NDVI value), yielding boundaries of the
wet and dry conditions. However, this concept cannot act as a direct methodology for soil
moisture retrieval, due to attenuation of reflected solar radiation from the soil surface by the
opaque overlaying media (e.g. atmosphere and vegetation), lack of micro-meteorological

and atmospheric information, and the optical observations being affected by clouds.

Several researchers have used the triangle concept as a tool to improve the scale of passive
microwave based soil moisture products (e.g. Fang et al., 2013; Merlin et al., 2006, 2008a,b,
2012, 2013; Piles et al., 2011), with land surface temperature and vegetation parameters
derived from optical observations at high resolution being the key factor in the downscaling

process. These optical-based downscaling techniques combine the strengths of optical and
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radiometric observations (i.e. high spatial resolution optical data and high accuracy passive
microwave derived soil moisture). While the high spatial resolution of optical observations
provides information on heterogeneity of surface features, they have limited application due

to being highly affected by cloud coverage and vegetation.

To calculate soil moisture variations at 1 km resolution, Chauhan et al. (2003) used opti-
cal observations from the Advanced Very High Resolution Radiometer (AVHRR) to infer
spatial variability of surface features for downscaling coarse soil moisture from the Special
Sensor Microwave Imager (SSM/I) , which is not a particularly good frequency to use, for
the Southern Great Plains (SGP97) campaign. Chauhan et al. (2003) calibrated a model
through which an ensemble of satellite-derived vegetation index, surface albedo and land
surface temperature with soil moisture at the coarse scale of SSM/I, led to reasonable esti-
mates of fine scaled soil moisture in terms of accuracy (0.05 m* m). In this model, which
was based on the model by Zhan et al. (2002), a simple linear average equation was applied
to the pixel values of AVHRR within the passive microwave grid scale. This model was then
applied to high resolution surface feature parameters to retrieve soil moisture maps at 1 km
resolution. The advantage of this approach was its modest requirement of ancillary data for
disaggregation. Later, Choi and Hur (2012) applied this model to downscale AMSR-E soil
moisture products from 25 to 1 km over a study area in Korea. Disaggregated soil moisture
products in this study were reported to have slightly lower RMSD and higher correlation of
coefficient to ground-based measurements than those of the coarse AMSR-E soil moisture.
This technique was also used by Zhao and Li (2013a) to downscale AMSR-E soil moisture
retrievals from 25 to 5 km using the METEOSAT Second Generation Spinning Enhanced
Visible and Infrared Imager (MSG SEVIRI) geostationary satellite data. The fact that geo-
stationary satellites continuously monitor the land surface, facilitates capturing of temporal
variation of LST which was correlated to soil moisture instead of an absolute value of LST
in this study. Use of change in LST over time was suggested by Stisen et al. (2008) as a
solution for reducing the mean error in the thermal information and the impact it had on the
accuracy of downscaled soil moisture products. The two LST temporal variation parame-
ters used in this study were mid-morning temperature rising rate and maximum temperature

time, which are strongly related to soil moisture (Zhao and Li, 2013b). Retrievals from this
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downscaling technique revealed no improvement over the AMSR-E soil moisture products
when compared against ground based measurements of soil moisture; however, they showed
better agreement with in situ measurements than the retrievals from Chauhan et al. (2003)
method. Piles et al. (2014) expanded the approach to use the polarimetric multi-angular
brightness temperature observations of SMOS to reflect precipitation impact on changes in
soil moisture. An early version of the Piles et al. (2014) downscaling scheme was presented
inPiles et al. (2011) to downscale SMOS derived soil moisture maps to 1 km resolution.
Piles et al. (2011) recommended: 1) to capitalize the synergy between SMOS and MODer-
ate resolution Imaging Spectro-radiometer (MODIS) observations instead of other optical
observations such as the AVHRR and Landsat, and ii) to average pixel values of MODIS
within the SMOS grid scale that were not masked by clouds. While Piles et al. (2011) sug-
gested the use of brightness temperature for better estimates of high resolution soil moisture
maps, it was Piles et al. (2012) that added polarimetric and multi-angular brightness tem-
perature into the model. This adjustment made the downscaling algorithm more reliable by
increasing the temporal correlation and reducing error retrievals from 0.05 to 0.03 m® m?.
A schematic of this downscaling model is shown in Figure 2.5. Sdnchez-Ruiz et al. (2014)
used MODIS NDWI at the higher spatial resolution of 500 m, rather than the 1 km NDVI
in Piles et al. (2014), to derive a better agreement of downscaled soil moisture with in situ

measurements, particularly during periods of high vegetation activities.

The work of Piles et al. (2014) is capable of downscaling SMOS soil moisture products from
a spatial resolution of 25 km to 1 km. However, this technique lacks the ability to preserve
the temporal resolution of passive microwave soil moisture data; the temporal resolution of
its retrievals is hampered by the availability of MODIS observations and their cloudiness.
The shortcomings of this model were overcome by using the MSG SEVIRI optical data
in place of MODIS data (Piles et al., 2016). The Piles et al. (2016) model provided 3 km
temporally averaged soil moisture estimates using MSG geostationary satellite observations,
to provide instantaneous soil moisture estimates at time increments of 15 minutes. The
proposed downscaling technique not only estimated high resolution soil moisture with a
similar quality to SMOS soil moisture, but also minimised the impact of clouds by using

observations throughout the daytime.
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Merlin et al. (2005) proposed the use of a physical downscaling model to derive the spatial
variability of the top 0-5 cm soil moisture at 1 km resolution. This model disaggregates
the surface soil moisture according to fine-scale information provided by radiometric sur-
face temperature and surface coverage condition.Merlin et al. (2006) tested this algorithm
over a semi-arid area and found that the model performed best for high solar radiation and
low vegetation density. Merlin et al. (2008a) then translated space-and time-based anoma-
lies of soil moisture indices at fine-scale into high resolution soil moisture from SMOS,
by establishing a linear relationship to calibrate a time-invariant slope at the SMOS scale.
Evaporative Fraction (EF; the ratio of evapotranspiration to the total energy available at the
surface) and Soil Evaporative Efficiency (SEE; the ratio of actual to potential evaporation),
were chosen as the Soil Moisture Indices (SMIs) for downscaling. The choice of EF and
SEE for soil moisture downscaling was not only because of their direct dependency on soil
moisture dynamics, but also their constant diurnal characteristic. Both SMIs provided a
fine-scale distribution of soil moisture; however, SEE resulted in more accurate estimates
of 1 km scale soil moisture, due to the higher correlation with surface soil moisture. The
superior performance of this algorithm was reported for dry-end soil moisture controls and
clear sky only condition. An expansion of this algorithm was presented in Merlin et al.

(2008b), whereby the relationship between SEE and surface soil moisture was considered
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Figure 2.5: Schematic of the downscaling model structure developed by Piles et al. (2012).
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to be variable and a function of soil type, wind speed, and SMOS-scale near surface soil
moisture. Relating the spatially averaged MODIS thermal observations to 10 km, linearity
of the SEE-soil moisture relationship was improved because sensitivity of coarse thermal
observations to soil moisture was considerably higher. Merlin et al. (2009) introduced in-
termediate resolutions, with the range of 3 to 5 km being optimal for soil moisture products
in terms of accuracy. They also suggested a sequential downscaling procedure with the use
of multi-resolution thermal imagery. This procedure improved the spatial scale of SMOS
retrievals from 40 km to 4 km resolution using the aggregated MODIS observations at 4
km, and subsequently used Advanced Scanning Thermal Emission and Reflection (ASTER)
radiometer data to disaggregate retrievals to 500m soil moisture maps. However, applica-
tion of this sequential downscaling model concept was not recommended since combined
use of MODIS and ASTER increased uncertainty of soil moisture retrievals compared to
MODIS only disaggregated soil moisture. The low temporal repeat of ASTER observations
was another factor that reduced the functionality of this approach. Use of the exponential-
based SEE model, as opposed to cosine-based suggested by Merlin et al. (2010), led to
improved spatial representation of downscaled soil moisture. Developing a Taylor series of
soil moisture with respect to projected SEE was also implemented to improve accuracy and

robustness of the disaggregation model.

Ongoing efforts to improve performance of the SEE-based disaggregation model (Merlin
et al., 2008b) led to the emergence of the DisPATCh model by Merlin et al. (2012), in which
the use of the universal trapezoid (Figure 2.4) instead of the universal triangle concept was
recommended for better soil moisture disaggregation. However, the DisPATCh model per-
formance 1is still related to seasonal and climatic variations because the strength of the cou-
pling between soil moisture and surface temperature varies on a seasonal basis. The strength
of this coupling over semi-arid areas during summer resulted in a temporal correlation of
0.7 when compared to point-measurements. This result is in stark contrast to the correlation
of downscaled soil moisture content over temperate climate during winter, which had a cor-
relation of zero. The latest version of the DisPATCh model, including the use of vegetation
water stress (Moran et al., 1994) and correction for elevation effects on temperature, was in-

troduced by Merlin et al. (2013). That study contrasted the DisPATCh model with the linear
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and non-linear behaviour of the SEE variable in relation to multi-resolution retrieval of soil
moisture, and revealed preference for the SEE linear behaviour over non-linear for kilome-
ter resolution. However, the assumption of a linear relationship between the SEE and soil
moisture resulted in poorer performance at meter resolution. These results also confirmed
that atmospheric evaporative demand with seasonal variation is the main factor controlling
the quality of the DisPATCh downscaled soil moisture retrieval. This method is illustrated

in Figure 2.6 to provide a clear understanding of how it works.

Using the DisPATCh technique to downscale AMSR-E and SMOS over the Murrumbidgee
catchment in Australia, Malbéteau et al. (2016) reported that downscaled soil moisture could
provide opportunities for reducing the negative impact of scale mismatch on validation of
satellite soil moisture applications. Malbéteau et al. (2016) also showed that DisPATCh was
efficient in increasing the correlation coefficient of satellite soil moisture retrievals, espe-
cially in semi-arid regions. For example, in the semi-arid region of Yanco, the correlation
coefficient of SMOS for afternoon overpasses increased from 0.37 to 0.63 after disaggre-
gation. Djamai et al. (2016) proposed combining DisPATCh derived soil moisture with the

Canadian LAnd Surface Scheme (CLASS) simulations of soil moisture in order to estimate
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Figure 2.6: Schematic of DisPATCh downscaling method which combines accurate but
coarse passive microwave observations with high resolution optical observations.
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a continuous time series of 1 km soil moisture maps for cloudy and cloud-free days. In that
study, the DisPATCh derived soil moisture was compared with the CLASS soil moisture
simulation for cloud-free days to develop a robust slope correction function. Results from
the application of this calibration function - assumed to be valid under cloudy sky - indicated
the potential of a DisPATCh/CLASS combination for soil moisture retrieval under cloudy

skies.

The soil evaporative efficiency has also been utilized in a different approach by Fang and
Lakshmi (2014a), for downscaling AMSR-E soil moisture. In the first step of their soil mois-
ture downscaling procedure, North American Land Data Assimilation System (NLDAS)-
derived soil temperature was disaggregated to 1 km resolution using the MODIS LST and
fractional vegetation cover. From the disaggregated NLDAS soil temperature, SEE was esti-
mated using the model of Merlin et al. (2010). The 1 km SEE estimates were then converted
to soil moisture maps at 1 km resolution using models developed by Noilhan and Planton
(1989) and Lee and Pielke (1992). The difference between the AMSR-E derived soil mois-
ture and up-scaled 1 km soil moisture to the resolution of AMSR-E were then added to each

1 km soil moisture pixel to estimate high resolution soil moisture.

Instead of the SEE, which was used in the physical-based downscaling technique by Merlin
et al. (2010, 2012), Chen et al. (2017) used the Normalized Soil Moisture Index (NSMI) as a
variance indicator of soil moisture in space. The dimensionless NSMI with resolution of 250
m was derived using the MODIS NIR and red-band land surface reflectance products. This
downscaling technique, named Near InfraRed-Red (NIR-Red) Spectral-based Disaggrega-
tion (NRSD) , was developed using a semi-physical relationship which related the NIR-Red
triangle space (Huete et al., 1985; Richardson and Wiegand, 1977) to the soil moisture sta-
tus. The NRSD technique was formalized to downscale 36 km SMAP radiometer-derived
soil moisture to 250 m using the first-order Taylor series (Merlin et al., 2012) through which
the SMAP soil moisture was corrected with respect to the converted variance of the NSMI to
soil moisture. Accuracy, spatial resolution, and application scope of downscaled soil mois-

ture products from the NRSD were reported to outperform the retrievals from DisPATCh.

The contribution of Soil Wetness Index (SWI) as a weighting factor to disaggregate coarse
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AMSR-E surface soil moisture products was evaluated by Kim and Hogue (2012). The
coarse C-band AMSR-E observations were multiplied by the ratio of the MODIS-scaled
SWI to the mean of MODIS-based SWI over the AMSR-E footprints. To estimate SWI, the
algorithm applied the Jiang and Islam (2003) model to MODIS temperature and Enhanced
Vegetation Index (EVI) products. The selection of EVI over NDVI was intended to minimise
the soil background interference in the vegetation index. The performance of this algorithm
resulted in a better approximation of soil moisture than that of the coarse AMSR-E soil
moisture over a semi-arid region in the San Pedro River basin. In addition, the model showed
better performance than the triangle-based downscaling techniques developed by Chauhan
et al. (2003) and Carlson et al. (1994). However, the correlation of estimates from Kim
and Hogue (2012) approach with in situ soil moisture measurements was at lower level than

products from the physical based model of Merlin et al. (2008b; and 2009).

By combining LST retrieval from passive microwave brightness temperature algorithm (Mc-
Farland et al., 1990) with an empirical relationship (Choudhury et al., 1987; Mao et al., 2012;
Meesters et al., 2005) between the Microwave Polarization Difference Index (MDPI, Pam-
paloni and Paloscia, 1985) and NDVI, Song et al. (2014) developed a downscaling method
which involved brightness temperature downscaling prior to soil moisture retrieval. This
model was applied to the AMSR-E Ku-band observations available at 25 km to derive soil
moisture maps at 1 km over the Maque monitoring network in China. Retrievals from this
downscaling technique had a similar temporal trend to the in situ measurements with RMSD
less than 0.12 m® m™. This technique was suggested to have better performance over bare

and sparsely vegetated soil surfaces where the soil has dry or moderately wet condition.

Hemakumara et al. (2004) and Peng et al. (2016) found that the VTCI had a positive corre-
lation with soil moisture, and so developed a VTCI-based downscaling algorithm similar to
Kim and Hogue (2012). Downscaled soil moisture from the VTCI-based algorithm showed
spatially consistent agreement with in sitfu measurements and land cover, while maintaining
the accuracy of coarse soil moisture products. To increase the operational efficiency of this
approach, Peng et al. (2015) examined how the VTCI-based algorithm performed when the
index is retrieved from a geostationary optical sensor such as the MSG SEVIRI. The capabil-

ity of geostationary sensors to capture optical acquisitions at shorter time intervals increases
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the chance of providing more cloud-free observations, thus leading to a greater continuity of
downscaled soil moisture. However, it comes with a sacrifice on spatial resolution because
the current geostationary optical observations are only available at the scale of 3 to 5 km. A
new VI-based downscaling technique was recently developed by Kim et al. (2017), which
established a linear relationship between NDVI and temporally averaged coarse passive mi-
crowave derived soil moisture data. For developing this downscaling model, Kim et al.
(2017) used the ESA CCI merged active-passive microwave soil moisture data available at
25 km together with aggregated 1 km MODIS NDVI 16-day composite to 25 km. Valida-
tion results showed that NDVI can replace the required LST information for disaggregation
when the LST product is not available or comes with a poor-quality due to cloud coverage.
Therefore, use of the NDVI composite allows to downscale soil moisture without the cost
of losing the temporal variability of coarse soil moisture due to lack of NDVI information

under cloudy skies.

Wang et al. (2016) swapped the SWI downscaling parameter in the Kim and Hogue (2012)
model for Temperature Vegetation Drought Index (TVDI, Sandholt et al., 2002) to down-
scale long time series of passive microwave observations of soil moisture produced by
Dorigo et al. (2012a). The TVDI is a dryness index which was derived from MODIS LST
and NDVI products (Patel et al., 2009). Compared with retrievals from the triangle based
downscaling model by Carlson et al. (1994), the physical model by Merlin et al. (2009,
2010), and the Kim and Hogue (2012) model, TVDI-based downscaling retrievals showed
superiority in terms of both accuracy and consistency of temporal variability with field mea-

surements.

Another soil moisture disaggregation method is based on the thermal inertia principle, which
correlated changes of soil temperature to changes of soil moisture as well as heat capacity
(Mallick et al., 2009). This technique produced absolute volumetric soil moisture at 1 km
resolution by converting SWI to soil moisture using prior knowledge on total water capacity
and minimum soil moisture content based on soil type. Compared with a dry soil, water has
a greater heat capacity and thus a greater resistance to temperature change. The presence
of higher moisture content in the soil, therefore, leads to lower thermal conductivity, with

wet soil having a lower day-night temperature difference than for dry soil. However, it is
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easier to apply this linear relationship between soil moisture and diurnal change of surface
temperature to bare soil conditions (Maltese et al., 2013). When the vegetation layer masks

the soil surface, canopies interfere with fluctuations of soil moisture through water uptake.

Thermal inertia is also the basic concept behind the physically based optical-passive mi-
crowave combination technique developed by Fang et al. (2013). Relating a time series of
daily averaged soil moisture estimates to diurnal changes of soil temperature, derived from
NLDAS land surface modelling, Fang et al. (2013) calibrated a model for soil moisture
downscaling. Calibration lines were fitted on a monthly basis to reduce the impact of varied
vegetation biomass on retrievals. Increments of 0.3 in NDVI values were used for further
modulation of the surface temperature and soil moisture relationship. Using this model,
AMSR-E based soil moisture retrievals at 1 km were derived and corrected by applying the
differences between the original coarse AMSR-E soil moisture products and high resolution
retrievals within the AMSR-E grid scale. Fang and Lakshmi (2014b) adjusted the tem-
perature difference between passive microwave and optical sensors (SMOS and MODIS,
respectively), caused by different overpass time, to achieve better performance of this al-
gorithm. For this purpose, a polynomial regression was fitted to diurnal changes of hourly
NLDAS surface temperature and their corresponding time. The model was used to estimate
surface temperature at MODIS and SMOS overpass time at NLDAS spatial scale to calcu-
late temperature difference between them. MODIS LST was then adjusted by adding this
temperature difference to MODIS LST pixels within each NLDAS pixel.

2.2.3 Soil surface attributes-based downscaling techniques

The soil moisture state is determined by precipitation, but it also reflects space-time scaling
behaviour in response to soil surface attributes and structure such as topography and soil
properties (e.g. soil texture, and vegetation cover) (Kim and Barros, 2002b). Consequently,
such information has been used in several disaggregation schemes (e.g. Kim and Barros,
2002a; Pellenq et al., 2003) to determine the spatial distribution of soil moisture. Topogra-
phy provides information about soil water dynamics controlling soil moisture distribution,
while soil properties provide information about soil water storage capacity and possible rates

of change. However, the limited access to data on these properties at global scale imposes a
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limitation on the development of these downscaling techniques for global application.

Findings by Kim and Barros (2002b) supported the idea that the fractal interpolation method
proposed by Kim and Barros (2002a), which used topography, soil texture and vegetation
cover, could be an effective downscaling method. An Empirical Orthogonal Function (EOF)
analysis to assess the impact of ancillary data sets on downscaling results showed a close
association of soil moisture variability with soil hydraulic conductivity. However, topog-
raphy and vegetation cover were dominant in downscaling results during wet periods and
persistence of dry-down, respectively. Through the coupling of a radiative transfer model
to a hydrological model, Pellenq et al. (2003) developed a downscaling methodology that
captured disaggregated soil moisture patterns as a function of topographic index and soil
depth. Using the infiltration and evaporation concept, the soil moisture profile was simu-
lated by a radiative transfer model and subsequently coupled with a hydrological model to
explain how soil moisture behaviour in space is affected by the topography and soil depth.
The estimation of soil moisture patterns based on this approach was in general satisfactory,

but it revealed a weak point-scale correlation between simulations and observations.

Wilson et al. (2005) implicitly developed a topographic attribute-based downscaling tech-
nique for soil moisture estimation at 10 to 40 m from a spatially averaged ground based
soil moisture. Using historic high resolution soil moisture measurement data, Wilson et al.
(2005) first developed an empirical relationship between an ensemble of soil moisture, to-
pographic attributes (such as elevation, specific contributing area, slope, wetness index, po-
tential solar radiation index, lowness index, and a multi-resolution valley bottom flatness
index), and the residuals patterns. Second, the topographic attributes and residuals were
weighted based on the averaged soil moisture to map high resolution soil moisture for each

day. However, such relationships were site specific.

Similarly, Perry and Niemann (2007) used the EOF analysis to decompose the priori high
resolution soil moisture maps into spatial patterns of EOF covariation, time series of Ex-
pansion Coefficients (ECs) and the spatial-average soil moisture. Due to the existence of
a strong relationship between ECs and spatial-average soil moisture, ECs were estimated

from the spatial average soil moisture. A combination of spatial-average soil moisture, ECs,
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and time-invariant EOFs was used to downscale soil moisture. Busch et al. (2012) further
developed the Perry and Niemann (2007) EOF-based downscaling technique such that it did
not require priori information about the high resolution soil moisture. Busch et al. (2012)
deployed high resolution topographic attributes from a Digital Elevation Model (DEM) as
the only source of information to estimate the EOF because findings by Perry and Niemann
(2008) showed that EOFs were strongly related to topographic attributes. Such a relation-
ship was constructed and applied to catchments, revealing that the relationships were site

specific.

An Equilibrium Moisture from Topography (EMT; Coleman and Niemann, 2013) model,
which is based on a conceptual water balance of the hydrologically active soil layer, is an-
other downscaling technique using topographic indices for spatial resolution enhancement
of soil moisture retrieval. This model performance outweighed the EOF method and re-
quired only a few soil moisture observations for calibration (Werbylo and Niemann, 2014).
Vegetation and soil parameters were included in the EMT model for downscaling temporal
soil moisture patterns over the Tarrawarra catchment; however, the fine resolution varia-
tions of these properties were not taken into account. Ranney et al. (2015) improved the
performance of the EMT downscaling technique by including information about the spatial
variation in vegetation and soil characteristics, and named it the Equilibrium Moisture from
Topography, Vegetation, and Soil (EMT + VS) . Vegetation data were found to be a valu-
able source of information for soil moisture downscaling. However, fine spatial scale soil
data were able to further enhance the performance of EMT + VS downscaling technique.
While this model showed good performance for a catchment with a topographic relief of
less than 125 m, there is no evidence of its performance over regions with larger ranges of
elevation. Large relief, which has impacts on spectral variation of precipitation (e.g. Cowley
et al., 2017; Kyriakidis et al., 2001; Lloyd, 2005) and Potential EvapoTranspiration (PET,
e.g. Cowley et al., 2017; Shevenell, 1999; Shi et al., 2014a; van der Linden et al., 2008)
will also control the spatial patterns of soil moisture (Cowley et al., 2017). Accordingly,
Cowley et al. (2017) added temporal average PET and precipitation downscaling methods
to the Ranney et al. (2015) ETM model, in order to take the spatial patterns of both vari-

ables into account for enhancing the coarse soil moisture downscaling. In the process of
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developing precipitation downscaling techniques the spatial heterogeneity of precipitation
was assumed to be linearly related to topographic elevation (e.g. Castro et al., 2014) and
topographic orientation (e.g. Franke et al., 2008). An interaction between precipitation, to-
pographic elevation and topographic orientation was also assumed Hanson (1982). The PET
downscaling method was based on a linear relationship between PET and air temperature
(Blaney and Criddle, 1950) which decreases with altitude. Downscaling of PET, which has
a predictable temporal pattern, showed more improvement in soil moisture estimates than

precipitation downscaling did.

Values of fine scale parameters used in previous versions of the EMT + VS model were the
same for all fine pixels lying within the coarse grid cell of soil moisture. Hoehn et al. (2017)
used the shifting window to calculate fine scale parameters that vary over the coarse footprint
of soil moisture to take development of the EMT + VS model a step further. The shifting
window that provided the spatially varied fine scale parameters had the spatial scale of the
coarse soil moisture and was centred on each fine grid cell to be calculated. The shifting
window method estimated accurate fine resolution soil moisture for a situation where the
generated errors of coarse soil moisture from a normal distribution had a standard deviation
of 0.01 m® m™ or larger. Otherwise, the accuracy of soil moisture estimates from the original
EMT + VS model - based on a fixed window method that applied the same value for all the
fine pixels lying within the coarse grid - was higher than that of soil moisture estimates from
the shifting window procedure. Unlike the fixed window procedure, the shifting window

could not maintain the value of coarse soil moisture in its original state.

Using the temporally dynamic Topography-based Wetness Index (TWI) , Temimi et al.
(2010) developed a new topography-based soil wetness downscaling solution. This study
included, for the first time, a vegetation index at VIS wavelength (the MODIS Leaf Area
Index product) in the TWI retrieval model, to capture its variation in time. This technique
downscaled the soil wetness index derived from the AMSR-E 37-GHz observations hav-
ing the greatest sensitivity to soil moisture changes (Temimi et al., 2007) to help improve
estimation of the soil moisture spatial distribution. Temimi et al. (2010) used TWI as a wet-
ness potential index to spatially disaggregate the soil wetness index and demonstrated that

dynamic TWI is an effective index to increase the soil wetness correlation to precipitation
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occurrence by 0.3, on average.

In studies by Ines et al. (2013) and Shin and Mohanty (2013), sub-pixel variation of remotely
sensed soil moisture was estimated using the heterogeneity of soil texture and vegetation
cover. The algorithm presented by Shin and Mohanty (2013) was inspired by the combined
simulation-optimization approach of Ines et al. (2013), which downscaled remotely sensed
soil moisture products using effective soil hydraulic properties (e.g. saturated soil mois-
ture, saturated hydraulic conductivity, tortuosity in the soil) at sub-pixel scale, and fraction
of soil/vegetation. The Shin and Mohanty (2013) inversion model produced soil moisture
with satisfactory quality under various hydrologic and climate conditions using a genetic
algorithm, which minimized the difference between observed and simulated soil moisture
and evapotranspiration. For example, correlation coefficients of sub-pixel soil moisture to in
situ measurements and mean bias error were reported to vary between 0.343 and 0.845, and
-0.165 to -0.122 m* m™ for a silty loam soil covered by winter wheat and short native grass,
respectively. While Ines et al. (2013) used soil characteristics and soil-vegetation fraction
without assigning their location within a pixel, Shin and Mohanty (2013) specified the lo-
cation of soil characteristics and vegetation cover. Shin and Mohanty (2013) also scaled
evapotranspiration maps to infer soil moisture distribution, given that a strong correlation
exists between evapotranspiration and soil moisture. While retrievals from this approach
matched well with the in situ truth soil moisture content, qualified input data on the envi-
ronmental factors (e.g. weather forcing, soil texture, and vegetation) were required under

appropriate weather conditions to achieve such a performance.

2.2.4 Model/Data-based downscaling techniques

The downscaling of coarse resolution soil moisture observations has not been limited to
the use of remote sensing data and/or soil surface attributes. Model predictions have also
been used in model/data-based disaggregation schemes to spatially enhance soil moisture
observations. These techniques, namely data assimilation-and machine learning-based, have
no limitations related to the need for concurrent satellite overpasses or lost data due to cloud
coverage. Descriptions of these techniques are briefly provided in the data assimilation-and

machine learning-based sections below.
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Data assimilation-based downscaling techniques

Data assimilation has been used to improve profile soil moisture estimates (e.g. De Lannoy
and Reichle, 2016b; Walker et al., 2001) from surface soil moisture observations. Moreover,
the physically based hydrological models at the heart of data assimilation have been used
to predict the spatial distribution of soil moisture at high resolution (Reichle et al., 2001).
A four-dimensional (spatial update using multi-temporal observations) data assimilation,
which can combine noisy high resolution model predictions with accurate low resolution
observations, was first introduced by Reichle et al. (2001) as a quasi downscaling technique
to overcome limitations in deriving fine-scaled information on soil moisture from passive
microwave observations. Downscaling techniques based on the data assimilation concept
are distinguished from other approaches by accounting for both model and satellite mea-
surement uncertainties and their independence to either sources of information. Moreover,
the philosophy behind this method is to use spatially coarse soil moisture observations to
constrain a high resolution dynamic model. The RMSD of downscaled soil moisture prod-
ucts from the assimilation-based downscaling techniques is reported to be ~ 0.06 m* m™
on average (see Table 2.2), which does not meet the accuracy requirement of soil moisture

missions.

Draper et al. (2009) focused on AMSR-E C-band soil moisture assimilation into the Inter-
actions between Surface, Biosphere, and Atmosphere (ISBA) model , which was the land
surface scheme in Météo-France’s Aire Limitée Adaptation Dynamique développement In-
terNational (ALADIN) Numerical Weather Prediction (NWP) model. This model has an
irregular spatial resolution, but its estimates were available at 9.5 km over most of European
regions where this study was conducted. This two-dimensional (spatial update for a single
soil layer) Simplified Ensemble Kalman Filter (SEKF) developed by Mahfouf et al. (2009)
and Balsamo et al. (2006), yielded modelled high resolution surface soil moisture at ~ 9 km

and with RMSD values larger than 0.09 m* m.

Sahoo et al. (2013) disaggregated the 25 km gridded AMSR-E soil moisture products through
assimilation into the 1 km resolution NOAH land surface model using a three-dimensional

ensemble Kalman filter. Increasing the spatial correlation from 0.7 on average to 0.77, the
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approach resulted in well matched surface soil moisture retrievals to the in situ data, in-
cluding also lower RMSD values. Similar to the ,corrected Kalman Filter-2 (EnBKF-2)
in De Lannoy et al. (2007), coarse satellite observations were rescaled to the model cli-
matology prior to the assimilation. The RMSD of downscaled soil moisture without bias

correction prior to data assimilation was reported to be in the range of 0.08 to 0.17 m® m=,

while with the bias correction was between 0.01 and 0.09 m®> m™>.

As an extension to data assimilation systems that apply bias correction as a common prac-
tice, Kornelsen et al. (2015) developed a bias correction technique for soil moisture down-
scaling. In developing this downscaling procedure, precipitation and evapotranspiration
were acknowledged as a derivative of soil moisture changes. The assumption of uniform
precipitation over a radiometer scale was also made without making the distribution of soil
moisture uniform in that scale. Having verified the temporal stability of brightness tem-
perature and soil moisture, a simple mean-variance matching approach-a bias correction
procedure-was applied to the simulated soil moisture over the SGP97’s experimental water-
sheds. The analysis revealed the dependency of successful application of the bias correction

technique to availability of priori information about the land surface conditions.

SMOS soil moisture products were also assimilated into the Variable Infiltration Capacity
(VIC, Liang et al., 1994, 1996, 1999) by Lievens et al. (2015) to improve the accuracy
and spatial resolution of SMOS soil moisture estimates from 25 to 12.5 km. This three-
dimensional Ensemble Bias corrected Kalman Filter resulted in reduction of the RMSD of
the simulated soil moisture from 0.058 m* m™ to 0.046 m* m™ and increase of the correlation

from 0.56 to 0.71.

Being aware that assimilation can improve the surface soil moisture estimates at sub-seasonal
time frame, Draper and Reichle (2015) assimilated a long record of AMSR-E X-band soil
moisture at 25 km into the NASA’s Catchment Land Surface Model (Koster et al., 2000),
which was run on the 9 km EASE grid for North America. A one-dimensional bias-blind
ensemble Kalman filter was used in this assimilation procedure by applying the coarse scale
observations onto the higher resolution underlying model grid. Results from this study

showed that for four test sites, assimilating a long record of soil moisture not only improved
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the ability of the model to represent long-term events such as droughts, but also increased

the spatial skill of the model.

Since 2015, SMAP has provided a Level 4 soil moisture product, which has surface and
root-zone soil moisture values at 9 km. The Goddard Earth Observing System version 5
(GEOS-5) Land Data Assimilation System (LDAS, De Lannoy and Reichle, 2016a,b; Re-
ichle et al., 2014) , which is a three-dimensional EnKF based assimilation technique, as-
similates the SMAP 36 km brightness temperature (from L1C-TB; Chan et al. (2016)) into
the NASA GEOS-5 Catchment Land Surface Model (Koster et al., 2000) for soil moisture
estimation. The overall unbiased RMSD (ubRMSD) of the SMAP L4 surface soil moisture
was reported by Reichle et al. (2017) to be 0.037 m* m, which meets the SMAP mission
accuracy requirements. Results from this study are not included in the summary section,
because they are not consistent with the other studies which reported regular RMSD values.
Using this technique, Lievens et al. (2017) assimilated Sentinel-1 (Geudtner, 2012; Geudt-
ner and Torres, 2012; Torres et al., 2012) C-band backscatter simultaneously with SMAP 36
km L-band brightness temperature to enhance the accuracy of soil moisture estimates. The
complementary assimilation of radar backscatter and radiometer brightness temperature im-
proved the performance, resulting in better surface soil moisture estimation than when only

radiometer observations were assimilated.

Machine learning-based downscaling techniques

The machine learning approach seeks to learn the relationship between the soil moisture and
available information on surface parameters without requiring continuous data. This makes
it a useful tool for integrating different sources of information about soil moisture (Notar-
nicola et al., 2008). Consequently, the way that artificial intelligence deals with noisy data
from dynamic and non-linear systems (Remesan et al., 2009) makes it a potential technique
to improve the scale of soil moisture Chai et al. (2009). Through a comprehensive analysis,
Srivastava et al. (2013) demonstrated the feasibility of using the machine learning technique
as a downscaling tool. The aim of this study was to derive a high spatial resolution soil
moisture from SMOS using MODIS land surface temperature in a more functional way than

optical-based downscaling, which its application is hampered by the sensitivity of optical
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observations to clouds. They evaluated the performance of a variety of artificial intelligence
techniques, including Artificial Neural Network (ANN) , Support Vector Machine (SVM),
and Relevance Vector Machine (RVM) . Among these techniques, the ANN showed con-
siderable potential for deriving accurate soil moisture at higher resolution, especially when

applied to data sets divided based on growing and non-growing seasons.

Earlier, Chai et al. (2011) had also used the ANN model to downscale air-borne passive
microwave observations from the National Airborne Field Experiment held in Australia in
2005 (NAFE’05) . Basing their ANN model on the linear downscaling algorithm (Merlin
et al., 2008b), they acquired soil moisture retrievals with a root mean square error of 0.018
to 0.035 m* m™. This accuracy, together with the fact that the approach does not rely on a
large number of input data, was reported by Chai et al. (2011) to be the main advantages
of the ANN model. Chai and Goh (2013) continued to explore the ANN performance for
soil moisture disaggregation within an ensemble scheme. The ensemble scheme was recom-
mended to reduce estimation errors through the combination of results from multiple neural
network models. This finding concurred with the Hansen and Salamon (1990) suggestion

that optimization of neural network models is possible by ensemble scheme.

Based on a machine learning approach called the Self-Regularized Regressive Models (SR-
RMs) , Chakrabarti et al. (2016) has delivered high resolution soil moisture maps at 1 km
resolution with an RMSD of less than 0.02 m* m™. Utilizing a regularized clustering and
kernel regression, the SRRM technique was capable of deriving the desired variables for
all pixels covering the study area. This technique was reported to be efficient in terms of
computational time, number of required samples for training, and accuracy when compared
to the earlier machine learning technique developed by Chakrabarti et al. (2015). It used
a Bayesian transformation process which related the high resolution auxiliary information
to coarse soil moisture through a probabilistic relationship on the basis of the Principle of
Relevant Information (PRI) . Both SRRM and PRI techniques were developed and tested
with the use of multi-scale synthetic data from a coupled Land Surface Process-Decision

Support System for Agrotechnology Transfer (LSP-DSSAT) model .

Park et al. (2015) enhanced the spatial resolution of AMSR2 soil moisture products, re-
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trieved using the VUA-NASA algorithm (Owe et al., 2001, 2008), from 25 km to 1 km us-
ing MODIS optical products in two different machine learning techniques: i) random forest
and 11) ordinary least squares. Both approaches associated evapotranspiration and multipli-
cation of LST and NDVI (LSTxNDVI) in their process for soil moisture estimation. The
random forest approach, which had flexibility in randomization and adopted an ensemble
approach, outperformed this technique over the other machine learning approach. Similar
to this study, Im et al. (2016) investigated the spatial downscaling of AMSR-E soil moisture
data from 25 km to 1 km using MODIS 1 km products, including land surface temperature,
surface albedo, NDVI, EVI, Leaf Area Index, and evapotranspiration. The intention of this
study was to evaluate the performance of three different machine learning-based downscal-
ing approaches including random forest, boosted regression trees, and Cubist approaches
over two regions (South Korea and Australia). Among these techniques, the random forest
showed superiority to the other techniques, yielding a higher correlation coefficient (0.71
and 0.84 for South Korea and Australia, respectively) of 1 km soil moisture with in situ

measurements than that of the original AMSR-E soil moisture products.

The effective simulation of the non-linear relationship between soil moisture and LST/VI by
Back-Propagation Neural Network (BPNN) motivated Jiang et al. (2017) to use it as a tool
to improve the scale of coarse passive microwave soil moisture products. Assuming that the
relationship between soil moisture and LST/VIs was scale-invariant, the BPNN was trained
by taking different combinations of coarsely aggregated MODIS LST and VIs, including
NDVI, EVI, and NDWTI as the input, and the coarse soil moisture retrievals from AMSR-
E, AMSR2, and SMOS as the output. The best trained BPNN model was then applied to
the inputs at the MODIS scale to estimate fine scaled soil moisture. Optimal downscaled
products, which showed significant correlation larger than 0.6 with in sifu soil moisture data
from the central Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN)

were achieved when the BPNN was trained using the combination of LST and EVI.
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2.3 Assessment of the strengths and weaknesses of downscaling techniques

This chapter seeks to provide a critical review of the available soil moisture downscaling
methods, including an evaluation of the strengths and weaknesses of their strategies. As
presented, several downscaling methods exist for combining accurate passive microwave
observations with high spatial resolution information on soil surface features which include
vegetation coverage, soil surface attributes, soil temperature, etc. to derive high spatial
resolution soil moisture. Some of the techniques are able to retrieve soil moisture estimates
at an accuracy of 0.04 m®> m™, which is the soil moisture accuracy requirement - in the top
5 cm of the soil for vegetation water content < 5 kg.m - suggested by the SMAP science

team for a wide range of applications (Entekhabi et al., 2008a).

Existing downscaling approaches are reported to have a range of accuracy under differ-
ing weather and climate conditions. A rigorous inter-comparison of different downscaling
methods would be beneficial to clarify advantages and disadvantages of each downscaling
method. However, until now there has been no study to thoroughly compare the various
downscaling techniques for a specific set of conditions. Figure 2.7 presents a summary of
Table 2.2 in order to give a concise overview of the performance of each downscaling tech-
nique in terms of reported accuracy. The performance variation of individual approaches
may lie in the disparate characteristics of the data and field sites utilized for the soil mois-
ture disaggregation evaluation. However, study domains and seasons are not distinguished
in this study, as downscaling techniques should be applicable for a wide range of surface and
climate conditions if they are to be applied operationally. Moreover, there is a wide variation
between approaches, with each having its own advantages and limitations, and conditions
where it works best. For example, the radar-radiometer microwave combination could be the
most promising and/or robust technique to retrieve soil moisture values under homogeneous
roughness and low vegetation density conditions as it is unaffected by meteorology, but the
lack of concurrent radar and radiometer observations at the same frequency and platform

currently limits its application.

The radar-based downscaling techniques have been shown to outperform the optical-based

techniques (see Figure 2.7), in terms of RMSD (0.04 m® m™ vs. 0.072 m® m™ on average
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Figure 2.7: Summary of accuracy statistics from different downscaling techniques presented
as boxplot that contains the interquartile ranges, the sample median (bar), and outliers asso-
ciated with the mean (dot). * n indicates the number of validation studies that reported the
accuracy of retrieval in terms of R or R? and RMSD for the particular downscaling approach,
and were thus used to make this figure.

for radar-and optical-based downscaling techniques, respectively), due to the greater sen-
sitivity of microwave observations to soil moisture dynamics under all-weather conditions.
However, the trade-off between wavelength and temporal coverage of currently available
radar imagery, and the impact of clouds on optical observations require consideration when
evaluating their effectiveness in estimating accurate soil moisture from coarse passive mi-
crowave observations. The use of geostationary based optical sensors could alleviate some
of the meteorological limitations of typical polar orbiting sensors due to high frequency op-
tical acquisitions (0-30 minute), increasing the chance of obtaining cloud-free observations
(Piles et al., 2016; Zhang et al., 2014). However, it comes at the cost of estimating soil
moisture at the lower spatial scale of the geostationary based optical sensors (being on order

of 3 to 5 km) than typical polar orbiting sensors (being on order of 1 km resolution).
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Radiometric emissions at higher microwave frequencies (i.e. Ka-band) can penetrate through
non-raining clouds similar to radar observations. Their advantage over the backscatter
method is the availability at regular repeat coverage and reduced impact of surface rough-
ness. These characteristics make them a potentially more reliable source of information on
surface spatial heterogeneity for mapping variability of soil moisture compared with optical
and radar observations. However, the radiometer-based downscaling technique has so far
been found to result in less accurate soil moisture products than the radar-based technique.
While the radiometer-based technique has shown similar performance to the optical-based
downscaling techniques (Figure 2.7), optical observations have the advantage of producing
disaggregated soil moisture at finer resolution (1 km) than currently available Ka-band pas-
sive microwave observations (10 km) when there is no cloud coverage. The superiority of
radiometer-based to optical-based downscaling lies in the applicability of the radiometer-
based technique under all-weather and climate conditions, unlike the optical-based tech-
niques that are more applicable to areas where there is no such limitation (Garcia et al.,
2014). Using a bigger antenna for scanning brightness temperature at Ka-band, or develop-
ing methods to resample the Ka-band observations to resolutions finer than 10 km while pre-
serving the accuracy of medium scaled Ka-band brightness temperature observations, could
be potential solutions to overcome this drawback and make the radiometer-based techniques

operational.

Providing that spatially detailed information on soil surface attributes and a universal re-
lationship was available at the global scale, the soil surface attributes-based downscaling
technique could be a suitable alternative to the radar-based technique for disaggregation
of soil moisture. This technique owes its performance to the information about soil water
dynamics and soil water storage capacity, which are represented in the soil moisture down-
scaling process through the use of topography and soil properties, respectively. As shown in
Figure 2.7, soil surface attributes-based downscaling technique is a more accurate technique
in terms of RMSD than either the radiometer- or optical-based techniques, with an averaged

accuracy of 0.028 m® m™.

Use of high resolution land surface models together with data assimilation and/or machine

learning could provide a more robust downscaling approach, as there are no limitations
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related to the need for concurrent satellite overpasses, or lost data due to cloud coverage.
Moreover, the advantages of a data assimilation-based downscaling technique may outweigh
the machine learning-based technique because dynamically varying uncertainties of both
the model predicted and satellite observed soil moisture, and the temporal interpolation of
coarse soil moisture retrievals, are implicitly included. Data assimilation has the additional
advantage of providing root zone soil moisture content. However, based on the available

literature the machine learning technique (with RMSD of 0.056 m* m™

on average) seems
not only to be superior to the data assimilation-based technique but also superior to the other
currently available downscaling techniques, apart from radar-based techniques in terms of
RMSD. The performance of the machine learning technique also appears to be superior to
other downscaling techniques in terms of correlation between the downscaled and in situ soil
moisture. However, further testing and research are required to increase the computational

efficiency of this technique and to overcome its global training requirements before it could

be considered for use operationally.

2.4 Unresolved challenges to soil moisture downscaling

There are several unresolved challenges facing soil moisture downscaling that need to be
addressed. For example, in order to meet the spatial resolution requirement of agricultural
production and efficient management of water resources, there is a need to improve the
spatial scale of downscaled products to higher than 1 km (Figure 1.1). This highlights the
need for high resolution ancillary data which usually dictates the spatial scale of downscaled
products. These ancillary data should not only be at a high spatial resolution, but should also
be precise in order to assure an accurate disaggregation of soil moisture. The large scale
mismatch between coarse passive microwave observations and ancillary data may therefore

allow for propagation of uncertainties, which needs to be addressed.

Reduction of uncertainty in the coarse passive microwave soil moisture retrieval process is
another key factor for downscaled soil moisture improvement. The radiative transfer mod-
els used for soil moisture retrieval from passive microwave remote sensing has reached a

mature level (Das et al., 2011). However, the variation of ancillary parameters (e.g. vegeta-
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tion properties, surface roughness and scattering albedo) in space and time make the model
parametrization and retrievals uncertain. Evaluation of the radiative transfer model across a
wide range of climate and land surface conditions may assist in quantifying and clarifying

such uncertainties.

A consistent inter-comparison of existing downscaling techniques for a specific set of condi-
tions is essential for moving the development of downscaling techniques that are applicable
across multi-satellite passive microwave observations forward. Accuracy and representa-
tiveness of evaluation reference data including in situ and airborne observations also set
limitations to the adequate inter-comparison of existing downscaling techniques which re-
quire to be addressed. Yee et al. (2016) undertook a thorough assessment of this issue for
the Yanco study site and suggested using intensive in situ measurements for evaluation of
airborne soil moisture products, which together with temporal stability analysis could be
used to identify representative stations for evaluation of satellite products at larger scale.

However, in the presence of mixed land use, a weighting method was recommended.

For satisfactory application of high resolution soil moisture in agriculture and water re-
sources management, continuous time series of soil moisture are required at temporal fre-
quencies better than 3 days. The development of downscaling techniques that are applicable
to multi-satellite coarse soil moisture data could potentially be a pragmatic solution to sat-
isfying this demand. In this case, merged multi satellite soil moisture products could be
developed, and be downscaled across all the low resolution passive microwave satellites
using the best downscaling methodology. Multi satellite brightness temperature products
could also be merged prior to the soil moisture retrieval and downscaling. However, the fu-
sion of satellite soil moisture often outperforms the fusion of satellite products at brightness
temperature level (Wagner et al., 2012). Consequently, in this study downscaled soil mois-
ture products were merged. A harmonised ensemble of disaggregated soil moisture products
from different retrieval algorithms might provide another solution, with the added value of
providing more frequent soil moisture than the individual downscaled products alone. An
ensemble of downscaled soil moisture products might also result in more accurate soil mois-
ture products, recognising strengths of alternative products under varying climate and land

surface conditions.
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Therefore, this study seeks to rigorously compare the downscaling techniques that use re-
motely sensed data as either complementary or ancillary data for spatial resolution enhance-
ment of L-band passive microwave observations. This research undertakes the first consis-
tent assessment of the range of different radar-, optical-, radiometer-, and oversampling-
based downscaled soil moisture products for typical Australian landscapes, using a specific
set of evaluation data. Moreover, the combination of downscaled soil moisture products is
developed to examine the impact of strengths recognition of alternative downscaled products

on the accuracy of soil moisture products.

2.5 Chapter summary

This chapter has provided a detailed description of alternative soil moisture downscaling
techniques and their the capabilities and opportunities. While the reasons and motivation
for downscaling soil moisture and the concept behind each downscaling technique have
been extensively described, this has also provided an overview of the resources required for
each disaggregation technique and the expected accuracy of the approach. Moreover, an
extensive quantitative comparison of the current soil moisture downscaling approaches was

carried out, together with qualitative comparison of their pros and cons.

Some of the current challenges and/or knowledge gaps in soil moisture downscaling were
described and this PhD thesis was set up to address two of the identified knowledge gaps, in-
cluding: 1) inter-comparison of different downscaling techniques against an extensive com-
mon data set collected for a specific set of condition, and ii) combination of downscaled
soil moisture products. The performance of radiometer-only measurements, herein SMAP
and SMOS passive L-band soil moisture products, were also assessed to reveal the extent of
possible improvement or deterioration of both downscaled and combined products in terms
of accuracy over the radiometer-only products. Data used for the assessment of downscaled,
radiometer-only and combined soil moisture products were ground measured near-surface
soil moisture content from the OzNet stations in Murrumbidgee catchment and experimental
airborne soil moisture maps collected from the SMAPEx-4 and -5 airborne field campaigns

described in Chapter 3.

73






Chapter 3

Study area and data sets

This chapter presents an overview of the study area and SMAPEx-4 and -5 airborne cam-
paigns, which were carried out during the Australian autumn and spring 2015, respectively.
A description of the PLMR airborne reference soil moisture maps derived from the PLMR
radiometric brightness temperature is also presented here. An evaluation of the reference
PLMR soil moisture maps against the soil moisture data measured by the HDAS is presented
for all intense soil moisture ground sampling areas. The PLMR airborne soil moisture maps
are subsequently used in Chapter 4 and Chapter 5 to evaluate the performance of the down-
scaled, radiometer-only and merged soil moisture products. The downscaled soil moisture
products used in the inter-comparison and combinations based on data availability, are also
introduced. Components of this chapter have been contributed to the co-authored paper by
Ye et al. (in review), which is submitted to Remote Sensing of Environment. My involve-
ment in the SMAPEx-4 and -5 airborne field campaigns included intensive HDAS in situ
measurement of soil moisture and surface roughness sampling. I was also responsible for
post-processing the surface roughness measurements after the experiments, producing the
daily vegetation water content maps and evaluating the derived airborne PLMR soil moisture

maps.
3.1 Study area

The Yanco agricultural area in New South Wales, Australia, was chosen to conduct this
research. Yanco has a lansdscape and climate that is representative of much of south-east

Australia. The climate is classified as semi-arid based on the Képpen-Geiger climate classi-
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fication system. An average annual amount of about 400mm precipitation falls in the Yanco
area throughout the year, and its’ minimum and maximum average annual temperature is
11°C and 24°C, respectively (Bureau of Meterology, 2018). The Yanco area is located on
a flat plain in the Murrumbidgee River catchment and contains a network of soil moisture,
temperature and rainfall monitoring stations known as OzNet (Smith et al., 2012). The loca-
tions of OzNet stations installed in the Yanco region are shown as black dots in Figure 3.1.
The OzNet was established in 2001, covering the entire Murrumbidgee catchment with 38
monitoring sites that measure 90 cm soil moisture profile at depths of 0-5, 0-30, 30—60, and

60-90 cm. These data are available on http://www.oznet.org.au.
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SMAPEXx-4 (1-22 May 2015) SMAPEX-5 (7-27 Sep. 2015)
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Landuse map
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D Intense ground sampling . Bare soil D Urban
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. Lupine . Openwood land
. Grass . Lucerne
. Water

Figure 3.1: The study areas for (a) SMAPEx-4 and (b) SMAPEx-5 airborne field campaigns
conducted in the Yanco region in south east of Australia. Landuse is shown along with
red rectangles which delineate the coverage of airborne measurements of each campaign,
being 71 km x 85 km for SMAPEx-4 and 71 km x 89 km for SMAPEx-5. Blue rectangles
show the locations of the intense ground samplings and black dots are the OzNet in situ
monitoring stations.

76


http://www.oznet.org.au

Chapter 3 — Study area and data sets

The temporal pattern of the OzNet soil moisture is consistent with the occurrence of precip-
itation events with wetting and drying cycles for the 1st April to 1st November 2015 study
period as shown in Figure 3.2. The study area is relatively flat, with a variety of land use, soil
and vegetation types, thus making Yanco an appropriate site for evaluation of downscaling

algorithm performance.

3.2 The SMAPEXx-4 and -5 airborne field campaigns

Over the Yanco region, the SMAPEx-4 and -5 airborne field campaigns were designed to
cover an area of about 71 km x 89 km (145.98° - 146.75°E longitude and 34.22° - 35.03°S
latitude, see Figure 3.1). The SMAPEx-4 and -5 airborne field campaigns were designed
for the purpose of calibration and validation of SMAP soil moisture products. These ex-
periments were carried out during the Australian autumn (SMAPEx-4, from the 1st to 22nd

May 2015) and spring (SMAPEX-5, from the 7th to 27th September 2015).

The flat topography, being equipped with the OzNet in situ soil moisture (Figure 3.1) and
rainfall monitoring stations, and its representativeness of typical soil moisture, vegetation

and land use conditions of Australian semi-arid climate condition, makes the Yanco region a
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Figure 3.2: Time series of the OzNet top 5 cm in situ soil moisture and rainfall measurements
for the period between 1st April and Ist November 2015 used in this study. The light
blue line and dashed gray lines show the median and interquartile range of soil moisture
measurements, respectively. The dark blue bars show the mean daily rainfall over the Yanco
region.
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unique study site for the SMAPEX project and inter-comparison of downscaled soil moisture
products. The coverage of the SMAPEx-4 and -5 airborne observations corresponds to a
complete SMAP radiometer 3dB footprint (SMAP L1B_ brightness temperature product,
approximately 39 km by 47 km).

3.2.1 Airborne sampling

During the SMAPEXx-4 and -5 airborne field campaigns, airborne L-band passive microwave
brightness temperature were collected using the PLMR instrument (Figure 3.3) concurrent
with the SMAP and SMOS satellite overpasses. The PLMR radiometer, having similar char-
acteristics to that of the SMAP mission, operates at L-band (1.4 GHz frequency) to monitor
brightness temperature at both vertical and horizontal polarization with 1 km resolution,
when flown at 3 km altitude. It collected dual-polarized brightness temperature measure-
ments with six-beams as shown in Figure 3.4, with across-track incidence angles of £7°,
+21.5°, and +38.5°, which were then angle normalized to £38.5° using the approach of Ye

et al. (2015) before retrieval of the soil moisture.

3.2.2 Ground sampling

The airborne L-band passive microwave observations were supported by ground sampling
activities that were conducted concurrent to flight acquisitions across focus farms as shown
in Figure 3.1, to provide information about vegetation (biomass, vegetation water content,
leaf area index, etc.) and surface roughness, which were used for the soil moisture retrieval.
Information about vegetation water content is required to model L-band passive microwave
based land surface emissions. Such information was collected by destructive vegetation
sampling of dominant vegetation types, which were present in the Yanco region. In order
to map vegetation water content at larger scales using aircraft and satellite observations,
surface spectral reflectance and leaf area data are required. Surface spectral reflectance was
measured using a Multi Spectral Radiometer (MSR) developed by CROPSCAN, with the
installed filters matched to MODIS spectral bands (ranging from 0.4 ym to 14.4 ym in
terms of wavelength). Simultaneous to spectral observations, biomass sampling and leaf

area measurement were made. Biomass, vegetation water content, and plant structure were
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Figure 3.3: The aircraft equipped with PLMR L-band passive microwave instrument.

PLMR ground resolution
Height = 3000 m H>690m<e— > 860m <> 1280m <«

Figure 3.4: The viewing configuration of PLMR on-board the aircraft (adapted from
SMAPEXx-1 work-plan).

sampled assuming that they have insignificant changes within a week. These spatial and
intensive vegetation sampling (Figure 3.5) took place to: 1) provide insight into the maturity
level and vegetation water content of dominant vegetation types, and ii) track the vegetation

evolution across the campaign period.

Characterisation of surface roughness profiles was undertaken for major land cover types
to capture the variability of surface conditions observed within the SMAPEx-4 and -5 air-
borne field campaigns. A Im-long pin profiler (Figure 3.6) equipped with a digital cam-

era, was used to acquire two 3m-long profiles. At each roughness sampling location, the
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three consecutive readings were performed to simulate a 3m-long profile in the North-South
and East-West orientations, or along and across the row direction of ploughed fields in the
presence of cultivations. Previous SMAPEx campaigns revealed the stability of correlation
length estimates for 3m-long profiles. In addition to the pin profiler, Figure 3.6 also shows
a sample of the extracted roughness profile used to derive statistics from the post-processed

images.

The HDAS system - a dielectric probe - was used to measure top 5 cm in sifu soil mois-

ture data on a 250 m grid spacing coincident with airborne sampling. Figure 3.7 shows an

Figure 3.5: Vegetation sampling, including: a) surface spectral reflectance measurement, b)
leaf area measurement, c¢) destructive vegetation sampling, and d) vegetation height mea-
surement.
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example of HDAS soil moisture measurements in one of the focus farms. The use of inten-
sive HDAS soil moisture measurements minimize the effect of random sampling errors at
local scale, and were collected to evaluate the performance of airborne PLMR soil moisture
retrievals. The HDAS system uses a Hydraprobe soil moisture sensor and a Geographic
Information System (GIS) to collect information about location as well as soil moisture
content (Merlin et al., 2007). The accuracy of HDAS measurements has been reported to
be better than 0.04 m*> m™ for individual HDAS measurements during the SMAPEx-4 and
-5 airborne field campaigns, irrespective of soil type (Ye et al., in review). Earlier results of
HDAS measurements accuracy has been reported to be + 0.039 across the Murrumbidgee
River catchment during the National Airborne Field Experiment held in Australia in 2006

(NAFE’06) , the Australian Airborne Cal/val Experiments for SMOS (AACES) and the
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Figure 3.6: A sample photo taken of the pin profiler that was here used to characterise the
roughness profile (top), and a post-processed experimental profile extracted from this photo
(bottom).
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SMAPEXx-1 to -3 campaigns.

Apart from the OzNet sites in the Yanco area, six identical temporary monitoring stations
were installed in the centre of each focus farm (Figure 3.1) to collect time series data on
rainfall, skin temperature, leaf wetness, soil temperature at depths of 2.5 cm, 5 cm, 15 cm,
and 40 cm, and soil moisture at depths of 0-5 cm and 20-25 cm during the SMAPEx-4 and
-5 airborne field campaigns. The locations of temporary stations were chosen based on the
cropping conditions during the SMAPEx-4 and -5 and logistical constraints. The supple-
mentary data from these stations was used for the airborne brightness temperature temporal
correction and the airborne PLMR soil moisture retrieval, and to confirm soil moisture vari-

ation during the course of each sampling day.
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Figure 3.7: An Example of HDAS intensive soil moisture measurements over one of the
focus farms om 17 September 2015 during the SMAPEX-5 airborne field campaign.

3.3 Airborne PLMR soil moisture maps

The PLMR radiometric brightness temperature observations were used to derive a reference
airborne soil moisture data set. An example of airborne PLMR soil moisture map on 22
May 2015 is shown in Figure 3.8. This retrieval process included application of the L-band
Microwave Emission of the Biosphere (L-MEB, Wigneron et al., 2007) radiative transfer

model to the PLMR brightness temperature (Ye et al., in review). The vegetation water
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content maps shown in Figure 3.9 used by the L-MEB model for soil moisture retrieval, were
estimated using the relationships developed by Gao et al. (2015) which convert the NDVI
(Rouse et al., 1974) from the daily 250 m MODerate resolution Imaging Spectroradiometer
(MODIS) reflectance products (MODO09GQ) to vegetation water content. These data were
used together with the surface roughness and vegetation parametrization of Panciera et al.
(2008, 2009) and the land surface type specific parameters were collected from the studies
by Grant et al. (2008) and Wigneron et al. (2007). In order to estimate the effective soil
temperature, the average of soil temperature measurements at 2.5 and 40 cm depth were
calculated using measurements from the six temporary monitoring stations over the Yanco

area.

In order to quantify the accuracy of the reference airborne PLMR soil moisture maps and
their propagation into the statistical parameters obtained from the downscaled soil moisture
evaluation in Chapter 4 and Chapter 5, the airborne PLMR soil moisture retrievals were
compared against the HDAS measurements over all intense soil moisture sampling areas for
the SMAPEx-4 and -5 airborne field campaigns (Figure 3.10). The intensive HDAS soil
moisture measurements were averaged to 3 km and the airborne PLMR soil moisture aggre-

gated to 3 km. While overall evaluation of 3 km PLMR soil moisture pixels are reported
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Figure 3.8: An example of the airborne PLMR soil moisture maps derived from the PLMR
radiometric brightness temperature observed on 22 May 2015 during the SMAPEx-4 air-
borne field campaign.
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in Figure 3.10, the accuracy assessment was also conducted for each dominant land surface
type. An overall RMSD of 0.04 m* m™ and R? of 0.76 was achieved for 3 km SMAPEx-4
and -5 soil moisture data, which shows the capability of airborne soil moisture being an
adequate reference for the evaluation of downscaled soil moisture products. The PLMR soil
moisture maps at 1 km were not evaluated in a similar way as there were only a few HDAS
intense soil moisture measurements (<4) available within each 1 km footprint, yielding the
analysis unreliable. In addition, the HDAS measurements within the 1 km scale had a large

variability due to the range of moisture conditions.

3.4 Downscaled soil moisture products

This study evaluated the performance of soil moisture downscaled products against each
other in terms of accuracy and capability to capture the variability of soil moisture in space
and time. The products were derived from a variety of current downscaling techniques, cat-

egorized as either radar-, optical-, radiometer- and oversampling-based techniques. The soil

20/5/2015 during SMAPEX-4

Figure 3.9: Example of vegetation water content maps for the SMAPEx-4 and -5 airborne
field campaigns.

84



Chapter 3 — Study area and data sets

0.5 . . : .
/
Ve
7/
/
T— 7/
04 | y .
/
3 T
/7
g
o L T U7
E o3| (] L 11] | 1
E — | ’ |
: i ayp il
z |> | ALl
E = -_-_|
é 02 - | | Ly . -(i-!! ! I | 1
g | HL I_'l___:_ - - I__l |
- I [
o i _ I ‘i'—
L b T
0.1 - 1 —r | | J
| IIII E |
||l [— L
0 s
0 0.1 0.2 0.3 0.4 05

HDAS soil moisture (m3 m=3)

Overall  R?=0.76, RMSD = 0.04, ubRMSD = 0.04, Bias = -0.02

Grass R?%=0.80, RMSD = 0.04, ubRMSD = 0.03, Bias = -0.02
Wheat R%=0.80, RMSD = 0.04, ubRMSD = 0.03, Bias = 0.013
® Bare Soil R?=0.71, RMSD = 0.06, ubRMSD = 0.05, Bias = -0.02

Figure 3.10: Comparison of SMAPEx-4 and -5 PLMR soil moisture estimates at 3 km
against aggregated intense HDAS soil moisture measurements to 3 km. Horizontal whiskers
in red show the standard deviation of aggregated HDAS measurements to 3 km, while ver-
tical whiskers in blue show the standard deviation of aggregated PLMR soil moisture esti-
mates to 3 km.

moisture products evaluated in this study are listed in Table 3.1 along with the downscaling
techniques and approaches, product definitions, key references, and main downscaling in-
puts as applicable. The downscaling techniques were benchmarked against the SMOS and
SMAP coarse passive microwave observations to provide insight about the impact of down-
scaling approaches on the accuracy of soil moisture retrievals, and inter-compared over the
Yanco region using the airborne soil moisture maps collected during the SMAPEx-4 and-5
airborne field campaigns, as well as the OzNet in situ measurements for the period between

Ist April and 1st November 2015. The intention of this comparison was to reveal if the
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downscaled soil moisture products surpassed the coarse passive soil moisture estimates in
terms of accuracy, and to quantitate the extent of possible improvement (or deterioration)
in Chapter 4 and Chapter 5. In this study, the SMAP Level 3 Radiometer Global Daily soil
moisture (version 3) posted on the 36 km EASE-Grid and the daily global SMOS Level
3 radiometric soil moisture retrievals, obtained from the 43 km mean spatial scale SMOS
observations posted on the 25 km grid (SMOS operational MIR CLF31A/D, version 3.00
obtained from the CATDS website) were evaluated for this purpose. Examples of the coarse
SMOS and SMAP soil moisture products are shown in Figure 3.11 for the SMAPEx-4 and

-5 airborne field campaigns.

3.4.1 Radar-based

The SMAP soil moisture was downscaled from 36 to 9 km using the radar-based down-
scaling techniques, including: 1) the baseline active/passive method of SMAP (Das et al.,
2014), and ii) the Multi-Objective Evolutionary Algorithm (MOEA) by Akbar et al. (2016).
The baseline active/passive combination technique is the main procedure used by the SMAP
science team to produce the SMAP Radar/Radiometer soil moisture products at 9 km reso-
lution prior to the radar failure. This downscaling algorithm was developed to take advan-
tage of the strengths of passive and active microwave observations, being accurate and high
resolution soil moisture mapping, respectively. The baseline algorithm disaggregated the
SMAP radiometric brightness temperature through combination with SMAP radar backscat-
ter. This procedure, which inherited background knowledge from the work of Piles et al.
(2009b) and Das et al. (2011), includes: i) calibrating model parameters from a linear re-
gression analysis of the time series of brightness temperature-radar backscatter pairs at the
radiometric footprint (36 km), and ii) combination of the coarse resolution brightness tem-
perature and medium resolution radar backscatter (9 km) using a linear function, which
utilizes the calibrated slope from the predecessor step. Soil moisture is then estimated
by applying the radiative transfer model (single channel algorithm, Jackson, 1993) to the
downscaled brightness temperature. These estimates are available at the NASA National
Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) website as
SMAP Level 3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version
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3 (SPL3SMAP). Figure 3.12 shows an example of the baseline active/passive combination

technique retrievals, hereafter referred to as the SMAP A/P.

The MOEA is a physical-based downscaling technique Akbar et al. (2016), which implicitly
disaggregates the radiometric soil moisture from the coarse scale of 36 km to the medium
scale of 9 km using a multi-objective optimization approach . This technique is based on
the combination of optimized radar- and radiometer-only soil moisture estimations and is
developed to compromise on the performance of the forward electromagnetic emission and

scattering models. The MOEA technique finds an optimum solution by including evaluation
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Figure 3.11: The coarse SMOS and SMAP passive microwave soil moisture estimates for
the Yanco region during the SMAPEx-4 and -5 airborne field campaigns period. The date
is written on soil moisture plots for the nearest available observations to PLMR flight days
when coincident overpass data are not available. Notes: missing data are shown in white
colour and, A and D stand for ascending and descending overpasses, respectively.
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of multiple objective functions within each iteration. Based on stochastic operators, the
MOEA procedure gives more weight to the most accurate soil moisture retrievals from either
radar backscatter or brightness temperature. The MOEA technique was applied to the SMAP
L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 2 and SMAP L1C
Radar Half-Orbit High-Resolution ¢° Data on 1 km Swath Grid, Version 1 (SPL1CSO0) pairs.
An example of the SMAP MOEA is presented in Figure 3.13.

3.4.2 Optical-based

Two types of physically based optical downscaling techniques were applied to the daily
global SMOS Level 3 radiometric soil moisture retrievals, posted on the 25 km grid (SMOS
operational MIR CLF31A/D, version 3.00 obtained from the CATDS website) and SMAP
Level 3 Radiometer Global Daily soil moisture posted on the 36 km EASE-Grid. Disaggre-
gation was based on the Physical And Theoretical scale Change (DisPATCh; Merlin et al.,
2013) and the Vegetation Temperature Condition Index (VTCI; Peng et al., 2015, 2016)

approaches to achieve a 1 km spatial resolution.

The DisPATCh uses the Soil Evaporative Efficiency (SEE, i.e. ratio of actual to potential

soil evaporation) derived from the daily MODIS land surface temperature (MOD11A1 and
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Figure 3.12: An example of the SMAP A/P soil moisture map observed on 17 April 2015.
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Figure 3.13: An example of the SMAP MOEA soil moisture map observed on 15 April
2015.

MYDI11AT1 products) and a 16 day composite MODIS vegetation index product (MOD13A2)
at 1 km resolution, as the main soil moisture downscaling component. MODIS land sur-
face temperature is decoupled in its soil and vegetation components based on a partitioning
method (Moran et al., 1994) with the decoupled surface temperature corrected for the impact
of elevation using an ancillary 1 km resolution Digital Elevation Model (DEM) according
to Merlin et al. (2013). The SEE proxy is an appropriate downscaling index because: 1)
it has a relatively constant daily characterization for non-cloudy skies (Cragoa and Brut-
saert, 1996) and ii) it corresponds well with soil moisture changes (Anderson et al., 2007).
The DisPATCh technique was applied to the SMOS ascending and descending soil moisture
observations resulting in two DisPATCh products, the morning/ascending DisPATCh (Dis-
PATChA) and afternoon/descending DisPATCh (DisPATChD). An example of the SMOS
DisPATChA and DisPATChD soil moisture maps during the SMAPEXx-4 airborne field cam-

paign are shown in Figure 3.14.

The VTCI technique uses the high resolution VTCI as the downscaling factor. The VTCI is
a thermal based proxy which is used as a drought monitoring index (Wang et al., 2001). It
is calculated based on the triangular/trapezoidal feature space constructed from 4 day com-
posite MODIS Leaf Area Index (LAI, MCD15A3) at 1 km resolution and the daily Aqua
MODIS day-and night-time land surface temperature difference (ALST 4y nigne MYDI11AL).
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Figure 3.14: Examples of the SMOS DisPATChA and DisPATChD soil moisture maps ob-
served on 3 April 2015.

The SMAP VTCI and SMOS VTCI soil moisture maps observed on 3rd April 2015 during
the SMAPEXx-4 airborne field campaign are shown in Figure 3.15.

3.4.3 Radiometer-based

Downscaled SMAP soil moisture retrievals were also produced at 10 km using the radiometer-

based Smoothing Filter-based Intensity Modulation (SFIM) model developed by Gevaert
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Figure 3.15: Examples of the SMAP VTCI and SMOS VTCI soil moisture maps observed
on 1 and 2 September 2015, respectively.
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et al. (2015). The SFIM methodology is based on the multi-sensor image fusion tech-
nique designed by (Liu, 2000). Success of this technique in producing downscaled Land-
sat Thematic Mapper data to a higher spatial resolution using the high resolution Satellite
Pour I’Observation de la Terre images, motivated Santi (2010) to employ this technique
for the purpose of soil moisture downscaling. In the SFIM procedure a weighting fac-
tor is used to downscale the 36 km SMAP Level 2 brightness temperature (SPL2SMP) to
10 km. The downscaling factor used here is the ratio between the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR?2) Ka-band brightness temperature
for each grid cell at 10 km and the average of Ka-band brightness temperature across the
coarse scale of the SMAP brightness temperature observations. From downscaled SMAP
brightness temperature, soil moisture content was estimated through application of the Land
Parameter Retrieval Model (LPRM, Owe et al., 2001, 2008). An example of the SMAP
SFIM soil moisture map during the SMAPEXx-4 airborne field campaign is shown in Figure

3.16.

3.4.4 Oversampling-based

An oversampling-based technique (Chan et al., 2018; Chaubell, 2016), based on the Backus-

Gilbert interpolation method (Backus and Gilbert, 1970, 1967), was also used to enhance
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Figure 3.16: An example of the SMAP SFIM soil moisture map observed on 09 April 2015.
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not only the spatial scale of SMAP brightness temperature but also its accuracy. Soil mois-
ture was then derived by applying a radiative transfer model to the brightness temperature
posted onto a 9 km grid. This technique was applied to the morning/descending (D) and
afternoon/ascending (A) SMAP level 1B Radiometer Half-Orbit Time-Ordered brightness
temperature products at 47 km x 36 km, resulting in two series of products: the EnhancedD
and EnhancedA, respectively. The Backus-Gilbert is an optimal interpolation theory that
provides the closest observation to what perhaps would be measured by the radiometric in-
strument at the interpolation point (Poe, 1990). To this aim, all the brightness temperature
values that are centred near a particular radius within a relatively short length of intervals
are aggregated to a spatial resolution higher than the resolution and/or footprint of obser-
vations. The extent of improvement of the spatial resolution is determined by the sampling
density and overlap in the response functions of the instrument at measurement locations.
Long and Daum (1998) found out that when the sampling pattern is denser there is a better
opportunity for the spatial resolution enhancement of observations. The non-uniformity of
overlapping measurement is another factor which facilitates better resolution enhancement
(Long, 2003). Figure 3.17 shows an example of the SMAP EnhancedA and EnhancedD soil
moisture maps observed on 11 May 2015 during the SMAPEx-4 airborne field campaign.
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Figure 3.17: An example of the SMAP EnhancedA and EnhnacedD soil moisture maps
observed on 03 July 2015.
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3.5 Chapter summary

This chapter provided an overview of the SMAPEx-4 and -5 data which was used together
with in situ OzNet soil moisture measurements for inter-comparison of the performance of
downscaled, radiometer-only and merged soil moisture products. For the purpose of cal-
ibration and validation of SMAP soil moisture products the SMAPEx-4 and -5 airborne
campaigns were conducted, during which comprehensive data set including L-band pas-
sive microwave observations from PLMR, HDAS intensive soil moisture ground sampling,
soil surface roughness and vegetation data were collected. These airborne campaigns were

supported by the OzNet monitoring stations providing in situ soil moisture measurements.

Downscaled soil moisture products used in the inter-comparison and merging method were
also described, outlining the downscaling techniques and approaches, product definitions,
key references, and main downscaling inputs as applicable. The downscaled soil moisture
products include retrievals of radar-, optical-, radiometer- and oversampling-based down-
scaling techniques. The SMOS and SMAP coarse passive microwave data sets used for
benchmarking the downscaled soil moisture products against of, were also briefly intro-

duced in this chapter.
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Chapter 4

Inter-comparison of alternative downscaled
products

Existing optical-, radiometer-, and oversampling-based downscaling methods could be an al-
ternative to the radar-based approach for delivering downscaled soil moisture. Nevertheless,
retrieval of accurate high resolution soil moisture remains a challenge, and there has been
no test to assess which downscaling methodology yields the best overall soil moisture esti-
mation at higher resolution against a common reference data set. Consequently, this chapter
presents an inter-comparison of the radar-, optical-, radiometer-, and oversampling-based
downscaling techniques against a common reference data set including the SMAPEx-4 and
-5 airborne field campaigns and the OzNet in situ measurements from Chapter 3, to deter-
mine the relative strengths and weaknesses of their performances. The work in this chapter

has been submitted to the journal Remote Sensing of Environment for publication.
4.1 Introduction

Soil moisture influences land-atmosphere interaction via fluxes of energy and water, and
thus impacts weather and climate conditions (Seneviratne et al., 2010), hydrology (Corra-
dini, 2014; Koster et al., 2004, 2010) and agricultural production (Bolten et al., 2010). The
ability to provide reliable, spatially distributed and temporally consistent measurements of
soil moisture will therefore be of great benefit. Key to providing such information economi-
cally across the globe has been the development of L-band passive microwave remote sens-
ing technology (Entekhabi et al., 2010; Kerr et al., 2016). The passive L-band microwave

approach is widely accepted as the optimum technology for soil moisture estimation (En-
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tekhabi et al., 2010) because: 1) it is highly sensitive to soil moisture dynamics (Ulaby et al.,
1982), ii) it has a direct relationship to soil moisture (Jackson and Schmugge, 1989), iii) it
is relatively unaffected by the vegetation and atmosphere (Ulaby et al., 1982), iv) it is inde-
pendent of weather condition and daylight (Jackson, 1993), v) it has a large signal-to-noise
ratio (Njoku and Entekhabi, 1996), and vi) it is able to see into the top approximately 5 cm
of the soil (Owe and Van de Griend, 1998).

There are currently two L-band passive microwave satellite missions dedicated to monitor-
ing the near surface soil moisture every 2 to 3 days: 1) the ESA Soil Moisture and Ocean
Salinity (SMOS), which was launched in November 2009 as the first ever dedicated satel-
lite for soil moisture mapping, and ii) the NASA Soil Moisture Active Passive (SMAP),
launched in January 2015 as the first ever satellite to combine a radar and radiometer to

produce an enhanced resolution soil moisture product.

Each of these satellite is equipped with a specific antenna setup which makes their prod-
ucts disparate in terms of quality, spatial resolution and sampling density. The SMAP has
a rotating real aperture antenna that conically scans the surface soil moisture, using an L-
band radiometer, at approximately 40 km spatial resolution with 11 km along scan and 31
km across scan spacing, and at a constant incidence angle of 40 degree. This character-
istic of SMAP simplifies data processing and interpretation, and increases the accuracy of
repeat-pass soil moisture estimation (O’Neill et al., 2018). The SMOS radiometer is a 2D
(interferometric) Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) which
collects multi-angular brightness temperature at the scale of about 40 km. While SMOS does
not have the same sampling capability of SMAP, its overlapping snap shots with varying in-
cidence angle across the swath allow for multi-incidence angle data for the same footprint.
Together, the SMOS and SMAP missions provide the continuity of dedicated satellite soil

moisture observations for the globe since 2010 (Kerr et al., 2016).

Soil moisture estimates at native resolution from both the SMOS and SMAP radiometers are
only available at a coarse scale of approximately 40 km (provided on 25 km and 36 km grid
spacing, respectively), which is not sufficient to meet the spatial resolution requirements

of hydro-meteorological, agricultural and carbon cycle applications (e.g Entekhabi et al.,
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2010; Molero et al., 2016). However, the SMAP satellite included an L-band radar which
was to be combined with the L-band radiometer observations for spatial scale improvement
of the radiometric observations, so as to allow accurate high resolution global near-surface
soil moisture mapping (Entekhabi et al., 2010; O’Neill et al., 2010). The sensitivity of radar
backscatter to soil moisture dynamics and the geophysical properties of the soil surface was
expected to contribute to improvement of the retrievals’ accuracy and disaggregation of ra-
diometric soil moisture estimates (Chauhan, 1997; Petropoulos et al., 2015). However, loss
of coincident radar imaging in July 2015 due to a hardware anomaly meant that an alter-
native downscaling approach had to be sought. Moreover, there is no radar sensor aboard
the SMOS. Consequently, alternative downscaling techniques have been applied to the two
soil moisture missions, with the aim to accurately and efficiently increase the resolution of

SMOS and SMAP passive L-band soil moisture (and/or brightness temperature).

Reviews of techniques for downscaling passive microwave data for high resolution soil
moisture mapping have been recently published by Sabaghy et al. (2018) and Peng et al.
(2017). Downscaling methods exploit both the accuracy of the passive L-band microwave
observations and the high resolution spatial variability of the ancillary data. Accordingly,
downscaling techniques include, but are not limited to, radar-, optical-, radiometer-, and

oversampling-based methods.

The radar-based downscaling techniques (Akbar and Moghaddam, 2015; Bindlish et al.,
2008; Das et al., 2011, 2014; Piles et al., 2009b; Zhan et al., 2006) are based on radar-
radiometer combination algorithms which enhance the spatial detail of coarse radiometric
soil moisture using the spatially varied information on land surface features provided by
radar. The extent of correlation between backscatter and soil moisture, and sensitivity of
backscatter to soil moisture changes determine the success of radar-based downscaling tech-

niques in estimating the variation of soil moisture in space (Wu et al., 2014).

The basic concept behind the optical-based downscaling techniques (e.g. Fang et al., 2013;
Merlin et al., 2006, 2008a,b, 2012, 2013; Piles et al., 2011, 2012, 2013) is the feature space
between vegetation index and surface temperature in the shape of a triangle/trapezoid (e.g.

Carlson et al., 1994; Gillies and Carlson, 1995) which indicates wet and dry conditions at its
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edges. This feature space adjusts the sensitivity of land surface temperature to soil moisture

as a function of vegetation cover density and canopy type.

The radiometer-based downscaling technique (e.g. Gevaert et al., 2015; Santi, 2010) uses
radiometric emissions at higher frequency (Ka-band, 26 to 40 GHz) to provide information
about spatial variability of the surface when there is no rainfall event (Gevaert et al., 2015).
The advantage of the radiometer- (over the optical-) based approach lies in the capacity of
radiometer imagery to deliver ancillary data under all weather conditions and being less
affected by the soil surface condition. However, the radiometer-based technique is not able
to improve the resolution of soil moisture content to the same extent as the optical-based
techniques due to the coarser resolution of that data, as the resolution of downscaled soil

moisture products is dictated by that of the ancillary data used for the downscaling.

The oversampling-based method (Chan et al., 2018; Chaubell, 2016) applies an interpola-
tion technique which rescales the brightness temperature values to 30 km and posts onto a
9 km grid. Consequently, it creates the most optimal brightness temperature by aggregat-
ing brightness temperature values that are centred near a particular radius with a relatively
short length of intervals. For the methods that downscale the brightness temperature (e.g.
oversampling-and radiometer-based techniques), soil moisture retrieval is then conducted on
the higher resolution brightness temperature using the same passive microwave soil moisture

retrieval algorithm used with the coarse observations.

While a diversity of downscaling approaches exist, until now there has been no rigorous test
to assess which downscaling methodology yields the best overall soil moisture estimation at
higher resolution. Therefore, this chapter presents a consistent inter-comparison of the vari-
ous downscaling techniques against each other and a reference data to determine the relative
strengths and weaknesses of their performance. This is the first consistent assessment of
the complete range of different radar-, optical-, radiometer-, and oversampling-based down-
scaled soil moisture products which are readily available using the same set of evaluation
data, in order to take a step towards multi-sensor high resolution soil moisture retrieval for
typical Australian landscapes. The performance of the downscaled soil moisture products

was also benchmarked against the radiometer-only retrievals of SMAP and SMOS.
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4.2 Evaluation methodology

This section describes the evaluation procedure that is summarised in Figure 4.1. Here the
downscaled soil moisture products are evaluated against a consistent reference data set that
includes the OzNet in situ soil moisture measurements and the SMAPEx-4 and -5 airborne
PLMR soil moisture maps. The coarse passive SMAP and SMOS soil moisture products
were also compared against the same reference data set providing a baseline scenario. This
evaluation is meant to serve as a quantitative assessment of the improvement in the down-
scaled soil moisture products over the coarse soil moisture products, applied directly at the
same spatial resolution as the comparable downscaled soil moisture product. Consequently,
prior to the evaluation of coarse SMAP and SMOS soil moisture products, each product was
mapped onto a 1 and 9 km grid, with the value of each coarse pixel assigned to each higher

resolution pixel lying within the original pixel.

The evaluation against the OzNet measurements was conducted over the period between
Ist April and 1st November 2015, while the time frame of the evaluation against airborne
PLMR soil moisture was associated with the temporal extent of the SMAPEx-4 and -5 air-

borne field campaigns. The evaluation included a temporal analysis of the downscaled soil
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Figure 4.1: Schematic of the procedure used for evaluation of the downscaled soil moisture
retrievals against the airborne PLMR and the OzNet in situ soil moisture measurements.
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moisture products against both the OzNet and airborne PLMR soil moisture. In the tem-
poral analysis, time series of soil moisture values from each pixel of modelled estimates
were compared against corresponding values from the reference PLMR maps and/or aggre-
gated OzNet measurements to the products pixel scale. Moreover, the spatial analysis was
carried out against the airborne PLMR soil moisture. In the spatial analysis, daily maps
of estimates were compared against the corresponding reference map. From the temporal
and spatial match-ups mentioned above, the performance metrics were calculated, including
bias, coefficient of determination (R?), Root Mean Square Deviation (RMSD), and unbiased

RMSD (ubRMSD), and slope of linear regression.

The optical-based downscaled soil moisture products were evaluated at two different scales:
1) 1 km being the original scale of the optical-based products, and ii) 9 km being the scale
of radar- and oversampling-based retrievals. For the evaluation at 9 km, the optical-based
products herein DisPATCh and VTCI were upscaled to the SMAP A/P scale of 9 km, using
the arithmetic average. The evaluation at 9 km was conducted to make the comparison
system consistent across the downscaled soil moisture products being mainly available at 9

km.

4.2.1 Evaluation against the OzNet in situ soil moisture measurements

To compare the downscaled soil moisture products against the OzNet, soil moisture mea-
surements from individual stations were averaged within the grid cell of each product. For
the grid scales larger than 1 km, comparisons were made across the pixels that had a large
number of the OzNet stations (more than or equal to four) within their scale. Figure 4.2
shows the selected pixels at the medium scales of 9 and 10 km at which the downscaled soil

moisture products were evaluated.

4.2.2 Evaluation against the SMAPEx-4 and -5 PLMR soil moisture maps

The evaluation of the downscaled soil moisture products against PLMR required pairing of
the PLMR soil moisture maps with the nearest available downscaled soil moisture products

to the PLMR flights, when coincident downscaled data were not available. The nearest
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Figure 4.2: Schematic of the downscaled soil moisture product grids at (a) 9 km and (b)
10 km. The SMAPEx-4 and -5 flight coverage and location of the OzNet stations are high-
lighted in magenta rectangles and red dots, respectively. The cyan rectangle shows the
common analysis area for both airborne field campaigns. Green squares show the chosen
pixels for analysis of soil moisture products against the OzNet measurements. These pixels
contain the largest number of the OzNet stations (more than four); the number of available
stations is written in the pixel.

available products were selected based on information about the rainfall occurrence over the
study area and minimal average absolute change ( < 0.02 m* m™) of the OzNet soil moisture
measurements between the flight dates and those of the nearest available products in time.
The date of the nearest available observations to PLMR flights is written on soil moisture
thumbnail plots (Figure 4.3 and 4.4 provided in the results section) when data were not
coincident. The main comparison scenario of the downscaled soil moisture products against
the airborne PLMR soil moisture was developed to discard the seasonal performance of the
downscaled soil moisture products because the operational application of the downscaled
soil moisture products should be regardless of climate conditions (Sabaghy et al., 2018).
The analysis herein used the entire downscaled soil moisture data captured during both
the SMAPEx-4 and -5 airborne field campaigns. Moreover, the seasonal performance of the
downscaled soil moisture products was examined for the Austral autumn (March-May, using
the SMAPEx-4 data) and spring (September-November using the SMAPEx-5 data) as a

complementary scenario, in order to understand the seasonal performance and uncertainties
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of the soil moisture products.

Radar-based soil moisture products were only available for the period between 15 April and
7 July 2015 when the SMAP radar was still transmitting data. Thus, radar-based products
were evaluated only for the SMAPEXx-4 airborne field campaign. The seasonal evaluation
of the performance of the other downscaled soil moisture products was conducted when
enough (4 or more) coincident downscaled soil moisture maps were available. Accordingly,
the performance analysis of the VTCI-based products was not possible for the SMAPEx-4
period as only one SMOS VTCI and two SMAP VTCI soil moisture maps were captured

due to cloud.

In order to address the potential variation in number of different downscaled soil mois-
ture products available for comparison, and eliminate the impact on evaluation, only the
downscaled soil moisture products collected on 3, 6, 11, 20 and 22 May 2015 during the
SMAPEx-4 were evaluated herein. This evaluation was undertaken for the SMAPEx-4 pe-
riod only because the radar-, optical-, radiometer-and oversampling-based products were all

available over this period.

4.3 Results

Time series of the downscaled and observed airborne PLMR soil moisture maps during the
SMAPEXx-4 and -5 airborne field campaigns are shown in Figure 4.3 and Figure 4.4, re-
spectively. These figures show the performance of the downscaled soil moisture products in
capturing the spatio-temporal variability of soil moisture. The airborne PLMR soil moisture
estimates at 1 km have consistency with the occurrence of precipitation events, mimick-
ing the dry down cycle observed during the SMAPEX-5 and the rainfall interrupted drying
spell during the SMAPEx-4 (Figure 3.2). There is no clear evidence from Figures 4.3 and
4.4 to show that any downscaling process is clearly superior to another for disaggregation
of SMAP and/or SMOS, but among the downscaled soil moisture products available over
the SMAPEx-4 period, DisPATCh and VTCI products- especially at 9 km- revealed the
best visual agreement with the spatial and temporal pattern of airborne PLMR soil mois-

ture compared to other products. However, a limitation of the optical approach is that it
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cannot deliver any soil moisture downscaling under cloudy skies because of the lack of
cloud free optical imagery, which is the key component or input in the optical downscal-
ing process. This shortcoming of optical imagery resulted in the reduced availability of
the VTCI-based downscaled soil moisture, which uses the difference of day and night land
surface temperature in derivation of its downscaling index. The lack of access to optical
observations, which is more pronounced for the SMAPEX-5 period, is unlike microwave-
based approaches where there are no such gaps in data. The microwave-techniques are in
general capable of soil moisture downscaling under all-weather conditions. This capability
is due to microwave observations being able to pass through non-raining clouds unaffected.
The success of DisPATCh and VTCI products in capturing the soil moisture spatio-temporal
variability is followed by both of the radar-based downscaled soil moisture products, namely

the SMAP MOEA and A/P products, which were only available for the SMAPEx-4 period.

The temporal evolution of the downscaled soil moisture products at 9 km was also compared
with that of aggregated OzNet measurements to 9 km (Figure 4.5) showing a significant
level of agreement between them. The majority of the downscaled soil moisture values do
not match the median OzNet soil moisture closely, but are in the range of aggregated OzNet
measurements. However, there are also a few days on which the downscaled soil moisture

estimates laid outside the OzNet measurement range.

4.3.1 Temporal analysis against the OzNet

Temporal analysis of soil moisture products was carried out against pixels containing mul-
tiple OzNet stations. In this analysis, time series of soil moisture values from the chosen
pixels were compared against corresponding values from aggregated OzNet soil moisture
measurements. A summary of accuracy statistics from different downscaled soil moisture
products is presented as a boxplot in Figure 4.6, containing the minimum, maximum, me-

dian, and interquartile ranges together with the mean.

Comparison of products at 9 km resolution (Figure 4.6-b) shows that the SMAP VTCI soil

moisture product had the best temporal agreement with the OzNet measurements, followed
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by the SMAP EnhancedD and EnhancedA products. The SMOS VTCI, SMOS PassiveD and
DisPATChD had the lowest agreement with the temporal pattern of the OzNet soil moisture
compared to other products at 9 km, having an average R? of ~ 0.6. The difference between
the performance of the SMAP and SMOS VTClI is the result of the difference in the SMAP
and SMOS PassiveD from which the SMAP and SMOS VTCI products were derived. The
SMAP VTCI soil moisture had an overall bias of -0.011 m* m™, which explains the slight
underestimation relative to the ground OzNet measurements. While the SMOS VTCI, Dis-
PATChD and SMAP VTCI underestimated relative to the OzNet measurements, the other
products overestimated. For example, the SMAP MOEA with average bias of 0.057 m® m™

had the most noticeable overestimation.

With the exception of SMAP VTCI and the Enhanced products, the other downscaled soil
moisture products at 9 km showed a deterioration in the R? when compared with the coarse
original SMAP soil moisture products. For instance, the R?> of SMAP A/P was on average
0.12 less than that of SMAP PassiveA and PassiveD. Among the downscaled soil mois-
ture products, the SMAP EnahncedA and EnhancedD downscaled soil moisture products
maintained a similar RMSD to the coarse SMAP passive soil moisture products. It is to be
noted that SMAP VTCI was the only downscaled product which outperformed the original
coarse passive SMAP in terms of RMSD, hitting the lowest values of RMSD and ubRMSD.
The DisPATChD could not improve the accuracy of non-downscaled SMOS PassiveD from
which DisPATChD originated. However, the DisPATChD showed a close performance to
that of SMOS PassiveD.

The SMAP EnhancedD with mean R? of 0.81, mean RMSD of 0.061 m® m™ and mean bias
of 0.024 m* m™® was found to have a slightly better performance than the SMAP EnhancedA.
The performance of the Enhanced product, was generally consistent with that of products
evaluated by Chan et al. (2018) who assessed the performance of the Enhanced products for
the duration of April 1, 2015 to October 30, 2016 using in sifu data from the SMAP mission
core validation sites including Yanco. Chan et al. (2018) reported on the similarity between
the performance of Enhanced products and that of SMAP passive soil moisture products.
Based on their analysis, the SMAP EnhancedD data attained a mean R? of 0.92 (correlation
coefficient/R = 0.96), mean RMSD of 0.048 m® m~ and mean bias of 0.02 m® m™ over the
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Yanco region.

When compared against aggregated OzNet measurements at 1 km (Figure 4.6-a), the prod-
ucts were shown to have a poorer performance than the products at 9 km. Such a decrease
in the performance of products at 1 km could be associated with the spatial-scale mismatch,
which is expected to be larger for higher resolution products (van der Velde et al., 2012).
Moreover, it has previously been noted by Yee et al. (2016) that the evaluation of soil mois-

ture products against the OzNet stations in the Yanco region is more reliable for coarser
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Figure 4.6: Summary of results obtained from temporal analysis of soil moisture products
at (a) 1 km and (b) 9 km against the OzNet. For 9 km products, only pixels with the largest
number of stations were chosen. Each boxplot displays the distribution of the accuracy
statistics of different downscaled soil moisture products based on the interquartile range,
the maximum and minimum range, and the statistics median (bar) associated with the mean
(dot). d indicates the number of the downscaled soil moisture products that were used in
this analysis and n indicates the number of statistical parameters that are summarized in this
figure.

110



Chapter 4 — Inter-comparison of alternative downscaled products

resolutions whereby multi-stations are aggregated for each pixel footprint.

The SMAP VTCI with mean R? of 0.85 and mean RMSD of 0.07 m* m™ was found to have
the best performance. The R? of DisPATCh products at 1 km were observed to be slightly
lower than that of DisPATch products at 9 km. The same observation was made regarding
the R? of SMAP VTCI at 1 km, which did not change much in comparison with that of
SMAP VTCI at 9 km; the R? for 1 km scaled SMAP VTCI was on average 0.05 less than
that of 9 km SMAP VTCI. Conversely, the R? of SMOS VTCI at 1 km was observed to
be roughly the same as that of SMOS VTCI at 9 km; similar results were obtained for the
SMOS PassiveD from which SMOS VTCI originated. Except for SMOS VTCI at 1 km,
which slightly underestimated the OzNet soil moisture by -0.004 m®> m™ on average, the
remaining products overestimated by between 0.012 and 0.046 m> m™ on average. With the
exception of SMAP VTCI, no improvement of statistical parameters was observed for the
1 km downscaled soil moisture products over the original coarse passive SMAP and SMOS
soil moisture measurements. However, the accuracy of DisPATChD and SMOS VTCI were

shown to be close to that of SMOS PassiveD.

An unequal number of soil moisture values were analysed for the different products in-
cluded in the temporal analysis against the OzNet stations, due to the availability of product
retrievals. This may raise a concern about the impact of the unequal number of data used in
the estimation of statistical metrics, and thus the findings from the analysis. Consequently,
the temporal analysis was also conducted for a consistent number of data by using only
observations on the same dates (eight days only). This included comparison of SMAP En-
hancedD, SMAP SFIM, SMAP PassiveD, SMOS PassiveD, SMAP VTCI and SMOS VTCI
against the OzNet measurements. Findings from this analysis were consistent with the ear-
lier results. However, the statistical metrics of the eight days only scenario were deteriorated
compared to those summarized in Figure 4.6. Still, the SMAP VTCI at both 1 and 9 km were
found to have the best performance. For the comparisons conducted at 1 km, the SMAP Pas-
siveD followed closely the SMAP VTCI. Results obtained from the analysis of products at
9 km revealed that the performance of SMAP VTCI was followed by that of the SMAP
EnhancedD and SMAP PassiveD.
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As suggested by Merlin et al. (2015), the slope of linear regression between the downscaled
soil moisture products and the OzNet in situ measurements was also considered as an eval-
uation metric for assessment of products at 1 and 9 km. The mean slope values of products
at 1 km varied between 1 and 1.3, showing no difference in the performance of products.
Similar to slope analysis for products at 1 km, there was no significant difference between
the mean slope values for products at 9 km; with the range of mean slope being between
0.9 and 1.4. A slope larger than 1 could be attributed to the difference between the sensing
depth of the downscaled soil moisture products (varying between 0 and 5 cm) and that of in

situ measurements being 0-5 cm.

In the case of temporal analysis of the downscaled soil moisture products at 9 km against
the OzNet (Figure) 4.10), SMAP EnhancedA and EnhancedD products were generally su-
perior to the other downscaled soil moisture products. Both reached the highest temporal
correlation with the OzNet and had the lowest bias. SMAP VTCI at 1 km resolution also

showed superiority to the remaining downscaled soil moisture products at 1 km.

4.3.2 Temporal analysis against airborne PLMR soil moisture

The temporal analysis of products was also carried out against the entire airborne PLMR soil
moisture maps captured over the SMAPEXx-4 and -5 airborne field campaigns. A summary
of product accuracy statistics at 1 and 9 km resolution are presented as boxplots in Figures
4.7 and 4.8, respectively. When the same number of the downscaled and non-downscaled
soil moisture maps at 1 km (Figure 4.7-a) were evaluated, descending SMAP and SMOS
coarse passive products showed superiority in terms of accuracy when contrasted with the
downscaled soil moisture products, having a mean R? > 0.6 and mean RMSD of ~ 0.09 m?
m>. The SMOS DisPATChD maintained a similar accuracy to that of SMOS PassiveD, and
performed the best among the downscaled soil moisture products. Generally, all products
underestimated the airborne PLMR soil moisture; with the underestimation being greater in

the SMAP PassiveA and SMOS DisPATChA.

For the comparison against the SMAPEx-4 and -5 airborne field campaigns (Figure 4.7-c),
SMOS VTCI at 1 km performed the best with R? of 0.76, RMSD of 0.084 m®> m> and
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Figure 4.7: As for Figure 4.6 but for the comparison against airborne PLMR soil moisture at
1 km in which analysis was carried out for all the pixels covering the study area. These re-
sults are from different scenarios including: a) the equal number of downscaled soil moisture
products captured during the SMAPEx-4, b) all available products during the SMAPEx-4,
and c) products captured over the entire SMAPEx-4 and -5 airborne field campaigns’ pe-
riod. Here s stands for the dimension of analysis area arranged in row X column. Note:
the performance analysis of the VTCI-based products was not possible for the SMAPEx-4
period as only one SMOS VTCI and two SMAP VTCI soil moisture maps were available.
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ubRMSD of 0.056 m*® m™, which were better statistical metrics than for the other prod-
ucts. This was followed by the SMOS DisPATChD and SMAP PassiveD products which
performed similarly; with a mean R? close to 0.4, mean RMSD of about 0.12 m® m™ and
mean bias between 0 and -0.05 m®> m3. It is to be noted that the maximum R? for both
SMOS VTCI and DisPATChD was equal to 1, while other products could not reach this
high level of temporal agreement with airborne PLMR soil moisture. The slope of the linear
regression defined between the downscaled soil moisture products and PLMR soil mois-
ture maps showed dependency to R?. As anticipated, the slope values were small (close
to zero) for products that had low R2. The slope was mainly explained by the correlation,
knowing that slope equals to (correlation) x (standard deviation of the downscaled soil mois-
ture products/standard deviation of reference data). Therefore, the standard deviation of the
downscaled soil moisture products was rather similar across all products. Comparison of
SMOS VTCI and SMOS DisPATCh as optical-based products has also been conducted for
the SMAPEXx-4 and -5 airborne field campaigns, by choosing the same dates. Based on this

comparison, the performance of DisPATCh and VTCI was quite comparable.

In order to assess the seasonal impact on the performance of products at 1 km, the temporal
analysis of products was also carried out for the SMAPEX-5 airborne field campaign con-
ducted in the austral spring. During the SMAPEx-5 with wet soils, the products again under-
estimated the airborne PLMR soil moisture, being even more severe than for the SMAPEXx-
4. The performance of SMOS DisPATChD, SMAP EnhancedD, SMAP EnhancedA and
SMAP PassiveD during the SMAPEX-5 showed a minor difference over their performance
during the SMAPEx-4 in terms of R? and ubRMSD. With the exception of SMOS PassiveD,
whereby R? decreased marginally from 0.66 (SMAPEx-4) to 0.57 (SMAPEXx-5), the R? of
remaining products during the SMAPEX-5 increased by more than 0.5 compared to that
of the SMAPEx-4. The SMAP PassiveA products experienced the largest increase (0.68) in
terms of R? and had the lowest agreement with the SMAPEx-4 PLMR soil moisture. Results
from the comparison of SMOS VTCI and SMOS DisPATCh on the same dates during the
SMAPEX-5 airborne field campaign revealed a similarity of DisSPATCh and VTCI in terms

of performance.

For the comparison against the SMAPEXx-5 airborne field campaign data, with the exception
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of SMOS PassiveD and DisPATChD with R? less than 0.6, the remaining products were
found to have an R? greater than 0.75. The SMOS DisPATChA had a reasonable perfor-
mance with an R? of 0.77, a lower bias (-0.033 m®> m™) and a lower ubRMSD (0.044 m?
m™) than other products. This is unlike the SMOS VTCI, SMAP VTCI, SMAP PassiveA,
SMAP PassiveD, and SMOS PassiveA, which with R?> > 0.85 could not meet the accuracy

requirements in terms of bias and RMSD. For instance, the SMOS VTCI had the largest bias

3 3

equal to -0.115 m® m™ on average and the largest RMSD equal to 0.143 m® m™ on average.

At 9 km resolution for the scenario in which the same number of soil moisture maps were
evaluated (Figure 4.8-a), the SMAP EnhansedA and EnhancedD products with average R?
of 0.92 and 0.94, respectively, surpassed the other downscaled soil moisture products in
capturing the temporal evolution of airborne soil moisture estimates, followed by SMAP
PassiveD, SFIM and MOEA. The SMOS PassiveD and SMAP A/P products also showed
a good performance with R? of 0.75 for the first and 0.73 for the later. The SMAP Pas-
siveD without being downscaled was amongst the best results and yielded an R? of 0.89
and ubRMSD of 0.054 m?® m?. Nevertheless, the SMAP EnhancedA was found to have the
best agreement with airborne PLMR soil moisture. The SMAP EnhancedA not only had a
high coefficient of determination but also low RMSD and/or ubRMSD. The DisPATChA at
9 km- retrieved from an optical-based downscaling technique - had the lowest agreement
with airborne PLMR soil moisture. This is unlike the DisPATChD which was shown to
have a moderate performance with R? of 0.75. The DisPATChD yielded on average similar
performance to the SMOS PassiveD. While it did not improve nor maintain the accuracy of
SMOS PassiveD in terms of RMSD and ubRMSD, it deteriorated the R? and bias relative to
SMOS PassiveD. Nevertheless, the R? of SMOS PassiveD was not significantly above that
of DisPATChD. These findings are in agreement with those obtained from evaluation of all

available soil moisture products during the SMAPEx-4 (Figure 4.8-b).

For the comparison against the SMAPEXx-4 and -5 airborne field campaigns (Figure 4.8-c),
SMOS VTCI at 9 km performed the best with a mean R? of 0.91, mean bias of -0.04 m?
m~, mean RMSD of 0.061 m*® m™, and mean ubRMSD of 0.039 m* m™ followed by SMAP
MOEA and A/P, which were only available for the SMAPEx-4 period. The remaining prod-
ucts, with the exception of the SMAP VTCI, SMOS DisPATChA and SMAP PassiveA, had
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similar performance with mean R? between 0.2 and 0.5 and varying RMSD between 0.1 and

0.13m* m?.
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Figure 4.8: As for Figure 4.7 but for the comparison against airborne PLMR soil moisture
at 9 km.
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The seasonal performance assessment was also carried out for the products at 9 km. Based
on this comparison, with the exception of SMOS PassiveD, SMOS DisPATChA and Dis-
PATChD, the remaining products were superior with an R?> > 0.9. This is not in line with
the findings from the SMAPEx-4 in which SMOS PassiveA, SMOS DisPATChA and SMAP
PassiveA had an R? less than 0.3. Generally, the variation of RMSD, ubRMSD, and bias
obtained from evaluation of 9 km products during the SMAPEX-5 was found to be smaller
than that of products at 1 km. Still, the average of obtained statistical metrics for 9 km

products was quite similar to that of products at 1 km.

Generally, a comparison of the temporal performance of DisPATCh products against air-
borne PLMR soil moisture showed that the accuracy of DisPATCh products was noticeably
affected by that of the SMOS Passive products. While DisPATCh products were not supe-
rior to SMOS Passive products in terms of R?, the DisPATCh products were shown to mimic
the SMOS Passive R2. For example, the SMOS PassiveA and SMOS PassiveD at 9 km had
an average R? of 0.9 and 0.63, respectively, during the SMAPEx-5, with DisPATChA and
DisPATChD showing an average R? of 0.8 and 0.5 for the former and latter. Results herein
have also shown that DisPATCh products had a higher RMSD/ubRMSD than SMOS Passive
products during the SMAPEXx-4, which is opposite to the results obtained for the SMAPEX-5
period. During the SMAPEX-5 the RMSD of DisPATCh products were slightly lower than
those of the SMOS Passive products.

Analysis of the downscaled soil moisture products against airborne PLMR soil moisture
maps revealed the superiority of the oversampling-based technique in terms of delivering
more frequent and accurate downscaled soil moisture products than the radar-, optical-and
radiometer-based techniques. The SMAP Enhanced products not only had better perfor-
mance and availability, but also showed improvement over coarse SMAP radiometer-only

soil moisture products in terms of accuracy and spatial scale.

4.3.3 Spatial analysis against the airborne PLMR soil moisture

Spatial analysis of soil moisture products was carried out against airborne PLMR soil mois-

ture maps covering the entire study area during the SMAPEx-4 and -5 airborne field cam-

117



Chapter 4 — Inter-comparison of alternative downscaled products

paigns. This spatial analysis involved evaluation of the daily maps of soil moisture estimates
against the corresponding airborne PLMR maps in the same scenarios as in the temporal
analysis. A summary of the spatial accuracy statistics of products at 1 and 9 km are pre-

sented as boxplots in Figures 4.9 and 4.10, respectively.

When the downscaled soil moisture maps at 1 km were evaluated (Figure 4.9), they showed
low spatial correlation, denoted by R?, with airborne PLMR maps. Such a low spatial cor-
relation was followed by low linear regression slope. In the spatial analysis, the spatial
correlation was very low for all products, with the slope mainly determined by the standard
deviation of the downscaled soil moisture products in space. Furthermore, they underes-
timated the variability of the PLMR soil moisture with the range of average bias between
-0.016 and -0.075 m® m™. For the scenarios including: i) evaluation of the same number of
products (Figure 4.9-a) and ii) evaluation of products during the SMAPEx-4 (Figure 4.9-b),
the products had a mean R? of less than 0.2 and the range of mean RMSD between 0.083
and 0.146 m*® m™. These results in general are not much different from those of comparisons
against the SMAPEXx-4 and -5 airborne field campaigns (Figure 4.9-c). However, results in
Figure 4.9-c showed closer resemblance in the performance of products compared to Figure

4.9-a and b.

In the case of spatial pattern analysis of products at 9 km (Figure 4.10 ), generally, SMAP
EnhancedA and EnhancedD products were superior to other products. Both reached the
highest spatial correlation with airborne PLMR soil moisture and had the lowest bias. Nev-
ertheless, the SMAP Enhanced products had mean R? less than 0.5 and mean bias larger than
0.04 m* m>. In addition, the slope of linear regression between SMAP Enhanced products
and PLMR soil moisture was close to 0.1. The slope was mainly determined by the stan-
dard deviation of the downscaled soil moisture products in space, which is expected to be
lower for coarser/lower resolutions. The SMAP A/P showed the highest variability in terms
of slope range, and SMAP EnhancedA was one of the products with the lowest variabil-
ity. Apart from the Enhanced products, the SFIM performance was shown to be one of the
best during the short SMAPEx-4 period. When compared against the airborne PLMR at 9
km, the products were seen to have a slightly better spatial correlation than when compared

against the airborne PLMR at 1 km. Such a difference in the performance of products could
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Figure 4.9: Summary of results obtained from spatial analysis of soil moisture products at
1 km against airborne PLMR soil moisture in which analysis was carried out for all the
pixels covering the study area. These results are from different scenarios including: a) the
equal number of the downscaled soil moisture products captured during the SMAPEx-4,
b) all available products during the SMAPEx-4, and c) products captured over the entire

SMAPEXx-4 and -5 airborne field campaigns’ period.
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Figure 4.10: As for Figure 4.9 but for the spatial analysis at 9 km.
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be associated with aggregation of more airborne soil moisture measurements for each pixel
footprint at 9 km than those for each pixel footprint at 1 km, which may make comparison

of products seemingly more reliable for 9 km products.

Comparison of the performance of products at 1 km during the SMAPEX-5 (austral spring)
against that of products during the SMAPEx-4 (austral autumn) showed that there was no
noticeable seasonal impact on the spatial performance of products. None of the products
at 1 km could capture the spatial pattern of PLMR soil moisture with high correlation and
low RMSD. Agreeing with findings from the evaluation of products during the SMAPEx-4
period, the mean R? of products was generally less than 0.1 and mean RMSD was higher
than 0.09 m® m™ for the SMAPEX-5. Regardless of season, there was an underestimation of

PLMR soil moisture by products with a more noticeable error in the SMAPEX-5 period.

In contrast to the seasonal performance of products at 1 km, the seasonal impact on the
spatial performance of products at 9 km was noticeable. Products at 9 km showed slightly
better performance during the SMAPEx-4 than during the SMAPEx-5 when soils were wet.
Comparison of the correlation of products with PLMR soil moisture during the SMAPEX-5
with that of products during the SMAPEx-4 showed a reduction of R? for the SMAPEX-5,
which was more pronounced for the SMAP SFIM. The SMAP SFIM was among products
with the best performance during the SMAPEx-4, but among those with the poorest perfor-
mance during the SMAPEx-5. The SMAP SFIM experienced a decrease in R? from 0.33
in the SMAPEXx-4 to 0.14 in the SMAPEX-5 and increase of RMSD from 0.062 to 0.093
m?® m3. Although the performance of SMAP EnhancedA was slightly poorer during the
SMAPEX-5 than the SMAPEx-4 , it still ranked the best with R? of 0.18, RMSD of 0.089

m> m~ and ubRMSD of 0.055 m® m?.

Based on results, none of the downscaled products could capture the spatial variability of
PLMR soil moisture maps. Products at both 1 km and 9 km showed low spatial correlation,
denoted by R? values less than 0.5, with airborne PLMR maps. However, products at 1 km
had lower spatial correlation than products at 9 km, with R? values of ~ 0.1. While none of
these methods met the accuracy expectations, the slightly better results at 9 km are expected

to be an artifact of undertaking the evaluation at larger spatial scales where the high spatial
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variability is smoothed by the averaging process.

4.4 Discussion

This chapter has rigorously assessed the performance of a variety of available downscaled
soil moisture products at resolutions between 1 and 10 km, to find approach(es) that is(are)
applicable for multi-sensor soil moisture retrieval from the SMAP and SMOS. This as-
sessment involved consistent inter-comparison of the downscaled soil moisture products,
including radar-, optical-, radiometer-and oversampling-based retrievals against in situ and
airborne reference data for a typical Australian landscape and climate. The performance
of the original coarse radiometer-only products including SMAP and SMOS was analyzed
to understand the extent of improvement of the downscaled soil moisture products over the
coarse scale products in terms of accuracy and capability of capturing the spatio-temporal
variability of soil moisture. A summary of accuracy statistics of the downscaled and non-
downscaled soil moisture products at 9 km, evaluated against the airborne PLMR soil mois-
ture during the SMAPEXx-4 and -5 and OzNet in situ soil moisture measurements is provided

in Table 4.1.

Based on the results, the downscaled soil moisture products showed a range of performance
against different reference data sets and under differing spatial scale, weather and climate
condition. This variation of performance between the downscaled soil moisture products
could be influenced by the nature of utilized ancillary data for downscaling purpose. For
example, in Figure 4.3 and 4.4 the optical-based products could not retrieve consistent time
series of soil moisture maps under cloudy skies as optical observations are not captured un-
der cloud coverage. This shortcoming reduces the functionality of optical-based techniques
while the high temporal and spatial resolution of optical observations make them a promis-
ing ancillary data for soil moisture downscaling. Studies such as Zhao and Li (2013a), Peng
et al. (2015), Piles et al. (2016), and Sabaghy et al. (2018) have suggested the use of geosta-
tionary based optical observations, instead of the optical imagery captured by polar orbiting
counterparts, to overcome this issue. The geostationary sensors provide more frequent ac-

quisitions and thus an opportunity for more cloud free observations.
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Unlike optical-based products, radar-, radiometer-, and oversampling-based downscaled soil
moisture maps were available regardless of meteorological conditions. Oversampling-based
products retrieved from optimal interpolation theory, which provides the closest observation
to what could be measured by the radiometric instrument at the interpolation point, has the
added advantage of not needing concurrent data from other sensors. This factor prevents

data loss due to unavailability of required ancillary data for disaggregation.

The oversampling-based soil moisture products (SMAP EnhancedA and SMAP EnhancedD)
best captured the temporal and spatial variability of soil moisture overall, though the SMAP
MOEA and A/P had the better temporal agreement with PLMR during the short SMAPEx-4
period. This superiority may lie in the characteristic of the L-band radiometer and radar data
used for their soil moisture disaggregation. Especially, the oversampling-based soil moisture
products with their disaggregation procedure based on the use of SMAP L-band radiome-
ter imageries that are less affected by vegetation cover, surface roughness and meteorology

condition.

The summary of accuracy statistics, in the review of temporal analysis of different downscal-
ing techniques displayed in Figure 8 of Sabaghy et al. (2018), indicated that the radar-based
technique was expected to deliver more accurate downscaled soil moisture products than
optical-based techniques, with radar having been previously shown to have a greater sensi-
tivity to soil moisture dynamics than optical observation and with a direct relation to soil
moisture dynamics. Nevertheless, in this study the temporal analysis of products against
the OzNet ground based soil moisture measurements revealed that optical-based products
(SMAP VTCI at 9 km) performed the best, followed by the oversampling-based product
(SMAP EnhancedD). The radiometer-based products which had the poorest performance in
the review by Sabaghy et al. (2018), herein showed reasonable performance, being slightly
higher than that of radar-based products (SMAP A/P and MOEA). Moreover, the tempo-
ral analysis of products against the airborne PLMR soil moisture during the SMAPEx-4
and -5 revealed that SMOS VTCI at 9 km performed the best, followed by the radar-based
products (SMAP A/P and MOEA). Differences observed between the temporal analysis of
products against in sifu and airborne soil moisture references suggest that relying only on

in situ measurement is not appropriate for validation of soil moisture maps; basically in situ
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measurements are not necessarily a great indicator of soil moisture variation in space. Fur-
thermore, in situ measurements are not consistent and have station-to-station bias variations

(Colliander et al., 2017).

Based on the temporal analysis of seasonal performance, the performance of SMOS Pas-
siveA and DisPATChA products were noticeably affected by the season. The 9 km SMOS
PassiveA and DisPATChA had mean R? < 0.3 during the SMAPEx-4 and mean R? > 0.8
during the SMAPEX-5, while the average RMSD/ubRMSD and bias of these products was
approximately the same for both airborne field campaigns. Merlin et al. (2012) previously
reported a similar impact of seasonal variations on the accuracy of DisPATCh products in
capturing the spatial dynamic of soil moisture but with better temporal correlation of Dis-
PATCh products against reference soil moisture for summer (semi-arid climate) than winter
(temperate climate). The downscaled DisPATCh products were derived using the evapora-
tive efficiency as the main downscaling factor, which has a higher level of coupling with
surface soil moisture for the semi-arid rather than temperate climate (e.g. Colliander et al.,
2017; Merlin et al., 2012); with evsporation being the primary control on soil wetness in
semi-arid conditions. Results herein have shown that the R?> of DisPATChD during semi-
arid (SMAPEXx-4, austral spring) and temperate climate (SMAPEX-5, austral autumn) re-
mained the same. Conversely, results from the analysis of DisSPATChA products agree with
the results of Merlin et al. (2012), being that the R? of DisPATChA for the semi-arid cli-
mate was significantly higher than that of DisPATChA for the temperate climate. In order
to avoid such a reduction of DisPATCh performance for wet soil conditions, Djamai et al.
(2015) have recommended the use of a non-linear relationship between soil moisture and

soil evaporative efficiency instead of the linear one used herein.

Results also showed that the seasonal performance of DisPATCh products was similar to
that of passive soil moisture estimates from which the DisPATCh products originated. These
findings suggest that the performance of DisPATCh is heavily influenced by the performance
of the original passive soil moisture estimates. Therefore, the uncertainty of the original
passive soil moisture products is dictating the accuracy of DisPATCh. These findings are not
consistent with findings from Merlin et al. (2012) and Colliander et al. (2017), that proposed

the coupling between soil moisture and evaporative efficiency as the main factor controlling
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the accuracy of DisPATCh products. Improvement of the accuracy of passive coarse soil

moisture products is therefore another requirement for improvement of DisPATCh products.

Based on the spatial analysis of seasonal performance, products at 1 km had similar perfor-
mance for the SMAPEx-4 and SMAPEX-5 regardless of season. These results are contrasted
against those obtained from spatial analysis of products at 9 km. In general, products at 9
km had slightly better performance during the SMAPEx-4 than the SMAPEx-5. The stark
contrast of the performance of the downscaled soil moisture products during the SMAPEx-4
and SMAPEXx-5, was specifically introduced for SMAP SFIM products. Reduced sensitivity
of high frequency radiometer observations to soil moisture dynamics under increased veg-
etation cover and rainfall events during the SMAPEX-5 could be the key factor in accuracy

reduction of SMAP SFIM in temperate climate.

4.5 Chapter summary

The objective of this study was to evaluate the radar-, optical-, radiometer- and oversampling-
based downscaled soil moisture retrievals against the consistent SMAPEx-4 and -5 airborne
field campaigns data and the OzNet in situ measurements. The evaluation included: 1) tem-
poral analysis against both the OzNet and airborne PLMR soil moisture, and i1) spatial anal-
ysis against the airborne PLMR soil moisture. The results showed that the oversampling-
based soil moisture products (SMAP EnhancedA and SMAP EnhancedD) had the best
agreement with reference soil moisture measurements. Oversampling-based products were
also shown to have better performance, in terms of accuracy, than radiometer-only soil mois-
ture retrievals. The radar-based downscaled soil moisture products (SMAP A/P and MOEA)
captured the temporal change of the PLMR soil moisture better than the remaining down-

scaled soil moisture products during the SMAPEx-4.
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Chapter 5

Combined downscaled soil moisture products

The previous chapter has undertaken an inter-comparison of a variety of downscaled soil
moisture products against a comprehensive evaluation data set. Consequently, this chapter
examines the performance of various combined downscaled soil moisture products. The
technique used for the merging is a Gaussian algorithm, which takes the uncertainty of
each downscaled soil moisture product into account when producing the spatio-temporal
dynamics of soil moisture. Combined products were produced across different combination
scenarios at 1 and 9 km spatial resolution, and compared against the same SMAPEX airborne
soil moisture maps from PLMR and OzNet in situ soil moisture measurements that were

presented in Chapter 3 and used in Chapter 4.

5.1 Introduction

The current downscaled soil moisture products come with a range of accuracy, spatial reso-
lutions and temporal repeats affected by the downscaling technique and ancillary data used
for disaggregation (Chapter 2 and Chapter 4). Moreover, no single downscaled soil mois-
ture alone could meet the application requirements in terms of accuracy and time interval.
Therefore, providing accurate and frequent high resolution soil moisture products remains
a challenge. Chapter 2 suggested that a merged ensemble of various downscaled soil mois-
ture products, based on their strengths, may offer the opportunity to generate a soil moisture

product that meets both the temporal and accuracy requirements.

The ESA CCI program used a Gaussian merging scheme, which combined various active
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and passive microwave soil moisture products (e.g. Dorigo et al., 2012a,b, 2017; Liu et al.,
2011, 2012) to produce a single long-term soil moisture data set. The approach taken by
the ESA CCI was reported by Liu et al. (2012) to: 1) preserve the temporal dynamic of the
original soil moisture retrievals, and ii) improve the time interval of soil moisture maps.
It is proposed here that the same merging algorithm used by the CCI could be applied in
a similar way to combine downscaled soil moisture products. This technique, also known
as the inverse variance weighted averaging approach, takes the statistical uncertainties in
downscaled soil moisture contents into the soil moisture retrieval procedure. The expecta-
tion is to produce a soil moisture map with better temporal coverage over the study area, and
having better agreement with reference data, than any individual downscaled soil moisture

product alone.

This chapter merges the range of downscaled soil moisture products evaluated in Chapter 4,
for the sake of performance assessment of the combined downscaled soil moisture product.
A variety of combined soil moisture estimates were evaluated against the reference data set
of Chapter 3, including the SMAPEX airborne PLMR soil moisture maps and OzNet in situ
soil moisture measurements. This assessment was intended to evaluate the potential for a
combined downscaled soil moisture product. This combination study is the first of its kind,
offering a cutting-edge merged downscaled soil moisture product for better representation
of soil moisture spatio-temporal variation. The accuracy of the combined product was also

contrasted against the original and radiometer-only retrievals of SMAP and SMOS.

5.2 Combining methodology

The merging procedure used in this chapter is summarised in Figure 5.1. Here the combined
product was developed from merging the radar-, optical-, radiometer-, and oversampling-
based downscaled soil moisture products. The combined products were evaluated against
the reference data set to understand whether combining a variety of downscaled soil mois-
ture products could provide better spatio-temporal representation of soil moisture at 1 and 9

km than the individual downscaled soil moisture products alone.

The combination procedure was applied to: 1) SMOS DisPATChD at 1 km as an optical-
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Figure 5.1: Schematic diagram showing the combination procedure.

| SMAP EnhancedD (10 km) |

based downscaled soil moisture, ii) the SMAP A/P and SMAP MOEA at 9 km as radar-
based downscaled soil moisture product, iii) the SMAP SFIM at 10 km as a radiometer-
based downscaled soil moisture products, and iv) the SMAP EnhancedD at 9 km as an
oversampling-based downscaled soil moisture product. Available downscaled soil moisture

products used for the combination are listed in Table 5.1.

Table 5.1: Availability of downscaled soil moisture products used for combination.

IELIXIR Products

ight

date SMOS SMAP SMAP A/P SMAP SMAP SFIM
DisPATChD EnhancedD MOEA

03/05/2015 * * * * #

04/05/2015 *

06/05/2015 * * * * *

11/05/2015 # * * * *

12/05/2015 * * * *

14/05/2015 * #

20/05/2015 # * * * *

22/05/2015 * * * * *

09/09/2015 * *

11/09/2015 * * *

14/09/2015 * * *

17/09/2015 * * *

19/09/2015 * *

22/09/2015 * * *

24/09/2015 * * *

27/09/2015 * * *

Note: * denotes availability of downscaled data on PLMR flight date and #
shows nearest available downscaled data to PLMR flight date. The date of the
nearest available observations is provided on the soil moisture plots as shown
in Figure 4.3.
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The SMOS DisPATChD and SMAP EnhancedD products were used in the combination pro-
cedure since they had a better performance than SMOS DisPATChA and SMAP EnhancedA
products in terms of accuracy (Chapter 4). Moreover, the SMAP EnhancedA and SMOS
DisPATChA products were not included in the merging procedure, because of their relative
dependency to the SMAP EnhancedD and SMOS DisPATChD. Poor temporal coverage of
VTCI product over the Yanco region restricted the VTCI from being used in the merging
procedure. Different combination scenarios were created for evaluating the performance of

combined downscaled soil moisture products, as listed in Table 5.2.

Prior to combination of products at 1 km, each downscaled soil moisture product at 9 and
10 km were mapped onto the same 1 km grid as that of the DisSPATCh products. Rescaling
the products from coarser to higher resolution involved assigning the value of each coarse
pixel to the higher resolution pixels within the original coarse pixel. To combine products
at 9 km resolution required all products to be mapped onto a 9 km grid; With the use of
arithmetic average, downscaled soil moisture products at 1 km, herein SMOS DisPATChD,
were upscaled to the 9 km resolution of the SMAP A/P product. Mapping the SMAP SFIM
product from 10 km to 9 km consisted of two steps: 1) rescaling from 10 km to 1 km, and ii)

upscaling 1 km products to 9 km.

The inverse variance weighted averaging approach (Lee et al., 2016) implemented in the
ESA CCI SM v03.2 (Dorigo et al., 2017; Gruber et al., 2016) was used to combine down-
scaled soil moisture products. In this thesis, the relative weights are dynamic; if one product

is not available on a specific date its’ error variance is excluded.

Y
. 3 .
=1 61)1' Di

Ocombined = Zn—L (5.1)

i=1 82

7

where §? stands for error variance [(m*m)?], 6 is the volumetric soil moisture [m® m?],

and p subscript indicates that the variable is representative for the specific downscaled soil

moisture product ({p;} = {p1,p2, - -, Pn})-

The uncertainty of downscaled soil moisture estimates, herein error variance, was calculated

from evaluation of the alternative downscaled soil moisture products against the airborne
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PLMR soil moisture maps (Chapter 4) during the SMAPEx-4 and SMAPEXx-5 airborne field
campaigns. Error values of each downscaled soil moisture products were calculated at their
original scale on a daily basis for each SMAPEx campaign. Time series of error values were
used to calculate the variance of daily errors for each pixel. The error variance for each
downscaled soil moisture product during the SMAPEXx-4 airborne field campaign are plotted
in Figure 5.2. It is noted that when the downscaled soil moisture products were combined
at 1 km resolution, the error variances at 9 km were mapped onto a 1 km grid. Likewise, for
the combination of the downscaled soil moisture products at 9 km, the SMOS DisPATChD
error variance at 1 km and the SMAP SFIM error variance at 10 km were mapped onto a 9

km grid as described previously.

The temporal and spatial analysis described in Chapter 4 was used again here as the basis
for evaluation of the combined retrievals. The main aim was to determine the best combi-
nation of downscaled soil moisture products for the period of the SMAPEXx-4 airborne field
campaign, during which the radar-based products (namely SMAP A/P and SMAP MOEA)
were available. The S4 and S5 combinations were also derived and analysed during the

SMAPEXx-5 airborne field campaign.

Table 5.2: List of downscaled soil moisture product combination scenarios tested.

Combination scenarios Combined products
SMOS DisPATChD, SMAP EnahncedD, SMAP A/P,

S1 SMAP MOEA and SMAP SFIM

S2 SMOS DisPATChD, SMAP EnahncedD and SMAP MOEA
S3 SMOS DisPATChD, SMAP EnahncedD and SMAP A/P

S4 SMOS DisPATChD, SMAP EnahncedD and SMAP SFIM
S5 SMOS DisPATChD and SMAP EnahncedD

Note: D stands for descending overpasses.

=4
o
@

SMOS DisPATChD ~ SMAP EnhancedD SMAP MOEA SMAP SFIM SMAP A/P

| fo.025
0.02
| 10.015

o
o
iy

1 §0.005

Error Variance (m3 m3)2

o
o

Figure 5.2: Error variance maps used for merging the downscaled soil moisture products
during the SMAPEX-4 airborne field campaign.
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The spatial correlation length of errors on daily basis was calculated for each individual
downscaled soil moisture product to determine the presence of spatial correlation between
the pixel uncertainty values; if data error estimates are spatially correlated, the effectiveness
of merging algorithm may be reduced (Wang, 2012). Upon calculation of the spatial auto-
correlation, which is summarised in Figure 5.3 as the average of daily analysis, the spatial
independency of error characteristics was confirmed, as evidenced by the spatial correlation
coefficient (R) of uncertainty values being mainly between -0.2 and +0.2. Consequently,
there was no spatial correlation between the pixel uncertainty values, implying no negative

impact of spatial error correlations on the merging algorithm performance.

5.3 Results

Figure 5.4 presents the qualitative inter-comparison of combined soil moisture maps to-
gether with the PLMR airborne soil moisture maps during the SMAPEx-4. Both PLMR

and combined data are available at 1 and 9 km spatial resolution; the PLMR soil moisture

1 T T T T T T
= SMOS DisPATChD
SMAP EnhancedD
= SMAP MOEA
SMAP A/P -
——— SMAP SFIM

Error correlation (R [-])

-0.4 -

-0.6 [~ -1

1 1 1 1 1
0 20 40 60 80 100 120
Euclidean distance [km]

Figure 5.3: Averaged spatial auto-correlation analysis of relative uncertainty of downscaled
soil moisture products.

132



Chapter 5 — Combined downscaled soil moisture products

estimates were mapped to 9 km resolution by averaging the 1 km PLMR estimates within
the 9 km grid of the SMAP A/P downscaled soil moisture estimates. The qualitative inter-

comparison of combined products during the SMAPEX-5 is shown in Figure 5.5.

As shown in Figure 5.4, temporal variation of the combined products matches well to that
of the PLMR soil moisture estimates; they all captured the soil moisture increase due to the
rain events that happened on 9 and 18 May 2015. However, a similar spatial pattern of soil
moisture variation is represented by all combined products, an the pattern does not reflect
that of the PLMR airborne soil moisture. The lack of ability to detect the spatial pattern of
soil moisture was significant on 11th, 20th and 22nd May 2015. For instance, no combined
product could represent the wet soil moisture conditions in the north-western part of the

Yanco area on the 20th May.

Figure 5.5 shows the success of combined products in capturing the temporal pattern of
PLMR soil moisture estimates during the dry-down period of the SMAPEX-5 airborne field
campaign. Still, no agreement is seen between the spatial variation of combined products
and that of the PLMR airborne soil moisture. Soil wetness associated to rainfall events on
Oth, 11th and 14th September is not captured by any of the combined soil moisture products.
Underestimation of PLMR soil moisture estimates by all the combined soil moisture prod-
ucts is also indicated. Comparing the temporal repeat of combined products with that of
the individual downscaled soil moisture products shown in Figure 4.3 and Figure 4.4, shows
that the combination of downscaled soil moisture products was able to deliver more frequent
soil moisture maps than the individual downscaled soil moisture products alone during both

the SMAPEx-4 and SMAPEX-5 airborne field campaigns.

The median and interquartile range of OzNet top 5 cm soil moisture measurements were
also calculated across a sample pixel, being that with the largest number of OzNet stations
(as shown in Figure 4.2). This is plotted as a time series against the combined soil moisture
estimates at 9 km in Figure 5.6. Combined products were found to have similar temporal dy-
namics to the OzNet soil moisture measurements for this pixel. However, Figure 5.6 shows
that combined soil moisture values underestimated PLMR airborne soil moisture estimates,

while overestimating the median OzNet top 5 cm soil moisture measurements. Still,
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combined values did not move out of range of the OzNet measurements. To understand
whether the time series of combined products were improved in capturing the temporal dy-
namics of the PLMR soil moisture estimates and/or the OzNet in sifu measurements, tem-
poral analysis of the combined products required comparison against the individual down-
scaled soil moisture products. This section is followed by the temporal analysis of combined

products against the airborne PLMR and OzNet in situ soil moisture estimates.

5.3.1 Temporal analysis against the OzNet

The combined products from the five combination scenarios in Table 5.2 were retrieved at
both 1 and 9 km spatial resolution. The accuracy of these combined products was quantified
against both the PLMR airborne and OzNet top 5 cm soil moisture measurements, as the
reference soil moisture data set. Bias, R, RMSD and ubRMSD were used as a measure of

quality, as shown in Figure 5.7, 5.8, 5.9, and 5.10.

For the analysis of combined products against the OzNet measurements during the SMAPEXx-
4 airborne field campaign, the RMSD and ubRMSD across the combined products at 1 and
9 km showed improvement over the individual downscaled soil moisture products alone.
For example, the average RMSD of SMOS DisPATChD at 1 km was 0.095 m® m™, while
the average RMSD of combined products at 1 km varied between 0.07 and 0.075 m*® m™=.
The R? of combined products was similar to that of SMOS DisPATCHD at 1 km alone, but
lower than for the radiometer-only products, herein SMAP PassiveD and SMOS PassiveD.
However, the bias of combined products at 1 km was on average 0.02 m* m™ larger than
the SMOS DisPATChD bias of 0.003 m* m>. In comparison, combined products at 9 km
had a lower bias compared to downscaled soil moisture products with positive bias. The S4
and S5 combined products were also analysed against the OzNet soil moisture measured on
the SMAPEX-5 flight dates as summarised in Figure 5.8. Based on this analysis, while the
S4 and S5 combined products at 1 km showed improved performance over the individual
downscaled soil moisture products, the S4 and S5 products at 9 km could not reach the high

level of performance for the individual downscaled soil moisture products at 9 km spatial

resolution.
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5.3.2 Temporal analysis against the airborne PLMR soil moisture

From the temporal analysis of combined products at 1 km against PLMR airborne soil mois-
ture in Figure 5.9, the combined products were found to have a better temporal match with
the PLMR soil moisture during the SMAPEXx-4 airborne field campaign than the individual
downscaled soil moisture products. The S1 product had the highest temporal correlation
with a mean R? of 0.63. However, the high correlation of S1 does not imply superiority

to the remaining combined products; all combined products had similar RMSD, with the
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Figure 5.7: Boxplots summarising the interquartile range, the maximum and minimum
range, and the median (bar) associated with the mean (dot) of statistical results obtained
from temporal analysis of combined soil moisture products at (a) 1 km and (b) 9 km against
OzNet in situ measurements for the SMAPEXx-4 airborne field campaign. For 9 and 10 km
products, only pixels with largest number of stations (see Figure 4.2) were chosen. d indi-
cates the number of downscaled soil moisture products that were used in this analysis and n
indicates the number of statistical parameters that are summarised in this figure.
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Figure 5.8: As for Figue 5.7 but for the SMAPEx-5 airborne field campaign flight dates.

lowest mean R? of 0.57 obtained for S5. A summary of accuracy statistics of the com-
bined products at 1 km, evaluated against the airborne PLMR soil moisture maps during the
SMAPEXx-4 and OzNet in situ soil moisture measurements, is provided in Table 5.3. All
combined products at 1 km showed poor performance when assessed against the airborne
PLMR soil moisture maps and OzNet in situ soil moisture measurements. As expected, all
combined products underestimated the airborne PLMR soil moisture; this underestimation
of PLMR soil moisture was also identified for the downscaled soil moisture products alone

in Chapter 4.

Performance assessment of the S4 and S5 products at 1 km during the SMAPEX-5 airborne
field campaign showed inferiority of combined products to the downscaled product alone, in
terms of RMSD, ubRMSD and bias. Both these combined products had an RMSD of higher

than 0.15 m®> m™ and ubRMSD of ~ 0.1 m®> m>. However, the R? of the combined products
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was ~ 0.1 higher than that of the downscaled soil moisture products alone. Both the S4 and
S5 products underestimated the airborne PLMR soil moisture, being even more severe than
for the SMAPEXx-4 period. Results from the comparison of the S4 and S5 combined prod-
ucts against coarse SMOS and SMAP passive microwave soil moisture products during the
SMAPEX-5 airborne field campaign revealed deterioration of combined products in terms
of performance. The dense vegetation cover during the SMAPEx-5 may have had a neg-
ative impact on the performance of the combining algorithm; the original downscaled soil
moisture products during the SMAPEx-4 and SMAPEX-5 airborne field campaigns showed

a similar performance in terms of accuracy (Chapter 4) which support this hypothesis.

According to the temporal evaluations at 9 km in Figure 5.10, all of the combined products
had a tendency to underestimate PLMR soil moisture with a mean bias ranging from -0.01
to -0.02 m®> m>, which was less than that for the majority of downscaled soil moisture
products alone, with a mean bias ranging from -0.02 to -0.03 m® m™. However, they yielded
similar R? and RMSD values of approximately 0.7 and 0.07 m® m™. Nonetheless, when the
combined products were evaluated across 5 days only (3, 6, 11, 20 and 22 May), being when
all downscaled soil moisture products were available, the combined products showed better

R? than the analysis of all available combined products during the SMAPEx-4.

The temporal analysis of the S4 and S5 combined products at 9 km were also conducted
against the airborne PLMR soil moisture during the SMAPEX-5 airborne field campaign.
Based on these analyses, the combined products could not yield soil moisture estimates as
accurate as the downscaled soil moisture products alone. The R? of accurate downscaled
soil moisture products was above 0.9, while the S4 and S5 combined products had an av-
erage R? of 0.58 and 0.66, respectively. However, the S5 combined soil moisture estimates
showed lower bias (-0.028 m® m™) than the remaining soil moisture estimates, including the

individual downscaled and combined ones.

Overall, the temporal analysis of combined products at 1 and 9 km against the airborne
PLMR soil moisture maps showed that the R? of combined products at both 1 and 9 km was

on average ~ 0.6, being similar to the retrievals of the machine learning- and radar-based
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Figure 5.9: As for Figure 5.7 but for the comparison against airborne PLMR soil mois-
ture at 1 km in which analysis was carried out for all the pixels covering the study area.
These results are from the different scenarios including: a) combined products across 5
days when all downscaled soil moisture products were available on the same date during the
SMAPEXx-4, b) all available products during the SMAPEx-4, and c) all available products
during the SMAPEX-5. Here s stands for the dimension of analysis area arranged in rows X
column. Please be noted that the maximum RMSD obtained for S4 and S5 products during

the SMAPEX-5 was 0.55 and 0.56 m® m™, respectively
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Figure 5.10: As for Figure 5.9 but for the comparison of combined products at 9 km against

airborne PLMR soil moisture.
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downscaling techniques analysed in Chapter 2, having the highest temporal correlation with
reference soil moisture estimates. Based on the summary of results in Table 5.4, the RMSD
of combined products at 1 km was on average 0.1 which is poorer than the average RMSD
of all the downscaling techniques in Chapter 2, but still in minimum and maximum range
of their RMSD values. The RMSD results for the combined products at 9 km were close to
the average RMSD values of 0.07 and 0.08 m® m™ reported for the data assimilation- and
optical-based downscaling techniques, respectively. Consequently, the combination method
could not produce soil moisture estimates with comparable RMSD to the radar- and soil
surface attribute-based downscaled soil moisture products, which had the lowest averaged

RMSD of ~ 0.04 and 0.03 m* m™, respectively.

5.3.3 Spatial analysis against the airborne PLMR soil moisture

Apart from the temporal analysis, the combined products were spatially analysed using the
PLMR airborne soil moisture measurements. Bias, R, RMSD and ubRMSD were also cal-

culated for each combined product, in order to investigate which combined product best

Table 5.4: Comparison of results from the combined products with the downscaled soil
moisture products based on literature review.

Results Products — RMSD _(m3 m) — F_QZ
minimum maximum average minimum maximum average
Optical-based 0.012 0.210 0.072 0.00 0.81 0.38
Radar-based 0.010 0.120 0.042 0.03 0.99 0.59
Literature Radiometer-based 0.054 0.130 0.078 0.28 0.41 0.35
Soil surface attribute-based 0.024 0.033 0.028 0.02 0.86 0.45
Machine learning-based 0.006 0.160 0.056 0.37 0.96 0.65
Data assimilation-based 0.030 0.090 0.064 0.22 0.86 0.50
S1 0.105 0.404 0.084 0.00 1.00 0.63
S2 0.011 0.415 0.086 0.00 0.99 0.62
SMAPEX-4 (1 km) S3 0.012 0.396 0.089 0.00 1.00 0.59
S4 0.013 0.416 0.088 0.00 0.99 0.58
S5 0.013 0.419 0.09 0.00 0.99 0.57
S1 0.017 0.132 0.071 0.10 0.95 0.72
S2 0.025 0.142 0.073 0.10 0.95 0.67
SMAPEX-4 (9 km) S3 0.018 0.147 0.076 0.09 0.95 0.67
S4 0.025 0.163 0.069 0.10 0.97 0.73
S5 0.022 0.185 0.071 0.11 0.96 0.71
S4 0.011 0.554 0.142 0.00 1.00 0.59
SMAPEXS (Lkm) o5 0008 055 015 000 100 054
S4 0.018 0.269 0.118 0.00 0.93 0.66
SMAPEX-5 (9km) oo 0000 0217 0080 010 079 058
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captured the spatial pattern of soil moisture. Results from this spatial analysis are sum-
marised in Figure 5.11 and 5.12. In the spatial analysis, daily maps of combined estimates
were compared against the corresponding PLMR airborne soil moisture maps. Similar com-
parisons of the S4 and S5 combined products against the SMAPEx-5 PLMR soil moisture

maps can be found at the bottom of Figure 5.11 and 5.12.

In the spatial analysis, combined products at 1 and 9 km showed minor difference in terms of
performance for both the SMAPEx-4 and -5 campaigns. During the SMAPEXx-4 period, the
combined products at 1 km showed better correlation than the only downscaled soil moisture
product available at 1 km, the SMOS DisPATChD. It is noted though that all of the combined
products at 1 km had R? values lower than 0.2. But in general the combination of downscaled
soil moisture products, resulted in a reduction of RMSD and ubRMSD compared to the
downscaled soil moisture products alone. These results are opposite of the findings for the
SMAPEX-5 airborne field campaign, where combining downscaled soil moisture products

resulted in decreased accuracy of soil moisture estimates.

For combined products at 9 km the RMSD and ubRMSD remained similar to that of indi-
vidual downscaled soil moisture products. Furthermore, none of the combined products at
9 km could surpass the retrieval accuracy of the SMAP SFIM and EnhancedD products on
their own. These results were found to be similar for different analysis scenarios includ-
ing: 1) only the 5 days when all the downscaled soil moisture products were available, ii)
all available combined products during the SMAPEXx-4 airborne field campaign period, and
iii) all available combined products during the SMAPEx-5 airborne field campaign period.
However, combined products at 9 km in general showed better temporal coverage over the

study area.

5.4 Discussion

Comparing different combination of downscaled soil moisture products, showed indiffer-
ence between their performance. The accuracy of merged products depends on the error
estimate (herein error variance) of downscaled soil moisture data, which was used inversely

as a factor reflecting the weight of each downscaled soil moisture product. Because the
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Figure 5.11: Boxplots summarising the interquartile range, the maximum and minimum
range, and the statistics median (bar) associated with the mean (dot) of statistical results
obtained from spatial analysis of combined soil moisture products at 1 km. These results
are from the different scenarios including: a) combined products across 5 days when all
downscaled soil moisture product were available on the same date during the SMAPEXx-4,
b) all available products during the SMAPEx-4, and c) all available products during the

SMAPEX-5.
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Figure 5.12: As for Figure 5.11 but for the comparison of combined products at 9 km against
airborne PLMR soil moisture.
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merging model gives similar results in terms of accuracy and performance, the error esti-
mates of downscaled soil moisture products may be correlated. Therefore, the correlation
of daily error estimates was calculated between different pairs of downscaled soil moisture
products mapped onto the same grid. For this purpose, daily error values of each down-
scaled soil moisture product at their original spatial resolution was calculated by comparing

them against the concurrent PLMR soil moisture observations.

To calculate error correlations at 1 km resolution, all daily error estimates were mapped onto
a 1 km grid, excepting the daily error estimates of the SMOS DisPATChD, being originally
scaled at 1 km resolution; pixels at 1 km resolution within the coarse 9/10 km resolution
pixels were assigned the same value of that coarse pixel. Daily error estimates were also
mapped onto a 9 km grid to calculate the error correlation at 9 km. Therefore, the 1 km
error estimates of those SMOS DisPATChD pixels lying within the coarse 9 km pixel were
averaged to the 9 km spatial resolution of SMAP A/P. Similarly to the mapping of the SMAP
SFIM products from 10 to 9 km, two steps were followed, including: 1) rescaling error
estimates from 10 km to 1 km, and ii) upscaling the 1 km error estimates to 9 km. The error
correlation for each pixel (either 1 or 9 km) was calculated when 5 or more coincident errors

of downscaled soil moisture products were available.

Figure 5.13 and 5.14 show the correlation coefficient maps generated during the SMAPEx-4
airborne field campaign using daily error estimates of downscaled soil moisture products at
1 and 9 km, respectively. Error correlation maps of downscaled soil moisture products at 9
km which were mapped onto 1 km grid were similar to those generated between downscaled
soil moisture products at 9 km, but at higher resolution. Therefore, these correlation maps

are not provided in Figure 5.13.

Values of correlation coefficients mapped in 5.13 and 5.14 show strong correlation between
different pairs of downscaled soil moisture products. Pixels in the medium to dark red colour
indicate the positive correlation, while pixels in the medium to dark blue colour represent
negative correlation. For example, the SMAP EnhancedD and SMAP SFIM paired error

estimates are positively correlated with their R values generally larger than 0.5 (Figure 5.14).

A summary of the correlation values obtained for the daily error estimates of downscaled
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Figure 5.13: The correlation coefficient maps generated between time series of error esti-
mates of downscaled soil moisture products at 1 km during the SMAPEx-4 airborne field

campaign. Note: missing data shown in white colour are pixels for which less than 5 pairs
of coincident error estimates were available.
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Figure 5.14: As for Figure 5.13 but for the downscaled soil moisture products originally at
9 km or mapped into a 9 km grid.

products at 1 and 9 km spatial resolution is provided in Figure 5.15 as boxplots dropping
the outliers. The error correlations for those pairs including the daily error estimates of
the SMOS DisPATChD show a wide range of variation in the error correlations; the SMOS
DisPATChD comes already at a higher resolution than the other downscaled soil moisture
products used in the merging process, which explains the higher variability of its daily error
estimates and thus the correlations of SMOS DisPATChD daily error with the other down-
scaled soil moisture products. Based on Figure 5.15, the median of the error correlations is

identified to be equal to or above 0.4, excepting the SMOS DisPATChD versus SMAP A/P
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Figure 5.15: Boxplots summarising the interquartile range, the maximum and minimum
range, and the statistics median and average (bar and dot, respectively) associated with the
mean of correlation coefficients obtained from comparison of error estimates of downscaled
soil moisture products at a) 1 km and b) 9 km.

at 1 km resolution. Such high error correlations explain why merging different downscaled

soil moisture products could end up having similar results.

5.5 Chapter summary

This chapter has evaluated the effectiveness of merging individual downscaled soil moisture
products for improving soil moisture mapping reliability and temporal availability. The the-
oretical basis of a merging candidate technique has been briefly discussed and the approach
demonstrated. Five different combinations based on data availability were tested to provide
an analysis of the combined downscaled soil moisture products that could be used for high

resolution soil moisture mapping with the data available.

This chapter demonstrated that a combination of downscaled soil moisture products can de-
liver more frequent soil moisture maps than the individual downscaled soil moisture prod-
ucts. While the accuracy of combined products at 1 km was superior to the downscaled soil
moisture product originally scaled at 1 km during the SMAPEx-4 airborne field campaign,
the combining procedure could not deliver more accurate soil moisture estimates than the

downscaled only products at 1 km during the SMAPEX-5 airborne field campaign. During
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the SMAPEX-5 the vegetation cover was denser than during the SMAPEx-4, which might
be the reason for a poorer merging performance. Similarity of performance for the origi-
nal downscaled products during the SMAPEx-4 and SMAPEX-5 airborne field campaigns,
(see Chapter 4), supports this statement. The combined products at 9 km did not surpass
the individual products in terms of accuracy during both the SMAPEx-4 and -5 airborne
field campaigns. However, combined products at 9 km were found to increase the temporal
availability of soil moisture maps from single downscaling approach. Moreover, the dif-
ference between individual combined products was marginal, regardless of the combination

scenarios.
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Chapter 6

Conclusions and future work

6.1 Conclusions

The thesis has assessed the performance of current downscaled soil moisture products. In
particular, there has been an extensive evaluation against a common reference data set, in-
cluding the SMAPEx-4 and -5 airborne PLMR soil moisture maps and OzNet in situ mea-
surements, to determine a preferred method for soil moisture downscaling. Downscaled soil
moisture products derived from radar-, optical-, radiometer-, and oversampling-based down-
scaling techniques have been evaluated. Previously these downscaled soil moisture products
have been independently analysed and tested for different climate conditions. Therefore, the
main contribution of this research was a comparative analysis of alternative downscaled soil
moisture products based on: 1) literature, and ii) with an extensive reference data set for
a specific landscape and climate condition, followed by iii) development of a combined
downscaled soil moisture retrieval as a step towards producing a harmonious multi-sensor
soil moisture product from SMOS and SMAP. The key conclusions for each contribution

are as follows.

6.1.1 Review of spatially enhanced passive microwave derived soil moisture

Downscaling techniques can deliver substantially greater spatial detail about soil moisture
spatial variability, as compared to the original remotely sensed passive microwave data, to
meet the requirements of a growing number of applications. Moreover, the combining of

remotely sensed land surface features with passive microwave observations has been shown
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to derive fine-scaled soil moisture with reasonable accuracy. A considerable contribution to
combined techniques was made by the optical acquisitions that are available at high resolu-
tion on a daily basis, but cloudy skies and seasonality significantly affect the functionality
of optical-based downscaling methods. Moreover, combined L-band radar and radiome-
ter (radar-based) downscaling approaches have demonstrated the best success in deriving
multi-sensor soil moisture maps (as shown in Figure fig:Accuracy), but at a resolution of

approximately 10 km.

Utilizing the soil surface attributes and structure, including topography and soil texture, is
also beneficial to the space-time scaling of soil moisture. Topography and soil texture im-
pacts the soil water dynamic and thus distribution of soil moisture. Both soil water dynamics
and storage capacity exert effective impact on soil moisture variation. However, the limited
access to such data imposes a limit on the application and development of these downscaling

techniques for global soil moisture monitoring.

Alternative downscaling approaches that use high resolution model predictions together with
data assimilation of coarse scale observations - and/or machine learning-based techniques -
provide an opportunity to overcome issues related to the lack of concurrent overpasses by
required satellites or lost data due to cloud coverage. However, there is considerably more
work required to increase the accuracy of high resolution soil moisture prediction models,
the computational efficiency of these innovative techniques, and the global training required

for the machine learning technique.

Soil moisture downscaling to spatial resolutions higher than 1 km should also be considered
an issue for advancing the practical use of soil moisture in agriculture and water resources
management. These must also be provided at the time scale of 1 to 3 days in order to
provide information about the temporal dynamics of soil moisture. The development of
applicable downscaling techniques under all weather and climate conditions and across all
current passive microwave observations will fill this gap. Prior to reaching this milestone,
the merger of multi satellite soil moisture products should reach a level of maturity. Thus,
harmonized downscaled soil moisture products from different downscaling techniques could

be able to produce a consistent time series of high resolution soil moisture.
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6.1.2 Inter-comparison of alternative downscaled soil moisture products

The first ever inter-comparison analysis of the alternative downscaled soil moisture products
currently available against a common reference data set has been undertaken, to assess their
suitability for the applications requiring soil moisture products at resolutions higher than
10 km. While cloudy skies limit the application of optical-based downscaled soil moisture
products, the SMAP and SMOS VTCI optical-based products had the highest level of tem-
poral agreement with OzNet and airborne PLMR soil moisture, respectively. However, they
could not meet the temporal requirements for applications being 3 days or better. The use
of geostationary based optical sensors which collect data at about 30 minute time intervals
may help to overcome this shortcoming by increasing the chance of capturing cloud-free

observations.

The oversampling-based soil moisture products (SMAP EnhancedA and SMAP EnhancedD)
best captured the temporal and spatial variability of soil moisture overall, though the SMAP
MOEA and A/P had a better temporal agreement with PLMR during the short SMAPEx-4
period. The SMAP Enhanced products not only surpassed the other downscaled soil mois-
ture products in terms of performance and accuracy, but also in terms of availability under
all weather conditions and improvement of soil moisture retrieval over the coarse passive
microwave retrievals. Furthermore, the interpolation technique used for the Enhanced soil

moisture production does not require any concurrent data from other satellites.

The difference between temporal analysis of products against in situ and airborne soil mois-
ture reference data sets also pointed to the fact that relying on in situ measurement alone
is not appropriate for validation of high resolution soil moisture maps; basically in situ
measurements that are site specific and sparsely distributed ignore the short scale spatial
variation of soil moisture. Furthermore, the difference between temporal and spatial anal-
ysis of products against the airborne PLMR soil moisture maps suggests that dependence
on temporal analysis is not ideal for assessing the performance of spatial variation in soil
moisture products. Based on the purpose of the soil moisture application, spatial analysis
should be conducted to quantify the performance of the soil moisture products in capturing

the variability of soil moisture in space.
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6.1.3 Combined downscaled soil moisture products

Application of a Gaussian merging algorithm, which accounts for uncertainties in input data,
was evaluated for combining downscaled soil moisture products. The Gaussian merging
algorithm is an inverse variance weighted averaging system, which combines independent
input data that can be approximated by normal random variables. The precision of combined
retrievals from the Gaussian technique depends on the error estimates and availability of
downscaled data. Therefore, different combination scenarios were developed to investigate

the combination of downscaled soil moisture products.

While different combination scenarios were tested, it was shown that the accuracy of com-
bined products did not vary considerably. Combined products from each combination sce-

narios showed similar results in terms of accuracy, as well as spatio-temporal patterns.

This analysis is the first step in combining alternative downscaled soil moisture products.
The results so far suggest the usefulness of merging products at 1 km, as combined prod-
ucts at 1 km illustrated improvement in temporal correlation and RMSD/ubRMSD over the
single downscaled soil moisture products. In contrast, results from merged downscaled soil
moisture products at 9 km did not justify the use of a merging procedure for enhancing the
accuracy of the derived soil moisture maps, but increasing the temporal availability of soil

moisture maps at 9 km does make the effort of merging worth while.

6.1.4 Comparison of results from this study with literature

The temporal analysis of downscaling techniques in Chapter 2 showed that while the radar-
based downscaling techniques delivered more accurate soil moisture estimates than the
optical- and radiometer-based downscaling techniques, the radiometer-based downscaled
soil moisture products had the poorest performance. These findings are in contrast with
the results in Chapter 4 from the temporal analysis of downscaled soil moisture products
conducted against the OzNet in situ soil moisture measurements, which revealed that the
optical-based downscaled soil moisture product (in this study SMAP VTCI at 9 km) had
the best performance. Based on the findings of Chapter 4, the SMAP SFIM product de-
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rived from the radiometer-based downscaling technique had a slightly better performance
than that of the radar-based downscaled soil moisture products (SMAP A/P and MOEA).
The higher sensitivity of radar backscatter to surface roughness and vegetation than the ra-
diometric emissions, makes it acceptable to have better soil moisture estimates from the
radiometer-based downscaling technique than radar-based ones; except some would argue
there is no soil moisture signal in Ka-band observations which were used in the SMAP SFIM
retrieval procedure. Such difference between findings emphasizes the need for direct evalu-
ation of the downscaled soil moisture products against each other using a common reference

data set for specific climate and landscape conditions.

The performance of SMOS VTCI at 9 km during the SMAPEx-4 and -5 airborne field cam-
paign also showed superiority to the radar-based downscaled soil moisture products (SMAP
A/P and MOEA), in terms of capturing the temporal dynamics of the airborne PLMR soil
moisture estimates. These results were not expected because radar in general has: 1) a better
sensitivity to soil moisture dynamics than optical observation and, ii) a more direct relation

to soil moisture dynamics.

The temporal analysis of the combined products at 1 and 9 km against the airborne PLMR
soil moisture maps showed that the combination of the downscaled soil moisture products
can reach the highest degree of correlation obtained by the machine learning- and radar-
based downscaling techniques as reported in Chapter 2. However, the combined products
could not meet the highest accuracy of radar- and soil surface attribute-based in terms of

RMSD.

6.2 Future work

Currently available downscaled soil moisture products retrieved from the radar-, optical-,
oversampling-, and radiometer-based downscaling techniques were inter-compared in this
thesis through performance analysis using soil moisture measurements from the Australian
airborne campaign and soil moisture monitoring network. In addition, a merging technique
was developed and tested to combine downscaled soil moisture products for improving es-

timates of soil moisture in space and time. Future works that are identified to expand this
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research are as follows:

e The thesis focused on an analysis of the performance of downscaled soil moisture
products for a typical Australian landscape and climate. Deep insight into the per-
formance of downscaled soil moisture products requires similar inter-comparisons be
undertaken for different climate conditions and landscapes. Consequently, the pro-
gression from this research is to conduct downscaled soil moisture inter-comparison

over different evaluation sites around the globe.

e This thesis analysed the accuracy of downscaled soil moisture products regardless of
land cover types across the Yanco region. Hence, an extensive assessment of down-
scaled soil moisture products may be conducted to analyse the impact of land cover
types on the radar-, optical-, radiometer-, and oversampling-based downscaling algo-
rithms. Relative errors in soil moisture estimates should be differentiated according
to land cover types, including cropping, forested, and the grassland areas. Moreover,
assuming that downscaled soil moisture products perform similarly for different land
cover types excepting forested areas, downscaled soil moisture products may be anal-

ysed for the entire Yanco region excluding the forested area.

e Development of alternative downscaling approaches should be investigated as an ex-
pansion to this research. Since none of the tested methods had a high correlation in
terms of spatial pattern, the main focus of interest in the new downscaling method
should be the representation of soil moisture patterns in space. Perhaps high reso-
lution information on land cover conditions and precipitation data could be involved
in optical-based downscaling procedures. Another approach could be using more
physical-based interpretation of SAR data than the empiricism of the SMAP active/passive

baseline algorithm.

e Apart from the Gaussian merging technique, alternative combining techniques should
be developed and tested to merge donwscaled soil moisture products. The inclusion of
alternative merging techniques, such as the Bayesian merging method, may result in
determining the most pragmatic technique(s) for the accuracy improvement of com-

bined products in terms of estimating temporal and spatial variability of reference soil
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moisture data.

e When combining products it may also be advantageous to rescale products using a Cu-
mulative Distribution Function (CDF) matching technique. The use of CDF matching
is expected to result in adjusting downscaled soil moisture products to the same range
and distribution, so that the accuracy of combined products is not deteriorated because

of possible systematic differences between downscaled soil moisture products.
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