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Abstract 

Soil moisture in the top few meters of the Earth’s surface has an 

important role in regulating the energy and water balance at the soil surface 

and it is therefore a crucial variable for many environmental disciplines 

which are concerned with atmospheric and land surface processes such as 

meteorology, hydrology and climatology. Consequently, there is a pressing 

need for soil moisture observations at a wide range of spatial scales, global 

coverage and sufficient temporal repetition to serve the environmental 

applications mentioned above. In recent decades, remote sensing technology 

has matured the potential to estimate near-surface soil moisture 

(approximately the top 5cm) from space. However, a space mission with 

optimal configuration for remote sensing of near-surface soil moisture has 

not been flown to date. The first satellite mission with an optimal observing 

frequency for remote sensing of near-surface soil moisture will be the Soil 

Moisture and Ocean Salinity Mission (SMOS), due to be launched in 

September 2009. SMOS will carry an L-band (1.4GHz) microwave 

radiometer and will provide near-surface soil moisture estimates with global 

coverage, three-days revisit time and spatial resolution of approximately 

40km. Due to this coarse spatial resolution, significant spatial heterogeneity 

in land surface conditions will exist within SMOS footprints. The soil 

moisture retrieval algorithm adopted for SMOS partially accounts for the 

land surface heterogeneity by modeling the microwave emission of different 

fractions of the footprint having different vegetation types. Nevertheless, to 

date the soil moisture retrieval algorithm adopted for SMOS and its main 

assumptions have not been tested at the spatial resolution of future SMOS 

footprints and over highly heterogeneous land surface conditions. 

The principal objectives of this research are to (i) test the soil moisture 

retrieval algorithm adopted for SMOS at SMOS spatial resolution (40km), 

and (ii) develop a soil moisture retrieval approach applicable to the SMOS 

algorithm which properly accounts for the land surface heterogeneity. Given 

that SMOS data are not yet available, the approach developed in this thesis 
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is based on aircraft L-band data collected in this study over a well monitored 

catchment, which are used to simulate the data soon to be available from 

SMOS. 

The aircraft and ground data used in this study were collected during the 

National Airborne Field Experiment 2005 (NAFE’05), conducted in 

November 2005 in south-eastern Australia as part of this study. The 

NAFE’05 field campaign has provided an unprecedented data set for 

investigation of passive microwave soil moisture remote sensing techniques, 

which puts this study in the forefront of international research on this topic.  

Before testing the SMOS algorithm at the SMOS footprint scale, in this 

study the core radiative transfer model of the algorithm is evaluated for the 

Australian conditions using high-resolution (62.5m and 1km) airborne data. 

The linear scaling of L-band observations is also verified using concurrent 

multi-resolution (62.5m, 250m, 500m and 1km) aircraft observations of the 

same area. The SMOS algorithm and the retrieval approach currently 

proposed is then tested using SMOS footprints simulated by aggregating the 

aircraft data (1km) to SMOS spatial resolutions (40km). The error in near-

surface soil moisture retrieval due to the impact of land surface 

heterogeneity is assessed, and the weaknesses of retrieval approach 

currently proposed for SMOS identified based on detailed ground data on 

near-surface soil moisture and land surface conditions at the SMOS 

footprint scale. 

A new retrieval approach, applicable to the SMOS algorithm is finally 

proposed to overcome the weaknesses identified in the approach currently 

proposed for SMOS. The new approach accounts for the heterogeneity 

within the SMOS footprint of vegetation density, the land surface factor 

which is shown in this thesis to have the more significant impact on retrieval 

of near-surface soil moisture. Upon testing of the new approach using the 

simulated SMOS footprints, this thesis shows that the new approach 

significantly reduces the error in SMOS soil moisture retrieval obtained 

with the approach currently proposed for SMOS. 
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Prologue 
The National Airborne Field Experiment 2005 (NAFE’05) undertaken 

during this study has provided an unprecedented data set for investigation of 

passive microwave soil moisture remote sensing techniques. While the 

NAFE’05 experiment was an international effort of several institutions with 

more than 40 participants, the author of this thesis played a central role in all 

aspects of the field campaign, including conceptualisation and planning of 

the airborne monitoring and ground sampling strategies, management of the 

ground sampling activities, and the post-processing, documentation and 

archiving of all collected data. Additionally, in the context of this study the 

author conceived and developed a novel portable near-surface soil moisture 

monitoring system, the Hydraprobe Spatial Data Acquisition System 

(HDAS), which allowed the collection of the ground near-surface soil 

moisture data of unprecedented detail and extent for use in this thesis. 
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Chapter One 

1 Introduction 

This thesis develops a technique to reduce the error in near-surface soil 

moisture estimates from spaceborne passive microwave sensors, by 

accounting for the heterogeneity of land surface conditions within the sensor 

field of view. Using experimental data collected in the course of this 

research, it is demonstrated that this technique will significantly reduce the 

error in satellite near-surface soil moisture retrieval. The technique has been 

developed specifically for the first dedicated passive microwave soil 

moisture satellite, the European Soil Moisture and Ocean Salinity Mission 

(SMOS), which will use L-band (1.4GHz) measurements to map near-

surface soil moisture globally at a near-daily time scale.  

The main steps taken to develop these techniques are the first evaluation 

of the core radiative transfer model of the SMOS soil moisture retrieval 

algorithm for the Australian conditions using airborne data, and an analysis 

of the land surface controls on near-surface soil moisture distribution at the 

satellite footprint scale. These initial steps provided the tools in order to test 

the accuracy of the soil moisture retrieval approach proposed for SMOS at 

the satellite footprint scale in the presence of spatial variability of the land 

surface, and to develop a new retrieval approach for SMOS which 

overcomes the shortfalls identified in the SMOS proposed approach. 

1.1 Importance of Soil Moisture 

Soil moisture of the top few meters of the Earth’s surface plays an 

important role in regulating the energy and water balance at the soil surface 

(Betts et al., 1996; Entekhabi et al., 1996). It is therefore a crucial variable 

for many environmental disciplines which are concerned with atmospheric 

and land surface processes such as meteorology, hydrology and climatology 

(Koster and Suarez, 2003a; Western et al., 2004; Conil et al., 2007). 

Moreover, information on the soil moisture is crucial to humans due to its 
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impact on activities such as agriculture and trafficability (Jackson et al., 

1987). More specifically, there is evidence that reliable observations of soil 

moisture at regional, continental and global scales will benefit:  

• flood forecasting through better prediction of the partitioning of 

precipitation between runoff and infiltration (Entekhabi et al., 1993; 

Su et al., 1995; Western et al., 2004); 

• land management through improved modeling of erosion producing 

zones (Fitzjohn et al., 1998; Castillo et al., 2003; Shinoda and 

Yamaguchi, 2003);  

• weather and climate forecasting through improved modeling of the 

interaction of land surface processes (Engman, 1992; Betts et al., 

1994; Koster et al., 2003b; Conil et al., 2007) and better land surface 

initialisation in weather prediction models (Beljaars et al., 1996);  

• agricultural applications by assisting irrigation scheduling, which will 

lead to water conservation benefits and better crop yield prediction 

(Jackson et al., 1987; Saha, 1995);  

• early drought prediction through better prediction of plant stress 

(Engman, 1990; Vijaya Kumar et al., 2005) and the ability to 

quantitatively monitor drought in both space and time (Jackson et al., 

1987; Sridhar et al., 2008);  

• modeling of nitrogen and CO2 biogeochemical cycling (D'Odorico et 

al., 2003; Porporato et al., 2003; Turcu et al., 2005), and estimation of 

surface emission of CO2 (Jin et al., 2008); and 

• management of agricultural practices, including trafficability in the 

fields (Wigneron et al., 1998). 

Changes to soil moisture patterns are also expected to be an important 

indicator of global warming, particularly during the vegetation growing 

period (Huszár et al., 1999; Li et al., 2007). Therefore, climate model 

simulations of future soil moisture should be compared with soil moisture 

observations, in order to further verify climate model simulations (Koster et 
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al., 2003a; Li et al., 2007). Consequently, there is a pressing need for soil 

moisture observations at a wide range of spatial scales, with sufficient 

temporal repetition to serve the hydrological, agricultural, meteorological 

and climatological applications mentioned above. 

1.2 Statement of Problem 

In recent decades, remote sensing technology has matured to the point 

that near-surface soil moisture can be estimated at global scale from space, 

(e.g., Wigneron et al., 2003; Wagner et al., 2006). Near-surface soil 

moisture is relative to approximately the top 5cm of the Earth’s surface. For 

simplicity, in this thesis it will be generally referred to as “soil moisture”. 

Several studies have shown that the soil moisture information provided by 

remote sensing technology for the near-surface layer can be used to retrieve 

the soil moisture content at much greater depth (e.g., Houser  et al., 1998; 

Walker et al., 2001). Although such studies rely on data assimilation of the 

remotely sensed information into land surface models, rather than on the 

identification of a physical coupling between surface and deep layer, they 

made a strong case to support the potential of global soil moisture remote 

sensing systems for environmental applications. In spite of the importance 

of soil moisture observations, there is not yet a dedicated soil moisture 

mission in space. However, there are a number of soil moisture products 

becoming available from sensors with non-ideal configurations for soil 

moisture monitoring, such as the Advanced Microwave Scanning 

Radiometer (AMSR-E)(Njoku et al., 2003) and the Advanced Synthetic 

Aperture Radar (ASAR)(Wagner et al., 2003), and there are two soil 

moisture dedicated satellites in various stages of design and construction.  

While the Soil Moisture Active Passive (SMAP)(NASA, 2007) mission 

of the National Aeronautics and Space Administration (NASA) is still in its 

design phase with an anticipated 2013 launch, the Soil Moisture and Ocean 

Salinity (SMOS)(Kerr et al., 2001) mission of the European Space Agency 

(ESA) has completed its ground testing and launch is imminent.  Both of 

these missions will use passive microwave technology at low frequencies 
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(~1-6GHz), as this has demonstrated the best soil moisture response under a 

variety of topographic and vegetation cover conditions (Ulaby et al., 1986; 

Engman and Chauhan, 1995; Jackson et al., 1999; Uitdewilligen et al., 2003. 

However, the use of this optimal frequency imposes a limit on the spatial 

resolution at which the land surface can be resolved; even the introduction 

in SMOS of synthetic aperture radiometry technology (Le Vine, 1999) will 

not reduce spatial resolutions below 30km (Kerr et al., 2000).  

At such scales, significant spatial heterogeneity in soil moisture exists, 

due to topography, spatial variability of soil and vegetation properties, and 

the highly intermittent nature of precipitation fields (Entekhabi and 

Rodrigueziturbe, 1994; Rodriguez-Iturbe et al., 1995). Current soil moisture 

products do not explicitly account for this spatial variability, as the land 

surface is assumed to be uniform within each land surface unit (pixel) where 

soil moisture is retrieved. Since the relationship between soil moisture and 

the microwave emission is non-linear, the sub-pixel heterogeneity of soil 

moisture and land surface conditions introduces uncertainty in the retrieval 

of soil moisture from space over large, heterogeneous areas such as satellite 

pixels.  

For example, the simple synthetic situation shown in Figure 1.1 

demonstrates that errors as large as 4%v/v, the total error budget for a 

satellite soil moisture mission, can result solely from typical sub-pixel 

heterogeneity in soil moisture. Here, a land surface is assumed to comprise 

fractions with 10%v/v and 50%v/v respectively, and otherwise uniform land 

surface conditions. Whilst in reality there will be intermixed patches of 

varying soil moisture together with heterogeneity of other land surface 

parameters, this simple example allows simple demonstration of the 

problem while avoiding the complicating non-linear response that exists in 

truly heterogeneous pixels. Therefore the problem of the heterogeneity in 

land surface conditions at the scale of current generation passive microwave 

remote sensing is an unresolved and pressing issue for the scientific 

community in view of the imminent launch of SMOS and in preparation for 

SMAP.  
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This thesis is focused on the soil moisture retrieval approach currently 

proposed for the SMOS mission and implemented in the so-called “SMOS 

L2” soil moisture retrieval algorithm. In contrast to what is done in current 

soil moisture products, which treat the pixel as a uniform surface, the SMOS 

approach seeks to account for the sub-pixel heterogeneity of land surface 

conditions by dividing the pixel into fractions determined using high- 

resolution maps of land use, and then simulating the microwave emission 

for each of these sub-pixel fractions separately. Thus, this method explicitly 

assumes that land use variability is the most important factor in terms of soil 

moisture retrieval. Additionally, in the case where the canopy density of all 

the pixel fractions is moderate, the assumption is made that soil moisture 

and vegetation optical depth are uniform amongst the pixel fractions. Both 

these assumptions need to be rigorously evaluated and the importance of the 

sub-pixel heterogeneity of other land surface factors needs to be tested with 

real data. 

This thesis addresses this urgent and important question by testing the 

soil moisture retrieval approach proposed for SMOS and its assumptions 

 

Figure 1.1. Synthetic example of the effect of sub-pixel heterogeneity of 
soil moisture on the soil moisture retrieval. The example is for a pixel split 
in two halves at respectively 10%v/v and 50%v/v soil moisture content. All 
other characteristics are uniform: clay soil, 25ºCelsius soil temperature and 
1Kg/m2 of water content in the vegetation canopy. The model used to 
produce the curve is the L-band Microwave Emission of the Biosphere 
Model (SMOS mission). 
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with real L-band observations at the size of a SMOS footprint, by 

aggregating aircraft observations made at L-band. This is done over a well 

monitored catchment occupied by a mix of native grasslands, crops and 

moderately dense Eucalypt forest, with a wealth of ground and remotely 

sensed ancillary data to monitor the variability of soil moisture, vegetation 

and land surface conditions.  

1.3 Objectives and Scope 

This research focuses on the soil moisture retrieval over areas with a 

strong contrast of vegetation density between forested areas and areas of 

moderately vegetated soil such as crops and grasslands The principal 

objectives are to develop a soil moisture retrieval approach for SMOS which 

accounts for the sub-pixel heterogeneity of land surface conditions between 

those land cover types, and to test this approach with real data. In particular, 

Additional aims which have to be addressed in order to achieve these 

principal objectives include: 

• development of a novel soil moisture monitoring system, the 

Hydraprobe Data Acquisition System (HDAS), which integrated a 

soil moisture probe (Hydraprobe) with a GPS positioning system and 

GIS using a handheld computer in a portable format; 

• collection of an airborne and ground-based field data set suitable for 

the application of soil moisture retrieval approaches to be evaluated 

at the SMOS footprint scale; 

• evaluation of the L-band Microwave Emission of the Biosphere (L-

MEB) radiative transfer model, which is the basis of the SMOS L2 

soil moisture retrieval algorithm, with airborne data from local 

(62.5m) to satellite (40km) scale; 

• verification of the soil roughness parameterisation for passive 

microwave soil moisture retrieval at airborne resolutions (62.5m-

1km); 
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• assessment of the scaling properties of microwave emission fields as 

detected at different resolutions; 

• understanding the link between land surface characteristics (e.g., soil 

type, topography, land cover) and spatio-temporal variability of soil 

moisture in the study area; 

• assessing the error in retrieved soil moisture at SMOS resolution due 

to the sub-pixel heterogeneity of land surface conditions, under the 

assumption of pixel uniformity upon which the current soil moisture 

products are based on; and 

• testing of the soil moisture retrieval approach proposed for SMOS 

and its assumption of uniformity of soil moisture and vegetation 

optical depth in the pixel in the case of pixels composed of a mix of 

moderately vegetated soil (crops and grasslands) and moderately 

dense Eucalypt forest, typical of the Australian environment. This is 

the first time that the SMOS soil moisture retrieval approach adopted 

by ESA is tested at the satellite footprint scale using field 

observations. 

These seemingly separate objectives are instead closely inter-linked. 

They will provide an experimental framework with observations as close as 

possible to those expected from SMOS, and will allow testing of the soil 

moisture retrieval approach proposed for SMOS and of the new approach to 

be developed in this thesis, coupled with an unprecedented knowledge of 

the land surface conditions at the scale of a SMOS footprint.  

1.4 Outline of Approach 

This study involves three parts: (i) Collection and processing of airborne 

and ground-based field data; (ii) Testing of the soil moisture retrieval 

approach proposed for SMOS and its assumptions with real data, and (iii) 

Development and testing of new techniques to better account for the sub-

pixel heterogeneity of land surface conditions in the soil moisture retrieval 

from SMOS. Each part of this study is hereby outlined individually. 
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Part 1: Since no actual SMOS data were available to develop the techniques 

proposed in this thesis, the extensive airborne and ground-based NAFE’05 

data set collected at the beginning of this study is processed in order to 

closely simulate the data expected from SMOS, and to provide knowledge 

of the spatial distribution of soil moisture and other relevant land surface 

factors in the study area. The data collection campaign involved airborne 

ground-based monitoring of an area of the size of a SMOS footprint 

(approximately 40km x 40km) over one month in November 2005. In order 

to create observations as close as possible to those expected from SMOS, 

multi-resolution airborne observations of the study area are compared to 

verify the linear scaling of microwave emission fields. This supports the 

aggregation of high-resolution aircraft data to SMOS resolution done in part 

2.  

Part 2: Here the soil moisture retrieval approach proposed for SMOS and 

its main assumptions are tested with the NAFE’05 data. The first step of the 

analysis is that of evaluating the L-MEB model, which is the basis of the 

SMOS L2 soil moisture retrieval algorithm, and its parameters for the land 

surface conditions of the study area using high-resolution airborne data. The 

model is then used to produce high-resolution soil moisture maps across the 

entire study area to be later used for testing the various retrieval approaches. 

The ground data on the spatial distribution of soil moisture and land surface 

factors are then analysed in order to assess the land surface heterogeneity in 

the study area and the links between the spatial distribution of different land 

surface factors and that of soil moisture in the study area. The impact of 

such land surface heterogeneity on the soil moisture retrieval using the 

SMOS algorithm is then assessed through a preliminary synthetic study and 

subsequently using the real data. This phase results in the identification of 

the land surface factors whose heterogeneity at the SMOS footprint scale 

most strongly affects the soil moisture retrieval, and in an assessment of the 

weaknesses of the soil moisture retrieval approach proposed for SMOS 

which will be addressed in part 3. 
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Part 3: A novel retrieval approach is finally proposed for SMOS and its 

accuracy with respect to the current SMOS approach tested with real data. 

This approach, which can be easily implemented within the SMOS L2 

algorithm, relaxes one of the main assumptions on which the SMOS L2 

algorithm is based on, thereby allowing the SMOS L2 algorithm to meet the 

SMOS target accuracy of 4%v/v; The next section describes in details how 

the three parts of this study are laid out in the manuscript. 

1.5 Organisation of Thesis 

This thesis is organised into nine Chapters which can be loosely grouped 

into 6 sections: 

Section 1 – background and proposed approach (Chapters 1 and 2); 

Section 2 – model and field data description(Chapters 3 and 4); 

Section 3 – model testing and data exploration (Chapters 5 and 6); 

Section 4 – evaluation of current techniques (Chapter 7); 

Section 5 – development and testing of novel techniques (Chapter 8); 

Section 6 – conclusions and recommendation for future work (Chapter 9).  

Chapter 2 presents an overview of the existing techniques to estimate soil 

moisture and its spatial and temporal distribution through remote sensing. 

Previous investigations that dealt with the problem of soil moisture retrieval 

error induced by land surface heterogeneity are then reviewed and the 

shortcomings in the current techniques to reduce that error are identified. 

The SMOS mission and the SMOS L2 soil moisture retrieval algorithm 

are described in detail in Chapter 3, together with the radiative transfer 

equations of the L-MEB model, which is the basis of the SMOS L2 

algorithm. Chapter 4 describes the NAFE’05 field campaign, which 

provided all the airborne and ground data used in this study, presents the 

data collection strategy, and the details about any ancillary data relevant to 

this thesis. 
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In Chapter 5, after evaluation of the L-MEB model using the airborne 

and ground data collected during the NAFE’05 field campaign, high-

resolution soil moisture maps of the entire study area are produced. These 

will be subsequently used in Chapters 7 and 8 for testing the soil moisture 

retrieval approach proposed for SMOS. In Chapter 6, the heterogeneity of 

the land surface conditions in the NAFE’05 study area is investigated using 

spatial ground measurements of soil moisture and ancillary data on 

topography, vegetation density, and soil texture. This leads to an 

understanding of the relationship between land surface factors and soil 

moisture distribution that will be used in Chapters 7 and 8 to identify the 

weaknesses of the current retrieval techniques.  

Chapter 7 makes an assessment of the L-MEB model at satellite scale. 

This provides an assessment of the soil moisture retrieval error expected at 

the SMOS footprint scale under the assumption of pixel uniformity, as made 

by current methods. Using both a synthetic study and analysis with real 

data, the error is interpreted in terms of the heterogeneity of soil moisture 

and land surface factors analysed in Chapter 6.  

The soil moisture retrieval approach proposed for SMOS is tested in 

Chapter 8 with real data. The weaknesses of the approach and its main 

assumptions to account for the land surface heterogeneity are identified. 

Moreover, a novel alternative approach for SMOS is proposed, and shown 

to take better account of the land surface heterogeneity. 

A discussion of results, conclusions and recommendations for future 

research is given in Chapter 9. 
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Chapter Two 

2 Literature Review and Proposed Approach 

This Chapter presents an overview of the existing techniques to estimate 

soil moisture and its spatial and temporal distribution through remote 

sensing, with focus on the problem of the error in coarse-scale soil moisture 

retrieval induced by land surface heterogeneity. First, the nature and sources 

of spatial variability of soil moisture and its link to land surface factors are 

discussed to introduce the problem. Next, a review of the techniques 

developed to monitor that variability through remote sensing is presented 

and the advantages of the passive microwave technique adopted by SMOS 

for global soil moisture remote sensing are discussed. Finally, the impact of 

land surface heterogeneity on the retrieval of accurate soil moisture 

estimates from passive microwave observations is discussed, and a new 

approach is proposed, applicable to SMOS, to reduce the error in soil 

moisture estimation due to land surface heterogeneity. 

2.1 Soil Moisture Spatial Variability 

At a particular point in time soil moisture is influenced by: (i) the 

precipitation history, (ii) the texture of the soil, which determines the 

drainage rate and the water holding capacity, (iii) the local topography, 

which affects runoff and infiltration, (iv) the soil depth, which determines 

lateral drainage and saturation by excess of lateral flow and (v) the land 

cover (vegetation), which influences evapotranspiration and deep 

percolation (Mohanty and Skaggs, 2001). Understanding how these 

different factors interact with each other in determining the spatio-temporal 

dynamics of soil moisture and whether the relative importance of each 

factor changes with the spatial scale considered has been a major research 

interest for decades. The typical spatial scale of footprints from present 

passive microwave sensors is 40km, and that expected for the foreseeable 

future through advances in the technology of building new orbiting antennas 
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will not be smaller than 10km (NASA, 2007). From the point of view of 

remote sensing, the variability of soil moisture within these large areas is of 

major interest as “remote sensing techniques provide a means of directly 

obtaining spatial information over wide areas. These data are known to be 

averaged over the sensor's footprint on the ground, and much concern is still 

focused on relevant issues like the […] inherent variability of hydrological 

variables at scales that are finer than the footprint scale” (Lanza et al., 

1997). 

Traditionally, soil moisture spatial variability studies using ground-based 

point-scale measurements were limited to small fields (<1km2) with fairly 

uniform soil properties, topography and vegetative conditions. Several 

studies in the early 1970s focused on small catchments and observed that 

soil moisture at any location could be fairly well predicted from a 

combination of topography and soil hydraulic properties information 

(Dunne and Black, 1970a; Dunne and Black, 1970b; Beven and Kirkby, 

1979; O'Loughlin, 1981). Based on these findings, several “physically-

based” methods were developed to predict the spatial distribution of soil 

moisture within catchments, like the widely used TOPMODEL (Beven et 

al., 1979). These methods captured the fundamental mechanisms of water 

redistributions across the landscape, essentially the relative intensity of 

lateral drainage in the soil and vertical infiltration determined by 

topographic slope, distance from the outlet and hydraulic conductivity. 

However, these methods were soon found to be too simple and restrictive in 

their assumptions to be able to explain the complex interactions between 

land surface characteristics and spatial variability of soil moisture across 

many landscapes with various soil types, topography, land cover and 

climatic conditions (Barling et al., 1994; Ambroise et al., 1996; Blazkova et 

al., 2002). 

Certain time invariant association between soil moisture patterns and soil 

texture (time stability) were observed by Vachoud et al. (1985) in a small 

catchment of small relief using time stability analysis. Time stability 

indicates the persistency of spatial patterns of soil moisture associated to 
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spatial patterns of some other land surface characteristic, like for example 

soil texture. The analysis was extended by Grayson and Western (1998) to a 

catchment with significant relief in order to find locations that exhibited 

catchment average behaviour for remote sensing validation purposes. These 

authors showed that overall the soil moisture patterns were not time stable 

and therefore could not conclude on the predominance of any land surface 

controls on the soil moisture distribution. 

More recently, the availability of extensive data sets of point 

measurement in monitored catchments has shed some light on the complex 

interaction between land surface factors and soil moisture distribution, as 

well as on the seasonal variation of land surface control on soil moisture 

variability. The geostatistical analysis of soil moisture patterns in various 

small humid and sub-humid catchments in Australia and New Zealand 

showed that controls on soil moisture spatial patterns could change between 

places and over time with catchment moisture status (Grayson et al., 1997a; 

Western et al., 1998; Grayson et al., 1999; Western et al., 2004). At more 

humid sites topography was shown to play an important role in controlling 

the soil moisture variation in space, while at drier sites variations in soil 

texture played a more important role. Even at the same site controls on soil 

moisture were found to be quite different with the transition from wet to dry 

seasons. During summer, mean and spatial variability of soil moisture 

across the catchment was typically low, as a consequence of the low lateral 

redistribution due to low hydraulic conductivity for low soil moisture 

values. Also, because any available soil moisture would evaporate quickly, 

evapotranspiration was moisture-limited and soil moisture was generally 

close to the wilting point. Since the wilting point is uniform across the 

catchment, soil moisture was also uniform. During winter, soil moisture 

states were instead dominated by lateral water movement through both 

surface and sub-surface paths, with topography leading to organisation of 

soil moisture along drainage lines. The seasonal switch between land 

surface controls was also observed by Teuling and Troch (2004), who 

showed that both soil texture and vegetation controls could act to either 
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increase or decrease spatial variability of soil moisture, and that this effects 

varied with the overall moisture conditions. 

In more recent years, the use of airborne active and passive microwave 

remote sensors has enhanced the capability to monitor soil moisture over 

large land areas with spatial extents that are more representative of satellite 

footprints and encompass various soil types, topography, land cover and 

climatic conditions. Differences in land cover as well as land use practices 

(affecting soil texture, surface roughness and vegetation dynamics through 

harvesting) are likely to occur in larger areas. Rainfall and geology also 

become more variable at a large scale. Because the scale of variability of 

these controls tends to be large, the scale of variability of soil moisture is 

expected to be larger as well (Western et al., 1998). Moreover, as argued by 

Kachanoski and de Jong (1988), since hydrological processes operate at 

different spatial scales, the time stability of soil moisture spatial patterns 

should also be a function of scale, i.e. some process could alter the 

persistence of soil moisture patterns at small scale (like that of a small 

watershed), while the change is insignificant at larger scales (like that of a 

satellite footprint). 

Analysis of the spatial structure of soil moisture and its link to land 

surface factors at a range of scales, from 1km2 up to 10,000km2 was made 

possible through the remotely sensed soil moisture data obtained from 

airborne passive microwave observations during the Washita’92 and 

Southern Great Plains’97 (SGP’97) field experiments. At the field scale 

(1km2), ground-based soil moisture measurements from these campaigns 

were analysed to investigate soil moisture time stability within the aircraft 

footprint for validation of the airborne data. The impact of topography and 

characteristics related to land use (vegetation and surface roughness) on soil 

moisture patterns was clearly observed at fields when all other land surface 

factors were uniform across the field (Famiglietti et al., 1999; Mohanty et 

al., 2000a; Mohanty et al., 2000b). On fields with more variable conditions, 

the role of topography in soil moisture distribution was stronger during 
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periods of rainfall, at the end of which the relative importance of soil texture 

and land use factors increased (Yoo and Kim, 2004). 

At larger scales (up to 10,000km2), analysis of the relationship between 

soil moisture and regional soil and land cover characteristics using airborne 

passive microwave observations was undertaken using SGP’97 data  (Kim 

and Barros, 2002a, b; Jacobs et al., 2004; Jawson and Niemann, 2007) and 

Washita’92 data (Cosh and Brutsaert, 1999). Results indicated that at these 

scales soil moisture variability was most strongly connected to soil texture, 

specifically sand and clay content. In drier conditions, soil moisture 

variability approached the spatial correlation structure of sand content, 

followed by that of clay content and finally vegetation water content 

(VWC).  The impact of soil texture on soil moisture was observed to 

weaken during and immediately after rainfall events, when the spatial 

structure of soil moisture appears to be dominated by rainfall spatial 

gradients and topography (Yoo et al., 1998; Kim et al., 2002a; Jawson et al., 

2007). Jawson et al. (2007) also observed that when increasing the scale at 

which soil moisture patterns are analysed, characteristics related to land use 

(vegetation and surface roughness) became increasingly correlated with soil 

moisture pattern, although the importance of soil texture was still significant 

An important investigation at a variety of scales was also undertaken 

using extensive data sets of traditional ground-based point measurements at 

a variety of scales by Choi et al. (2007). This study showed the 

predominance of soil texture, in particular sand content, in explaining the 

soil moisture variability from small (<1km2) to large scales (1000km2) over 

several areas in the US, Belgium and Spain having a variety of topographic 

and land cover conditions. 

It should be noted that SGP’97 and Washita’92 study areas, where most 

of the above studies were based, were characterised by relatively smooth 

topography and moderate vegetation variability. Consequently these 

findings need further verification in other regions of the world with more 

variable land surface conditions and different climatic regimes. 
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At even larger scales (more than 100,000km2), data sets from ground-

based point measurements at agricultural sites in the Former Soviet Union, 

Mongolia, China, and the USA suggested that the soil moisture variance has 

two components; (i) the very small scale, determined by soils, topography 

and land cover, and (ii) the large scale (500km), determined by precipitation 

and evaporation patterns (Vinnikov et al., 1996; Entin et al., 2000). At these 

larger scales, heterogeneity in rainfall disrupts temporal stability of fields by 

introducing random spatial variability (Kachanoski et al., 1988). 

The preceding discussion of soil moisture spatial variability and its link 

to land surface factors highlighted that, although there is a widespread 

tendency in hydrology to assume that at the small catchment scale (<1km2) 

topography plays a dominant role (Grayson and Western, 2001), the 

generality of this hypothesis is poorly supported in the literature. Indeed 

there are clear examples where other controls, soil texture or land cover, are 

more important (Vachaud et al., 1985; Grayson et al., 1997a; Western et al., 

1998; Teuling et al., 2004; Western et al., 2004; Choi et al., 2007). Despite 

the relatively small body of literature which investigated soil moisture 

variability at scales more similar to that of satellite footprints, there is good 

evidence that other controls, soil texture in particular, but also land use 

related characteristics and the rainfall gradients, may play a crucial role in 

determining spatial soil moisture distribution. Moreover, it was noted in 

several studies that that within the same area the relative importance of each 

land surface factor might change significantly through time (Yoo et al., 

1998; Kim et al., 2002a, b; Jacobs et al., 2004; Choi et al., 2007; Jawson et 

al., 2007). 

These observations imply that the interpretation of the spatially averaged 

information provided by remote sensors will not be straightforward. This is 

because due the high variability of soil moisture fields and the temporally 

and spatially variable correlation between sub-pixel variability of soil 

moisture and land surface characteristics, it is extremely difficult to monitor 

soil moisture on the ground in a way that represents the footprint average 

soil moisture conditions.  
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The variability in land surface characteristics affects the interpretation of 

the spatially averaged information provided by remote sensors in yet 

another way: it affects the relationship between the mean soil moisture 

conditions within the footprint and the spatially averaged microwave 

emission measured by the sensor, resulting from the heterogeneous soil 

moisture and land surface conditions. This effect is different from that 

discussed above. The former is associated with physical land surface 

processes of lateral water distribution, vertical infiltration, evaporation, root 

water uptake, whereas the latter is controlled by the radiative transfer 

properties of the soil-vegetation layer. 

This thesis deals specifically with this second problem. Before discussing 

in detail the effect of land surface heterogeneity on the microwave emission 

measured by the remote sensors, it is necessary to give an overview of 

remote sensing methods available for soil moisture monitoring and to 

describe the physical basis of microwave remote sensing. 

2.2 Remote Sensing Techniques for Monitoring Soil Moisture 

Global remote sensing of soil moisture has been a major research goal for 

nearly three decades. Several studies have shown that soil moisture can be 

measured by a variety of techniques, which differ essentially in the parts of 

the electromagnetic spectrum sensed and in the source of the 

electromagnetic radiation. Investigations have been undertaken using 

sensors that measure the radiation emitted by the earth surface in the 

microwave domain (“passive microwave”) using both tower-mounted 

sensors (Wang, 1983; Wang et al., 1983; De Rosnay et al., 2006a; Saleh et 

al., 2006a; Saleh et al., 2006b; Della Vecchia et al., 2007; Saleh et al., 2007; 

Wigneron et al., 2007), and airborne sensors (Jackson et al., 1982; Jackson 

et al., 1984; Wood et al., 1993; Jackson et al., 1995a; Drusch et al., 1999a; 

Jackson et al., 1999; Jackson, 2001; Bindlish and Barros, 2002; Kim et al., 

2002b; Njoku et al., 2002; Uitdewilligen et al., 2003; Lakshmi et al., 2004; 

Jackson et al., 2005; Merlin et al., 2008; Panciera et al., 2008a). Other 

investigation used sensors that measured the radiation reflected by the 
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surface given a microwave pulse sent by the sensor (“active microwave”)  

(Wood et al., 1993; Giacomelli et al., 1995; Bindlish et al., 2002; Njoku et 

al., 2002) or the radiation in the visible/infra-red domain (Carlson et al., 

1994; Moran et al., 1994; Gillies et al., 1997). Moreover, techniques for 

global soil moisture estimation were tested using space sensors in the 

microwave domain (Shi et al., 1997; Chauhan et al., 2003; Njoku et al., 

2003; Zribi et al., 2003; McCabe et al., 2004; Wan et al., 2004; McCabe et 

al., 2005; Zribi et al., 2005; Verstraeten et al., 2006; Yang et al., 2006; 

Chand and Badarinath, 2007; Narayan and Lakshmi, 2008; Rahman et al., 

2008) and combined microwave/visible/infra-red domains (Chauhan et al., 

2003; Verstraeten et al., 2006).  

Remote sensing has the advantage with respect to other traditional 

techniques for soil moisture monitoring (essentially those based on 

continuous measurements at fixed locations and land surface models) to (i) 

provide an integrated measurement over a large area, (ii) provide a frequent 

coverage of the entire (or a vast part of) globe and (iii) to rely as less as 

possible on complex modelling of land-surface-atmosphere physical 

processes, which at global scale would imply excessive computational 

burden.  

Although there is now a wide consensus in the scientific community that 

remote sensing using microwave sensors is the most promising technology 

for global soil moisture monitoring (Engman et al., 1995; Jackson et al., 

1996b; Wigneron et al., 2003; Prigent et al., 2005; Wagner et al., 2006; 

Wagner et al., 2007), each of the techniques mentioned above holds certain 

advantages associated with the resolution at which the land surface can be 

resolved from space sensors (which depends directly on the frequency), the 

sensitivity to soil moisture changes or the sources of noise to the soil 

moisture signal. Therefore in the following sections a brief review of the 

physical basis upon which each technique is based is given. Based on this 

review, section 2.2.4 presents a discussion of the advantages and limitations 

of each technique in light of their application for global monitoring of soil 

moisture. 
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2.2.1 Visible Radiation 

The ratio of reflected to incoming solar radiation at the earth surface 

(known as “albedo”) in the visible region of the spectrum (0.4 - 0.8µm) has 

been long recognised as having a dependence upon the moisture status of 

the soil surface (Ångström, 1925 ). The effect of increasing soil moisture 

content is to reduce the albedo by a factor of about 2 for a bare soil (Jackson 

et al., 1976), although this effect is somewhat less detectable for sand. 

Remote sensing of soil moisture using the visible region of the 

electromagnetic spectrum is therefore based on the measurement of the 

albedo, and can provide good spatial resolution from space sensors (e.g. 

~30m for Landsat visible bands). However, the measurement of the albedo 

provides only a poor indication of soil moisture content. It has been shown 

that  albedo is also greatly influenced by many other factors such as organic 

matter, soil texture, surface roughness, angle of incidence, plant cover and 

colour causing a wide variation in albedo of different soil types even when 

dry (Engman, 1991; Troch et al., 1996).  

Apart from these confounding factors, important limitations of soil 

moisture remote sensing in the visible spectrum are that (i) reflected solar 

energy responds to only the top few millimeters of the soil profile (Idso et 

al., 1975), therefore providing soil wetness information for a very shallow 

layer of the soil which is difficult to link with deeper layers, (ii) it requires 

solar illumination, therefore limiting the observations to day time 

overpasses and (iii) it is limited to areas with no cloud cover. These 

complicating factors limit the utility of solar reflectance measurements for 

soil moisture content determination, which have been so far mainly utilised 

in conjunction with techniques based on thermal infra-red radiation.  

2.2.2 Thermal Radiation 

Thermal infra-red remote sensing operates in a slightly longer 

wavelength region of the electromagnetic spectrum (3 -14µm) than visible 

remote sensing, and measures the thermal emission of the earth. Methods 

for inferring soil moisturecontent using thermal infra-red remote 

measurements are based on the effect of water on the thermal properties of 
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the soil (heat capacity, thermal conductivity), which in turn affect the 

surface radiant temperature as well as the soil resistance to diurnal changes 

in temperatures due to external meteorological forcings (Ellyett and Pratt, 

1975; Schmugge et al., 1980; Van de Griend and Engman, 1985). The 

amplitude of the diurnal range of soil surface temperature has been found to 

have a good correlation with the soil moisture content in the 0 to 2 and 0 to 

4cm layers of a bare soil (Schmugge et al., 1980). 

Thermal infra-red sensing can provide good spatial resolution from space 

sensors (~250m for infra-red and 1km for thermal bands). However, the 

effectiveness of these measurements is limited by cloud cover, vegetation 

and meteorological factors (Engman, 1990; de Troch et al., 1996), with 

measurements being severely hampered by the presence of even slight 

amounts of vegetation (Sadeghi et al., 1984), as the resulting image 

produced by the remote sensor may have no relation to the radiative 

temperature of the earth’s surface below. However, in this case thermal 

infra-red observations may still be used to give an indication of plant 

moisture stress through rising leaf temperatures (McVicar and Jupp, 1998), 

which is an indication of the soil moisture status. Therefore, inference of 

soil moisture content from thermal infra-red imagery is usually performed in 

conjunction with imagery from the visible wave bands, in order to give 

some measure of the vegetation cover (Moran et al., 1994; Gillies et al., 

1997; Goward et al., 2002; Wan et al., 2004; Verstraeten et al., 2006).  

Methods for deriving soil moisture from thermal infra-red measurements 

evolved essentially in two directions (i) use of Soil Vegetation Atmosphere 

Transfer models to define the relationship between radiant temperature of 

the vegetation-bare soil mix and soil moisture and (ii) use of time series of 

diurnal surface temperature cycles to determine the relationship between 

thermal inertia and soil moisture. These methods and their limitations are 

briefly described below. 

The first approach consists of inverting a one-dimensional Soil-

Vegetation-Atmosphere-Transfer (SVAT) model using thermal infra-red 
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observations of surface temperature. This was attempted in several studies 

(Ottlé et al., 1989 and Demarty et al., 2005 to name a few), using SVAT 

models which calculated the surface fluxes, surface temperature and soil 

moisture content by solving simultaneously the energy budget equation at 

the soil surface and above the canopy. The thermal and hydraulic transfers 

were described by three important processes: thermal inertia, hydraulic 

diffusivity and evaporation. Atmospheric data necessary to run the model 

were daily variation in incoming radiation, air temperature, humidity and 

wind speed. The three key vegetation parameters of the SVAT model were 

the height of the vegetation, minimum leaf resistance to evaporation and the 

Leaf Area Index (LAI).  

Alternative approaches which relax the need for avoiding complex 

modeling of the land soil-vegetation-atmosphere interaction were developed 

by Carlson et al., 1994) and extended by Gillies et al. (1997), who generated 

regression relations between Normalised Difference Vegetation Index 

(NDVI), soil moisture, and soil temperature by careful analyses of available 

data. Although a unique relationship between surface soil moisture 

availability and radiant temperature does not exist in the presence of 

vegetation cover, if the 0% and 100% vegetation cover limits can be 

evaluated for a particular study area and the fractional vegetation cover is 

defined amongst these two extremes through NDVI observations, then a 

fairly stable relationship between soil temperature and soil moisture 

availability can be established (Moran et al., 1994).  This can be a simple 

linear relationship (Moran et al., 1994) or a non-linear relationship derived 

from simulations with a SVAT modeling (Carlson et al., 1994). In either 

case the NDVI extremes for the study area need to be deduced from 

analysing yearly variation of NDVI in order to capture the annual vegetative 

response to soil moisture changes. One major question arising from a global 

soil moisture monitoring perspective is whether this relationship between 

NDVI, soil temperature and soil moisture can be defined from coarse-

resolution space observation (Gillies et al., 1997). 
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The second type of approach for deriving soil moisture from thermal 

infra-red measurements is based on the concept of thermal inertia. Thermal 

inertia is a property of a materials (in the context discussed here, the mix of 

soil and water), which describes their resistance to temperature variations. 

The method developed by Mitra and Majumdar (2004) and later applied by 

Verstraeten et al. (2006) to spaceborne data is based on estimation of an 

apparent thermal inertia (ATI) through the combination of measurements of 

spectral surface albedo and diurnal temperature range. The strategy to derive 

water content is then based on the rationale that high ATI values correspond 

to maximum soil moisture content (the diurnal temperature range is the 

denominator in the calculation of ATI). Therefore, if extreme ATI values 

can be derived from time series analysis over a specific area, a soil moisture 

saturation index can be defined and converted to a soil moisture estimate 

through knowledge of the soil type in the area and consequently the soil 

moisture at saturation and residual. 

It must be noted that the use of thermal infra-red measurements is limited 

to cloud free areas and complicated by vegetation masking of the soil 

surface. Moreover, such methods require meteorological and atmospheric 

information such as daily variation in incoming radiation, air temperature, 

humidity and wind speed if SVAT based retrieval methods are used, or time 

series of daily temperature variations and/or NDVI values which are long 

enough to encompass the full range of values for both variables (i.e., from 

maximum to minimum) experienced by the area of interest. Although the 

studies discussed showed that combined visible/thermal infra-red 

approaches have the potential to sense soil moisture, implementation from 

space has not been accomplished so far, and a soil moisture product has not 

been envisioned for future optical/IR missions. To overcome the problems 

of thermal infra-red methods for satellite based soil moisture remote 

sensing, attempts have been made to couple these approaches with remote 

sensing methods which employ the microwave region of the spectrum 

(Chauhan et al., 2003). 
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2.2.3 Microwave Radiation 

Microwave remote sensing measures the electromagnetic radiation in the 

microwave region of the electromagnetic spectrum, which has wavelengths 

between 0.75 and 100cm, corresponding to frequencies between 40GHz and 

0.3GHz. This region is subdivided into bands, which are often referred to by 

a lettering system (see Table 2.1). The radiation in this region of the 

spectrum is highly correlated with the dielectric properties of the soil which 

are mainly determined by the amount of water volume present.  

The fundamental basis of microwave remote sensing for soil moisture 

content is the contrast between the dielectric constant of water (about 80 at 

frequencies below 5GHz) and that of dry soil (about 3.5) (Ulaby et al., 

1986). As the volume fraction of water in the soil increases, both the real 

and imaginary parts of the soil dielectric constant (respectively '
Gε  and "

Gε ) 

increase, depending on the soil particle distribution (Ulaby et al., 1986). 

This is shown in Figure 2.1 for different soil textures. 

If it is assumed that the target being observed by the microwave sensor is 

a plane surface with surface geometric variations and volume discontinuities 

much less than the wavelength, only refraction and absorption of the media 

need to be considered. Therefore the reflectivity to microwave radiation of 

the soil/air interface can be related to the ratio between the dielectric 

constant of air (known) and soil through the Fresnel reflection equations, the 

Table 2.1. Microwave band designations (Lillesand and Kiefer, 1994). 
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relationship being dependent on the viewing angle and the polarisation of 

the radiation (Njoku and Entekhabi, 1996a). The smooth surface reflectivity 

(Γ*) at vertical (V) and horizontal (H) polarisation can therefore be 

expressed as: 
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where εG is the soil dielectric constant (relative to that of air) and ϑ  is the 

viewing angle. Following Kirchoff's reciprocity theorem, the microwave 

emissivity (e) of the target can be related to its microwave reflectivity as 

Γ=1-e. 

The two basic approaches used in microwave remote sensing are active 

and passive. Active systems, otherwise known as radars, send out a pulse of 

electromagnetic radiation and measure the amount that is scattered back in 

the direction of the sensor (reflectivity). That backscatter coefficient is then 

related to the characteristics of the target. In contrast, passive systems 

measure the natural emission (emissivity) of the land surface at microwave 

frequencies using detectors, referred to as radiometers.  Given the low 

frequency, the spatial resolution that can be achieved from space with the 

current technology is low for passive sensors (~40km, Kerr et al., 2001). For 

active sensors, the spatial resolution can be as fine as 10m from space 

(Wagner et al., 2006). A description of the fundamental basis and main 

characteristics of the methods to obtain soil moisture information from 

active and passive microwave observations is presented in the following 

sections. 

2.2.3.1 Active Microwave Remote Sensing  

Active microwave remote sensing involves the use of a radar antenna, 

which transmits wave pulses and receives a return signal whose intensity 
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varies with the target characteristics. The signals sent and received by aradar 

are usually polarised, either horizontally (H) or vertically (V). Possible 

combinations are HH, VV, HV and VH. The backscattering coefficients 

σ
o

PP, where P is the polarisation, are used to describe the intensity of the 

reflected radiation from an object and are measured in decibel (dB) 

(Schmugge, 1985). The backscattering coefficients depend on wave 

polarisation, frequency and incidence angle (Schmugge, 1985) and are 

influenced by the dielectric  constant of the soil (through surface 

reflectivity) and surface roughness for bare soils (Schmugge, 1985; Ulaby et 

al., 1986). For vegetation covered areas, the backscattering coefficients 

 

Figure 2.1. Real ( '
Gε ) and imaginary( "

Gε ) soil dielectric 

constant as a function of volumetric soil moisture content for 
five soils at 1.4GHz. Smooth curves were drawn through 
measured data points (from Ulaby et al., 1986). 
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depend on the vegetation characteristics and on the soil’s backscattering 

signal attenuated by the vegetation layer (Ulaby et al., 1982). Moreover, 

topographic relief has a significant effect on the backscattering signal (van 

Zyl et al., 1993). 

The relationship between backscatter and dielectric constant is highly 

non-linear. The coefficients σ
o

vv and σ
o

hh increase with soil moisture at 

higher rates for lower dielectric constants, with σ
o

hh shown to be less 

sensitive to variation in the dielectric constant than σ
o

vv. At approximately 

35º-40º incidence angle, σ
o

hh increases are typically about 5-6dB for a 

variation of dielectric constant between 3 and 30 (corresponding to a soil 

moisture range between 2% to 50%, depending on frequency and soil 

texture) as compared to an 8-10dB increase in σo
vv (Hoeben et al., 1997; Shi 

et al., 1997). This range is fairly independent of the sensor frequency 

(Hoeben et al., 1997). The sensitivity of σo
vv to changes in dielectric constant 

increases with incidence angles but becomes fairly stable in the 30º–50º 

range (Shi et al., 1997). 

The effect of soil roughness on the backscattering signal is quantified 

through the surface height standard deviation (RMS). The effect of surface 

roughness may be synthesised by saying that, for a given frequency, the 

backscattering from soils with a higher RMS is less dependent on the value 

of the incidence angle (Ulaby et al., 1986). Therefore, the larger the 

incidence angle, the greater the sensitivity of the backscattering signal to 

RMS (Oh et al., 1992). In many cases the effects of roughness may be equal 

or greater than the effects of soil moisture on the backscattering (Engman et 

al., 1995). This might be more significant in ploughed fields, where the row 

structure generated by ploughing presents a regular pattern that can 

complicate data interpretation (Giacomelli et al., 1995). Furthermore, due to 

weathering, the surface roughness of agricultural fields is likely to change 

quickly in time between satellite overpasses, although for natural 

ecosystems it should not change significantly over relatively short time 

periods (Beaudoin et al., 1990; Sano et al., 1998). Roughness represents 

therefore a major issue in active microwave remote sensing. The soil 
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moisture problem in active remote sensing becomes one of determining the 

roughness effect independently so that a model can be inverted to yield a 

measure of soil moisture (Oh et al., 1992; Engman et al., 1995; Jackson et 

al., 1996b). 

The observations made with active microwave remote sensing are 

affected by vegetation cover that reduces the sensitivity of the return signal 

to the moisture content of the underlying soil (Wang et al., 1987; Engman et 

al., 1995). The return signal from the layer of vegetation is composed of 

four principal components: direct, reflected, direct-reflected and surface 

scattering (see Figure 2.2). All mechanisms include scattering and 

absorption of the signal by the vegetation components. The amount of 

absorption is primarily due to the water content of the vegetation 

(Schmugge, 1985), whilst the scattering is influenced by the vegetation 

shape and geometry (Engman et al., 1995; Giacomelli et al., 1995). The 

effect of vegetation is also greatly dependent upon the instrument’s angle of 

incidence and on polarisation (Ulaby et al., 1986). Engman et al. (1995) 

showed that the attenuation of the backscattered signal for horizontal 

polarisation due to a corn canopy is relatively weak, but that the vertically 

polarised data are attenuated to a much greater degree because of their 

relationship to the canopy structure, which consists primarily of vertical 

stalks. Wang et al. (1987) have shown that the effect of vegetation cover 

does not play a significant role at low incidence angles. The influence of the 

vegetation on the radar signal can in general be diminished by decreasing 

the frequency. L-band (1-2GHz) measurements yield good results under 

various canopy types (Brown et al., 1992; Schmulluis and Furrer, 1992; van 

Zyl et al., 1993; Giacomelli et al., 1995), whereas for C-band (4-8GHz) 

even a thin vegetation cover may distort the measurement (Schmulluis et al., 

1992).  

Surface topography affects active microwave remote sensing 

observations mainly by changing the incidence angle due to the local slope 

(Hinse et al., 1988) and by changing the pixel size when, as is common, data 

are processed with a flat earth assumption (van Zyl et al., 1993). The 
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problem is more important for airborne systems than for spaceborne 

systems. However, it has been shown that these effects can be taken into 

account if a digital elevation model is available (Hinse et al., 1988; van Zyl 

et al., 1993). 

Due to the sensitivity of the active microwave backscattering signal to 

surface roughness and vegetation cover, and the competing effect of 

frequency and incidence angle discussed in this section, there has been a 

great deal of discussion in the literature about an “optimum” configuration 

for active microwave remote sensing with satellites. In this section it has 

been discussed how the larger the incidence angle, the larger the sensitivity 

to soil moisture content, but also the higher the influence of both surface 

roughness and vegetation. Therefore there must be a compromise. Also, as 

frequency is increased the active microwave remote sensor becomes more 

sensitive to vegetation and the sensitivity to soil moisture content decreases. 

Moreover, the σo
vv. Backscattering coefficient is generally more sensitive to 

soil moisture content than the σo
hh. coefficient. Given that low incidence 

 

Figure 2.2. Dominant scattering mechanism from a vegetation 
layer Engman et al., 1995. 
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angles (i.e., reduced effect of vegetation and surface roughness) are very 

unlikely on a spacecraft system, as the resolution gets coarser with 

decreasing incidence angle according to 1/sinϑ  (Autret et al., 1989), it has 

been suggested that an active microwave remote sensing system 

characterised by an incidence angle of approximately 20°, vv polarisation 

and frequency of 5.3GHz (C-Band) would be the optimal configuration 

(Ulaby et al., 1978; Dobson and Ulaby, 1986; Dobson et al., 1992; Altese et 

al., 1996).  

It should be noted that the radar configuration adopted by the upcoming 

NASA’s Soil Moisture Active Passive (SMAP) mission will instead consist 

of an L-band radar at ~40° looking angle. This choice was driven by 

economical consideration (the need to utilise a shared antenna for the radar 

and the L-band radiometer) and scientific requirements dictating the need 

for a large incidence angle in order to ensure a three-day revisit time. 

2.2.3.2 Passive Microwave Remote Sensing 

Passive microwave remote sensors are radiometers that measure the 

thermal emission from the ground at microwave frequencies. As already 

discussed, the microwave emissivity (e) of a surface can be related to its 

microwave reflectivity ΓP through Kirchoff’s reciprocity theorem. The 

microwave reflectivity can in turn be related to the soil relative dielectric 

constant.  

The dielectric constant can be computed as a function of soil moisture 

and other soil parameters such as soil moisture, soil salinity, bulk density 

and soil texture. Two main models have been developed  to related the 

dielectric constant to soil moisture for the low frequency range (1–20GHz) 

by Wang and Schmugge (1980) and Dobson et al. (1985). These models 

have been found to be accurate except for the case of frozen soils, for which 

a specific model was developed by Hallikainen (1984), and for dry sandy 

soils, for which a simplified approach was proposed by Mätzler (1998). 

Therefore the emissivity of a smooth bare soil surface at a given 

polarisation and angle can be defined once its volumetric soil moisture 
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content and particle size distribution is known. The intensity of the radiation 

at microwave frequencies measured by a radiometer (usually called 

brightness temperature or radiobrightness, TB, and measured in kelvin) 

viewing a smooth bare soil surface is given by: 

SGPBP TeT *= , (2.3) 

where P is the radiation polarisation, eGP the polarised smooth surface 

emissivity and TS is the soil temperature. (2.3) derives from Plank’s 

blackbody radiation law through the Rayleigh-Jeans approximation for 

microwave frequencies (Schmugge, 1985; Njoku et al., 1996a). 

The variation in soil emissivity exhibits a range from about 0.95 for dry 

soil (5%v/v) to 0.6 or less for wet soil (40%v/v) (Schmugge, 1985; Jackson 

and Le Vine, 1996a; Njoku et al., 1996a). For soil at a temperature of 300K, 

this variation in emissivity corresponds to a brightness temperature variation 

of 90K, which is much larger than the noise sensitivity threshold of a 

microwave radiometer, being typically less than 1K (Njoku et al., 1996a). 

The simple expression in (2.3) between sensor measured radiation and 

soil moisture is complicated in an operational scenario by roughness of the 

soil surface, non-uniform soil moisture and temperature vertical profiles and 

presence of vegetation and/or litter layer above the soil (Choudhury et al., 

1979; Jackson and Schmugge, 1991; Njoku et al., 1996a; Njoku et al., 

1996b; Saleh et al., 2006a).  

2.2.3.2.1 Impact of Surface Roughness  

Field measurements made by Newton and Rouse (1980) and Wang et al. 

(1983) have indicated that rougher soil surface increases soil emissivity and 

decreases the sensitivity to soil moisture content (see Figure 2.3). This 

increase in emissivity can be attributed to the increase in soil surface area 

that interfaces with the air (Schmugge, 1985). Wang et al. (1983) noted that 

the effects of surface roughness decreases with the frequency. 
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In order to account for this effect, (2.1) and (2.2) need to be modified to 

take into account the scattering of the radiation at the soil-air interface. 

Thereflectivity (ΓP) of a rough surface is the sum of two components: (i) the 

non-coherent component, computed by integrating over the upper 

hemisphere the bistatic scattering coefficient which characterise the 

scattering of radiation from any direction to any other direction, and (ii) the 

coherent components, which depends on the smooth reflectivity (see (2.1) 

and (2.2)) and the standard deviation of the surface heights (Shi et al., 

2002). Shi et al. (2002) showed that roughness effects differ strongly at 

different incidence angles and polarisations. At large incidence angles 

(ϑ ~50°), the emission was found to increase at H polarisation as the 

geometric surface roughness increases. This confirmed earlier experimental 

observations (Choudhury et al., 1979; Wang, 1983; Wang et al., 1983). 

Conversely, at V polarisation, the emission was found to decrease. In the 

perspective of satellite application, it is difficult to compute the emissivity 

using this rigorous approach, as this requires complex theoretical 

approaches (such as the Advanced Integral Equation Model, AIEM) to 

 

Figure 2.3. Variation in brightness temperature as a function of moisture 
content; for soils of different roughness at 1.4GHz, 5GHz, and 10.7GHz. 
(from Wang et al., 1983). 
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derive expressions for the scattering coefficients over large and 

heterogeneous areas such are satellite pixel. 

A simpler, semi-empirical expression for the rough surface reflectivity 

(ΓP) was proposed by Wang and Choudhury (1981). This is based on two 

best fit parameters: a height parameter, HR (which is related to the standard 

deviation of surface heights), and a polarisation mixing parameter, QR: 

[ ] )cos)(exp()()()())(1()( 2** ϑϑϑϑϑϑϑ RQRPRP HQQ −Γ+Γ−=Γ , (2.4) 

where the subscripts Q and P indicate V or H polarisations. 

Wang et al. (1983) considered in a more detailed study that the ϑ2cos  

dependence was much too strong. Also, in the approach given by (2.4), 

considering that HR increases with surface roughness effects leads to 

consider that emissivity increases with roughness at both H and V 

polarisations, which is in contradiction with theoretical analysis (Mo and 

Schmugge, 1987 ; Shi et al., 2002). The HR parameter should be thus 

considered as dependent on angle and polarisation. Therefore a generalised 

semi-empirical formulation of roughness effects can be written as 

(Wigneron et al., 2007): 

[ ] )cos)(exp()()()())(1()( ** ϑϑϑϑϑϑϑ RPN

RPQRPRP HQQ −Γ+Γ−=Γ  (2.5) 

In this generalised formulation, the dependence of QR and HR on ϑ  and 

polarisation is accounted for and the NRP exponent is inserted in the 

exponential term. 

2.2.3.2.2 Impact of Vertical Soil Moisture and Temperature 

Profiles 

The simple expression in (2.3) assumes constant soil moisture and 

temperature throughout the soil profile contributing to the microwave 

emission. At low frequencies, this profile may consist of a layer of several 

centimeters (Njoku et al., 1996a). The temperature and moisture contents of 

soils exhibit natural variability as a function of depth. Therefore it is not 

strictly correct to represent soil brightness temperature and emissivity by 

such approximations. To take this into account, the effective soil 
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temperature (TEFF) contributing to the soil microwave emission can be 

computed from the radiative transfer theory as (Choudhury et al., 1982): 

dzdzzzzTT

z

SEFF ∫ ∫
∞









−=

0 0

')'(exp)()( αα , (2.6) 

where TS(z) is the soil temperature at depth z, and the attenuation coefficient  

α(z) is related to the soil dielectric constant as: 

2/1))('(2/)(")/4()( zzz GG εελπα = , (2.7) 

where λ is the wavelength of observation.  

Using this physical approach, TEFF can be computed using measured 

profiles of both soil moisture (which is used to compute the soil dielectric 

constant in (2.7)) and soil temperature. Due to the difficulties in obtaining 

accurate soil moisture and temperature profiles over large areas, a simple 

linear parameterisation was been developed using controlled experiments at 

L-band (Choudhury et al., 1982). This parameterisation makes use of 

temperature measurements at two depths and an empirical attenuation 

coefficient which is a function of the surface soil moisture content: 

)( DEPTHSURFtDEPTHEFF TTCTT −+= , (2.8) 

where TDEPTH  is the deep soil temperature (approximately at 50 or 100cm) 

and TSURF is the surface temperature (approximately corresponding to a 

depth interval of 0–5cm). Choudhury et al. (1982) suggested that the surface 

temperature may be estimated from thermal infra-red observations, or 

meteorological data of near-surface air temperature, while the deep soil 

temperature can be modelled based on geographic location and season. 

Choudhury et al. (1982) calibrated constant values of the Ct parameter for 

several frequency bands, with Ct being equal to 0.246 at L-band.  

2.2.3.2.3 Impact of Vegetation  

Vegetation emits microwave radiation, whilst it also absorbs and scatters 

the radiation coming from the soil. It therefore reduces the sensitivity of the 

observed brightness temperatures to soil moisture changes (Van de Griend 
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et al., 1985; Jackson et al., 1996a). This attenuation increases as frequency 

increases (Jackson et al., 1996b; Wigneron et al., 1998). For a sufficiently 

thick layer of vegetation, only the radiation from the vegetation itself is 

observed (Schmugge, 1985). 

In early theoretical studies, Basharinov and Shutko (1975) and 

Kirdiashev et al. (1979) modeled the soil-canopy system as a two-layer 

incoherent non-scattering medium with a negligible albedo. In this model 

the vegetation is treated simply as an absorbing layer at a temperature TV 

Overlaying a soil layer of temperature TS. The brightness temperature above 

the canopy is given by: 

)exp()1()2exp()1( ττ −−+−−+=
V

S
VB

T

T
eeTT , (2.9) 

where τ is a one-way canopy absorption factor or optical depth which is 

dependent on the vegetation dielectric properties, plant shape and structure, 

frequency, polarisation and look angle A more sophisticated approach was 

later developed by Mo et al. (1982), who proposed the usually so called ‘τ-

ω’ model, which makes use of two parameters to characterise the absorption 

and scattering of the soil signal through the vegetation canopy, the optical 

depth τ and the single scattering albedo ω. In this model the polarised 

brightness temperature observed above the canopy is written as: 

 +Γ+−−= VPPPPBP TT ))()(1))((1))((1()( ϑγϑϑγϑωϑ  

SPP T)())(1( ϑγϑΓ−+ , (2.10) 

where the vegetation attenuation factor γP is written as a function of the 

optical depth τ as: 

)cos/)(exp()( ϑϑτϑγ PP −= . (2.11) 

The second term on the right hand side of (2.10) computes the 

attenuation of the microwave signal radiating up from the soil through the 

vegetation layer, while the first term accounts for (i) the upward vegetation 

radiation and (ii) the downward vegetation radiation reflected by the soil 

and attenuated by the vegetation in this upward path. At microwave 
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frequencies the single scattering albedo term is almost zero, varying 

between 0.05 and 0.10 (Jackson et al., 1991; Wigneron et al., 2004; 

Wigneron et al., 2007). 

This model is a zero-order solution of the radiative transfer equations as 

it assumes that the vegetation scattering phase matrix term can be neglected 

(Ulaby et al., 1986; Mätzler et al., 2006). The τ−ω model has been found to 

be an accurate approach to model the L-band emission from a vegetation 

canopy in numerous studies (Mo et al., 1982; Jackson et al., 1991; 

Wigneron et al., 1995; Van de Griend and Wigneron, 2004; Wigneron et al., 

2004) and it is also a tractable tool for the process of inversion (Wigneron et 

al., 1995; Wigneron et al., 2000; Wigneron et al., 2003). 

Various theoretical and empirical relationships have been proposed for 

the optical depth required by the τ−ω model. Basharinov et al. (1975) 

proposed that ϑατ secl= , where l is the thickness of the vegetation layer 

with an absorptivity α. However, this simple parameterisation does not 

explain the observed polarisation and angular dependence of the vegetation 

effect on the microwave signal (Van de Griend and Owe, 1994; Wigneron et 

al., 1995; Wigneron et al., 2004), which may be significant for crops with 

predominant vertical plant structure. Therefore, Kirdiashev et al. (1979) and 

similarly Njoku et al. (1996a) proposed that the optical depth be computed 

as: 

ϑ

εθ
ϑτ
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= , (2.12) 

where A is a structure parameter related to the geometry of the vegetation, f 

is the observation frequency (Hz), θveg is the VWC (kg/m2) and "
vegε  is the 

imaginary part of the dielectric constant of the vegetation. The parameter A 

can be obtained by modeling the vegetation as cylinders or discs with 

different orientations, but it is more commonly estimated empirically for 

specific vegetation types (Njoku et al., 1996a). 

An empirical relationship between optical depth and VWC has been 

given by (Jackson et al., 1982; Jackson et al., 1991), by lumping all 
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parameters in (2.12) except θveg into a regression parameter b which is 

unique to the type of vegetation, the radiation frequency, polarisation and 

incidence angle: 

vegP bθϑτ =)( . (2.13) 

Jackson (1993) presented a plot of b for different frequencies and 

vegetation types as presented in Figure 2.4. An interesting observation of 

Figure 2.4 is that at low frequencies, b is found to be only weakly dependent 

on vegetation type. Based on these results, it would appear that at L-band 

(wavelength 15 to 30cm) a single value of b equal to 0.15 is representative 

of most agricultural crops (Jackson, 1993). Several studies have 

concentrated on the determination of suitable values of parameter b for a 

variety of vegetation types. At L-band a value of b=0.12±0.03 was found to 

satisfactorily represent the dependence of vegetation opacity (referenced to 

nadir, i.e. ϑ = 0) on its water content for a range of grass and agricultural 

crops with θveg from 0.5 to 6kg/m2 (Mo et al., 1982; Jackson et al., 1991; 

Van de Griend et al., 2004). Values of b reported in these studies are 

generally average values based on brightness temperatures measurements 

made at various incidence angles.  

As the SMOS L2 soil moisture retrieval algorithm is based on bi-

polarised, multi-angular measurements, it is important to account for the 

dependence of the optical depth on incidence angle and polarisation. More 

recent studies have indicated that although the main determinant of the b 

values appears to be vegetation type, the dependence of b on polarisation 

may also be significant over several crops and that while the dependence of 

b on incidence angle was observed to be generally low at H polarisation, it 

may be significant at V polarisation (Wigneron et al., 1995; Van de Griend 

et al., 2004; Wigneron et al., 2004; Wigneron et al., 2007). This will be 

discussed in more detailed in Chapter 3. 

Several studies have also shown that the effect of litter on the microwave 

signal is significant (Schmugge et al., 1988; Jackson et al., 1991; Wigneron 

et al., 2004; Saleh et al., 2006a). Litter can be present below most vegetation 
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canopies in fields which are not (or rarely) ploughed, like prairies or below 

non-agricultural canopies, natural covers and forests. Currently no method 

has been proposed to take into account the effect of litter, and this is 

generally considered implicitly by increasing the value of parameter b 

(Wigneron et al., 2007). 

2.2.4 Applicability of Remote Sensing to Global Soil Moisture 

Monitoring  

There is now a wide consensus in the scientific community that 

microwave remote sensing is the most promising technology for global soil 

moisture monitoring (Engman et al., 1995; Jackson et al., 1996b; Wigneron 

et al., 2003; Prigent et al., 2005; Wagner et al., 2006; Wagner et al., 2007). 

This is because this domain of the electromagnetic spectrum presents some 

major advantages over the infra-red and visible domains which make it 

appealing for global soil moisture monitoring purposes. The advantages of 

passive microwave remote sensing over the other methods are discussed 

hereby. 

 
Figure 2.4. Observed values of the effects of vegetation on model parameter b 

as a function of wavelength (from Jackson, 1993). 
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Microwave remote sensing offers a relatively direct means of assessing 

soil moisture since it exploits, like many in situ observation techniques (e.g., 

Time Domain Reflectometry probes or capacitance probes), the strong 

relationship between the moisture content and dielectric constant of the soil. 

This relationship is fairly well understood and depends only on soil texture 

at a given frequency (Wang et al., 1980; Wang et al., 1983; Ulaby et al., 

1986). Conversely, infra-red and visible remote sensing technologies are 

based on a less direct relationship between the observed variable, soil 

surface temperature and albedo, respectively, and the retrieved variable, soil 

moisture. In the case of infra-red techniques, for example,  the relationship 

between the diurnal cycle of surface temperature is not only associated with 

the thermal inertia determined by soil moisture but also strongly affected by 

micrometeorological conditions and to surface characteristics (vegetation, 

thermal conductivity K, and heat capacity C). For example, in areas where 

the surface temperature Ts is controlled by evaporation, not by thermal 

inertia, the Ts diurnal amplitude extracted from the infra-red observations is 

not well correlated with the soil moisture (Prigent et al., 2005). 

Another important advantage of microwave techniques is that at lower 

frequencies the depth of soil layer which contributes to the emission, and 

therefore the depth of soil layer for which information can be retrieved by 

remote sensors, is greater. This is due to the fact that attenuation of an 

electromagnetic radiation through a medium is frequency dependent (Kong, 

1990). For the microwave frequencies considered optimal for soil moisture 

retrieval (1-3GHz), the contributing depth is theoretically between 10cm and 

1m, although field experiments suggested that the actual contributing depth 

is closer to about 1/4 the wavelength (based on a wavelength range of 2-

21cm) (Jackson et al., 1996b). This is nevertheless a greater contributing 

depth than that of infra-red and visible radiation, which is of the order of 

1mm (Idso et al., 1975). Several studies has shown that the soil moisture 

information provided by remote sensing technology for the near-surface 

layer can be used in combination with land surface modeling to retrieve the 

soil moisture content at much greater depth (e.g. Houser  et al., 1998; 
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Walker et al., 2001), further extending the benefits of improvements in 

remote sensing technology 

As discussed in previous sections, the effect of vegetation on 

electromagnetic radiation is amongst the most serious problem for all 

remote sensing techniques presented. Nevertheless, visible and infra-red 

measurements are hampered by perturbation of the signal by the vegetation 

in a more serious way than microwave measurements (Sadeghi et al., 1984). 

At microwave frequencies instead vegetation appears semi-transparent. 

Jackson et al. (1991) showed that theoretically the sensitivity of L-band 

(1.4GHz) microwave observations to soil moisture at a VWC of 3kg/m2 

(typical of a mature crop) is only halved with respect to that over a bare soil. 

It appears that 7kg/m2 in plant water content is the limiting situation, 

reducing the sensitivity to about 25% of the bare soil case (Schmugge et al., 

2002). However, as the frequency increases the sensitivity of microwave 

observations to soil moisture is more strongly affected the vegetation layer. 

For example, at C-band (4-8GHZ) passive microwave observations appear 

to be insensitive to changes in soil moisture for a canopy with a VWC of 1-

2kg/m2 (Guha and Lakshmi, 2002; Jackson et al., 2005). 

Microwave measurements have the significant advantage of being 

independent of solar illumination, and therefore can be made at any time of 

the day or night (Jackson et al., 1996b; Schmugge et al., 2002). It has been 

shown that night time observations may prove more accurate for soil 

moisture retrieval from spaceborne platforms due to the more homogeneous 

vertical and horizontal temperature profiles (Owe et al., 2001; Draper et al., 

2009). Moreover, air, vegetation and soil temperature are almost in 

equilibrium at sunrise (Kerr et al., 2001), minimising the perturbation of 

gradient between soil and vegetation canopy on the microwave signal. 

The attenuation of the radiation by atmospheric gases and clouds in the 

atmosphere is negligible for microwave frequencies below 3GHz 

(Schmugge, 1985). In the case of visible and thermal radiation, clouds as 

well as atmospheric temperature and water vapour add serious perturbations 
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to the signal, therefore requiring pre-processing of the observations  to mask 

cloud and correct for atmospheric attenuation (Wan and Li, 1997; Wan and 

Dozier, 1996; Wan et al., 2004; Verstraeten et al., 2006). 

Therefore, implementation of soil moisture retrieval from satellite using 

visible and infra-red measurements has been so far limited to determination 

of draught onset through monitoring of plant water stress, which is only 

indirectly related to soil moisture (Wan et al., 2004), or combination of 

visible/infra-red techniques with microwave observations (Chauhan et al., 

2003; Verstraeten et al., 2006). A soil moisture product has not been slated 

for future optical/IR missions so far (Chauhan et al., 2003). 

2.2.5 Past and Current Microwave Space-Sensor 

The afore mentioned advantages of microwave remote sensing have 

boosted research into the use of low frequency passive and active 

microwave technology on spaceborne platforms. From an operational point 

of view, the current generation of spaceborne microwave radiometers is not 

optimal for soil moisture sensing in terms of their spatial resolution and 

frequency. Under low vegetation conditions (less than 1-2kg/m2), however, 

the 6.6 and 10.7GHz channels of the Scanning Multichannel Microwave 

Radiometer (SMMR, 1978-1987) and the 6.9 and 10.7GHz  channels of the 

Advanced Microwave Scanning Radiometer (AMSR-E, 2002) have 

adequate sensitivity to surface soil moisture and have proved to be useful 

for monitoring of trends in surface soil moisture conditions despite their 

non-optimal frequencies (Owe et al., 2001; Owe et al., 2007; Rudiger et al., 

2007; Wagner et al., 2007; Draper et al., 2009). Amongst the active 

microwave systems with configurations suitable for soil moisture remote 

sensing, several satellites that have been launched in the 1990s carrying a 

Synthetic Aperture Radar (SAR). Most spaceborne SAR systems have 

operated at C-band, such as the European Remote Sensing Satellites ERS-

1/2 (1991) and Environmental Satellite ENVISAT (2002), and the Canadian 

RAdar SATellite RADARSAT (1995), but also L-band SAR systems have 

also been used, e.g. on the Japanese satellite Japanese Earth Resources 

Satellite JERS-1 (1992-1998). Nevertheless, given the difficulty of 
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modeling the effect of vegetation and surface roughness on active 

microwave observations, it has not yet been demonstrated that currently 

available single-frequency C- and L-band SAR systems can be used for 

operational soil moisture applications at the field scale. This is mainly due 

to the lack of retrieval algorithms, that are both sophisticated enough to 

capture the complex scattering mechanisms involved, and of tractable tools 

for global application (Wagner et al., 2006). 

The most important difference between active and passive microwave 

remote sensing systems is the ground resolution that can be achieved. 

Active sensors have the capability to provide fine spatial resolution (on the 

order of tens of meters from space platforms (Wagner et al., 2006)). On the 

other hand, the passive systems require larger antennas to be able to detect 

the relatively weak natural microwave emission of the earth surface (Kerr et 

al., 2001). As large antennas in orbit are an engineering challenge, 

resolutions achieved from space so far with passive microwave radiometers 

have been not better than ~50km at 6.9GHz frequency for the most recent 

passive microwave system (AMSR-E)(Njoku et al., 2003). Current 

meteorological and climate models use computational cells on the order of 

10-100km, which may be well within the capacity of passive systems. 

However, for more detailed hydrologic process studies and partial area 

hydrology modelling is required, the passive data would appear to be of 

little use (Engman et al., 1995). It is in this context that the active systems 

appear promising. On the other hand active microwave systems are affected 

more seriously by surface roughness, topography and vegetation than 

passive systems. For active microwave the soil moisture retrieval capability 

appears to be limited to vegetation cover with less than about 0.5–1kg/m2 

water content (Dobson et al., 1986; Dubois et al., 1995; Oh et al., 1992). 

2.2.6 SMOS and SMAP 

Within the microwave region of the electromagnetic spectrum, the low 

frequency microwave range of 1-3GHz (30-10cm wavelength) is considered 

most suitable for passive microwave soil moisture sensing, owing to the 

reduced atmospheric and vegetation attenuation, deeper penetration depth, 
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and higher soil moisture sensitivity (Wang et al., 1981; Schmugge, 1985; 

Jackson et al., 1996b). Most studies to date have focused on observations at 

1.4GHz (L-band), as this is in a protected radio astronomy band where there 

is little Radio Frequency Interference (RFI).  Numerous field experiments 

using ground-based and airborne L-band observations indicated a soil 

moisture retrieval capability of approximately 4%v/v accuracy or better for 

vegetation cover with water content up to about 5kg/m2 for passive 

microwave systems (Wang et al., 1990a; Schmugge et al., 1992; Jackson et 

al., 1995a; O’Neill et al., 1996; Jackson et al., 1999; Mohanty et al., 2000a; 

Mohanty et al., 2000b; Guha et al., 2003; Uitdewilligen et al., 2003; 

Panciera et al., 2008b). 

There is currently no passive microwave sensor in space with this 

optimal frequency. Nevertheless, two soil moisture specific satellite 

missions are planned for the next decade, the SMOS mission and NASA’s 

Soil Moisture Active Passive (SMAP) mission, due to be launched 

respectively in 2009 and 2013 respectively, which will enable evaluation of 

the current satellite technology for soil moisture sensing at L-band 

frequency. In the case of SMOS, an innovative passive interferometric 

measurement principle is used to create a large “virtual” antenna by using a 

Y-shaped structure, a technique widely used in radio astronomy (Kerr et al., 

2000). SMOS is the first mission to carry such a sensor in space which will 

provide new and significant capabilities, especially in terms of multi-

angular viewing configuration. SMOS will in fact provide bi-polarised 

observations at several incidence angles (from nadir to ~55º) over almost the 

same location and will achieve a spatial resolution of better than 50km (Kerr 

et al., 2001).  

SMAP will instead combine an L-band radiometer and an L-band radar 

sharing the same 6m wide conically rotating antenna/feed, allowing 

simultaneous active and passive microwave observation of the same portion 

of the earth surface at respectively 3 and 40km resolution (NASA, 2007). 

The innovative component of SMAP is the potential to provide fine-

resolution (10km) soil moisture observations through combination of radar 
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and radiometer measurements (NASA, 2007). Other objective of the 

mission include providing global measurements of soil moisture at 40km 

resolution through the radiometer, and providing global freeze/thaw state 

observations at 3km resolution through the radar. 

For both missions, the radiometer footprint will cover an area of 

approximately 40km. However, as discussed in section 2.1, land surface 

exhibits considerable spatial heterogeneity at this scale. Thus, the observed 

brightness temperatures provided by SMOS and SMAP will be spatial 

averages of the various radiation components of the heterogeneous scene in 

the Field Of View (FOV) of the radiometer. Any retrieval based solely on 

these observations will result in 'average' retrieved quantities. As the effects 

on emitted microwave radiation of moisture, vegetation, and temperature 

combine in a nonlinear manner (see section 2.2.3.2), the retrieved 'average' 

quantities, such as soil moisture, will not in most cases represent true spatial 

averages of the actual quantities (Njoku et al., 1996a). SMAP proposes to 

partially overcome this problem by using the radar observations to obtain 

downscaled soil moisture information at 10km resolution. However, this is a 

relatively large scale at which retrieved soil moisture might still be affected 

by the problem of horizontal heterogeneities. There is little published 

literature on this topic, particularly concerning the coarse scales typical of 

satellite footprints and using real passive microwave observations, and it 

remains a much needed area for further study. In particular, it is of interest 

to estimate the errors introduced by the non-linearity inherent in the 

spatially averaged soil moisture obtained by current state-of-the-art retrieval 

methods based on (2.10). 

2.3 Effect of Land Surface Heterogeneity on Passive 

Microwave Remote Sensing 

The effect of surface heterogeneity on soil moisture retrieval can be 

illustrated with a very simple synthetic example. Let us consider the 

relationship between soil moisture and brightness temperature as predicted 

by a state-of-the-art radiative transfer model as shown in Figure 2.5, for a 
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field which is divided in two fractions, one at 0.1%v/v and the other at 

0.5%v/v soil moisture content, with every other land surface parameter 

constant between the two fractions. Given that the relationship is clearly 

non-linear, if soil moisture is retrieved from the average brightness 

temperature resulting from the direct emission of the two different fractions 

of the pixel (dashed gray lines in Figure 2.5), the retrieved soil moisture of 

the pixel (solid black line) will (in theory) present an error as large as 

4%v/v, the total error budget for a satellite soil moisture mission, resulting 

solely from sub-pixel heterogeneity of soil moisture. It is readily observable 

that the error between retrieved and field mean soil moisture will vary 

depending on vegetation conditions and soil texture affecting the 

relationship between soil moisture and brightness temperature.  

From purely theoretical considerations it can be deducted that surface 

heterogeneity should produce an error in soil moisture retrieval of large 

scenes (like that of a satellite footprint) only when the heterogeneous factor 

is one of those that affect the microwave emission (as modeled in the 

emission model) in a non-linear way. Heterogeneity in soil temperature and 

single scattering albedo, for example, should produce no error (although 

uncertainty on their exact average value would still produce absolute errors 

in soil moisture retrieval), as brightness temperatures scale linearly with 

these parameters. Other parameters, such as VWC, soil texture and 

roughness, instead, affect the surface microwave emission in a non-linear 

way, and therefore the brightness temperature curve of a mixed pixel will 

differ from that of the same pixel with arithmetic averages for VWC and 

soil texture, producing the above discussed error. The synthetic example 

shown here is a simplification of what would happen in the real world in 

three ways: (i) It assumes that the model is perfect, meaning that it simulates 

the exact brightness temperature-soil moisture relationship for given surface 

conditions; (ii) it considers only the heterogeneity of soil moisture within 

the field, while other factors like VWC and soil texture are considered 

uniform; (iii) it assumes that brightness temperature fields scale linearly 

with resolution, so that a coarse-resolution brightness temperature 
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observation can be derived from finer-resolution observations by simple 

linear averaging. 

The error induced by land surface heterogeneity in a real application (like 

that of retrieval from a coarse satellite footprint) will also be affected by 

error in the radiative transfer model representation of the physics of 

microwave emission, and by the combined effect of heterogeneity in soil 

moisture and other land surface characteristics that contribute to the 

emission. Moreover, there will likely be a physical connection between the 

variability across the pixel of each land surface factor and that of soil 

moisture (e.g., sandy soils tend to exhibit drier conditions). This will result 

in an increase or decrease of the soil moisture retrieval error, depending on 

 
Figure 2.5. Illustrative example of the effect of radiative transfer 
non-linearities on soil moisture retrieval, for two different soil 
type, sandy loam and clay, both at 25ºCelsius and three different 
VWC (0.3,1 and 2kg/m2). The model used to produce these curves 
is the L-band Microwave Emission of the Biosphere Model 
(SMOS mission). 
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the relative effect of soil moisture and the land surface factor on the 

brightness temperature. 

The studies which have dealt with the problem of land surface 

heterogeneity and its effect on soil moisture retrieval from coarse 

observations have approached the problem in three distinct ways: (i) 

analytical approaches which have used synthetic soil moisture and 

associated brightness temperature fields, (ii) simulation experiments which 

have coupled land surface models with more or less realistic land surface 

conditions to generate “real world” soil moisture distribution and 

microwave emission models to produce brightness temperature fields, and 

(iii) experimental studies which made use of real (airborne or spaceborne) 

brightness temperature data acquired over test sites. These three approaches 

and their main findings are discussed in the following sections. 

2.3.1 Analytical studies 

Initial studies addressed the effect of heterogeneity on soil moisture in a 

synthetic framework and analysed the effect of each land surface factor on 

the soil moisture retrieval separately. Njoku et al. (1996b) derived analytical 

expressions for the effects of the individual heterogeneity of soil moisture, 

soil temperature, and vegetation on the coarse-scale microwave sensor-

averaged (or “effective”) value of each individual parameter (i.e., the pixel 

average value that results in the same microwave radiation as that produced 

by the spatially heterogeneous field), which may be significantly different 

from the area-averaged (or “composite”) parameters that are often assumed 

to be estimated by the remote sensors (like that obtained, for example, by 

simple averaging of the measured VWC over an area). This study showed 

that only in the case of emissivity and soil temperature are the coarse-scale 

effective values simple averages of the component parameters weighted by 

their fractional coverage areas as is often assumed (note that these two 

parameters affect brightness temperature in a linear way, as discussed in the 

previous section). In the case of vegetated surfaces, the retrieved effective 

optical depth was smaller than the composite one. This underestimation is 

greater for large VWC contrasts within the pixel. Soil moisture 
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heterogeneity by itself had a negligible effect on the difference between 

field averaged and sensor-averaged soil moisture so long as the area was 

vegetation free (bare). The error was somewhat larger at higher frequencies 

(C-band) than at lower frequencies (L-band). This study concluded that in 

many situations, the differences between effective and composite surface 

parameters may be small and can be safely neglected. However, in some 

cases, particularly in semi-arid environments or agricultural areas where 

large parameter contrasts exist between bare and vegetated surfaces, 

unexpectedly large differences may occur that need to be addressed. 

Through simulated spatially heterogeneous L-band radiometer footprints 

over a 15-day drydown, Galantowicz et al. (2000) addressed specifically the 

problem of soil type heterogeneity, previously ignored. The study concluded 

that the magnitude of the soil moisture retrieval error induced by soil type 

heterogeneity alone for bare soil regions was 0.7%v/v. This error is smaller 

than the error due to instrument noise for a typical radiometer (brightness 

temperature uncertainty 2K, soil moisture uncertainty of about 2%v/v) 

(Jackson et al., 1995a; Njoku and Li, 1999).  

The first study to consider the combined effect of heterogeneity of 

different land surface factors was that of Bindlish et al. (2002), which 

synthetically analysed the effect of perturbations around the pixel mean 

value in soil moisture, soil temperature, NDVI (as a proxy for VWC) and 

soil texture on the coarse-scale soil moisture retrieval. In this study the mean 

VWC was made to vary from 0 to 4kg/m2, with a fixed standard deviation of 

0.5kg/m2 for each level. Soil temperature varied between 5ºC and 35ºC, 

with a fixed standard variation of 5ºC. A variability of 15% in percent sand 

and clay was used for each of twelve different soil texture types. Beside 

confirming that with the set level of variance the individual effect of soil 

moisture, soil texture and soil temperature perturbations resulted in soil 

moisture errors that were within the instrument noise of the radiometer 

(approximately 2K for the ESTAR radiometer considered in this study), this 

study found that the effect of perturbations in VWC could induce errors in 

retrieved soil moisture as high as 15% around the mean value. Moreover, 
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when considering the combined effect of the sub-pixel heterogeneity of the 

above factors, the absolute error between mean soil moisture and sensor 

retrieved soil moisture consistently exceeded the uncertainty in soil moisture 

estimates associated with the instrument error. Bindlish et al. (2002) also 

showed that the τ-ω based soil moisture retrieval algorithm used, (the 

common approach of Jackson et al., 1995a) scaled linearly with respect to 

the distribution of the vegetation biomass within the pixel, i.e., given a level 

of NDVI variance within the pixel, it was the average NDVI value and not 

its actual spatial distribution within the pixel that was important in 

determining microwave response of the footprint. This had been previously 

observed by Liou et al. (1998) who analysed 1.4GHz brightness 

temperatures simulated from a 50% mix of simulated bare and grassland 

(3.7kg/m2), pixels with different distributions of the same mean vegetation 

amount throughout the pixel (tiled or randomly distributed). An important 

finding of Bindlish et al. (2002) was that surface heterogeneity produced the 

highest soil moisture retrieval error (12% around the mean soil moisture 

value of the synthetic footprint) when the VWC was high (~4kg/m2) and/or 

when the land surface was cool and wet. As shown in Figure 2.5, under 

these circumstances the slope of the relationship between brightness 

temperature and soil moisture (and therefore the sensitivity of the brightness 

temperature to soil moisture) is reduced (see Figure 2.5), and so is the 

algorithm’s ability to capture small changes in soil moisture. 

The effect of land surface heterogeneity on soil moisture retrievals from 

multi-angle SMOS type observations has been explored with a synthetic 

scenario by only two studies so far (Van de Griend et al., 2003; Davenport 

et al., 2008). Davenport et al. (2008) approached this problem by generating 

single- and multi-angle synthetic scenes using the τ-ω modeling approach 

and analysed the effect of heterogeneity in three factors: soil surface 

roughness, soil moisture, and vegetation optical depth. Results indicated that 

heterogeneity in soil roughness had only a small effect on soil moisture 

retrieval from single-angle observations (0.5%v/v). It affected multi-angle 

data more seriously (2.1%v/v), but this error could be reduced by retrieving 
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a representative value of soil roughness from the data (retrieved values are 

lower than the average of the real values). Reasonable spread in soil 

moisture (10%v/v) yielded small or negligible errors (0.5%v/v for single-

angle observations, 1.7%v/v for multi-angle). The effect of vegetation 

optical depth heterogeneity (0-0.6) appeared to be significant (6.1%v/v error 

in retrieved soil moisture). It was observed that since the major effect of 

vegetation in the τ-ω model is to obstruct the target surface by exponential 

attenuation, a pixel containing areas with a range of vegetation optical 

depths will not have the same brightness temperature curve as a pixel with a 

single uniform optical depth with the same mean. Therefore a simplistic 

modification to the model was proposed, which represents vegetation as a 

weighted average of bare soil and vegetation, the relative fraction of which 

can be retrieved as an extra parameter by multi-angle data. This significantly 

reduced the error induced by vegetation heterogeneity (to 1%v/v), as not one 

uniform optical depth is used, but rather two, one set at zero (for the bare 

fraction) and one retrieved (for the vegetated fraction).  

The key findings of Davenport et al. (2008) are that (i) single-angle 

retrievals are less affected by heterogeneity of all factors than multi-angle 

retrieval. This is because in multi-angle configuration, the composite 

brightness temperature curve does not correspond to a single τ-ω scenario, 

therefore the model distorts other variables (including soil moisture) to fit 

the curve; (ii) the highest errors are observed for scenarios with high soil 

moisture contents and high optical depth values (with the same spread of 

heterogeneity around the mean values); and (iii) the effect of heterogeneity 

can be taken into account when using multi-angle observations allowing for 

an “effective” optical depth to be retrieved (including the fractions of bare 

and vegetated areas). This will be smaller than the effective mean optical 

depth and compensate for heterogeneity. It should noted however Note that 

in this approach, the retrieved fraction and optical depths do not correspond 

to real physical quantities, but are rather fictional quantities used to 

compensate for the heterogeneity. 
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Similar results were obtained by Van de Griend et al. (2003). They 

showed that under wet soil conditions where the soil signal is weaker, the 

retrieval errors can be beyond the value of 4%v/v when assuming a single 

vegetation optical depth even for a 50% pixel fraction cover of a moderate 

vegetation density of 3kg/m2 , typical of a mature crop  

In all the above studies the land surface heterogeneity in the mixed pixel 

was simulated in a somewhat arbitrary manner which was not necessarily 

realistic (i.e., did not reflect physical links between land surface 

characteristics and soil moisture existing in the real world). In a real 

application, the amount of heterogeneity will vary from pixel to pixel, and 

there will be a physical link between soil moisture variability and, for 

example, heterogeneity in soil texture and vegetation density. The studies 

presented in the next sections analysed the effect of heterogeneity using 

more realistic land surface conditions, generally derived from land surface 

models.  

2.3.2 Simulation Experiments 

In the absence of real L-band satellite observations, the impact of 

complex land surface heterogeneity on soil moisture retrieval over large 

scales typical of satellite pixels has been mainly analysed using brightness 

temperatures simulated with microwave emission models given a more or 

less physically realistic soil moisture background derived from a land 

surface model. This was the approach used by Crow et al. (2001) and 

Lakshmi et al. (1997) in the case of C-band observations (like AMSR-E), 

and by Burke et al. (2004), Davenport et al. (2008), Loew (2008) and Van 

de Griend et al. (2003) for L-band, SMOS type observations. 

Crow et al. (2001) performed a complete AMSR-E observation 

simulation experiment, including land surface heterogeneity over the entire 

575,000km2 Red-Arkansas River basin in the south-central United States. 

Using a two-polarisation, single-channel retrieval (C-band) to retrieve 

coarse-scale soil moisture and comparing it with the average of fine-

resolution soil moisture data produced by a land surface model, they found 
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that errors due the spatial heterogeneity were positively correlated with the 

density of vegetation cover and that it was of the order of 3.1%v/v over 

areas where VWC was below 1.5kg/m2 (at C-band, retrieval over denser 

canopy is highly affected by the reduced sensitivity of the microwave signal 

to soil moisture). These errors decreased at coarser spatial scales. Absolute 

error levels in soil moisture of 1.8%v/v and 1.1%v/v were found at 50 and 

100km respectively, with a dry bias (retrieved soil moisture drier than the 

true one). At 50km scales, therefore, the error due to spatial heterogeneity 

was found to be smaller than other errors, such as that due to distributed 

point ground sampling used for validation (3%v/v) or that associated with 

obtaining gridded products from sampling heterogeneous fields with non-

linear antenna gain functions. This is consistent with studies at L-band by 

Drusch et al. (1999b). Interestingly, Crow et al. (2001) observed that 

heterogeneity within large pixels results in the persistence of a relatively 

constant dry bias in simulated AMSR-E retrievals, suggesting that although 

spatial heterogeneity may produce inaccurate estimates of the field mean 

soil moisture at any given instant in time, it should not prevent validation 

and retrieval products from accurately representing temporal fluctuations in 

coarse-scale soil moisture  

Burke et al. (2004) investigated the impact of the presence of different 

land covers (with prescribed, land cover specific VWC), on the accuracy of 

retrieved soil moisture, vegetation optical depth, and soil effective 

temperature. The study used multi-angle 50km brightness temperatures, 

simulated using soil moisture fields generated over North America by a land 

surface model at 12.5km resolution. Errors in retrieved soil moisture and 

optical depth were found to increase exponentially with increasing degree of 

heterogeneity (represented by the standard deviation of the optical depth 

within the pixel), with errors in retrieved soil moisture as high as 6%v/v for 

the maximum optical depth standard deviation of 0.25. In general, the 

retrieved parameters were smaller than the area-averaged parameters, 

confirming the theoretical predictions of Njoku et al. (1996b). Moreover, the 
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study confirmed no apparent relationship between the error in retrieved 

effective temperature and degree of heterogeneity. 

Loew (2008) used multi-angle bi-polarised L-band brightness 

temperature simulated with the MEM model (a precursor of the L-MEB 

model, based on the τ−ω approach (Wigneron et al., 1995)) and using soil 

moisture fields at 1km resolution generated by a land surface model in the 

Upper Danube catchment in Germany. The 1km brightness temperature data 

was aggregated at different spatial scales and additional simulated noise (2K 

for the radiometric uncertainy and up to 4K for uncertainty in soil 

temperature) was added to provide the most realistic simulations. These 

simulated L-band data were then used to retrieve surface soil moisture 

information at different scales and to quantify the soil moisture retrieval 

error. The analysis considered the combined effect of soil texture, land 

cover, VWC and soil moisture heterogeneity. However, no discussion on the 

individual effect of each factor was presented. Overall, the soil moisture 

retrieval error was below 4%v/v. Only high uncertainties in soil temperature 

values (4K noise) produced errors in excess of 4%v/v. Nevertheless, in this 

study the soil moisture variability generated by the land surface model 

within 1km pixels ranged between 2 and 12%v/v. The overall soil moisture 

variability was therefore generally low. The soil moisture retrieval error 

showed a strong dependency on the investigated scale. Below 10km, the 

errors showed a strong increase as the model spatial resolution got coarser. 

For coarser resolutions the errors remained almost stable. 

The studies described thus far agree that errors due to land surface 

heterogeneity are expected to be generally less than 4%v/v, and smaller than 

other sources of error such as validation with in situ soil moisture data or 

nonlinear gridding of antenna gain. Nevertheless, they can be more serious 

in aggravating circumstances of wet and/or cold land surfaces with 

significant vegetation density, which increases the nonlinearity effect. A 

caveat in the type of analysis described so far is the implicit assumption that 

the retrieval algorithm used in forward mode to simulate the brightness 

temperature that will be produced by a mixed pixel is a reliable 



Chapter 2 – Literature Review and Proposed Approach Page 2-43 

 

mathematical proxy of the radiometer. Some studies (e.g., Loew, 2008) 

partially alleviated this assumption by adding noise to the simulated TB and 

ancillary data before performing coarse-scale retrieval from aggregated 

brightness temperatures. Nevertheless, the fact that the same model is used 

to simulate TB and retrieve soil moisture estimates poses an implicit 

limitation to the investigation of errors due to model physics inaccuracy. 

Moreover, in the synthetic studies presented, the same parameters are 

generally used for generation of the brightness temperature and model 

inversion. In reality, ignoring the true radiative transfer parameterisation 

will constitute a major source of error in microwave soil moisture retrieval. 

This can be resolved using real brightness temperature data for diverse and 

heterogeneous landscapes. 

2.3.3 Experimental Studies 

Analysis of the effect of land surface heterogeneity using real brightness 

temperatures observation was initiated in the 1990’s with the first large-

scale airborne campaigns conducted in the US by the National Aeronautics 

and Space Administration (NASA) and United States Department of 

Agriculture (USDA). Beside preliminary, small scale campaigns such as 

HAPEX, FIFE, and MONSOON’90 campaigns (Wang et al., 1990b; 

Schmugge et al., 1992), of interest for coarse-scale soil moisture studies are 

the Washita’92 (Jackson and Schmugge, 1995b), Southern Great Plains’97 

(Jackson et al., 1999) and Southern Great Plains’99 (Njoku et al., 2002) 

campaigns. These experiments provided L-band brightness temperature 

observations at resolutions ranging from 200m to 800m over areas as large 

as 10,000km2, with the primary objective to evaluate the performance of L-

band soil moisture retrieval algorithms at coarse spatial resolution (up to 

30km) and provide the link in extrapolating previous results at finer 

resolution to the resolution of future satellite footprints, as well as test the 

results obtained from synthetic studies and simulation experiments.  

The first step towards using airborne brightness temperature acquisitions 

to simulate satellite pixels was to verify that a simple linear aggregation is a 

realistic representation of the scaling of brightness temperature fields. This 
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was verified with fairly consistent results (Jackson et al., 1995a; Drusch et 

al., 1999a; Jackson et al., 1999; Jackson, 2001; Guha et al., 2002). All these 

studies showed that (i) L-band and C-band brightness temperatures provide 

the same mean values for an area regardless of the spatial resolution of the 

original data, and (ii) the theory and soil moisture retrieval algorithms 

developed at fine resolution (tower radiometer) were also applicable at these 

coarse resolutions, although the radiative transfer parameters required 

adjustment for coarse pixels with mixed land surface conditions.  

Uitdewilligen et al. (2003) used the SGP’97 fine-resolution brightness 

temperature observations (200m) to retrieve soil moisture estimates using 

the parameters of the soil moisture retrieval algorithm calibrated by Jackson 

et al. (1999) for the coarse-resolution (800m) observations. It was observed 

that using parameters estimated at 800m to estimate soil moisture at 200m 

would lead to underestimation of the ground-measured soil moisture. The 

parameters derived by Jackson et al. (1999) had to be redefined. In 

particular, the roughness parameter and vegetation parameter b had to be 

increased to compensate for this effect. As the vegetation optical depth is 

directly related to parameter b and VWC, this means the coarser the 

resolution (i.e., the higher the sub-pixel heterogeneity), the lower the 

effective optical depth or the effective roughness of a mixed pixel. 

Burke and Simmonds (2003) performed a mixed analytical-experimental 

study by applying a simplified emissivity-soil moisture relationship derived 

from a coupled soil–vegetation–atmosphere–transfer scheme and microwave 

emission model to analyse the effect of soil texture and vegetation optical 

depth heterogeneity. The analytical results were then verified with three 

SGP’97 800m brightness temperatures observations. In the case of bare soil 

pixels, sub-pixel heterogeneity in soil moisture and soil particle size 

distribution had minimal impact on the retrieved soil moisture. However, in 

the case of a vegetated pixel, it was shown that variability in VWC could 

produce soil moisture errors as high as 8%v/v under extreme conditions 

(high variability in optical depth). Nevertheless, when analysing real data 
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from SGP’97 it was found out that the soil moisture errors were of the order 

of 3%v/v. 

A key point made by Burke and Simmonds (2003) is that under extreme 

conditions (high variability in optical depth) the physical connection 

between vegetation cover (and hence optical depth), soil texture and soil 

moisture (wetter soils under denser canopies) worked to reduce the 

magnitude of the errors by reducing the variability of emissivity. This had 

not been considered in previous studies, where each factor’s variability was 

either treated individually, or the combined effect of the heterogeneity in 

land surface characteristics was considered at once, without attention to the 

physical connection between them. For example, soils with a greater 

percentage of sand usually have lower soil moisture and vice versa, but at 

the same water content a sandier soil will have a lower microwave 

brightness temperature than a more clayey soil (see Figure 2.5). Similarly 

for the optical depth, lower soil moisture (higher emissivity) is generally 

associated with lower vegetation density, which tends to decrease the 

emissivity, smoothing out the variability. Burke and Simmonds (2003) 

concluded that real world errors should be less than theoretical ones, where 

this physical connection is not accounted for. Moreover, they pointed out 

that even if non-linearity errors are theoretically high when the variability in 

optical depth is significant, the microwave brightness temperature is not 

very sensitive to changes in surface soil moisture under elevated optical 

depth, even for a uniform pixel. Therefore the inaccuracies in the retrieval 

algorithm may be higher than the error due to heterogeneity. 

All studies presented thus far regarding the effect of land surface 

heterogeneity on L-band soil moisture retrieval were based on the SGP’97 

or Washita’92 data sets, which were relatively benign with respect to 

vegetation effects (less than approximately 2.5kg/m2 VWC (Njoku et al., 

2002)). More recent field efforts by USDA included the SGP’99 experiment 

and the sequence of Soil Moisture Experiments (SMEX’02,’03’04 and ’05), 

which were undertaken in regions with more severe land cover conditions 

(vegetation water contents ranging from 0 to 5kg/m2). However, these 
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experiments had the primary objective of validating the soil moisture 

product from the AMSR-E radiometer, and therefore focused mainly on C-

band frequencies (Jackson and Cosh, 2003; Jackson et al., 2005; Bindlish et 

al., 2008; Jackson et al., 2008). Only a few studies have so far investigated 

soil moisture retrieval from L-band observations over dense canopies (i.e., 

forests with VWC >5kg/m2), Ryu et al. (2007) using the SMEX’03 data and 

Saleh et al. (2004) using data from the EuroSTARRS airborne campaign 

conducted at different sites in Spain and France. Both studies showed that 

the radiometric sensitivity at L-band is sufficient to monitor realistic 

changes in soil moisture under dense vegetation. Moreover, making use of 

the 62.5m L-band observations collected during the present study Grant 

(2009) showed that soil moisture could be retrieved with an accuracy of 

6%v/v over an Eucalypt forest. However, the footprint resolution was in all 

cases not superior to approximately 1km, and therefore these studies did not 

address the problem of land surface heterogeneity within satellite scale 

footprint 

The review of existing literature presented has shown that vegetation is 

the main land surface factor whose heterogeneity affects to coarse-scale soil 

moisture retrieval due to non-linearity in state-of-the-art radiative transfer 

models. Heterogeneity in soil moisture, soil texture, surface roughness and 

soil temperature should have a minor effect, generally within the instrument 

error of a typical radiometer. The effect of increasing vegetation 

heterogeneity is to non-linearly increase the coarse-scale soil moisture 

retrieval error. This can be significant and higher than the instrument error 

of a typical radiometer in the case of cold, wet land with substantial 

vegetation. Only two studies to date have addressed the problem of land 

surface heterogeneity and its effect on L-band coarse-scale soil moisture 

retrieval using real data (Burke et al., 2003; Uitdewilligen et al., 2003). Both 

studies were based on the SGP’97 data set, which was relatively benign with 

respect to vegetation effects (consisting primarily of grasslands, pastures 

and winter wheat with less than approximately 2.5kg/m2 VWC). Moreover, 

only one study considered the combined effect of heterogeneity in land 
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surface when physical links between different land surface factors and soil 

moisture variability is taken into account. This is mainly due to difficulties 

in monitoring soil moisture, vegetation characteristics, surface roughness, 

soil temperature and soil properties at scales typical of satellite footprints 

and resolution sufficient to capture the above physical links. There is 

therefore a pressing need for thorough investigation of the problem of land 

surface heterogeneity using real data on a wider range of surface conditions, 

including higher variability in vegetation cover than that observed so far, 

supported by detailed ground sampling. In particular, it is important to 

understand how the physical links between land surface factors and soil 

moisture variability work toward reducing or enhancing the coarse-scale soil 

moisture retrieval error through their combined effect on the non-linear 

response of large, mixed pixel.  

2.3.4 Methods to Account for Heterogeneity 

Amongst the studies discussed in the previous section, only one study 

proposed a technique to correct for the effect of land surface heterogeneity 

on soil moisture retrieval at coarse scale (Davenport et al., 2008). The 

technique was proposed for multi-angle SMOS type observations and 

consists of representing vegetation as a weighted average of bare soil and 

vegetation, the relative fraction of which can be retrieved as an extra 

parameter by multi-angle data. The technique was shown to significantly 

reduce the error induced by vegetation heterogeneity, as not one uniform 

optical depth was used, but rather two, one set at zero (for the bare fraction) 

and one equal to the vegetated fraction (retrieved). Nevertheless, as will be 

extensively discussed in Chapter 3, multi-parameter retrieval from SMOS 

might not be always feasible. This is because the number of incidence 

angles and their angular range available from SMOS, which depends on the 

position of the footprint in the swath, is very wide (0º and 50º) only near the 

centre of the swath, while it reduces significantly when the area of interest 

closer to the edges of the swath. Depending on the ancillary data available 

and the position of the area of interest within the swath therefore, only a 

one- or two-parameter retrieval might be feasible (soil moisture and another 
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parameter), not allowing retrieval of the extra parameter for correction the 

effect of vegetation heterogeneity. Moreover, the extra parameter retrieved 

in the method of (Davenport et al., 2008) is not a usable quantity but rather a 

tuning parameter used to compensate for the heterogeneity. 

A different approach was proposed by Zhan et al. (2008). Based on the 

recognition that simple averaging of fine-resolution ancillary parameters 

(e.g., VWC) can induce significant errors in footprint-scale soil moisture by 

Chehbouni et al. (1995) and Njoky et al. (1996b), Zhane et al. (2008) 

derived and tested an analytically-based alternative rule for aggregating 

VWC and optical depth from fine-resolution ancillary data to satellite-

footprint resolution. Despite showing promising improvement in satellite-

footprint soil moisture retrieval when tested with a single-angle simulation 

experiment, validation of these theoretical results using real satellite data 

and extension of the technique to multi-angle observations will be necessary 

before they can be applied in operational soil moisture retrieval algorithms. 

The soil moisture retrieval approach proposed for the SMOS mission to 

account for land surface heterogeneity is based on the physically-based 

method proposed by Kerr and Njoku (1993) and Njoku (1996a). In this 

method the observed brightness temperature over a heterogeneous surface, 

BPT  can be expressed as: 

∑
=
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where TBPi, are the brightness temperatures of the different pixel fractions, ai 

are the spatial weights of the fractions such that ∑
=

N
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1

= 1, and N is the 

number of significantly distinct homogeneous radiative fractions within the 

pixel. The weights ai correspond to the fractional spatial areas covered by 

each component within the footprint. In SMOS the fractions ai will 

correspond to areas with uniform land cover and will be determined using 

land cover maps at 4km resolution. The SMOS L2 algorithm will be 

described in detail in the next Chapter. In this context it suffices to say that 
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the method, as implemented in SMOS, relies on two main assumptions: 

These are that (i) land cover is the major source of land surface variability 

which can affect the coarse soil moisture retrieval, and that (ii) the retrieved 

parameters (i.e., soil moisture alone or soil moisture and optical depth) are 

uniform amongst different scene components.  

Despite been adopted by the SMOS mission, the technique proposed by 

Njoku et al. (1996a) has thus far received little consideration in literature. 

Drusch et al. (1999a) tested the core concept of fractional coverage of Njoku 

et al. (1996a) with the SGP’97 airborne data set to analyse soil moisture 

retrieval scaling effects at L-band. However, the method as applied in this 

study only considered a limited number of cases, these being pixels with 

100% vegetation cover and pixels with 80% vegetation cover (the rest bare 

soil), which do not represent the large variety of conditions that will 

characterise SMOS observations.  Moreover, the vegetated fraction was 

composed of moderate vegetation conditions, i.e., mainly rangeland and 

pasture with some areas of crops, and the analysis was not supported by 

detailed information on land surface heterogeneity within each coarse pixel 

in order to understand the land surface factors which are critical for coarse-

scale retrieval. Before application to SMOS data, it is imperative that the 

method, as currently implemented in the SMOS L2 soil moisture retrieval 

algorithm, and its fundamental assumptions are tested with real L-band 

observations at resolutions comparable to that of SMOS. 

2.4 Proposed Approach 

The review of existing literature presented in the previous sections has 

highlighted several shortcomings in the understanding of the impact of land 

surface heterogeneity on satellite-scale soil moisture retrieval. Specifically, 

in view of the upcoming availability of SMOS data there is a pressing need 

for: 

• investigation of the impact of land surface heterogeneity on L-band 

satellite-scale soil moisture retrieval using real observations on a 
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wide range of surface conditions, supported by adequate ground 

sampling of soil moisture and land surface conditions; 

• understanding how the physical links between land surface 

characteristics and soil moisture distribution within satellite pixels 

affect the coarse-scale soil moisture retrieval; and 

• testing the soil moisture retrieval approach proposed for SMOS to 

account for land surface heterogeneity and its fundamental 

assumptions with real L-band observations over highly heterogeneous 

landscape; 

To address these shortcomings, in this study the soil moisture retrieval 

approach proposed for SMOS will be tested using simulated SMOS pixels 

based on airborne observations, and a technique will be proposed, applicable 

to SMOS, to reduce the soil moisture retrieval error due to land surface 

heterogeneity. The first part of this study included the collection of an 

extensive data set of airborne, L-band passive microwave observations and 

ground data to satisfy the scientific requirements outlined above. This was 

done during the NAFE’05 experiment (described in Chapter 4 and in 

Panciera et al., 2008a) conducted in the Goulburn catchment in Australia.  

The NAFE’05 data set is unprecedented in its relevance to address the 

scientific questions of this study, and represents a substantial step forward 

with respect to the Washita’92 and SGP’97 and SGP’99 data sets in terms of 

the range of vegetation conditions mapped and the detail of the ground 

sampling: Airborne L-band observations were acquired over a large area, 

typical of a future L-band satellite pixel (40km) presenting highly 

heterogeneous vegetation conditions, ranging from nearly bare to forested 

areas. Airborne observations at multiple resolutions (62.5m to 1km) of focus 

areas provided data to analyse the scaling properties of the brightness 

temperatures over heterogeneous land surface to support aggregation of 

airborne data to simulate coarse L-bands pixels. All the airborne monitoring 

was supported by highly detailed ground soil moisture measurements 

ranging from the paddock scale (6.25m spacing) to the regional scale (2km 
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spacing), as well as monitoring of all the land surface characteristics 

understood to affect the microwave emission. During the observation 

period, a full range of soil moisture conditions was experienced by the area.  

The methodology followed in this study consists of three main phases: (i) 

processing of the NAFE’05 airborne and ground-based field data to create a 

SMOS scenario; (ii) testing of the soil moisture retrieval approach proposed 

for SMOS and its assumptions with real data, and (iii) development and 

testing of a new approach to better account for the sub-pixel heterogeneity 

of land surface conditions in the soil moisture retrieval from SMOS data. 

The three phases are individually described in the following sections and 

summarised schematically in Figure 2.6. 

2.4.1 Creation of a SMOS Scenario 

In the fist phase, aircraft and ground field data from the NAFE’05 field 

campaign will be composed to create coarse-resolution, SMOS-like passive 

microwave observations. This will be done by aggregation of airborne L-

band data. Prior to the aggregation, the scaling properties of the L-band 

spatial fields will be analysed in order to assess the reliability of a simple 

linear aggregation of 1km airborne brightness temperatures for simulation of 

satellite footprints. Although a few studies indicated that multiple resolution 

observations should result in the same mean brightness temperature for a 

given area, these studies were limited to the SGP’97 or Washita’92 areas in 

the United States, which were relatively benign with respect to vegetation 

conditions (less than approximately 2.5kg/m2 VWC). In the present study a 

large data set of brightness temperatures at 62.5m, 250m, 500m and 1km 

resolution acquired over portions of the study area will be analysed to 

properly address the scaling properties of the L-band spatial fields.  

Coarse footprints will then be simulated by aggregation of 1km airborne 

brightness temperatures to resolutions ranging from 5km to 40km (SMOS 

resolution). These footprints cover the whole range of land surface 

conditions present in the NAFE’05 study area (agricultural, non-agricultural 

and forested areas) and the full range of soil moisture conditions (from 
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saturated to residual soil moisture content) experienced during the 

November 2005 field campaign. They represent therefore an excellent data 

set for investigation of soil moisture retrieval in the presence of land surface 

heterogeneity. 

The soil moisture retrieval from brightness temperature data in this study 

will be performed using a state-of-the-art microwave emission model, the L-

band Microwave Emission of the Biosphere Model (L-MEB), which will be 

the core of the SMOS L2 soil moisture retrieval algorithm. Full details on 

the L-MEB model and the SMOS L2 algorithm are presented in the next 

Chapter. The model is based on the τ-ω parameterisation presented in 

section 2.2.3.2, and has been developed and tested nearly exclusively on 

 

Figure 2.6. Schematic diagram of the methodology adopted in this thesis to 
test the soil moisture retrieval approach proposed for SMOS and develop a 
new approach to account for land surface heterogeneity. 
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European, temperate conditions (Ferrazzoli et al., 2002; Saleh et al., 2006a; 

Saleh et al., 2006b; Escorihuela et al., 2007; Grant et al., 2007a; Grant et al., 

2007b; Saleh et al., 2007; Wigneron et al., 2007; Grant et al., 2008). Before 

applying the model to the NAFE’05 airborne data, the model 

parameterisation will be therefore evaluated over the land surface conditions 

in the study area using 62.5m and 1km resolution brightness temperatures 

supported by very detailed ground sampling of soil moisture, VWC, soil 

temperature, soil texture and surface roughness monitored at eight supersites 

across the study area. After evaluation of its performance, the model will be 

applied to derive fine-resolution (1km) soil moisture maps of the entire 

simulated footprint to be used as “ground truth” soil moisture for 

verification of the methodology developed. 

2.4.2 Testing of the SMOS soil moisture Retrieval Approach  

In the second phase the error in the retrieval of soil moisture at coarse 

resolutions which is induced by the sub-pixel heterogeneity of land surface 

conditions will be assessed using the SMOS scenario created in the initial 

step. Initially, the land surface heterogeneity and its link to soil moisture 

variability in the study area will be assessed using ground soil moisture data 

and information on land cover, vegetation (NDVI), soil texture and 

topography. As discussed in section 2.3.3, it is important to understand these 

links as the combined effect of heterogeneity in soil moisture and other 

factors might decrease, or enhance, the impact on coarse-scale retrieval 

errors. Moreover, this analysis will provide an in-depth knowledge of the 

land surface heterogeneity in the study area, which will be in turn essential 

for interpretation of the outcomes of this study and definition of its 

applicability to other contexts.  

A preliminary synthetic study will then be performed to analyse the 

impact of sub-pixel heterogeneity of different land surface factors on the 

soil moisture retrieval error performed with the L-MEB model. This is 

motivated by the fact that L-MEB presents some advances in terms of 

modeling of the microwave emission of soil and vegetation, the soil 

effective temperature and the surface roughness (see Chapter 3). Therefore, 
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a proper investigation of the non-linearity of these advanced model physics 

is required prior to the assessment and interpretation of the non-linearity 

problem with real data. The error in the retrieval of soil moisture at coarse 

resolutions due to land surface heterogeneity will be finally analysed using 

the satellite footprint scenario derived from Phase 1 of this study. This will 

be done in two steps: first the classic method based on the assumption of 

pixel uniformity (i.e, no consideration is given to the land surface 

heterogeneity) will be tested, since this is the method adopted by the soil 

moisture products currently available. Then the soil moisture retrieval 

approach proposed for SMOS to account for the land surface heterogeneity 

will be tested. In both steps, soil moisture will be retrieved at coarse 

resolutions using a single-channel, two-polarisation retrieval of soil 

moisture and optical depth, and compared with the “ground truth” soil 

moisture, i.e., the 1km soil moisture maps created in Phase 1. This will be 

repeated at various resolutions for different portions of the study area. These 

land portions presents variable characteristics in term of soil moisture status 

and land surface heterogeneity. The aim of this analysis is three-fold: 

1. Identify the land surface factor, or the combination of factors, which 

has the greater impact on the soil moisture retrieval error due to its 

heterogeneity within the footprint; 

2. Test the effectiveness of the soil moisture retrieval approach 

proposed for SMOS to account for land surface heterogeneity and 

identify its weaknesses in relation with the assumptions of uniform 

soil moisture and optical depth within the pixel fractions; 

2.4.3 Development of an Alternative Retrieval Approach  

Based on the weaknesses of the SMOS approach identified in Phase 2, an 

approach will be developed to improve the soil moisture retrieval from 

SMOS data which is applicable to the SMOS L2 soil moisture retrieval 

algorithm. This will be done by testing different approaches, each relaxing 

one of the assumptions of the approach proposed for SMOS, these 

assumptions being of uniform soil moisture and uniform optical depth 
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within the pixel fractions. It should be noted that, due to presence of 

relatively open Eucalypt forest in the NAFE’05 study area, this thesis 

specifically deals with the situation where the forested fraction of the SMOS 

pixel has a moderate density, in which case the assumptions of uniform soil 

moisture and uniform optical depth are made in the SMOS L2 algorithm. 

The improvement in soil moisture retrieval of each approach with respect to 

the SMOS approach in such case will be evaluated using the SMOS 

scenario created in Phase 1.  

2.5 Chapter Summary 

In this Chapter the potential of remote sensing for global soil moisture 

monitoring has been discussed. Different methods to obtain soil moisture 

from remote sensors were presented, including visible, thermal infra-red, 

active and passive microwave techniques, and their advantages and 

limitations discussed. It has been shown that low-frequency passive 

microwave remote sensing is the most promising method due to the direct 

link between microwave radiation and soil dielectric properties, its deeper 

penetration into vegetation, its all-weather capabilities and negligible 

atmospheric attenuation. However, the likely presence of land surface 

heterogeneity within the large passive microwave satellite footprints (40km) 

presents a challenge for the retrieval and validation of soil moisture over 

such large areas. 

Recent work on the assessment and compensation of the effect of land 

surface heterogeneity on passive microwave soil moisture retrieval has been 

also discussed. This review showed that only a small number of studies has 

assessed the problem of land surface heterogeneity using real passive 

microwave data. Most studies have been undertaken at test sites with 

smooth topographic and vegetative conditions, and with limited ground 

sampling. Moreover, the review presented has shown that the soil moisture 

retrieval approach proposed for SMOS to account for land surface 

heterogeneity and the assumptions it relies on have not been extensively 



Chapter 2 – Literature Review and Proposed Approach Page 2-56 

 

tested with real L-band observations over highly heterogeneous land surface 

conditions. 

This study will address the shortcomings identified by the review 

presented in this Chapter using an unprecedented data set of airborne 

passive microwave observations and ground data, which was collected 

specifically during this study within the NAFE’05 field campaign. After 

detailed analysis of the land surface heterogeneity in the study area and 

identification of the weaknesses of the soil moisture retrieval approach 

proposed for SMOS approach and of its assumptions, this study will 

develop and test a new approach to account for land surface heterogeneity 

which is applicable to the SMOS L2 algorithm. 
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Chapter Three 

3 The SMOS Mission 

In this Chapter the Soil Moisture and Ocean Salinity (SMOS) mission 

and the algorithm adopted to retrieve soil moisture estimates operationally 

from SMOS data (“SMOS L2”) are described. This provides the background 

to the soil moisture retrieval approaches which are tested in this thesis with 

airborne data. First, a general description of the mission science objectives 

is presented, followed by a description of the characteristics of the SMOS 

radiometer. The SMOS L2 soil moisture retrieval algorithm and the 

approach adopted by the algorithm to retrieve soil moisture estimates from 

SMOS observations are then reviewed in detail, together with their 

assumptions and limitations. The simplifications adopted in this thesis to 

test the SMOS L2 algorithm and its soil moisture retrieval approach to 

airborne data are also listed. Finally, the microwave emission model core to 

the SMOS L2 algorithm, the L-band Microwave Emission of the Biosphere 

model (L-MEB), is described in detail.  

Using the data presented in Chapter 4, the L-MEB model will be 

evaluated with fine-resolution airborne data in Chapter 5 and used to 

produce “ground truth” fine-resolution soil moisture maps of the study area. 

After assessment of the land surface heterogeneity in the study area in 

Chapter 6, the fine-resolution soil moisture maps will be used in Chapter 7 

to evaluate the error in soil moisture retrieval under the assumption of pixel 

uniformity and understand which land surface factors (or combination of 

factors) this error is mostly related to. The soil moisture maps will then be 

used in Chapter 8 to test the soil moisture retrieval approach proposed for 

the SMOS L2 algorithm and its weaknesses to account for the land surface 

heterogeneity will be identified. Based on those weaknesses, in Chapter 8 

alternative retrieval approaches to improve the soil moisture retrieval 

accuracy from SMOS will then be proposed. 
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3.1 Mission Description 

The SMOS mission was proposed to the European Space Agency (ESA) 

in the framework of the Earth Explorer Opportunity Missions (Kerr et al., 

2001). The main objectives of SMOS are to deliver global and frequent 

coverage of key variables of the land surfaces (soil moisture, ice and snow), 

and of ocean surfaces (sea surface salinity). In this Chapter only the soil 

moisture component of the mission is described as that is the topic of this 

thesis. The SMOS mission is based on a dual polarised L-band radiometer 

using aperture synthesis (two-dimensional [2-D] interferometer), so as to 

achieve a ground resolution of approximately 50km coupled with multi-

angle acquisitions of the same land surface portion at V and H polarisations. 

This unprecedented multi-angle capability is expected to allow the retrieval 

of surface parameters with improved accuracy relatively to current, single-

angle spaceborne sensors. SMOS is scheduled for launch in September 2009 

and will be the first satellite mission with an optimal observing frequency 

(1.4GHz) for soil moisture estimation. 

3.1.1 Science Objectives 

SMOS aims at making measurements of soil moisture within the first few 

centimeters of the earth surface with sufficient accuracy, spatial and 

temporal coverage to serve hydrological, climatological, meteorological and 

agronomical sciences (Kerr et al., 2001). In summary SMOS requirements 

for soil moisture are (see also CESBIO, 2003): 

• accuracy of 4%v/v soil moisture or better, for data outside 

mountainous, urban, and partially frozen or snow covered areas 

where the vegetation biomass is less than 5kg/m2 (circa 65% of the 

Earth’s continental areas). Simulation studies have demonstrated that 

such accuracy will be achievable in the central part of the SMOS 

Field of View (FOV) (Wigneron et al., 2000) where observations 

over a large range of incidence angles will be available (see next 

section). A soil moisture accuracy of 4%v/v has also been 

demonstrated by field observations at L-band (e.g., Jackson et al., 

1995a; Njoku et al., 2002). Additionally, SMOS will aim at providing 
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global maps of vegetation water content with an accuracy of 0.5kg/m2 

every six days; 

• spatial resolution better than 50km. A 50km resolution is adequate 

for the purpose of providing soil moisture information to global 

atmospheric models and will allow hydrological modelling for the 

largest hydrological basins over the world. For most hydrological 

studies as well as mesoscale modelling, a finer spatial resolution is 

desired; 

• revisit time of 2.5-3 days. This objective will satisfy temporal soil 

moisture sampling requirements for root zone soil moisture 

extrapolation and evapotranspiration estimation (Chanzy et al., 1995) 

and will allow tracking of the drying conditions after rainfalls most of 

the time (strictly a 1-2 days revisit time would be required for this 

application). Frequent coverage will be more important in dry 

tropical areas where water availability is much more important than 

at the equator, where the indicated revisit time is computed; and 

• overpass time at 6:00AM/PM local time. This acquisition time has 

the advantage of presenting conditions as close as possible to thermal 

equilibrium in the soil-vegetation canopy layer, consequently making 

the retrieval more accurate. Moreover, the soil moisture gradient near 

the surface should be minimal at 6:00AM. 

3.1.2 Instrument 

The baseline SMOS payload is an L-band (1.4GHz) 2-D interferometric 

radiometer known as the Microwave Interferometric Radiometer with 

Aperture Synthesis (MIRAS). The interferometric design is inspired by the 

very large baseline antenna concept used in radio astronomy, and consists of 

deploying small receivers in a particular “Y-shaped” spatial arrangement, 

then reconstructing a brightness temperature (TB) field with a resolution 

corresponding to the spacing between the outmost receivers. In MIRAS this 

is achieved through three deployable co-planar arms 120º apart. Each arm is 

4.46m long (see Figure 3.1) and comprises three segments, each containing 
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six elementary L-band radiometers. The line of eighteen radiometers in each 

arm is complemented by a further four radiometers in the central hub, 

making a total of sixty-six radiometers, twelve in the hub and fifty-four in 

the arms (McMullan et al., 2008).  

The instrument will be mounted on a PROTEUS platform and will be put 

in a sun-synchronous, 757km altitude orbit with a 6:00AM (±15 min) 

ascending equator crossing time, with a 25º tilt with respect to the orbital 

plane (i.e., a pitch rotation). This will allow the earth surface to be observed 

at larger incidence angles than a nadir-looking instrument. This 

configuration will generate records of TB over incidence angles from 0º up 

to 55º across a 900km wide swath with a spatial resolution in the range of 

30–50km. The SMOS radiometric sensitivity over land is currently 

estimated to be between 3.5 (at boresight, i.e. the physical axis of the 

directional synthetic antenna) and 5.8 K (within 32° from boresight) for a 

1.2 s integration time (McMullan et al., 2008). 

The instrument’s instantaneous FOV will be 2-dimensional, extending 

 

 
Figure 3.1. Deployed MIRAS configuration diagram (from McMullan et 
al., 2008). 
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both along and across the satellite sub-track (i.e., the nadir projection of the 

satellite’s trajectory on the earth). Such a FOV will be acquired every 3s. 

Consequently, as the satellite progresses along the orbit, any given location 

on the Earth’s surface will be measured a number of times at different 

incidence angles and both V and H polarisations. The number of incidence 

angles and their angular range will depend on the distance of the footprint to 

the satellite sub-track. This position can be expressed in terms of the half-

swath angle ηm. For locations on the satellite sub-track (ηm=0º), the full 

range of angles will be obtained, typically ten independent samples at angles 

between 0º and 55º from nadir (see Figure 3.2). The range of incidence 

angles will be reduced to approximately between 38º and 44º from nadir for 

a half-swath angle (ηm=33º) (Wigneron et al., 2000). Note that as the half-

swath angle increases, the pixel resolution worsens. Resolution varies from 

 
Figure 3.2. Simulated range of incidence angles of SMOS observations as a 
function of the equivalent half-swath angle ηm. Each cross corresponds to 
the incidence angle of independent SMOS observations acquired as the 
satellite  moves along its track by 75km steps Angles are shown for 
successive half-swath angles ηm corresponding to increasing distances to the 
ground track by 25km steps (from Wigneron et al., 2000). 
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30km at satellite sub-track to over 60km at the edges of the swath 

(Wigneron et al., 2000). 

3.1.3 Data Products 

The tasks for transforming the actual raw interferometric measurements 

of the instrument into the final TB images are summarised in the generic 

term “image reconstruction”. This includes converting the interferometric 

measurements (Level 1A product) to the TB distribution across the FOV 

through a 2D inverse Fourier transform weighted by the antenna gain 

pattern. This is done in the SMOS antenna’s V and H polarisation reference 

frame and provides the Level 1B product. The TB (V and H) in the antenna’s 

reference frame are then converted to the TB (V and H) in the Earth’s 

reference frame, by taking into account the rotation of the electric fields, due 

to both geometrical considerations (orientation of the antenna’s V and H 

with respect to the earth surface’s V and H) and to the Faraday rotation 

induced by the ionosphere (Waldteufel et al., 2000). The final step consists 

of projecting the converted TB onto a fixed grid on an Earth reference 

ellipsoid. This results in the Level 1C product (see Figure 3.3). 

3.2 The SMOS L2 Algorithm 

The principle of the approach used to retrieve land surface parameters 

from SMOS L1C TB data is to use an iterative method to find the best suited 

set of soil moisture and vegetation characteristics that minimises the 

differences between the measured TB and TB simulated by a forward 

physical model of the surface microwave emission. The SMOS L2 is a 

complex algorithm which not only estimates soil moisture but also performs 

ancillary tasks such as data quality control and building of output data 

products. Moreover, given that it is built with a global perspective, it deals 

with the full range of land surface conditions that will be observed by 

SMOS and that are not of direct interest for soil moisture retrieval 

(including ocean, sea ice and snow covered areas). In this Chapter  the 

discussion is limited to the component of SMOS L2 algorithm relevant for  
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understanding the results of this thesis: the retrieval of soil moisture from 

L1C TB data over land areas which only include what is referred to as the 

“nominal case”. The nominal case consists predominantly of low or 

moderately vegetated soil and forest and therefore do not include significant 

fractions of “non-nominal” surfaces like water bodies, mountainous, urban, 

and partially frozen or snow covered areas. Eventual “non-nominal” 

surfaces, if present, should cover areas small enough not to affect the 

retrievability of soil moisture over the nominal surface (this will be 

determined based on thresholds which are yet to be estimated). In the 

nominal case, the forward model used is the L-band Microwave Emission of 

the Biosphere Model (L-MEB). Although restricted with respect to the 

range of surface conditions which will be covered by SMOS observations, 

the nominal case is the most relevant case with respect to the SMOS science 

objectives as it is the one for which it is believed that soil moisture retrieval 

is feasible. Areas qualifying as “nominal” have been estimated to represent 

over 66% of the Earth’s continental land mass (CESBIO, 2007). A complete 

description of the SMOS L2 algorithm can be found in the SMOS L2 

Algorithm Theoretical Based Document (ATBD, http://www.cesbio.ups-

tlse.fr/us/indexsmos.html). All the information contained in the following 

 
Figure 3.3. Illustration of SMOS L1C brightness temperature product 
(courtesy of DEIMOS Engenharia, Lisbon, Portugal). 
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part of this Chapter has been derived from the ATBD, unless otherwise 

stated. 

3.2.1 General Layout 

In the iterative soil moisture retrieval approach, the objective is to 

minimise a cost function through minimising the sum of squared weighted 

differences between measured and modeled TB observations at a range of 

incidence angles and at V and H polarisations of the same land portion. This 

is achieved by finding the set of parameters (e.g. soil moisture and 

vegetation characteristics) which yields the best match between TB predicted 

by the model (L-MEB) and those observed. The retrieval is carried out at 

nodes of the fixed Earth surface grid onto which the L1C TB have been 

projected.  

It should be clarified here that each node represents purely the 

geographical location on the Earth’s surface of the center of a cell of the 

global fixed grid. To each node corresponds what is referred to as a “SMOS 

pixel”, which consists of the TB observations at that node (i.e., that 

geographical location) and its spatial resolution on the Earth’s surface, i.e., 

the 3dB surface characterised by the ellipse contour of the synthetic antenna 

footprint. 

In a first step the input L1C data quality is assessed and all unwanted 

data are filtered out (e.g., data over ocean, L1C data quality flags etc.). 

Areas at the edge of the FOV which do not meet spatial resolution criteria 

(i.e., resolutions worse than 60km) are also filtered out at this stage. Next, 

auxiliary data is ingested, (e.g., meteorological data, vegetation optical 

depth and roughness maps from previous SMOS overpasses). Lastly, the 

soil moisture retrieval process is initiated. As different microwave emission 

forward models are used for different surface types (e.g., snow emission is 

simulated with a model different from that used for a vegetated soil for 

instance), the dominant land cover of a node must first be assessed. To this 

end a weighting function (which takes into account the incidence angle 

dependent ground area covered by each pixel) is used to determine the 



Chapter 3 – The SMOS Mission  Page 3-9 

 

dominant cover type from a land use map with 4km resolution. This 

information initiates a decision tree which, step-by-step, selects the type of 

model to be used in accordance with surface conditions. 

Each node is considered to be divided in two (sub) areas: one area where 

the soil moisture retrieval will take place (the nominal case) and one area 

where soil moisture cannot be retrieved from the microwave signal (e.g., 

water bodies or snow cover). In the case that soil moisture cannot be 

retrieved, the contributions to the overall node signal are estimated using 

external data, predetermined values of the surface characteristics or models 

other than L-MEB. Contributions from the second area are called the 

“default contributions” and the actual soil moisture retrieval is therefore  

made on the remaining area. Ideally three parameters are retrieved over this 

area: soil moisture, optical depth and surface roughness (the so-called “full 

retrieval”). If the algorithm does not converge satisfactorily, a new attempt 

is made with fewer parameters (i.e., soil moisture and optical depth or soil 

moisture alone by imposing the optical depth from ancillary data, 

“minimum retrieval”) until either the results are satisfactory or the algorithm 

is considered to have failed. In some cases where retrieval of soil moisture is 

not possible due to the nature of the surface (e.g., iced surfaces) the so-

called “cardioid” approach (Waldteufel et al., 2004) is used to attempt the 

retrieval of a proxy of the dielectric constant (the “dielectric constant 

index”). This can be a useful quantity as external information (from sources 

other than SMOS data) can then be used to retrieve the dielectric constant 

itself. 

Depending on the data available (quality of ancillary data, range of 

incidence angles) and the nature of the SMOS pixel (surface conditions), the 

L2 processing will therefore result in the following basic categories: (i) no 

valid retrieval whatsoever can be attempted; (ii) soil moisture retrieval is 

attempted and succeeds, and values for soil moisture as well as for other 

parameters, typically vegetation optical depth, are obtained, (iii) retrieval is 

carried out for geophysical quantities which do not include soil moisture 
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(e.g., dielectric constant) and succeeds, and (iv) retrieval is attempted and 

fails. 

The components of the SMOS L2 algorithm which are relevant for 

understanding the findings of this thesis are the determination of the 

dominant land cover fraction within each SMOS pixel and the decision tree 

which determines (in the nominal case) which land surface parameters will 

be retrieved within this dominant fraction and which will be imposed a 

priori (e.g., full or minimum retrieval). These components are therefore 

described in detail in the following sections.   

3.2.2 Land Surface Fractions 

Land surface fractions (%) for each land cover are needed by the SMOS 

L2 algorithm for building the forward models to be used during retrieval. 

Land surface fractions within the SMOS instantaneous FOV are not 

straightforward (geometrical) surface ratios because the SMOS observed TB 

is obtained from integrating radiances across the (directional) synthetic 

antenna pattern (see Figure 3.4). Therefore an antenna gain weighting 

function (WEF) has to be applied to every elementary land surface area 

(defined as the unitary 4km resolution land cover area) inside the SMOS 

pixel in order to give the proper weight to the contribution of each 

elementary area within the pixel to the overall observed up-welling 

radiation. This results in the calculation of incidence angle dependent 

fractions (“FV”). 

However, prior to the retrieval, angle independent average fractions 

(“FM”) must be computed in order to allow running the decision tree and 

selecting the soil moisture retrieval approach options. This is done by 

applying a simplified WEF function, called “MEAN_WEF”, which 

represents the average SMOS pixel. In the case of MEAN_WEF, the 

weights will not vary within the SMOS swath, while in the case of WEF 

they will depend on the position in the swath (i.e., on the incidence angle of 

the antenna main lobe). 
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An illustrative example of this weighting procedure is shown in Figure 

3.4. The surface fraction for the 4km-resolution land surface elementary 

areas “e1” and “e5” will be the same from a geometrical point of view (at 

the Earth’s surface level). However, after weighting each elementary area 

with the WEF (or MEAN_WEF) function the FV5 (or FM5) fraction for the 

land surface elementary area “e1”, will be greater than FV1 (or FM1), to 

account for the higher contribution of “e5” to the overall SMOS TB given its 

position closer to the centre of the antenna main lobe. In the case of the FV 

fractions, the weights of e1 and e5 will change for different position across 

the swath, while in the case of the FM fractions, the weights will be the 

same across the swath. 

 
Figure 3.4. Schematic view of the determination of the weighted land 
surface fractions for each elementary 4km-resolution land cover area 
(emitter “ei”) within the pixel (i.e., footprint), depending on the SMOS 
synthetic antenna directional gain (WEF) (from CESBIO, 2007). 
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3.2.3 Decision Tree 

The decision tree of the SMOS L2 algorithm is applied to each node of 

the L1C grid after pre-processing of the data to select the type of retrieval to 

be performed. This is articulated in the following five main steps: 

1. the decision tree procedure begins with determining the reference 

fractions (FM) for each land surface type within the SMOS pixel; 

2. the dominant land surface fraction within the pixel is defined through 

a series of tests based on a series of thresholds concerning the 

magnitude of the various fractions; 

3. the most appropriate microwave emission model is selected for the 

dominant fraction, which will be inverted to retrieve the free 

parameters. At the same time relevant models are selected for the 

remaining fractions, which will be run in forward mode with fixed 

parameters to provide the default contributions to the overall node 

signal; 

4. from auxiliary data, reference values for spatially varying data input 

for all the relevant models selected for the pixel are obtained for 

every relevant fraction of the pixel; and 

5. finally, a retrieval approach is finally selected, concerning the number 

of parameters to be retrieved (free parameters) and those to be 

imposed a priori (fixed parameters). 

Each of the steps listed above is described in the following sections. 

3.2.3.1 Computing Aggregated Fractions 

First the average fractions (FM) within each SMOS pixel are determined 

by running the mean weighting function MEAN_WEF through a land cover 

map. The land cover map derives from an ECOCLIMAP land cover 

classification data set listing 218 land cover classes at 1km resolution 

(Masson et al., 2003). This has been aggregated into nine classes and the 

information stored in a 4km resolution grid for the entire globe together 

with each aggregated class’s surface fraction within each 4km x 4km cell. 
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The aggregated ECOCLIMAP classes are summarised in Table 3.1. 

Therefore, in the SMOS L2 algorithm, surface areas are represented as 

aggregated (over the 4km grid) fractions for each of the nine land cover 

classes (aggregated from 218 ECOCLIMAP classes). The final fractions of 

each of the aggregated land cover classes within the entire SMOS pixel are 

simply computed as the mean of the 4km surface fractions over the pixel.  

3.2.3.2 Surface Fraction Thresholds 

Based on the incidence angle dependent fractions (FM), a series of tests 

is defined, based on a series of surface fraction thresholds concerning the 

magnitude of the various FM fractions. This results in one of several 

decision tree branches, depending on the predominance within the SMOS 

pixel of one of the land surface types. The selected branch establishes on 

which land cover fraction (the dominant) retrieval of land surface 

parameters (e.g., soil moisture, optical depth or dielectric constant) will be 

attempted and which other (minor) land cover fractions will be accounted 

for as default contributions. 

Table 3.1. ECOCLIMAP fractions for continental areas over the entire 
globe (freezing conditions and ice are ignored in the calculation of the 
total fractions). 

SMOS L2 

Class Type 

Main ECOCLIMAP 

classes 

Fraction of 

Continental Area (%) 

Low or moderately 
vegetated soil 

Flat bare soil 
grassland 
tropical grassland 
C3 crops 
C4 crops 
irrigated crops 

46.5 

Snow Permanent snow 31.1 
Forest Broadleaf tree 

coniferous tree 
tropical tree 

20.0 

Open Water Water 8.7 
Barren Rocks 1.7 
Wetlands Park marshes 0.7 
Urban Urban 0.1 
Frozen soil Frozen soil - 
Sea ice Sea ice - 
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3.2.3.3 Selecting the Forward Microwave Emission Model 

Based on the outcomes of the previous test, a retrieval approach is 

selected. In the selected approach, one model will be used to retrieve land 

surface parameters over the dominant land cover fraction in the pixel, while 

the emission from the remaining land cover fractions will be simulated 

using the relevant model but no retrieval will be attempted (default 

contributions). There are currently four models: Cardioid, L-MEB, a model 

for open water (with or without effect of salinity) and a model for snow. In 

the following we only describe the situation in which the L-MEB model is 

selected for retrieval (the nominal case). In practice this happens practically 

only when either the “low or moderately vegetated soil” fraction or the 

forest fraction are larger than 50% of the total pixel fraction. In both cases 

(“low or moderately vegetated soil” fraction dominant or forest fraction 

dominant) the retrieval is attempted on the dominant fraction, while the 

emission from the remaining fraction is estimated using a priori values. 

However, in the case when the density of canopy in the forest fraction is 

expected to be low, like is the case for the open Eucalypt forest present in 

the NAFE’05 study area, the free (i.e., retrieved) parameters are considered 

the same for both fractions, e.g., if soil moisture and optical depth are 

retrieved then soil moisture and optical depth are the same for both the 

vegetated soil and the forest fraction.  

3.2.3.4 Computing Reference Values for Parameters 

Reference values for all the spatially varying input data for the relevant 

forward model are obtained for every fraction of the pixel by aggregation of 

the ancillary data at their original resolution. In this phase the incidence 

angle dependent fractions (FV) are used to account for the antenna 

directional gain. In the nominal case, which is of interest of this thesis, these 

input data are soil moisture, soil texture, roughness parameters, vegetation 

parameters and soil physical temperature. Depending on the outcomes of the 

following steps of the decision tree, these values will be either passed to the 

forward model as a priori estimates (fixed parameters) or as initial guess 

values in the case they are retrieved (free parameters). 
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3.2.3.5 Determining Retrieval Conditions 

The last step of the SMOS L2 decision tree is to determine the retrieval 

conditions for the pixel depending on the number of available TB data (in 

terms of angles and polarisation), which determines how many parameters 

can be retrieved, and the range of initial/expected values of the vegetation 

optical depth. This step has four possible outcomes:  

1. the L1C pixel is invalidated (no retrieval is attempted); 

2. a “minimum” retrieval is attempted (only soil moisture or soil 

moisture and optical depth); 

3. a “full” retrieval is attempted (soil moisture, optical depth and surface 

roughness); and 

4. a “maximum” retrieval is attempted (soil moisture, optical depth and 

surface roughness plus other vegetation parameters).  

In cases (2), (3) and (4), different retrieval options (“negligible”, 

”moderate” and “forest”) are selected depending on thresholds on the a 

priori value of the optical depth of the dominant fraction. The a priori value 

can be derived from previous retrievals over the same area or from ancillary 

data (e.g., LAI maps).  

In the retrieval process, the retrieved parameters are constrained to initial 

guess values (also determined a priori from previous retrievals over the 

same area or from ancillary data). The constraint is applied through the cost 

function using uncertainties in the guess value for each parameter expressed 

in the form of a priori standard deviations (see section 3.2.4), so that large a 

priori values of standard deviation mean that the parameter is practically left 

free. Different a priori standard deviations are assigned to each retrieved 

parameter in cases (2), (3) and (4). These a priori standard deviations are 

summarised in Table 3.2 for all the retrieval options in those cases.  

In the “minimum” retrieval case, only soil moisture is retrieved for 

surfaces with negligible optical depth. In moderate vegetation conditions, 
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Table 3.2. A priori standard deviations for all “retrievable” L-MEB 
parameter and for all SMOS L2 algorithm retrieval options: negligible 
vegetation cover, moderate vegetation cover and forest cover. Where not 
retrieved, parameters are indicated as “nil”, while where retrieved 
parameters are indicated with their a priori standard deviation (in the 
parameter’s measurement unit). The retrieval options are indicated for the 
nominal case of low or moderately vegetated soil or forest. The vegetation 
parameters in the 1st column are explained in section 3.4.5. The a priori 

optical depth thresholds TH_23 and TH_34 are defined in the text.  

Retrieval Options 
Parameter Units 

A Priori 

Optical Depth Min. Full Max. 

Negligible (<TH_23) 20 20 20 

Moderate (>TH_23 & <TH_34) 20 20 20 Soil Moisture %v/v 

Forest (>TH_34) 10 10 10 

negligible nil nil 2.5 

moderate nil nil 2.5 
Soil 

Temperature 
K 

forest nil nil 2.5 

negligible nil nil nil 

moderate 0.1 0.5 0.5 
Optical depth 

τ 
- 

forest 0.5 0.5 0.5 

negligible nil nil nil 

moderate nil nil 1 
Vegetation 
parameter 

ttH 

- 

forest nil nil nil 

negligible nil nil nil 

moderate nil nil 2 
Vegetation 
parameter 
Rtt=ttV/ttH 

- 

forest nil nil nil 

negligible nil nil nil 

moderate nil nil 0.1 
Vegetation 
scattering 

ωH 

- 

forest nil nil 0.1 

negligible nil nil nil 

moderate nil nil 0.1 
Vegetation 
scattering 

∆ω=ωV- ωH 
- 

forest nil nil nil 

negligible nil 0.1 0.1 

moderate nil nil nil 
Roughness 

HR 
- 

forest nil nil nil 
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retrieval is attempted of both soil moisture and optical depth but with a 

strong constraint on the optical depth (a priori standard deviation of 0.1). 

When the vegetation cover is significant (forest case), soil moisture is 

constrained (a priori standard deviation of 10%v/v) and only optical depth 

is left as a free parameter (a priori standard deviation of 0.5). In the  

“maximum” retrieval case due to the presence of good quality L1C TB data  

for a variety of incidence angles the retrieval of several other parameters is 

attempted along with the retrieval of soil moisture and optical depth in the 

case of moderate vegetation conditions. The rationale behind this is that, for 

example, in the case in which forest is the dominant fraction and the 

expected optical depth is significant, soil moisture is not expected to vary 

significantly in time and can therefore be highly constrained to the value 

retrieved at a previous time-step in order to obtain a better retrieval of the 

optical depth of the forest.  

The thresholds which are used to determine the retrieval options based on 

the a priori optical depth are TH_23, TH_34. (for easy reference, the 

nomenclature used in the ATBD (CESBIO, 2007) was adopted here). These 

are yet to be estimated at global scale. TH_23 should be fairly small, since if 

the expected optical depth is below this value, the pixel is considered bare. 

Values smaller than TH_23 should mainly correspond to ice or barren soil, 

i.e., surfaces where the optical thickness is known to be negligible. The 

TH_34 threshold corresponds to situations close to the limit of the validity 

domain (vegetation density too high to attempt any soil moisture retrieval). 

Hence it defines a trade-off between getting better estimates of soil moisture 

by constraining the optical depth and getting best estimates of the optical 

depth at the expense of undergoing some risk of bias on the retrieved soil 

moisture. To derive the retrieval conditions, the a priori optical depth of the 

dominant cover fraction of the pixel is compared with these thresholds (see 

Table 3.2).  
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3.2.4 Iterative Solution 

Once the retrieval problem has been set by the decision tree, the retrieval 

itself is performed by minimising a quadratic cost function. This is more 

complex than a standard maximum likelihood estimation, because: 

• constraints (a priori estimates and a priori standard deviations) are 

introduced for some of the retrieved parameters; and 

• when several multi-angle TB observations are available, a strong 

correlation between the TB data must be accounted for, in such a way 

that the cost function becomes a quadratic form rather than a sum of 

weighted squared differences. 

For each L1C pixel, the TB are computed for each incidence angle (ϑ ) 

and polarisation (P) by aggregating the TB predicted for each surface cover 

fraction FVi (which are incidence angle dependent) as a function of the 

surface physical parameters pi of each fraction (including free and fixed 

parameters), such that: 

∑
=

=
N

i

iBPiBP pTFVT
1

),(*)( ϑϑ , (3.1) 

where N is the number of surface cover fractions FVi present in the mixed 

L1C pixel. These aggregated TB are as observed “above the canopy”. 

Atmospheric and sky contributions are then added to this aggregated signal 

to obtain the Brightness Temperature at the Top Of the Atmosphere (TB-TOA) 

as described later in section 0. The retrieved parameters are those which 

minimise the cost function between simulated (TBP-TOA) and measured 

brightness temperatures (TBPM) at polarisation P expressed as:  

 
)),((*][*)),(( 1

inTOABPnBPMT

T

inTOABPnBPM pTTCOVpTTCF ϑϑ −
−

− −−= + 

2

2)(

P

i

ini

ii pp

σ

∑ −
+ , (3.2) 

where the 
nBPMT  is an n x 1 vector including n TB observations at n 

incidence angles, subscript “T’ stands for matrix transposition, [COVT] is 
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the n x n variance/covariance matrix for the TBPM and ini

ip  are a priori 

estimates of the retrieval parameters, with a priori standard deviations Pσ  

set as in Table 3.2. The cost function CF is minimised using the Levenberg-

Marquardt (L-M) algorithm. 

After the parameter retrieval has been attempted, some post-processing 

analysis is undertaken which consists of computing the posterior error 

variance on the retrieved parameters, and checking consistency with other 

products and/or the expected range. If retrieval of geophysical parameters 

other than soil moisture has been successful (e.g., optical depth or 

roughness) these values are used to update the current maps for the specific 

parameters, so that the next retrieval over the same area will take advantage 

of these fine tuned reference values 

3.2.5 Limitations of SMOS L2 algorithm 

Even though the SMOS L2 algorithm is intended to be run in its 

operational version as described in this Chapter, it is also foreseen that after 

SMOS launch and the commissioning phase, a better knowledge of the 

whole system will result in changes in the approach outlined. Important 

limitations of the current set up which are relevant to this thesis are: 

• direct models such as L-MEB, even when validated, are strictly valid 

only at local scale. However, due to the large size of the SMOS pixel 

average values have to be retrieved over heterogeneous targets and 

errors may be due to the non-linear behaviour of the model; 

• the land cover type (forest, moderately vegetated soil etc...) is 

considered to be the only factor whose variability within the SMOS 

pixel can produce and error in the soil moisture retrieval due to non-

linearity of the retrieval algorithm. The impact of the variability of 

other land surface factors, such as soil moisture itself or soil texture, 

is implicitly neglected by the approach; and 

• for a mixed pixel composed of a fraction of moderately vegetated soil 

and a fraction of forest, and in the case when the density of canopy in 
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the forest fraction is expected to be low, the assumption is made that 

the retrieved parameters are the same for both fractions, while all 

other parameters (fixed parameters) are surface fraction specific. An 

illustrative example of this approach is shown in Figure 3.5, where 

the retrieval of soil moisture (θ) and optical depth (τ) is shown for a 

pixel with a mix of forest (fixed parameters p1) and low vegetated 

soil (fixed parameters p2) with other minor surface fractions. Both the 

assumptions of uniform optical depth and uniform soil moisture 

between the fractions are rather strong. Moderately vegetated 

surfaces like crops and grasses are known to have lower vegetation 

water content (which determines the optical depth) than the dense 

canopy of a forest (Njoku et al., 2002; Ryu et al., 2007). Moreover, 

the literature review presented in Chapter 2 gave strong evidence that 

differences in soil moisture are associated with different vegetation 

covers. 

These limitations are addressed in this thesis through: 

• a specific evaluation of the parameters of the L-MEB model for the 

surface conditions in the study area (Chapter 5); 

• an evaluation of the model from local (62.5m) to satellite footprint 

scale (40km), accompanied by a detailed characterisation of the land 

surface heterogeneity within the footprints (Chapter 5, 6 and 7); and 

• testing of the soil moisture retrieval approach proposed for SMOS at 

satellite footprint scale and investigation of alternative retrieval 

approaches for mixed pixels with areas of moderately vegetated soil 

and forest and in the case of low forest canopy density (Chapter 8).  

The simplifications and assumptions made in applying the complex 

SMOS L2 algorithm to the airborne data are described in the next section.  
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3.3 Application of the SMOS L2 Algorithm to Airborne Data 

In order to apply the complex SMOS L2 algorithm to the airborne data 

collected across the NAFE’05 study area, several simplifications can be 

introduced to make the data processing easier without diminishing the 

significance of this thesis’s findings for future real-world application of the 

algorithm. These simplifications are summarised in this section. 

As already anticipated at the beginning of this Chapter, this thesis 

focuses on the so-called “nominal” case of land surface parameter retrieval 

from SMOS, i.e., the retrieval of soil moisture over mixed pixels which 

include predominantly low or moderately vegetated soil and forest, and 

therefore do not include a significant fraction of water bodies, mountainous, 

 
Figure 3.5. Schematic of SMOS L2 forward modelling approach for a 
nominal pixel and in the case of low forest density. θ=Soil Moisture, 
τ=Optical depth, p=fixed physical  parameters, W=Water, S=Snow, 
U=Urban. 
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urban, and partially frozen or snow covered areas. Additionally, due to the 

nature of the NAFE’05 study area, this thesis is concerned with the case in 

which the sum of the vegetated soil and forest fractions is 100% and the 

density of the forest canopy is low. 

In Chapter 7, SMOS pixels are simulated by aggregating 1km airborne 

TB data. This approach has three main implications for the relevance of the 

results of this thesis to SMOS operational retrieval: 

1. it by-passes the sequence of processing steps that leads from the raw 

interferometric measurements of the MIRAS instrument into the final 

SMOS L1C TB images (see section 3.1.3). Therefore, SMOS 

observations simulated in this thesis are considered free of the errors 

associated with image reconstruction, ionospheric (Faraday) rotation 

and sky and atmospheric contributions compensation, which are 

estimated to amount to a combined error of 0.5 K (CESBIO, 2007). 

Moreover, the radiometric uncertainty is that of the PLMR 

radiometer (2 K and 0.7 K respectively at V and H polarisation, see 

Appendix A3), which is lower than that  of SMOS (estimated to be of 

3.5 K at boresight and 5.8 K within 32° from boresight (McMullan et 

al., 2008). As the radiometric uncertainty is expected to be the main 

contribution to the error budget (CESBIO, 2007), the findings of this 

thesis should therefore be considered a best case scenario of SMOS 

operational retrieval; 

2. given the fine spatial resolution of the airborne TB observations 

(1km), the SMOS pixels resulting from aggregation of such 

observations are equivalent to those that would be observed if the 

SMOS sensor had a uniform directional gain. Consequently no 

antenna gain weighting function (WEF, see section 3.2.2) is applied 

when aggregating ancillary data and the fraction-specific TB to 

SMOS pixel resolution. Any error which in SMOS will derive from 

the choice of the proper antenna gain weighting function WEF 

(which is an approximation of the synthetic antenna pattern) is 
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therefore ignored in this thesis. The results of a SMOS soil moisture 

retrieval study (Vergely, 2005) suggest however that the WEF 

function currently adopted for the SMOS L2 algorithm is a 

sufficiently accurate replicate of the antenna pattern and that 

therefore no significant error should result from this operation; and 

3. the range of independent observations at multiple incidence angles 

that could be simulated was very narrow, and essentially consisted of 

bi-polarised observations at two different incidence angles. 

Therefore, only the “minimum” retrieval option described in section 

3.2.3.5 can be analysed, in which the retrieval of only two parameters 

(soil moisture and optical depth) is attempted. This will be the most 

common retrieval scenario in SMOS, since to date the retrieval of 

more than three unconstrained parameters has proven to be difficult 

(Wigneron et al., 2000). 

Finally, the land surface ancillary data used in this thesis differ from 

those which will be used operationally in the SMOS L2 algorithm. These 

data will be described in detail in Chapter 4 and in the relevant sections in 

Chapter 5 and Chapter 7. Here it is important to note that the best available 

ancillary data at the finest available resolution (finer than those used for the 

SMOS L2 algorithm) are used in this thesis (either collected during 

NAFE’05 or from other sources). This is motivated by the fact that the 

SMOS L2 algorithm has been designed to be flexible in accommodating any 

improvements, or changes, on the ancillary data currently adopted (i.e., finer 

resolution). Therefore, by adopting the best available ancillary data sets, this 

thesis will reduce uncertainties associated with the currently proposed data 

and at the same time the results will be relevant to SMOS operational 

conditions when better ancillary data sets will become available. 

3.4 The L-MEB Model 

The L-band Microwave Emission of the Biosphere model, L-MEB, is the 

core to the SMOS L2 algorithm described in the first part of this Chapter. 
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The L-MEB model was born from an extensive review of the current 

knowledge of the microwave emission of various land cover types 

(Wigneron et al., 2003) and is currently being developed and tested with 

tower based studies on mostly homogeneous land surface conditions of low 

to moderate vegetation density, such as crops and grass-type surfaces 

(Wigneron et al., 2007). Development is also ongoing for forested areas 

(Saleh et al., 2004; Grant et al., 2007b; Guglielmetti et al., 2007). In order to 

retrieve soil moisture estimates from SMOS data, the algorithm requires the 

input of ancillary information on soil temperature, soil texture, surface 

roughness and vegetation water content. Moreover a set of vegetation and 

surface type dependent parameters are needed which characterise the 

microwave properties of the top soil layer and the vegetation canopy. In the 

following section the L-MEB model structure is described, and the values of 

the model parameters used in this study and their derivation from the 

relevant literature are presented. 

3.4.1 General 

The L-MEB model is based on a widely recognised approach to 

simulating microwave emission from the land surface, based on a simplified 

(zero-order) solution of the radiative transfer equations (Ulaby et al., 1986). 

The model represents the soil as a rough surface in contact with the 

atmosphere and the vegetation as a homogeneous layer between the two, 

and models the complex interaction of the radiation emitted by the soil, the 

vegetation and the sky (see Figure 3.6). 

The soil emission is controlled by the microwave reflectivity of soil, 

which depends on the dielectric properties of the soil-water mixture, while 

the vegetation layer scatters and absorbs part of this radiation, as well as 

emitting radiation itself. The radiation measured by the sensor in space (TB-

TOA) is the sum of (see Figure 3.6): (i) the upward atmospheric emission (TB-

ATM-UP), (ii) the surface level emission (TB) attenuated by the atmosphere, 

(iii) the downward atmospheric emission (TB-ATM-DOWN) reflected (scattered) 

at the surface and attenuated along the upward path by the atmosphere and 

finally (iv) the cosmic background emission (TB-SKY) attenuated by the 
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atmosphere, reflected/scattered at the surface and attenuated again along the 

upward path by the atmosphere according to: 

 ++−= −−− UPATMBPATMBPTOABP TTT )exp( τ  

)exp())exp(( ATMPATMSKYBPDOWNATMBP TT ττ −Γ−++ −−− , (3.3) 

where τATM is the atmospheric optical thickness, and TBP is the brightness 

temperature as observed “above the canopy” (the sum of the soil and 

vegetation contributions) and Γ is the surface reflectivity. All the terms of 

the above equation are functions of the frequency and the sensor observation 

angle ϑ  (defined with respect to nadir and referred to earlier as the 

“incidence angle”). The subscript “P” indicates the polarisation (vertically, 

V, or horizontally, H). A simplified approach is used by L-MEB to compute 

the atmospheric and background contributions (Pellarin et al., 2003). Since 

the SMOS pixels that will be simulated in the present study derive from 

airborne data, the atmospheric component was not considered in this study. 

 
Figure 3.6. Schematic of the radiative transfer processes simulated by the L-
MEB model (Adapted from CESBIO, 2006). 
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Therefore, only the modeling of the above canopy TB in L-MEB is 

discussed in detail here. This is done in the following sections by 

distinguishing between the cases of (i) bare soil, (ii) low or moderate 

vegetation cover and (iii) forest. The following sections rely on the 

description of the basic physics of microwave emission already presented in 

Chapter 2 and focus on the particular aspects of the L-MEB which 

distinguish it from other microwave emission models. 

3.4.2 Soil Reflectivity 

The polarised (subscript P) microwave emission of bare soil (TBP) is 

written in L-MEB as a function of the soil microwave emissivity (eGP) as 

(see also (2.3)): 

EFFGPBP TPeT ),()( ϑϑ = . (3.4) 

where the soil temperature Ts in (2.3) in has been replaced with the effective 

soil temperature (TEFF, see section 3.4.4). The soil microwave emissivity is 

computed as: eG=1−Γ. For smooth soil surfaces and homogeneous soils, the 

soil microwave reflectivity can be approximated by using the soil 

reflectivity of a smooth surface (Γ*). This is related to the soil dielectric 

constant or permittivity (εG) and the incidence angle through the Fresnel 

equations (2.1) and (2.2) that define the behavior of electromagnetic waves 

at a smooth dielectric boundary. 

The dependence of εG from the soil moisture content, soil density, and 

textural properties is accounted for in L-MEB using the Dobson dielectric 

mixing model (Dobson et al., 1985) which takes into account soil textural 

properties to simulate the dielectric behavior of the soil-water mixture. 

However, in particular conditions, such as dry sandy soils or frozen soils, 

this model is not sufficiently accurate and other models are used. For dry 

sandy soils the model proposed by Mätzler (1983) is used in L-MEB. The 

case of frozen soil is not treated here as such conditions were not 

encountered in the study area focus of this study. 



Chapter 3 – The SMOS Mission  Page 3-27 

 

3.4.3 Surface Roughness 

The modeling of surface roughness in L-MEB is based on the semi-

empirical approach developed by Wang and Choudhury (1983) and Wang et 

al. (1983) and has been presented in (2.5). More recent tower observations 

found that the polarisation mixing parameter QR in (2.5) can be safely 

neglected, having very small values at L-band (for three soil types the best 

fit values of QR were 0, 0.01 and 0.12) (Mo et al., 1987 ; Wigneron et al., 

2001; Wigneron et al., 2007). The formulation used in L-MEB for rough 

reflectivity (Γ) is therefore a simplification of (2.5) expressed as: 

)cos)(exp()()( * ϑϑϑϑ RPN

RPP H−Γ=Γ . (3.5) 

where HR is the surface height parameter and NRP  the roughness exponent.  

The dependence of HR on the surface roughness characteristics is not well 

understood. Wigneron et al. (2001) found that the best geophysical 

parameter to describe HR over agricultural fields was the slope parameter 

(m= σS/LC), dependent on the standard deviation of surface heights (σS) and 

the correlation length (LC). Additionally, Wigneron et al. (2001) found that 

HR exhibited soil moisture dependence. This was confirmed by detailed 

studies by Saleh et al. (2007) and Escorihuela et al. (2007). The dependence 

of HR on soil moisture was explained by an effect of volume scattering: the 

spatial fluctuations of the dielectric constant within the soil volume are 

stronger during drying out, producing an important “dielectric” roughness 

effect. Therefore, it was proposed that HR should be considered as an 

effective parameter that accounts for (i) “physical roughness” effects related 

to spatial variations in the soil surface height, and (ii) “dielectric roughness” 

effects related to variation of the dielectric constant in the near-surface soil 

layer.  

3.4.4 Microwave Effective Soil Temperature 

In L-MEB a soil profile temperature approximation is used to 

characterise the contribution of the whole soil layer contributing to the 

microwave emission. At L-band, this can in fact be much deeper than the 

actual observation wavelength, especially in dry conditions (Stiles et al., 
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2000; Mätzler et al., 2006). The formulation of the microwave effective soil 

temperature TEFF contributing to the soil microwave emission is based on 

the parameterisation developed by Choudhury et al. (1982) and shown in 

(2.8). However, in L-MEB, the dependence of the empirical attenuation 

coefficient Ct in (2.8) on soil moisture (θ) is taken into account using a 

refinement of (2.8) proposed by Wigneron et al. 2001: 

0)/(*)( 0
b

DEPTHSURFDEPTHEFF wTTTT θ−+= , (3.6) 

where TDEPTH is the deep soil temperature (approximately at 50 to 100cm) , 

TSURF is the surface temperature (approximately corresponding to a depth 

interval of 0–5cm) and w0 and b0 are semi-empirical parameters depending 

on the specific soil characteristics (mainly soil texture). θ stands for the top 

5cm soil moisture which corresponds well to the effective soil moisture 

value contributing to soil emission at L-band.  

The formulation in (3.6) takes into account the variation in contributing 

depth depending on soil moisture conditions. If the soil is very dry, soil 

layers at depth (deeper than 1 meter for dry sand) contribute significantly to 

the soil emission, and TEFF~TDEPTH. Conversely, if the soil is very wet, the 

soil emission originates mainly from layers at the soil surface and 

TEFF~TSURF. Note that the formulation in (3.6) neglects multiple scattering 

effects within the soil layer. However, its effectiveness was tested over 

several L-band test sites at the seasonal to inter-annual temporal scales by 

De Rosnay et al. (2006b). Wigneron et al. (2001) showed that this 

approximation can result in error of the effective soil temperature estimate 

of approximately 1.3K. 

3.4.5 Vegetation Modelling 

When a vegetation layer is present over the soil surface, the vegetation 

layer scatters and absorbs part of the radiation emitted by the soil, as well as 

emitting radiation itself (see Figure 3.6). In L-MEB this is modeled using 

the ‘τ-ω model’, proposed by Mo et al. (1982) and already described in 

section 2.2.3.2.3. With the ‘τ-ω’ formulation, the above canopy brightness 

temperatures are written as (see also (2.10)): 
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+Γ+−−= VPPPPBP TT ))()(1))((1))((1()( ϑγϑϑγϑωϑ   

EFFPP T)())(1( ϑγϑΓ−+ , (3.7) 

where TV is the effective vegetation temperature and ω the single scattering 

albedo which characterise the scattering of the soil microwave signal 

through the vegetation canopy. 

The transmissivity of the vegetation layer γP is calculated from the 

vegetation optical depth τP as (see also (2.11)): 

)cos/)(exp()( ϑϑτϑγ PP −= . (3.8) 

In L-MEB a sophisticated modeling approach is used to account for the 

effect of vegetation structure on the dependence of the τP from polarisation 

and incidence angle, which was found to be significant in several studies 

(Wigneron et al., 1995; Van de Griend et al., 2004; Wigneron et al., 2004; 

Wigneron et al., 2007), particularly for stem-dominated crops like wheat 

and corn. Given that the most common crop types in the NAFE’05 study 

area are of this kind, it is important to consider this effect. Wigneron et al. 

(2001) proposed a simple formulation using a polarisation correction factor 

Cpol to parameterise the effect of a dominant vertical vegetation structure on 

the optical depth for cereal crops:  

NAD)( τϑτ =H                                   ,and (3.9) 

)sin(cos)( 22
NAD ϑϑτϑτ polV C+= , (3.10) 

where τNAD is the value of τP at nadir, independent of both incidence angle 

and polarisation. (3.9) and (3.10) were later refined by Escorihuela et al.  

(2007) and Saleh et al. (2007) by introducing the vegetation structure 

parameters ttV and ttH (or ttH and the parameter Rtt=ttV/ttH) that correct the 

optical depth for non-nadir views at each polarisation by: 

)sin*(cos)( 22
NAD ϑϑτϑτ PP tt+= . (3.11) 

A value of ttP>1 or ttP<1 will correspond, respectively, to an increasing 

or decreasing trend of τ as a function of the incidence angle ϑ . The 
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particular case, ttH = ttV =1, corresponds to the “isotropic” case where τP is 

assumed to be independent of both polarisations and incidence angle. 

The nadir value of the vegetation optical depth τNAD is then related to the 

vegetation water content (VWC) using the empirical relationship between 

optical depth and VWC given by Jackson et al., 1991: 

VWCbNAD *=τ . (3.12) 

using the parameter b which, given (3.11), can be considered unique to the 

type of vegetation and radiation frequency. 

One caveat in using (3.12) for satellite applications is that it is difficult to 

provide estimates of VWC at global scale. An alternative approach proposed 

for the SMOS mission is to parameterise the optical depth through 

vegetation indices such as the Leaf Area index (LAI) or the Normalised 

Difference Water Index (NDWI). It is in fact much easier to construct global 

maps of LAI and NDWI from spaceborne remote sensing observations in 

the optical domain or from SVAT modeling (Wigneron et al., 2002) than 

construct maps of VWC directly. Moreover, recent studies have found good 

correlation between optical depth and LAI (Saleh et al., 2006a) and NDWI 

(Jackson et al., 2004). 

3.4.6 Forest 

In the case of dense vegetation cover like such as a forest canopy, the 

effects of attenuation and scatter of the vegetation layer become increasingly 

important and would require the consideration of more complex 

attenuation/scattering mechanisms than those simulated by the zero-order 

radiative transfer simplification used by L-MEB. However, in order to 

harmonise the methodology to be adopted for forests with the general 

SMOS L2 algorithm, a zero-order τ-ω approach has been adopted for forests 

by the SMOS L2 algorithm. Several L-band studies have analysed the 

radiative transfer properties of different types of forest (Ferrazzoli et al., 

2002; Saleh et al., 2004; Della Vecchia et al., 2007; Grant et al., 2007b). 

The main findings of these studies are: 
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• the nadir equivalent optical depth for forest (τFNAD) can be 

considered as fairly constant with respect to polarisation and 

incidence angle (i.e., parameter ttV = ttH ~1). This is a result of the 

variability in orientation of branches and leaves in forest canopies; 

• at L band, leaves are almost transparent, attenuation is mostly due 

to branches, and contributions from the soil may still be 

appreciable, unless the forest is very dense. Therefore, τFNAD can 

be considered as a “static” parameter which does not change in 

time. In the SMOS L2 algorithm, τNAD will be related to the annual 

maximum LAI through empirical parameters; and 

• the scattering albedo ω can be considered as constant (i.e. 

independent of incidence angle, polarisation and time). However, it 

is not negligible, since its value is close to 0.1 (see next section).  

In this study, values of the L-MEB parameters specifically calibrated for 

the Eucalypt forest in the NAFE’05 study area were used (Grant et al., 

2008). This is addressed in the following section together with a description 

of the values of all the L-MEB parameters used in this study for the low and 

moderately vegetated soil case. 

3.4.7 L-MEB Parameters 

The review of the L-MEB model presented in the previous section 

identified several parameters that are needed to characterise the radiative 

transfer properties of low to moderately vegetated soil and forested surfaces. 

A summary of these parameters is presented in Table 3.3. 

Specific values for each parameter need to be set a priori, or can be 

retrieved together with soil moisture if a sufficient number of concurrent 

multi-angular and/or bi-polarised observations are available. A considerable 

amount of research has been devoted in the past decade towards building a 

database of L-MEB parameter estimate for a variety of vegetation and 

surface types. Building upon these studies, J.P. Wigneron  (pers. comm.) has 

completed a summary of ‘best estimates’ which will be the baseline for 
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SMOS operational soil moisture retrieval and which have been adopted in 

this study. This database is summarised in the following discussion and will 

be referred to in this thesis as the L-MEB ‘default’ parameter set: 

Among the soil and vegetation parameters that appear in L-MEB, the 

roughness parameter HR is amongst those which have the largest impact on 

the soil moisture retrieval accuracy. The dependence of this parameter on 

the surface roughness characteristics (standard deviation of heights σS, 

autocorrelation length LC, etc.) is nevertheless not well known. Wigneron et 

al. (2001) proposed a simple incidence angle and polarisation independent 

parameterisation of HR as a function of σS, LC and soil moisture. 

Nevertheless, as estimates of two surface roughness parameters are required, 

the parameterisation cannot be applied directly for coarse-scale soil 

Table 3.3. L-MEB input parameters to be set a priori. This table does not 
include ancillary data. 

L-MEB 

component 
Symbol Description units 

HR Roughness 
(section 3.4.3) 

[-] Soil 
emission/ 
scattering 

NRP Roughness exponent at 
V/H polarisation 
(section 3.4.3) 

[-] 

wo [m3/m3] Effective soil 
temperature  

bo 

Texture parameters for 
effective soil temperature 
TEFF computation 
(section 3.4.4) [-] 

b parameter of the relation 
τNAD/VWC 
(section 3.4.5) 

[-] 

ttP Angular correction for τ 
at V/H polarisation 
(section 3.4.5) 

[-] 

ωP Single scattering albedo 
at V/H polarisation 
(section 3.4.5) 

[-] 

Vegetation 
emission/ 
scattering/ 
absorption 

τFNAD Nadir equivalent optical 
depth for forest 
(section 3.4.5) 

[-] 
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moisture retrievals due to the difficulty in determining the two surface 

roughness parameters over large areas. The dependence of HR on soil 

moisture was confirmed by other studies (e.g., Saleh et al., 2007) which 

proposed an incidence angle and polarisation independent linear 

parameterisation HR=1.3-1.13*θ. This has been shown to be applicable to a 

variety of grass types with a litter layer. In the absence of litter, a constant 

value for HR of 0.5 was found suitable for grass surfaces (Saleh et al., 2007). 

For crops, values of HR have been shown to be in the range 0.1-0.2 for 

relatively smooth surfaces (wheat) and ~0.5 when rows at the surface are 

present (as for corn) (Van de Griend et al., 2004).  

Estimates of the polarised (subscript P) roughness exponent NRP, 

generally considered zero at L-band, have been recently updated through 

long time series observations over bare soils from the Surface Monitoring 

Of the Soil Reservoir Experiment (SMOSREX; De Rosnay et al., 2006a), 

with NRV=−1 or 0 and NRH=0 or 1 respectively (Escorihuela et al., 2007). 

These values were also found suitable for crops (Wigneron et al., 2004; 

Wigneron et al., 2007). For grasses NRV=0 and NRH=1 provided the best soil 

moisture retrievals (Saleh et al., 2006b; Saleh et al., 2007). However, the 

variability of these parameters across surface types and their impact on the 

soil moisture retrievals are relatively limited. 

At L-band a value of b=0.12±0.03 was found to be representative of most 

agricultural crops for a variety of incidence angles (Jackson et al., 1991; 

Van de Griend et al., 2004). This estimate was later refined to 0.08 

(Wigneron et al., 2007), after introduction of the incidence angle 

dependence of the vegetation optical depth (see (3.11)). Similar values 

(0.15) have been estimated over grasslands (Saleh et al., 2007). A few 

studies have reported that the effect of the litter layer common in grasslands 

might result in an increased value for b of up to 0.4, as a consequence of the 

attenuation effects of the water content in this layer (Jackson et al., 1991; 

Wigneron et al., 2004). 
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Values of ω have been found to be significantly larger than zero only for 

corn fields and grasslands at V-pol (ωv =0.05), and negligible for all the 

other crop types and at H-pol (Ferrazzoli et al., 2002; Grant et al., 2007a). 

As the dependence of ω on the incidence angle has not been clearly 

demonstrated to date in the literature, the value of ω in L-MEB is tabulated 

only as a function of the vegetation type (i.e., any dependence on incidence 

angle is neglected). 

The variation of the optical depth with incidence angle is modulated 

through two ‘vegetation structure’ parameters ttV and ttH which characterise 

the isotropy of the structure of the standing vegetation. These are generally 

set to ‘1’ in the case of isotropic canopy like that of native grasses 

(Wigneron et al., 2007), while values as high as ‘8’ for ttV  have been 

estimated for vertically dominated crops such as wheat and corns, with ttH 

generally closer to 1 (Wigneron et al., 2007). 

Parameters w0 and b0 were calibrated using data from two bare soil sites 

in southern France: a loam soil at the SMOSREX (De Rosnay et al., 2006a) 

and a silty clay loam at the site of the Institut National de Recherches 

Agronomiques near Avignon (INRA) (Wigneron et al., 2001). The value of 

w0 was found to be close to 0.3m3/m3 at both sites. The value of b0 was close 

to 0.3 over the INRA Avignon site and close to 0.65 over the SMOSREX 

site. It should be noted that recently the dependence of the parameters w0 

and b0 as a function of soil texture was determined by analysis of a large 

number of soil types (Wigneron et al., 2008). However, in this thesis the 

values w0=0.3m3/m3 and b0 =0.3 were used as default values in L-MEB. 

Values of parameters τFNAD, ω, tt, NR, and HR were specifically calibrated 

for the Eucalypt forest present in the NAFE’05 study area by J. Grant (pers. 

comm.). The optical depth of the Eucalypt canopy was calibrated to be 0.57, 

which is lower than that retrieved over coniferous and deciduous forests 

(Saleh et al., 2007), reflecting the lower density of the Eucalypt forest. 

Lower values were also calibrated for HR (0.12), while ttV and ttH  (0.46), ω 

(0.07) and NR (1.5) were close to those retrieved for other types of forests. 
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3.5 Chapter Summary 

This Chapter has presented a background description of the Soil Moisture 

and Ocean Salinity (SMOS) mission and the currently proposed SMOS L2 

soil moisture retrieval algorithm. The approach used by the SMOS L2 

algorithm to retrieve soil moisture (and potentially optical depth) estimates 

over heterogeneous areas has also been described, with focus at the 

vegetated surface types considered in this thesis. The assumptions that will 

be made in subsequent Chapters of this study to apply the SMOS L2 

algorithm with airborne L-band data have been presented. Additionally, the 

L-MEB radiative transfer model, which is the core to the SMOS L2 

algorithm, has been described in detail together with a review of its input 

parameters. 

The approach adopted for the SMOS L2 algorithm to retrieve soil 

moisture estimates from SMOS data over heterogeneous pixels containing a 

mix of low or moderately vegetated soil and low density forest cover is 

based on some limiting assumptions which need to be verified and tested 

with realistic data sets. These assumptions are that (i) the land cover 

heterogeneity is the most important factor in terms of soil moisture retrieval 

at satellite scale, and (ii) soil moisture and optical depth are uniform 

between the moderately vegetated soil fraction and the forest fraction. 

Additionally, the L-MEB input parameters have been thus far calibrated 

using only tower radiometers and never verified at coarse resolutions typical 

of SMOS footprints.  

The L-MEB model with the proposed parameters will therefore be 

evaluated with fine-resolution airborne data in Chapter 5, using the data to 

be described in Chapter 4. In Chapter 7 the model will be evaluated at the 

satellite scale and the error in soil moisture retrieval interpreted on the basis 

of the land surface heterogeneity which will be assessed in Chapter 6. In 

Chapter 8, the SMOS L2 algorithm approach will be tested at satellite scale 

in order to test the assumptions listed above and to develop an alternative 

soil moisture retrieval approach to better account for the land surface 

heterogeneity. 
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Chapter Four 

4 The NAFE’05 Field Campaign 

This Chapter describes the airborne and ground data collected during this 

study, which are used throughout this thesis to address the problem of soil 

moisture retrieval in the presence of land surface heterogeneity. This data 

was collected under the auspices of the National Airborne Field Experiment 

2005 (NAFE’05), and consisted primarily of airborne L-band observations 

supported by ground sampling of the top 5cm soil moisture over an area as 

big as a future SMOS pixel. This Chapter only describes the data which are 

essential to interpret the analysis presented in the following Chapters are 

included. . Full details of the experimental design are included in the 

NAFE’05 Experiment Plan presented in Appendix A1. A summary 

description of this data set has also been published in Panciera et al.(2008a), 

and the data together with relevant documentation are available at the 

website www.nafe.unimelb.edu.au. While the NAFE’05 experiment was an 

international effort of several institutions with more than 40 participants, the 

author of this thesis played a central role in all aspects of the field campaign, 

including conceptualisation and planning of the airborne monitoring and 

ground sampling strategies, management of the ground sampling activities, 

and the post-processing, documentation and archiving of all collected data. 

In parallel with NAFE’05, the European Space Agency (ESA) conducted 

the Campaign for validating the Operation of SMOS (CoSMOS) on the 

same study area, using a separate aircraft and L-band radiometer. Although 

the two airborne campaigns were operated in synergy, the CoSMOS data set 

is not described in this Chapter or used in this thesis. However, a summary 

of the CoSMOS data is provided in Panciera et al. (2008a). 

4.1 Experiment Overview 

The National Airborne Field Experiment 2005 (NAFE’05) was 

undertaken across a 4-week period, starting on October 31st and ending on 
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November 25th, in the Goulburn River catchment, located in south-eastern 

Australia (see Figure 4.1). The study area was a 40km x 40km area 

characterised by moderate to low vegetation cover (mainly grazing land and 

crops with a small fraction of forest) and gentle topography. The objective 

of the campaign was to provide simulated SMOS observations using an 

airborne radiometer, supported by soil moisture and other relevant ground 

data for i) development of the SMOS soil moisture retrieval algorithms, ii) 

developing approaches for downscaling the low-resolution data from 

SMOS, and iii) testing its assimilation into land surface models for root 

zone soil moisture retrieval. This thesis uses the data to address the first of 

these three objectives. 

The airborne and ground data collected during the experiment used in 

this thesis consisted of: 

• airborne data: 

o regional L-band airborne observations of the entire study area at 

1km nominal resolution ( section 4.3.3.1); 

 

Figure 4.1. Location of the Goulburn catchment and study area (right 
panels) and overview of the NAFE’05 study area, permanent monitoring 
stations, experimental farms and flight coverages (left panel). 
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o multi-resolution L-band airborne observations of focus areas at 

62.5, 250, 500m and 1km nominal resolution (section 4.3.3.2);  

o multi-angle L-band airborne observations at 250m nominal 

resolution over three experimental farms (section 4.3.3.3); and 

o supporting thermal infrared and digital photography airborne 

observations; 

• ground data: 

o spatial monitoring of near-surface soil moisture and temperature 

over the entire study area (2km spacing) concurrently with 

regional flights (section 4.4.1), flights over eight experimental 

farms (6.25m to 1km spacing) and with multi-resolution flights 

(4.4.1); 

o long-term observation of rainfall, soil moisture profiles (5cm-

90cm) and near-surface temperature (2.5cm and 15cm) at 

seventeen permanent stations, together with associated 

meteorological data at two permanent stations (section 4.4.2); 

o continuous near-surface soil temperature at 1, 2.5 and 4cm 

together with leaf wetness at eight supplementary stations, with 

canopy thermal infrared temperature measurements also made at 

four of these stations (section 4.4.3); and 

o supporting data on vegetation biomass/water content, soil 

gravimetric water content, surface roughness, soil texture, 

vegetation type and land cover classification, surface rock cover 

and dew estimates (section4.4.4). 

4.2 Description of the Study Area 

The Goulburn catchment is a 6,540km2 experimental area extending from 

31°46’S to 32°51’S and 149°40’E to 150°36’E, with elevations ranging 

from 106m in the floodplains to 1,257m in the northern and southern 

mountain ranges. The terrain slope has a median of 8%, with a maximum of 

71%. The Goulburn River runs generally from west to east with tributaries 

in a predominantly north-south orientation. Much of the original vegetation 
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has been cleared to the north of the Goulburn River, where grazing and 

cropping are the dominant land uses (predominantly native grass, wheat and 

barley). In contrast, the southern portion of the catchment is largely un-

cleared with extensive areas covered by open forest, consisting mainly of 

Eucalypt (see Figure 4.1). The soils in the area are primarily basalt derived 

clays in the north and sandstone derived sandy soils in the south. The 

general climate within the region can be described as sub-humid or 

temperate, with an average annual rainfall of approximately 650mm and 

temperatures varying from a monthly mean maximum of 30°C in summer to 

monthly mean minimum of 2°C in winter (see Appendix A1).  

Aircraft and ground operations were concentrated on a 40km x 40km 

area in the northern part of the catchment (see Figure 4.1). This area was 

chosen to represent a single SMOS pixel, and was located in the mostly 

cleared northern part of the catchment, for its moderate to low vegetation 

cover and concentration of soil moisture monitoring stations, making it a 

candidate SMOS verification site. The area is characterised by a gently 

rolling landscape with mixed grazing and cropping land use. 

The catchment has been the subject of hydrological monitoring for 

remote-sensing-related studies since 2001, and a complete description of the 

monitoring infrastructure can be found in Rüdiger et al. (2007). There are 

two weather stations and eighteen soil moisture profile stations within the 

area, with seven of the soil moisture stations concentrated in a 150ha study 

catchment at the Stanley experimental farm (see Figure 4.1), and the 

remainder uniformly distributed across the area. 

For airborne and ground monitoring purposes the area was logistically 

divided into two sub-areas, the Krui and Merriwa study areas (see Figure 

4.1), defined by the boundaries of two sub-catchments formed by the Krui 

and Merriwa Rivers. These areas were approximately 10km x 30km (Krui) 

and 20km x 30km (Merriwa) in size. Within these areas, eight of the farms 

hosting soil moisture monitoring stations were selected as experimental 

farms for intensive ground sampling and multi-resolution aircraft 
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monitoring. These experimental farms were selected as being characteristic 

of the land cover and soil types present in the study area, and are also 

indicated in Figure 4.1. The farms ranged in size from 200ha to nearly 

64km2. The main characteristics of these farms are summarised in Table 4.1. 

4.3 Airborne Data 

The flights were carried out by a Diamond ECO-Dimona aircraft from 

the Airborne Research Australia (ARA) national facility, equipped with the 

Polarimetric L-Band Multi-beam Radiometer (PLMR) developed by 

ProSensing. All flights took off from the Scone Airport, situated 

approximately 50km east of the study area. 

4.3.1 Instrument Characteristics 

The PLMR is a dual polarised L-band radiometer. Due to the small 

instrument size and weight, a light aircraft can be used as the observing 

platform (see Figure 4.2), making it a suitable low-cost and flexible tool for 

environmental monitoring. The PLMR uses six pushbroom patch array 

receivers with incidence angles of +/-7°, +/-21.5° and +/-38.5, and measures 

both V and H polarised brightness temperatures (TB) for each beam using a 

polarisation switch. The six beams can be oriented either across track 

(image) or along track (multi-angle). Apart from the multi-angle flights, the 

instrument was always flown in image (or “pushbroom”) configuration. The 

change between these configurations was achieved in NAFE’05 by 

manually rotating the instrument through 90º prior to multi-angle flights, so 

that the beams pointed forward/backward with respect to the aircraft axis. 

The reduced antenna beamwidth coupled with an ability to fly low and slow 

allowed unprecedented ground spatial resolution, with a footprint size of 

approximately 62.5m (at 3db beamwidth) from a 625ft flying height, the 

lowest flying height during NAFE’05. On all flights, the payload also 

included a FLIR S60 thermal imager with 80° field of view lens. A Canon 

EOS 1Ds 11 Megapixel digital camera was installed specifically for a single 

aerial photography flight, conducted early in the campaign. 
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Table 4.1. Main characteristics of the eight experimental farms in the 
NAFE’05 study area. 
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4.3.2 Calibration of PLMR 

Calibration of the radiometer was performed daily during the campaign 

against warm (ambient blackbody) and cold (sky) observations before and 

after every flight. At each calibration session, PLMR was left observing the 

target (sky or blackbody) for 15min. In warm calibration, PLMR beams 

were pointing downward to the blackbody box; in cold calibration, the 

PLMR beams were pointing at ~45º above the horizon looking at clear sky. 

Apart from the Sun, galactic background noise was not accounted for during 

the processing of the sky calibration data, as it is generally estimated to be 

less than 1K even when pointing exactly to the galactic plane. The effect of 

this assumption on calibration accuracy in the range considered is estimated 

to be less than one tenth of a kelvin, which is negligible in the context of 

soil moisture remote sensing. However, extreme care was taken to avoid sun 

or other terrestrial interferences in any of the six beams.  

 

Figure 4.2. the airborne facility: (a) View of the PLMR radiometer with the 
cover off; (b) the The Diamond ECO-Dimona aircraft with PLMR mounted 
under the fuselage and (c) view of the cockpit showing cockpit computer 
display. 
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The accuracy of PLMR in the brightness temperature range observed 

over water and land during the NAFE’05 campaign (150–300K) was 

estimated to be better than 1K at H polarisation and 2.5K for V polarisation. 

Complete details about the calculation of the accuracy of PLMR, including 

plots and tables of accuracy for each individual beam are given in Appendix 

A3.  

In-flight calibration checks were also performed by overpassing the 

nearby Lake Glenbawn immediately after take off in the morning and before 

landing in the evening (warm calibration), and sky-looks with the outermost 

beams through a series of steep turns (cold calibration). Lake Glenbawn is 

located 100km east of the Goulburn catchment, and was instrumented for 

monitoring of surface water temperature and salinity. Weekly water 

temperature and salinity transects over the lake were also undertaken to 

check for spatial gradients.  

Beam-specific calibration coefficients were derived and applied for each 

day of the campaign by averaging the pre- and post-flight coefficients for 

each beam. The calibration drift during the flight (i.e., the difference 

between the coefficients calculated for pre- and post-flight calibration) was 

not found to be serious given the accuracy needed for soil moisture. The 

calibrated radiometer data have been geolocated taking into consideration 

the aircraft position, pitch, roll, and yaw information recorded for each 

measurement, with the beam centers projected onto a 250m Digital 

Elevation Model (DEM) of the study area. The effective footprint size and 

ground incidence angle has also been calculated, taking into consideration 

the aircraft attitude and terrain slope.  

4.3.3 Airborne Monitoring 

A total of approximately 100hrs of mission flights were conducted during 

the campaign. All flight lines were north-south oriented in order to be 

parallel to the geomorphology of the area and to avoid strong variation in 

terrain elevation, as well as direct sun glint in the outermost beams. 

Moreover, this orientation is similar to the planned SMOS flight path. Full 
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coverage of the monitored area was guaranteed by allowing a full PLMR 

pixel overlap between adjacent flight lines, and by flying the nominal AGL 

altitude above the median elevation of the area. This was done to ensure 

that, even in areas of high elevation, the reduction of the pixel size due to 

terrain elevation did not jeopardise the overlap between adjacent flight lines.  

Five flight types were conducted: i) Regional, ii) Multi-resolution, iii) 

Multi-angle, iv) Dew effect and v) Aerial photography. Characteristics 

specific of each flight are summarised in Table 4.2. 

4.3.3.1 Regional Flights 

Regional flights were performed over the entire 40km x 40km study area. 

These flights were scheduled according to the local overpasses of the Aqua 

platform in order to provide supporting fine-scale passive microwave data 

for comparison with the C-band AMSR-E mission. The Flight altitude was 

10,000ft Above Ground Level (AGL) with data generally acquired between 

7:00AM and 9:30AM. These flights were undertaken every Monday and 

provided four maps of L-band microwave emissions at a nominal ground 

resolution of 1km. Due to the rough terrain, the effective pixel size varied 

between approximately 860m and 1070m, resulting from flying at constant 

altitude above the median elevation of the study area. The regional maps 

acquired are shown in Figure 4.3. For better display, the aircraft 

measurements shown were gridded to a reference 1km resolution grid and 

normalised for incidence angle to 38º (see Chapter 5 for details). 

4.3.3.2 Multi-resolution Flights 

The multi-resolution flight types were specifically designed to address L-

band scaling issues by acquiring observations of the same area at various 

resolutions. This required mapping of the same area at different altitude 

flights on the same day. Due to the long flight time required, the entire study 

area could not be covered during these flights, therefore two focus areas of 

approximately 10km x 30km were selected for the alternate multi-resolution 

flights. These areas were the Merriwa and Krui study areas (see Figure 4.1).  
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Figure 4.3. Regional brightness temperatures (kelvin) at Horizontal and 
Vertical polarisation (gridded at 1km resolution, normalised for incidence 
angle to 38º and for soil temperature changes to 8:00AM reference time). 
Flight lines are indicated in the top left panel. Boundaries of the 
experimental farms are also shown with solid lines. 
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Multi-resolution flights were undertaken four times per week, alternating 

between the two focus areas. For each flight, the focus area was covered at 

four different altitudes in descending order (10,000ft, 5,000ft, 2,500ft and 

625ft AGL), resulting in L-band maps at approximately 1km, 500m, 250m 

and 62.5m spatial resolutions and thermal infrared maps at approximately 

20m, 10m, 5m and 1.25m resolution. In the Krui focus area, due to 

restriction in flight endurance the westernmost area (surrounding the Illogan 

farm, see Figure 4.1) could only be flown at the two lowest flight altitudes 

(2,500ft and 625ft). 

Flights generally started at 6:00AM and finished at 11:00AM. To avoid 

gaps in the data due to the reduction in pixel size in the northern part of the 

study area (with higher terrain elevation), the flights were conducted with 

different flight altitude on each farm, this being obtained by flying the 

nominal altitude over the median elevation of each farm. An example of 

multi-resolution mapping over the Krui sub-area is shown in Figure 4.4 (the 

same data processing was applied here as in Figure 4.3) 

 
Figure 4.4. Multi-resolution flight lines and example of H-polarised 
brightness temperatures (kelvin) for the Krui area on November 1st. Maps 
are displayed by decreasing flight altitude from left to right: (a) 
10,000ft/1km resolution; (b) 5,000ft/500m resolution; (c) and (c) 
2,500ft/250m resolution, and (d) 625ft/62.5m resolution. Boundaries of the 
experimental farm are displayed in solid lines. 
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4.3.3.3 Multi-angle Flights 

A total of six multi-angle flights were performed over three experimental 

farms in the Merriwa study area: Merriwa Park, Cullingral and Midlothian 

(see Figure 4.1). During these flights PLMR was mounted on the aircraft in 

the along-track configuration, yielding three forward and three backward 

looking beams (see Figure 4.5). These flights were flown at a nominal 

altitude of 2,500ft (AGL), resulting in a pixel size of approximately 250m, 

The farms were selected to have reasonably flat areas in order to avoid 

excessive topographic effect on the effective ground projected incidence 

angle. Moreover, uniform vegetation cover was sought in order to minimise 

the effect of land surface heterogeneity on the multi-parameter retrieval 

analysis. Multi-angle flights took place in the early afternoon immediately 

following the multi-resolution flights, between 12:00PM and 2:00PM 

approximately.  

4.3.3.4 Dew effect Flights 

Data from the dew effect flights were not used for the specific purpose of 

this study. Consequently, for more details about this type of data the 

interested reader can refer to Appendix A1. 

 

Figure 4.5. Example of multi-angle flight data (H-polarised brightness 
temperatures) over two uniform areas (250m x 250m) of the Merriwa Park 
experimental farm. 
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4.4 Ground Data 

The ground component of the NAFE ‘05 field campaign consisted of: 

1. spatial soil moisture monitoring of near-surface soil moisture; 

2. long-term observation of soil moisture profiles; 

3. supplementary soil and canopy temperature  monitoring stations; and 

4. supporting data. 

4.4.1 Spatial Monitoring of Near-Surface Soil Moisture  

The soil moisture within the top 5cm of the soil profile was monitored 

coincident with each aircraft flight. Measurements were undertaken using a 

portable soil moisture spatial data acquisition system developed specifically 

for this research, named the Hydraprobe Data Acquisition System (HDAS, 

Figure 4.6). The system integrates (i) a Hydraprobe soil moisture device for 

measuring the top 5cm soil moisture, (ii) a GPS receiver for navigation to 

predefined sampling points, and (iii) a handheld system for storing the data 

in a GIS electronic format. Full details 

regarding this system have been included in 

Appendix A2. A site-independent calibration 

of the Stevens Water Hydraprobe sensor 

used by this system has been developed 

using gravimetric samples collected during 

the experiment and subsequent laboratory 

analysis, indicating that data is accurate to 

within ± 3.5%v/v Merlin et al., 2007.  

On the four dates when regional flights 

were conducted (every Monday), the ground 

teams sampled soil moisture with the HDAS 

at approximately 2km spacing, covering a 

large portion of the NAFE’05 study area 

along the network of accessible roads in the 

area. Measurements were made at a  

 

Figure 4.6. The author 
taking measurements with 
the HDAS system. 
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sufficient distance from the road in representative locations so as to avoid 

anomalous readings. An example of the data collected in November 14th is 

shown in Figure 4.7a. 

On the other dates (concurrently with multi-resolution and multi-angle 

flights), the ground sampling was focused on two of the four experimental 

farms located in either the Krui or Merriwa focus area (depending on the 

schedule for multi-resolution flights shown in Table 4.2). Each farm was 

therefore mapped at least ones to two times every week. Very high 

resolution sampling was concentrated on a 150m x 150m area (called 

“High-resolution areas”), where soil moisture was measured at 12.5m (outer 

section) and 6.25m (75m inner square) spacing. The high-resolution areas 

on each farm were selected to capture local spatial variability of near-

surface soil moisture associated with changes in vegetation cover, soil type 

or micro-topography. The area surrounding very high resolution sampling 

areas were sampled at intermediate resolutions (125m to 250m spacing). 

The remaining extent of the farm area was sampled at coarser resolution 

 

Figure 4.7. Example of spatial monitoring of soil moisture during (a) 
regional flights (Monday) and (b) Multi-resolution flights (only the Tuesday 
sampling strategy is shown). The inset magnifies the area surrounding the 
high-resolution area and indicates the increasing sampling spacing. HDAS 
Point measurements are displayed with grids of the size of the measurement 
spacing. 
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(500m and/or 1km spacing). The relative extent of the areas sampled at each 

resolution was optimised by maximising the coverage at finer scale, while 

providing that the entire farm area was covered within a daily time window. 

An example of the soil moisture data collected on “multi-resolution” dates is 

shown in Figure 4.7b. To view the detailed sampling plans for each farm, 

please refer to Appendix A1. 

4.4.2 Long-Term Soil Moisture Profile Stations 

The pre-existing long-term soil moisture profile, rainfall and runoff 

monitoring infrastructure in the Goulburn Experimental catchment (Rüdiger 

et al., 2007) were upgraded for near-surface (top 5cm) soil moisture, 

temperature and more extensive rainfall monitoring, prior to the NAFE’05 

experiment. A total of 26 monitoring sites were operating during the 

campaign. Of those, seventeen were distributed across the study area at 

locations chosen for typical vegetation, soil, and topographic aspect, so that 

they represented catchment average soil moisture locations (see Figure 4.1). 

Note that seven of these sites were concentrated in a 150ha study catchment 

at the Stanley farm, while the others were uniformly distributed across the 

area. Additionally, two automatic weather stations located in the area 

recorded meteorological data during the campaign (see Figure 4.1). 

Each of the soil moisture sites had up to three vertically inserted 

Campbell Scientific CS616 water content reflectometers over depths of 0-

30cm, 30-60cm and 60-90cm, respectively, together with a Stevens Water 

Hydraprobe, measuring the soil temperature at 2.5cm and soil moisture in 

the 0-5cm layer of soil. Additionally, a Campbell Scientific T107 

temperature sensors measured soil temperature at 15cm depth. A typical 

installation for these sites is shown in Figure 4.8, whereas Figure 4.9 

displays an example of soil moisture and rainfall time series collected at one 

of the sites during the campaign period. The CS616 reflectometers were 

calibrated against both laboratory and field measurements Rüdiger et al., 

2009. 

The automatic weather stations, located in the lower and upper reaches of 
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Figure 4.8. Schematic of the Goulburn River experimental catchment 
weather and soil moisture stations. The large box includes the 
instrumentation typically installed at weather stations while the smaller 
internal box shows the instruments typically installed at soil moisture 
monitoring sites. The supplementary NAFE instrumentation is shown in the 
left box 

 

 

Figure 4.9. Example of soil moisture and rainfall time series data collected 
at the soil moisture monitoring sites during the campaign. The monitoring 
period of the ESA’s CoSMOS campaign conducted in the study area is also 
indicated. 
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the Krui catchment respectively (see Figure 4.1) were operational during the 

experiment. Of interest to this study were only the three soil temperature 

sensors (15, 45 and 75cm). More details about the weather stations are given 

at www.nafe.unimelb.edu.au. 

4.4.3 Supplementary Soil and Thermal Infrared Temperature 

Stations 

Eight of the existing monitoring stations were supplemented with 

supplementary sensors for the duration of the experiment (see Figure 4.10). 

The primary purpose of this supplementary monitoring was to provide 

information on leaf wetness in response to dew and precipitation, and 

develop relationships between thermal infrared observations and near-

surface soil temperature. Consequently, the eight stations were all 

supplemented with soil temperature profile measurements with sensors at 

1cm, 2.5cm and 4cm (Unidata 6507A/10 sensors), duplicated in most cases. 

At four of these stations, thermal infrared radiometers (Ahlborn Thermalert 

TX or Everest Interscience Inc. Infrared Temp Transducers, Model 4000) 

were installed on 2m high towers (schematic of the setup is given in Figure 

4.8). One of these was located at a bare soil site, while the other three were 

distributed amongst dominant vegetation types in the area (lucerne, wheat 

and native grass). Leaf wetness sensors (Measurement Engineering 

Australia 2040) were installed at the four monitoring stations located at 

experimental farms in the Merriwa area, where a dew effect flight was 

undertaken, and at two experimental farms in the Krui study area (Pembroke 

and Stanley) in order to check spatial variability of dew across the entire 

area. 

A specific station was set up for rock temperature monitoring, to provide 

data for analysis of the effect of surface rock on L-band passive microwave 

emission. The station had four Unidata 6507A/10 thermocouples embedded 

in a surface layer of the rock at different locations and was installed at the 

Stanley experimental farm. 
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4.4.4 Supporting Data 

Supporting ground data collected during the campaign included 

vegetation biomass/water content, volumetric soil samples, surface 

roughness measurements, vegetation type and land use classification, 

surface rock cover and leaf wetness estimates. 

4.4.4.1 Vegetation Data 

On each experimental farm the spatial variability of vegetation biomass 

and water content was characterised by collecting between four and sixteen 

0.5m x 0.5m quadrant samples across the high-resolution soil moisture 

sampling area, supported by a minimum of five quadrant samples of the 

dominant vegetation types across the farm. This was undertaken once a 

week at fixed locations in order to monitor temporal changes in vegetation 

 

 

Figure 4.10. Supplementary instrumentation installed during NAFE’05. The 
map shows the Goulburn River Experimental catchment locations at which 
thermal infrared (TIR), soil temperature sensors at 1cm, 2.5cm and 4cm 
(temp. profile) and leaf wetness sensors were temporarily installed during 
November 2005. 
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biomass and water content. On all other days, vegetation water content 

samples were collected at two corners of the high-resolution areas, as a 

check on temporal changes of the farm vegetation water content. A detailed 

description of the vegetation sampling strategy is given in Appendix A1. An 

example of the vegetation water content (VWC) data collected is shown in 

Figure 4.11. The complete data can be viewed at www.nafe.unimelb.edu.au. 

4.4.4.2 Surface Roughness 

Surface roughness was estimated once during the campaign at a 

minimum of four locations on each experimental farm to capture the 

different roughness characteristics according to land cover type. Two 1m 

long roughness profiles were recorded for each measurement location, one 

north-south and one east-west oriented. The Root Mean Square of the pin 

profiler heights (average of the four locations) and the classical Choudhury 

 

Figure 4.11. Example of Vegetation Water Content (VWC) data collected at 
the NAFE’0 5experimental farms. Data are shown for four farms: Pembroke 
(barley crop), Illogan (mix barley/oats), Dales (native grass) and Midlothian 
(mix lucerne/fallow). 
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roughness parameter (Choudhury et al., 1979) for all farms are indicated in 

Table 4.3. 

4.4.4.3 Soil Gravimetric Samples and Soil Texture 

Top 5cm volumetric samples of soil were collected across the study area 

for both soil textural analysis and calibration of the Stevens Water 

Hydraprobe. A total of 20 samples were collected at each experimental 

farm, aimed at characterising different soil types and wetness condition 

across the farm. On two dates, further soil samples were collected across the 

entire study area, for a total of 120 samples. Soils were oven-dried for 24hrs 

in order to calculate the thermogravimetric water content. Locations of the 

samples across the study area and complete data can be found at 

www.nafe.unimelb.edu.au 

4.4.4.4 Vegetation Type, Land cover, Rock Cover and Dew 

Dominant vegetation type, land cover and surface rock cover were 

recorded at each HDAS soil moisture sampling location. This was 

undertaken for both regional and farm sampling grids. Dew presence was 

estimated visually, and recorded daily as no dew, moderately wet, or very 

wet, in order to support the leaf wetness measurement made at the 

Table 4.3. Average RMS of pin profiler measurements and calculated 
Choudhury roughness parameter for all the experimental farms, 

Farm Average RMS Choudhury parameter 

Stanley 1.07 0.46 

Pembroke 0.84 0.28 

Roscommon 0.62 0.14 

Illogan 0.97 0.39 

Midlothian 0.82 0.29 

Dales 0.89 0.31 

Cullingral 0.65 0.18 

Merriwa Park  0.63 0.15 
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monitoring stations. Complete data can be found at 

www.nafe.unimelb.edu.au. 

4.4.4.5 Vegetation LAI and NDVI 

Vegetation reflectance and leaf area index were also measured for the 

high-resolution areas of each experimental farm, with the objective to 

develop relationships for vegetation water content and biomass estimation 

from satellite sensors. This was done at least once during the campaign at 

each farm. Locations of the measurements across the study area and 

complete data can be found at www.nafe.unimelb.edu.au 

4.5 Other Data 

Other data not specifically collected by the NAFE’05 experiment but 

used in this thesis are listed below: all these data can be found at 

www.nafe.unimelb.edu.au. 

• Landsat-5 TM scene Acquired on October 21st, 2005; 

• Digital Elevation model of the study area (Australian Surveying and 

Land Information Group, 2001, GEODATA 9 second DEM); and 

• Daily Atmospherically corrected Surface Reflectance from the 

MODerate resolution Imaging Spectroradiometer (MODIS), 16-day 

composite product (November 1st to November 16th, and November 

17th to December 2nd) at 250m resolution, kindly provided by Dr. 

Stefan W. Maier, Satellite Remote Sensing Services, Department of 

Land Information Western Australia. 

4.6 Chapter Summary 

This Chapter has presented the airborne and ground data collected during 

this study in the National Airborne Field Experiment 2005 (NAFE’05). The 

data described here will be used in the following Chapters to address the 

problem of soil moisture retrieval in the presence of land surface 

heterogeneity: 
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In Chapter 5, multi-resolution L-band airborne observations (62.5m and 

1km) will be used to evaluate the L-MEB model. Supporting data on 

vegetation water content, near-surface soil temperature and surface 

roughness measurements will be used to characterise the soil-canopy 

microwave emission. HDAS spatial measurements of near-surface soil 

moisture will then be used for evaluation of the L-MEB retrieved soil 

moisture. Finally regional L-band airborne observations will also be used to 

derive soil moisture maps of the entire study area, together with supporting 

data on near-surface soil temperature, canopy land cover and soil texture. 

In Chapter 6 the heterogeneity of the land surface conditions in the 

NAFE’05 study are will be investigated using continuous observation of top 

5cm soil moisture, rainfall data, HDAS spatial measurements of near-

surface soil moisture at the experimental farms and at regional scale, and 

soil texture data  together with terrain elevation and Normalised Difference 

Vegetation index derived from MODIS. 

In Chapter 7 multi-resolution observations will be used to investigate the 

scaling properties of brightness temperatures, Moreover regional L-band 

airborne observations will be aggregated to simulate SMOS pixels. The 

effect of land surface heterogeneity on the retrieval from simulated SMOS 

pixels will then be analysed in Chapter 7 and Chapter 8 using soil texture 

and land cover data. 
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Chapter Five 

5 Evaluation of the L-MEB Model 

In this Chapter the L-MEB radiative transfer model, being the core of the 

SMOS L2 algorithm described in Chapter 3, is evaluated using the L-band 

airborne brightness temperature (TB) observations from the Polarimetric L-

Band Microwave Radiometer (PLMR) and the ground data collected during 

the NAFE’05 field campaign presented in Chapter 4. The objective is to 

evaluate the accuracy of the L-MEB model for the land surface conditions 

encountered in the study area, before applying the model to produce soil 

moisture maps of the entire area from airborne data at 1km resolution. This 

1km soil moisture product will serve as soil moisture ground truth in 

Chapters 7 and 8 in order to evaluate the error in coarse-scale soil moisture 

retrieval due to the presence of land surface heterogeneity across the study 

area.  

For the evaluation of the model, this Chapter first focuses on the eight 

focus sites located at the NAFE’05 experimental farms where soil moisture 

and land surface conditions were monitored with exceptional detail. Here, 

the L-MEB model is first evaluated using high-resolution (62.5m) airborne 

TB observations and the L-MEB ‘default’ values for the parameters. The 

parameters of the model that characterise the radiative transfer properties of 

different land surfaces are then tuned to the particular conditions of the 

NAFE’05 study area and the L-MEB model with calibrated parameters is 

evaluated using coarser-resolution (1km) airborne TB observations over the 

same eight sites. The work specifically presented in the first section of this 

chapter has been published in Panciera et al. (2008b). Finally, 1km soil 

moisture maps of the entire NAFE’05 study area are produced by applying 

the L-MEB model to 1km airborne TB observations. This is the first time the 

L-MEB model is applied to airborne data and evaluated for Australian 

conditions.  
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5.1 Evaluation of the L-MEB Model with High-Resolution 

Airborne Observations 

The first evaluation of the L-MEB model was performed using the high-

resolution airborne observations (62.5m footprint1) and ground soil moisture 

data acquired at the eight high-resolution soil moisture monitoring sites in 

the NAFE’05 experimental farms. At these sites all the factors known to 

affect the microwave emission were well monitored, and the spatial 

variability of soil moisture within the aircraft footprint was known in great 

detail (6.25m and 12.5m spacing). Direct comparison of the L-MEB model 

soil moisture retrieval with ground measured soil moisture therefore allowed 

detailed evaluation of the model physics and its parameterisation on a 

variety of typical land surface covers, with minimum uncertainty in the 

ancillary data used and in the soil moisture heterogeneity within the pixel. 

The location and characteristics of experimental farms, the ground sampling 

strategy, and the airborne observations have been thoroughly described in 

the relevant sections of Chapter 4. A brief review of the data used in this 

Chapter is presented here. 

5.1.1 Airborne and Ground data 

A total of four concurrent airborne and ground monitoring dates were 

available for each high-resolution site across the four week long campaign. 

The location and extent of these sites were carefully chosen with the 

objective of characterising the variety of land covers, soil type, and 

topography present in the study area. The characteristics of the high-

resolution sites relevant to this section are summarised in Table 5.1, together 

with an overview of the vegetation, soil texture and surface roughness 

measured at each site. Roscommon was considered a ‘control’ site as it  

                                                 
1 In this chapter, the term “observation” refers to the actual brightness temperature 

measurement, while the term “footprint” refers to the area on the ground which is within 

the radiometer field of view and contributes to the observed brightness temperature. The 

standard footprint size definition is that of the area on the ground from where 50% of the 

total power is received by the antenna. 
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exhibited uniform, flat, short grass conditions. All other sites were 

characterised by either heterogeneous land cover (Midlothian, Cullingral,  

Illogan and Pembroke) or significant topography (Stanley, Dales and 

Merriwa Park). Spatial distribution of the top 5cm soil moisture was 

monitored at each site once a week concurrently with airborne TB 

observations. A 150m x 150m core high-resolution area was sampled on a 

very fine regular grid (6.25m and 12.5m spacing) for evaluation of the soil 

Table 5.1. Characteristics of the high-resolution ground sampling sites and 
monitoring dates. Roughness parameters are indicated with the mean and 
standard deviation (in brackets) of eight measurements taken across the 
farm. (*) Soil textural data estimated from 5cm soil samples. 
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moisture retrieval from the high-resolution airborne TB observations (see 

Figure 5.1). Soil moisture ground sampling took approximately 6-8 hours 

daily (8:00AM-2:00PM), and flights over the sites were timed so that they 

always fell within this time window (9:00AM-11:00AM). Surface soil 

moisture can vary significantly on a diurnal basis, especially for short 

vegetation. Daily changes in soil moisture during the ground sampling time 

window were therefore monitored at the eleven monitoring stations across 

the study area (all on native grass). Soil moisture did not change 

significantly between 8:00AM and 2:00PM, with a mean soil moisture 

decrease across all stations and all sampling days of less than 1.1%v/v. 

Given that the airborne acquisitions were generally within the time window 

when this variation occurred, the differences between soil moisture at the 

time of aircraft overpass and that of the ground monitoring will be even 

smaller than that indicated above. 

High-resolution airborne TB observations at each site were collected at 

approximately the same time every day between 9:00AM and 11:00AM. 

The calibrated PLMR data were geolocated taking into consideration the 

aircraft position, pitch, roll, and yaw information recorded for each 

measurement, with the beam centers projected onto a 250m digital elevation 

model of the study area. The effective footprint size and ground incidence 

angle were also calculated taking into consideration the aircraft attitude, the 

terrain slope and the beam geometry. Final processing included filtering 

data with elevated aircraft roll angles (higher than 10° from horizontal) 

corresponding to steep turns of the aircraft. This also minimises sun glint 

effects in the external beams. High-resolution footprints covering each site 

were extracted using the geolocation information of each footprint, making 

sure that only the footprints entirely contained in the 150m x 150m high-

resolution area were considered (see Figure 5.1). Approximately 5-8 daily 

independent, bi-polarised TB observations of the high-resolution area were 

available for each site. These were at a variety of incidence angles, due to 

local topography and small variation in aircraft roll between parallel 

overpasses of the area. 
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As explained in Chapter 3, in order to retrieve soil moisture estimates 

from TB, the L-MEB model requires information on vegetation water 

content (VWC), soil texture, soil temperature and surface roughness. All 

these factors affect the microwave emission of a given surface at particular 

soil moisture contents. Vegetation biomass and VWC were monitored 

throughout the campaign using 50cm x 50cm biomass samples collected at 

the end of each sampling day at two fixed locations chosen to be 

representative of the site vegetation conditions. On two occasions during the 

campaign, the first and the last weeks, the spatial variability of the VWC 

across all high-resolution sites was also characterised with sixteen biomass 

samples (see Figure 5.1).  

Surface and deep soil temperature for each TB observation was extracted 

from the continuous soil temperature records at 2.5cm and 15cm depth at 

the nearby monitoring stations, making use of the PLMR time reference. 

Due to the lack of soil temperature measurements deeper than 15cm at all 

the soil moisture monitoring stations, in the present study it had to be 

assumed that the value of soil temperature at 15cm depth is a good estimate 

of soil temperature at (50cm) for which the L-MEB parameters for the 

 
Figure 5.1. Schematic of airborne TB observations and ground 
measurements at the high-resolution ground sampling sites for high-
resolution evaluation of the L-MEB model. 
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calculation of the soil effective temperature (w0 and b0, see section 3.4.7) 

have been calibrated. This assumption was verified with soil temperature 

data at 15cm and 60cm collected at a meteorological stations located at the 

Stanley farm. The 60cm temperature was found to have a positive bias of 

0.9K with respect to that at 15cm, with an error standard deviation of 1.1K. 

This impacts the calculation of TEFF only in very dry conditions (when the 

effect of TDEPTH is important), yielding an error of less than 0.6K, which is 

not significant for soil moisture retrieval purposes. 

Soil texture was determined by hydrometer analysis of 30cm deep soil 

samples collected at or near the high-resolution sites. Despite the 

availability of similar 5cm deep samples, the 30cm samples were preferred 

as the laser mastersizer particle size analysis performed on 5cm samples was 

found to consistently underestimate clay content. The 5cm sample was used 

in two cases only (Roscommon and Cullingral sites), as the 30cm samples 

were too far from the high-resolution sites to be representative. Finally, 

roughness parameters for each site were estimated from 1m-long transects 

of surface heights at various locations in close proximity to the high-

resolution area. These were taken in two perpendicular directions at each 

location in order to account for anisotropy in surface roughness.  

The VWC ranged from a minimum of 0.1kg/m2 for the short lucerne at 

Midlothian to a maximum of 2.4kg/m2 for the mature wheat crop at 

Pembroke, with an average of 0.4kg/m2 for grassland sites and 2kg/m2 for 

crop sites. The spatial variability was generally small for all the grassland 

sites (standard deviation of 0.15kg/m2) and most crop sites (0.4kg/m2), but 

was significant in the case of the Pembroke site (1kg/m2). The VWC is also 

known to have diurnal variation, mainly associated with the presence of dew 

on the plants in the early hours of the morning. To ensure that this would 

not interfere with the aircraft microwave observations, leaf wetness sensors 

were installed at each high-resolution site to continuously record the 

presence of dew. These data (confirmed also by field observation) indicated 

that at all eight high-resolution sites dew had completely evaporated by 

8:00AM throughout the campaign. Therefore the VWC samples taken at the 
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end of each sampling day were considered representative of the conditions 

observed at the time of aircraft overpasses. 

Soil types covered the whole range present in the study area, from the 

very sandy soil at Roscommon to the fine black clay at Pembroke. Surface 

roughness heights and correlation lengths were fairly uniform across the 

eight sites, with a standard deviation of surface roughness heights ranging 

from 6.3mm at the flat Roscommon site to 10.8mm at the Stanley site. 

In order to verify the accuracy of the L-MEB soil moisture retrieval, a 

value of ground soil moisture was calculated for each TB observation by 

averaging all the ground measurements falling within the footprint. The 

number of ground measurements per footprint varied due to local 

topographic conditions affecting the effective footprint size but was 

generally in the range of 50-100 points per footprint. This is an 

unprecedented ground sampling density for airborne evaluation studies. 

Figure 5.2 shows the temporal change of the mean V-pol and H-pol TB 

recorded by the PLMR radiometer at the eight high-resolution sites, together 

with the mean and standard deviation of the ground measured soil moisture. 

Figure 5.2 gives an overview of the range of soil moisture conditions 

encountered at the high-resolution sites and the sensitivity of the PLMR 

radiometer TB to surface soil moisture condition, as well as the impact of 

vegetation density on the TB dynamics. For better visualisation, the mean TB 

shown in this plot have been calculated after compensating for the effect of 

the different incidence angle on the observed TB, i.e. after normalising the 

observations as if they had been all observed at the same incidence angle 

(38º). This has been done using the procedure described in detail in section 

5.3.2.1. Heavy rainfall delivered approximately 20mm of rain throughout 

the study area on October 30th and 31st (i.e. the beginning of the 

experiment). There was also a second event of approximately the same 

magnitude on November 5th and a few minor events (November 8th, 10th and 

22nd). This is reflected in the very wet conditions observed at all sites on the  
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Figure 5.2. Mean of the high-resolution brightness temperatures (TB, lines) 
and mean and standard deviation of ground measured soil moisture (SM, 
solid symbols) plotted daily at the eight high-resolution sites. Triangles are 
V-pol and squares are H-pol brightness temperatures. The temporal mean of 
the vegetation’s undried biomass recorded throughout the campaign at each 
site is indicated in brackets as a reference of the canopy density. 
 



Chapter 5 – L-MEB Model Evaluation Page 5-9 

 

first two sampling dates, prior to November 10th, particularly at the sites 

characterised by clay soils (Pembroke and Stanley). The November 5th event 

was more intense in the Merriwa area, determining wetter conditions at the 

eastern sites (i.e., Midlothian, Cullingral and Dales) on the second sampling 

day, while the western sites (Stanley, Roscommon, Illogan and Pembroke) 

experienced lighter rainfall on November 5th, maintaining nearly constant 

wetness conditions between the first and second sampling day. After 

November 10th and until the last recorded rainfall event, November 22nd, a 

gradual drydown was observed at all sites. On November 23rd another 

rainfall event produced moderately wet conditions which were recorded at 

the two sites monitored after that date (Stanley and Illogan).  

The whiskers in Figure 5.2 indicate the standard deviation of the ground 

measured soil moisture within the high-resolution footprint (averaged over 

the 5-8 footprints falling within each high-resolution site and fully ground-

monitored at high-resolution. The soil moisture standard deviation was on 

average 5.6%v/v. Maximum spatial variability was recorded at Midlothian 

(10.0%v/v) due to the strong contrast in soil moisture between the different 

land cover in the two halves of the high-resolution site (fallow field and a 

mature lucerne crop). High spatial variability was also recorded at Stanley 

(9.4%v/v) and Dales (8.8%v/v), which were on steep hillsides. Minimum 

soil moisture heterogeneity was recorded at the Roscommon ‘control’ site 

(3.1%v/v). 

The PLMR radiometer data showed significant sensitivity to the top 5cm 

soil moisture, with higher values of TB associated with dry soil conditions 

and lower values for wet conditions. The range of TB was slightly higher at 

H-pol than at V-pol. This effect is partially smoothed here by the angle 

‘correction’ applied to the TB data. The H-pol TB show a range of 

approximately 40K for a variation in soil moisture around 25%v/v over low-

vegetated grasslands (e.g., Roscommon). This range was nearly halved to 

approximately 25K at sites with crops of higher vegetation biomass 

(Pembroke and Merriwa Park); as expected, the presence of a mature crop 

above the ground reduced the sensitivity of TB to soil moisture. 
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Nevertheless, sensitivity to the soil wetness conditions was still exhibited 

and was used to retrieve soil moisture estimates under mature crops. 

5.1.2 Optimisation Scheme 

A detailed description of the L-MEB model has been presented in 

Chapter 3. In this Chapter L-MEB is applied by accounting only for the 

dominant vegetation type within each pixel, meaning that each pixel is 

considered uniformly covered by the vegetation type having the highest 

cover fraction, as calculated from high-resolution thematic maps of land use 

(from Landsat).  

In the following sections the L-MEB model is used to solve two different 

problems: (i) the retrieval of soil moisture given a priori (prescribed or 

calibrated) values for the vegetation and soil surface dependant parameters 

given TB; and (ii) the calibration of model vegetation and soil surface 

parameters given ground measured soil moisture and TB. The number of 

parameters that can be retrieved simultaneously depends on the number of 

simultaneous and independent TB observations available. Since the PLMR 

radiometer provides two TB observations (V and H) per incidence angle, 

two parameters can potentially be retrieved at once (e.g. retrieval of soil 

moisture and vegetation optical depth if roughness is assigned a priori, or 

optical depth and roughness given the soil moisture). In this study both soil 

moisture retrieval and calibration problems were solved through iterative 

least squares minimisation of the cost function: 
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This cost function includes the classical cumulative squared error 

between simulated and measured brightness temperatures (TBP and TBP° 

respectively), and an additional term which accounts for the squared error 

between the current value (pi) and the initial guess ( ini

ip ) of each retrieved 

quantity (e.g. soil moisture in the soil moisture retrieval problem or 

parameters HR, b, etc. in the calibration problem).  
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The second term in (3.2) allows the user to constrain the retrieved values 

about a physically plausible estimate for each parameter ( ini

ip ) through the 

standard deviation associated with this estimate(σP). This optimisation 

method has been developed for the retrieval of surface parameters from 

SMOS data, where the possibility of constraining parameter values stems 

from the availability of the values retrieved on previous overpasses (Jackson 

et al., 1999; Wigneron et al., 2007). However, in this study, unless otherwise 

stated it was decided to work without constraints (i.e. no a priori knowledge 

was assumed), in order to find the ‘real’ optimum for each quantity. 

Therefore the value σP= 1 was used in most cases. Since all the quantities 

retrieved in this chapter (soil moisture and parameters HR, b), have values 

generally much smaller than 1, a value σP= 1 represent a very mild 

constraint, effectively leaving the parameter free. Note that (5.1) is an 

adaptation of the SMOS L2 algorithm cost function (3.2) to airborne data, 

where the variance/covariance matrix COVT of the observed TB has diagonal 

elements all equal to 2

BPTσ  (which is the square of the PLMR radiometer 

radiometric uncertainty) and zero off-diagonal elements (i.e., the airborne 

observations at different angles are independent, being taken at different 

instants and not in one single “shot” as in SMOS). 

5.1.3 Evaluation of the L-MEB Model with Default Parameters 

The L-MEB soil moisture retrieval was first evaluated using the L-MEB 

default values for the surface type dependent parameters, which were 

described in detail in Chapter 3. Based on the land cover information 

visually estimated for each of the NAFE’05 high-resolution sites (see Table 

5.1), a set of radiative transfer parameters was extracted from the L-MEB 

default database. The resulting parameter sets are given in Table 5.2.  

The eight sites fell into one of three tabulated surface types: crop (wheat 

type), grassland with litter and grassland without litter. For all the crop sites, 

the most suitable parameters were found to be those estimated over crops 

with mainly vertically oriented plant structure like wheat. In the NAFE’05  
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study area the predominant crop is wheat followed by barley which has a 

very similar plant structure (vertical stems). Given that no specific 

parameters are available in literature for oats, which covered approximately 

½ of the Illogan site, together with barley, this site was assigned the same 

wheat-type crop parameters, as oats is also characterised by a predominantly 

vertical structure. Stanley and Dales were characterised by grazing lands 

covered by very tall grass, hence the presence of litter on the ground 

Roscommon was a very short grass site with exposed, un-littered bare soil 

between the grass clumps. Midlothian was split between a nearly bare 

fallow field (approximately 30% of the high-resolution ground sampling 

area) and a mature, short lucerne field (60% of the area). In the absence of 

specific literature parameters for the radiative transfer properties of lucerne, 

it was assumed that the anisotropic leaf structure of lucerne was similar to 

that of grass clumps. Therefore the site was treated as grassland. Note that 

the significant spatial heterogeneity of vegetation cover at this site could 

potentially affect the soil moisture retrieval, due to the non-linear response 

of the L-MEB model with respect to vegetation water content and soil 

moisture. 

Soil moisture was retrieved at all high-resolution sites using a two-

channel retrieval (H-pol and V-pol) applied individually to each of the 5-8 

TB observations available on every monitoring day. The soil moisture 

retrieved from each TB observation was compared with the mean ground 

observed soil moisture within the TB footprint. As different TB footprints 

covered different portions of the high-resolution area (see Figure 5.1) which 

had been ground-sampled at fine spacing, this retrieval approach provided 

an extensive evaluation data set for each land cover type. All the ancillary 

input data were assumed to have uniform values across the 150m x 150m 

high-resolution area. The value of soil temperatures at 2.5cm and 15cm 

required by the model for the calculation of the soil effective temperature 

were obtained from the nearest permanent monitoring station using the time 

reference of the TB acquisition. The value of the VWC estimated daily from 

the biomass samples collected at the high-resolution site was used to 
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characterise the temporally varying contribution of the vegetation to the 

emission. Alternatively, a value for the high-resolution area was estimated 

using the two biomass samples consistently collected at two corners of the 

high-resolution area on each monitoring day (see section 4.4.4.1). The 

temperature of the vegetation canopy was assumed to be in equilibrium with 

the soil temperature at 2.5cm; this is a commonassumption in passive 

microwave soil moisture retrieval studies due to the lack of adequate canopy 

temperature measurements (e.g., Njoku et al., 1996a, Van de Griend et al., 

2003). The consequences of this uncertainty in canopy temperature 

estimation for the soil moisture retrieval are discussed later in this section. 

Figure 5.3a shows the scatter plot between L-MEB soil moisture retrieval 

using the default parameters and the ground measured soil moisture. At 

most of the grassland sites (Stanley, Dales and Roscommon) the L-MEB 

model achieved fairly accurate retrieval, with errors smaller than the 

standard deviation of ground measured soil moisture within the footprint 

(which was on average 5.6%v/v). This indicates a correct parameterisation 

of the model for grassland surfaces. Nevertheless at the crop sites (Merriwa 

Park, Cullingral, Illogan and Pembroke) the model underestimated soil 

moisture overall, particularly during wet conditions. The error is particularly 

high for Pembroke, Merriwa Park and Cullingral, being smaller at Illogan. 

These errors are quantified in Table 5.2. The Root Mean Square Error 

(RMSE), bias and correlation coefficient shown in the table were calculated 

considering all the retrieved-observed soil moisture pairs across the four 

mapping dates for each site (approximately 20-40 pairs per site in total). The 

RMSE between observed and estimated soil moisture was better than the 

proposed SMOS accuracy (4.0%v/v) for most grassland sites, with the 

exception of Midlothian. However, for crop sites errors between 10%v/v 

and 32.5%v/v were obtained. As shown in Table 5.1, the crops sites were 

characterised by significantly higher VWC than the grassland sites. This 

suggests that the cause of such large retrieval errors could reside in a wrong 

parameterisation of the relationship between vegetation characteristics and 

vegetation optical depth for crops. 
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The parameterisation of the roughness parameter HR as a function of soil 

moisture permitted an accurate soil moisture retrieval at the grassland sites, 

although in the case of Roscommon a successful retrieval was achieved 

using a constant HR value (0.5). This might be due to the relatively limited 

soil moisture range exhibited at the site (below approximately 20%v/v) due 

to its sandy soil texture. A relatively high retrieval error was obtained for 

Midlothian. Midlothian was a site with unique land cover conditions in the 

study area, including a mix of lucerne (70% of the high-resolution area), for 

which no parameters were available in literature, and fallow (30%), 

characterised by significant dead biomass at the surface. This resulted in a 

strong discontinuity of soil moisture at the boundary (~20%v/v), and the 

highest variance of soil moisture observed amongst the eight sites (10%v/v 

standard deviation). It is likely that the combination of these three factors 

(incorrect parameterisation, the effect of the dead biomass layer and strong 

soil moisture gradient) cause the observed size of the error. 

The results presented suggest that the set of L-MEB default surface 

parameters are directly applicable for uniform Australian native grasses. For 

 
Figure 5.3. Evaluation of L-MEB soil moisture retrieval with high-
resolution airborne TB observations using (a) L-MEB default parameters and 
(b) calibrated roughness parameter HR (see section 5.1.5.3). Grey symbols 
indicate sites classified as crops; black symbols sites are classified as 
grassland. Black dashed lines indicated the SMOS target accuracy (4%v/v). 
Grey lines indicate the typical standard deviation of the ground-monitored 
soil moisture within aircraft footprints (5.6%v/v).  
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the Australian wheat-type crops considered in this study, and particularly for 

Pembroke, Merriwa Park and Illogan, use of the default parameters led to 

large soil moisture retrieval errors. Crops cover a small, but significant 

portion of the study area, and are generally concentrated in large patches, 

more than a km across. These will likely occupy several of the 1km PLMR 

pixels which will be used in this and later Chapters to retrieve soil moisture 

estimates across the entire study area. Therefore, in order to obtain a reliable 

soil moisture retrieval across the study area, further investigation is required 

as discussed in the following sections.  

5.1.4 Error Analysis 

There are a number of factors that could be the cause of the large errors 

obtained over crops: (i) Error in the values of ancillary parameters input to 

the L-MEB model such as soil effective temperature, canopy temperature, 

soil texture and vegetation water content; (ii) Erroneous values of the L-

MEB default parameters. Moreover, the effect of land surface heterogeneity 

within the PLMR pixel could have an impact, as shown in the case of 

Midlothian. In order to understand which of these factors could lead to the 

large errors observed over crops, the impact of each input (L-MEB 

parameters and ancillary data) on the soil moisture retrieval was assessed 

through sensitivity analysis. To this end, starting from a reference scenario 

with fixed values for all parameters, the values of the L-MEB parameters 

and ancillary data were changed individually within the expected range of 

values, while keeping all other values fixed at their reference values. At 

each step the retrieved soil moisture was then compared to that of the 

reference scenario to estimate the impact of each input parameter on the soil 

moisture retrieval. The process was repeated for four selected scenarios. 

These were the mature crop field at Pembroke and the short grassland site at 

Roscommon, which represent extreme conditions across the high-resolution 

sites in terms of above ground vegetation biomass and soil texture. Wet and 

dry conditions were considered for both sites. The results of the sensitivity 

analysis are shown in Figure 5.4 for each parameter individually and will be 

discussed below. 
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As discussed earlier, the top 2.5cm and 15cm soil temperatures were 

estimated using data from monitoring stations which were not always 

immediately adjacent to the high-resolution sites, but could be as much as 1-

km distant. This could lead to error in the estimation of the soil effective 

temperature in the direct emission model. The maximum spatial difference 

in soil temperature between monitoring stations recorded on sampling days 

was 6.5K. It can be reasonably assumed that this is the maximum error in 

soil temperature estimation due to the distance between the closest 

monitoring station and the high-resolution area. Sensitivity analysis showed 

that the associated soil moisture error should not be greater than 

approximately 5%v/v.  
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Figure 5.4. Analysis of the L-MEB microwave emission model sensitivity 
to errors in the ancillary data (top two rows) and changes in the L-MEB 
parameters (bottom two rows). Errors are indicated in %v/v from four 
reference scenarios: a crop site (VWC=3.6kg/m2, solid lines) and a 
grassland site (VWC=0.7kg/m2, dashed lines), both on wet (black line) and 
dry (grey line) conditions. ρb= soil bulk density (g/cm3); TSURF= soil 
temperature at 2.5cm (K), Tv= vegetation canopy temperature (K), 
VWC=vegetation water content (kg/m2).  
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Analysis of the canopy infrared measurements recorded at some of the 

monitoring stations showed that at the time when the high-resolution 

acquisitions considered here were undertaken (9:00-11:00AM), the 

difference between the canopy and the top 2.5cm soil temperature was 

significant; more so in the case of crops (13K mean difference) than that of 

grasses (6K). Sensitivity analysis revealed that the soil moisture error 

associated with the assumption that the canopy temperature is in equilibrium 

with the top 2.5cm soil temperature should not be greater than 

approximately 3%v/v, as this is the maximum soil moisture error observed 

in Figure 5.4 for errors in canopy temperature up to 13K. 

The soil textural properties which were derived from 30cm deep soil 

samples collected at or nearby the high-resolution sites might be different 

from those of the top 5-10cm layer which contributes to the soil microwave 

emission at L-band. A sensitivity study showed that large errors in soil 

textural properties estimation can lead to significant errors in retrieved soil 

moisture. In the case of crops, respectively 5%v/v and 3%v/v error for a 

40% estimate error in sand and clay content.  Although such a large 

variation in % sand and clay content is unlikely over such a shallow depth, 

in the absence of data for verification this error cannot be dismissed. 

Nevertheless, even in the case in which such a large error in soil properties 

estimation was committed, the associated soil moisture error (5%v/v) would 

only marginally explain the large soil moisture retrieval errors subject of 

this discussion. 

The VWC sampling technique used (daily 50cm x 50cm biomass 

samples at two fixed locations in the high-resolution site, see section 5.1.1) 

could lead to an error in VWC estimation due to both the small sample size 

(bound to be heterogeneous in the case of crops, for example) and the spatial 

variation of the VWC across the area. Analysis of this error using the 

sixteen samples taken on several occasions at each site showed the daily 

value of the VWC used for crops could be underestimated by approximately 

0.12kg/m2 for most crops (Cullingral, Illogan and Merriwa Park) and as 

much as 1kg/m2 for Pembroke. The impact of these biases on the soil 
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moisture retrieval was investigated by adding them to the daily VWC 

recorded at each sites and repeating the retrieval. Results indicated that 

increasing the VWC reduced the RMSE of soil moisture retrieval at 

Pembroke by 4.1%v/v, while at the other crop sites the improvement was 

only 0.4%v/v. It is evident that the problem of VWC sampling only 

marginally accounts for the large errors at the crop sites, although the spatial 

variation of the VWC across the high-resolution sites might explain the 

scatter observed in daily errors at the same area (Figure 5.3). 

Although the errors associated with ancillary data estimation discussed in 

the previous section were in some cases significant and certainly affected 

the overall accuracy of the soil moisture retrieval presented, it was evident 

that they could only partially explain the large errors observed at the crop 

site, which was of the order of 10-32.5%v/v. This suggests that the errors 

could be due to inadequacy of the default L-MEB parameters.  

5.1.5 Calibration of the L-MEB Parameters 

Amongst the L-MEB parameters, parameters b and HR are those with the 

highest impact on the L-MEB soil moisture output (Figure 5.4). A site-

specific calibration of the parameters b and HR was therefore performed for 

the crop sites Pembroke, Merriwa Park, Illogan and Cullingral, using all the 

bi-polarised TB observations of the high-resolution area available for each 

site, extracted from the airborne data set as described in section 5.1.1. 

5.1.5.1 Calibration Option 1: b and HR 

Initially, both b and HR parameters were calibrated at once. Given that H-

pol TB is known to be more sensitive to soil moisture while V-pol responds 

more to the canopy signal (this was also observed when commenting Figure 

5.2), the simultaneous retrieval of b and HR is expected to allow decoupling 

the soil surface (parameter HR) from the vegetation (parameter b) 

component of the observed TB. To this end, the multiple, bi-polarised high-

resolution TB observations were used to calibrate both parameters on each 

observation day, using the ground soil moisture and the ancillary data on 

VWC, soil texture, soil temperature and surface roughness described in the 
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previous sections. As explained in detail in the description of the L-MEB 

model in Chapter 3, both b and Hr parameters can be considered incidence 

angle independent, as their angular dependence is treated in L-MEB through 

specific equations. This implies that one single value of each parameter can 

be retrieved by using the five to eight TB observations available over each 

site on each day. A mean value for each parameter was then calculated by 

averaging the values obtained across different days. These average values 

were finally verified by running the L-MEB soil moisture retrieval for each 

sampling day.  

The resulting calibrated values for each parameter and the respective soil 

moisture retrieval errors are shown in Table 5.3 (‘Calibration 1’) and 

compared with the retrieval using L-MEB default values for b and HR. The 

calibration of b and HR significantly improved the retrieval for most sites. 

For the site with the highest vegetation biomass (Pembroke) the retrieval 

accuracy was improved from 32.5%v/v to 8.9%v/v. The calibrated values of 

b and HR were significantly higher than the default ones indicating that the 

proposed SMOS parameters (i) underestimate the effect of the vegetation in 

masking the soil signal and (ii) underestimate the scattering of the soil 

signal at the surface. At the Cullingral site very high values of b were 

obtained. It should be noted that the TB observations available at this site 

were mostly within a narrow range of incidence angles close to nadir. At 

these angles the polarisation difference is reduced and consequently the 

algorithm is less able to decouple the vegetation and soil signal. For the 

remaining sites, the retrieved values for b were in the range 0.2-0.5 while HR 

was in the range 0.2-0.6. These values allowed retrieval of soil moisture 

with accuracy better than 8.9%v/v.  

5.1.5.2 Calibration Option 2: HR 

The coupled b and HR calibration presented in the previous section 

determined a sensible improvement of the L-MEB soil moisture retrieval 

using default parameters over crops. Nevertheless, the accuracy achieved is 

still far from the 4.0%v/v target accuracy of SMOS. A second approach was 
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to assume that the default value of parameter b proposed for crops (0.08) is 

correct and thus calibrate only HR. This was justified by three reasons: (i) 

the value 0.08 for wheat-type crops resulted from an extensive review of 

estimates of b at L-band for various crop types, and therefore it is expected 

to be quite accurate; (ii) correct estimates of parameter HR and their link to 

geophysical variables (soil type, surface roughness and soil moisture) are 

still the object of debate and have not yet been well understood; and (iii) 

parameter b, dependent on plant structure and independent on soil 

conditions, is expected to be less variable than parameter HR across the 

similar wheat-type crops present in the study area. 

Table 5.3. Site-specific calibration of parameters b and HR for the 
NAFE’05 crop sites. All calibrated values shown are the average of the 
values calibrated from four different dates. θ indicates soil moisture. 
‘Calibration 1’= Calibration of both b and HR; ‘Calibration 2’= 
Calibration of only HR, b fixed to L-MEB default value; ‘Calibration 3’; = 
Calibration of HR as a linear function of soil moisture with b fixed to L-
MEB default value.  

High-

Resolution 

Site 

Range 

of 

Incidence 

Angles 

Parameter 

Set 
b HR 

Soil 

Moisture 

RMSE                 

(%v/v) 

Default 0.08 0.2 21.4 

Calibration 1 0.26 0.46 6.4 

Calibration 2 0.08 1.03 5.1 
Merriwa P. 5º-42º 

Calibration 3 0.08 HR =1.5-1.6*θ 4.8 

Default 0.08 0.2 19.4 

Calibration 1 1.15 0.46 18.2 

Calibration 2 0.08 1.29 14.5 
Cullingral 6º-23º 

Calibration 3 0.08 HR =1.6-1.0*θ 3.0 

Default 0.08 0.2 9.9 

Calibration 1 0.48 0.19 7.2 

Calibration 2 0.08 0.49 3.5 
Illogan 3º-44º 

Calibration 3 0.08 HR =0.7-0.9*θ 2.9 

Default 0.08 0.2 32.5 

Calibration 1 0.19 0.57 8.9 

Calibration 2 0.08 1.12 8.0 
Pembroke 16º-39º 

Calibration 3 0.08 HR =1.6-1.2*θ 4.0 
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The results of this second calibration approach (see Table 5.3, 

’Calibration 2’), show a significant improvement in soil moisture accuracy 

at all sites when calibrating HR alone, as compared to the calibration of both 

b and HR. Soil moisture error decreased for all sites, with an improvement of 

at least 1.0%v/v and up to 3.7%v/v in some cases. Calibrated values of HR 

were in the range 0.5 – 1.3, being much higher than both the L-MEB default 

values (0.1 – 0.2) and those obtained in ‘Calibration 1’ (0.2 – 0.5). These 

results suggest that the L-MEB default values of parameter HR for crops, 

estimated by the SMOS team exclusively at European sites, represent 

conditions which are too smooth than those encountered in the NAFE’05 

study area. Different ploughing and tilling practices in Australia could be 

the cause of rougher surfaces in the wheat crops reflected in the higher 

values calibrated for HR. 

5.1.5.3 Calibration Option 3: Soil Moisture Dependent HR 

In calibration 1 and 2 the parameters b and HR were considered stable in 

time, i.e., one average value was calculated from the calibration on 

individual days to evaluate the soil moisture retrieval. An examination of 

the retrieved values of both parameters across the four sampling dates 

showed that while parameter b was fairly constant over time (as was 

expected given that it relates to the vegetation structure) the values of 

parameter HR exhibited a notable variation in time, which was fairly well  

correlated with the soil moisture conditions, i.e., higher values of HR were 

calibrated over dry conditions. As already discussed in Chapter 3 when 

describing the L-MEB default parameterisation for grasslands, this is 

consistent with several previous studies over crops and grasslands 

(Wigneron et al., 2001; Escorihuela et al., 2007; Saleh et al., 2007). The 

dependence of HR on soil moisture is explained by an effect of volume 

scattering: the spatial fluctuations of the dielectric constant within the soil 

volume are stronger during drying out, producing an important “dielectric” 

roughness effect. Therefore, it has been proposed that HR should be 

considered as an effective parameter that accounts for (i) “physical 

roughness” effects in relation with spatial variations in the soil surface 
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height, and (ii) “dielectric roughness” effects in relation with the variation of 

the dielectric constant in the near-surface soil layer. In these studies it is also 

pointed out that this effect might be very “local”, i.e., it should be smoothed 

out at larger resolution and is probably negligible at satellite scales. 

Given that the evaluation of L-MEB presented in this Chapter had the 

objective to support the regional soil moisture retrieval presented in section 

5.3 and the coarse-scale retrieval presented in Chapter 7 and 8, the problem 

of soil moisture dependence of HR was not regarded as crucial, as long as a 

sufficiently accurate soil moisture prediction could be obtained over crops. 

Therefore, in line with previous studies, a simple linear regression was 

developed in this Chapter and used to model the relationship between HR 

and soil moisture over crops in the study area. A detailed analysis of the 

relationship between parameter HR was undertaken with the data presented 

here, and it has been included in Appendix A4. 

The site-specific coefficients of the regression between HR and soil 

moisture are shown in Table 5.3 (‘Calibration 3’). Improvement in soil 

moisture retrieval accuracy was achieved at all sites after calibration of the 

soil moisture dependence of HR. In particular, RMSE was reduced by 

11.5%v/v at Cullingral and by 4.0%v/v at Pembroke, bringing the retrieval 

error at both sites below 4%v/v. For Merriwa Park and Illogan the 

improvement was not significant indicating that at these sites a fairly 

accurate soil moisture retrieval is achieved without the need for a soil 

moisture dependent parameterisation of HR. Scatter plots of the retrieved 

versus ground measured soil moisture after calibration is shown in Figure 

5.3b. 

The coefficients of the regression of HR as a function of soil moisture 

obtained were quite uniform across the four crop sites. In particular, the 

slope of the relationship for the different crops was in the range 0.9-1.6, 

which is close to the 1.3 already observed for grasslands by Saleh et al. 

(2007). The resulting value of HR decreased on average from 1.3 on very dry 

soils (5.0%v/v) to 0.8 on very wet soils (50.0%v/v). At Illogan, low values 
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of both the slope and intercept of the regression were retrieved, resulting in 

lower and more stable values of HR with respect to soil moisture.  

5.1.6 Soil Moisture Retrieval over Forest 

The L-MEB model was thus far evaluated at grassland and crop sites. 

However, the NAFE’05 study area presented also a significant fraction of 

forest (24.3%, see section 5.3.1.1). Although ground sampling of soil 

moisture under forest canopy was not undertaken during the NAFE’05 field 

campaign at fine resolution, a small patch of forest, approximately 2km2 in 

size, was sampled in the Roscommon experimental farm. The soil moisture 

ground sampling in the Roscommon forested area was more limited and at 

coarse spacing than that undertaken at the high-resolution sites and 

presented in earlier sections. Approximately 10-15 measurements were 

taken throughout the forest area per day, on an irregular grid with a variable 

spacing (on average 200m).  

These data were used by Grant (2009) to perform a rigorous evaluation 

of the L-MEB model over the forested area at the Roscommn site, using the 

62.5m TB observations collected in the present study. Results indicated that 

soil moisture could be retrieved with an accuracy of 6%v/v for all soil 

moisture conditions, confirming earlier results by Ryu  et al. (2007) and 

Saleh et al. (2004) at European and American sites which indicated good 

sensitivity of L-band observations to soil moisture changes under dense 

canopy forest. 

In the following section, the L-MEB model with the parameters for 

grasslands and crops (including the soil moisture dependent linear 

regression for parameter HR) calibrated with high-resolution airborne data 

are applied to low-resolution (1km) airborne data at the eight high-

resolution sites. This is a crucial step for the application of L-MEB to 

regional soil moisture mapping which is performed in section 5.3. 
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5.2 Evaluation of the L-MEB Model with Low-Resolution 

Airborne Observations 

Before applying the L-MEB model to retrieve soil moisture estimates 

over the entire study area, the model was evaluated using the 1km resolution 

TB observations acquired by the PLMR radiometer over the high-resolution 

sites. This allowed evaluation of the L-MEB soil moisture retrieval at the 

same resolution which will be used for the regional soil moisture mapping 

in section 5.3, but with the support of detailed ground soil moisture data. 

Low-resolution TB observations were acquired on the same days of high-

resolution observations acquisition with a lag of 2-3 hours, 1km TB being 

acquired earlier in the morning, at approximately 7:00-9:00AM. Flight lines 

were designed so that each of the eight 150m x 150m high-resolution 

sampling areas would fall within the field of view of the nadir beams of the 

radiometer (flown in push broom configuration). Given the low aircraft 

speed and the high rate at which the radiometer takes readings, the 1km 

footprints were highly oversampled, and therefore approximately 20-25 TB 

observations covering each high-resolution site were available on each 

sampling day. Due to flying time restrictions, no low-resolution 

observations were acquired over Illogan. 

Figure 5.5 gives an overview of the land surface conditions within the 

areas surrounding the high-resolution sites which fell within the 1km TB 

footprints considered in this section. The 1km footprint centers are 

indicated, together with the locations at which ground soil moisture was 

measured for evaluation. The low-resolution TB footprints covered a much 

larger portion of the land surface than the high-resolution ones 

(approximately the red squares in Figure 5.5), and were therefore 

characterised by a wider range of land covers, topography and soil type 

conditions. 

Soil moisture was retrieved using the L-MEB model together with the 

site-specific surface and vegetation parameters calibrated in the previous 

section (‘Calibration 3’; b fixed to L-MEB default values and a site-specific  
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linear regression for HR) and the same ancillary data used for the soil 

moisture retrieval with high-resolution TB observations, except for the soil 

temperatures. These were extracted for the time of low-resolution 

acquisition from the local monitoring station time series, as described in the 

previous section. It should be noted that, since the 1km resolution TB 

observations used in this section are completely independent from the 62.5m 

observations used in the previous section to calibrate the L-MEB 

parameters, this section represent an independent validation of the calibrated 

values of parameters b and HR. 

 

Figure 5.5. Land surface conditions and locations of airborne and ground 
sampling measurements in the areas surrounding the high-resolution sites. 
The centres of the 1km footprints are shown for all acquisition days and 
the locations at which soil moisture was monitored on the ground are 
displayed. High-resolution soil moisture measurements at 6.25m and 
12.5m spacing covering the high-resolution areas (red rectangles) are not 
shown for clarity. 
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The retrieved soil moisture was compared with the average ground soil 

moisture measured at the 150m x 150m fields and surrounding areas. On 

average, 300-500 points at resolutions ranging from 6.25m to 250m fell 

within each 1km footprint. The standard deviation of the ground measured 

soil moisture within the low-resolution footprints was on average 7.2%v/v, 

as opposed to 5.6%v/v within the high-resolution footprints. Maximum soil 

moisture spatial variability was recorded at Cullingral (9.1%v/v) and 

Midlothian (9.2%v/v) while more uniform soil moisture conditions were 

recorded at Roscommon (3.1%v/v). 

Figure 5.6 and Table 5.4 show respectively the scatter plot and error 

statistics of the comparison between L-MEB soil moisture retrieval and 

ground measured soil moisture. Very good agreement between retrieved and 

observed soil moisture was obtained at all the sites. At most sites the RMSE 

was better than 4.0%v/v, with a maximum error of 6.0%v/v at Stanley. The 

correlation coefficient exceeded 0.89 for most sites. This demonstrated 

excellent accuracy of the model despite the land surface heterogeneity 

observed at the scale of low-resolution footprints. Moreover, the soil 

moisture dependent parameterisation of parameter HR calibrated with high-

resolution TB observations provided accurate soil moisture retrieval at all 

the crop sites. 

It is interesting to note that negative biases (i.e. retrieved values less than 

observed values) were obtained at all the sites, indicating a tendency of the 

L-MEB model to underestimate soil moisture in the presence of land surface 

heterogeneity. This agrees with results by Van de Griend et al. (2003) over 

synthetically generated heterogenous pixels with a mix of vegetation 

densities. In the last column of Table 5.4 the difference between the RMSE 

obtained at low resolution and that obtained at high resolution is also shown, 

in order to highlight the change in accuracy with decreasing resolution. 

Overall the soil moisture accuracy was comparable with that obtained at the 

higher resolution. It is worth noting that in the case of Midlothian, the 

highly heterogeneous site for which the highest soil moisture retrieval error 
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had been obtained at high resolution (7.4%v/v) the retrieval accuracy 

improved significantly at low resolution (3.7%v/v improvement). This is 

likely due to the predominance within the 1km footprints field of view of 

Table 5.4. Low-resolution evaluation of the L-MEB soil moisture 
retrieval. ‘∆ RMSE’ is the difference between error at low and high 
resolution. 

Soil Moisture 

Retrieval (%v/v) 
High-

Resolution 

Site RMSE r
2
 bias 

∆RMSE 

Low-High 

Resolution 

Roscommon 1.8 0.99 -1.2 +0.2 
Stanley 6.0 0.89 -3.2 +4.6 
Dales 5.3 0.45 -2.9 +1.6 
Midlothian 3.7 0.99 -2.6 -3.7 
Merriwa Park 3.0 0.98 -2.3 -1.8 
Cullingral 3.8 0.99 -2.3 +0.8 
Pembroke 3.1 0.98 -0.7 -0.9 
 

 

Figure 5.6. Evaluation of L-MEB soil moisture retrieval with low-resolution 
airborne TB observation and L-MEB default parameters and calibrated 
roughness parameter HR. Grey symbols indicate sites classified as crops, 
black symbols represent sites classified as grassland. Grey lines indicate the 
maximum standard deviation of the ground-monitored soil moisture within 
low-resolution footprints (recorded at the Midlothian site). 
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large native grass areas surrounding the lucerne field, which was of limited 

extent (~500m).  

As the site had been assigned the L-MEB parameter set relative to native 

grasses, due to the absence of existing estimates for lucerne type crops, this 

would have resulted in a better soil moisture retrieval at low resolution. It 

should be pointed out that in the context of the coarse-scale soil moisture 

retrieval which will be performed in the next Chapters, the poor 

parameterisation of the lucerne crop is a negligible problem. To the 

knowledge of the author the lucerne field at Midlothian was the only 

presence of lucerne in the entire study area, which was instead dominated by 

wheat, barley and oats crop for which accurate soil moisture retrieval was 

obtained in this Chapter. 

5.3 Regional Soil Moisture Retrieval  

In this section, the L-MEB model is applied to the airborne brightness 

temperatures (TB) observations made with the PLMR radiometer across the 

NAFE’05 study area, being approximately a 40km by 40km area mapped at 

1km nominal resolution. These observations will be hereby referred to as 

the ‘Regional’ airborne observations. The objective is to produce soil 

moisture maps of the entire study area at 1km resolution which will be used 

as soil moisture ground truth in Chapter 7 and Chapter 8 in order to assess 

the effect of land surface heterogeneity on the soil moisture retrieval from 

coarse-scale footprints. Soil moisture maps derived from 1km airborne data 

have two major advantages with respect to ground point measurements 

(monitoring stations or spatial monitoring): (i) they have large extent, 

covering the entire study area and therefore characterise the soil moisture 

variability within all the coarse-scale pixels to be analysed in Chapter 7 and 

Chapter 8 and (ii) each soil moisture observation represents an integrated 

value over a 1km land surface area, therefore overcoming the limitation of 

point data which only provide information on the horizontal domain 

immediately surrounding the ground probe (a few centimeters). These 

features make the airborne data highly desirable for ground truthing coarse-
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scale (40km) soil moisture retrieval. It should be noted that in both cases 

(airborne observations and ground probe) the vertical domain is the same (a 

few centimeters). 

This section builds upon the evaluation of the L-MEB model with multi-

resolution TB observations performed in previous sections, since the L-MEB 

radiative transfer parameters used here are those evaluated at the high-

resolution sites. In the following sections the ancillary data, the airborne 

observations and the retrieval approach adopted are described. Finally the 

soil moisture maps are presented. 

5.3.1 Ancillary Data 

In order to obtain soil moisture from TB observations, the L-MEB model 

requires ancillary data on land cover, near-surface soil and canopy 

temperature, and soil textural properties. The ancillary data used in this 

thesis were (i) collected during the NAFE’05 field campaign, (ii) obtained 

from existing databases or (iii) derived from available satellite imagery 

available, and have been described in Chapter 4. Consequently, this section 

is limited to describing how those ancillary data were processed in order to 

make them suitable for soil moisture retrieval over the entire study area. As 

already noted in Chapter 3, the ancillary data used in this thesis differ from 

those which will be used by the SMOS mission; in principle, ground data 

were given priority where possible. In the case that satellite imaginary was 

the only source of information, the data sets with the finest available 

resolution (finer than those used by SMOS) were chosen. Consequently the 

results presented represent a best case scenario for SMOS retrieval. 

5.3.1.1 Land Cover 

A land cover map of the study area derived from the 30m resolution 

Landsat 5 Thematic Mapper scene acquired on October 21st, 10 days before 

the beginning of the airborne and ground monitoring operations, was used in 

this study. The land cover map, was produced by P. Maisongrande and G. 

Boulet at the Centre d'Etudes Spatiales de la BIOsphère (CESBIO), through  
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a supervised classification to define five land cover types (dense forest, open 

woodland, native grass, bare soil/very low LAI, crops), based on thirteen 

spectral classes derived from un-supervised spectral analysis of the six 

optical bands of Landsat.  

The resulting Landsat thematic map is shown in Figure 5.7. The 

dominant land cover types in the study area are native grass (50.7%) and 

dense forest (24.3%), with the latter concentrated along the southern edges 

of the study area. The rest of the area is occupied by bare soil or vegetation 

with very low LAI (12%) and open woodland (8.5%). Cropped areas occupy 

only 4.5% of the area and are concentrated in the western part of the study 

area. The dense forest consisted mainly of Box (Eucalyptus spp.), Ironbark 

(Eucalyptus spp.) and some Black Cypress-pine (Callitris endlicheri). Fish-

eye photographs were taken of the Eucalypt vegetation, from which the leaf 

area index (LAI) was estimated at LAI = 2.5). MODIS images showed that 

forest LAI did not noticeably change during the experiment (J. Grant, pers. 

 

 
Figure 5.7. Land cover classification of the study area derived from Landsat 
5 Thematic Mapper.  
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 comm.). The white areas in Figure 5.7 are areas classified as cloud (and 

associated cloud shadow); these areas could not be assigned a land cover 

type, and were therefore excluded from the analysis.  

This thematic map was evaluated based on the ground visual 

observations of land cover performed by the ground team at 122 locations 

across the study area. Results of this comparison are shown in Table 5.5. 

The Landsat classification matched the ground visual observations in 64% 

of the 122 cases. Most errors were associated with locations classified as 

‘bare soil or very low LAI’ and ‘open woodland’ in the Landsat thematic 

maps, being recorded as native grass by the ground team. Based on these 

results, it was decided in this thesis to combine ‘bare soil or very low LAI’ 

and ‘open woodland’ classes with ‘native grass’. In this way the 

classification accuracy was increased to 80%. 

5.3.1.2 Soil Texture 

Detailed spatial characterisation of soil texture was possible through soil 

particle analysis with a Malvern Mastersizer 2000 performed on 88 soil 

samples (7cm in diameter, 5cm deep) collected across the study area. These 

were collected on two of the regional sampling days; November 14th and 

Table 5.5. Evaluation of the Landsat Thematic Mapper land cover with 
ground visual observations. The numbers in each cell indicate the count of 
the locations where a particular known land cover was assigned a particular 
Landsat land cover class. 

 Land Cover Observed on the Ground 

 

  
Bare 

Native 

grass 
Crop Forest 

Open 

Woodland 

Bare 0 27 3 0 2 

Native 

grass 
2 75 7 0 4 

Crop 0 1 2 0 0 

Forest 0 4 0 0 2 
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Open 

Woodland 
0 6 2 0 1 
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November 21st, with each day being a subset of the soil moisture sampling 

locations. Soil texture in the study area is extremely variable, ranging from 

black basalt-derived cracking clays in the northern part to the sandstone 

derived soils in the southern part of the study area.  

The Malvern Mastersizer 2000 has been reported to underestimate the 

fine (clay) fraction in inverse proportion to the amount of fine fraction 

present while accurately reporting the coarse fraction (Campbell, 2003). 

Therefore the reported clay fraction was adjusted using the quadratic fit 

expression reported by Campbell (2003), which is based on the only 

existing experimental data set of real clay fraction and Malvern Mastersizer 

2000 data. Thus the clay fraction was corrected as: 

0018.60071.20116.0 2
LM +⋅+⋅−= LMCCC , (5.2) 

where C is the corrected clay fraction (in % mass) and CLM  is the clay 

fraction reported by the Laser Mastersizer 2000. The RMSE of the fit in 

(5.2) was of 1.8% clay fraction. 

In order to upscale the soil texture point data obtained from the 

gravimetric samples to the entire study area, the data were interpolated using 

the inverse distance with a 1km reference grid, to match the grid used for 

the airborne TB data (see section 5.3.2). An estimate of the error involved in 

the interpolation and gridding process was obtained by comparing the final 

1km soil texture grid with the original point data. The errors in clay fraction 

and sand fractions were 5.7% and 6.3% fraction respectively. The sensitivity 

analysis of the L-MEB model presented in section 5.1.4 indicates that such 

an error in soil texture has a negligible impact on the soil moisture retrieval 

accuracy, producing an error smaller than 1.5%v/v, which is smaller than 

that due to the PLMR radiometer noise (approximately 2K, see Appendix 

A3, resulting in approximately 2%v/v for a moderately vegetated soil). The 

resulting 1km soil texture grids are shown in Figure 5.8, together with the 

point gravimetric data. 
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5.3.1.3 Soil Temperature 

The L-MEB model requires input of soil temperatures at two depths, 

near-surface (at approximately 2.5cm) and deep (at approximately 50cm). 

However, as noted earlier, due to the lack of soil temperature measurements 

deeper than 15cm at all the soil moisture monitoring stations, in the present 

 
Figure 5.8. Soil texture data for the NAFE’05 study area; clay content (top 
panel) and sand content (bottom panel). The gravimetric samples point data 
are shown as well as the 1km soil texture grids derived by interpolation of 
the gravimetric samples. The thick dashed line delineates the study area 
boundaries while the solid lines indicate the experimental farms. 
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study it had to be assumed that the value of soil temperature at 15cm depth 

is a good estimate of soil temperature at (50cm). The spatio-temporal 

variability of the soil temperature at the available depths recorded at the 

eleven permanent monitoring stations during the time window of regional 

observations (7:00AM-9:30AM) is shown as an example in Figure 5.9 for 

November 14th. The 2.5cm soil temperature had greater temporal and spatial 

variation than the soil temperature at 15cm, which was basically stable in 

the regional observation window. Moreover, during this time window the 

soil temperature spatial variability (indicated by the standard deviation of 

soil temperature amongst the stations in Figure 5.9) was smaller than the 

variation in time. 

Spatial and temporal variability is summarised for all regional 

observation dates in Table 5.6, with the temporal variability quantified using 

the difference in average temperature between the stations at 9:30AM 

andthe average over the regional observation window. The spatial variability 

is quantified using the average of the standard deviations amongst the 

stations calculated for each temporal step (20min). The temporal variation 

of the surface temperature was greater than that spatial variation for all 

dates, and achieved a maximum (2.6K) for intermediate soil moisture 

conditions (November 14th, 20.5%v/v), being minimum in very wet 

conditions (0.6K and 40.6%v/v). Spatial variability achieved a maximum on 

the same date as the temporal variability (November 14th, 1.5K). The 

temporal variability of the deep soil temperature during the regional 

observation window was negligible (less 0.04K on all dates) as was the 

spatial variation (less than or equal to 1K in all cases). 

Given this observed variability, three options were considered for 

estimating the surface temperature across the entire study area: (i) Use the 

MODIS land surface temperature product to estimate the surface 

temperature; (ii) Extrapolate the point measurements at the monitoring 

stations to the entire study area through correlation with geophysical 

quantities and (iii) Use daily averages of the soil temperatures at the 

monitoring stations recorded during the regional observation window. 
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MODIS scenes of the NAFE’05 study area were available for only three 

of the four days of regional observations, and two of these scenes were 

affected by significant cloud cover, (only the MODIS November 21st scene 

was cloud free), making this data set unsuitable to estimate soil 

temperatures across the study area. Moreover MODIS observations only 

give a “leaf” temperature which would need to be correlated with the near-

surface soil temperature.  

Table 5.6. Summary of temporal and spatial variability of soil 
temperatures recorded at the permanent monitoring stations during regional 
airborne observations (7:00AM-9:30AM) at 2.5cm and 15cm depth. The 
quantification of temporal and spatial variability is is explained in the text. 

Date 

Average       

Soil 

Moisture 

(%v/v) 

 

Temporal 

Variability 

2.5cm (K) 

Spatial 

Variability 

2.5cm (K) 

Temporal 

Variability 

15cm (K)  

Spatial 

Variability 

15cm(K)  

31/10 40.6 0.6 0.6 -0.04 0.7 

7/11 35.1 1.9 0.7 -0.01 0.6 

14/11 20.5 2.6 1.5 -0.03 0.9 

21/11 10.8 1.9 1.3 -0.02 1.0 

 

Figure 5.9. Soil temperature time series at the permanent monitoring 
stations on November 14th and during the regional airborne observations 
window. (a) Near-surface soil temperature (2.5cm); (b) Deep soil 
temperature (15cm) are shown. Thick lines indicate the average temperature 
(solid) and standard deviation (dashed) of the temperatures observed at the 
stations at each time step (20min). 
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The potential to extrapolate the point measurements of soil temperature 

to the entire study area was assessed by analysing correlation between the 

spatial distribution of the 2.5cm soil temperatures recorded at the 

monitoring stations and geophysical properties expected to affect the spatial 

distribution of soil temperature. However, the correlation coefficient was 

found to be very low for all the geophysical properties considered: elevation 

(r2=0.01), aspect (r2=0.04) and soil texture (through % clay content, 

r2=0.006). Therefore the extrapolation was not considered a suitable method 

for estimating the surface temperature across the entire study area 

Daily averages of monitoring station data was the approach finally 

adopted to estimate soil temperature across the study area, as the spatial 

variation was found to be only 1.5K. The impact of the observed spatio-

temporal variability in soil temperature on the regional soil moisture 

retrieval was assessed by plotting the changes in retrieved soil moisture due 

to changing the input value of 2.5cm soil temperature of L-MEB for land 

surface conditions typical of the study area. Consequently, grassland and 

crop conditions were assessed with the Vegetation Water Content (VWC) 

equal to the average measured from biomass sampling (respectively 0.4  and 

2kg/m2). The results from this analysis are shown in Figure 5.10 (this plot is 

similar to the one presented in Figure 5.4, but is presented here in greater 

detail). Clearly the impact of errors in the 2.5cm soil temperature is greater 

in wet conditions, when the effect of soil temperature changes is enhanced 

by the lower soil emissivity. Moreover, this effect is stronger under a 

grassland canopy, due to the reduced contribution of the canopy to the 

overall signal and therefore the higher sensitivity to the soil signal. 

Using Figure 5.10 together with Table 5.6, a first-order estimate of the 

impact of spatial and temporal variability of near-surface soil temperature 

on the regional soil moisture retrieval can be considered. Specifically, two 

alternate options can be assessed: (i) soil temperature uniform in space and 

time and (ii) soil temperature uniform in space but variable in time. Table 

5.6 shows that, by using option (i), the maximum difference to be expected 
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between the assumed soil temperature and the real soil temperature, based 

on monitoring stations measurements, would be of 4.1K (November 14th). 

This is estimated by adding the variation in time (3rd column) to the spatial 

standard deviation (4th column). By considering average soil temperatures at 

discrete points through time instead (i.e., option (ii)) the difference in soil 

temperature is reduced to the spatial standard deviation component only, i.e. 

1.5K on November 14th. Figure 5.10 shows that the soil moisture retrieval 

error is reduced from 1%v/v to 6%v/v (depending on soil moisture 

conditions) for a 4.1K error in 2.5cm soil temperature, to a less than 2%v/v 

error in all cases for a 1.5K soil temperature error. Note however, that this 

analysis assumed, in the absence of additional data, that the standard 

deviation of soil temperatures recorded at the stations is representative of 

the spatial variability across the study area. This is believed to be a 

reasonable assumption since the stations were spread uniformly across the 

study area (see Figure 4.1). 

 

Figure 5.10. Sensitivity of the L-MEB soil moisture retrieval to changes in 
2.5cm soil temperature input for different soil moisture conditions. Cases 
considered are grassland (thin lines, italic labels) and mature crop (thick 
lines, regular bold labels). 
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This analysis has highlighted the importance of accurately accounting for 

temporal variation of soil temperature during the airborne acquisitions, 

while the spatial variation can safely be neglected (at least in the NAFE’05 

area). In this Chapter, temporal variation of soil temperature was accounted 

for in the soil moisture retrieval as a two-step process: 

1. the airborne TB observations were normalised to an intermediate 

reference time (8:00AM) by means of the ground measured temporal 

variation in near-surface soil temperature presented here; and 

2. the spatially uniform 2.5cm soil temperature calculated as the average 

temperature between the monitoring stations at the reference time 

(8:00AM) are used as input to L-MEB. 

The normalisation produced TB fields that were equivalent to those that 

would be observed at the reference time across the entire study area. Details 

about this pre-processing of the airborne data are given already in section 

5.1.1. This two-step process has two advantages: (i) it accounts for the 

impact of soil temperature temporal variability during regional observations, 

shown earlier to have a significant impact on the soil moisture retrieval, and 

(ii) it prevents the presence of sub-pixel spatial heterogeneities in the coarse 

TB pixels (obtained in Chapter 7 from aggregated 1km TB data) induced by 

the temporal variability of soil temperature instead of by real spatial 

variability of TB. 

The 8:00AM soil temperature recorded at 15cm depth at the permanent 

monitoring stations was used as the deep soil temperatures input of L-MEB. 

The implications of using the 15cm soil temperature as an approximation of 

the 50cm soil temperature have been already discussed in section 5.1.1. It 

suffices to say that the error in effective soil temperature estimation due to 

this assumption is less than 0.6K. Moreover, given the negligible small 

spatial variation of the 15cm temperature in the study area during the 

regional observation window (see Table 5.6) the 8:00AM average of the 

15cm soil temperature between the monitoring stations was used in the 

regional soil moisture retrieval.  
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5.3.1.4 Canopy Temperature 

Due to the difficulty of measuring the canopy temperature over large 

areas, it is common in passive microwave soil moisture retrieval studies to 

assume that this is equal to the air temperature and/or the soil surface 

temperature (Njoku et al., 1996a; Van de Griend et al., 2003). Since this is 

generally observed to be true at sunset and sunrise (Kerr et al., 2001). The 

NAFE’05 airborne observations were undertaken as early in the morning as 

possible possible while minimising the possible complications from dew, 

i.e., between 7:00A.M and 9:30AM. Consequently, canopy temperature was 

assumed to be the same as the 2.5cm soil moisture measurements. 

The soil-canopy temperature differences were continuously monitored at 

various locations which represented the different vegetation types across the 

study area. This was undertaken using thermal infrared towers and near-

surface soil temperature sensors installed at several depths. The sensor 

characteristics and locations of the towers have been described in detail in 

section 4.4.3. In summary, these stations included thermal infrared sensors 

mounted on 2m high towers pointing vertically down towards the vegetation 

canopy, with soil temperature sensors installed at three depths (1,2.5 and 

4cm) within the infrared sensor’s field of view. A total of four thermal 

infrared sensors were installed over different land covers: bare soil, lucerne 

crop, wheat crop and native grass. Figure 5.11 shows an example of the 

diurnal variation of soil and canopy temperature for the wheat field at the 

Merriwa Park experimental farm. As expected, the canopy temperature 

exhibited stronger daily variation than the near-surface soil temperature, 

being warmer during the day and colder at night. Thermal equilibrium 

between canopy and soil was reached at approximately 7:00A.M and 

6:00P.M in the particular case of a wheat cover. 

The differences between soil and canopy temperatures within the 

regional airborne observation window (7:00AM-9:30AM) are summarised 

for the four monitoring stations in Table 5.7. For the most common crop in 

the study area (wheat), differences were less than 3.2K, while for the native 
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grass they could be up to 7.3K. It is notable how the differences changed 

appreciably going from wet (4K) to dry (11K) conditions (<20%v/v). 

The sensitivity of the L-MEB soil moisture retrieval to differences 

between canopy and near-surface (2.5cm) soil temperature input was also 

tested, similarly to what was done for the 2.5cm soil temperature in the 

previous section, in order to estimate the impact of the assumption of soil-

canopy thermal equilibrium. This was done by plotting the changes in L-

MEB retrieved soil moisture due to changes in canopy temperature for land 

surface conditions typical of the study area: a grassland and a crop, with 

VWC equal to the average measured amount (respectively 0.4  and 2kg/m2). 

The results are shown in Figure 5.12. While a similar plot has been already 

presented in Figure 5.4, this plot shows the impact in greater detail. Here it 

can be clearly seen that despite differences between soil and canopy 

temperature of up to 11K in dry conditions, the impact on the soil moisture 

retrieval is small, yielding a soil moisture retrieval error less than 2%v/v. In 

 

Figure 5.11. Example of diurnal cycles of thermal infrared canopy 
temperature and near-surface soil surface temperature at three depths. Data 
are from the thermal infrared station installed in the wheat field at Merriwa 
Park. 
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wet conditions, temperature differences of up to 3.2K for wheat crops and 

up to 7.3K for native grasses result in errors less than 1.2%v/v. 

It has been shown therefore that the assumption of thermal equilibrium 

between soil and canopy, despite being not strictly correct, is not expected 

to produce errors in soil moisture retrieval higher than 2%v/v during the 

time window of regional airborne observations used here (7:00M.-9:30AM). 

The canopy temperature was therefore set as equal to the 2.5cm soil 

temperature when retrieving soil moisture estimates from regional airborne 

observation in the following sections. 

In summary, the errors which will affect the regional soil moisture 

retrieval are: 1.5%v/v due to uncertainty in soil texture estimation, 2%v/v 

due to the assumption of uniform near-surface soil temperature and 1.2%v/v 

due to the assumption of thermal equilibrium between near-surface soil 

temperature and canopy temperature.  

5.3.2 Airborne Data 

Regional airborne observations were undertaken at 1km nominal 

resolution over the entire study area on October 31st, November 7th, 14th and 

Table 5.7. Temperature difference (K) between the soil surface (average of 
the 0-5cm sensors) and the thermal infrared temperature on regional 
airborne observations dates for the four monitoring stations installed on. 
W=wheat, L=Lucerne, NG=Native Grass, and BS=Bare Soil. Empty cells 
are missing data due to instrument faults. The average of the soil moisture 
(SM, %v/v) recorded at the continuous monitoring stations is indicated for 
each day.  

Soil-Canopy Temperature 

Difference (K) at 7:00AM 

Soil-Canopy Temperature 

Difference (K) at 9:30AM 

Date SM  W L NG BS W L NG BS 

31/10 40.6 2.1 5.7 - 2.3 0.3 3.9 - -0.7 

7/11 35.1 2.5 3.7* 7.3** 1.8 -4.0 -3.3* 3.9** -9.4 

14/11 20.5 3.2* 6.3 - 0.2 -11.1* -10.5 - -14.3 

21/11 10.8 2.3 - 6.2 3.8 -8.0 - 0.4 -4.1 
*
Data missing, value taken from ±1 day 

**
Data missing, value taken from November 24

th
(mean SM=30%v/v)  
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21st. The 40km-long, north-south oriented flight lines were flown at 10,000ft 

between approximately 7:00AM and 9:30AM. This time window was 

chosen as it is close to the SMOS overpass time (6.00AM), yet not expected 

to be complicated by dew, and therefore well replicates the mission soil 

moisture retrieval conditions. The radiometer was flown in ‘pushbroom’ 

configuration, yielding six across-track observations from each aircraft 

location. A full pixel overlap between adjacent flight lines was guaranteed 

in order to avoid data gaps and ensure full coverage of the entire area. The 

calibrated regional PLMR data were processed in the same way as the high-

resolution data (see section 5.1.1), with a calibration error 1K at H 

polarisation and 2.5K for V polarisation (see Appendix A3). 

In order to effectively use pushbroom radiometer data for soil moisture 

mapping, it is desirable to account for the effect of varying beam angles 

through a normalisation procedure and for the effects of varying soil 

temperature during the acquisition window which has been discussed in 

section 0. Once these two effects are taken into account, the TB acquisitions 

can be gridded to a reference grid with uniform resolution. This is 

 
Figure 5.12. Sensitivity of the L-MEB soil moisture retrieval to absolute 
differences between canopy and near-surface (2.5cm) soil temperature for 
different soil moisture conditions. Cases considered are grassland (thin lines, 
italic labels) and mature crop (thick lines, regular bold labels). 
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convenient since all the ancillary data to be used in the retrieval can be 

gridded to the same reference grid, and the soil moisture retrieval can then 

be performed for each cell of the grid. Moreover, by averaging several 

individual TB acquisitions into one value of TB for each cell, the signal noise 

is reduced. These pre-processing steps are described in the following 

sections before presenting the soil moisture retrieval. 

5.3.2.1 Normalisation for Incidence Angle 

It is well known that over a homogeneous bare soil target the measured 

TB is affected by the viewing angle (Ulaby et al., 1986). This angular 

variation can be described by the Fresnel equations and differs depending on 

the land surface conditions. In previous studies using similar instrument 

designs (Jackson et al., 1999; Jackson, 2001), it has been shown that a 

normalisation procedures can be applied to mixed land covers. This 

procedure normalises the data to an equivalent angle of choice, by assuming 

that the deviation between beam positions is due to the Fresnel effect and 

calibration errors for individual beams, and that for a given day the Fresnel 

effect for a particular beam is approximately constant for the range of soil 

moisture and vegetation present. There are some circumstances when using 

a limited data set for this correction, say a single flight line, can lead to 

errors. This can occur when a land surface anomaly (such as a small water 

body in observed particular beam and not by the others. In the studies 

mentioned above it was assumed that by using a daily average for all data 

the area potential errors due to anomalies would be minimised. This 

assumption should be correct in the NAFE’05 study area, since there were 

no large water bodies or other features that exhibited significantly different 

microwave response.  

With this assumption, a normalisation procedure was applied as follows:  

• the daily average TB was computed for all six beams; 

• a reference beam was chosen to which all TB observations will be 

normalised, representing a specific incidence angle; and 
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• a correction factor is computed for each beam by subtracting the 

reference average from each beam average. Since incidence angles of 

the six PLMR beams are symmetric with respect to nadir, the 

reference beam average is calculated as the average of all TB 

observations taken by the two beams having the same incidence angle 

(e.g., ±38.5º). 

All data from each beam on each day are then corrected using these 

correction factors as in: 

)( BREFBiBi

N

Bi TTTT −−= , (5.3) 

where BiT  is the individual TB acquisition to be normalised, N

BiT  is the 

normalised value, and BiT  and BREFT  are the daily average TB of 

respectively the beam to be normalised and the beam taken as reference. 

Figure 5.13 shows the average TB values for each of the six PLMR beams 

plotted for the study area on each date. The angular reflects the Fresnel 

effect. However, it can also be seen that the left beams (negative angles) 

recorded slightly lower TB at H polarisation (about 3K). This is not visible at 

high TB values (November 14th and 21st), and given that what is plotted in 

Figure 5.13 is the daily average of the TB measured over the entire study 

area, it is unlikely that this was an effective difference in land surface 

emission observed by the different beams, pointing instead to a calibration 

problem. The anomaly in the 7º beam at V polarisation is related to a 

problem with loss of gain of the receiver after the factory calibration. This 

could not be fully corrected during daily calibration. However, an excellent 

symmetry about nadir was observed for all the other beams. 

Before applying the normalisation procedures described above to the 

regional airborne observations, the procedure was tested using the multi-

angle TB observations made over the Merriwa Park farm at 250m nominal 

resolution on November 2nd, 9th, 16th and 23rd (see section 4.3.3.3). Since on  
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these flights PLMR was rotated by 90º with respect to pushbroom 

configuration, with the specific purpose to make multi-angular observations, 

every location on the farm was measured by all beams, therefore allowing a 

direct comparison between the TB observations normalised to a particular 

angle using the procedure described above and the TB observed at that 

angle. Two dates were selected for the analysis, a wet day (November 2nd, 

mean soil moisture 42%v/v) and a dry day (November 23rd, mean soil 

moisture 13%v/v). On each day three data sets were created by normalising 

the observations of each beam to the three reference angles of PLMR beams 

(±7º, ±21.5º and ±38.5º) using (5.3). Each normalised”data set was then 

compared with the direct TB observations over the area from the reference 

beams. Results are shown in Figure 5.14, where the TB normalised to each 

angle are compared with the TB observed at that angle. Results indicate an 

 
Figure 5.13. Daily average of PLMR 1km brightness temperature plotted 
versus angle at V (solid lines) and H (dashed line) polarisations (negative 
sign indicates left beams). 
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excellent agreement between normalised and observed TB, with a RMSE 

less than 1.5K in all cases. As a cross wind on the day forced the aircraft to 

fly with a small yaw angle with respect to the flight path, the areas covered 

by each individual beam did not exactly overlap in this comparison, 

potentially degrading the results. 

This test showed that the normalisation procedures adopted can be used 

to produce TB maps at a constant reference angle from pushbroom 

radiometer data using (5.3), under the assumption that for a given day the 

Fresnel effect for a particular beam is constant for the range of soil moisture 

and vegetation conditions present. The regional TB observations were 

therefore normalised to the incidence angle of the radiometer outermost 

beams (±38.5º) using the procedure described above. This choice of angle 

 
Figure 5.14. Comparison between normalised and observed brightness 
temperatures at Merriwa park on November 2nd at H (a) and V (b) 
polarisation and November 23rd at H (c) and V (d) polarisations. 



Chapter 5 – L-MEB Model Evaluation Page 5-48 

 

was motivated by the fact that at close-to-nadir incidence angles the V and 

H-pol TB values are very similar (see Figure 5.13), while at off nadir 

incidence angles V-pol TB values are generally higher than H-pol values 

(this difference will vary depending on the land surface conditions). By 

using wider incidence angles, therefore, the retrieval accuracy of the L-MEB 

algorithm is improved since the polarisation difference yields information 

on the polarising effect of the vegetation canopy (Wigneron et al., 2000). 

5.3.2.2 Normalisation for Soil Temperature 

Airborne TB observations were normalised to an intermediate reference 

time (8:00AM) using the temporal variation of the near-surface soil 

temperature recorded at the monitoring stations discussed in 0 and the 

radiometer time reference. Given that the effect of soil temperature on TB is 

linear (see radiative transfer equation (2.3) and Figure 5.10), the 

normalisation procedure was as follows:  

• for each day, the average near-surface soil temperature between the 

stations was calculated for each logging time step (20min) between 

the start and end time of the regional airborne acquisition;  

• a normalisation factor was then calculated for each time step as the 

ratio between the average soil temperature at 8:00AM and that at that 

time step, and 

• each TB acquisition was normalised to the reference time by 

multiplying the TB value by the relevant normalisation factor, using 

the closest normalisation factor to the TB acquisition time.  

An example of the results of this procedure is shown in Figure 5.15 for 

November 14th. Despite the large variation of TB due to spatial gradients, the 

original data show generally an increasing trend with time which is of the 

order of 5K, consistent with the observed average temporal increase of near-

surface soil temperature for that day (see Figure 5.9). This trend is smoothed 

in the normalised data while the spatial gradients are maintained. 
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This procedure produced TB fields that were equivalent to those that 

would be observed at the reference time across the entire study area. The 

regional airborne observations normalised to the reference angle and 

reference time were then gridded to a regular 1km grid. Given the high rate 

at which individual TB acquisition were taken (0.6secs) by the instrument 

and the low aircraft speed (~50m/s, 180km/h), each 1km grid cell was 

greatly oversampled, with an average of 34±14 acquisitions falling in each 

1km grid cell. Therefore a simple linear average was used to calculate a TB 

value for each grid cell. The TB maps of the study area have been already 

shown in Figure 4.3. 

5.3.3 Soil Moisture Retrieval 

Soil moisture was retrieved for each cell of the TB grid using L-MEB 

together with the ancillary data described in section 5.3.1. Given the 

availability of two observations for each cell (V-pol and H-pol), a two 

parameter retrieval of soil moisture and vegetation optical depth was 

performed. The L-MEB vegetation-specific radiative transfer parameters for 

 
Figure 5.15. Example of normalisation of brightness temperatures for soil 
temperature temporal change. Shown are the original and normalised data 
for November 14th, V-pol (observations from all beams averaged every one 
minute for display). 
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crop and native grass derived from the high-resolution sites (section 5.1 and 

5.2) were adopted here, with the following considerations: 

• all the crops in the study area were assigned the L-MEB default 

parameters for vertically dominated wheat-type crops. This was 

mainly motivated by the fact that a clear distinction between different 

crops could not be done based on the Landsat thematic map used to 

define land cover across the study area. Therefore, the parameters for 

the most common crop type in the area (wheat) were applied to all 

crops. In section 5.1.3 and 5.1.5 it was shown that the parameters for 

wheat apply well to other crops present in the study area, such as 

mixed wheat/barley and mixed oats/barley fields; 

• all the native grass surfaces in the study area were assigned the L-

MEB default parameters for surfaces with a litter layer (Saleh et al., 

2007), as this parameterisation gave the most accurate soil moisture 

retrieval for most of the high-resolution native grass sites; and 

• specific parameters for the Eucalypt forest present in the study area 

were those described in section 3.4.7, obtained by J. Grant (pers. 

comm.). 

The L-MEB parameters used for each surface type are summarised in 

Table 5.8. Moreover, the following additional assumptions were made: 

• the soil moisture output of the L-MEB algorithm was limited to a 

maximum soil moisture value of 58%v/v. This was derived from 

analysis of the maximum soil moisture achieved at the permanent 

monitoring stations (see Chapter 6), and matches well with the 

maximum porosity of the soils in the study area (determined by soil 

particle analysis), which was of 55% for the clay soils in the northern 

part of the study area. Conversely, no lower limit was imposed on the 

retrieved soil moisture;  

• given the relatively small scale of the pixels (1km) each pixel was 

assumed to be uniform and covered by the land cover with the 
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dominant fraction as calculated from the Landsat derived land cover 

map; and 

• over forested pixels, retrieval of both soil moisture and the vegetation 

optical depth may be highly inaccurate, depending on the density of 

the canopy (i.e., the vegetation optical depth). It was therefore 

decided to constrain the retrieval by imposing the value of the 

vegetation optical depth calibrated with the detailed forest study by J. 

Grant (pers. comm.) (Table 5.8) and to retrieve only soil moisture. 

This is expected to yield a better soil moisture retrieval accuracy than 

the case in which retrieval of both soil moisture and vegetation 

optical depth was to be attempted over the forest. 

The four maps of L-MEB retrieved soil moisture and vegetation optical 

depth for the NAFE’05 study area are shown in Figure 5.16. The spatial 

patterns can be interpreted using the spatial plots of ancillary data described 

earlier in this Chapter and summarised in Figure 5.17 for reference. The 

retrieved soil moisture shows interesting spatio-temporal dynamics. It 

reflects the temporal rainfall regime experienced by the area during the 

experiment, with wet conditions on October 31st and November 7th 

associated with the heavy rainstorms that crossed the study area at the 

beginning of the experiment (20mm over October 30th and 31st), followed 

by more intense rainfall on November 5th (21mm). The period between 

Table 5.8. L-MEB surface type parameters for different vegetation covers. 
Native grass includes also ‘bare soil’ and ‘woodland’ classified pixels. θ is 
soil moisture. (*) the value of optical depth adopted is shown instead of that 
of parameter b. 
Surface 

Type HR QR NRH NRV ttH ttV ωωωωH ωωωωV b 

Crop 1.6-1.1*θ 0 0 -1 1 8 0 0 0.08 

Native 
Grass 

1.3-1.13* θ 0 1 0 1 1 0 0.05 0.12 

Forest 0.12  0 0 0.46 0.46 0.07 0.07 0.57* 
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November 5th and 23rd was characterised by little or no rainfall and 

accordingly drier soil moisture conditions were retrieved for November 14th 

and 21st. 

The retrieved vegetation optical depth was more stable in time and less 

sensitive to the rainfall regime. This is expected as the optical depth is 

related to the water fraction of the plant biomass (or vegetation water 

content, VWC) and this should vary less in time (i.e. much slowly) than soil 

moisture, being biochemically linked to the plant matter. The daily average 

retrieved optical depth for crops and grasslands achieved a maximum of 

0.19±0.05 on October 31st and a minimum of 0.15±0.05 on November 7th. 

This temporal variation is consistent with the variation of the ground 

measured VWC (to which optical depth is linearly correlated) at the high-

resolution sites (see for example Figure 4.11). 

The spatial distribution of the retrieved soil moisture across the study 

area shows a significant association with land cover and soil texture. In 

particular, the large forested area in the southern part of the study area 

exhibited drier conditions than the rest, while the cropped areas, more dense 

in the western part of the study area, maintained wet conditions throughout 

the month. This is consistent with the analysis of ground soil moisture data, 

which will be discussed in detail in Chapter 6. 

The large native grass areas which cover the greatest fraction of the study 

area exhibited highly variable patterns where the influence of soil texture, 

and to a lesser extent topography can be identified; During the drydown 

period between November 14th and 21st, the southern part of the study area, 

which is characterised by a low flat plateau with sandstone derived soils, 

dried more quickly than the northern part, characterised by steeper hills and 

Black clay soils. This could be due to the higher water retention properties 

of the clay with respect to sandy soils, in addition to surface shading effects 

due to topographic aspect in the northern part, reducing evaporation.  
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Figure 5.16. L-MEB retrieved soil moisture and optical depth from regional 
airborne observations (1km resolution). The boundaries of the experimental 
farms are shown with solid lines. 
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The ability to observe these large-scale patterns in soil moisture 

demonstrates the utility of the regional soil moisture maps presented here, 

characterising the spatial distribution of soil moisture at a scale similar to 

that of typical satellite footprints. The daily statistics of the retrieved soil 

moisture are presented in Table 5.9, together with complementary statistics 

on the aircraft TB observations used for deriving this product. The average 

soil moisture conditions in the area decreased from 43.5%v/v (October 31st) 

to 14.0%v/v (November 21st), with the soil moisture standard deviation 

across the 40km x 40km study area decreasing from 14.1%v/v in wet 

 

Figure 5.17. Spatial distribution across the study area of sand content (top 
left), Landsat land cover map (top right) and terrain elevation map (bottom 
right) of the NAFE’05 study area 



Chapter 5 – L-MEB Model Evaluation Page 5-55 

 

conditions to 8.4%v/v in dry conditions. This data set is particularly 

interesting as it covers the full dynamic soil moisture range.  

Table 5.9 presents equivalent statistics for the 2km-spaced ground soil 

moisture measurements collected on each regional observation day by the 

ground teams using the Hydraprobes. Given the point nature of the data and 

the distance between individual measurements, comparison with the L-MEB 

soil moisture product on a point-by-point basis is neither straightforward nor 

useful. The ground soil moisture data were mainly collected to analyse the 

large-scale soil moisture spatial variability as presented in Chapter 6. 

The soil moisture variability within an area as big as an aircraft footprint 

(1km) can in fact be so high that the individual ground measurement are not 

typically representative at all of the surrounding areas, unless the sampling 

locations were carefully selected based on previous knowledge of the soil 

moisture variability within the area. Consequently a detailed analysis of the 

spatial variability of soil moisture within various 1km aircraft footprint was 

conducted using the high-resolution ground sampling data covering the 

experimental farms, collected concurrently with the multi-resolution flights 

during NAFE’05 (see Chapter 4). Although a detailed report on the results 

Table 5.9. Statistics of the regional L-MEB soil moisture product and 
ground soil moisture sampling. For each quantity on each date, average 
values are given as well as standard deviations across the study area. 

Date TB (H) TB (V) 

Retr. 

Soil 

Moist.  

 (%v/v) 

Retr. 

Opt. 

Depth 

 (-) 

Ground  

Soil 

Moist. 

(%v/v) 

Rain 

(mm) 

31/10 237.7 
±11.9 

255.3 
±10.0 

43.5 
±14.1 

0.25 
±0.16 

47.9 
±12.5 

16.1 
the day 
before 

7/11 241.4 
±10.1 

261.3 
±7.5 

36.1 
±13.2 

0.22 
±0.17 

36.4 
±13.2 

21.3 
two days 
before 

14/11 264.7 
±6.5 

277.8 
±5.1 

16.2 
±10.2 

0.24 
±0.16 

19.0 
±10.3 

4.1 
five days 
before 

21/11 270.9 
±4.0 

282.2 
±2.9 

14.0 
±8.4 

0.26 
±0.15 

11.0 
±7.2 

0 since 
the 14/11 
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has been omitted here, it was found that that the soil moisture variance at 

1km was typically of 13.4%v/v in wet conditions (November 8th) and 

9.0%v/v in dry conditions (November 22nd). This is of the same order as the 

variability of soil moisture across the entire study area (Table 5.9), making 

it difficult to validate 1km retrieved soil moisture using one or two ground 

measurements falling within the footprint.  

Nonetheless, the average of many such ground measurements across the 

entire area can be used as a rough check for the L-MEB soil moisture 

retrieval at 1km resolution which was properly evaluated at the high-

resolution sites (see sections 5.1 and 5.2). The comparison of the L-MEB 

derived product and the ground measurements shows good agreement, both 

in terms of average soil moisture and standard deviation across the area. The 

overall difference between the two sources of soil moisture up exceeds 

3.0%v/v only for the wettest day (4.4%v/v difference, October 31st). 

5.4 Chapter Summary 

This Chapter has presented an evaluation of the L-MEB radiative transfer 

model, core to the SMOS L2 soil moisture retrieval algorithm, for the 

specific land cover conditions in the NAFE’05 study area. The model has 

been evaluated using high (62.5m) and low (1km) resolution L-band 

observations at eight heavily monitored experimental farm in the study area. 

After evaluation of the model, high-resolution (1km) soil moisture maps of 

the entire study area have been produced.  

Results have shown that the L-MEB model with its default values for the 

vegetation- and surface-specific parameters is suitable for soil moisture 

retrieval over the grass types in the NAFE’05 study area (maximum error 

3.7%v/v). In the case of crops, the default parameters led to significant 

underestimation of soil moisture (between 10%v/v and 32.5%v/v). It was 

shown that the L-MEB default values of HR are too low for the crops present 

in the study area (wheat, barley and oats). A linear soil moisture dependent 

parameterisation of HR has been calibrated to achieve soil moisture accuracy 
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better than 4.8%v/v for crop sites. This is consistent with previous results 

obtained using tower mounted radiometers both over grasslands and crops 

in Europe (Wigneron et al., 2001; Saleh et al., 2007) and is also in line with 

observations over the NAFE’05 study area by an independent study using 

the EMIRAD radiometer (Saleh et al., 2009). After site-specific calibration 

of the soil moisture dependent linear parameterisation of HR, soil moisture 

has been retrieved with an accuracy better than 4.8%v/v at all the sites 

analysed except Midlothian (RMSE=7.4%v/v), which presented a unique 

type of crop, not present anywhere else in the study area.  

This Chapter has also demonstrated the ability to retrieve soil moisture 

estimates at 1km resolution with an average soil moisture accuracy of 

3.8%v/v and in all cases better than 6%v/v over a all the land surface 

conditions in the study area, including crop, grasslands and forest. The L-

MEB model has therefore been used to produce soil moisture maps of the 

entire NAFE’05 study area from airborne data at 1km resolution. This soil 

moisture product has the advantage of overcoming the point nature and 

limited extent of traditional ground sampling techniques. Consequently, it 

will be used in Chapters 7 and 8 as soil moisture ground truth to address the 

problem of coarse-scale soil moisture retrieval from simulated satellite 

pixels in the presence of land surface heterogeneity. 
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Chapter Six 

6 Land Surface Features Control on Soil Moisture 

Variability 

This Chapter explores the spatio-temporal variability of near-surface soil 

moisture in the NAFE’05 study area using the ground-measured soil 

moisture data and information on land surface properties described in 

Chapter 4. The objective is to gain understanding of the land surface 

processes that dominate the control of soil moisture spatial variability in the 

study area at the scale of an L-band satellite footprint. This information will 

be crucial when analysing the error in soil moisture retrieval from simulated 

SMOS pixels induced by land surface heterogeneity discussed in Chapter 7. 

The results from this Chapter will also be used in conjunction with those 

from Chapter 7 to test alternative soil moisture retrieval approaches for 

SMOS in Chapter 8, which may reduce soil moisture retrieval by partially 

compensating for land surface heterogeneity. 

In particular, this Chapter addresses the following questions: 

• can spatial patterns of near-surface soil moisture be determined a-

priori from spatial patterns of land surface features such as soil 

texture and/or land cover? And 

• how does the role of these land surface features in determining near-

surface soil moisture spatial distribution change in time and with 

spatial scales? 

Initially, continuous point measurements undertaken at the monitoring 

stations throughout the NAFE’05 study area are analysed, providing insight 

to the temporal evolution of land surface control at discrete points. This is 

followed by an assessment of the spatial relationship between soil moisture 

and land surface factors using detailed soil moisture spatial monitoring data 

across the NAFE’05 experimental farms. Finally, the spatial relationship 

between soil moisture and land surface factors is analysed at the spatial 
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extent of the typical satellite footprint, covering the wide range of land 

surface characteristics that characterise the NAFE’05 study area. 

6.1 Data Overview 

At a particular point in time soil moisture is influenced by: (i) the 

precipitation history, (ii) the texture of the soil, which determines its 

drainage rate and water holding capacity, (ii) the local topography, which 

affects runoff and infiltration, and (iv) the vegetation and the land cover 

type, which influence evapotranspiration and deep percolation. Moreover, 

rainfall spatial patterns and soil temperature differences due to local terrain 

aspects and its effect of the solar radiation at the surface are known to 

influence soil moisture. 

The three ground data sets used in this Chapter to explore the spatio-

temporal variability of soil moisture have been described in detail in 

Chapter 4 and consisted of (see also Figure 6.1):  

1. a total of seventeen soil moisture monitoring stations operating 

during the NAFE’05 experiment, measuring soil moisture at 0-5cm 

depth through Stevens Hydraprobes (see section 4.4.2). Due to 

instrument faults, only eleven of those stations provided good quality 

and continuous data and are therefore used in this study; 

2. spatially distributed soil moisture measurements at the eight 

experimental farms, undertaken on nested sampling grids with 

variable spacing, ranging from 6m in the center of the high-resolution 

area to 1km, over an area as big as 10km on each farm on sixteen 

dates; and 

3. spatially distributed soil moisture measurements across the study 

area, undertaken at approximately 2km spacing on four dates. 

6.2 Point-scale Variability 

The available information on soil texture, topography, the land cover 
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type and vegetation green biomass for each monitoring station is 

summarised in Table 6.1. Soil textural properties were derived from soil 

particle analysis of 30cm deep samples collected at each station. In this 

analysis the soil textural properties considered are the % sand and clay 

content. Topographic slope and elevation were calculated from a 250m 

DEM of the study area. As all stations for which continuous data are 

available were installed on grass fields, the effect of land cover type on the 

 

Figure 6.1. Layout of ground soil moisture measurements in the NAFE’05 
study area. Permanent stations are indicated with gray circles and 
corresponding station ID. Farm boundaries and farm scale monitoring extent 
are shown in thin solid lines, while the grouping of the farms considered in 
the large satellite footprint scale analysis are indicated with thick solid lines. 
Gray points with black centre indicate the locations of the 2km-spaced 
sampling of the study area scale. Vertical bars indicate the relative amount of 
cumulative rainfall at each available rain gauge during the NAFE’05 period. 



Chapter 6 – Effect of Land Surface Heterogeneity on Soil Moisture Retrieval Page 6-4 

 

soil moisture variability could not be analysed with this data set. It was 

investigated with the spatial soil moisture measurements later in this 

Chapter. In order to quantify the effect of vegetation on soil moisture 

variability the NDVI index was used. The NDVI index, proposed by Rouse 

et al. (1973), has been shown to be correlated with the “vigour” of the 

vegetation, in particular the live green vegetation (Ceccato et al., 2002; 

Jackson et al., 2004). NDVI values can range from 0 for bare soils to 1 to a 

very dense canopy. NDVI mapping of the study area was available from the 

MODIS sensor onboard the Terra and Aqua platforms as a 16-day 

composite product at 250m resolution. NDVI values were extracted for each 

station (see Table 6.1).  

This data set encompassed a wide variety of conditions in terms of soil 

texture (from clay to sand), local terrain slope (from 20 to 46 degree slope) 

Table 6.1. Land surface characteristics at the monitoring stations. *=data 
derived from a 250m resolution Digital Elevation model of the 
area.**=average of two MODIS 16-day reflectance at 250m resolution 
during November 2005.”n/a” indicates rainfall data not available or 
incomplete due to instrument problems. The columns are ordered by ranking 
based on the value of mean relative difference described later in the section. 
The last column indicates the correlation coefficient between mean relative 
differences and each land surface property. 
Station 

ID 
M2 S3 M3 S5 S4 S6 K3 S7 M6 M5 S1 r 

% Sand 94 31 21 12 32 31 6 32 31 10 6 -0.72 

% Clay 0 41 36 46 16 41 71 16 51 69 54 +0.62 

Elev. 

(m)* 
261 412 423 378 454 405 419 432 394 365 329 +0.08 

Slope 

(deg.)* 
22 36 41 39 31 46 23 18 34 44 18 -0.08 

NDVI** 0.60 0.56 0.60 0.52 0.58 0.52 0.74 0.53 0.62 0.57 0.56 -0.08 

Cum. 

Rainfall 

(mm) 

40 n/a 47 n/a n/a n/a 66 n/a 55 67 61.4 +0.76 
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and topography (from relatively flat valley bottoms to ridge tops). The range 

of elevations (261m-454m) is relatively narrow compared to the overall 

range within the study area (180m-806m). Nevertheless, this data set is 

reasonably representative of the elevations observed in the study area as 

approximately 70% of the area falls within the range 297m-475m, with the 

exception of some mountain ridges in the northern part. NDVI values varied 

little across the sites and are overall in the 0.5-1 range, indicating fairly lush 

grasslands. Comparison of MODIS NDVI with the vegetation water content 

(VWC) samples taken throughout the study area indicated that these values 

of NDVI correspond to a VWC of approximately 0.5kg/m2 for grasslands. 

The time series of soil moisture recorded at the stations are plotted in 

Figure 6.2. Also plotted is the average cumulative precipitation recorded at 

rain gauges throughout the study area. Rainfall information has also been 

provided in Figure 6.1 to illustrate the spatial distribution of rainfall within 

the study area. A wide range of wetness conditions was encountered by all 

stations throughout the NAFE’05 period, since heavy rainfall delivered 

approximately 20mm of rain throughout the study area on October 30th and 

31st, at the start of the experiment, followed by another rainfall event of 

approximately the same magnitude on November 5th and a few minor 

rainfall events (November 8th, 10th and 22nd). Significant increases in soil 

moisture were observed at all stations in response to these rainfall events, 

which maintained moderate to wet conditions throughout the study area 

during the first 10 days of November, followed by a gradual drying period 

from November 10th to November 22nd. While many of these stations were 

raised to about the same moisture content at the start of the experiment, the 

rate of decrease in soil moisture during the inter-storm periods was different 

between stations, reflecting different drainage and evaporative conditions 

associated with soil texture, topography and vegetation cover.  

The variability of soil moisture observed across the stations at any instant 

in time was significant. This is shown in Figure 6.3 where the coefficient of  
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variation (CV) of soil moisture (defined as the standard deviation 

normalised by the mean across stations at any instant in time) is plotted 

against the mean soil moisture. In the figure a reference CV is also shown 

calculated using constant soil moisture standard deviations of 5, 10 and 

15%v/v. The CV exponentially decreased as the mean soil moisture 

increased for intermediate to wet conditions, indicating that the scaled 

spatial variability was greater in dry conditions than in wet conditions. Note 

that different values of the CV are associated to the same mean soil moisture 

content due to different spatial distributions during wetting and drying 

phases, leading to different standard deviations. The CV reached a plateau 

in very dry conditions (less than 20%v/v), due to a decrease in absolute 

 

Figure 6.2. (a) Time series of 0-5cm soil moisture at the monitoring 
stations; (b) Cumulative precipitation (average of all rain gauges). 
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spatial variability. This result is consistent with previous studies at several 

US sites with similar soil moisture networks (Choi et al., 2007). However, 

the NAFE’05 soil moisture data encompass a wider range in soil moisture 

conditions and greater spatial variability (i.e., standard deviation) than in 

those watersheds, making this data set very suitable to analyse the 

relationship between the spatial distribution of soil moisture and associated 

land surface factors. 

In order to gain insight into the sources of soil moisture spatial variability 

between the monitoring locations in the study area, temporal stability 

analysis was performed to determine which sites recorded consistently 

wetter or drier soil moisture conditions than the catchment average. These 

results were subsequently analysed in terms of the land surface 

characteristics observed at each site, in order to determine which factors 

were responsible for the observed deviation from the area-average 

conditions. 

 

Figure 6.3. Relationship between mean 0-5cm soil moisture at the  
monitoring stations and coefficient of variation. The superimposed dotted 
lines show the theoretical relationship when using constant standard 
deviation values of 5, 10 and 15%v/v.  
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The term “temporal stability” was introduced by Vachaud et al. (1985) 

and has been further developed by Grayson and Western (1998). Temporal 

stability occurs if covariance exists between spatial pattern of soil moisture 

and a deterministic factor such as topography or soil texture. If this occurs, 

the soil moisture patterns are temporally stable (i.e., wetter locations are 

consistently wetter, drier locations are consistently drier). The mean relative 

difference is defined as:  

∑
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where θi,j is the jth soil moisture sample at the ith site of n sites within the 

study region and jθ̂  is the computed soil moisture average among all n sites 

for a given date and time, j (j =1 to t): 
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This variable directly measures how a particular site compares to the 

average of a larger region, whether it is consistently greater or less than the 

mean. Its standard deviation indicates how variable that relationship is. The 

mean relative differences of each station in the NAFE’05 study area are 

plotted in Figure 6.4 by rank (in order of mean soil moisture relative 

difference), with error bounds of one standard deviation of the relative 

differences. The data points of the plot can be interpreted in terms of the 

land surface characteristics of the stations shown earlier in Table 6.1, where 

the stations are listed in the same order as in Figure 6.4, based on the rank of 

mean relative difference (dry to wet). 

Figure 6.4 shows that many sites were temporally stable in time (i.e., 

their relative difference has small standard deviation) and the watershed was 

highly temporally stable over this period. K3, a mid-slope location in the 

northwestern part of the study area with the highest % clay content recorded 

amongst the stations, had a mean relative difference close to zero and a 

small standard deviation, indicating a close correlation between K3 soil 
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moisture conditions and the average of surface soil moisture across the 

entire study area. M5 and S1, clayey sites situated respectively on a hillside 

and at the flat outlet of a small watershed, both consistently overestimated 

the area-average conditions. On the contrary, M2, a mid-slope location in 

the southeastern part of the area with the highest sand content recorded 

amongst the stations, had mean relative difference that was lower than the 

area-average. 

Weak or no relationship could be observed between mean relative 

difference in soil moisture and elevation or topography. This is indicated in 

the last column of Table 6.1 with the correlation coefficient between each 

land surface characteristic and the mean relative difference. A significant 

correlation was instead found between mean relative difference and soil 

textural properties (% sand and % clay content). Although these soil 

properties are somewhat correlated, they affect in a different way the 

hydrological properties of the soil: a high sand content determines high 

percolation rate and quick lateral and vertical drainage of the water through 

the profile, while higher % clay content means elevated water holding 

capacity of the soil during drying conditions.  

 

Figure 6.4. Mean and standard deviation of the relative difference of soil 
moisture recorded at each of the monitoring stations.  
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This finding is significant in the context of this study, as it indicates that 

observed spatial patterns of soil moisture in the NAFE’05 study area can be 

connected to spatial patterns of soil textural properties. No correlation could 

be observed between mean relative difference and elevation, terrain slope, 

or NDVI. It has already been suggested that, while terrain attributes might 

play an important role when soil moisture variability is observed at the 

small scale (100m-1km) and during or immediately after storms, at larger 

scales (satellite footprint scale) they should be less important (Grayson et 

al., 1998; Kim et al., 2002b). Finally, the effect of vegetation cover, as 

quantified through the NDVI index, could not be explored very well in this 

case due to the small range in NDVI values across the stations and the fact 

that all stations had the same land cover type (native grass). 

It is also evident in Table 6.1 that a strong correlation existed between 

the mean relative difference and the cumulative precipitation at the subset of 

stations where good quality and complete rainfall information was available 

(M2, M3, M5, M6, K3 and S1). Sites with higher cumulative precipitation 

tended to exhibit conditions wetter than the area-average. This is 

confounding as it partially explains the soil moisture difference observed 

between the sandiest site (M2) and the least sandy site (S1), which cannot 

therefore be solely attributed to soil texture differences. This will be further 

discussed later in this section. Moreover, given the high spatial and temporal 

variability in precipitation fields, rainfall is likely to introduce nearly 

random spatial variability in soil moisture conditions during and after 

rainfall events, limiting therefore the ability of this kind of analysis for 

determining land surface control on soil moisture variability. 

In order to gain better understanding into the temporal variation of the 

correlation between soil moisture and land surface properties as well as into 

the relative importance of rainfall input and soil texture in determining soil 

moisture spatial distribution, the correlation between (i) the relative 

difference of soil moisture recorded at each station and the area-average, 

and (ii) the land surface properties was determined individually for each 
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time step of soil moisture acquisition at the monitoring stations. The time 

series of the individual correlation coefficients with each land surface 

property are plotted in Figure 6.5. In this plot, a negative correlation 

coefficient means that an increase in that property is associated with soil 

moisture conditions drier than the area-average. A plot of the area-average 

soil moisture has been added at the top of Figure 6.5 to show the rainfall 

regime. Note that small-scale fluctuations in the values of the correlation 

coefficients are due to the small effect of daily soil temperature fluctuations 

on the soil moisture dielectric measurements. Several key observations 

could be drawn from this plot:  

The observed correlation with sand content was dominant throughout the 

month, but more so in wet conditions. In dry conditions (after November 

14th) this correlation decreased. The correlation with clay content, although 

slightly smaller than that with the sand content in wet conditions, was more 

persistent throughout the drying period and was the more important factor in 

dry conditions. This is likely to be associated with the greater water holding 

capacity of clay soils, which retain water for a longer period after rainfall.  

 

Figure 6.5. Temporal change of the correlation coefficients between soil 
moisture at the monitoring stations and relative difference for each date and 
time according to land surface features. 
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As mentioned earlier in this section when discussing the mean relative 

difference analysis, the rainfall spatial distribution in the study area masked 

the effect of soil texture on the soil moisture distribution, as sites with 

higher sand content received overall a smaller amount of rainfall. In Figure 

6.5 the persistence of the correlation between soil moisture and soil texture 

throughout the month, particularly after many days from the last rainfall 

event (e.g., after November 14th) is notable. This supports the conclusions 

that soil texture is effectively the most important factor determining 

persistent spatial patterns of soil moisture in the study area, once the 

temporary effect of rainfall spatial distribution is exhausted. Even if during 

or immediately after storm soil moisture patterns are expected to be 

correlated with the spatial distribution of rainfall, in fact, during a long 

drydown period like that following November 14th, the effect of the spatial 

distribution of the last rainfall event would get weaker until disappearing. 

Little or no correlation was again observed with elevation, slope and 

NDVI, although some correlation with elevation was observed for the wet 

period in the first half of the month. This is likely to be due to the 

correlation between rainfall and elevation, which has been discussed earlier, 

as there is no other obvious reason why locations at higher elevation (and 

with generally smaller upslope drainage area) should be wetter than 

locations at lower elevation. Interestingly, in dry conditions the sign of the 

correlation with elevation inverted, indicating the tendency of higher 

elevations to produce drier areas (topographic effect). 

The advantage of doing this type of analysis with continuously recording 

monitoring stations is that the effect of rainfall on temporal stability can 

easily be analysed. During, and immediately after storms, two important 

effects could be observed: (i) the correlations with sand/clay content 

decreased strongly, to be re-established within a time lag of 3-4hours and 

(ii) the correlation with elevation, slope and NDVI increased (correlation 

coefficients nearly doubles). This is die to several factors: (i) the soil texture 

is the main factor affecting drainage, but during rainfall events the 

hydrologic regime is dominated by the rate at which water is input at the 
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soil surface, which is independent of soil texture, (ii) locations at higher 

elevations tend to receive more precipitation and therefore have wetter soils, 

(iii) steeper slopes determine quicker lateral flow which drains the surface 

layer at a higher rate, and (iv) denser vegetation cover intercepts more 

rainfall that will not reach the ground surface thus leaving the soil drier. 

In summary this section identified sand content as the most important 

factor in determining spatial variability in soil moisture at spatial extents 

beyond 10km. Soils with higher sand content values tended to exhibit drier 

conditions than the area-average. Quantitatively, a difference of 88% sand 

content between two locations in the study area produced a soil moisture 

difference of 8.3%v/v on dry conditions of the area (5%v/v) and of 

41.7%v/v on intermediate conditions (25%v/v). This finding is significant in 

the context of this study as it suggests that observed spatial patterns of soil 

moisture in the NAFE’05 study area can be connected to spatial patterns of 

soil textural properties. This correlation decreased strongly during and 

immediately after rainfall events (1-2days), when the influence of elevation, 

terrain slope and vegetation became sensible. After a long period of no 

rainfall, the clay content became the most important factor, determining 

wetter-than-average conditions.  

The results discussed in this section have been limited by (i) the point 

nature and scarcity of the soil moisture measurements taken at the 

monitoring stations, which limited the ability of this kind of analysis to fully 

capture the large-scale variability in soil moisture within a typical L-band 

satellite footprint, and (ii) the fact that all the monitoring stations for which 

continuous data were available were installed at grass fields, limiting the 

possibility to investigate the effect of the land cover type on soil moisture 

variability. The spatially distributed soil moisture measurements collected 

during the NAFE’05 campaign are therefore used in the following sections 

to extend the results obtained thus far over the wide range of land surface 

conditions in the study area. 
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6.3 Farm-Scale Variability 

6.3.1 High-Resolution Areas 

Each of the eight, 150m x 150m high-resolution areas in the NAFE’05 

experimental farms was specifically chosen to study the effect of a 

particular land surface property on soil moisture spatial distribution. 

However, the basis for area selection was limited to land cover type and 

topography, as only these properties could be readily assessed by visual 

inspection. The areas were chosen so that the other land surface properties 

could be considered uniform across the sampling area, and therefore soil 

moisture spatial variability could be directly associated to the variability of 

either the land cover type or topography. In the following discussion, the 

name of the experimental farm where the high-resolution area was located 

will be used to indicate the high-resolution area itself.  

A detailed description of the high-resolution areas has been given in 

Table 5.1. Of the eight high-resolution areas, three cases were selected for 

analysis here: 

• “Roscommon”: A flat site characterised by uniform short grass and 

sandy soil, located in the south-western part of the study area in the 

Roscommon farm (see Figure 6.1); 

• “Midlothian”: A flat site characterised by a sharp contrast between a 

lucerne crop and a fallow field (respectively 70% and 30% of the 

high-resolution area), located in the north-eastern part of the study 

area in the Midlothian farm; and 

• “Stanley”: A hillslope site characterised by tall grass, located in the 

western part of the study area in the Stanley farm. 

The Illogan and Pembroke high-resolution areas presented both mixed 

vegetation type conditions and micro-topographic conditions (e.g., a gully). 

Dales presented very similar conditions to Stanley, and therefore did not add 

extra information to this analysis. Merriwa Park presented uniform 

vegetation and a very gentle slope, making it unsuitable for analysis of the 
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topographic effect. Cullingral was a flat area with variable land cover type, 

but the two crops (wheat and barely) between which the high-resolution area 

was split comprised plants with very similar characteristics, which did not 

show in significant spatial variability. For the aboves reasons, although 

these areas were useful for the evaluation of the L-MEB presented in 

Chapter 5, they were not suitable for the current analysis of soil moisture 

spatio-temporal variability. 

For all sites it was assumed that soil type is approximately uniform, i.e., 

soil type does not vary significantly over the 150m sampling distance. 

Moreover, the soil type for each site was determined from 30cm soil 

samples at the nearby monitoring station or, when the stations were too far 

from the high-resolution area, from 5cm soil samples taken at the closest 

 

 
Figure 6.6. Soil moisture patterns (% v/v) at the high-resolution areas during 
November 2005: Roscommon area (first row) Midlothian area (second row) 
and Stanley area (third row). The white cells in the bottom part of the 
Roscommon area on November 1st are missing data due to the suspension of 
the sampling during heavy rainfall. The double line in the middle row 
indicates the fence that separated the fallow from the lucerne field. The arrow 
in the bottom row indicates the maximum down slope direction. 
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sampling location of the 2-km spaced regional soil moisture data set (see 

section 4.4.1). There were not enough data to verify the assumption of 

uniform soil type within the 150m area. 

An overview of the soil moisture spatial patterns collected weekly at the 

three sites during November 2005 is shown in Figure 6.6. Also indicated in 

the plots is the discontinuity in the land cover type for the Midlothian site 

and the direction of maximum slope for the Stanley area. Despite the large 

distance between the three sites (~10-20km), the three areas experienced 

similar soil moisture conditions, with wet conditions in the first two weeks 

followed by a drydown in the following two weeks. It should be noted that 

the patterns in Week 1, Week 2 and Week 3 were all between one and three 

days after rainfall events, while Week 4 sampling was at least five days after 

the last rainfall event.  

The Roscommon control area exhibited very uniform soil moisture 

conditions, due to the absence of significant topographic relief and uniform 

land cover type. It should be noted that rainfall interrupted the sampling 

operations at Roscommon on November 1st, so only one-third of the high-

resolution area could be sampled. Most notable is that the Midlothian area 

exhibited a significant soil moisture gradient at the boundary between the 

lucerne and fallow field, particularly in Weeks 2, 3 and 4, showing a 

vegetation control on soil moisture variability. This is further confirmed by 

the fact that the spatial variability within each field was smaller than the 

overall variability across the two fields. Moreover, the lucerne field, having 

denser vegetation than the fallow field, exhibited drier soil moisture 

conditions. In the case of the Stanley area, no soil moisture variability due to 

topographic relief was observed. The soil moisture distribution in the area 

was dominated by small-scale variability, not directly associated with the 

direction of maximum slope (i.e., lateral drainage), but most likely 

associated with very small-scale topographic relief (or surface roughness). 

This was confirmed by the standard deviation of surface heights measured 

with a pin profiler at the Stanley site, which was the highest recorded 



Chapter 6 – Effect of Land Surface Heterogeneity on Soil Moisture Retrieval Page 6-17 

 

amongst the eight experimental farms (1.1cm as opposed to 0.8cm and 

0.6cm at Midlothian and Roscommon respectively). 

Volumetric soil moisture is plotted in Figure 6.7 along two transects 

(10m wide) oriented in the North-South direction at Midlothian (across the 

lucerne-fallow boundary) and in the East-West direction at Stanley (very 

close to the maximum slope direction). For Stanley the plot shows little 

correlation of soil moisture with the location along the hillslope, with 

slightly wetter conditions in the downward direction on week 1 and week 3. 

This was nevertheless masked by large variance of soil moisture at short 

distances. For Midlothian, a strong soil moisture gradient was associated 

with the boundary between the two fields. This became more evident in 

week 2 and 3 as the conditions became drier, and it was likely the result of 

the higher evapotranspiration from the lucerne field, accelerating the drying. 

Moreover, as already noted in Chapter 5, the fallow field had significant 

dead biomass at the surface. It has been already noted that this creates a 

 
Figure 6.7. Soil moisture distribution along transects at Stanley (left panels, 
East-West transect) and Midlothian (right panels, North-South transect) for 
week 1-4 along rows. The arrow in the top left panel indicates the down 
slope direction 
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masking layer which can shade the soil surface and therefore keep it moist 

(Saleh et al., 2006a). 

Statistical analysis of the four soil moisture maps for the three areas is 

summarised in Table 6.2. Overall, the Roscommon area showed very small 

variability (standard deviation in the table) and a relatively small skewness 

(asymmetry from normal distribution), as expected for a uniform soil 

moisture field. The standard deviation at Midlothian was significantly 

higher and increased in Weeks 1 and 2 to peak in Week 3 (November 16th), 

when highest was the difference in soil moisture between the two fields (see 

Table 6.2. Summary statistics of volumetric soil moisture at Roscommon 
(uniform), Midlothian (variable vegetation cover) and Stanley (micro-
topography). Values of mean and standard deviation are in %v/v. 

Roscommon 
 

01/11 08/11 15/11 22/11 

Nr points 89 290 274 141 

Mean 27.7 20.7 4.1 1.6 

St. Dev. 5.7 3.0 2.4 1.4 

Skewness -0.032 -0.230 0.572 1.347 

     

 Midlothian 

 02/11 11/11 16/11 23/11 

Nr points 297 218 294 291 

Mean 33.9 48.0 24.8 13.0 

St. Dev 6.9 7.7 9.0 4.5 

Skewness -0.316 -0.346 1.227 2.705 

     

 Stanley 

 03/11 10/11 17/11 24/11 

Nr points 292 295 293 293 

Mean 43.9 35.8 10.4 31.5 

St. Dev 7.1 7.3 3.0 8.1 

Skewness -0.207 0.130 1.681 0.591 
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Figure 6.7). Stanley had also a significantly higher standard deviation than 

Roscommon, indicating strong spatial variability.  

The impact of the vegetation cover on the soil moisture distribution at the 

Midlothian site was investigated through the VWC ground-sampled in both 

fields (Lucerne and fallow), taken as a proxy to the vegetation density and 

its impact on the soil moisture distribution. It should be noted that the fallow 

field had nearly always zero VWC, associated with the dead biomass at the 

surface. The results, shown in Table 6.3, highlights that the spatial 

variability of soil moisture was very well correlated with the VWC 

difference between the two fields, as this achieved a maximum on 

November 14th-16th, where the VWC of the Lucerne field was maximum. 

Although the connection between VWC and the physical interaction 

between the plant and the soil (water retention and extraction by the roots 

and shading of the soil surface by the foliage) are not entirely understood, in 

this analysis VWC seems to be a good indicator of the impact of the 

vegetation cover on soil moisture spatial distribution. 

The soil moisture spatial distribution at Midlothian also showed the 

highest skewness amongst the areas, more so in intermediate and dry 

conditions (Weeks 2 and 3). To better understand the significance of this, 

histograms of soil moisture for all the areas were calculated (see Figure 6.8). 

The Midlothian area showed bimodality in Weeks 2 and 3, when the VWC 

Table 6.3. Vegetation Water Content (VWC) measured from ground 
biomass samples collected at Midlothian (kg/m2). Values indicated are the 
mean and standard deviation of eight samples or the mean of two samples 
when standard deviation is indicated as “N/A”. 

Lucerne Fallow 
Date 

Mean  Std. Dev. Mean  Std. Dev. 

31/10 0.22 0.14 N/A N/A 
11/11 0.21 N/A N/A N/A 
12/11 N/A N/A 0.11 N/A 
14/11 0.30 0.14 0.00 0.00 
16/11 0.27 N/A 0.00 N/A 
21/11 0.14 0.09 0.00 0.00 
23/11 0.17 N/A 0.00 N/A 
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of the lucerne field and the soil moisture spatial variability reached their 

highest values. In Weeks 1 and 2, with higher soil wetness and relatively 

small VWC values, the distribution was unimodal and the effect of 

vegetation variability on soil moisture distribution was not visible.  Table 

6.2 showed that Stanley had a significantly higher standard deviation than 

Roscommon. Nevertheless, analysis of the histograms revealed a unimodal 

distribution throughout most of the month. This confirms the absence of 

topographically driven spatial distribution, which would have resulted in at 

least two different modes (drier areas at higher elevation and wetter areas at 

lower elevation). 

To further confirm these findings, semivariograms were calculated for 

each area and each day. The semivariogram is the expected value of the 

square of the differences of soil moisture between locations which are 

 
Figure 6.8. Histograms of soil moisture (% v/v) at the high-resolution areas: 
Roscommon area (first row) Midlothian area (second row) and Stanley area 
(third row).  
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separated by a distance h. This is very effective tool for evaluating the two-

dimensional spatial correlation structure of a soil moisture field. Following 

Matheron (1963), the semivariogram is calculated as: 
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where the γ values at distance h are known as semivariances. The volumetric 

soil moisture values, θ(x), are taken at pairs of sample points xi and xi+h, 

which are separated by a distance h for a total of Np pairs of increments in 

two dimensions. For this application, the experimental semivariograms 

calculated with (6.3) were normalised by the total spatial variance of surface 

soil moisture for each day, in order to compare semivariograms for different 

days with different total field variances. The general shape of a 

semivariogram is an increase of the semivariance as the lag h increases, 

until a point beyond which this does not change anymore (the semivariance 

corresponding to this distance is called the “sill”). The distance h at which 

the semivariance becomes stable is called the “range”, and it is an 

approximation of the correlation length of the spatial field. Locations with 

distances higher than the range are considered uncorrelated, and if the 

semivariance sills to the total field variance, the field is defined as “spatially 

stationary” (it has a constant mean and variance for a certain distance h). 

The semivariance at short distances is called the “nugget”). The nugget is 

due to the variance of the measuring device as well as the variance of soil 

moisture at scales smaller than the minimum sampling space (6.25m here) 

which can not be resolved by the semivariogram. 

The semivariograms for the three high-resolution areas are shown in 

Figure 6.9. One common restriction in semivariogram calculations is that 

the maximum separation distance should not exceed half the minimum 

dimension of the data field considered. Therefore the semivariograms shown 

in Figure 6.9 extend to 75m. Several key conclusions can be drawn from the 

plots. For Roscommon as well as for Stanley, the range was very small (of 
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the order of 10m), and the field total variance was already achieved at 

distances smaller than 20m. Exceptions are Weeks 1 and 3 for Stanley, 

where the range slightly increased (up to 50m), probably due to the weak 

topographically driven soil moisture distribution already observed. 

Nevertheless, overall small-scale variability dominates the spatial 

distribution in both areas. In the case of Midlothian, the range was much 

greater than 10m, and more so in Weeks 2 and 3, in association with the 

higher soil moisture variability between the Lucerne and fallow fields 

observed earlier. This indicates that due to the discontinuity in the land 

cover type, the soil moisture field exhibited spatial correlation at larger 

scales than in the case of Roscommon and Stanley (>50m). In Weeks 3 and 

 
Figure 6.9. Semivariograms of the high-resolution areas by area and by day. 
Each semivariance value is normalised by the variance of the moisture field. 
Plots are for Roscommon area (first row) Midlothian area (second row) and 
Stanley area (third row). The semivariograms for Roscommon on November 
1st is not shown due to the limited amount of data collected. 
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4 at Midlothian, the nugget was also very small compared to the overall 

variance, indicating a relatively uniform spatial distribution within the 

lucerne and fallow fields at small scale. 

In summary, this section has shown that strong soil moisture spatial 

variability can be associated with spatial variation in the land cover type. 

The case presented, of a lucerne field adjacent to a fallow field, showed that 

a difference in vegetation cover corresponding to a difference of 

approximately 0.3kg/m2 in VWC could produce a soil moisture variability 

of up to 20%v/v, over an otherwise flat area with uniform soil type. This 

was particularly evident in drying conditions for soil moisture content below 

30%v/v. However, the analysis of the soil moisture distribution along a 

150m hill slope showed only a weak correlation between soil moisture and 

position along the slope. It was also noted that in the present case small-

scale variability associated with surface roughness dominated the soil 

moisture distribution. Here the variability associated with topography was 

significantly less than the noise due to small-scale variability except in very 

dry conditions (10%v/v). 

6.3.2 Experimental Farms 

In this section the analysis of spatial variability in soil moisture is 

extended to the distributed soil moisture measurements undertaken across 

the broader area of the eight experimental farms. These measurements were 

undertaken on each farm on nested sampling grids with spacing ranging 

from approximately 6m in the center of the high-resolution area to 1km, 

over an area of at least 2km2 (Cullingral farm) and up to 64km2 (Pembroke 

farm) (see section 4.4.1). However, this analysis is limited to the areas 

covered by ground sampling with spacing smaller than 125m, which ranged 

between 0.5 and 3km2 in size, depending on the farm. The reason for this 

choice is that the spatial resolution of the ancillary data used to characterise 

the impact of vegetation and topography on the soil moisture distribution 

was 250m for both MODIS NDVI and the DEM of the study area. 

Therefore, if ground soil moisture data with spacing larger than 125m had 

been included, the analysis would have been affected by the measurement 
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uncertainty that occurs when only one ground point is used to characterise 

the wetness conditions of a 250m x 250m area. As shown in section 6.3.1, a 

strong variability of soil moisture can exist even over such a short distance. 

Limiting the analysis to 125m resolution ensured that every DEM and 

NDVI pixel was compared with at least four soil moisture measurements, 

hence reducing the uncertainty due to variability of soil moisture at scales 

smaller than 250m. 

Since terrain elevation alone is not always suitable to characterise the 

impact of topography on soil moisture distribution, a Compound 

Topographic Index (CTI) was also calculated from the 250m DEM. The 

CTI is a steady state wetness index (also named Topographic Wetness 

Index) and it is a function, at any given location in the landscape, of both the 

slope and the upstream contributing area per unit width orthogonal to the 

flow direction as per (see also Koster et al., 2000): 

)
tan

ln(
β

α
=CTI , (6.4) 

Where the term α is the upstream area that contributes flow, and β is the 

local topographic slope. Locations higher values of CTI will have greater 

upslope area and smaller slope. This is in general associated with valley 

bottoms, where the convergence of subsurface flow is known to maintain 

moist conditions (Beven et al., 1979; Grayson et al., 2001 

In order to investigate the relationship between soil moisture and land 

surface features, all data were interpolated to the 250m DEM grid, and the 

average of the ground soil moisture measurements within each grid cell 

calculated. The correlation coefficients between soil moisture and the land 

surface features (elevation, CTI, NDVI, and % sand and clay content) were 

then calculated individually for each farm and each monitoring day, and 

their variation in time analysed.  

It should ne noted that, although the nominal maximum spacing of the 

ground soil moisture sampling was 125m, in reality this was variable and 

sometimes higher than that, due to problems with access to certain locations 
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by the sampling teams. Consequently, only pixels which contained at least 

four ground points were considered in this farm-scale analysis, in order to 

guarantee accurate ground sampling of each pixel. It should also be noted 

that while NDVI and topographic attributes are available at a 250m 

resolution soil texture was only available the locations where gravimetric 

samples used for soil texture analysis were collected (over an irregular, 2km 

spaced grid, see Figure 5.8). Therefore, interpolation at 250m resolution of 

soil texture data may have introduced uncertainty in soil texture estimation. 

So rather than interpolate the soil texture data, it was decided to include in 

the correlation analysis only those 250m pixels for which a gravimetric soil 

texture sample had been obtained, assuming that the sample was 

representative of the 250m x 250m area. Consequently, the correlation 

between soil moisture and soil texture was determined with a significantly 

lower number of points than that with NDVI and topographic attributes. 

However, in order to keep a statistically significant number of data points, 

all pixels were considered in the case of soil texture (i.e., even those with 

only one ground soil moisture measurement). 

An example of the correlation between soil moisture and elevation, CTI, 

NDVI, and % sand and clay content is shown in Figure 6.10 for the Dales 

farm. This was a 2km x 2km area situated on a steep hill slope culminating a 

ridge top, covered with uniform native grassland. Here soil moisture 

exhibited a significant correlation with elevation, with decreasing soil 

moisture values at increasing elevation. The correlation persisted to 

November 11th after a rainfall event on November 9th wetted the area (see 

Figure 6.10, panel a), and was mantained throughout the following drydown 

until November 18th. Soil moisture exhibited a significant correlation with 

the sand content on wet conditions (November 4th and 11th, panel d). 

However, differently than what observed when analysing the monitoring 

stations (see section 6.2), the correlation here was positive, indicating wetter 

conditions associated with higher sand content. Detailed analysis of the data 

points on November 4th and 11th revealed that these corresponded to four 
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soil texture measurements very close to each other (~150m). It is possible 

that small-scale variability of soil moisture affected these results. 

No significant correlation was observed between soil moisture and CTI 

(panel b), indicating that the CTI might not be an efficient wetness index 

when dealing with such a shallow soil layer (5cm) as that considered here. 

Moreover, the basic assumption of steady state on which is based might not 

apply to the NAFE’05 observation period, which was characterised by 

several rainfall events (see section 6.2). Consequently, the CTI index was 

not considered further in this analysis. No correlation was also observed 

between soil moisture and vegetation NDVI (panel c). It should be noted, 

 

Figure 6.10. Scatter plots and correlation coefficients between ground 
measured soil moisture and (a) Elevation (m), (b) Compound Topographic 
Index, (c) NDVI, (d) % sand and (e) % clay content at the Dales farm on 
November 4th, 11th, 18th and 25th (left to right). The linear regression for 
each day and each data set is shown with a blue line, and the correlation 
coefficient for each regression is indicated in each box. 
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however, that the range of NDVI values exhibited by the uniform grassland 

cover at this farm was very narrow (see Figure 6.10).  

The correlation coefficients were calculated for all the four monitoring 

days on each farm. Temporal series of these coefficients are shown in 

Figure 6.11. Also plotted on this graph is the area mean soil moisture 

content to indicate the wetness regime. Overall, soil moisture exhibited a 

strong correlation with elevation. This was observed for the Cullingral, 

Merriwa Park, Dales and Stanley areas, which all have a significant relief 

(~100m). Of these, Dales and Stanley had very small variability in NDVI 

values, while Merriwa Park and Cullingral had a significant range in NDVI 

values (0.4-0.7), indicating significant variability in vegetation density 

across the farm. However, in both cases soil moisture was more strongly 

correlated with elevation than with NDVI, indicating a dominant role of 

topography in soil moisture distribution at this scale.  

The correlation between soil moisture and elevation was observed to 

peak at intermediate wetness conditions (15-35%v/v from November 9th to 

22nd). In these conditions, a relief of approximately 100m produced a 

difference in soil moisture of 15-20%v/v for Merriwa Park, Stanley and 

Dales, and a difference greater than 30%v/v between the hillside and valley 

bottom at Cullingral. It is to be noted that, in contrast to the results of the 

analysis of the monitoring stations, soil moisture was observed here to be 

inversely correlated with elevation (i.e. drier conditions at higher elevation, 

while at the large scale of the monitoring stations wetter conditions were 

associated with higher elevations). This is more in line with previous studies 

(Grayson et al., 1997b; Western et al., 2004), and indicates that while at the 

farm scale the effect of elevation on soil moisture is associated with 

drainage from upslope areas to downslope areas (which is more pronounced 

during inter-storm periods), at larger scales the effect of elevation is more 

associated with its impact on rainfall patterns, determining wetter conditions 

at higher elevation. This was confirmed by the rain gauge data, which 

showed higher cumulative precipitation at higher elevations. 
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The correlation of soil moisture with NDVI exhibited strong variability. 

It is worth here to limit the discussion to those farms with a significant 

range in NDVI values (i.e. Midlothian, Merriwa Park, Cullingral and 

Illogan), because in the other cases the narrow range of NDVI makes the 

calculation of the correlation coefficient less reliable. These farms all 

presented a mix of native grass and cropped areas. Moreover, Illogan was a 

highly cropped farm with strong variability in NDVI (0.5-0.8, 

corresponding to a range of vegetation water content of 0.5-3kg/m2) and a 

very small relief (30m). This was in fact the only case in which soil 

moisture exhibited higher correlation with NDVI than with elevation, with 

drier soil associated with higher NDVI values (more “vigorous” vegetation). 

Despite the wide range of vegetation conditions, however, the resulting soil 

 

Figure 6.11. Time series of correlation coefficients between soil moisture 
and elevation, NDVI and soil texture (left axis) in the NAFE’05 
experimental farms. On the right axis the temporal variation of mean soil 
moisture over the entire study area is plotted. Correlation with sand and clay 
content is shown only in the cases where a sufficient number of data points 
were available for calculation of the coefficient. The numbers on the sand 
content data points indicates the number of pixels available for calculation 
of the correlation coefficients. 
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moisture variability appeared relatively small, with a 10%v/v soil moisture 

variation on November 10th, where the correlation with NDVI was highest. 

In all the other cases presented, the correlation with NDVI was found to be 

small and highly variable in sign. When compared to the soil moisture 

differences between the lucerne and fallow fields in section 6.3.1, these 

results suggest that the presence/absence of vegetation, i.e., the land use 

distribution, might be a more important control on soil moisture than the 

“vigor” of the vegetation growth (associated with NDVI). 

Despite the small number of soil texture data points available, the 

correlation of soil moisture with soil texture showed consistent results. 

However, the only farms at which a sufficient number of data points were 

available were Midlothian, Dales and Pembroke. Of the other farms, 

Cullingral was the only farm with some soil texture data points, but too few 

to be used here for correlation analysis. They were nevertheless considered 

in the large-scale analysis presented in the next section. Of the three farms 

with usable data, Dales and Pembroke were characterised by significant 

variability in soil texture (30-50% sand content), while Midlothian had a 

narrow range (25-35% sand content) and a smaller number of soil texture 

data points available. However, for these three farms soil moisture exhibited 

a significant correlation with the sand content, which changed from positive 

during wet conditions (wetter soil associated with higher sand content) to 

negative during drying conditions (drier soil associated with higher sand 

content). A positive correlation was again observed after the rainfall on 

November 22nd. This is in contrast with what was observed at the large scale 

(monitoring stations), where drier soils were consistently associated with 

higher sand contents. However, the analysis of the monitoring stations also 

showed that the effect of sand content on soil moisture variability during the 

wet period until November 11th was confounded by other factors which had 

a non-negligible impact (NDVI and elevation, see Figure 6.5). The 

confounding effect of these other factors could therefore be the reason for 

the observed positive correlation between soil moisture and sand content 

during this period at the three farms. During the drying phase after 
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November 11th, instead, sand content became dominant in determining 

spatial distribution, hence the expected negative correlation. Although 

relatively narrow, the range of sand content at the Dales and Pembroke 

farms (30-50%) determined significant soil moisture variability (15-30%). 

In summary this section identified elevation as the most important factor 

in determining spatial variability in soil moisture at spatial extents up to 

3km2. Soil moisture was observed to be inversely correlated with elevation, 

i.e. drier conditions at higher elevation, and to be a more dominant control 

than vegetation “vigorous” growth (i.e., NDVI). Morevoer, soil moisture 

exhibited a significant correlation with soil texture (% sand and clay 

content) which was predominant on the topographic effect during drying 

conditions. 

6.4 Satellite Footprint Scale Variability 

While the analysis conducted to this point has provided insight into the 

factors determining soil moisture spatial variability through time and over 

spatial extents smaller than 3km2, the primary objective of this Chapter is to 

determine the controls on soil moisture spatial variability within a typical L-

band satellite footprint, i.e. up to 40km. Therefore this section expands the 

analysis to an area of 40km x 40km by simultaneously using all the spatially 

distributed soil moisture measurements made from different farms on the 

same day. Moreover, the regional soil moisture sampling undertaken on four 

occasions across the entire study area are also analysed. 

6.4.1 Direct Correlation Analysis 

The eight experimental farms were grouped into four different ways (see 

Figure 6.1): two in the Krui subcatchment (“Krui 1” and “Krui 2”) and two 

in the Merriwa subcatchment (“Merriwa 1” and “Merriwa 2”). The rationale 

behind this division is that each of these areas included two farms 

approximately 10-30km apart, simultaneously mapped on the same day by 

separate teams in a consistent manner. Consequently these areas represent 

landscape units with defined characteristics in term of topography, 

vegetation, soil texture and rainfall regime. Each area was originally to be 
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ground-monitored on four occasions during the month. However, for 

logistical reason, in the case of Merriwa 1 and Merriwa 2 only three 

simultaneous mappings of soil moisture were obtained using the groupings 

identified for were sampled in their entirety only three times.  

The land surface characteristics for each area are summarised in Table 

6.4. Merriwa 1 is the area with the largest distance between the two farms 

(25km), and is also characterised by the largest range of elevations (214m) 

and soil texture (34% range in sand content). It is therefore most 

representative of the variability that is to be expected across the 40km x 

40km study area. Note that this is also the only area where soil texture data 

points were available at both farms in sufficient number for correlation 

purposes. The other three areas present limited variability in land surface 

conditions, had a much smaller spatial extent and not enough soil texture 

data points to carry out a comprehensive comparison of the correlation 

between soil moisture and the land surface features considered here. With a 

procedure identical to that used for the farm-scale analysis, the temporal 

variation in correlation coefficients between soil moisture and the land 

surface features (all gridded to the 250m DEM reference grid) were 

calculated individually for each area (see Figure 6.12).  

In the Merriwa 1 area soil moisture exhibited stronger correlation with 

soil texture than with elevation or NDVI. This was not true for the third day, 

November 25th, which was proceeded by a significant rainfall event. These 

results are consistent with the analysis of station data, where at large spatial 

extent (>10km) soil moisture variability was observed to be mostly 

correlated with the % sand and clay content, with this correlation decreasing 

significantly during and after rainfall events. A soil moisture variability of 

over 30%v/v was produced in the Merriwa 1 area by a range of sand content 

of 34%. This variability is higher than that observed at the farm scale (15-

30% for a sand content range of 30-50%) but consistent with that observed 

at the monitoring stations (30.4% soil moisture difference induced by a 

difference in sand content of 25%).  
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In the Krui 2 and Merriwa 2 areas, little or no correlation was observed 

with NDVI and elevation, while in the Krui 1 area soil moisture exhibited a 

significant correlation with elevation, and to a lesser extent with NDVI. The 

Krui 1 area presents a relative small range of elevations (83m, see Table 

6.4). Nevertheless, it had a significant amount of cumulative rain in the 

northern, more elevated portion with respect to the other gauged stations 

(66mm at station K3, Table 6.1). Despite the lack of complete rainfall time 

series for the southern part of the area (stations K1 and K2 had several data 

gaps), it is expected that this is much smaller and comparable to site M2, 

Table 6.4. Land surface properties of the large scale areas. 

Elevation (m) NDVI % sand 
A

re
a
 

E
x
te

n
t 

(k
m

) 

M
ea

n
 

S
t.

D
ev

. 

R
a
n

g
e 

M
ea

n
 

S
t.

D
ev

. 

R
a
n

g
e 

M
ea

n
 

S
t.

D
ev

 

R
a
n

g
e 

Krui 1 15 400 22 83 0.6 0.1 0.3 33 7 17 

Krui 2 8.5 391 24 91 0.6 0.1 0.4 29 5 14 

Merriwa 1  25 316 68 214 0.6 0.1 0.4 41 11 34 

Merriwa 2 11 386 43 120 0.6 0.1 0.4 34 8 20 

 
Figure 6.12. Time series of correlation coefficients between soil moisture 
and elevation, NDVI and soil texture (left axis) in the NAFE’05 large-scale 
areas. On the right axis the temporal variation of the mean soil moisture 
over the entire study area is plotted. 
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which is situated on the same large flat plateau occupying the southern part 

of the study area. Therefore the high correlation of soil moisture with 

elevation is likely to be due to the correlation between rainfall and elevation 

at larger scales, as discussed in the analysis of the station data.  

The analysis here has confirmed that soil texture was a dominant factor 

in determining soil moisture variability at the extent of interest of this study 

(>10km), while being still important but confounded by other factors such 

as elevation and vegetation distribution at smaller extents (<3km). The 

analysis has nevertheless been limited by the small number of soil texture 

points available in the near vicinity of soil moisture measurement locations 

and the relatively small extent of the spatially distributed soil moisture 

measurements (below 30km). In the next section the analysis is extended to 

a yet wider domain, that of the entire study area (approximately 40km 

extent), using the soil moisture measurements undertaken at approximately 

2km spacing across the study area on October 31st, November 7th, 14th and 

21st. 

6.4.2 Semivariogram Analysis 

The 2km-spaced soil moisture measurements had the advantage of 

covering the study area fairly extensively. Nevertheless, the single point 

nature of each measurement is a limitation when used to characterise the soil 

moisture condition of the surrounding 2km large area. Consequently, rather 

than trying a direct correlation analysis between soil moisture and land 

surface properties as performed in the previous section, it was decided to 

investigate the spatial structure of the soil moisture fields and their 

relationship with that of vegetation, topography and soil texture through a 

semivariogram analysis. This has the advantage of using information from 

several different combinations of data points to provide an estimate of the 

variability of soil moisture for a given lag distance, thereby reducing the 

uncertainty associated with the point-scale sampling of large areas. The 

rationale behind semivariogram calculation has already been already 

described in section 6.3.1. 
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Semivariograms were calculated for each of the ancillary data and 

compared with the empirical semivariograms of soil moisture. This is shown 

in Figure 6.13. For the gridded products (DEM and MODIS NDVI) 

semivariograms lags were determined using multiples of the grid resolution 

(250m). These semivariograms will evidently have a nugget corresponding 

to the variance of the values of adjacent cells. Due to the scarcity of the 

locations at which soil textural properties were measured, a semivariogram 

model had to be fitted to the empirical semivariogram by minimising the 

root mean square differences. The empirical semivariogram was calculated 

using the % sand content, which was chosen as representative of the spatial 

structure of soil textural properties. A common exponential type 

semivariogram model was found to fit well the empirical sand content 

semivariogram, with a RMSE of 4.6% sand content. The % sand content 

empirical semivariogram and exponential fit are shown in Figure 6.14. Due 

to the common restriction in semivariogram calculations that the maximum 

separation distance should not exceed half the minimum dimension of the 

data field considered (40km), the empirical semivariogram in the figure 

extends to approximately 20km, while the exponential one has been 

extended further to highlight the sill. The semivariogram has a nugget at 

approx 8.4% sand content (obtained as the square root of the variance at 

zero lag, i.e., the y axis intercept in Figure 6.14), and a sill of 14% sand 

content at approximately 20km.  

Similarly, soil moisture semivariograms were calculated using the large-

scale soil moisture measurements at 1-2km spacing for November 7th, 14th 

and 21st. Due to heavy rainfall conditions which strongly affected the 

sampling, data for October 31st were very limited in extent and were not 

used. Semivariograms were binned at a 1km lag (h) ensuring that a fairly 

constant number of data points would fall within each bin. Note that these 

semivariograms were not interpolated with a model in order to be able to 

resolve the variation of the variance with distance in a comprehensive way. 

Given that the minimum distance between large-scale soil moisture  
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measurements was 1km, the semivariograms were extended to smaller lags 

by means of the farm-scale soil moisture measurements undertaken on each 

day following a large-scale mapping. Semivariograms extending to 1km 

were then calculated for November 8th, 15th and 22nd. In Figure 6.13 it can 

be seen that at the 1km lag these semivariograms match fairly well with the 

large-scale semivariograms of November 7th, 14th and 21st despite the lag of 

one day.  

All semivariograms were then normalised to the total variance of the 

field to allow inter-comparison (i.e., in this kind of plot, the sill corresponds 
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Figure 6.13. Comparison of soil moisture (SM) empirical normalised 
semivariograms and NDVI, soil texture and elevation normalised 
semivariograms. Panel (a) displays data for the November 1st to November 
16th period, Panel (b) data for the November 17th to December 2nd period. 
DEM and % Sand semivariograms are invariant between the two panels and 
are labelled as indicated in panel a. 
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to value 1). The MODIS NDVI 

product was available in a 16-

day composite product 

(November 1st to November 

16th, and November 17th to 

December 2nd), therefore the 

comparison was performed 

separately for these two 

periods. The first period 

matched fairly well with the 

wet conditions of the area in 

the first half of the month, with 

the second period 

corresponding to the drydown to very dry conditions on November 21st. The 

spatial soil moisture monitoring on November 7th followed closely a 

significant rainfall event on November 5th, leading to fairly wet conditions 

(mean=36.4%v/v, standard deviation=13.1%v/v). November 14th and 21st 

were instead characterised by drier conditions (mean=10.9 and 11.1%v/v 

and standard deviation=7.3%v/v). 

The semivariograms are compared in Figure 6.13a for the November 1st 

to November 16th period, and in Figure 6.13b for the November 17th to 

December 2nd period. Note that the sand content semivariogram model and 

the DEM semivariogram are invariant between the two figures. The analysis 

was limited to 20km (½ of the study area dimension). NDVI appeared to be 

mostly stationary on wet conditions (panel a) with a range of approximately 

1km. Sand content showed significant large small-scale variability (i.e. large 

nuggets) with a range of approximately 20km, while topography exhibited 

high spatial correlation until the 2-3km lag but was non-stationary at the 

20km scale (i.e., the semivariance kept increasing).  

In wet conditions, soil moisture exhibited a spatial structure similar to 

elevation and NDVI at the small scale, becoming mostly stationary at 

around 1-3km lags. Nevertheless, at scales larger than 1-3km variability 

 
Figure 6.14. Exponential fit of the % sand 
content experimental semivariograms 
from the soil texture data across the 
NAFE’05 study area 
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increased steadily, reaching the sill at approximately 15-20km. Note how 

this matched fairly well the variance increments and lag at which the soil 

texture semivariogram sills. In dry conditions (panel b), the range of NDVI 

increased significantly, up to approximately 15km. This means that the 

variability of the NDVI field is mostly associated with large-scale variation 

in the value of NDVI. The spatial structure of soil moisture was very similar 

for November 14th and 21st, and had no definable range as in the case of wet 

conditions, but rather an elevated variance, quite stable from very small lags 

up to a lag of approximately 10km. At this scale the variance started 

increasing steadily and continued until approximately 15-20km, where the 

semivariogram seems to reach the sill. This matched fairly well the variance 

increments and the distance at which the soil texture semivariogram reaches 

the sill. 

These results are in good agreement with the analysis performed in 

previous section and demonstrated that at the scales of interest of this study 

(~40km), the spatial structure of soil moisture fields resembled very closely 

that of soil texture, here investigated using the sand content. As observed 

during the analysis of the station data, this is consistently observed from wet 

to dry conditions. 

6.4.3 Mean Relative Difference Analysis 

In the analysis presented thus far on the role of land surface features in 

determining soil moisture patterns in the NAFE’05 study area, little 

consideration has been given to an important land surface property which is 

expected to play a significant role in this context, being the land cover type. 

The effect of land cover type was investigated only at the very small scale of 

the high-resolution areas (see section 6.3.1) and found to have a strong 

influence on soil moisture distribution. However, in the large-scale analysis 

presented in section 6.4, the effect of the land cover type could not be 

included because (i) all the monitoring stations for which continuous time 

series were available had been installed on native grass sites, allowing no 

comparison between the soil moisture dynamics produced by different land 

covers, (ii) land cover is not a monotonically varying physical quantity (like 
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for example the sand content or the elevation) but rather a categorisation of 

the land surface into vegetation classes (grass, crop, forest, urban areas and 

so on). This makes it difficult to include in a direct correlation analysis such 

as that in the previous sections. 

Here the impact of the land cover type on soil moisture variability is 

analysed to understand its role compared to soil texture. To this end, the 

spatial soil moisture ground measurements were grouped by land cover 

class, and the soil moisture distribution within each class was compared to 

the area average soil moisture. Each soil moisture point was classified as 

bare soil, grass, crop or forest using a 30m resolution Landsat five Thematic 

Mapper scene of the study area acquired on October 21st. To this end 

Landsat bands were converted into a land cover map by supervised 

classification using the ground visual estimation of land cover performed by 

the ground sampling team during the campaign (see section 5.3.1.1). Mean 

relative difference analysis was then performed on each class, by calculating 

the mean and standard deviation across the NAFE’05 period of the 

difference between mean soil moisture within each land cover class and 

mean soil moisture over the monitored area. This analysis is similar to that 

performed for the monitoring stations, but now covers a much wider range 

of land surface conditions and land covers. 

For comparison, mean relative difference analysis was also performed 

with the other ancillary data considered in this Chapter, by grouping the 

ground measurements within ranges of elevation, NDVI and % sand and 

clay content, and considering the mean and standard deviation in time of the 

relative difference between soil moisture within each range and the daily 

average soil moisture. Results are shown in Figure 6.15. Mean relative 

difference analysis indicates which locations (or in this case, which classes 

or ranges of land surface properties) exhibit soil moisture conditions 

consistently higher or lower than the area mean, and and the variability of 

this relationship. 
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Several key conclusions can be drawn from this plot. Ranges of elevation 

and NDVI showed very variable relationships with respect to the area mean. 

This means that even when considering a portion of the landscape with 

fairly uniform NDVI or elevation range, this will present a large range of 

soil moisture conditions, confirming that these are not the main factors 

determining spatial variability of soil moisture at large scale. When 

considering soil texture, it was observed that areas characterised by soils 

with sand content lower than 40% (and clay content higher than 50%) 

exhibited relatively higher temporal stability than soils with higher sand 

content, because the standard deviation of their relative difference in time is 

smaller. Moreover, the soil moisture relative difference of these areas was 

 

Figure 6.15. Mean and standard deviation of the relative difference between 
soil moisture within land cover classes, ranges of elevation, soil texture and 
NDVI and the daily mean soil moisture. The number under each bar 
indicates the number of points falling within each class.  
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close to zero, indicating that these areas were consistently representative of 

the area average wetness conditions. Conversely, areas with high sand 

content (>50%), despite exhibiting a significant variation in relative 

difference, were characterised in general by drier conditions than the rest of 

the area. This confirms the strong correlation between soil moisture and soil 

texture over large areas previously observed at the various analysis extents 

in this Chapter, as well as the association soil moisture patterns with 

patterns of soil texture at the scale of a typical L-band footprint. 

Another key result is related to the effect of land cover type on the soil 

moisture distribution. Areas of very low vegetation cover (classified as 

“bare”) and forests were consistently characterised by conditions drier than 

average. It should be noted however that very few soil moisture 

measurements were undertaken under forest canopy (120). Therefore the 

results concerning the forested areas, although indicative of the behavior of 

these areas, should be taken with caution. Conversely, cropped areas were 

very densely monitored and exhibited clearly wetter-than-average  

conditions. This indicates that crops maintain moist soil conditions, most 

probably through decreased evaporation due to shading of the soil surface. 

The balance of these processes is expected to vary throughout the growing 

season, and therefore these conclusions are far from general. Nevertheless, 

in the period of the NAFE’05 campaign being considered by this thesis, 

cropped areas maintained overall wetter conditions than grasslands, forested 

areas and very low vegetated surfaces, although there was no significant soil 

moisture variability identified within a specific land cover class in response 

to variations in NDVI. Moreover, grassland areas exhibited the highest 

temporal stability across the land cover classes considered, having a small 

standard deviation and relative difference close to zero. This is most likely 

an effect of the vastly larger number of soil moisture measurements taken on 

grassland areas, which occupy the majority of the NAFE’05 study area (see 

data points tag in Figure 6.15). However this does not affect the relative 

difference in mean soil moisture conditions between grassland and the other 

land cove types. 
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Figure 6.16 focuses on the effect of land cover and soil texture 

distribution alone in determining soil moisture variability, and quantifies 

their relative importance their relative importance in terms of absolute soil 

moisture differences instead of mean relative difference. Here the difference 

between the average soil moisture within each of the land cover and soil 

type patches shown in Figure 6.15 and the area average soil moisture (i.e, 

the soil moisture anomalies) are plotted in time. The top panel of this plot 

shows how the presence of crops in the study area induced soil moisture 

conditions up to 20%v/v wetter than the average conditions in the study 

area, and up to 30-40%v/v wetter than the surrounding areas of very low 

vegetation (“bare soil”), grass and forest. Such anomalies were not stable in 

time and were correlated with the rainfall regime. Maximum soil moisture 

anomalies occurred in inter-storm periods (e.g., November 4th-8th after the 

big rainfall event, and November 11th-22nd) while rainfall events tended to 

decrease the soil moisture difference between land cover patches (e.g., 

November 8th-11th, November 23rd). This is in agreement with the results 

obtained using the monitoring stations. Moreover, as the study areas dried 

down (November 11th -22nd) the soil moisture difference between land cover 

types decreased. As a result of this, the soil moisture difference between 

crops and the other land cover types was reduced to 20% on dry conditions 

(10%v/v) 

The variability in soil moisture induced by soil texture distribution is 

shown in the middle panel of Figure 6.16. Soils with higher sand content 

(50-60%) exhibited drier-than-average conditions. Moreover, the maximum 

soil moisture difference with respect to soils with lower sand content (20-

50%) was observed during inter-storm periods when the area is in wet 

conditions, amounting to approximately 35%v/v soil moisture difference. 

This differences decreased strongly during and after rainfall events (e.g., 

November 8th-11th, November 23rd) and when approaching dry conditions  
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(November 11th -22nd). At the end of this drydown period (10%v/v area 

average soil moisture) the soil moisture difference between sandy and clay 

locations is reduced to 10-15%v/v. Note that these estimates are in very 

good agreement with those resulting from the analysis of the monitoring 

stations data, where it was estimated that a moderate difference in sand 

content, 25% between station S1 and S3 produced a difference in soil 

moisture between the two stations of 6.1%v/v and 30.4%v/v respectively on 

dry (5%v/v) and wet (25%v/v) average conditions of the study area. 

 

Figure 6.16. Time series of soil moisture anomalies (difference between 
average soil moisture within land surface patches and the average soil 
moisture in the study area). Land surface patches are determined by land 
cover type (top panel) and soil texture ranges (% sand content, middle 
panel). The area average soil moisture and daily rainfall is plotted the 
bottom panel. The time series in the middle panel have discontinuities due to 
the scarcity of the gravimetric samples used for soil textural analysis. 
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6.5 Chapter Summary 

This Chapter has analysed the spatio-temporal variability of near-surface 

soil moisture in the NAFE’05 study area at a range of scales, from the farm 

scale (<3km) to the satellite footprint scale (~40km), The purpose of this 

analysis was to understand the important factors determining the spatial 

variability of soil moisture and how the relative importance of these factors 

changes in time and with the spatial domain of observation. 

It has been shown that soil texture (expressed in terms of % sand and 

clay content) and land cover type were the most important factors to 

determine soil moisture spatial distribution at the satellite footprint scale 

(40km). Soils with higher sand content exhibited drier soil moisture 

conditions than soils with lower sand content and higher clay content. 

Moreover, the range of soil texture in the area (variability in sand content of 

35-40% variability in sand content), produced a soil moisture spatial 

variability ranging from 40%v/v soil moisture in wet conditions right after 

rainfall events throughout the study area to 10%v/v in dry conditions at the 

end of a 10 day drydown. 

Land cover was also found to have a strong influence on soil moisture 

distribution at the local scale and the satellite footprint scales. Specifically, 

cropped areas exhibited consistently wetter-than-average conditions while 

bare ground and forested areas exhibited drier-than-average conditions. The 

difference in soil moisture conditions between crops and grasslands was as 

much as 30%v/v wet conditions while the difference between crops and bare 

soil or forested areas was up to 40%v/v. Both differences reduced to around 

20%v/v in dry conditions.  

The relationship between soil moisture variability and land cover and soil 

texture patterns varied significantly in time. Moreover, when decreasing the 

spatial domain of observation from the satellite footprint to individual 

farms, other factors came to play an important role in determining soil 

moisture distribution. The correlation between soil moisture variability and 

land cover or soil texture patterns was stronger during inter-storm periods, 
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while it diminished during and immediately after rainfall events. At the farm 

extent (3km), the effect of soil texture and land cover on soil moisture 

variability was not always dominant. Rather, elevation had a significant 

impact on soil moisture distribution at the farm scale in the presence of 

significant relief (at least 100m over an area of 3km x 3km). Such features 

resulted in a difference of 15-20%v/v soil moisture, with drier conditions at 

higher elevation.  

Consequently, this Chapter has demonstrated that soil moisture 

variability in the NAFE’05 study area at the scale of an L-band satellite 

footprint can be related to spatial patterns of land cover type and soil 

texture. Moreover, this Chapter has quantified the magnitude of soil 

moisture variability associated with those land surface factors and has 

shown that, contrary to the assumption made by the SMOS L2 algorithm, 

significant soil moisture heterogeneity occurs as a consequence of land 

cover variability. Consequently, Chapter 7 will investigate how the 

heterogeneity of land surface characteristics and the associated soil moisture 

heterogeneity affect the core model of the SMOS L2 algorithm (L-MEB) 

over large heterogeneous areas. Chapter 8 will then test the effectiveness of 

the SMOS L2 algorithm and its assumptions to account for the land surface 

heterogeneity. An alternative approach will then be developed in Chapter 8 

to improve the accuracy of the algorithm by accounting for the land surface 

factors analysed in this Chapter. 
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Chapter Seven 

7 Effect of Land Surface Heterogeneity on Soil 

Moisture Retrieval 

This Chapter tests the L-MEB radiative transfer model, core to the 

SMOS L2 algorithm, at resolutions typical of a future SMOS footprint 

(40km), and assesses the error in the L-MEB soil moisture retrieval 

resulting from sub-pixel land surface heterogeneity under the assumption of 

pixel uniformity, which is typical of current soil moisture retrieval 

techniques. Moreover, the land surface factors most directly linked to this 

retrieval error in the NAFE’05 study area are identified. To this end, the 

NAFE’05 airborne data described in Chapter 4 are aggregated to produce 

Brightness Temperatures (TB) observations at various pixel resolutions (5, 

10, 20, 30, 40km) for a variety of land surface conditions, and the L-MEB 

model described in Chapter 3 is used to retrieve coarse-scale soil moisture 

from those observations. The error in soil moisture retrieval is estimated by 

comparison with the 1km soil moisture maps presented in Chapter 5, and 

then related to the land surface heterogeneity within each observation pixel 

through an analysis of multiple pixels with varying degrees of land surface 

heterogeneity. 

This Chapter is organised as follows:  

• a synthetic study is performed to understand how and to what extent 

the heterogeneity of each land surface factor affects the soil moisture 

output of the L-MEB model;  

• coarse TB observations are simulated by aggregation of 1km airborne 

data, after verifying the scaling of TB fields using multi-resolution 

airborne observations; and 

• soil moisture is retrieved from the coarse TB observations, and the 

retrieval error analysed in terms of the sub-pixel heterogeneity of 

land surface conditions. 
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7.1 Synthetic Study 

Before assessing the effect of the sub-pixel heterogeneity on the L-MEB 

soil moisture retrieval with real data, a simplified synthetic scenario was 

considered in which the effect of heterogeneity in each land surface factor 

on the L-MEB retrieval was assessed individually, separated from that of 

other confounding factors, such as uncertainties in model physics, model 

parameters and ancillary data.  

Here, sub-pixel heterogeneity in soil moisture, vegetation cover, soil 

temperature, soil texture and surface roughness were considered separately. 

Moreover, the variability of vegetation cover was considered in two ways: 

1. variability of vegetation water content (VWC) within individual land 

cover types (i.e., pixels with a single land cover type such as 

grassland, crop or forest), and  

2. variability in land cover type (i.e., pixels with a mixture of cover 

types including crop, grassland and forest cover).  

Case (2) is considered as two different land cover types having the same 

VWC and soil moisture would have different microwave emission due to 

different absorption/scattering characteristics which are highly dependent on 

the plant structure. The absorption/scattering mechanisms are defined in L-

MEB through the parameters (see also section 3.4): b (VWC/optical depth 

ratio), ttP (P polarised vegetation structure), and ωP (single scattering 

albedo). Therefore, in case (1) these four parameters were held uniform 

across the pixel, whereas in case (2) they were land cover type specific, and 

the values used for the parameters were those evaluated each land cover 

types in the study area by evaluation of the L-MEB at fine resolution (see 

Table 5.2). 

A schematic of the procedures adopted for this synthetic experiment is 

shown in Figure 7.1. A synthetic scenario was created using an arbitrary 10 

cell x 10 cell grid which was assumed to constitute a single observation 

pixel. In order to analyse the effect of the heterogeneity of each individual 
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land surface factor on the retrieval of the pixel average soil moisture, each 

factor (i.e., soil moisture, VWC, land cover, % sand and clay content, 

surface roughness and temperature) was perturbed randomly around a mean 

value and across the grid, with perturbations applied in such a way that the 

original pixel mean was conserved. Only one factor was perturbed at a given 

time, while all the other land surface factors were held at the reference 

values (uniform across the grid). Several pixel mean values and levels of 

perturbation were analysed for each factor in order to cover as many 

realistic degrees of heterogeneity encountered in a typical study area as 

possible. A summary of all the synthetic cases considered, including input 

values for each land surface factor and levels of perturbation is presented in 

Table 7.1. 

 

Figure 7.1. Schematic describing the strategy adopted to investigate the 
sensitivity of the L-MEB model to the sub-pixel heterogeneity of land 
surface factors. 
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For each case (i.e., a determined mean value of the perturbed factor and a 

level of perturbation) L-MEB was applied to the synthetic fields in forward 

mode to generate the corresponding brightness temperature fields, which 

were in turn averaged to obtain a single value of brightness temperature for 

the pixel. An incidence angle of 38º (from nadir) was considered in all 

cases.  

Table 7.1. Summary of heterogeneous synthetic scenarios tested. The 
perturbation was applied to each mean values listed. The error indicated is 
the maximum expectable for the magnitude of heterogeneity expected in 
the study area and in the worst of the three soil moisture scenarios. 
Symbols are: TS1=Surface soil temperature, F=Forest, C=Crop, 
G=Grassland, Cl=Clay, Sa=Sand. 

Factor  Mean 

values 

 

Perturbation Soil Moisture 

Conditions 

(%v/v) 

Mean Error 

±St.Dev. 

(%v/v) 

Soil Moisture 
(%v/v) 

10,20,30,40 0, 5,10,15,20 10,20,30,40 -2.1±0.2 

0.4(G) 0,0.5,1(G) 
 

1.4±0.2(G) 
 

2I 
 

0,0.5,1,1.5,2 I 
 

1.5±0.2I 
 

Vegetation 
Water Content 
(kg/m2) 
and optical 
depth ( τ) 

τ=0.57(F) 0,0.1,0.2,0.3,0
.4,0.5, 0.6 (F) 

5,20,40 

4.8±0.5(F) 

Land cover 
fraction (%) 

5-100 Grass 
Crop 
Forest 

5,20,40 19.8±2.1 
-10.9±2.0 

Soil Texture  
Sa(%), Cl(%) 

(10 60) 
(35 35) 
(60 10) 

0,5,10,15,20,2
5,30 

5,20,40 2.0±0.2 

Surface 
Roughness (-) 

0.1,0.3,0.5 0,0.05,0.1,0.1
5,0.2 

5,20,40 2.8±0.35 

Soil 
Temperature 
TSURF(ºC) 

10,25,40 0,5,10,15,20 5,20,40 -1.6±0.8 
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Using the simulated coarse-scale pixel average TB, a pixel average soil 

moisture value was estimated by inversion of the L-MEB model and using 

the pixel average values for all the factors as input to the model (both the 

perturbed factors and the uniform ones). The retrieved pixel average soil 

moisture was then compared with the “true” pixel average soil moisture and 

the error related to the level of perturbation applied. The “true” synthetic 

soil moisture was in all cases a background soil moisture value uniform 

across the grid, unless when the heterogeneity of soil moisture itself was 

analysed. 

For each case (i.e., mean value of the land surface factor and level of 

perturbation), 100 Monte-Carlo simulations were performed by creating 100 

different random grids. This was done in order to obtain a statistically 

significant number of data points and also to check whether the retrieval 

algorithm converges to a stable solution. The mean error for each case was 

then calculated as the mean of the 100 errors between the output of the L-

MEB inversion for all the Monte-Carlo simulations and the “true” synthetic 

soil moisture. For all the cases analysed, the results are given in terms of 

mean error ± the standard deviation of the errors of the 100 Monte-Carlo 

simulations. 

The results of the analysis of heterogeneity of each individual land 

surface factor are discussed in the following sections. A summary of the 

maximum error observed for each synthetic cases considered is presented in 

Table 7.1 together with the input values for each land surface factor and 

levels of perturbation. In the following sections, the values of the L-MEB 

inputs which were not perturbed were taken as those of a reference case, 

unless otherwise stated; this consisted of a soil texture of 20% and 35% for 

sand and clay content respectively, VWC of 0.4kg/m2 and 2kg/m2 for 

grassland and crop land cover types respectively, and a value of 27ºC of soil 

and canopy temperature. These values of mean VWC for each land cover 

types were derived from the ground sampling of VWC at the high-resolution 

sites (see Chapter 5).  
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7.1.1 Soil Moisture Heterogeneity 

The effect of sub-pixel heterogeneity in soil moisture was investigated by 

simulating heterogeneous soil moisture fields of bare soil having average 

soil moisture conditions of 10, 20, 30 and 40%v/v. Each case was randomly 

perturbed with four levels of perturbation, corresponding to a soil moisture 

standard deviation of 5, 10, 15 and 20%v/v about the mean value, together 

with a reference case where the mean soil moisture was uniformly 

distributed across the pixel. The maximum value of standard deviation of 

20%v/v was a conservative choice since the maximum standard deviation 

observed in the study area was 13.2%v/v (see Table 5.9). The larger value 

was chosen as the actual standard deviation might in fact be higher than that 

observed value, given the large spacing of those samples. 

 All soil moisture cases were simulated with two different values of 

VWC (held uniform across the pixel). The value of VWC considered for the 

grassland was VWC =0.4kg/m2 (optical depth ~0.06). As ground 

measurements of VWC were not available for the forest in the NAFE’05 

study area, the effect of the canopy cover was simulated imposing directly 

the value of the optical depth (τ) 0.57, estimated for the Eucalypt forest in 

the NAFE’05 study area by J. Grant (pers. comm.). It should be noticed that 

τ is linearly related to VWC in L-MEB. 

Figure 7.2 shows the mean error of soil moisture retrieval as a function of 

the perturbation level for the different average soil moisture conditions. 

Results show that the heterogeneity of soil moisture results in 

underestimation of the pixel average soil moisture, with the effect being 

greatest during wet conditions (30-40%v/v). The maximum error is 

2.9±0.3%v/v when soil moisture has a standard deviation of 20% within the 

pixel. At a standard deviation of 15%v/v, which matches approximately that 

recorded across the NAFE’05 study area (see Chapters 4 and 6), the mean 

error is 2.1±0.2%v/v. The results for forest (see Figure 7.2b) are very similar 

to those for grassland. This indicates that, although high values of VWC (or 

τ) reduce the sensitivity of TB to soil moisture changes (see Figure 2.5) they 
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have limited impact on the L-MEB soil moisture error due to soil moisture 

heterogeneity underneath the canopy. 

The lack of impact of VWC (or τ) values on the error due to soil moisture 

heterogeneity could be due to the fact that in this synthetic scenario exact 

knowledge of the VWC was assumed during the retrieval process, 

eliminating the error due to the uncertainty in the knowledge of the VWC. 

Moreover, when only soil moisture is heterogeneous and all other 

parameters are uniform within the pixel, all the soil moisture-emission 

curves (see Figure 2.5) of the individual cells used for the simulation of the 

fine-scale TB will be the same, and the single emission curve of the mixed 

pixel (i.e., the 10 cell x 10 cell grid), which is used for the retrieval, will be 

equal to those curve. Therefore, the error due to soil moisture heterogeneity 

is only dependent on the curvature of the soil moisture-emission curve, 

which does not change significantly with different VWC values imposed for 

the grid. Conversely, in the case when a land surface factor other than soil 

moisture is heterogeneous across the grid (like in the following sections), 

the soil moisture-emission curves of the individual cells will be all different, 

 

Figure 7.2. Mean error of L-MEB soil moisture retrieval due to the sub-
pixel heterogeneity of soil moisture in four different average soil moisture 
conditions for (a) a grassland with VWC=0.4kg/m2 and (b) a forest with 
τ=0.57. Vertical error bars indicate the standard deviation of the error of 
100 Monte-Carlo simulations for each case. 
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and the single emission curve of the mixed pixel used for the retrieval will 

not correspond to any of the individual cell curves. 

7.1.2 Vegetation Water Content Heterogeneity 

Pixels with heterogeneous VWC were simulated for the case of uniform 

grassland cover (mean VWC=0.4kg/m2), a uniform crop cover (mean 

VWC=2kg/m2) and a uniform forest cover (τ=0.57). The maximum level of 

perturbation around the mean value was different for each land cover type. 

In the case of grassland and crop the maximum level of perturbation 

(1kg/m2 and 2kg/m2 respectively) was chosen as two times the maximum 

VWC standard deviation from ground samples at the high-resolution sites 

(0.5kg/m2 and 1kg/m2 respectively). Perturbation scenarios from 0kg/m2 to 

the maximum perturbation level were simulated for both land cover types 

with 0.5kg/m2 increment. The maximum perturbation level for the forest 

optical depth (0.6) was set as two times the optical depth standard deviation 

(0.3) estimated in the NAFE’05 study area by J. Grant (pers. comm.), and 

perturbation scenarios from 0 to the 0.6 were simulated with 0.05 increment. 

Figure 7.3 shows the mean error of soil moisture retrieval as a function of 

the VWC perturbation level for three different average soil moisture 

conditions (5%v/v, 20%v/v and 40%v/v). Results show that the 

heterogeneity of VWC results in an overestimation of the pixel average soil 

moisture, this being greatest in wet conditions (30-40%v/v). In the case of 

moderate vegetation cover (grass and crop) the maximum error is 

1.4±0.2%v/v. However, when considering the VWC standard deviation 

observed during the NAFE’05 experiment (<1kg/m2), the mean error is 

smaller than 1%v/v. For the forest cover, the mean error is generally higher 

than for the moderate vegetation cover, and increases considerably in wet 

conditions. At the magnitude of spatial variability observed in the 

Roscommon area (standard deviation in optical depth equals 0.3) the mean 

error achieves a maximum of 4.8±0.5%v/v in wet conditions (40%v/v).  

As discussed earlier, the large errors for forest are due to the fact that the 

soil moisture-emission curves of the individual cells are very different due 
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to the differences in optical depth. Therefore, the single emission curve of 

the mixed pixel used for the retrieval of a pixel average soil moisture will 

not correspond to any of the curves of the individual cells, determining the 

retrieval error. It should be stressed that, since this a synthetic analysis, this 

error is strictly due to the heterogeneity of  the optical depth within the 

pixel, and does not account for retrieval errors due to, for example, poor 

sensitivity of the microwave signal to soil moisture under dense canopy 

which would affect the retrieval of soil moisture under the forest canopy.  

7.1.3 Land Cover Type Heterogeneity 

Pixels with heterogeneous land cover type were simulated by mixing 

three land cover types with pixel fractions between 0 and 100%, with a 5% 

step. The three land cover types were grassland, crop and forest. To keep the 

simulation simple, each land cover type was assigned a fixed value of 

optical depth. For crop and grassland, these were calculated by multiplying 

the default L-MEB parameter “b” (ratio between the optical depth and 

VWC) for each vegetation type by the average VWC ground-sampled in the 

study area  (respectively 0.4kg/m2 and 2kg/m2 for grassland and crop). The 

forest was instead assigned the fixed value of optical depth of 0.57 

estimated by J. Grant (pers. comm.). For each combination of the three land 

cover types, the resulting pixel brightness temperature was simulated by 

 

Figure 7.3. Mean error of L-MEB soil moisture retrieval due to the 
heterogeneity of the vegetation water content (VWC) in different soil 
moisture conditions for (a) grassland (VWC=0.4kg/m2), (b) crop 
(VWC=2kg/m2) and (c) forest (τ=0.57). Dashed horizontal lines indicated 
SMOS target accuracy. Vertical error bars indicate the standard deviation of 
the absolute error for the 100 Monte-Carlo simulations of each case. 
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aggregating of the brightness temperatures simulated for each land cover 

type weighted by the respective pixel fraction. The soil moisture retrieval 

was performed under the L-MEB default assumption of a uniform pixel, 

therefore assuming that the pixel was uniformly covered by the land cover 

type with the highest fraction.  

Note that in the forward L-MEB modeling, the land cover specific L-

MEB parameters used were those evaluated for the NAFE’05 study area in 

Chapter 5. Therefore the effect of land cover heterogeneity discussed here 

implicitly includes the cumulative effect of the sub-pixel heterogeneity of 

vegetation optical depth, vegetation scattering albedo (L-MEB parameter 

ωP) and vegetation structure (L-MEB parameter ttP). 

Results are shown in Figure 7.4, where the mean error of soil moisture 

retrieval is shown for all combinations of grassland, crop and forest pixel 

fractions and for three soil moisture conditions (5%v/v, 20%v/v and 

40%v/v, uniform across the pixel). The soil moisture retrieval error is as 

much as 4.3%v/v in dry conditions (panel a), increases to 10%v/v in 

intermediate conditions (panel b) and achieves a maximum of 19.8%v/v in 

wet conditions (panel c). The error is smaller in the case of mostly uniform 

land cover and is maximum in the case of the pixel split approximately in 

half between a forest cover and a land cover type with moderate canopy 

density (crop or grassland).  

The cases where the error is at a maximum can be identified in Figure 7.4 

as the boundaries between three regions: Each region includes the cases 

where each land cover type, having the highest pixel fractions is assumed 

uniform within the pixel by the retrieval algorithm (areas marked with 

letters “G”, “C” and “F”), and along the boundaries of these regions are the 

cases where the fractions of two or more land cover types are very similar. 

When “moving” across these boundaries (i.e., varying the pixel fractions) 

the retrieval algorithm switches between one land cover type and the other. 

As a result of this a strong discontinuity in the error is observed at the 
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boundaries of these regions. In particular, the soil moisture retrieval 

algorithm is found to overestimate the pixel average soil moisture when the 

land cover type with the lower VWC is considered for the retrieval (e.g., 

pixel split in half between grassland and forest or in between crop and 

grassland and grassland assumed in the retrieval). Conversely, the pixel 

average soil moisture is underestimated by the retrieval algorithm when the 

land cover type with the higher VWC is considered for the retrieval (e.g., 

pixel split in half between grassland and forest and forest assumed in the 

retrieval or pixel split in half between crop and grassland and crop assumed 

in the retrieval). The underestimation is higher (-10.9±2.0%v/v error) when 

 

Figure 7.4. Mean error of L-MEB soil moisture retrieval due to 
heterogeneity of land cover type for all combinations of grassland, crop and 
forest pixel fractions and for various soil moisture conditions: (a) 5%v/v, (b) 
20%v/v and (c) 40%v/v. The three regions delineated by solid lines and 
marked with letters identify the cases where the dominant land cover type in 
the pixel is G=grassland, C=crop or F=forest. 
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the difference between the mean VWC between the two land covers is 

higher (e.g., forest and grassland mixed pixels have higher error than 

forest/crop and crop/grassland mixed pixels).  

7.1.4 Soil Texture Heterogeneity 

Pixels with heterogeneous soil texture were simulated for a uniform 

grassland pixel (VWC=0.4kg/m2) starting from three reference soil types, a 

clay (10%/50% sand/clay content), a clay loam (35%/35%) and a sandy 

loam (60%/10%). For each case the percentages of sand and clay content 

across the pixel were perturbed randomly around their mean values with 

increasing standard deviation from 0% up to 30% with steps of 5%. This 

was repeated for dry, intermediate and wet soil moisture conditions (5%v/v, 

20%v/v and 40%v/v). The perturbations were applied to the sand content 

and the clay content was perturbed accordingly by imposing constant silt 

content (30%).  

Results are shown in Figure 7.5. The error induced by the heterogeneity 

of soil texture is smaller than 2.0±0.2%v/v even for the worst case of a 

sandy loam soil in dry conditions (5%v/v). The error is clearly associated 

with the increased sand content, since the clay soil type in the same soil 

moisture conditions presents negligible error. It should be noted that, 

although the errors increase non-linearly with increasing soil texture 

heterogeneity, the mean error is always smaller than 1%v/v at the standard 

deviation of 11% sand content observed in the NAFE’05 study area from 

gravimetric soil samples (see Table 6.4). 

7.1.5 Surface Roughness Heterogeneity 

Heterogeneity in surface roughness was simulated by varying the L-MEB 

surface roughness parameter HR. As discussed in Chapter 5 when calibrating 

the L-MEB model, the link between parameter HR and surface geophysical 

quantities is not well understood. Moreover, it was demonstrated in Chapter 

5 that the parameter has a strong dependence on soil moisture conditions 

(see section 5.1.5.3).  
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In order to establish physically realistic values of spatial heterogeneity of 

HR for this synthetic analysis, the spatial variation of the classical 

Choudhury roughness parameter (Choudhury et al., 1979) was calculated 

from the pin profiler measurements taken at several locations on the 

experimental farms (see section 4.4.4.2). This was found to range between 

0.14 and 0.46 across the experimental farms, with a standard deviation of 

0.11. Therefore, heterogeneous pixels of surface roughness were generated 

considering three pixel average values of parameter HR (0.1, 0.3 and 0.5) 

each one perturbed about the mean value with standard deviation between 0 

and 0.3. This perturbation, considerably higher than that measured with the 

pin profiler, was conservatively set in order to account for the heterogeneity 

unresolved by the scarcity of the pin profiler sampling locations. Each case 

was considered for dry, intermediate and wet conditions (5%v/v, 20%v/v 

and 40%v/v).  

Results are shown in Figure 7.6. The error induced by the heterogeneity 

of parameter HR increases non-linearly with the degree of heterogeneity and 

 

Figure 7.5. Mean error of L-MEB soil moisture retrieval due to 
heterogeneity of soil texture for three soil types in wet (40%v/v), 
intermediate (20%v/v) and dry (5%v/v) soil moisture conditions. Vertical 
error bars indicate the standard deviation of the error for the 100 Monte-
Carlo simulations of each case. 
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is at a maximum in wet conditions (2.8±0.35%v/v). It is also notable that the 

mean error increases significantly going from smooth (HR=0.1) to 

intermediate roughness conditions (HR=0.3) but the increase is relatively 

small from intermediate to rougher conditions (HR=0.5). This indicates that 

even in conditions rougher than those considered here, the error will not 

increase significantly. It must also be noted that in dry conditions, where the 

impact of surface roughness on the microwave emission was found to be 

higher (see Chapter 5), the error induced by the heterogeneity of the 

parameter HR is found to be negligible for all the cases considered here. This 

indicates that when considering a decay of HR with increasing soil moisture 

conditions, the error due to the heterogeneity of surface roughness will be 

even smaller than 2.8±0.35%v/v.  

7.1.6 Soil Temperature Heterogeneity 

The L-MEB model uses temperature at two depths, 2.5cm and 50cm, in 

order to calculate an effective soil temperature, depending on soil moisture 

conditions. However, it is reasonable to assume that the spatial 

Figure 7.6. Mean error in L-MEB soil moisture retrieval due to 
heterogeneity of surface roughness for three pixel average surface roughness 
conditions (0.1, 0,3 and 0.5) in wet (40%v/v), intermediate (20%v/v) and 
dry (5%v/v) soil moisture conditions. Vertical error bars indicate the 
standard deviation of the error for the 100 Monte-Carlo simulations of each 
case. 
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heterogeneity of the soil temperature at 50cm is much smaller than that at 

2.5cm. This is supported by the analysis of the spatial variation of soil 

temperature recorded at the NAFE’05 monitoring stations (see section 0), 

which showed a decay of soil temperature standard deviation with depth 

across the study area, from 2.6K (at 2.5cm depth) to 1K (at 15cm depth) in 

the 7:00-9:00AM time period. Pixels with heterogeneous soil temperature 

were therefore simulated by considering uniform deep soil temperature (at 

50cm) and by perturbing only the near-surface temperature (at 2.5cm).  

Three mean pixel temperatures were considered, 10ºC, 25ºC and 40 ºC, 

corresponding to respectively the monthly minimum, average, and 

maximum soil temperature recorded at 2.5cm depth at monitoring stations in 

the study area during November 2005, and three soil moisture conditions, 

5%v/v, 20%v/v and 40%v/v. In each case soil temperature across the pixel 

was perturbed about the mean values with a standard deviation of up to 

20ºC.  

Results are shown in Figure 7.7. In the presence of strong heterogeneity 

in soil temperature, the L-MEB algorithm tends to underestimate the pixel 

average soil moisture conditions. This effect is stronger when the soil is cold 

and wet, producing an error of -11.8±1.4%v/v in conditions of strong 

heterogeneity (standard deviation of 20ºC). This is because in wet 

conditions the L-MEB soil moisture retrieval is more sensitive to changes in 

soil temperature (see section 0). 

However, such extreme conditions were not encountered during the 

NAFE’05 experiment. The airborne data used in the analysis later in this 

Chapter were collected in the early hours of the morning, approximately 

between 7:00AM and 9:30AM. The lowest 2.5cm soil temperature recorded 

during November 2005 within this time window was 14ºC and 17ºC at 

7:00AM and 9:30AM respectively. However, soil temperature heterogeneity 

was generally very small at that time, with a maximum standard deviation 

during the month of 1.3ºC and 2.8ºC respectively. Under such conditions the 

spatial heterogeneity of soil temperature would therefore not produce an 
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error of soil moisture higher than 1.6±0.8%v/v (underestimation), this being 

the mean error observed in Figure 7.7 for the case of cold soil (10ºC) and for 

soil temperature standard deviation of 5ºC. 

7.1.7 Summary of Synthetic Analysis 

The results for all the land surface heterogeneity scenarios discussed in 

this synthetic analysis are summarised in Table 7.1. In line with previous 

synthetic studies (Njoku et al., 1996b; Bindlish et al., 2002; Van de Griend 

et al., 2003; Davenport et al., 2008), it was observed that the sub-pixel 

heterogeneity of soil moisture, soil, texture, surface roughness and soil 

temperature has a minor impact on the retrieval of a pixel average soil 

moisture, with individual retrieval errors less than 2.8%v/v. In real world 

applications such errors would be comparable to the radiometer noise, 

which was of approximately 2K for the PLMR radiometer (see Appendix 

A3), resulting in approximately 2%v/v for moderately vegetated soil. The 

effect of the sub-pixel heterogeneity of VWC within land cover types was 

 

Figure 7.7. Mean error of L-MEB soil moisture retrieval due to 
heterogeneity of soil temperature for three pixel average surface roughness 
conditions (0.1, 0,3 and 0.5) in wet (40%v/v), intermediate (20%v/v) and 
dry (5%v/v) soil moisture conditions. Dashed horizontal lines indicated 
SMOS target accuracy. Vertical error bars indicate the standard deviation of 
the error for the 100 Monte-Carlo simulations of each case. 
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observed to be significant, but only in the case of heterogeneous forest 

canopy (mean error of 4.8%v/v), while the heterogeneity of VWC within a 

grassland or crop covered pixel had a minor impact (mean error smaller than 

1.5%v/v). The effect of the heterogeneity of VWC was that of causing an 

overestimation of the pixel average soil moisture in all cases. 

However, the sub-pixel heterogeneity of land cover type was observed to 

have the highest impact on the L-MEB soil moisture retrieval amongst the 

land surface factors analysed, with errors well beyond the SMOS target 

accuracy of 4%v/v and up to 19.8%v/v. The conditions producing the 

highest errors were wet soil (40%v/v) with the pixel divided in half between 

grassland and forest. The sub-pixel heterogeneity of land cover generally 

resulted in overestimation of the pixel average soil moisture for most 

combinations of grassland, crop and forest pixel fractions. However, when a 

crop or forest dominant cover type was assumed by the model to be uniform 

across the pixel in the presence of a significant fraction of grassland, the 

model underestimated the pixel average soil moisture.  

The strong effect of the sub-pixel heterogeneity of land cover type 

observed in this section has not been reported in previous synthetic studies 

(Njoku et al., 1996b; Bindlish et al., 2002; Van de Griend et al., 2003; 

Davenport et al., 2008). This is because those studies simulated variable 

land cover only through the variability of VWC. In this section instead the 

effect of the presence within the pixel of different land covers with different 

VWC but also different radiative transfer properties (i.e., land cover specific 

parameters in L-MEB) was considered, and therefore included the 

cumulative effect of the sub-pixel heterogeneity of vegetation optical depth, 

vegetation scattering albedo (L-MEB parameter ωP) and vegetation structure 

(L-MEB parameter ttP), which are characteristics specific to each land cover 

types.  

It should be noted that, although the impact of individual heterogeneity in 

soil moisture, soil, texture, surface roughness, soil temperature and VWC 

(in grasslands and crop) was found to be overall of the order of magnitude 
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of the measurement error due to the radiometer noise, the combined 

heterogeneity of several of these factors could result in significant errors. A 

complete analysis of the impact of heterogeneity in land surface factors is a 

complicated problem, not only because it would be difficult to include all 

the possible combinations of six variables, but also because there are not 

enough data to define which of these combinations are physically realistic 

and actually occur in the study area.  

However, the analysis of the effect of land surface heterogeneity with 

real TB data performed later in section 7.3 will allow observing the 

combined effect of the land surface factors here analysed individually. The 

comparison with the simplified scenarios presented in this section will then 

be crucial to distinguish the land surface factors having a predominant effect 

and selecting an approach to account for those land surface factors. 

7.2 Aggregation of Airborne Data to Coarse-Scale Pixels 

In order to analyse the effect of the sub-pixel heterogeneity of land 

surface conditions on the soil moisture retrieval at coarse resolutions, coarse 

pixels were derived from aggregation of 1km resolution airborne 

observations. These were the ‘regional’ airborne brightness temperature 

(TB) observations, collected across the entire NAFE’05 study area at 1km 

resolution on four dates.  

The aggregation of TB observations to coarser resolutions is an approach 

which has been used extensively for passive microwave scaling studies to 

compensate for the lack of L-band satellite data (Drusch et al., 1999a; Guha 

et al., 2002; Loew, 2008). However, very few studies verified the scaling 

properties of TB observations collected concurrently over the same area at 

different resolution, and only one study used L-band data (Jackson, 2001). 

Consequently, the scaling properties of the TB observations across the 

NAFE’05 study area are here assessed before aggregating the regional 

airborne observations of NAFE’05 to coarse pixels (section 7.2.2).  
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All the airborne data analysed hereby were collected, calibrated and 

processed as detailed in section 4.3. Therefore, only the more pertinent 

details are recalled in the following sections. 

7.2.1 Scaling of Brightness Temperature Fields 

During the NAFE’05 field campaign, a total of sixteen multi-resolution 

flights were conducted between October 31st and November 25th for use in 

investigating the scaling properties of TB fields. On each date one of two 

focus areas of the NAFE’05 study area, either the “Krui” or the “Merriwa” 

area, were covered alternatively. Each of these areas was approximately 

10km wide and 30km long in the south-north direction (for the location and 

extent of these areas, see Figure 4.1). On each date, airborne TB 

observations were collected at four different altitudes in descending order 

(10,000ft, 5,000ft, 2,500ft and 625ftm AGL); this resulted in TB maps at 

nominal resolution of 1km, 500m, 250m, and 62.5m of the same area and on 

the same day. Actual resolutions varied slightly depending on terrain 

elevation and are indicated in Table 7.2. 

Ideally, observations of the same area at the same time of the day and 

with the same instrument configuration should be compared in order to 

analyse the scaling of the TB fields. In reality, these were taken at a range of 

view angles, as the instrument was flown in “pushbroom” configuration, 

acquiring six concurrent observations at the PLMR beam angles (±7º, 

±21.5º, and ±38.5º). Before comparing the TB maps collected at different 

resolutions, the effect of varying beam angles was therefore accounted for 

with the normalisation procedure proposed by Jackson et al. (1999). This 

procedure assumes that the deviation between beam positions is due to the 

Fresnel effect and calibration errors for individual beam positions, and that 

for a given day the Fresnel effect for a particular beam is constant for the 

range of soil moisture and vegetation present. Using this procedure, TB 

observations were normalised to the incidence angle of the radiometer 

outermost beams (±38.5º) in order to produce maps of TB with uniform 

angle. The method was tested with multi-angular data in section 5.3.2.1 and 

found to be accurate to within 1.5K. 
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The TB observations at the different resolutions were also undertaken at 

different times (see Table 7.2). This means that soil temperature changes 

might be significant during these periods, producing differences in the TB 

which are not due to scaling. In order to account for changes of soil 

temperature, the observations were normalised to an intermediate reference 

time (9:00AM) using the temporal variation of surface soil temperature 

recorded at the monitoring stations and the procedure described in detail in 

Chapter 5; the method consists of calculating correction coefficients for 

each TB acquisition time as the ratio between the average surface 

temperature over the study area at the reference time and that at the time of 

acquisition. 

The resulting data set consists of sixteen multi-resolution TB maps, eight 

for each of the Merriwa and Krui focus areas. An extract of this multi-

resolution data set is shown in Figure 7.8 for the Krui focus area taken on a 

wet and a dry day (respectively November 1st and 22nd). The rainfall regime 

experienced by the NAFE’05 study area during the monitoring period 

allowed observation of a full drydown period, which is reflected in the 

highest TB on November 22nd. It should be noted that the areas could not be 

entirely mapped at the finest resolutions (250m and 62,5m) due to flight 

time limitation. These flights therefore targeted the NAFE’05 experimental 

farms, and the analysis presented here was limited to these areas (i.e., areas 

covered by mapping at all resolutions). These areas are indicated in Figure 

Table 7.2. Characteristics of the Multi-resolution flights. (+) Average of all 
sixteen dates. 

Pixel Dimension at 3dB (m) Flight 

Altitude 

(ft AGL) 

Start 

Time
+
 

(AM) 

End Time
+
 

(AM) 
Nomin. Mean

+
 St.Dev.

+
 

10,000 7:21 7:40 1000 992 105 

5,000 7:44 8:30 500 560 68 

2,500 8:34 8:53 250 303 37 

625 9:17 11:13 62.5 90 14 
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7.8 (top right panel), and had a total surface area of 70km2 in the Krui and 

60km2 in the Merriwa area. The consistency between patterns of TB at 

different resolutions is notable, although many fine-resolution features are 

lost in the high-altitude observations due to the coarser resolution. However, 

the main spatial features of the TB fields are retained as the resolution 

becomes coarser.  

Figure 7.9 gives an indication of the changes that might be expected as 

the resolution gets coarser. Here the TB collected along an high-altitude 

 

Figure 7.8. Example of multi-resolution TB data set for the Krui area on 
November 1st (top row) and November 22nd (bottom row). Maps are 
displayed by decreasing flight altitude from left to right: 10,000ft and 1km 
resolution (column A); 5,000ft and 500m resolution (B); 2,500ft and 250m 
resolution (C) and 625ft and 62.5m resolution (D). Boundaries of the 
experimental farms are displayed in solid lines. In the top right panel; the 
black dots indicated the locations of the soil temperature monitoring 
stations, polygons with dashed lines show the areas covered by mapping at 
all altitudes and the black arrow indicates the flight line analysed in Figure 
7.9. 
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(10,000ft) transect (see top right panel in Figure 7.8) are compared with 

those collected at low-altitude (625ft); to this end, the fine-resolution pixels 

(from 625ft) falling within each coarse-resolution pixels (from 10,000ft) 

along the transects were extracted. The figure shows the consistency 

between TB spatial variation as measured at different altitudes. An important 

feature in these plots is that the range of observed TB decreased as the 

altitude increased. This is the result of surface features with extreme values 

of TB (e.g., areas with localised soil saturation, treed area) filling the 

radiometer field of view at lower altitudes but not at higher altitudes.  

The average and standard deviation of the TB fields at both polarisation 

and for each resolution and date are listed in Table 7.3 and Table 7.4 for the 

Krui focus area. Analysis of the Merriwa data is omitted for reasons of 

simplicity but the results are analogous. The statistics were calculated 

considering only the common areas covered by observations at all 

resolutions. Note that for this analysis the geolocated but un-gridded data 

were used. Given the large areas analysed and the high density of individual 

TB acquisition (approximately 30-40 acquisitions for an area corresponding 

 

Figure 7.9. Comparison of H-pol brightness temperature observations at 
two different flight altitudes along the transect shown in Figure 7.8 for 
November 1st. 
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to the nominal pixel size), the gridding process would not have affected the 

results presented. 

Table 7.3 and Table 7.4 shows how the TB detected over a large area 

varies with the sensor altitude (i.e., ground resolution). It is shown that the 

average emission was fairly constant with resolution on all the monitoring 

dates, corresponding to wetness conditions going from near saturation 

(November 1st) to near residual soil moisture content (November 22nd). Due 

to the local differences between the signal detected at different altitudes 

already discussed above for a single flight line, the standard deviation of TB 

consistently decreased going towards coarser resolution. The change 

Table 7.3. Mean and standard deviation of brightness temperatures at H 
polarisation over the Krui area for each flight altitude. 

10,000ft Alt. 

1000m Res. 

5,000ft Alt. 

500m Res. 

2,500ft Alt. 

250m Res. 

625ft Alt. 

62.5m Res. Date 

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. 

1/11 232.3 7.4 230.6 8.8 230.7 8.0 229.8 10.5 
3/11 246.4 5.2 245.7 6.8 243.6 7.2 240.3 9.4 
8/11 247.5 5.0 246.9 6.7 246.2 7.0 243.9 9.2 
10/11 248.7 6.9 248.1 7.7 247.4 8.5 244.2 10.2 

15/11 265.0 4.1 265.3 5.0 263.1 6.0 260.8 6.8 
17/11 266.7 3.5 266.3 4.3 265.3 5.6 263.6 5.9 
22/11 271.8 2.9 271.9 3.6 270.7 4.6 267.9 5.1 
24/11 252.8 6.7 253.4 7.8 254.6 7.4 252.0 10.9 

 
Table 7.4. Mean and standard deviation of brightness temperatures at V 
polarisation over the Krui area for each flight altitude.  

10,000ft Alt. 

1000m Res. 

5,000ft Alt. 

500m Res. 

2,500ft Alt. 

250m Res. 

625ft Alt. 

62.5m Res. 
Date 

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. 

1/11 256.9 6.3 255.9 6.7 255.8 6.8 254.3 8.9 
3/11 268.7 4.5 267.7 5.1 266.1 5.5 263.3 7.7 
8/11 266.6 4.1 266.2 4.9 265.7 5.4 264.3 7.4 
10/11 269.9 6.2 269.0 6.0 268.9 6.4 266.0 8.3 

15/11 280.4 3.9 280.5 3.9 278.6 4.6 276.3 5.5 
17/11 280.5 3.3 279.8 3.5 279.4 4.1 277.7 4.7 
22/11 285.1 2.7 285.1 2.9 284.0 3.4 281.5 3.9 
24/11 272.2 5.1 272.2 5.5 273.1 5.2 271.2 8.4 
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between the average TB measured at the coarser and finer resolution 

(respectively 1km and 62.5m) was on average 3.6K (H-pol) and 3.2K (V-

pol), with a maximum change of respectively 6.1K and 5.4K. This 

significant change occurred on only one day (November 3rd). On all the 

remaining days the difference was below 4.5K for both polarisations.  

It is important to note in Table 7.3 and Table 7.4 that the largest 

difference in TB occurred between the 62.5m observations and the 250m 

observations. This was 2.4K on average at H-pol compared with 3.6K as the 

total difference between the 62.5m and 1km resolutions. The difference in 

average TB between the 250m resolution observations and the 1km 

observations was on average only 1.2K (H-pol) and 1.1K (V-pol). This 

difference is below the PLMR radiometer noise (approximately 2K, see 

Appendix A3), therefore suggesting that the average TB mapped at 

resolutions between 250m and 1km is essentially constant over areas of the 

order of 70km2. 

The difference observed between the average TB at 62.5m and 250m is 

attributed to the normalisation for soil temperature changes applied to the 

data. This was done for each TB acquisition by calculating the ratio between 

the average soil temperature at the reference time (9:00AM) and that at the 

time of the acquisition, with the soil temperatures taken from four 

monitoring stations across the focus areas (these are indicated in Figure 7.8). 

Since these monitoring stations certainly did not characterise the spatial 

variation of the soil temperature across an area as large as 70km2, the 

normalisation procedure may have introduced errors due to a mismatch 

between average and local soil temperature changes. This would strongly 

affect the high-resolution observation, since these were undertaken later in 

the morning (see Table 7.2) when spatial gradients in soil temperature are 

more significant. The normalisation procedure would instead be more 

accurate for the 1km, 500m and 250m observations, since these were 

collected earlier in the morning with more uniform soil temperatures. 
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The objective of the present analysis was to support the aggregation of 

1km airborne observation to resolutions of a typical SMOS pixel. Although 

the results presented are limited to resolutions from 62.5m to 1km, and 

therefore cannot be directly extrapolated to 30-50km resolutions, it can be 

noted that the difference in average TB between the four resolutions analysed 

here strongly decreased going toward coarser resolutions. In particular, the 

average difference in measured H-pol TB was 2.4K between 62.5m and 

250m resolution observations, 0.8K (250m-500m observations) and 0.4K 

(500m-1km observations). Results for V-pol were analogous. These results, 

obtained on areas some 20km x 30km in size encompassing the range of 

land surface conditions observed across the entire study area, support the 

conclusion that the aggregation of 1km airborne observation to resolution 

typical of a future SMOS footprint (40km x 40km) will produce realistic 

coarse-scale TB observations. These results are consistent with those of 

Jackson (2001), who observed that the area-averaged V-pol TB values over 

test sites of a few km2 consisting of pasture and wheat stubble were the same 

regardless of the spatial resolution (200m-1km). The results presented here 

extend that analysis to areas which are an order of magnitude larger, 

covering a variety of crops of land surface conditions and include H 

polarisation, which is more sensitive to soil moisture changes than V 

polarisation. 

7.2.2 Aggregation of Brightness Temperatures 

Building upon the verification, in the previous section, that the same 

average TB values are observed over the same area at different resolutions,  

in this section coarse-resolution (5, 10, 20, 30, 40km) TB observations were 

produced by aggregating of the 1km regional TB airborne observations. 

Regional TB observations were described in Chapter 4 and Chapter 5 where 

they were used to retrieve soil moisture maps of the study area at 1km 

resolution. The relevant information is briefly recalled here.  

Regional observations were collected on October 31st, November 7th, 14th 

and 21st, with 40km-long north-south oriented flight lines flown at 10,000ft 

between approximately 7:00AM and 9:30AM. This time window was 
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chosen to be close to SMOS overpass time (6.00AM) and therefore replicate 

the observation conditions, yet not affected by vegetation dew. Before 

aggregating the TB observations to coarser resolutions, the effect of varying 

beam angles was accounted for through the normalisation procedure 

proposed by Jackson  et al. (1999) and tested on the NAFE’05 study area in 

Chapter 5.  

Using this procedure, the TB observations were normalised to the 

incidence angle of the radiometer outermost beams (±38.5º). This choice 

was motivated by two reasons:  

• at close-to-nadir incidence angles the V and H-pol TB are very 

similar (see Figure 5.13), while at off-nadir incidence angle V-pol TB 

are generally higher than H-pol (this variation depends on the land 

surface conditions). By using larger incidence angles, therefore, the 

retrieval accuracy of the L-MEB algorithm is improved since the 

polarisation difference yields information on the polarising effect of 

the vegetation canopy (Wigneron et al., 2000); and 

• the number of incidence-angles and their angular range at which 

SMOS observations will be available will depend on the distance of 

the pixel to the sub-satellite track. This position can be expressed in 

terms of the half-swath angle, and the range varies approximately 

between 0º and 50º for a sub-satellite track and approximately 

between 38º and 44º for a half-swath angle of 33º. Therefore, the 

38.5º reference angle chosen is representative of the SMOS 

observations that will be available for a large fraction of the earth 

surface. 

Prior to aggregation, the 1km TB observations were also normalised for 

soil temperature changes to a reference time (8:00AM), using the temporal 

variation of surface soil temperature recorded at the monitoring stations as 

described in detail in Chapter 5. This is desirable since when aggregating 

1km TB observations to coarse resolution these will include observations 

taken at different times, which when considering very coarse pixels (30km 

and up) could be as far apart as 2.5 hours. Omitting this normalisation 
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would introduce soil temperature differences across the aggregated pixels 

which do not correspond to actual soil temperature variability that would 

exist in SMOS pixels. Note that in Chapter 5 the 1km TB observations were 

also normalised for soil temperature changes to the same reference time 

before retrieving the soil moisture maps used in this Chapter as ground 

truth.  

The 1km TB observations were aggregated using a “moving window” 

approach. The aggregation consisted of an arithmetic average of the 1km TB 

observations falling within windows at various resolutions, namely 5, 10, 20 

30km, which were “moved” across the study area with spatial steps of 5km. 

Moreover, the TB observations were also aggregated within a single, 40km x 

40km window covering the entire area mapped during each of the regional 

flights. This was repeated for each of the four regional flight days, obtaining 

coarse pixels at five resolutions for four different dates. The total number of 

pixels available (over four dates) was 256, 196, 100, 36 and 4 at 

respectively 5, 10, 20, 30 and 40km resolution. TB observations were 

aggregated at both V and H polarisation to produce bi-polarised coarse TB 

observations. 

While the 5, 10 and 20km resolutions are finer than that of a future 

SMOS pixel (30-50km), they were chosen to allow the analysis of a much 

wider variety of conditions of land surface heterogeneity than possible with 

pixels at 40km resolution (i.e., uniform pixels as well as heterogeneous 

pixels, and heterogeneity of different land surface factors). Moreover, this 

choice resulted in a considerable increase in the number of pixels available 

for analysis. The approach adopted in the following sections therefore 

consisted of (i) focusing the analysis on the finer-resolution pixels (5km); 

(ii) extrapolating the conclusions drawn at fine resolution to SMOS 

resolution using subsequently coarser pixels (10, 20, 30km), and finally (iii) 

verifying those conclusions using the 40km sized pixels. 
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7.2.3 Retrieval Scheme 

The soil moisture retrieval approach used here is the same as that used in 

Chapter 5 to retrieve soil moisture estimates at 1km resolution. The L-MEB 

model was applied to the coarse (5-40km), bi-polarised TB observations 

described in the previous section to retrieve soil moisture and vegetation 

optical depth estimates assuming that the pixel was uniform in terms of land 

cover, soil texture, soil temperature, canopy temperature and surface 

roughness. Then aim was to understand the effect of the sub-pixel 

heterogeneity of land surface conditions on the soil moisture retrieval at 

coarse resolutions when no consideration is given to this heterogeneity in 

the retrieval approach. 

The ancillary data and radiative transfer parameters input of the L-MEB 

model were the same as those adopted for the regional 1km soil moisture 

retrieval described in section 0. These are listed hereafter. 

• Land cover: Landsat derived land cover map at 30m resolution. Each 

coarse pixel was assigned the land cover type (native grass, crop or 

forest) which occupied the highest fraction of the pixel area.  

• Soil texture: 1km resolution maps of percentage of sand and clay 

content derived from soil particle analysis of 88 5cm deep soil 

samples. 

• Soil temperatures (2.5cm and 15cm): Spatial average of the soil 

temperature recorded at the eleven permanent monitoring stations 

across the study area at 8:00AM This was the reference time to which 

all TB observations were normalised as described in section 7.2.2. 

• Canopy temperature: Set equal to the 2.5cm soil temperature, 

assuming thermal equilibrium between soil and canopy.  

The sensitivity analysis of the L-MEB soil moisture retrieval to soil 

temperature and canopy temperature errors presented in Chapter 5 showed 

that the errors in soil moisture associated with the assumption of spatial 
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uniformity of surface soil temperature and of thermal equilibrium between 

soil and canopy were both  smaller than 2%v/v. 

Values of the L-MEB ancillary data for each coarse-resolution pixel were 

calculated with by averaging the spatially distributed values of each quantity 

within the pixel. Moreover, the standard deviation of the quantity was used 

to quantify the sub-pixel heterogeneity of each land surface factor. 

On the basis of the land cover classification, a set of L-MEB radiative 

transfer parameters were selected from the values derived for specific land 

cover conditions in the NAFE’05 study area in Chapter 5. The explicit 

assumption made here was that the parameters are uniform within each land 

cover type. Implicitly, the assumption was also made that the parameters are 

scale invariant, i.e., the impact they have on the model output does not 

change with the resolution of observation over a uniform surface, and 

therefore they can be applied to coarser resolutions up to the satellite pixel 

scale (40km). This assumption was supported by the evaluation of the L-

MEB model and its parameterisation at 60m and 1km resolution performed 

in Chapter 5. Although those results do not directly imply that the scale 

invariance can be extrapolated to resolutions coarser than 1km, this 

assumption is necessary as the scale invariance of the L-MEB parameters 

cannot be verified unless actual coarse-resolution observations are available 

over fairly uniform land surface conditions. 

7.3 Effect of Heterogeneity on Coarse-Scale Soil Moisture 

Retrieval 

In Figure 7.10 the soil moisture retrieved from the coarse TB observations 

at 5, 10, 20 and 30km is compared with the soil moisture ground truth, i.e., 

the 1km L-MEB soil moisture product covering the whole study area 

obtained from 1km airborne data (Chapter 5), averaged to the respective 

spatial resolution. While there is a reasonable agreement between retrieved 

soil moisture at all resolutions and soil moisture conditions, there are many 

examples of pixels having errors higher than the SMOS target accuracy 

(4%v/v).  
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In Figure 7.10 the retrieved soil moisture for each coarse pixel is also 

compared with the average of the regional soil moisture measurements (at 

2km spacing) falling within the pixel. It is notable that, when using the 

averaged ground measurements, the error appeared substantially higher and  

the scatter was significant. This increased noise is due to the fact that when 

using the ground measurements only a few sampling points are compared 

with the soil moisture retrieved at coarse resolution, therefore demonstrating 

the advantage of using the 1km L-MEB soil moisture product as ground 

truth. However some characteristics of the coarse-scale retrieval error can be 

identified regardless of the ground truth data set used. The error tended to be 

 

Figure 7.10. Comparison of the soil moisture retrieved for each 5, 10, 20 
and 30km resolution pixel against the average within each coarse pixel of 
the 1km L-MEB product (black dots) and the regional ground sampling 
(gray crosses) are shown as ground truth. Dashed line indicate the SMOS 
target accuracy (4%v/v) 
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greater in wet conditions and was characterised by overestimation of the 

pixel average soil moisture. In dry conditions the error was smaller and was 

generally associated with an underestimation of the pixel average soil 

moisture. 

The error statistics of Figure 7.10 are shown in Table 7.5. At the finest 

resolution (5km), the RMSE was below the SMOS target accuracy and the 

error distribution had no significant bias (0.1%v/v). As the resolution got 

coarser, the retrieval was more accurate (RMSE decreased to 2.6%v/v at 

30km resolution) but the distribution of the error tended to be positively 

biased. The maximum retrieval error was 17.2%v/v at the finest resolution 

and decreased rapidly as the resolution got coarser, being of 7.2%v/v at 

30km resolution. However, it should be noted that this decrease in error 

might be a result of the NAFE’05 study area being largely occupied by 

native grass (73%) with only a small fraction of forest (22.1%) and crops 

(4.6%), therefore presenting rather uniform land cover conditions as 

opposed to several of the finer-resolution pixels. For this reason, in the 

following section the analysis focuses on the 5km resolution pixel, while the 

extrapolation to coarser pixels will be discussed in more detail in section 

7.3.2). 

Table 7.5. Error statistics of the comparison between soil moisture 
retrieved at various resolutions and the 1km L-MEB soil moisture ground 
truth. All soil moisture values are in %v/v. Error sign “+” indicates 
overestimation of the soil moisture ground truth  

Pixel size 

(km) 

Nr. Of 

Pixels               

(*4 

Dates) 

RMSE 
Mean 

Error 

Median 

Error 

Max 

Error 

(Abs.) 

r
2
 

5 256 3.1 0.1 -0.12 +17.2 0.97 

10 196 3.0 0.1 -0.10 +12.2 0.97 

20 100 2.7 1.3 0.26 +10.6 0.98 

30 36 2.6 1.5 0.97 +7.2 0.99 
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7.3.1 Retrieval at 5km Resolution 

Figure 7.11 shows the spatial distribution of soil moisture retrieval error 

at 5km resolution for three of the four dates (November 21st is omitted as it 

is very similar to November 14th) together with the Landsat derived land 

cover map of the study area. As observed in Figure 7.10, the error was 

generally higher in wet conditions (October 31st) than dry conditions 

(November 14th). Moreover, there was persistence in the spatial patterns of 

the error. In particular, the error was typically higher in the southern part of 

the study area, especially at the edge of the forested area. The pixels with 

more homogeneous land cover (mostly covered by forest or moderate 

vegetation cover, i.e., crop and/or native grass) had a smaller error. This is 

 

Figure 7.11. Spatial distribution of the coarse-scale (5km) soil moisture 
retrieval error across the study area on October 31st (top right), November 
7th (bottom left) and November 14th (bottom right). Red colours indicated 
underestimation of the pixel average soil moisture, blue colours indicated 
overestimation. The top left panel shows the Landsat land cover map 
(black=forest, grey=native grass, yellow=crops). Boundaries of the 
experimental farms are indicated in solid black lines. 
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particularly evident in intermediate and dry conditions (bottom row of 

Figure 7.11). It is notable how the error at the boundary between forest and 

moderate vegetation covers was variable in sign but within each pixel the 

sign of the error was persistent through time. These observations indicate 

persistency of soil moisture retrieval error in pixels which are across the 

boundaries between forest and moderate vegetation covers and stronger on 

wet conditions. These findings are consistent with the synthetic study 

performed in section 7.1, which indicated that the sub-pixel heterogeneity of 

land cover type had the highest impact on the L-MEB retrieval amongst the 

land surface factors analysed, producing a strong error (up to 19.8%v/v) on 

a pixel with wet soil (40%v/v) when the pixel land cover was approximately 

half native grass and half forest.  

In order to further investigate the association between land cover type 

heterogeneity and soil moisture retrieval error, the retrieval error at 5km 

resolution was analysed in terms of fractions of each land cover type within 

the pixel (to characterise land cover heterogeneity as done in the synthetic 

analysis) as well as standard deviation of soil moisture, vegetation optical 

depth and soil texture within the pixel. This is shown in Figure 7.12. In this 

plot, the effect of heterogeneity of soil temperature and surface roughness 

was omitted. The reasons behind this were that: (i) throughout this study soil 

temperature was considered spatially uniform across the entire study area 

due to the small spatial variability observed between the data recorded at the 

continuous monitoring stations (see section 0), and (ii) the surface 

roughness parameter in L-MEB does not strictly represent a “physical 

roughness”, but rather includes a dielectric component which cannot be 

easily mapped in space in order to characterise its sub-pixel heterogeneity 

(this is extensively discussed in section 5.1.5.3 and Appendix A4). 

However, the synthetic analysis showed that the sub-pixel heterogeneity in 

both these factors had a negligible impact on the soil moisture retrieval 

error. 

Figure 7.12 indicates that, as suggested by the synthetic analysis, there is 
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a significant correlation between the soil moisture retrieval error and the 

variability of land cover type within the pixel. In particular a strong 

correlation was observed with the fraction of the pixel occupied by native 

grass and forest (panel e and f), while no correlation was observed with the 

fraction of crops. However, it should be noted that at this resolution the 

maximum percentage of crop fraction was quite small (20%). Therefore, the 

effect of the presence of a large fraction of cropped area could not be 

assessed, although it can be inferred from the lack of correlation of the error 

with the crop fraction up to 20%. Consequently, the errors are not expected 

to increase at higher crop fractions. Note that panels “e” and “f” in Figure 

7.12 yield very similar information; in the presence of a small crop fraction 

 
Figure 7.12. Relationship between coarse-scale (5km) soil moisture 
retrieval error for each 5km pixel and the sub-pixel heterogeneity (standard 
deviation) of (a) soil moisture at 1km resolution (b) vegetation optical depth 
at 1km resolution, (c) clay and sand content at 1km resolution and 
percentage of pixel fraction of land cover type crop (d), native grass (e) and 
forest (f). Dashed horizontal lines indicate the soil moisture target accuracy 
(±4%v/v). 
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and since no other land cover types were present in the study area the native 

grass and forest fraction are nearly complementary. In panel “f”, for very 

low forest fraction (i.e., more uniform pixels mostly occupied by native 

grass and eventually small amount of crops) the retrieval errors were below 

SMOS target accuracy. However, as the forest fraction increases (i.e., pixel 

split between native grass and forest and eventually a small amount of 

crops) the mean retrieval error increased linearly (in absolute terms) and 

exceeded SMOS target accuracy when the forest fraction was above 

approximately 30% and achieved a maximum (overestimation) of 

+17.2%v/v at approximately 50% native grass fraction. A further increase in 

forest fraction produced a strong discontinuity in the error, which became an 

underestimation (-10%v/v) and decreased quickly until going below the 

SMOS target accuracy when the pixel is mostly occupied by forest. 

This error pattern, and in particular the strong correlation of the retrieval 

error with the sub-pixel heterogeneity of the land cover and the 

discontinuity of the error sign for highly heterogeneous pixel 

(approximately 50% grass and 50% forest) has been observed in the 

synthetic study (section 7.1.3 and Figure 7.4). It was explained there that the 

discontinuity occurs in the case of pixels with equivalent sub-pixel fractions 

of native grass and forest (~50%); in this case the retrieval algorithm 

switches between the two land cover types as the one used in the forward 

modeling (and thus considered uniform across the pixel) depending on the 

predominance of either sub-pixel fraction. As a result of this, the pixel 

average soil moisture is overestimated when a pixel containing a significant 

amount of forest is modeled as having a uniform native grass cover and 

underestimated when the pixel is modeled as having a uniform forest cover. 

It should be noted that there was good agreement between the values of 

the maximum errors observed (+17.2%v/v and -10.0%v/v) and those 

determined through synthetic analysis (+19.8%v/v -10.9%v/v, see Table 

7.1). This is because the synthetic analysis was done using “realistic” values 

for the ancillary data derived from analysis of the ground conditions in the 

study area. These results therefore confirmed with actual TB observations 
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the significant effect of the sub-pixel heterogeneity of land cover type on the 

coarse-scale soil moisture retrieval which was suggested by the synthetic 

analysis.  

In Figure 7.12 no correlation was observed with the sub-pixel 

heterogeneity of vegetation optical depth (panel b) and percentage of clay 

and sand content (panel c). The synthetic analysis had already indicated that 

the sub-pixel heterogeneity of VWC (to which optical depth is linearly 

related through vegetation parameter “b”) and percentage of sand and clay 

content should have a minor effect on the retrieval (less than 2%v/v, see 

Table 7.1). Note that the synthetic study indicated that a significant error 

(4.8%v/v) could derive from the heterogeneity of optical depth within a 

forested area. However, this could not be verified here with real data, as the 

optical depth used in Figure 7.12 was that retrieved together with soil 

moisture at 1km resolution in Chapter 5; in the case of forested pixels, the 

optical depth had been imposed a priori in order to ensure better soil 

moisture retrieval over dense canopy. 

In Figure 7.12 the error in retrieval increased with increasing sub-pixel 

heterogeneity of soil moisture (panel “a”). However, this was more noisy 

than that with the land cover type fraction and evident only for elevated soil 

moisture heterogeneity (standard deviation above 10%v/v). Moreover, the 

synthetic study indicated that the direct effect of the sub-pixel heterogeneity 

of soil moisture is that of producing negative errors (underestimation), while 

in panel “a” of Figure 7.12 the errors are both negative and positive. It 

seems therefore likely that the relationship of the error with the soil 

moisture heterogeneity could be an indirect effect of the correlation between 

soil moisture spatial distribution and the land cover, which has been 

observed in the study area and discussed in detail in Chapter 6. There it was 

shown that the spatial distribution of land cover type, together with that of 

sand and clay content, is the main factor determining the spatial distribution 

of soil moisture. 
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In order to understand the relative importance of the sub-pixel 

heterogeneity of land cover and soil moisture in determining the error, 

Figure 7.13 reproduces panel “a” of Figure 7.12 with the data points colour-

coded using the value in the x-axis of panel ”e” and vice versa. This helps to 

visualise the relationship between the retrieval error and each factor when 

the other factor is kept constant. It can be seen from this plot that the error in 

coarse-scale soil moisture cannot be simply attributed to heterogeneity in 

land cover or soil moisture, but rather to a combination of the two factors. 

In the top panel of Figure 7.13, the retrieval error exhibits correlation 

with the soil moisture standard deviation for pixels having a very similar 

fraction of native grass. However, this relationship is very variable; 

depending on the amount of native grass fraction (i.e., degree of land cover 

heterogeneity), the relationship can be a non-linear increase in error due to 

increase in soil moisture standard deviation (e.g., top panel of Figure 7.13, 

data points with native grass between approximately 60-70%) or a linear 

decrease (data points with native grass between approximately 40-50%). 

Moreover, when the land cover is fairly uniform (e.g., data points with 

native grass below 25% or above 75%) a weak or zero correlation between 

the error and the soil moisture heterogeneity is observed. 

The comparison between the panels of Figure 7.13 also indicates that, 

despite the confounding effect between the two land surface factors, the sub-

pixel heterogeneity of land cover had a predominant effect. The 

heterogeneity of soil moisture in fact caused a significant soil moisture 

retrieval error, but only in conjunction with a strong heterogeneity of land 

cover. In the top panel of Figure 7.13, it was the heterogeneity of land cover 

which determined the sign of the error, since the points with native grass 

fraction higher than approximately 50% (i.e., pixels where native grass is 

the dominant land cover type within the pixel) are mostly above the x-axis 

(overestimation error), and vice versa. Moreover, small soil moisture 

retrieval errors occurred in pixel with even strong soil moisture  
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heterogeneity but fairly uniform land cover (e.g., top panel, data points with 

native grass below 25% or above 75%). This is the case, for example, of soil 

moisture heterogeneity induced by land surface factors other than land cover 

type (e.g., soil texture or topography as seen in Chapter 6). Conversely, in 

the bottom panel of Figure 7.13, an increase in land cover heterogeneity 

(i.e., in this case increase of native grass fraction up to 50%) caused an 

increase of the retrieval error regardless of the soil moisture standard 

deviation within the. The observation that the heterogeneity of soil moisture 

caused a significant soil moisture retrieval error only in conjunction with a 

strong heterogeneity of land cover can be interpreted in light of the results 

of Chapter 6, where it was shown, through analysis of ground soil moisture 

data, that the forested area tended to exhibit consistently drier soil moisture 

 

Figure 7.13. Relationship between the soil moisture retrieval error for each 
5km pixel and the sub-pixel heterogeneity (standard deviation) of soil 
moisture (top panel) and percentage of native grass (bottom panel). In each 
plot, data points are colour coded using the x-axis of the other plot. 
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conditions than the native grass areas. Since drier soil moisture conditions 

cause higher microwave emission, and areas with dense canopy such as 

forest have generally higher emission, the combination of the two factors 

further increases the difference in emission between the forest and the native 

grass areas, causing the increase in error observed in Figure 7.13. These 

results are in contrast with those of Burke and Simmonds (2003), one of the 

few studies to link the effect of heterogeneity on coarse-scale passive 

microwave retrieval to the spatial distribution of soil moisture induced by 

vegetation type. They observed that the physical connection between 

vegetation cover and soil moisture worked to reduce the effect of 

heterogeneity estimated analytically by reducing the variability of 

emissivity. However, they only analysed one study site of mixed bare and 

moderate vegetation cover (crop), with a much weaker contrast of optical 

depth than that analysed here over large areas. 

The synthetic analysis presented earlier in this Chapter also highlighted 

that retrieval errors induced by the sub-pixel heterogeneity of land cover (as 

well as heterogeneity in all other factors) significantly depends on the pixel-

average soil moisture conditions, with higher retrieval errors associated with 

wetter pixel conditions. However, what is investigated here is a different 

effect, where the heterogeneity of soil moisture acts in synergy with that of 

land cover type to increase the error, since soil moisture was kept uniform 

between the land cover types in the synthetic analysis. The dependence of 

the retrieval error on the pixel-average soil moisture conditions is analysed 

in Figure 7.14. The plot shows that a direct dependence of the error on soil 

moisture conditions as observed with synthetic analysis is not visible when 

using real data. The highest errors are, however, mostly associated with 

intermediate and wet soil moisture conditions, where there is the greatest 

sub-pixel soil moisture variability. 

The analysis of the effect of the land surface heterogeneity at 5km 

resolution soil moisture retrieval has thus far led to five important 

observations:  
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1. there was significant correlation between the soil moisture retrieval 

error and the heterogeneity of land cover type within the pixel; since 

in the study area the only land cover types were native grass, crop 

and forest, and that the crop fraction was generally small, this meant 

that a strong correlation could be established between the retrieval 

error and the percentage of pixel area occupied by forest (and the 

nearly complementary percentage of pixel area occupied by native 

grass); 

2. the sign of the retrieval error due to land cover heterogeneity 

depended on the predominance of forest or native grass within the 

pixel, i.e., the pixel average soil moisture was overestimated when a 

pixel containing a significant amount of forest was modelled as 

having a uniform native grass cover and underestimated when the 

pixel is modelled as having a uniform forest cover;  

3. the retrieval error was above SMOS target accuracy for a forest 

fraction exceeding 30%v/v in a pixel otherwise occupied by native 

grass (and eventually a relatively small fraction of crop), and 

achieved a maximum (+17.2%v/v and -10.0%v/v) when the fractions 

of native grass and forest were close to 50%; 

 
Figure 7.14. Relationship between the soil moisture retrieval error for each 
5km pixel and the average pixel soil moisture conditions. The data points 
are colour coded by the soil moisture standard deviation within the pixel. 
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4. in the presence of critical land cover conditions (fractions of native 

grass and forest close to 50%) the error was highly sensitive to the 

heterogeneity of soil moisture within the pixel, with higher error 

associated with higher sub-pixel heterogeneity of soil moisture; and 

5. the L-MEB soil moisture retrieval was not significantly affected by 

the sub-pixel heterogeneity of soil texture or by the sub-pixel 

heterogeneity of soil moisture related to soil texture variability 

(shown in Chapter 6).  

7.3.2 Extrapolation to 40km Resolution 

The analysis was conducted thus far by considering only pixels with 

relative fine resolution (5km), so as to analyse the largest possible variety of 

land cover conditions. The next step is to establish how these findings can 

be extrapolated to pixel resolutions more similar to that of a SMOS pixel 

(40km). Since at 5km resolution the error was found to be mainly 

determined by the relative sub-pixel fractions occupied by forest and native 

grass, it is expected that errors of the same magnitude will be observed at 

coarser resolutions, provided that the conditions producing the higher errors 

(~50% native grass and ~50 forest fraction) were also present at the coarser 

resolution. This is of course subjected to the presence of patches of forest 

and native grass large enough to occupy at least 50% of the pixels at each 

resolution. However, given that only a small fraction of the NAFE’05 study 

was occupied by forest, the critical conditions might not occur when 

considering the 40km simulated pixel over the area. 

To verify this, the maximum sub-pixel fraction for each land cover type 

was calculated amongst all the pixels analysed at each resolution. Table 7.6 

shows these maximum sub-pixel fractions together with the maximum soil 

moisture retrieval error observed at each resolution. The fraction showed 

here for each land cover type is the maximum fraction amongst all the pixels 

analysed at each resolution, therefore the three fractions (crop, native grass 

and forest) do not necessarily amount to 100% at each resolution, since they 

correspond to different pixels. However, the table indicates how as the 
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resolution gets coarser the maximum fraction of every land cover type 

decreases. This is because when observing the landscape at coarser 

resolutions, less pixels have uniform conditions (i.e., with fraction of one 

particular land cover type close to 100%) and more pixels present a mix of 

land cover types (i.e., fractions smaller than 100%). 

While at 40km the maximum fraction of native grass is reduced to 

approximately 25% of the maximum native grass fraction observed at 5km, 

in the case of forest and crops the decrease is more substantial, respectively 

77% and 78% of their value at 5km resolution. This is due to the NAFE’05 

study area being largely occupied by native grass. Consequently, in the 

NAFE’05 study area the chance of having pixels with the critical conditions 

of land cover heterogeneity (~50% native grass and ~50 forest fraction) is 

decreased as the resolution gets coarser.  

The critical conditions of land cover heterogeneity could therefore not be 

directly observed at the coarser resolution, due to the limited amount of 

forest present in the NAFE’05 study area. This explains why the maximum 

retrieval error in Table 7.6 decreases as the resolution gets coarser. In order 

to understand whether the maximum retrieval error that can be produced by 

the heterogeneity of land cover at the resolution of a typical SMOS pixel is 

Table 7.6. Variation with the pixel resolution of the maximum sub-pixel 
fractions of each land cover type (columns 1-3), the maximum soil 
moisture retrieval error (column 4) and the soil moisture error for pixels 
with sub-pixel fractions equal to the 40km pixel ( column 5).  

Pixel 

Res. 

(1) 

Native 

Grass % 

(2) 

Forest 

% 

(3) 

Crop 

% 

(4) 

Maximum 

Retrieval 

Error 

(%v/v) 

(5) 

Retrieval 

Error for 

conditions* 

(%v/v) 

5km 97.8 98.2 20.9 +17.2 +6.6 

10km 94.4 70.0 17.3 +12.2 +7.3 

20km 90.2 38.5 11.0 +10.6 +6.7 

30km 85.8 25.1 7.4 +7.2 +7.2 

40km 73.0* 22.1* 4.6* +5.5 +5.5 
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equal to that observed at 5km, the error for pixels with land cover fractions 

similar to those of the 40km pixel simulated across the entire study area 

(73.0% native grass, 22.1% forest and 4.6% crop) were extracted at each 

resolution and compared.  

This is shown in the last column of Table 7.6. The error produced by the 

same conditions of land cover heterogeneity (~73% native grass, ~22.1% 

forest and ~4.6%crop) was very similar at all the resolutions, varying by less 

than 1.1%v/v from 5km to 40km sized pixels. This indicates that the effect 

of the heterogeneity of land cover is invariant with resolution, 

demonstrating at the scale of a typical SMOS pixel land surface 

heterogeneity would produce a soil moisture retrieval error greater than that 

actually observed in the study area (5.5%v/v), and most likely as high as 

that observed at 5km resolution for critical conditions (~50% native grass 

and ~50 forest fraction), had these conditions been observed at 40km 

resolution within the NAFE’05 study area. 

7.4 Chapter Summary 

This Chapter has assessed the magnitude of the L-MEB soil moisture 

retrieval error that is likely to exist at the resolution of a SMOS pixel as a 

consequence of unaccounted sub-pixel heterogeneity in land surface 

conditions, i.e., when the pixel is assumed to be uniform. Moreover, the 

land surface factors which are mostly responsible for this error have been 

identified. This assessment was made in two ways: (i) using synthetic data 

to analyse the effect of sub-pixel heterogeneity of each land surface factor in 

turn, and (ii) using real airborne data and ground ancillary data collected 

during the NAFE’05 field campaign to confirm the synthetic results and 

assess the interplay between different land surface factors.  

It has been shown for the conditions encountered during the NAFE’05 

field campaign there was a significant correlation between the soil moisture 

retrieval error and the sub-pixel heterogeneity of land cover type; retrieval 

errors exceeded the SMOS target accuracy for a fraction of forest larger than 
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30% of the pixel area, in a pixel otherwise occupied by native grass and 

crops. Moreover, retrieval errors achieved a maximum of +17.2%v/v and -

10.0%v/v for pixels with highly heterogeneous land cover type 

(approximately 50% native grass and forest fraction). The sign of this error 

depended on whether forest or native grass was the dominant land cover 

within the pixel, i.e., the pixel average soil moisture was overestimated 

when a pixel containing a significant amount of forest was modeled as 

having a uniform native grass cover and underestimated when the pixel was 

modeled as having a uniform forest cover. The errors observed in this 

Chapter are higher than those reported by the few previous studies that 

analysed the effect of heterogeneity in passive microwave soil moisture 

retrieval using real TB data (Drusch et al., 1999a; Burke et al., 2003; 

Uitdewilligen et al., 2003). However, it must be noted that the present 

analysis was undertaken on a wider variety of land surface conditions with a 

stronger variability of canopy density.  

An important finding of this Chapter has been to show that one of the 

assumptions made by the SMOS L2 algorithm, that land cover is the only 

sources of error due to its sub-pixel heterogeneity, is not verified. It was in 

fact shown that the sub-pixel heterogeneity of soil moisture also affects the 

retrieval, although only when in conjunction with critical land cover 

heterogeneity conditions (approximately 50% native grass and forest 

fraction). Under those conditions the physical link between land cover and 

soil moisture spatial distribution (see Chapter 6) worked toward further 

increasing the retrieval error. This had not been observed before because: (i) 

synthetic studies had either considered soil moisture constant across the 

mixed pixel (Bindlish et al., 2002; Van de Griend et al., 2003) or the effect 

of soil moisture heterogeneity was considered individually (Njoku et al., 

1996b; Davenport et al., 2008), or (iii) studies using actual TB data had been  

performend at sites with relatively benign vegetation conditions (Drusch et 

al., 1999a; Burke et al., 2003; Uitdewilligen et al., 2003).  
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This Chapter has also shown that the impact of the heterogeneity of 

land cover type on the soil moisture retrieval is invariant with resolution. 

This demonstrated that the assumption of pixel uniformity can lead to 

significant soil moisture retrieval errors at the scale of SMOS pixels (up to 

17%v/v). In Chapter 8, the ability of the SMOS L2 retrieval approach to 

compensate for these errors will be assessed and a new approach will be 

developed to reduce the error in SMOS soil moisture retrieval due to land 

cover heterogeneity. 
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Chapter Eight 

8 A Proposed Extension to the SMOS L2 algorithm 

This Chapter tests the SMOS L2 soil moisture retrieval algorithm 

presented in Chapter 3 using the SMOS observations simulated on regional 

monitoring days from PLMR data. The SMOS L2 algorithm seeks to 

account for the sub-pixel heterogeneity of land surface conditions by 

dividing the pixel in fractions of uniform land cover, for which the 

microwave emission is simulated individually. The method is based on the 

assumption that: (i) Land cover is the only land surface factor whose sub-

pixel heterogeneity affects the coarse-scale soil moisture retrieval in a 

significant way, and (ii) in the case where the canopy density of the forest 

fraction of the pixel is low, the retrieved parameters (soil moisture and 

optical depth) are uniform amongst different land cover types. In Chapter 7 

it was demonstrated that a significant error in soil moisture retrieval can 

result from the heterogeneity of the land cover within a SMOS footprint 

when the pixel is considered uniform by the retrieval algorithm. However, it 

was shown that land cover type is not the only factor affecting the retrieval. 

The heterogeneity of soil moisture contributes to the retrieval error when 

associated with critical land cover heterogeneity conditions (more than 

approximately 30% forest fraction).  

Consequently, in this Chapter the ability of the SMOS L2 algorithm and 

its main assumptions to reduce the error resulting from the land surface 

heterogeneity is tested. Two novel retrieval approaches which relax those 

assumptions are then proposed and tested in order to overcome the 

limitations identified in the retrieval approach proposed for the SMOS L2 

algorithm in the case of pixels composed of a mix of moderately vegetated 

soil (crops and grasslands) and moderately dense Eucalypt forest, typical of 

the Australian environment. 
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8.1 Description of the Retrieval Approaches 

The baseline technique adopted in the SMOS L2 soil moisture retrieval 

algorithm to reduce the error due to land surface heterogeneity has been 

described in detail in Chapter 3. All the retrieval approaches tested in this 

Chapter are based on this baseline technique, and differ only in regards to 

the parameters which are retrieved. The main characteristics and 

assumptions of the SMOS baseline technique are briefly reviewed in this 

section, while the soil moisture retrieval approach proposed for the SMOS 

L2 algorithm (hereafter referred to as the “SMOS approach”) and the two 

proposed alternative approaches are described in the following three 

sections (see also the summary in Table 8.1).  It should be noted that the 

nomenclature used in Table 8.1 and throughout the present Chapter to 

indicate the different approaches is particular to this thesis and therefore 

does not correspond to that found in any SMOS technical document. While 

the retrieval approaches tested in this Chapter have been given a short name 

code (such as “2P-U”, see relevant section for each approach), the uniform 

pixel approach was indicated simply as “uniform pixel”, for consistency 

with the way it is indicated in Chapter 7. 

The SMOS baseline technique consists of applying the L-MEB 

microwave emission model separately for each land cover type present in 

the pixel using land cover specific parameters to simulate fraction-specific 

TB’s, which are then linearly aggregated to give a weighted-average pixel 

TB. These land cover fractions are determined using high-resolution 

thematic maps of land use (at 4km resolution). Given the availability of 

multiple observations of the same SMOS footprint (multi-angle and bi-

polarisation), parameters other than soil moisture itself can be theoretically 

retrieved. In the “minimum” and “full” retrieval options (see Table 3.2), 

these parameters will be soil moisture, optical depth and eventually surface 

roughness (highly constrained and only in the “full” retrieval).  

In testing of the SMOS L2 algorithm, the following simplifications are 

made: 
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1. only the “nominal” case of the SMOS L2 algorithm is considered, 

i.e., when either the “low to moderately vegetated soil” or the 

“forest” land cover classes are dominant within the SMOS FOV (see 

Chapter 3). This means that the case when land surface conditions 

that are not of direct interest for soil moisture retrieval (e.g., ocean, 

sea ice, snow-covered or urban areas) are dominant within the SMOS 

FOV is not considered. The “low to moderately vegetated soil” 

(hereby referred to as “moderately vegetated surface”) included both 

the crops and grassland land surface types on which the L-MEB 

model was evaluated in Chapter 5. Due to the nature of the NAFE’05 

study area, this analysis is concerned with the case in which the 

forest, grassland and crop fraction sum up to 100%. Therefore, when 

running the L-MEB model in forward mode to optimise the retrieved 

parameters, the model is applied separately for the grassland, forest 

and crop fraction of the footprint; 

2. due to the limited number of independent observations at different 

incidence angles that could be obtained from the NAFE’05 airborne 

data (in terms of incidence angle), in this study only a limited amount 

of parameters could be retrieved at once, namely soil moisture and 

Table 8.1. Summary of the retrieval approaches tested in this Chapter with 
simulated SMOS data; θ=soil moisture, τ=optical depth. Subscripts indicate 
that the parameter is retrieved for the entire pixel (pixel), for the moderate 
vegetation fraction (mod) or for the forest fraction (for). All the parameters 
not indicated are set a priori. Note that the nomenclature utilised does not 
correspond to that of any SMOS technical document. 

Retrieval 

Approach 

Retrieved 

Parameters 

A priori 

Parameters 

Main  

Assumptions 

Uniform pixel θpixel, τpixel - • Only dominant land 
cover type modeled 

2P-U θpixel, τpixel - • θ uniform in  pixel 
• τ uniform in  pixel 

2P-S θpixel, τmod τfor • θ uniform in  pixel 

3P-S θmod, θfor, τmod τfor  
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vegetation optical depth. Therefore only the “minimum” retrieval 

case of the SMOS L2 algorithm is considered (see Table 3.2); and 

3. several assumption are made in terms of the synthetic SMOS data 

used as discussed in detail in Chapter 3: (i) Observations are 

considered free of the errors associated with image reconstruction, 

ionospheric (Faraday) rotation and sky and atmospheric contributions 

compensation; (ii) the radiometric uncertainty considered is that of 

the PLMR radiometer (2 K and 0.7 K respectively at V and H 

polarisation); and (iii) no antenna gain weighting function (WEF, see 

section 3.2.2) is applied when aggregating the fraction-specific 

modelled TB to SMOS pixel resolution. The fractions used for the 

aggregation are geometrical surface fractions estimated from the 30m 

resolution Landsat-derived land cover map described in detail in 

Chapter 5. 

The criteria used to assess the SMOS L2 algorithm at coarse resolution 

and to compare it with alternative approaches are those suggested in the 

SMOS L2 algorithm validation plan (CESBIO, 2006): that is, the Root 

Mean Square Error (RMSE) and bias between retrieved soil moisture and 

optical depth at coarse resolution and the average of the soil moisture and 

optical depth “ground truth”. The “ground truth” soil moisture and optical 

depth are taken as the 1km L-MEB product evaluated in Chapter 5; unless 

otherwise stated, for each coarse pixel the arithmetic average of the 1km soil 

moisture and optical depths across the coarse pixel are used as “ground 

truth”. 

Finally, it should be anticipated that, due to the relatively limited extent 

of the crop fields in the study area and the coarse resolution of the analysis 

(5km-40km), crops never constituted the dominant fraction of the pixel, 

with the maximum pixel fraction occupied by crops being 20% of the pixel 

area (at 5km). This poses certain limitations to the applicability of the 

results of this thesis. However, the crop fraction is considered in the forward 

modeling weighted by its pixel fraction. 
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8.1.1 The SMOS Approach (2P-U) 

The retrieval approach proposed for the SMOS L2 algorithm in the 

“nominal” case scenario is that of retrieving one or two parameters (soil 

moisture alone or soil moisture and optical depth, depending on the quality 

and quantity of available concurrent observations) which, when the density 

of the forest fraction eventually present in the pixel is expected to be low, as 

is the case for the open Eucalypt forest in the NAFE’05 study area, are 

considered to be uniform amongst the sub-pixel land cover fractions, which 

are modeled individually. This means for example that if soil moisture and 

optical depth are retrieved they are considered to have the same value in 

both the moderately vegetated (including grassland and crops) and the forest 

fraction. This approach will be hereby referred to as the 2P-U approach (2-

Parameters Uniform). All other physical parameters (fixed parameters of the 

forward L-MEB model, see Table 5.8) are fraction-specific. In some cases, 

when the number and quality of multi-angle observations are high, the 

retrieval of up to eight parameters might be attempted by SMOS. However, 

that will happen on a limited number of locations, mainly on the satellite 

sub-track (i.e., at the centre of the swath). Therefore, in this thesis only the 

more common one-parameter and two-parameter retrieval scenarios are 

considered, which are relevant for most of the swath.  

During the retrieval from SMOS data, the values of soil moisture and 

optical depth are not left free, but rather they are constrained to a variable 

extent. The two parameters are constrained to the values derived from 

previous retrievals over the same area, with user-defined standard deviations 

to specify the uncertainty in that value (through the objective function 

described in Chapter 3). The standard deviations are determined through 

some user-defined threshold against which the expected optical depth of the 

pixel is compared prior to the retrieval. The retrieval options and the 

thresholds have been described in detail in Table 3.2 and section 3.2.3.5. 

The thresholds on the expected optical depth are TH_23, TH_34 (the 

nomenclature is that of the SMOS L2 algorithm description document 

(CESBIO, 2007)). The retrieval conditions are determined by comparing the 
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pixel optical depth from previous retrievals over the same with those 

thresholds.  

Values of optical depth smaller than TH_23 should mainly correspond to 

ice or bare soil, i.e., cases where the optical thickness is known to be 

negligible and the pixel treated as bare soil. Since that type of surface was 

not present in the NAFE’05 study area, TH_23 was here set to zero. The 

TH_34 threshold corresponds instead to situations close to the limit of the 

validity domain (vegetation density too high to attempt any soil moisture 

retrieval). Since most of the NAFE’05 study area is occupied by “nice” 

areas where the retrieval of soil moisture is considered feasible (grassland 

and crops), the value of TH_34 was set to 0.8, higher than that of the forest 

(0.57, J. Grant, pers. comm.), so that all the pixels corresponded to the 

“moderate” retrieval case (see Table 3.2). In this case the retrieval of soil 

moisture is attempted (with a constraint of 20%v/v, which is a very mild 

constraint for a 2-3 days nominal overpass, effectively leaving the parameter 

free) whereas the optical depth is constrained to that retrieved on previous 

days with a standard deviation of 0.1. It should be noted that on the first 

day, October 31st, given the absence of previous observations of the area a 

free retrieval was performed (i.e., no constraints on either soil moisture or 

optical depth). On the subsequent three days the approach was applied as 

described above. October 31st therefore represents a “spin up” day. 

The 2P-U approach is based on two main assumptions: (i) Land cover is 

the only land surface factor causing an error in the soil moisture retrieval 

due to its heterogeneity within the footprint and (ii) the two retrieved 

parameters (in the case simulated here, soil moisture and optical depth) are 

considered uniform amongst the modeled pixel fractions, i.e., optical depth 

is the same in the moderately vegetated and the forest fraction and so is soil 

moisture. These assumptions have been shown to be not realistic in Chapter 

6 and 7, where it was shown that the physical link between land cover and 

soil moisture results in a higher soil moisture retrieval error than that from 

the land cover heterogeneity alone. Additionally, the assumption of soil 

moisture and optical depth uniformity is restrictive, as demonstrated in 



Chapter 8 – A Proposed Extension to the SMOS L2 algorithm Page 8-7 

 

Chapter 6 using the NAFE’05 ground data. There it was shown that 

moderately vegetated surfaces, like grassland and crops, generally exhibit 

wetter conditions than the soil under the forest canopy. In this thesis two 

alternative approaches are therefore proposed to relax those assumptions. 

These are described in the following two sections. 

8.1.2 Two-Parameter, Split Optical Depth Approach (2P-S) 

The first alternative approach proposed and tested in this thesis consists 

of a two-parameter retrieval of soil moisture (considered uniform amongst 

the sub-pixel fractions) and optical depth of only the moderately vegetated 

fraction (grass or crop). The optical depth of the forest fraction is assumed 

to be known, e.g., retrieved on previous overpasses of the area or derived 

from Leaf Area Index (LAI) maps, and is imposed a priori in the forward 

modeling of the forest fraction.  

The rationale for this 2P-S approach derives from the temporal stability 

of the optical depth of forest as observed in recent forest studies, which was 

attributed to the dominance of the branch system over the leafy part of the 

plant in absorbing/emitting radiation at L-band (Ferrazzoli et al., 2002; 

Della Vecchia et al., 2006). In this approach it is therefore hypothesised that 

the soil moisture retrieval error resulting from assuming an a priori value of 

the forest optical depth, which may have some small error in it, should be 

much smaller than that resulting from assuming a single value of optical 

depth, this being the same for the forest and the moderately vegetated 

fraction of the pixel.  

It should be stressed upfront that this new approach does not involve an 

improvement of the modeling of the physics behind the radiative transfer 

properties of heterogeneous pixels. Rather, it is based on the hypothesis that 

the non-linear effect of land surface heterogeneity on the L-MEB radiative 

transfer model can be moderated by fixing certain variables of the system to 

plausible values (i.e., the optical depth of forest). This retrieval approach is 

expected to improve the soil moisture retrieval accuracy over the mixed 

pixel depending on the quality of the a priori information on the forest 



Chapter 8 – A Proposed Extension to the SMOS L2 algorithm Page 8-8 

 

optical depth. If this information is rather accurate, it is expected to lead to 

improved soil moisture retrieval accuracy when compared with the 2P-U 

approach described in Section 8.1.1.  

8.1.3 Three-Parameters, Split Optical Depth and Soil Moisture 

Approach (3P-S) 

This second alternative approach consists of a three-parameters retrieval 

of (1) soil moisture of the moderate vegetation fraction (including crop and 

grassland), (2) soil moisture of the forest fraction, and (3) optical depth of 

the moderate vegetation fraction. As for the 2P-S approach, the optical 

depth of the forest fraction is imposed a priori. This approach relaxes the 

assumption of uniform soil moisture between the two fractions on which the 

previous approaches are based by considering separate soil moisture values 

for the moderate vegetation fraction and the forest fraction.  

The rationale for this approach derives from the observations presented 

in Chapter 6 and Chapter 7, where it was demonstrated that:  

• land cover type had a strong influence on soil moisture distribution at 

the scale of a typical SMOS footprint, with forested areas exhibiting 

consistently drier conditions than areas with moderate vegetation, this 

difference being between 20 and 40% in the case of crops and 5 to 

15% in the case of grasslands; and  

• the soil moisture spatial variability within the footprint produced by 

the land cover distribution increases the error in soil moisture 

retrieval produced by land cover heterogeneity. 

However, this approach introduces the burden of an extra retrieval 

parameter (the additional soil moisture), and that is the reason why the 

intermediate 2P-S approach was tested along with the 3P-S approach. Since 

the retrieval of three parameters is attempted in 3P-S, it is necessary to have 

a minimum of three concurrent observations. These can be obtained, for 

example, using bi-polarised observations at two different incidence angles. 

However, the regional airborne data were collected with the radiometer in 

“pushbroom” configuration in order to allow monitoring of a large area 
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within one day, implying that only two observations for every ground 

location were available (single-angle, V and H-pol). Therefore, in order to 

apply the 3P-S approach, SMOS observations were simulated at 7º 

incidence angle in addition to the 38.5º observations used for the 2P-U and 

2P-S approaches, using the incidence angle normalisation procedures 

described in section 5.3.2.1. From a SMOS operational point of view, the 

approach should be feasible at least on satellite sub-track locations where a 

wealth of observations at multiple angles will be available. 

8.2 Testing of the SMOS Approach (2P-U) 

This section tests the ability of the SMOS approach (2P-U) to reduce the 

error due to land surface and soil moisture heterogeneity, as compared with 

the uniform pixel approach tested in Chapter 7. Initially only 5km resolution 

observations are considered. The analysis is then expanded to coarser 

resolutions. 

The soil moisture values retrieved using the uniform pixel approach and 

the 2P-U approach are plotted in Figure 8.1 against the soil moisture 

“ground truth” for three example resolutions (5, 20 and 40km). Figure 8.1 

shows that the 2P-U approach was able to significantly reduce the large 

errors obtained with the uniform pixel approach at the finer resolutions 

(5km), which in Chapter 7 were shown to be due to the combined effect of 

heterogeneous land cover within the pixel (~50% forested area and 50% 

moderate vegetated areas) and soil moisture variability associated with that 

heterogeneity. However, the 2P-U approach both significantly increased the 

scatter of the points about the 1:1 line and resulted in a bias in the retrieved 

soil moisture which was not present in the uniform pixel approach. 

At coarser resolution (~40km) the errors were fairly small using the 

uniform pixel approach. As already commented in Chapter 7, this was 

because the crucial conditions of land cover heterogeneity were not met at 

this resolution, since only a small fraction of the pixel was occupied by 
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forest. In these conditions the 2P-U approach introduced a significant bias 

(underestimation). 

The error statistics of the soil moisture retrieval at 5km resolution for the 

uniform pixel and the 2P-U approach are compared in Table 8.2, together 

with the error in retrieved optical depth. Note that the “observed” optical 

depth here is the arithmetic average of the optical depths of the different 

components of the pixel. In this table the 5km pixels are grouped according 

 
Figure 8.1. Observed vs. retrieved soil moisture (SM) at different 
resolutions using a uniform pixel approach (left column) and the SMOS 
approach (2P-U). 
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to the percentage of pixel fraction occupied by the forested area (the 

remaining part of the pixel being occupied by grassland and crop in some 

cases): group A, pixels occupied predominantly by moderate vegetation 

(forest fraction<40%); group B, heterogeneous pixels with land cover 

conditions shown in Chapter 7 to be critical for the retrieval (forest fraction 

between 40-60%) and group C, pixels occupied predominantly by forest 

(forest fraction>60%). In the following sections, the results for the “critical” 

group B (heterogeneous) pixels are discussed first, followed by group A and 

C (homogeneous) pixels. 

8.2.1 Heterogeneous Pixels (Group B) 

Table 8.2 shows that the 2P-U approach significantly reduced the RMSE 

of both soil moisture and optical depth in the case of highly heterogeneous 

pixels (group B). The RMSE of soil moisture was reduced from a maximum 

of 11.6%v/v using a uniform pixel approach to 5.7%v/v using the 2P-U 

approach. This was a result of the more accurate retrieval of the mixed pixel 

Table 8.2. Errors in retrieved soil moisture (SM) and optical depth (TAU) 
at 5km resolution for different land cover categories when using the 
uniform pixel and 2P-U approaches. 
  Uniform Pixel Approach  2P-U 

Group 

Date 

SM 

RMSE 

(%v/v) 

SM 

Bias 

(%v/v) 

ΤAU 

RMSE  

SM 

RMSE 

(%v/v) 

SM 

Bias 

(%v/v) 

ΤAU 

RMSE 

31/10 2.9 2.2 0.02  3.8 0.2 0.02 

7/11 1.0 -0.2 0.02  4.0 -2.6 0.01 

14/11 0.9 -0.3 0.03  4.4 1.0 0.06 

A.  
Forest 
<40% 

21/11 1.0 -0.4 0.02  3.1 -2.2 0.01 

         31/10 11.6 4.3 0.14  5.5 -3.8 0.06 

7/11 8.4 1.1 0.15  5.7 -5.3 0.09 

14/11 3.7 1.2 0.16  1.6 -1.5 0.13 

B. 
 Forest 
>40% 
<60% 

21/11 4.6 1.6 0.12  2.0 -1.8 0.09 

         31/10 2.8 -0.1 0.10  1.6 0.2 0.04 

7/11 5.0 -4.4 0.08  3.2 -2.9 0.09 

14/11 2.3 -1.8 0.16  1.1 -0.9 0.14 

C.  
Forest 
>60% 

21/11 2.0 -1.6 0.07  0.8 -0.7 0.11 

         Total 3.1 0.2 0.06  3.7 -1.2 0.06 
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optical depth due to the fractional forward modeling in the 2P-U approach. 

The RMSE of the retrieved optical depth was in fact reduced significantly, 

by as much as 0.08 (as a reference, the optical depth of a typical grassland 

with 1kg/m2 is 0.15 and that of a forest is ~0.5). However, the error using 

the 2P-U approach was greater than 4%v/v on October 31st and November 

7th, when the study area was characterised by wet conditions. As also shown 

in Figure 8.1, the reduction in soil moisture error came at the expense of a 

negative bias (underestimation), which was between -1.8%v/v in dry 

conditions (November 21st) and -5.3%v/v in wet conditions (November 7th).  

8.2.2 Homogenous Pixels (Group A and C) 

Compared to the uniform pixel approach, a slightly degraded retrieval 

was obtained with the 2P-U approach over moderately vegetated pixels 

having a small fraction of forest (group A). In these cases the RMSE 

increased from 0.9-2.9%v/v for the uniform pixel approach to 3.1-4.4%v/v 

for the 2P-U approach, depending on the day. Again, the 2P-U approach 

introduced a negative bias for most days, as seen by the increased scatter 

about the 1:1 line and negative bias in Figure 8.1. 

Conversely, the 2P-U approach showed an improvement with respect to 

the uniform pixel approach in the case of pixels with a predominant forest 

fraction (group C), since in these cases the error obtained using the uniform 

approach was greater than in the case of moderately vegetated pixels group 

A. However, the 2P-U approach was able to improve the accuracy over such 

pixels, with the RMSE and bias decreasing from 3%v/v to 1.4%v/v and 

from -2%v/v to -1.1%v/v on average respectively.  These results suggest 

that the fractional forward modeling, which is the innovative aspect of the 

2P-U approach, improves the retrieval over forest-dominated pixels by 

accounting for the contribution of the moderately vegetated fraction but 

decreases the accuracy over moderate vegetation-dominated pixels when 

accounting for the contribution of the small forest fraction.  

8.2.3 Limitations of the SMOS Approach  

Since the moderate vegetated fraction of group A pixels consisted of a 
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mix of crop and grassland surfaces, the error induced by the 2P-U approach 

in this group was analysed in detail in terms of the sub-pixel land cover 

fractions of grassland, crop and forest. This is shown in Figure 8.2, where 

the difference between the errors obtained with the 2P-U and the uniform 

pixel approach is shown as a function of the sub-pixel fractions of forest (x-

axis) and grassland (y-axis). Each point in the plot represents a pixel, and 

the error between the two approaches in that pixel is quantified by 

subtracting the retrieval error of the uniform approach to that of the 2P-U 

approach, both taken in absolute value. Therefore a positive value of this 

 

 

Figure 8.2. Difference in absolute soil moisture error between the 2P-U 
and the uniform pixel approach for “group A” pixels (5km resolution) 
plotted as a function of the sub-pixel land cover fractions on each date. 
Green coloured dots (negative differences) indicate cases where the 2P-U 
approach improved the retrieval, white coloured dots are cases where the 
two approaches give similar results (±2%v/v), and yellow-red coloured dots 
(positive differences) are cases where the 2P-U approach has a higher error 
than the uniform pixel approach. The number of the colour legend results 
from subtracting the error using the 2P-U approach to the error using the 
uniform pixel approach. 
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difference indicates that in that pixel the 2P-U approach had a retrieval error 

higher than the uniform pixel approach. In the space of Figure 8.2, the crop 

fraction corresponds to the vertical distance of each dot from the diagonal 

line (i.e., the dots falling on the diagonal line have zero crop fraction).  

The plots confirm the overall lower accuracy of the 2P-U approach with 

respect to the uniform pixel approach in group A pixels, already observed in 

Table 8.2. However, the plot shows that this general trend varies depending 

on the relative mix of forest, crop and grassland fractions. The 2P-U 

approach tended to have a soil moisture accuracy comparable to the uniform 

pixel approach when either grassland was dominant (>90%, top left corner 

in each plot), or when the pixel was a mix of grassland and crop, provided 

the forest fraction was close to zero (dots along the y axis). Moreover, the 

increased RMSE values in Table 8.2 (group A) were due to the points lying 

along the diagonal line, being pixels with crop fraction close to zero and a 

mix of grassland and forest. 

An exception to these observations was November 14th, where the 

accuracy of the 2P-U approach was poor for a larger number of cases than 

on the other days. It can be seen in Table 8.2 that on November 14th a higher 

error in retrieved optical depth (0.06 compared to 0.01-0.02 for the other 

days) was also obtained. Analysis of the residuals between the observed and 

simulated TB at 5km resolution on November 14th revealed a poor 

performance of the optimisation routine, with residuals of 1.4±1.7K 

(average for all pixels) and maximum of 6.1K, as compared to the 

0.05±0.2K average residuals for the other three days. This suggests that the 

change in land surface `conditions between November 7th and 14th might 

have been too strong, so that the algorithm could not match well the 

simulated with the observed TB due to the constraint imposed on the optical 

depth or the soil moisture by the 2P-U approach (see Table 3.2). This was 

confirmed by the strong change of average soil moisture conditions recorded 

by the ground monitoring stations between November 7th and 14th, which 

was the highest amongst the four dates, being approximately 20%v/v as 

compared to less than 10%v/v between all other dates (see Table 5.9). Since 
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the focus of this analysis is on the ability of the 2P-U approach to deal with 

varying degree of land surface heterogeneity, the retrieval for November 

14th was repeated without constraining soil moisture. As expected, this led 

to an improvement, with a RMSE of 3.1%v/v for soil moisture and 0.02 for 

optical depth. 

It should be stressed that in all the cases displayed in Figure 8.2 (group 

A; forest fraction <40% and grassland+crop fraction>60%), the uniform 

pixel approach treated the 5km pixels as uniform grassland surfaces, since 

crops never constituted the dominant fraction. Therefore, the results 

presented indicate that on pixels with a large fraction of grassland, the 

fractional forward modeling of the 2P-U approach did not result in a 

significant improvement to the retrieval of the pixel averaged soil moisture 

as compared to using the uniform pixel approach. This was true even when 

a relatively small fraction of the pixel was occupied by another moderate 

vegetation land surface type (crop in this case). However, in the presence of 

even a small fraction of forest in a pixel that is largely occupied by 

grassland, the 2P-U approach led to higher retrieval errors than the uniform 

pixel approach.  

These observations are quantified in Table 8.3, where the soil moisture 

RMSE for the two approaches is shown for group A pixels as a function of 

the pixel forest fraction (for pixels with very small crop fraction) and as a 

function of the crop fraction (for pixels with very small forest fraction). The 

two approaches performed similarly for very homogenous conditions (crop 

and forest fraction<5%). However, the presence of a 5-10% fraction of 

forest was sufficient to increase the error beyond the SMOS target accuracy 

(4%v/v) when using the 2P-U approach, with the negative bias increasing 

with increasing forest fraction. As the forest fraction increased beyond 40% 

(group B pixels in right-most column), the error using the uniform pixel 

approach increased significantly, while the 2P-U approach effectively 

compensated for the strong land cover heterogeneity (as observed for group 

B pixels in Table 8.2). Table 8.3 also indicates that the increasing fraction of 

crops in pixel otherwise occupied by grassland (forest fraction<5%) had the 
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effect of introducing a wet bias. This a similar effect to that observed in the 

case of increasing forest fraction in pixels otherwise occupied by grassland 

(crop fraction>5%), but of inverted sign. The dry bias due to the increasing 

crop fraction was much smaller than that due to the increasing of the forest 

fraction, being of 1.7%v/v for a 20% crop fraction in contrast with a -3%v/v 

for a 20% forest fraction. Since the largest crop fraction observed in the 

NAFE’05 area at 5km resolution was of 20%, the contribution of crops to 

the error of the 2P-U approach in group A pixels could not be investigated 

further. However, it indicates that the 2P-U approach and its assumptions 

might result in significant retrieval errors also in pixels occupied by a mixed 

crop and grassland with small amount of forest. 

A simple schematic example can help explain the reason for these biases 

in the case of a mix of forest and grassland. Figure 8.3 shows the simple 

retrieval case of a pixel with uniform soil moisture and land surface 

parameters (i.e., 45%v/v soil moisture, 25ºC soil temperature, 21% sand 

content and 36% clay content) but split in two fractions, (50% forest and 

50% grassland), with different optical depths (0.57 and 0.05 respectively). 

Table 8.3. Soil moisture retrieval RMSE for group A pixel (5km 
resolution) as a function of (1) forest fraction for pixel with crop 
fraction<5% and (2) crop fraction for pixel with forest fraction<5%. The 
soil moisture bias is also indicated for each case in smaller italics font. (+) 
Heterogeneous group B pixels are shown as reference. 
(1)  Crop Fraction<5% 
 Forest fraction 

(%) 
0-5 5-10 10-20 20-30 30-40 

40-
50+ 

 1.1 2.0 1.7 1.2 - 7.8 
 

Uniform 
approach 0.2 -0.4 0.6 0.9 - 6.5 

 1.7 4.9 4.4 6.0 - 3.9 
 

2P-U 
  -0.2 -3.8 -3.0 -5.2 - -2.7 

              
(2)  Forest Fraction <5%     
 Crop fraction (%) 0-5 5-10 10-20     
 1.2 1.7 1.7     
 

Uniform 
approach 0.3 0.3 -0.8     

 2.0 2.4 2.9     
 

2P-U 
  0.6 1.4 1.7     
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In the plot the soil-moisture-emission curves are shown for the grass and 

forest fraction. The forward curves are those calculated using the original 

optical depth, while the inversion curves are calculated using the single 

(hence same for grass and forest) value of retrieved pixel optical depth using 

the 2P-U approach. The forward curves have the characteristic that, given 

the different optical depth of the two fraction, each soil moisture content 

results in a much higher TB for the forest fraction than the grassland fraction 

(due to higher vegetation emission). 

The red lines show the forward simulation of TB for each fraction at 

45%v/v soil moisture (value that we want to eventually retrieve using the 

2P-U approach), given the input land surface conditions and the original 

optical depths. The forward simulated TB’s were then aggregated linearly to 

produce a “pixel TB”, which is exactly the average of the forward TB’s, since 

the pixel fractions are the same for grass and forest. The 2P-U approach is 

then used to retrieve a uniform soil moisture and optical depth value for the 

pixel (blue lines). It can be seen that as a result of retrieving a single pixel 

optical depth, the soil moisture is underestimated because the soil-moisture-

emission curve of the forest (thick line with circles) has been distorted by 

 

Figure 8.3. Schematic example that illustrates the effect of retrieving one 
single optical depth value for a mixed pixel using the 2P-U approach. 
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the algorithm much more than that of the grass (thick line) from the 

respective original curve (thin lines, which in this scenario corresponds to 

the “true” emission curve) in order to accommodate a single optical depth. 

Therefore, the retrieved soil moisture is distorted as well and this results in a 

bias.  

It was also shown in this section that the bias observed for the 2P-U 

approach in heterogeneous group B pixels appeared to be greater in wet 

conditions. Note that, in homogeneous group A pixels, the bias did not 

change with wetness conditions. The link between pixel wetness conditions 

and the bias was thus far postulated only in terms of the entire study area, 

using the daily average soil moisture retrieved over the entire study area (see 

Table 8.2). Given the large variability of soil moisture within the study area, 

the correlation between retrieval error and wetness conditions is analysed in 

Figure 8.4 for individual pixels. Here the retrieval error is also plotted as a 

function of the sub-pixel standard deviation of soil moisture. This is because 

in Chapter 7 it was shown that the sub-pixel standard deviation of soil 

moisture contributed to the retrieval error when associated with the critical 

land cover conditions (group B pixels). Therefore the effect of the sub-pixel 

heterogeneity of soil moisture is a possible explanation for the residual error 

in the 2P-U approach on October 31st and November 7th.  

It can be seen in Figure 8.4 that for homogenous group A pixels the 

retrieval error was weakly correlated with pixel average soil moisture 

conditions, with underestimation in most conditions, and overestimation 

only occurring for very dry and very wet conditions, approximately below 

10 and above 50%v/v soil moisture content. In these cases no correlation 

between the retrieval error and the sub-pixel heterogeneity of soil moisture 

was observed (bottom row, left panel). However, this could be because 

group A pixels were characterised by generally small sub-pixel 

heterogeneity (<10%v/v). Conversely, the maximum retrieval error in 

heterogeneous, group B pixels occurred in wet and heterogeneous 

conditions (compare top and bottom panel of the middle column of Figure 

8.4). 
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8.2.4 Conclusions on the Applicability of the SMOS Approach 

In summary, the comparison of the SMOS approach (2P-U) and the 

uniform pixel approach showed that the 2P-U approach significantly 

reduced the error in retrieved soil moisture with respect to a uniform pixel 

approach on pixels with highly heterogeneous land cover (group B, 40-60% 

Forest) and when the forest fraction was predominant (group C, 

forest>60%). For example, the RMSE for group B was reduced to 5.7%v/v, 

as much as 6.1%v/v less than that obtained with the uniform pixel approach 

in the same land surface conditions; the RMSE for group C was reduced to 

3.2%v/v, as much as 1.8%v/v less than that obtained with the uniform pixel 

approach. However, three major limitations were identified in the approach:  

• on highly heterogeneous pixels (group B, 40-60% forest), the 2P-U 

approach showed a dry bias. This bias was greater on days when the 

study area was characterised by wet conditions, i.e., October 31st and 

November 7th. On these days the RMSE of the 2P-U retrieved soil 

moisture was 5.7%v/v and 5.5%v/v respectively, and the bias was -

3.8%v/v and -5.3%v/v respectively;  

 
Figure 8.4. Error of soil moisture retrieval at 5km resolution obtained with 
the 2P-U approach, plotted as a function of the pixel average soil moisture 
(top panel) and the sub-pixel standard deviation of soil moisture (bottom 
panel). The three pixel groups are shown by column. Dashed lines represent 
SMOS target accuracy. 
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• the 2P-U approach was found to be less accurate than the uniform 

pixel approach in the case of more uniform, moderately vegetated 

pixels (group A, forest<40%). In such cases the 2P-U approach 

resulted in a RMSE between 3.1-4.4%v/v as compared to a RMSE of 

1.0-2.9%v/v when using the uniform pixel approach. This RMSE was 

also accompanied by a dry bias (underestimation), which increased 

according to forest fraction; and 

• the constraint of 20%v/v imposed on the retrieved soil moisture in the 

“moderate” retrieval case appeared too restrictive. In particular, it 

resulted in significant errors in both the soil moisture and optical 

depth retrieval on November 14th, as a consequence of a strong 

change in soil moisture conditions between November 14th and the 

previous retrieval on November 7th (area-average soil moisture 

approximately 20%v/v drier). In a SMOS operational context, such a 

long revisit time (7 days), and hence such significant difference in 

soil moisture conditions due to drydown is less likely occur. 

However, a rainfall event might easily produce an increase in soil 

moisture conditions of similar magnitude, even within a nominal 

SMOS revisit time of 2-5 days. 

These results indicate that the presence of a significant forest fraction in a 

pixel otherwise occupied by moderate vegetation (grass or crop), the 2P-U 

approach results in an underestimation of the pixel average soil moisture 

conditions. In contrast, when the pixel is split between land cover types of 

moderate vegetation (crop and grass), the 2P-U approach achieves a similar 

accuracy to the uniform pixel approach. Moreover, a dry bias is introduced 

by the 2P-U approach that increases according to forest fraction in the pixel. 

Due to the limited extent of cropped areas in the study area, the influence of 

the presence of large fraction of crops in the pixel could be only partially 

addressed. Nevertheless the results presented suggested that the 2P-U 

approach results in a wet bias when significant fraction of crop is present in 

the pixel. 
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8.3 Improvements to the SMOS Approach  

In order to overcome the problems of the 2P-U approach highlighted in 

the previous section, and with the objective of reducing the errors in 

heterogeneous group B pixels and in homogenous, moderately vegetated 

group A pixels, in the following sections two new approaches are proposed 

and tested with the NAFE’05 experimental data. These two approaches 

relax one-by-one the two assumptions on which the 2P-U approach is based. 

The assumptions made by the 2P-U approach are that (i) the retrieved 

optical depth is the same in both the modeled pixel fractions, and (ii) soil 

moisture is the same in both the modeled pixel fractions.  

8.3.1 The 2P-S Approach 

In this alternative approach, one value of soil moisture and optical depth 

are retrieved for the mixed pixel, with soil moisture considered uniform 

across the pixel as in the 2P-U approach. However, the optical depth of the 

forest fraction is assumed a priori in the forward modeling. Consequently, 

the retrieved optical depth corresponds only to that of the moderate 

vegetation fraction (grass or crop). This approach is expected to improve the 

soil moisture retrieval accuracy over the mixed pixel depending on the 

quality of the a priori information on the optical depth of forest. From an 

operational point of view, this information will derive from ancillary maps 

of LAI. If this information is sufficiently accurate, it might lead to improved 

soil moisture retrieval accuracy when compared with the 2P-U approach. If 

this information is not so accurate, a lower accuracy might be obtained. 

The performance of the 2P-S approach is compared to that of the 2P-U 

approach in Table 8.4. As a first attempt, it was assumed that the optical 

depth of the forest fraction is known with great accuracy, and was 

consequently set to the value specifically obtained over the NAFE’05 

Eucalypt forest by J. Grant (pers. comm.), being 0.57. Later (section 8.3.2) 

the impact of uncertainties in this a priori information are analysed. It 

should be noted that here the 2P-S approach is applied using values of the 

optical depth thresholds such that all pixels fall in the “moderate” retrieval 

case of Table 3.2 However, on October 31st, a free retrieval is performed, 
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given the absence of “previous” retrievals. This is identical to that of the 2P-

U approach. 

Table 8.4 shows that the use of correct a priori information on the optical 

depth for the forest fraction led on average to an improvement of the soil 

moisture retrieval accuracy with respect to the 2P-U approach. The overall 

RMSE across all days and land surface conditions decreased by 0.4%v/v. 

More importantly, the strong dry bias which affected the 2P-U approach 

was corrected, going from -1.2%v/v to 0.7%v/v (average across all dates 

and groups). Moreover, on uniform moderately vegetated group A pixels, 

the reduction was from 4.0%v.v to 3.4%v/v for the RMSE and from -

1.0%v/v to 0.6%v/v for the bias. On heterogeneous group B pixels, the 

RSME went from 3.7%v/v to 2.8%v/v and the bias was significantly 

reduced from -3.1%v/v to 0.5%v/v. On forested group C pixels the 

improvement was smaller, with the RMSE going from 1.7%v/v to 1.4%v/v 

and the bias from -1.1%v/v to 0.4%v/v. The largest errors of the 2P-S 

Table 8.4. Errors in retrieved soil moisture (SM) and optical depth (TAU) at 
5km resolution and for different land cover categories obtained with the 2P-U 
and 2P-S approaches. 
  2P-U  2P-S 

Group Date 

SM 

RMSE 

(%v/v) 

SM 

 Bias 

(%v/v) 

ΤAU 

RMSE  

SM 

RMSE 

(%v/v) 

SM 

Bias 

(%v/v) 

ΤAU 

RMSE  

31/10 3.8 0.2 0.02  3.6 2.1 0.03 

7/11 4.0 -2.6 0.01  2.1 -0.6 0.01 

14/11 4.4 1.0 0.06  5.0 2.8 0.06 

A.  
Forest 
<40% 

21/11 3.1 -2.2 0.01  2.2 -1.5 0.02 

         31/10 5.5 -3.8 0.06  4.6 2.6 0.04 

7/11 5.7 -5.3 0.09  2.8 -0.2 0.05 

14/11 1.6 -1.5 0.13  2.6 0.5 0.12 

B. 
 Forest 
>40% 
<60% 

21/11 2.0 -1.8 0.09  1.3 -1.0 0.07 

               31/10 1.6 0.2 0.04  3.3 2.4 0.09 

7/11 3.2 -2.9 0.09  1.1 0.5 0.06 

14/11 1.1 -0.9 0.14  0.6 -0.4 0.06 

C.  
Forest 
>60% 

21/11 0.8 -0.7 0.11  0.6 -0.5 0.12 

         Total 3.7 -1.2 0.06  3.3 0.7 0.05 
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approach were obtained on the wettest day, October 31st (for all groups of 

pixels) and on November 14th for group A pixels. November 14th was also 

the only day in which the 2P-S approach was less accurate than the 2P-U 

approach (for group A and B pixels).  

It is expected that the retrieval errors of the 2P-S approach on November 

14th and October 31st are due to different effects. Specifically (see also 

section 8.2.2), the error obtained on November 14th could be linked to the 

constraint on soil moisture (20%v/v) imposed by the “moderate” retrieval 

case in the SMOS L2 algorithm, which might be too restrictive since a 

significant change in soil moisture was observed with ground data between 

November 7th and 14th (approximately 20%v/v decrease in the area-average 

soil moisture). This cannot be the case for the error on October 31st, since on 

that day soil moisture and optical depth were retrieved as free parameters, 

given the lack of previous retrieval dates. In this case, the error is expected 

to be associated with the algorithm not being able to retrieve both 

parameters without any constraints together with residual effects of land 

surface heterogeneity not being fully accounted for by the 2P-S approach. 

In order to check whether the constraints imposed on the retrieved 

parameters are the cause of the observed error on November 14th, the 

retrieval was repeated with different constraints imposed by the SMOS L2 

algorithm. Soil moisture and optical depth were alternatively left free 

(without any constraint) and the retrieval repeated for all dates. The 

resulting RMSE of soil moisture and optical depth are compared in Table 

8.5 for the different options. As expected, relaxing the constraint on the 

retrieved parameters resulted in a better accuracy for November 14th, while 

the results on all other dates were unchanged. The best option was that of 

relaxing the constraint on soil moisture, with a decrease in RMSE of 

2.9%v/v and 1.5%v/v respectively for group A and B pixels on November 

14th.  

Relaxing only the constraint on the retrieved optical depth did not make a 

substantial difference when compared with using a 0.1 constraint, although 
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the accuracy was slightly degraded (0.1%v/v) in some cases (i.e., group A, 

November 7th and 21st). The results obtained when relaxing the constraint on 

 both parameters (not shown in Table 8.5) were equivalent to those of 

relaxing only the constraint on soil moisture. One caveat in this analysis is 

that the four regional data sets used represent a gradual drydown from very 

wet to very dry conditions, not do not include a situation in which a fairly 

dry area is brought to intermediate or wet conditions by a rainfall event in 

between subsequent observation dates. It is likely that in that situation, the 

2P-S approach will present similar limitations to that observed for 

November 14th where there was a significant decrease in soil moisture.  

Apart from November 21st, the 2P-S approach was able to reduce the soil 

moisture retrieval error below the SMOS target accuracy for most cases and 

land surface conditions analysed (see Table 8.4). The only exception was 

Table 8.5. RMSE in retrieved soil moisture (SM) and optical depth (TAU) 
at 5km resolution using the 2P-S approach with different constraints on the 
retrieved parameters. ”Constr.” Means a standard deviation of 20%v/v for 
soil moisture and of 0.1 for optical depth. 

  

SM constr. 

TAU constr.  

SM free 

TAU constr.  

SM constr. 

TAU free 

Group Date 

SM 

RMSE 

(%v/v) 

TAU 

RMSE 

(-)  

SM 

RMSE 

(%v/v) 

TAU 

RMSE 

(-)  

SM 

RMSE 

(%v/v) 

TAU   

RMSE 

(-) 

31/10 3.6 0.03  3.6 0.03  3.6 0.03 

7/11 2.1 0.01  2.0 0.02  2.1 0.01 

14/11 5.0 0.06  2.1 0.02  5.0 0.11 

A.  
Forest 
<40% 

21/11 2.2 0.02  2.2 0.02  2.2 0.02 

          31/10 4.6 0.04  4.6 0.04  4.6 0.04 

7/11 2.8 0.05  2.6 0.05  2.9 0.06 

14/11 2.6 0.12  1.1 0.08  2.6 0.21 

B. 
 Forest 
>40% 
<60% 

21/11 1.3 0.07  1.5 0.07  1.4 0.07 

                31/10 3.3 0.09  3.3 0.09  3.3 0.09 

7/11 1.1 0.06  0.9 0.05  1.2 0.11 

14/11 0.6 0.06  0.8 0.08  0.6 0.12 

C.  
Forest 
>60% 

21/11 0.6 0.12  0.6 0.12  0.6 0.13 

          Total 3.3 0.05  2.5 0.04  3.4 0.07 
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October 31st, the earliest monitoring day of the NAFE’05 data set, which 

was also the wettest of all dates, having average soil moisture conditions 

measured on the ground of 43.5±14.1%v/v (the second wettest day, 

November 7th, recorded 36.1±13.2%v/v). The soil moisture retrieval error 

on October 31st could stem from two causes: (i) Poor sensitivity of the L-

MEB radiative transfer algorithm to changes in soil moisture in wet 

conditions due to the lower soil emissivity, resulting in poor convergence of 

the optimisation algorithm to a solution, or (ii) residual effect of land 

surface heterogeneity not fully accounted for by the 2P-S approach. The 

poor model sensitivity in wet conditions could also be aggravated by the 

lack of initial input values for October 31st, when a free retrieval (i.e., 

without constraints on soil moisture and optical depth) was performed 

In order to verify whether the model sensitivity is the cause of the error 

on October 31st, the retrieval was repeated with the 2P-S approach after 

adding a Gaussian noise to the input coarse-resolution TB values, which 

were perturbed around their observed values with a standard deviation of 

2K, equal to the PLMR radiometric uncertainty (V and H polarisation were 

considered fully correlated when adding the noise). The model sensitivity 

was then assessed by calculating the variance of the soil moisture error for 

each pixel around its average value when the TB is perturbed with the 2K 

noise. It is expected that if the greater error on October 31st was due to 

model sensitivity, the error variance would be greater in wet rather than in 

dry conditions.  

In Table 8.6 the error variance (expressed in square root to match 

dimensionality with the soil moisture value) is presented for each group of 

pixels and date. Note that the RMSE and the variance in Table 8.6 are not 

correlated quantities. The value of error variance shown is the average of the 

individual error variances obtained for each pixel. The soil moisture RMSE 

is instead is calculated using the error in soil moisture retrieval of all the 

pixels in each group of pixels and date. The error variance was higher in wet 

conditions (October 31st and November 7th) indicating poorer model 

sensitivity. This was stronger in the presence of a significant forest fraction  
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(group B and C), while on moderately vegetated pixels the error variance 

was fairly stable with respect to the soil moisture conditions. In dry 

conditions (November 14th and 21st) the soil moisture RMSE obtained with 

the 2P-S approach was smaller or equivalent to the error variance resulting 

from the radiometric uncertainty. In wet conditions instead, the error 

variance explained only approximately 60-85% of the RMSE. This indicates 

that the error on October 31st might not be explained only by poor 

convergence of the retrieval algorithm. 

Based on the findings of Chapter 7, it is hypothesised that this residual 

error is due to the heterogeneity of soil moisture within the pixel, which the 

2P-S approach is unable to account for as a consequence of the assumption 

that soil moisture is uniform within the pixel (and hence between the 

different land cover fractions). This hypothesis is supported by the fact that 

it was demonstrated, both in Chapter 7 and in section 8.2.3, that the sub-

pixel heterogeneity of soil moisture increased the soil moisture retrieval 

Table 8.6. Square root of the average error variance (σ) of soil moisture 
(SM) retrieved with the 2P-S approach, after introduction of a 2K Gaussian 
noise to the 5km TB observations. The average soil moisture in the study 
area and the RMSE of soil moisture retrieval for each land cover class and 
date is also shown. 

Group Date 

Average 

Ground SM 

(%v/v) 

SM RMSE 

(%v/v) 

σ of the 

error with 

2K noise 

(%v/v) 

31/10 49.0 3.6 2.4 

7/11 41.5 2.0 2.9 

14/11 19.7 2.1 3.2 

A.  
Forest <40% 

21/11 17.0 2.2 3.3 

     31/10 37.1 4.6 3.4 

7/11 23.5 2.6 2.6 

14/11 4.7 1.1 1.5 

B. 
 Forest >40% 
<60% 

21/11 6.0 1.5 1.7 

      31/10 26.4 3.3 3.2 

7/11 15.9 0.9 2.2 

14/11 3.2 0.8 1.2 

C.  
Forest >60% 

21/11 2.9 0.6 1.3 
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error, when associated with strong variability in land cover (group B pixels), 

for both the uniform pixel approach and the 2P-U approach. Moreover, in 

Chapter 7 it was also shown that the heterogeneity in other surface factors 

which contribute to the microwave emission of the surface had a negligible 

or minor impact on the retrieval of soil moisture from coarse resolution. 

In order to verify this hypothesis, Figure 8.5 plots the error in soil 

moisture retrieval using the 2P-S approach against the sub-pixel standard 

deviation of soil moisture for each group of pixels. A strong correlation of 

the error with the sub-pixel standard deviation of soil moisture can be seen 

for pixels with a significant forest fraction (group B and C). In such cases, 

the increasing soil moisture standard deviation resulted in greater errors. As 

expected from the observations in section 6.3.3, these pixels were 

characterised by higher values of soil moisture standard deviation since the 

presence of forested areas, which generally exhibits conditions drier than 

crop and grasslands, resulted in more heterogeneous soil moisture 

distribution within the pixel. Moderately vegetated group A pixels were 

characterised by more uniform soil moisture conditions (standard deviation 

less than 10%v/v) and showed no correlation of the error with the sub-pixel 

standard deviation of soil moisture.  

8.3.2 Sensitivity of the 2P-S Approach to the a Priori Optical Depth 

The 2P-S approach was applied thus far under the assumption that the 

optical depth of the forest fraction of the pixel, which is imposed a priori, 

was known with good accuracy. This a priori value (0.57) was set to that 

calibrated specifically for the forest type of the study area (J. Grant., pers. 

comm.). 

In an operational context, the optical depth of forest might be derived, for 

example, from maps of LAI using auxiliary sensors such as MODIS. Since 

the effect of a dense forest canopy on the microwave signal is expected to be 

more stable in time than that of crops and grasslands (Ferrazzoli et al., 2002; 

Della Vecchia et al., 2006), it has been proposed (CESBIO, 2007; Wigneron 

et al., 2007) to relate the forest optical depth to the maximum LAI observed 
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during the year. It is therefore of interest to understand how the accuracy of 

the 2P-S approach would degrade with increasing uncertainty of the forest 

optical depth estimate. 

The sensitivity of the soil moisture retrieval using the 2P-S approach to 

error in the a priori information on the optical depth of the forest was 

analysed by simulating increasing level of uncertainty on the optical depth 

of the forest. This was simulated by creating random distribution of optical 

depth of the forest, normally distributed around the correct value (0.57) and 

with increasing standard deviation (0.1, 0.2, 0.3 and 0.4). A set of 100 

random a priori values of forest optical depth were created for each standard 

deviation. Using these input values soil moisture was estimated for each 

5km NAFE’05 observations using the 2P-S approach. 

The soil moisture RMSE and bias of the 2P-S approach with increasing 

level of uncertainty in the optical depth of the forest fraction are shown in 

Figure 8.6 and compared with those of the two other approaches tested in 

this Chapter (2P-U and the uniform pixel approach; the 3P-S approach was 

excluded from the analysis since it was shown to be less accurate). Results 

indicated that the accuracy of the a priori information on the optical depth 

of forest has little impact on the soil moisture retrieval for pixels mainly 

occupied by moderately vegetated surface types and with a forest fraction 

less than 40% (group A). In these cases, the soil moisture RMSE using the 

 
Figure 8.5. Error of soil moisture retrieval at 5km resolution using the 2P-S 
approach, plotted as a function of the sub-pixel standard deviation of soil 
moisture. The three pixel groups are shown by column. Dashed lines represent 
SMOS target accuracy (4%v/v). 
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2P-S approach was only slightly degraded (by 0.4%v/v) from the case 

where the optical depth of forest is known with high accuracy. As 

commented earlier, in these pixels the uniform pixel approach performed 

better than all the other approaches considered.  

In pixels with land cover split in equivalent fractions of both moderately 

vegetated and forested surfaces (group B) the accuracy of the 2P-S approach 

decreased significantly as the uncertainty about the optical depth of forest 

increased. Moreover, the soil moisture RMSE increased exponentially with 

increasing uncertainty, although this did not result in an increased bias. The 

2P-S approach was however more accurate than the 2P-U approach while 

the optical depth of forest was known with an accuracy better than 0.2, 

 
Figure 8.6. Impact of uncertainty in the a priori information on the optical 
depth of forest (expressed as standard deviation of the Gaussian distribution 
around the correct value) on the soil moisture retrieval error obtained with 
the 2P-S approach. The soil moisture Root Mean Square Error (RMSE, top 
row) and bias (bottom row) are shown for all pixels of group A (forest 
fraction<40%, left column), group B (forest fraction=40-60%, middle 
column) and group C (forest fraction>60%, right column). The RMSE and 
bias using the other methods tested in the Chapter are also shown for 
comparison and the SMOS target accuracy (4%v/v) is shown in the top row 
with a thin solid line. 
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which corresponds to an error of 35%. For higher uncertainties the 2P-S 

approached the RMSE of the uniform pixel approach.  

In pixels mostly covered by forest (Group C), the accuracy of the 2P-S 

approach degraded quickly with increasing uncertainty about the value of 

the optical depth of forest. The 2P-S approach was only slightly more 

accurate than the 2P-U approach when the optical depth of forest is known 

with high accuracy and became less accurate than the uniform pixel 

approach when the uncertainty was greater than 0.1 (relative error of 

17.5%).  

It is important to notice that while the 2P-U and uniform pixel 

approaches led to significant soil moisture biases in group B and C pixels, 

the 2P-S approach was able to correct for these biases. Even with the 

highest uncertainty (70%) on the estimate of the forest optical depth 

analysed, the soil moisture bias using the 2P-S approach was in no case 

higher than 1%v/v. 

8.3.3 Conclusions on the Applicability of the 2P-S Approach 

In summary, this section has shown that the proposed 2P-S approach was 

effective in reducing the error in soil moisture retrieval produced by the sub-

pixel heterogeneity of land cover, which was previously shown to 

significantly affect the SMOS approach (2P-U). In particular, the 2P-S 

approach reduced the RMSE on uniform from 4.0%v/v to 2.6%v/v and the 

bias from -1.0%v/v to -0.3%v/v for moderately vegetated group A pixels. 

On heterogeneous group B pixels, the RSME was reduced from 4.1%v/v to 

2.8%v/v and the bias significantly reduced from -3.1%v/v to -0.3%v/v. On 

forested group C pixels the improvement was smaller, with the RMSE going 

from 1.9%v/v to 1.8%v/v and the bias from -1.2%v/v to 0.4%v/v. In order 

to achieve this accuracy it was necessary to relax the constraint imposed on 

the retrieved soil moisture by the SMOS L2 algorithm (i.e., retrieve soil 

moisture as a free parameter). Despite the fact that the constraint imposed 

by SMOS L2 algorithm in the “moderate” retrieval case is a rather mild 

constraint, it nonetheless resulted in an error higher than that obtained with 
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the 2P-U approach on November 14th, a day characterised by a change in 

soil moisture conditions of approximately 20%v/v on average across the 

study area from the previous date November 7th.  

It was also shown that the 2P-S approach was affected by residual errors 

beyond the SMOS target accuracy of 4%v/v. This occurred within the group 

A and B pixels. For group A pixels, of all the approaches analysed in this 

Chapter thus far the uniform pixel approach led to the highest accuracy 

(RMSE=1.8%v/v, bias=0.3%v/v). A clear explanation for the error obtained 

with the 2P-S (as well as the 2P-U) approach in group A pixels was not 

found. It must evidently be associated with the forest component in the 

forward modeling of the 2P-S and 2P-U approaches, although small, which 

distorts the retrieved soil moisture and introduces an error not observed 

when the pixel is simply treated as uniform moderate vegetation cover.  

The residual errors of the 2P-S approach in the case of heterogeneous 

group B pixels were observed to be correlated with the sub-pixel 

heterogeneity of soil moisture between the different land cover types. 

Therefore an alternative approach to 2P-S was proposed and tested, that 

aimed at reducing the soil moisture retrieval error by relaxing the second 

assumption of the 2P-U approach, being that of uniform soil moisture within 

the land cover fractions of the pixel. 

8.3.4 The 3P-S Approach 

The second alternative approach tested in this thesis consists of 

performing a three-parameters retrieval: the retrieved parameters are (i) the 

soil moisture of the moderate vegetation fraction, (ii) the optical depth of the 

moderate vegetation fraction and (iii) the soil moisture of the forest fraction. 

The optical depth of the forest fraction is imposed a priori as in the 2P-S 

approach.  

It was found that there was no case where the 3P-S approach yielded 

more accurate results than the 2P-S approach. Therefore, a detailed report of 

the application of the approach to the NAFE’05 data is here omitted. 

However, the interested reader can find a detailed description of the findings 
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summarised hereby in the Appendix A5. Additionally, the RMSE and bias 

of soil moisture retrieval using the 3P-S approach are included in the 

summary Table 8.7. 

The poor accuracy of the 3P-S approach was associated with the difficult 

convergence of the retrieval algorithm when concurrently retrieving separate 

soil moisture values for the moderately vegetated and the forest fraction of 

the pixel. This was particularly marked in dry conditions, and for the land 

cover type having the smallest fraction in the pixel. As a result of this, the 

3P-S approach resulted in larger errors than the 2P-S approach. Although 

the approach was tested with a small number of observations available for 

each simulated SMOS pixel (4 observations, being bi-polarised observations 

at 7º and 38.5º incidence angle), the results of a synthetic test indicated that 

the use of multiple observations (bi-polarised observations and up to 10 

different incidence angles) did not improve the algorithm convergence and 

soil moisture accuracy.  

8.4 Evaluation of the Approaches at Different Resolutions 

All the analysis conducted thus far focused on the TB observations at 

5km resolution, since these provided a large number of study cases, in a 

variety of land surface conditions. In this final section, the conclusions 

drawn in previous sections are extended to the coarser observations at 10, 

20, 30 and 40km over the study area. 

In Table 8.7 the uniform pixel approach tested in Chapter 7 and the three 

approaches tested in this Chapter are compared in terms of soil moisture 

RMSE and bias over the entire observation period. The results are shown for 

different land cover conditions making use of the classification based on the 

forest fraction within the pixel adopted in this Chapter (i.e., pixel of group A 

with forest fraction smaller than 40%, group B with forest fraction between 

40 -60%, and group C with forest fraction larger than 60%). It is shown that 
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Table 8.7. Overall soil moisture Root Mean Square Error (RMSE) and bias 
obtained for the study period with all the approaches tested in this Chapter 
and at each resolution of observation. For each resolution and each group a 
value of RMSE and bias is given considering the entire observation period. 
For each resolution and each group of pixels, the best results are indicated 
in bold. All values are in %v/v soil moisture content. Grey shaded cells 
indicate that no pixels of that group exist at that resolution. *= no constraint 
on the retrieved soil moisture and no uncertainty on the a priori optical 
depth of forest; **=without a priori information on the forest soil moisture. 

Group A 

Forest<40% 

Group B 

Forest-40-

60% 

Group C 

Forest>60% 

Pixel 

Resolution 

(Nr. of 

pixels) 

Approach 

SM 

RMSE 

SM 

Bias 

SM 

RMSE 

SM 

Bias 

SM 

RMSE 

SM 

bias 

Unif. 1.8 0.3 7.7 2.0 3.2 -2.0 

2P-U 4.0 -1.0 4.1 -3.1 1.9 -1.2 

2P-S* 2.6 -0.3 2.8 -0.3 1.8 0.4 

5km 
(254) 

3P-S** 2.8 1.3 4.2 2.2 4.2 2.4 

Unif. 2.2 0.7 7.0 -2.1 4.7 -4.2 

2P-U 3.5 -1.2 4.2 -3.7 3.2 -2.6 

2P-S* 2.4 -0.3 2.8 -0.5 2.0 0.0 

10km 
(196) 

3P-S** 3.2 1.1 3.8 1.5 4.1 2.3 

Unif. 2.7 1.3     

2P-U 3.1 -1.8     

2P-S* 2.5 0.3     

20km 
(100) 

3P-S** 3.1 1.1     

Unif. 2.6 1.5     

2P-U 3.1 -2.7     

2P-S* 2.4 -0.6     

30km 
(36) 

3P-S** 2.8 1.1     

Unif. 3.1 2.5     

2P-U 4.6 -4.5     

2P-S* 2.5 -1.4     

40km 
(4) 

3P-S** 3.1 2.0     
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the main observations drawn from the analysis at 5km resolution hold well 

at coarser resolutions. In particular: 

• the 2P-U approach partially reduced the error due to the 

heterogeneity of land cover in heterogeneous group B and forested 

group C pixels. However, it introduced a dry soil moisture bias; 

• of the four approaches proposed in this thesis, the 2P-S approach 

(retrieval of a single soil moisture value uniform across the pixel and 

the optical depth of the moderately vegetated fraction, with the 

optical depth of the forest fraction imposed a priori) provided the 

most accurate soil moisture retrieval in heterogeneous group B and 

forested group C pixels. The improvement with respect to the 2P-U 

approach was stronger on group B pixels, while on group C pixels, it 

was only marginal, since the 2P-U approach was fairly accurate in 

those conditions. In these conditions the 2P-S approach was able to 

significantly reduce the error due to the heterogeneity of land cover 

within the pixel which affected the uniform pixel approach and the 

2P-U approach; and 

• the second approach proposed in this thesis, the 3P-S approach 

(retrieval of two different soil moisture values for the moderately 

vegetated and the forest pixel fractions and the optical depth of the 

moderately vegetated fraction, with the optical depth of the forest 

fraction imposed a priori), did not improve the soil moisture retrieval 

accuracy of the 2P-S approach;  

An important outcome of this multi-resolution comparison is that the 

accuracy of 2P-S approach was substantially constant across resolutions 

(with only an increase in dry bias, not superior to -1.4%v/v), whereas that of 

the uniform pixel approach degraded significantly as the resolution gets 

coarser (overall RMSE for the study period increasing from 1.8%v/v to 

3.1%v/v). As a result of this, the 2P-S approach proposed in this thesis was 

more accurate than the uniform pixel approach in pixels at resolutions 

coarser than 10km, in contrast with what was observed at resolutions finer 
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than 10km. These results also strongly suggest that, although the analysis in 

the case of group B and C land cover conditions was here limited to 

resolutions finer than 10km resolutions (Table 8.7), the 2P-S approach 

should be more accurate were such land surface conditions be observed at 

resolutions more typical of SMOS. 

However, it should also be considered that as the resolution gets coarser 

the coarse pixels become particular cases (in terms of land cover type 

fractions) of the group A land cover conditions observed at 5km resolution. 

For example, the 40km resolution, single pixel covering the NAFE’05 study 

area (sampled on four occasions) is one particular case within group A, 

having 22% forest fraction, 4.6% crops and 73% grassland. It is therefore 

difficult with this data set to understand whether the improved accuracy of 

the 2P-S approach at coarse resolutions is due to a change in the impact of 

land surface heterogeneity on the soil moisture retrieval at such resolution or 

simply due to the fact that the coarse pixels are a particular case of the 

variety of cases analysed at 5km resolution.  

8.5 Chapter Summary 

This Chapter has tested the SMOS L2 soil moisture retrieval algorithm 

using simulated SMOS pixels from 1km resolution airborne L-band 

observations, aggregated to spatial resolutions from 5km to 40km. While it 

was demonstrated that the retrieval approach proposed for the SMOS 

mission (2P-U) was able to reduce the soil moisture retrieval errors of a 

uniform pixel approach (Chapter 7) under the case of 40-60% forest (overall 

RMSE of soil moisture retrieval for the study period was reduced from 

7.7%v/v to 4.1%v/v), the results were still larger than the SMOS target 

accuracy and displayed a significant dry bias.  

Two major shortcomings were identified in the 2P-U approach, and 

subsequently addressed by a practical alternative approach. First, the 

assumption that a single value of optical depth can be retrieved for all the 

land cover fractions within the pixel when the expected optical depth of the 
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forest fraction is low led to an underestimation of the pixel average soil 

moisture, resulting in a dry soil moisture bias for the study period of up to -

3.1%v/v, depending on the fraction of forest. This resulted in the 2P-U 

approach being less accurate than a uniform pixel approach in pixels mainly 

covered by moderate (grassland and crop) vegetation, but having a small 

fraction of low density forest. Second, the 2P-U approach presented errors 

greater than the SMOS target accuracy of 4%v/v in the case of pixels 

characterised by mixed land cover (forest fraction between 40% and 60%) 

and strong sub-pixel heterogeneity of soil moisture (above 10%v/v). This 

condition led to a RMSE of respectively 5.7%v/v and 5.5%v/v on the 5km 

retrievals performed on the two wettest days, and an overall error for the 

study period of 4.1%v/v.   

Two alternative retrieval approaches were proposed to reduce the soil 

moisture errors obtained with 2P-U approach in the case of low density 

forest fraction within the pixel; the 2P-S approach which imposed the 

optical depth of forest a priori and retrieved only the pixel average soil 

moisture and the optical depth of the moderately vegetated fraction, and the 

3P-S approach which relaxed the assumption of uniform soil moisture 

retrieved between the different land cover types within the pixel. However, 

the 3P-S approach did not lead to further improvement with respect to the 

2P-S approach, due to the poor sensitivity of forest emissivity to soil 

moisture. Conversely, the 2P-S approach led to highly improved soil 

moisture retrieval with respect to the 2P-U approach with an overall RMSE 

and bias for the study period of 2.8%v/v and -0.3%v/v (for less than 40% 

forest fraction), 2.6%v/v and -0.3%v/v (for 40-60% forest fraction) and 

1.8%v/v and 0.4%v/v (for more than 60% forest fraction). The strength of 

the 2P-S approach was that it strongly reduced the error due to land cover 

heterogeneity in pixels with a forest fraction between 40% and 60% which 

affected the uniform pixel approach as well as eliminating the negative bias 

in soil moisture retrieval which affected the 2P-U approach. The downside 

of the 2P-S approach was that an estimation of the optical depth of forest is 

required. However, it was demonstrated that with even a crude estimate of 
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the optical depth of forest the SMOS target accuracy could be met and the 

retrieval accuracy significantly improved from that of the 2P-U approach. 

This Chapter therefore concludes that the best approach to reduce the 

error of soil moisture retrieval in areas characterised by strong variability in 

land cover type (i.e., equivalent fractions of forest and a moderately 

vegetated surface), is to retrieve a uniform soil moisture for the entire pixel 

together with the optical depth of the moderately vegetated surface, using a 

priori information on the optical depth of the forest fraction (2P-S 

approach). However, in the case of pixels mostly covered by a moderately 

vegetated surface, assuming a uniform surface generally leads to more 

accurate soil moisture retrieval. Finally, for pixels mostly covered by forest, 

using a priori information on the optical depth of the forest fraction (2P-S 

approach) leads only to a slight improvement with respect to the 2P-U 

approach. 
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Chapter Nine 

9 Conclusions and Future Directions 

This thesis has developed a soil moisture retrieval approach to reduce the 

error in near-surface soil moisture estimates from the future Soil Moisture 

and Ocean Salinity (SMOS) mission, by accounting for the heterogeneity of 

land surface conditions within the sensor field of view. After evaluating the 

core soil moisture retrieval model and main assumptions of the soil moisture 

retrieval approach proposed for SMOS, this thesis has found that the 

assumption of a uniform vegetation optical depth within the SMOS pixel 

resulted in a soil moisture retrieval error beyond the SMOS target accuracy 

(4%v/v) in the case considered of pixels occupied by a mix of moderately 

vegetated soil (crops and grasslands) and moderately dense Eucalypt forest, 

typical of the Australian environment. Therefore an approach was developed 

that relaxes this assumption using a priori information on the optical depth 

of the forest fraction of the pixel. Using SMOS pixels simulated from 

airborne data, this study has demonstrated that even with a crude estimate of 

the optical depth of forest, the proposed technique was able to significantly 

reduce the error in soil moisture retrieval due to land surface heterogeneity. 

In pixels presenting a 40-60% forest fraction, the approach reduced the 

overall RMSE of soil moisture retrieval for the study period from 4.1%v/v 

to 2.8%v/v, and the bias was reduced from -3.1%v/v to -0.3%v/v. 

9.1 Conclusions 

The conclusions of this thesis are presented hereafter in six categories: (i) 

Evaluation of the L-MEB radiative transfer model which is the core of the 

SMOS L2 soil moisture retrieval algorithm; (ii) Assessment of the scaling 

properties of the land surface brightness temperatures; (iii) Analysis of the 

link between the land surface and soil moisture heterogeneity in the study 

area; (iv) Assessment of the soil moisture error due to land surface and soil 

moisture heterogeneity under the assumption of pixel uniformity; (v) 
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Testing of the soil moisture retrieval approach proposed for SMOS; and (vi) 

Development of an alternative retrieval approach to account for the land 

surface heterogeneity. The limitations of the results of this thesis and their 

impact on further studies are also discussed. 

9.1.1 Evaluation of the L-MEB Radiative Transfer Model  

The L-MEB model, which is the core of the SMOS L2 soil moisture 

algorithm, was developed over the last 10 years from tower-based studies 

located mostly in European environments. Before applying the model to 

simulated SMOS pixels, it was therefore important in this thesis to 

undertake an evaluation at airborne resolutions (60m to 1km) for the land 

surface conditions of the study area. This was the first study to evaluate the 

model and its parameters at airborne resolutions and in Australian land 

surface conditions. 

This study has demonstrated that the soil moisture accuracy of the L-

MEB model, when applied to airborne data at high resolution (60m) and 

with the vegetation specific model parameters calibrated for European 

conditions, was better than 3.7%v/v over native grass sites. However, the 

accuracy over crop sites (largely wheat and barley) was between 10%v/v 

and 32.5%v/v. Moreover, there was one site (Midlothian) where the 

retrieval presented high errors (7.4%v/v), due to the particular vegetation 

type (lucerne) for which no parameters were available in the L-MEB 

parameter and therefore the parameters for native grass were used. 

Through a sensitivity analysis of the L-MEB model it was found that the 

cause of the error for crops (wheat, barley and oats) resided in the very low 

values of the parameter characterising the soil surface roughness (parameter 

HR). Following site-specific calibration of parameter HR, it was found that 

this had to be increased from the value of 0.2 proposed for SMOS to a value 

of 1.6 for wheat and barley and 0.7 for oats. Moreover, the calibrated value 

of HR was found to change with soil moisture conditions, being higher in 

dry conditions and decreasing in wet conditions, and therefore had to be 

modeled with a soil moisture dependent linear function. This function was 
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similar to that already proposed for grassy surfaces (Wigneron et al., 2001; 

Escorihuela et al., 2007; Saleh et al., 2007) which was part of the L-MEB 

parameter set for native grasses tested in this study. Following site-specific 

calibration of parameter HR, the error over the crop sites was reduced to 

4.8%v/v.  

The L-MEB model was then applied to airborne observations at 1km 

resolution, using the soil moisture dependent parameterisation for HR 

calibrated with 60m observations, yielding an average soil moisture 

accuracy of 3.8%v/v, and in all cases better than 6%v/v. This study has 

therefore demonstrated that the soil moisture dependent parameterisation of 

the L-MEB surface roughness parameters HR reflects not only a “local” 

roughness effect (i.e., observable only at the resolution typical of tower 

radiometers), but needs to be accounted for at coarser resolutions. 

Additionally, this study has shown the soil moisture dependence of the L-

MEB surface roughness parameters HR was as important for cropped 

surfaces as it was for grassy surfaces.  

The results of this study have important consequences for the 

parameterisation of HR currently proposed for SMOS. This includes a soil 

moisture contribution in the form of a linear function, with the upper value 

of HR (the dry end) to be defined as a function of the land cover type. 

However, this parameterisation is yet to be fully validated since it was 

verified so far only with tower-based radiometer (i.e., resolutions of 10’s m) 

and on grassy surfaces. This study has not only provided the first 

experimental evidence at L-band that the change of HR with soil moisture 

will be observed at SMOS resolutions, but it has also indicated that this will 

have to be considered for both cropped and grassy surfaces. Additionally, 

this study has provided strong evidence that the upper HR value for cropped 

surfaces (at least in Australian conditions) will need to be set at a higher 

value (in the range 0.7-1.6) than that currently proposed for SMOS (0.2). 
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9.1.2 Scaling Properties of the Brightness Temperatures  

The availability of concurrent L-band observations for large portions of 

the study area and at different resolutions was a novel component of the 

airborne data set acquired during this study. Such observations have allowed 

a demonstration that linear aggregation of airborne L-band data produces 

reliable simulation of SMOS observations at both vertical and horizontal 

polarisations. While a difference comparable to the radiometer noise was 

observed between the signal detected over common areas at 60m and 250m 

resolutions (2.4K), the difference was only 1.2K when the area-averaged 

observation over the same areas was compared between 250m and 1km 

resolution. This difference is well within the radiometric uncertainty of the 

instrument used. 

9.1.3 Land Surface and Soil Moisture Heterogeneity 

In order to interpret the error in soil moisture retrieval at SMOS 

resolution and to compare the different approaches tested in this study, it 

was crucial to understand how the land surface characteristics drive the 

near-surface soil moisture patterns in the study area. This study has found 

that there were different controls on the soil moisture variability depending 

on the scale considered. While topographically-driven soil moisture 

distribution was very important at small scales (~3km and below), at the 

scale of interest of SMOS the spatial patterns of near-surface soil moisture 

in the study area could be mostly linked to the spatial patterns of two land 

surface factors: land cover type and soil texture. Soils with higher sand 

content exhibited consistently drier soil moisture conditions than soils with 

higher clay content throughout the study period. Cropped areas exhibited 

overall wetter conditions with respect to areas with more moderate 

vegetation cover (such as grasslands), whilst forested areas were the driest 

across the study area. The link between near-surface soil moisture 

distribution, land cover and soil texture was weakened during and after 

rainfall events, but only for a short period of time (1-2 days). Here the 

spatial distribution of near-surface soil moisture was dominated by that of 

the rainfall fields.  
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This analysis has demonstrated that significant differences in soil 

moisture content were associated with different land cover types. Since the 

current satellite soil moisture products, as well as the soil moisture retrieval 

approach proposed for SMOS, are based on the assumption of uniform soil 

moisture and uniform optical depth amongst such areas, the error in soil 

moisture retrieval resulting from those assumptions was subsequently 

assessed.  

9.1.4 Testing of the Uniform Pixel Assumption 

Prior to evaluation of the soil moisture retrieval approach proposed for 

the SMOS mission, the error in soil moisture retrieval induced by land 

surface heterogeneity was assessed under the assumption of uniform pixel, 

as made by current soil moisture retrieval methods. A preliminary synthetic 

analysis was performed in order to analyse how the sub-pixel heterogeneity 

of each land surface factor affects the soil moisture retrieval as a result of 

the non-linearity of the L-MEB model. The analysis indicated that in a 

synthetic environment, and therefore with an otherwise “perfect” retrieval 

(i.e., exact model physics and no uncertainty in ancillary data), the 

heterogeneity of land cover type was the strongest source of difference 

between the pixel-average retrieved and observed soil moisture. Conversely 

the heterogeneity of soil moisture, soil texture, surface roughness, and soil 

temperature taken alone had a smaller impact on the retrieval, generally 

within the error resulting from the radiometric uncertainty of a typical 

radiometer (approximately 2K for the PLMR radiometer (see Appendix 

A3), resulting in approximately 2%v/v for moderately vegetated soil). The 

only exception was the error resulting from sub-pixel heterogeneity of 

vegetation optical depth, which was found to be significant within dense 

canopies. However, the heterogeneity of land cover type was simulated in 

this study in a physically plausible manner (i.e., using land cover specific 

parameters and typical vegetation water content values for each land cover 

type). Therefore, the observed retrieval error implicitly included the 

combined effect of the sub-pixel heterogeneity of vegetation optical depth, 
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vegetation scattering albedo and vegetation structure, which are 

characteristics specific to each land cover type.  

The conclusions drawn from the synthetic analysis were confirmed by 

the analysis of the error in soil moisture retrieval from simulated SMOS 

pixels. Significant correlation was observed between the soil moisture 

retrieval error and the sub-pixel heterogeneity of land cover type. Given the 

nature of the NAFE’05 study area, which was occupied by more than 73% 

native grasses, just over 4% crops, and 22% forest, the results of this study 

have been limited to pixels presenting mainly a mix of forest and grassland. 

However, this study has demonstrated that the error was strongly associated 

with the percentage of forest/grassland fraction within the pixel. The error 

raised beyond the SMOS target accuracy (4%v/v) for more than 

approximately 30% forest fraction, achieving a maximum of 17%v/v 

absolute error when the pixel was composed by 50% grassland and 50% 

forest fraction. The overall RMSE in soil moisture retrieval for the study 

period was of 7.7%v/v (with 2%v/v bias) for pixels with 40-60% forest 

fraction. 

Additionally, the present analysis has demonstrated that the sub-pixel 

heterogeneity of soil moisture also affected the soil moisture retrieval from 

simulated SMOS pixels, but only when it occurred in conjunction with land 

cover heterogeneity. This can be explained by the link between land cover 

type and soil moisture spatial distribution observed in the study area. Drier 

soil moisture conditions consistently observed in forested areas interacted to 

determine a strong surface emission (dry soil and dense canopy), as opposed 

to the weak emission from the moderately vegetated fraction of the pixel 

which was generally wetter (low canopy density and wet soil). The soil 

moisture heterogeneity therefore affected the retrieval when in conjunction 

with the land cover type heterogeneity, since it enhanced the difference 

between the emissions from the forest and the moderately vegetated fraction 

already determined by the difference in vegetation density. 
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Another important conclusion of this analysis was that soil texture 

heterogeneity, which was shown in this study to be a major factor in driving 

the soil moisture variability through physical processes of water 

distribution, did not on the other hand have an impact on the soil moisture 

retrieval error comparable to that of land cover heterogeneity, nor did the 

heterogeneity of soil moisture caused by soil texture. Even strong soil 

moisture heterogeneity when occurring within pixels of homogeneous land 

cover did not result in a detectable soil moisture retrieval error. 

These findings have important consequences for both the current soil 

moisture products based on the uniform pixel assumption and for the soil 

moisture retrieval approach proposed for SMOS. This study has 

demonstrated that the soil moisture retrieval under the assumption of 

uniform pixel will meet the SMOS target accuracy only for pixels with less 

than 30% forest with the remainder occupied by a mix of crops and 

grassland. In the presence of more than 30% forest, current soil moisture 

products are likely to be affected by soil moisture errors of up to 20%v/v.  

While the soil moisture retrieval approach proposed for SMOS accounts 

for land surface type variability within the pixel, it does not account for the 

important contribution of variability in soil moisture and optical depth 

amongst land cover types, since these are assumed to be uniform amongst 

the pixel fractions. 

9.1.5 Testing of the SMOS Soil Moisture Retrieval Approach  

This study has tested the retrieval approach proposed for SMOS 

(approach “2P-U”) for the first time using simulated SMOS pixels based on 

airborne observations, with focus on the particular case of pixels composed 

of a mix of moderately vegetated soil (crops and grasslands) and moderately 

dense Eucalypt forest, typical of the Australian environment. It was found 

that the approach, which uses an inversion technique based on separate 

forward modeling for sub-pixel fractions of uniform land use, with the 

assumption of uniform optical depth and soil moisture between the 

fractions, was able to reduce the high soil moisture retrieval errors affecting 
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the uniform pixel approach in the case of 40-60% forest, although only 

partially. The overall RMSE of soil moisture retrieval for the study period 

was in this case reduced from 7.7%v/v for the uniform pixel approach to 

4.1%v/v. The approach also improved the retrieval in pixels where the forest 

fraction was predominant, i.e., higher than 60%, reducing the overall RMSE 

for the study period from 3.2%v/v to 1.9%v/v. However, the SMOS 

approach has been shown to have errors higher than a uniform pixel 

approach when the pixel was mainly occupied by a mix of moderately 

vegetated surfaces (crop and grassland) and the forest fraction was small 

(less than 40%). In these cases the overall RMSE was increased from 

1.8%v/v to 4.0%v/v. 

Two major shortcomings have been identified in the SMOS approach 

which have led to the improved approach developed in this study and 

discussed in the next section. The first shortcoming resided in the 

assumption that all land cover types in the pixel have the same optical 

depth. This has been shown to lead to a dry soil moisture bias in all pixels 

with a fraction of forest smaller than 60%, the bias increasing with 

increasing forest fraction and being as much as -3.1%v/v for the case 40-

60% forest fraction. The reason for the bias was that the retrieved soil 

moisture was distorted by the algorithm in order to match the composite soil 

moisture-emission curve of the mixed pixel using one common optical 

depth. The second shortcoming was that for the case of 40-60% forest, 

despite the strong reduction in RMSE with respect to the uniform pixel 

approach, the SMOS approach was still affected by errors beyond the 

SMOS target accuracy in pixels characterised by strong soil moisture 

heterogeneity (standard deviation higher than 10%v/v). This was due to the 

interaction between canopy density and soil moisture discussed in the 

previous section, in pixels characterised by dry soil under forest canopy and 

wet soil in moderately vegetated areas.  

This study has therefore demonstrated that the SMOS approach partially 

reduced the error of a uniform pixel approach due to land surface 

heterogeneity. However it resulted in underestimation of the pixel average 
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soil moisture due to the contrast between the emission from forested and 

moderately vegetated areas (grassland or crop). This was mainly due to the 

difference in vegetation density and was enhanced by the generally drier soil 

moisture conditions under the forest canopy. Due to the erroneous 

assumptions of uniform soil moisture and optical depth between the two 

land cover fractions, the SMOS approach resulted in errors beyond the 

SMOS target accuracy in highly mixed pixels (40-60% forest), with an 

overall RMSE of 4.1%v/v (-3.1%v/v bias) and was less accurate than a 

uniform pixel approach in moderately vegetated pixels with 0-40% forest 

fraction, having an overall RMSE of 4.0%v/v (-1.0%v/v bias). 

9.1.6 Development of an Alternative Retrieval Approach 

This thesis has proposed an alternative approach (“2P-S”) for soil 

moisture retrieval from SMOS and has tested its ability to reduce the soil 

moisture errors obtained with the approach proposed for SMOS. The 

approach consists of relaxing the assumption of uniform optical depth 

between the pixel modeled fractions, by imposing the optical depth of forest 

a priori and retrieving only the optical depth of the moderately vegetated 

fraction and a uniform soil moisture value for the pixel. This approach led to 

highly improved soil moisture retrieval with respect to SMOS approach. A 

second alternative approach (“3P-S”) attempted, that of relaxing the 

assumption of uniform soil moisture by retrieving different soil moisture 

values for the forest and moderate vegetation fractions did not lead to better 

results.  

The proposed approach allowed retrieval of soil moisture from simulated 

SMOS pixels with an overall RMSE for the study period much smaller than 

the SMOS target accuracy and with negligible bias, being respectively of 

2.6%v/v and -0.3%v/v (for less than 40% forest fraction), 2.8%v/v and -

0.3%v/v (for 40-60% forest fraction) and 1.8%v/v and 0.4%v/v (for more 

than 60% forest fraction). The advantages of this approach are that (i) it 

strongly reduces the error due to land cover heterogeneity which affects the 

uniform pixel approach for the case of 40-60% forest, (ii) it eliminates the 
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dry soil moisture bias which affect the SMOS approach in pixels with forest 

fraction smaller than 60%.  

Such dry bias using the SMOS approach was shown to affect pixels with 

even small amount of forest cover, as little as 5% in an otherwise 

moderately vegetated pixel. In the perspective of ‘global’ soil moisture 

monitoring, this means that the approach proposed would improve the 

accuracy of SMOS soil moisture retrieval not only on areas with significant 

amount of forest (40-60%), but also on areas with a small amount of forest, 

as little as 5%. Given the spatial resolution of SMOS (40km), the 

advantages of the approach proposed would therefore extend to most pixels 

of temperate or semi-arid continental areas. 

The downside of the proposed approach is that an estimation of the 

optical depth of forest is required. However, this study has demonstrated 

that with even a crude estimate of the optical depth of forest the 2P-S 

approach could meet the SMOS target accuracy of 4%v/v and correct the 

dry bias typical of the SMOS approach. From an operational point of view, 

a sufficiently accurate estimate of the optical depth of forest at L-band could 

be derived from routinely available maps of LAI, since forest-specific 

studies have observed that the main contribution to microwave emission and 

attenuation is due to tree branches at L-band (Ferrazzoli et al., 2002). 

This thesis has therefore concluded that the best retrieval approach to 

reduce the error in SMOS soil moisture retrieval due to the sub-pixel 

heterogeneity of land surface is to retrieve a single soil moisture value for 

the pixel and the optical depth of only the moderately vegetated fraction of 

the pixel, whereas the optical depth of the forest fraction should be imposed 

using a priori information. In the case of pixels mostly covered by a 

moderately vegetated surface and with forest fraction smaller than 40%, a 

simple approach which treats the pixel as a uniform, moderately vegetated 

surface leads to the most accurate soil moisture retrieval. However, in such 

cases the application of the proposed approach will only slightly degrade the 

retrieval, while still amply meeting the SMOS target accuracy.  
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It should be highlighted that the improvement in SMOS soil moisture 

retrieval demonstrated in this thesis was not obtained through an improved 

modeling of the physics of radiative transfer of heterogeneous pixels, beside 

the extension of the soil moisture dependence of the L-MEB surface 

roughness parameter to crops as discussed earlier. Rather, the improvement 

derived from reducing the non-linear effect of land surface heterogeneity on 

the L-MEB radiative transfer model used by the SMOS L2 algorithm by 

fixing one of the variables of the retrieval (i.e., the optical depth of forest) to 

a plausible value. This was shown to improve the soil moisture retrieval by 

reducing the  distortion of the variable of interest (soil moisture) during the 

optimization process, without changes in the representation of the physics of 

radiative transfer. 

As a final comment, it must be acknowledged that the results presented 

and conclusions drawn are for the land surface conditions of a semi-arid 

catchment during a one-month observation period. Morevoer, it should be 

remembered that this study focused on the particular case where the density 

of the forest canopy is low, like is the case for the Eucalypt forest in the 

study area considered. Consequently, it is important that such analysis be 

conducted for different sites, in particular in temperate areas presenting 

forest canopy of higher density, and over longer time frames. However, the 

study area is representative of a large portion of the Australian continent and 

the complete range of soil wetness conditions was encountered. 

Additionally, the proposed approach has corrected the problem of a dry soil 

moisture bias in the presence of large microwave emission contrasts 

between forested areas and areas of moderate vegetation, which are 

characteristic of several climatic regions of the world. 

9.2 Recommendations for Future Work 

9.2.1 Surface Roughness Parameterisation in L-MEB  

This study has shown that a soil moisture dependent parameterisation of 

the L-MEB surface roughness parameter HR is needed to accurately estimate 

soil moisture from airborne data. These results extended previous results 
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obtained with tower-based radiometers and suggested that such 

parameterisation will be necessary when using SMOS data. Further 

investigation in this sense is needed to confirm whether this corresponds to 

a physical effect, or rather is due to some deficiency of the L-MEB model. 

Shortcomings in the modeling of the vegetation optical depth in L-MEB, or 

poor skills of the dielectric model used to account for small-scale soil 

moisture heterogeneity might have resulted in a deficit in the emission 

budget, attributed during the calibration process to the surface roughness 

parameter. This could be done for example by analysis of the data presented 

using a different emission model or using L-MEB with more advanced 

dielectric models. 

Once the nature of this effect is confirmed, investigation is needed in 

order to understand whether a linear decay (like that calibrated in this study 

and proposed for SMOS) is the best function to model the variation of the 

roughness parameter with increasing soil moisture. Additionally, a link 

should be established between the parameters of such a curve and soil 

texture or land cover ancillary information, in order to ensure the 

applicability of the function to global retrieval without the need for 

calibration of the roughness parameter prior to soil moisture retrieval. For 

SMOS it is currently envisioned to define the slope of the linear function 

based on some soil-texture-dependent thresholds, but these are still to be 

fully explored and validated. This was partially attempted during this study 

(see Appendix A4). Although a complete soil moisture dependent model for 

HR could not be developed in this study, results suggest that the function 

that better describes the change of HR with soil moisture can be 

parameterised depending on soil texture information. However, this appears 

to be a more complex function than that proposed for SMOS: While a 

simple linear monotonic relationship between HR and soil moisture applied 

well to sandy soils, for clay soils a piecewise function appears more 

appropriate, with an increase of HR going from very dry to intermediate 

conditions (<25%v/v) and a linear decrease for wetter conditions. 
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9.2.2 SMOS Soil Moisture Retrieval Approach  

This study has indicated some deficiencies in the retrieval approach 

proposed for SMOS. The results presented are subjected to certain 

limitations stemming from (i) the use of airborne data to simulate SMOS 

pixels, and (ii) the particular land surface conditions in the study area. These 

are separately explained below. 

Only SMOS pixels at one fixed incidence angle (38.5º) could be used in 

this analysis to test the retrieval approach proposed for SMOS, because the 

airborne data used to simulated SMOS pixels were taken with the 

instrument in “pushbroom” configuration Although multi-angle 

observations were part of the NAFE’05 experiment data set, these were 

undertaken only over a few small areas (three of the experimental farms) 

and at 250m resolution and therefore could not be used to simulate SMOS 

pixels. The relative importance of the heterogeneity of different land surface 

factors within the pixel might change with the incidence angle. If that 

change was significant, the use of several observations at different angles 

might complicate the correction for sub-pixel heterogeneity. For example, 

the impact of the sub-pixel heterogeneity of land cover, which was observed 

to be significant at 38.5º, might be less important close-to-nadir due to the 

different angular variation of the vegetation optical depth of different land 

cover types. In this study this could not be investigated in depth at SMOS 

resolution for the reason outlined above. However, it was demonstrated 

through a synthetic experiment that in the presence of sub-pixel 

heterogeneity, use of multiple observations at multiple incidence angles did 

not necessarily represent an advantage with respect to the use of few 

incidence angles. This warrants further investigation with both synthetic 

analysis and real data (the 250m multi-angle observations collected during 

NAFE’05 or actual SMOS data). Such analysis should assess the impact of 

the same heterogeneity conditions on the retrieval at different incidence 

angles, and eventually identify the range of incidence angles where the 

impact of land surface heterogeneity on the retrieval is smaller. 
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The study area comprised 73% grassland, 22% forest and 5% crops.  

Therefore only land surface conditions considered “nominal” for SMOS 

retrieval were investigated, i.e., surfaces with “normal soil with low 

vegetation, eventually a manageable amount of free water […] and therefore 

do not include water bodies, mountainous, urban, and partially frozen or 

snow covered areas” (CESBIO, 2007).  The impact of non-nominal surfaces 

fractions within SMOS pixels might be significant and will need to be 

addressed. In particular, since no soil moisture retrieval will be attempted on 

non-nominal surfaces, further analysis is needed to understand how the 

presence of non-nominal surfaces will affect the retrieval of soil moisture 

over nominal surfaces also present in the pixel. Beside the possible use of 

real SMOS data to address these issues, the data collected during the 

NAFE’06 experiment in the Murrumbidgee catchment in Australia would be 

useful to this end, since the region monitored comprised some urban areas 

and an extensive irrigation area with flooded crops. 

Another limitation related to the particular land surface conditions in the 

study area is the limited pixel fraction of cropped areas in the simulated 

SMOS pixels (less than 5%). This was partially compensated by analysing 

simulated pixels at 5km resolution. However, even at that resolution the 

fraction of crop examined never exceeded 20%. Moreover, the results 

suggest that the contrast between grassland and cropped areas will result in a 

wet bias under the assumption of uniform optical depth of the SMOS 

approach. Although the bias was only half that caused by the contrast 

between forested areas and moderately vegetated areas (including grassland 

and crop), in the presence of a fraction of crops higher than 20% of the pixel 

area the SMOS approach might result in errors beyond the SMOS target 

accuracy. A possible solution to be explored could be to apply the approach 

proposed in this study for forests, by using a priori information on the forest 

optical depth, but retrieve separate values of the optical depth for the crop 

and the grassland fraction. This is expected to improve the soil moisture 

retrieval since the same technique, when applied to retrieve different optical 

depth values for the forest and moderate vegetation, improved the retrieval 
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of a uniform-optical-depth approach. Another option could be that of 

retrieving three different optical depth values (forest, grassland and crop), 

but this will require a wealth of observations, and might present problems of 

algorithm convergence. 

9.2.3 Alternative Retrieval Approaches 

The major limitation faced by this study was the lack of multi-angular 

observations at the SMOS resolution. This has limited the analysis to 

reproduce SMOS retrieval scenarios where observations with only two 

incidence angles and polarisations are available. Therefore, very little 

“extra” observations are left to allow the retrieval of extra parameters 

accounting for the effect of heterogeneity (other than a uniform soil 

moisture and a uniform optical depth). However, the current SMOS 

approach is that of devoting the extra observations to retrieval of other 

important radiative transfer parameters (e.g., surface roughness, scattering 

albedo). The analysis of SMOS data over well-monitored areas should 

investigate whether it is more efficient to use the extra observations to 

retrieve many parameters uniform amongst the pixel fractions, or retrieve 

fewer parameters, but consider them fraction-specific. This comes down to a 

trade-off between the impact of the sub-pixel heterogeneity of each 

parameter versus the importance of the estimation of the pixel average value 

of the parameter for the soil moisture retrieval. Moreover, the choice of the 

approach will also be subjected to consideration of the algorithm 

convergence. 

The approach proposed in this study was shown to improve the soil 

moisture retrieval accuracy over that of the SMOS approach for all 

combinations of grassland and forest fractions within the pixel (although 

always less than 20% crop). However, strictly speaking this was 

demonstrated only with pixels at 5km resolutions. At the SMOS resolution, 

the only combination that could be analysed was the particular mix of land 

cover types present in the study area (73% grassland, 22% forest and 5% 

crops). Since the accuracy of the proposed method was found to be stable 

across resolutions, with the accuracy of SMOS algorithm retrieval degraded 
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when going towards coarser resolution, it is likely that the results of this 

thesis will be valid for SMOS pixels with a larger fraction of forest. 

However, the results should be confirmed by applying the method proposed 

to areas of such nature. 
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1 Overview and Objectives 
The purpose of this project is to map near-surface soil moisture at a range of resolutions 
making use of passive microwave airborne and spaceborne remote sensors.  The ultimate goal 
is to be able to provide reliable near-surface soil moisture observations at the paddock scale 
globally. Specifically, this involves positioning ourselves to capitalise on future remote 
sensing missions such as ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite scheduled 
for launch in 2007 and NASA’s Hydrospheric States (Hydros) scheduled for launch in 2010. 

This project is complementary with others around the world, including the series of SGP 
(Southern Great Plains) and SMEX (Soil Moisture Experiment) campaigns in the United 
States (http://hydrolab.arsusda.gov) and coSMOS (Campaign for validating the Operation of 
SMOS) activities in Europe (http://www.esa.int/esaLP/LPsmos.html). Specifically, the 
coSMOS activities planned for Europe in summer of 2005 have been moved to Australia in 
cooperation with the NAFE (National Airborne Field Experiment) activities planned for 
November 2005, as described in this document. NAFE ‘05 has been made possible through 
recent infrastructure (LE0453434 and LE0560930) and research (DP0557543) funding from 
the Australian Research Council.  Initial setup and ongoing maintenance of the study 
catchment was funded by research grants (DP0209724 and DP0556941) from the Australian 
Research Council and NASA. 

1.1 Overview 

Internationally there has been a significant decline in the number of gauged basins over recent 
years, yet the demand for hydrologic prediction is greater than ever, particularly as we enter 
an era of uncertainty due to global climate change. The potential for reliable hydrologic 
prediction in ungauged basins exists only through an increasing ability to remotely sense land 
surface states, fluxes, and parameters that impact on basin prediction. For instance, it is now 
possible to measure evapotranspiration rates that determine soil moisture and baseflow, near-
surface soil moisture content that controls rainfall partitioning into infiltration and runoff, 
snow water equivalent of the snow pack that determines spring-time runoff, vegetation 
parameters such as leaf area index and greenness that control evapotranspiration, land surface 
elevation and canopy height that impact on runoff routing and evapotranspiration, and so on.  
However, there are still many unanswered questions that need to be addressed, including 
validation of data products from new sensors, maturing of retrieval algorithms, developing 
techniques for downscaling, and merging remote sensing data with model predictions through 
the process of data assimilation.   

To answer these important questions it is essential that field campaigns with coordinated 
satellite, airborne and ground-based data collection be undertaken, giving careful 
consideration to the diverse data requirements for the range of questions to be addressed.  
Moreover, it must be recognized that such invaluable data sets do not come without 
considerable effort and cost. Thus it is increasingly important that scientists collaborate 
nationally and internationally on the collection and subsequent analysis of such data to share 
in the burden and reap the benefits of more extensive data sets than are possible on an 
individual basis.  To this end two month-long National Airborne Field Experiments (NAFE; 
see http://www.nafe.unimelb.edu.au) have been planned in consultation with scientists from 
diverse backgrounds (soil moisture, runoff, evapotranspiration, carbon, forestry, bushfires, 
water quality, irrigation and salinity) and organizations (several divisions of CSIRO, State 
Agencies, CRC’s, national and international universities, NASA and ESA).   
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While there is a clear emphasis on soil moisture remote sensing in the two planned NAFE 
experiments (a primary objective of the research project which provides core funding), the 
nature of the airborne and supporting data to be collected makes these campaigns applicable 
to a wide range of environmental remote sensing disciplines and applications.   

These coordinated field experiments are open to collaboration from all interested parties.  In 
November 2005 (NAFE ’05) there will be participants from the University of Melbourne, 
University of Newcastle, Airborne Research Australia, and several European universities and 
organizations including the European Space Agency (ESA), undertaking research on soil 
moisture, flood forecasting, carbon budgets and ecohydrology. In November 2006 (NAFE 
’06) it is anticipated that participants will undertake research on soil moisture, 
evapotranspiration, bushfire prediction and precipitation measurement. This document 
describes in detail the core soil moisture component to the NAFE ‘05 field campaign. 

1.2 Objectives 
Information on soil moisture may be obtained from three sources.  First, ground-based soil 
moisture profile measurements may be made continuously at individual points.  
Unfortunately, these are rarely representative of the spatial distribution, and so are unsuitable 
for mapping of large areas.  Second, remote sensing may be used to give measurements of soil 
moisture in the top few centimetres for areas with low to moderate vegetation cover but do 
not provide any direct information on root zone soil moisture.  Third, land surface models 
may be used to predict the spatial and temporal variation of soil moisture (near-surface and 
root zone) but those estimates suffer from inadequate model physics, parameter estimates, and 
atmospheric forcing data.  Clearly these different approaches are complementary, and so one 
approach has been to utilise all three sources of data, by assimilation of the remotely sensed 
near-surface soil moisture measurements into a land surface model, and relying on the point 
measurements for verification.  While current progress on this approach has been good, 
application has been confined to large scale estimates with little appropriate data available for 
assimilation and/or field verification.  Therefore appropriate observation and verification 
data needs to be collected to mature this technology. 
Over the past two decades there have been numerous near-surface soil moisture remote 
sensing studies, using visible, thermal infrared (surface temperature) and microwave (passive  
and active) electromagnetic radiation. Of these, passive microwave soil moisture 
measurement has been the most promising technique, due to its all-weather capability, its 
direct relationship with soil moisture through the soil’s dielectric constant, and a reduced 
sensitivity to land surface roughness and vegetation cover. Due to the long wavelengths 
required for soil moisture remote sensing, space-borne passive microwave radiometers (both 
current and planned) have a coarse spatial resolution, being on the order of 25 to 50km, but 
have a frequent temporal resolution of 1 to 2 days.  While this spatial resolution is appropriate 
for some broad scale applications, it is not useful for small scale applications such as on-farm 
water management, flood prediction or meso-scale climate and weather prediction.  Thus 
methods need to be developed for reducing these large scale measurements to a smaller scale.  
This may ultimately be possible using information from other types of higher resolution 
sensors (eg. thermal and visible imagery from the MODerate resolution Imaging Spectrometer 
(MODIS) or LANDSAT Thematic Mapper), but any downscaling approaches must first be 
developed and validated with direct high resolution passive microwave measurements 
and such data must be collected.   

May 2002 saw the launch of NASA’s Advanced Microwave Scanning Radiometer for the 
Earth observing system (AMSR-E) on the Aqua satellite.  This is the first passive microwave 
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sensor in space with appropriate frequencies for measuring near-surface soil moisture content 
since the Scanning Multi-channel Microwave Radiometer (SMMR) ceased operations in 
1987.  During the SMMR mission, soil moisture remote sensing was in its infancy, and so 
there were no dedicated field campaigns for verification of remotely sensed and derived root 
zone soil moisture.  This lack of concurrent data has made evaluation of SMMR-based studies 
effectively impossible.  It is therefore imperative that research programs are designed and 
undertaken now, in order to fully exploit the potential for retrieving important information on 
the spatial and temporal variation of soil moisture content from AMSR-E data.  The Aqua 
satellite has an operational design life of 6 years, so there is only a narrow window of 
opportunity to undertake ground-based research.  Verification of space-borne observations 
at these coarse resolutions can only be undertaken using airborne data with a ground 
resolution fine enough to allow its own accurate verification from ground-based 
measurements.  All airborne soil moisture remote sensing campaigns to date have had spatial 
resolutions on the order of 1km – an order of magnitude greater than what will be achieved in 
the NAFE campaigns.  Moreover, surface rock covers a large proportion of the Earth’s 
surface and this is not currently considered in retrieval algorithms, leading to a potential 
underestimation in soil moisture. 

In addition there are two dedicated soil moisture missions planned with optimal frequencies 
for soil moisture measurement.  These are the ESA Soil Moisture and Ocean Salinity (SMOS) 
and NASA Hydrospheric States (HYDROS) sensors to be launched in 2007 and 2010 
respectively. These new sensors each will have their own novel approach to soil moisture 
measurement, requiring algorithms to be developed and results verified using field data. The 
SMOS sensor will collect data at a range of incidence angles potentially alleviating some of 
the current assumptions and ancillary data requirements for soil moisture retrieval. Hydros 
will collect both accurate low resolution passive microwave data together with noisy high 
resolution active microwave data to produce a 10km soil moisture product.  However, both of 
these missions are planned for 6am/pm overpass times and it is likely that dew will impact on 
the 6am soil moisture retrievals, but this process is not well understood. Thus it is important 
that we prepare now so as to obtain maximum benefit from these dedicated soil moisture 
sensors when they come online.  

1.3 Ground Requirements 

To answer the science questions outlined there are a number of ground data requirements to 
be considered (Fig. 1):   
 
• long-term observation of soil moisture profiles and associated meteorological data for 

evaluation of derived root zone soil moisture 

• extensive ground-based near-surface soil moisture and temperature data at a range of 
spatial scales during airborne campaigns for scaling studies, aircraft and satellite 
verification and algorithm development 

• continuous near-surface soil moisture, soil temperature, and thermal infrared point 
observation for relating air-to-ground measurements throughout the day 

• vegetation biomass/water content and dew observation for determining vegetation and 
dew effects 
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1.4 Air Requirements 

To answer the science questions outlined there are also a number of airborne data 
requirements to be considered (Fig. 1): 

 
• airborne passive microwave, thermal and NDVI data at a range of scales for algorithm 

development and satellite verification 

• airborne lidar data for accurate topography and incidence angle information and 
vegetation height determination 

• digital photography for land use and land cover information 

• airborne observations coincident with ground observations and made as early in the 
morning as possible to ensure that soil and vegetation temperatures are more closely 
aligned, have a more uniform soil temperature profile, and to coincide more closely 
with AMSR-E (1:30am/pm) and SMOS/Hydros (6:00am/pm) overpass times 

• airborne observations at a range of altitudes (625ft to 10,000ft) to achieve a range of 
ground resolutions (62.5m to 1,000m for passive microwave and 1m to 20m for 
thermal and NDVI) for scaling, algorithm development and satellite verification 

6.25m grid

12.5m grid

 
Figure 1. Schematic of the experimental design. 
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• airborne observations with passive microwave radiometer in mapping and multi-
incidence angle configurations for SMOS and HYDROS algorithm development 

1.5 General Approach 
The scientific objectives and data requirements of NAFE ’05 as addressed in the previous 
sections will be met by coordinating an aircraft remote sensing campaign with a ground data 
collection campaign. Furthermore, all collected data will support measurements taken from 
various spaceborne remote sensing platforms overpassing the study area. This is expected to 
provide appropriate and extensive datasets to address the scientific objectives of the project. 

The aircraft remote sensing campaign will make use of a small environmental aircraft (see 
section 3) equipped with passive microwave, infrared and visible sensors to map the whole 
study area. The characteristics of such sensors in terms of spectral range, incidence angle and 
field of view are comparable with those onboard various existing and future satellite remote 
sensing missions. This will allow comparability between spaceborne and airborne 
measurements and therefore will ensure applicability of the outcomes of NAFE ’05 to future 
spaceborne missions. In order to address the scaling issues which are crucial to NAFE ’05, it 
is imperative to collect data at various resolutions and instrument configurations (in terms of 
incidence angle). This will be made possible by flying the aircraft at different altitudes, 
resulting in a variety of ground spatial resolutions ranging from satellite-footprint scale down 
to farm and paddock scale.  

Airborne and spaceborne observations will be supported by ground data collected during the 
one-month long campaign.  Ground measurements will include near-surface soil moisture for 
direct validation of the passive microwave remote sensors observations, as well as ancillary 
data such as vegetation biomass, land cover information, soil temperature and surface 
roughness. Ground sampling will be coordinated with aircraft and satellite overpasses times to 
minimise temporal lag between observations. 

The study area of NAFE ’05 is the Goulburn River catchment, a subhumid to temperate area 
located in south-eastern Australian, approximately 300km north-west of the city of Sydney. A 
detailed description of the area is given in section 4. The area has been long monitored for 
hydrological and remote sensing purposes and thus constitutes a very suitable study site, in 
terms of both scientific requirements and logistical issues. An overview of the NAFE ’05 field 
campaign area is given in Fig. 2. The main study area includes a large portion of the northern 
part of the Goulburn Basin, approximately the size of a AMSR-E pixel. (these area will be 
hereby referred to as “AMSR sampling area” or alternatively “Regional sampling area”). Two 
focus areas delimited by the Merriwa River and Krui River catchment boundaries have been 
selected for more detailed analysis.. Within these areas eight farms have been chosen as the 
object of intensive farm-scale ground and aircraft monitoring (these areas will be hereby 
referred to as “Farm scale sampling areas”). The extent of mapping achieved by each flight 
altitude is also shown in the plot. The ground crew will be based in the township of Merriwa, 
located in the heart of the study area, and will set off from there for the daily sampling. The 
air crew will be based in Scone, near the airport used for the aircraft operations, 
approximately 1hour drive from Merriwa. 
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2 Satellite Observing Systems 
The following summary of satellite observing systems is limited to those observing systems 
that provide data of potential relevance to soil moisture remote sensing and scaling.  It covers 
not only a description of the observing systems but also the data collection and availability 
characteristics. 

0 50
Km

NAFE05 Overview

Lake Glenbawn:
PLMR calibration

Merriwa:
Ground crew

Krui
Area

Merriwa
Area

Pembroke

Scone Airport:
Air crew

Stanley

Illogan

Roscommon

Legend
NAFE operation base

SASMAS Site

NAFE focus farm

10000ft flight area

625ft flight area

2500ft flight area

5000ft flight area

Catchment boundary

Dales

Midlothian

Merriwa Park

Cullingral

 
Figure 2. NAFE ‘05 overview. The map shows the location of the operation bases 
for the air and ground crews, the main study areas and the extents covered by the 
mapping from different altitudes. Permanent monitoring stations are also shown. 
The figure doesn’t specifically show the coverage at 10,000ft of the two sub-study 
area of Krui and Merriwa catchment, being these basically the same as the 5,000ft 
coverage’s for the two areas. 
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2.1 Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 
AMSR-E on Aqua (http://wwwghcc.msfc.nasa.gov/AMSR) is a multi-frequency dual 
polarisation microwave radiometer launched in May 2002, with frequencies of 6.925, 10.65, 
18.7, 23.8, 36.5 and 89.0 GHz and spatial resolutions of 75, 48, 27, 31, 14 and 6km 
respectively.  The most appropriate frequency for soil moisture measurement is the 6.925GHz 
or C-band channel, which does not show evidence of radio frequency interference in Australia 
as it does in the United States. The viewing angle of AMSR is a constant 55°. Aqua is in a 
1:30am/pm equator crossing orbit with 1-2 day repeat coverage. Overpasses for the NAFE ’05 
region are summarized in Table 1. Fig 3. shows an example of global brigthness temperature 
data provided by AMSR-E 

2.2 WindSat 
WindSat (http://www.ipo.noaa.gov/Projects/windsat.html) is a multi-frequency polarimetric 
microwave radiometer with similar frequencies to the AMSR-E, with the addition of full 
polarisation for 10.7, 18.7 and 37.0 GHz channels and the lack of an 89.0 GHz channel.  
Developed by the Naval Research Laboratory, it is one of the two primary instruments on the 
Coriolis satellite launched on 6 January 2003 with an expected life cycle of three years.  
However, WindSat stopped responding earlier this year and is therefore not considered further 
in this experimental plan.  

2.3 MODerate resolution Imaging Spectroradiometer (MODIS) 
Another important instrument carried onboard Aqua is MODIS (http://modis.gsfc.nasa.gov), a 
passive imaging spectroradiometer with 36 discrete spectral bands between 0.41 (visible) and 
14.2 micrometers (thermal infrared). These bands range in resolution from 250m to 1km, and 
are most useful for land cover and vegetation mapping. Details about MODIS bands are 
shown in Table 2. This instrument is also carried on the Terra (http://terra.nasa.gov) 
spacecraft.  Aqua has a 1:30am/pm equator crossing time while Terra has a 10:30am/pm 
equator crossing time, meaning that MODIS data is typically available on a daily basis. 

 
Figure 3. Example of AMSR-E brightness temperature image.at 10.7 GHz 
frequency, Horizontal polarization. 
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2.4 Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) 

ASTER, carried onboard Terra, provides high resolution visible (15m), near infrared (30m) 
and thermal infrared (90m) data on request, prioritized by project.  In general the data 
coverage occurs on the same day as Landsat 7 for a 60 km swath, but trailing by 
approximately half an hour.  Data for this sensor have bee requested and are awaiting 
approval. 

Table 1. Summary of Aqua overpasses for the Goulburn 
study area. Highlighted are the dates selected for regional 
sampling. 

 

Sun 30-Oct-05 14:20:31 41.6
Mon 31-Oct-05 1:21:13 67.1

13:25:40 46
Tue 1-Nov-05 14:08:20 57.4
Thu 3-Nov-05 13:56:08 79.4
Fri 4-Nov-05 0:56:49 64.7
Sat 5-Nov-05 1:39:36 40.9

13:43:56 75.6
Sun 6-Nov-05 0:44:37 46.7

13:31:44 54.3
Tue 8-Nov-05 14:14:23 48.8
Wed 9-Nov-05 1:15:04 79
Thu 10-Nov-05 14:02:11 67.7
Fri 11-Nov-05 1:02:52 76
Sun 13-Nov-05 0:50:41 54.9
Mon 14-Nov-05 1:33:20 48.2

13:37:48 64.1
Tue 15-Nov-05 14:20:27 41.7
Wed 16-Nov-05 1:21:08 67.2

13:25:28 46
Thu 17-Nov-05 14:08:15 57.5
Fri 18-Nov-05 1:08:56 87.7
Sat 19-Nov-05 13:56:03 79.4
Sun 20-Nov-05 0:56:44 64.5
Mon 21-Nov-05 1:39:24 41

13:43:51 75.3
Tue 22-Nov-05 0:44:32 46.6
Wed 23-Nov-05 1:27:12 57

13:31:31 54.2
Thu 24-Nov-05 14:14:11 48.9
Fri 25-Nov-05 1:14:52 78.9
Sat 26-Nov-05 14:01:59 67.8
Sun 27-Nov-05 1:02:40 75.8
Mon 28-Nov-05 13:49:47 87.4
Tue 29-Nov-05 0:50:28 54.7
Wed 30-Nov-05 1:33:15 48.3

13:37:35 64

AQUA Overpasses

Day of 
week Date

Time of peak 
elevation    

(GMT + 10:00)

Peak spacecraft 
elevation above 

horizon
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2.5 Landsat 
The Landsat (http://landsat7.usgs.gov/programdesc.html) satellites collect data in the visible 
(30m), panchromatic (15m), mid infrared (30m) and thermal infrared (60 to 120m) regions of 
the electromagnetic spectrum.  These data have an approximately 15day repeat cycle with a 
10:00am equator crossing time.  This data is particularly valuable in land cover and 
vegetation parameter mapping.  However, due to an instrument malfunction onboard Landsat 
7 in May 2003, it is now only able to provide useful image data within the central ~20km of 
the swath.  As Landsat 5 is still in operation it is being increasingly relied upon.  The 
significance of this is a decrease in spatial resolution of thermal infrared data.  The Goulburn 
River Catchment is located on path 90, row 82 of the descending node of both Landsat 5 and 
7.  Overpass details for Landat 5 and Landsat 7 are given in Table 3.  This data needs to be 
purchased and is not currently included as part of the budget allocation. 

2.6 Soil Moisture and Ocean Salinity (SMOS) 
The SMOS (http://www.esa.int/esaLP/ESAMBA2VMOC_LPsmos_0.html) satellite is 
scheduled for launch in 2007 and seeks to provide 3-day repeat soil moisture at 50km.  SMOS 
is a synthetically generated L-band microwave radiometer instrument yielding a range of 
incidence angles from 0° to 55° at both V and H polarisations, and a 1000km swath width.  
This satellite will have a 6:00am/pm equator overpass time.  A novel feature of this system is 
its multi-incidence angle capability, expected to assist in determining ancillary data 
requirements, including vegetation attenuation, surface roughness, soil texture, surface 
temperature etc.   

2.7 Hydrospheric States (Hydros) 
The Hydros (http://hydros.gsfc.nasa.gov/mission) satellite is scheduled for launch in 2010 and 
seeks to provide 3-day repeat soil moisture at 10km.  Hydros has a 40km rotating L-band 
radiometer with a constant 40° incidence angle at both V and H polarisations, and a 3km L-

Table 2. Modis Bands 
Primary Use Band(s) Wavelength Pixel Size 

Vegetation Index 1 620-670 nm 250 m 

Vegetation Index 2 841-876 nm 250 m 

3 459-479 nm 500 m 

4 545-565 nm 500 m 
Vegetation H2O 5 1230-1250 nm 500 m 
Vegetation H2O 6 1628-1652 nm 500 m 

7 2105-2155 nm 500 m 

Ocean Color 8 - 16 405-877 nm 1000 m 
Atmospheric 

H2O 17 -19 890-965 nm 1000 m 

Thermal 20 -36 3.660-14.385 :m 1000 m 
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band radar at VV, VH, HV, and HH polarisations.  This satellite will also have a 6:30am/pm 
equator overpass time.  The novel features of this system is i) the combination of active and 
passive observations to alleviate the ancillary data requirements and ii) the combination of 
high resolution noisy data with low resolution accurate data to yield a high resolution reliable 
product. 

2.8 Advanced Synthetic Aperture Radar (ASAR) 
ASAR provides both continuity to the ERS-1 and ERS-2 mission SARs and next generation 
capabilities.  This C-band SAR is carried on board the Envisat (http://envisat.esa.int) satellite, 
launched into a sun synchronous orbit in March 2002, also carrying a visible and near infrared 
imaging system called MERIS.  The exact repeat cycle for a specific scene and sensor 
configuration is 35 days.  ASAR can provide a range of incidence angles ranging from 15° to 
45° and can operate in alternating polarisation mode, providing two polarisation combinations 
(VV and HH, HH and HV, or VV and VH).  Swath width is nominally 100 km and the 
product pixel size is 30m. ASAR data for NAFE ’05 have been requested and approved from 
ESA. 

2.9 Advanced Along Track Scanning Radiometer (AATSR) 
Also carried onboard Envisat, AATSR main objective is to establish continuity of the ATSR-
1 and ATSR-2 data sets of precise sea surface temperature (SST). It makes use of four 
thermal infrared channels (centred on 1.6 microns, 3.7 microns, 10.7 microns, and 12 
microns) for the SST. Additionally, with two visible channels (0.87 microns and 0.67 microns 
respectively) provides measurements of vegetation at 1 × 1km resolution at nadir. An 
additional visible channel at 0.55 microns indicates, from chlorophyll content, the growth 
stage and health of vegetation. AATSR data for NAFE ’05 have been requested and approved 
from ESA. 

2.10 Compact High Resolution Imaging Spectrometer (CHRIS) 
CHRIS provides, for the first time, remotely-sensed Multi-View-Angle data at high spatial 
resolution, and in superspectral/hyperspectral wavelength resolutions. The sensor is onboard 
ESA’s Project for On-Board Autonomy (Proba) launched on 22 October, 2001. CHRIS has a 
spectral range of 415-1050 nm, and provides observations at 19 spectral bands 
simultaneously, with a spatial resolution of 20m at nadir and a swath width of 14km. CHRIS 
data for NAFE’05 have been requested and proved from ESA. 

3 Aircraft Observing System 
Airborne measurements will be made using the small, low-cost, two-seater motor glider from 

Table 3. Summary of Landsat 5 and Landsat 7 overpasses for the Goulburn 
study area.  

 

Fri 21-Oct-05 9:30:39 Sut 29-Oct-05 9:25:33
Sun 06-Nov-05 9:36:35 Mon 14-Nov-05 9:37:27
Tue 22-Nov-05 9:36:08 Wed 30-Nov-05 9:30:39
Thu 08-Dec-05 9:36:08 Fri 16-Dec-05 9:36:35

Day of 
week

Day of 
week

Landsat 5 Landsat 7

Date
Time      

(GMT+10:00)Date
Time      

(GMT+10:00)
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the Airborne Research Australia national facility called Small Environmental Research 
Aircraft (SERA), shown in Fig. 4, together with the recently acquired Polarimetric L-band 
Multibeam Radiometer (PLMR; http://www.plmr.unimelb.edu.au) and thermal imager.  This 
new infrastructure will allow for the first time, very high resolution passive microwave 
(~50m) and land surface skin temperature (~1m) observations to be made across large areas.  
There is no other capacity world-wide to make such high resolution measurements together 
with a range of other supporting data including a first-last return lidar, NDVI scanner and 
11MegaPixel digital camera.  An example of the data to be collected is given in Fig. 5.. 

The aircraft can carry a typical science payload of up to 120kg with cruising speed of 92-
203km/h and range of 4-8hrs or 800-1500km. The aircraft ceiling is 3km or up to 7km with  
oxygen, under day or night VFR conditions. While the aircraft can take up to 2 crew 
(pilot/scientist + scientist), for maximum range and/or payload it is only possible to operate 
with 1 crew. 

 
Figure 4. The Diamond ECO-Dimona aircraft with PLMR mounted under the fuselage, 
and thermal imager, digital camera and NDVI scanner in an underwing pod. 

 
Figure 5. Example of airborne data collected from a trial campaign near Waikerie in South 
Australia. Note that the vertically (Tbv) and horizontally (Tbh) polarized passive microwave 
data are shown with a different colour scale. 
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Aircraft instruments are typically installed in one of the certified underwing pods (see Fig. 6) 
or the underbelly pod.  Aircraft navigation for science is undertaken using a cockpit computer 
display that shows aircraft position relative to planned flight lines using the OziExplorer 
software. The aircraft has a Trimble TANS 4-way differential GPS system (antennae on each 
wing and both fore and aft on the fuselage) for position (georeferencing) and attitude (pitch, 
roll and heading at 0.1° resolution) interpretation.  Additionally there is a Rockwell-Collins 
AHS-85 inertial navigation system yielding the more accurate attitude information required 
for interpretation of high resolution scanning instruments. 

 

 
Figure 6. View of one of the underwing pod with the cover off, and view of the cockpit 
showing cockpit computer display. 
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3.1 Polarimetric L-band Multibeam Radiometer 
The PLMR (Fig. 7) measures both V and H polarisations using a single receiver with 
polarisation switch at incidence angles +/–7°, +/–21.5° and +/–38.5° in either across track 
(pushbroom) or along track configurations.  The beamwidth is 17° resulting in an overall 90° 
field of view.  The instrument has a frequency of 1.413GHz and bandwidth of 24MHz, with 
NEDT and accuracy better than 1K for an integration time of 0.5s and 1K repeatability over 4 
hours.  It weighs 46kg and has a size of 
91.5cm × 91.5cm × 17.25cm. 
 

3.2 Thermal Imager 
The thermal imager is a FLIRTS 
ThermaCam S60 with spectral range 
7.5 to 13μm, accuracy +/–2°C or +/–
2% of reading and thermal sensitivity 
of 0.08°C.  It has an 80° × 60° FOV 
lens with 1.3mrad IFOV, resulting in 
approximately 1m data from a 150m 
flying height.  The thermal imager 
looks very similar to a digital video 
camera (Fig. 8), with a weight of 2kg 
and size of 10cm × 12cm × 22cm. 
 
 

   Figure 7. View of PLMR with the cover off. 

 
Figure 8. View of the S60 Thermal Imager. 
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3.3 Tri-spectral NDVI Scanner 
The TSLS AWI/ARA Trispectral line scanner can operate in either of two modes - Visible 
(Red, Green and Blue) or Vegetation (Green, Red and Near-IR).The sensor offers a resolution 
of better than 0.5m. This is achieved using high pixel resolution of 2048 pixels per line, and 
an acquisition frequency of 50 lines per second (stored directly onto a hard disk). The scanner 
is a compact unit, measuring just 110mm x 110mm x 300mm.  It has two lens option; a 28mm 
lens (45°) and a 50mm lens (24°).  The 28mm lens will be used in this experiment to ensure 
maximum coverage, and flight lines will be planned to have a nominal 1/6th of a swath width 
overlap.  

3.4 Digital Photography 
The camera is a Canon EOS-1DS 11MegaPixel digital camera with two lens options; a 24mm 
lens (74° × 53°) and 50mm lens (40° × 27°).  The 24mm lens will be used in this experiment 
to ensure maximum coverage. 

3.5 Airborne Laser Scanner 
The airborne laser (near infrared) scanner is a 
first pulse (vegetation) last pulse (ground) Riegl 
LMS-Q280i with range of 30m to 1500m, 
vertical accuracy of 30mm and resolution of 
5mm.  It has a maximum 60° FOV with 0.02° 
step width, yielding approximately 1m 
horizontal resolution when flown from a 150m 
flying height.  The instrument is approximately 
56cm × 20cm × 21cm and weighs approximately 
20kg (Fig. 9). 

4 Catchments 
The 6,540km2 Goulburn River experimental 
catchment (http://www.sasmas.unimelb.edu.au) 
is a tributary to the Hunter River in New South 
Wales, Australia (Fig. 10).  This subhumid to 
temperate catchment extends from 31°46’S to 
32°51’S and 149°40’E to 150°36’E, with 
elevations ranging from 106m in the floodplains 
to 1257m in the northern and southern mountain 
ranges.  The catchment was chosen for i) its 
relative large area of predominantly low to 
moderate vegetation cover in the north of the 
catchment for satellite soil moisture remote 
sensing studies; ii) the lack of maritime effects 
in order to avoid mixed pixel responses from 
ocean and land data within satellite 
measurements; and iii) its relative proximity to 
the University of Newcastle. 

 
Figure 9. View of the Riegl LMS-Q280i 
airborne laser scanner 
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Figure 10. Location of Goulburn River 
catchment. 
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The Goulburn River runs generally from west to east, with tributaries from the north and 
south, meaning the catchment is dominated by easterly and westerly aspects.  The catchment 
has two more intensively monitored subcatchments, the Krui River (562km2) and Merriwa 
River (651km2) in the northern half of the catchment (Fig. 2). Additionally, a densely 
monitored 175ha micro-catchment is located on a property called “Stanley”, located in the 
lower reach of the Krui River catchment.   

4.1 Climate 
The general climate within the region can be described as subhumid or temperate, with 
significant variation in the annual rainfall throughout the catchment.  While the average 
annual rainfall in most of the catchments is approximately 700mm, it varies from 500mm to 
1100mm depending on altitude (Fig. 11).  Major rainfall events generally occur in October 
and November with an average precipitation of 50mm, while the monthly average 
precipitation in July is 40mm.  
The average annual Class A pan 
evaporation for the study region 
is about 1800mm.  The minimum 
monthly pan evaporation is 
reached in July with an average 
of 75mm and the maximum can 
be observed in January reaching 
250mm.  Monthly mean 
maximum temperatures reach 
approximately 30°C in summer 
and 14°C in winter, with 
minimum values of 16°C and 
2°C, respectively.  Except for 
elevated areas, frost is unlikely to 
occur during daytime in winter, 
but night time minimum 
temperatures in winter are 
frequently less than 0°C. 

 

4.2 Geology and Soils 
The geology of the Goulburn River catchment can be distinguished into two types: the 
northern which is predominantly Tertiary basalt, a product of Cainozoic volcanism which 
took place throughout much of eastern Australia, and the southern which is dominated by 
rocks of the Triassic age laid down as sediments in lagoons and consisting of sandstone, 
conglomerate and shale.  The regions geomorphology is largely dependent on its geological 
and climatic history with four main types of country identified; the Liverpool Range and 
Merriwa Plateau in the north and the Central Goulburn Valley and Southern Mountains in the 
south. The actual study area falls in the northern part of the Goulburn catchment, across the 
Liverpool Range and Merriwa Plateau. Situated at the northern extent, the Liverpool ranges 
are characterized by a rugged and basaltic landscape. The area rises over 1200m above sea-
level, and localized plateaus exist despite the characteristic rugged topography. The Merriwa 
Plateau is located south of the Liverpool Range, presenting a rolling and hilly basaltic 
topography. Its elevation ranges between 450m to the north and 300m to the south.  

 
Figure 11 Map of mean annual rainfall for the Goulburn 
catchment. 
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The NAFE ’05 study area covers mainly the Merriwa Plateau and the southern fringes of the 
Liverpool Ranges. The northern part of the NAFE ’05 study area is therefore characterized by 
black basalt derived cracking clays, while the very southern part of the study area is 
characterized by sandstone derived soils (Fig. 12).  Red basalt derived clays are also existent 
in southern regions of the study area.  

4.3 Vegetation 
Much of the original vegetation in the northern part of the Goulburn catchment has been 
cleared, the extent of which has largely been influenced by topography and soil type (Fig. 12). 
In the north where the terrain is rugged (the Liverpool Range), accessibility is restricted and 
the area has thus remained highly vegetated. To the south, clearing has been more extensive 
due to the rolling to hilly terrain ensuring greater accessibility (the Merriwa Plateau). Grazing 
and cropping activities dominate cleared areas, due to the high fertility of basaltic soils. The 
sandstone derived soils to the far south are largely uncleared as they are less fertile and 
productive. 

4.4 Monitoring Infrastructure 
The Goulburn River experimental catchment has been instrumented since September 2001 
and will continue until at least January 2008.  There have been several enhancements to the 
catchment instrumentation since its original installation and several more are planned and/or 
underway. The catchment monitoring includes surface and root zone soil moisture, soil 
temperature, meteorological and streamflow measurements.   

 
Figure 12. Vegetation (Landsat 5 false colour image) and soil characteristics of the 
Goulburn study area from the Atlas of Australian Soils. 
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A total of 26 soil moisture and temperature monitoring sites (Fig. 13) were chosen on the 
basis of being i) a representative monitoring site, ii) spatial distribution across the 
experimental catchment, and iii) accessibility.  The representative monitoring site objective 
was addressed by choosing midslope locations with typical vegetation, soil, and aspect, so 
that they represented catchment average soil moisture locations.  The spatial distribution was 
chosen to give a concentration of measurements in the open cropping and grazing land to the 
north for application to remote sensing measurements, while achieving a good distribution for 
model verification within the chosen focus catchments and the broader Goulburn catchment.  
The automatic weather stations were sited with regard to existing infrastructure and expected 
spatial variability, resulting in one at the centre of the Goulburn experimental catchment and a 
second in high terrain to the north of the catchment, supplementing sites to the south, east 
(Bureau of Meteorology) and west (Ulan Coal Mine). At the same time this resulted in having 
automatic weather stations located in both the upper and lower reaches of the Krui focus 
catchment and in the centre of the Stanley microcatchment. Five streamgauges were installed 
in the two focus catchments, adding to the 4 existing streamgauges operated by the New 
South Wales Department of Infrastructure, Planning and Natural Resources (DIPNR) 
allowing the main catchment to be subdivided into smaller modelling units.  This included 3 
subcatchments in the Krui, 3 subcatchments in the Merriwa, and a further 3 divisions in the 
Goulburn.  Catchment runoff observations are also made at the Stanley microcatchment using 
a Parshall flume.   

Each of the soil moisture sites have up to three vertically inserted Campbell Scientific CS616 
water content reflectometers (http://www.campbellsci.com/cs616-l) over depths of 0-300mm, 
300-600mm and 600-900mm, respectively (Fig. 14).  The number of soil moisture sensors 
installed was determined by the depth to the bedrock, being less than 900mm in some cases.  
Sensors were installed by excavation and backfilling.  These sensors ensured a continuous 
observation of the soil moisture profile, with sensors read and the values logged once every 
20 minutes.   

 
 

Figure 13. Soil moisture, climate and streamflow monitoring network in the Goulburn 
iver catchment, overlaying the elevation data.  Inset shows the Stanley microcatchment. 
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Sensor response to soil moisture varies with salinity, density, soil type and temperature, so a 
detailed sensor calibration is being undertaken for each site using both laboratory and field 
measurements.  As the CS616 sensors are particularly sensitive to soil temperature 
fluctuations Campbell Scientific T107 temperature sensors (http://www.campbellsci.com/107-
l) were installed vertically with their midpoint at 15cm below the soil surface, providing a 
continuous record of soil temperature at a midpoint of the 0-30cm CS616 for each monitoring 
site.  Deeper temperatures were assumed to have the same characteristics throughout the 
catchment and are therefore estimated from detailed soil temperature profile measurements 
made at the automatic weather station in the Stanley microcatchment, with a linear offset 
applied based on comparison of the two 15cm measurements. Fig. 15 displays an example of 
the collected datasets for years 2003 and 2004 at Spring Hill station, in the northern par of the 
study area. 

Two focus catchments were created by establishing 7 soil moisture monitoring sites in each of 
the major subcatchments (6 individual sites in the Krui River catchment in addition to the 
Stanley microcatchment (with 7 sites) and 7 individual sites in the Merriwa Creek catchment), 
with a further 6 sites installed in the remaining Goulburn River catchment (Fig. 13).  The 
intensively monitored Stanley microcatchment was designed to estimate the location of 
catchment average soil moisture sites within a catchment, as two groups of sites were located 
along lines at lower, mid and upper slope locations.  Moreover, the higher density of soil 
moisture monitoring sites in the Krui and Merriwa catchments allows for work on the spatial 
organisation of soil moisture throughout the northern part of the catchment and supports work 
undertaken in the validation and scaling of satellite measurements and model simulation. 

 

 

Moisture 
Station 

Climate 
Station 

Figure 14. Schematic of monitoring stations. 
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NAFE’05 will take place in the period between October 31st and November 26th. The time 
frame was chosen in order to capture highly dynamic soil moisture stats. As evident in the 
panels of Fig. 15, storms are frequent  in this period, at least in the upper part of the study 
area, resulting in a root-zone soil moisture content (0-30cm) variation within the month of 
about 7% (V/V). Given the buffer imposed by infiltration of water from the soil surface to 
these depths, the dynamics in the layer which affects remote sensing measurements 
(approximately 0-5cm), are expected to be even stronger. 

 
Figure 15. Example of data collected at SAMSAS sites. Plots show temporal variation of 
soil moisture and soil temperature at (1) 0-30cm (2) 30-60cm and (3) 60-90cm during 2003 
(top panel) and 2004 (bottom panel). Daily rainfall is also indicated. Dashed red lines 
highlight the period in which NAFE’05 will take place. 
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5 Ground Monitoring 
The ground component of the NAFE ‘05 field campaign consists of four aspects: 
 

1. Network of continuous soil moisture profile monitoring stations; 
2. Supplementary monitoring stations; 
3. Spatial soil moisture mapping; and 
4. Supporting data.  

5.1 Soil moisture profile stations 
The soil moisture and climate monitoring sites existing within the Goulburn River 
experimental catchment form the basis of all ground based monitoring activities.  These 
monitoring sites have recently been upgraded with telemetry systems, Stevens Water 

20
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Midlothian

Merriwa Park

Cullingral

 
Figure 16. NAFE focus farms in the Northern Goulburn catchment area. NAFE 
mmonitoring stations are also indicated with squares. 
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HydraProbe® sensors (Stevens Water; http://www.stevenswater.com/catalog/stevensProduct. 
aspx?SKU='70030') for top 5cm soil moisture (inserted vertically from the soil surface) and 
tipping bucket raingauges. Because the HydraProbe temperature sensor is located in the 
exposed head of the probe, a supplementary temperature sensor has been installed at 2.5cm 
depth and temperature output from the HydraProbe discarded.  Location of the NAFE ’05 
study area within the Goulburn River experimental catchment was chosen to encapsulate the 
majority of these stations, and eight focus farms for detailed measurements were chosen 
within the Krui and Merriwa sub-catchments according to spatial distribution and 
characteristics of farms hosting these stations (Fig. 16).  As the dominant landuses are grazing 
and cropping, this region is very suitable for soil moisture remote sensing studies due to the 
moderate vegetation cover. Table 4 summarises the characteristics of each farm. 

5.2 Supplementary monitoring stations 
A total of eight of the existing monitoring stations (one at each of the eight focus farms) will 
be supplemented with additional sensors for the duration of NAFE ’05 (hereafter referred to 
as NAFE stations).  The primary purpose of this supplementary monitoring is to: 
 

1. provide information on near-surface soil temperature profiles; 
2. provide information on leaf wetness in response to dew and precipitation; and 
3. develop relationships between thermal infrared observations and near-surface soil 

temperature 
 
To capture the relevant information, there will be nominally:  
 

• four stations that have thermal infrared radiometers (Two Ahlborn Thermalert TX® 
and two Everest Interscience Inc.® Infrared Temp Transducers, Model 4000), 

Table 4. Main characteristics of target farms of the NAFE ‘05 campaign. 

FARM NAME AREA(ha) TOPOGRAPHY LANDUSES SOILS 

Pembroke 6400 Hilly/Gently 
rolling 

• Grazing 
• Crop (wheat) 

• Black basaltic 
clays 

Stanley 720 Hilly • Grazing 
• Black basalts on 

flat; red basaltic 
clays on crests 

Roscommon 940 Flat/Gently rolling • Grazing 
• Red basaltic 

clays and sandy 
soils 

Ilogan 560 Flat/Gently rolling • Crop (Barley, 
Oats, Wheat) 

• Black basaltic 
clays with 
patches of red 
basaltc clays 

Dales 1500 Flat/Hilly • Grazing 
• Black basaltic 

clays 

Midlothian 2000 Flat/Hilly 
• Grazing 
• Crop(Sorghum, 

Lucerne,Wheat) 

• Black basaltic 
clays 

Merriwa Park 750 Hilly • Grazing 
• Crop (Wheat) 

• Black basaltic 
clays 

Cullingral 220 Flat • Crop (Wheat,   
Lucerne) 

• Black basaltic 
clays 
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duplicate soil temperature sensors at 1cm, 2.5cm and 4cm (Unidata® 6507A/10 
sensors), and leaf wetness sensors (Measurement Engineering Australia 2040®); 

• two stations that have single soil temperature sensors at 1cm, 2.5cm and 4cm, and leaf 
wetness sensors;  

• two stations that have single soil temperature sensors at 1cm, 2.5cm and 4cm; and 
• one station that has 4 Unidata® 6507A/10 thermocouples attached to a rock (at Stanley 

farm) 

 

This supplementary monitoring will in most cases be installed “within” the enclosure at 
existing monitoring station sites. In particular cases, they will be installed at nearby locations 
to capture land cover requirements not met at the existing sites; specifically for bare soil and 
at some crop sites.  Fig. 17 shows the location of NAFE stations and the supplementary 
instrumentation to be installed at each.  Fig. 18 shows a schematic of the instrumentation 
setup. 

 
Figure 17. Location of additional ground instrumentations installed for the NAFE 
campaign. “TIR” stands for Thermal Infrared towers and “Dew” for Leaf wetness 
sensors.This figure doesn’t display the rock surface temperature site at Stanley 
farm. 



 23

5.3 Spatial soil moisture mapping  
Near-surface soil moisture will be measured across the NAFE study area at a range of spatial 
scales.  This will provide an extensive multi-scale near-surface soil moisture dataset useful for 
addressing the objectives of the study as outlined in section 1.2.  Specifically, there will be: 
 

1. regional measurements for verification of airborne and satellite soil moisture retrieval; 

2. farm wide measurements for: 

a.  verification of scaling assumptions of radiobrightness equations;  
b. assessment of land cover impacts; 
c. development of multi-incidence angle algorithms;  
d. assessment of leaf water impact for 6:00am overpass times; 

3. high resolution measurements across these farms for:  
a. understanding spatial variability and representativeness in individual ground 

measurements; 
b. developing downscaling techniques; 
c. understanding the impact of topography; 
d. understanding the importance of surface roughness; 
e. developing methods for vegetation water content assessment; and 
f. including the impact of surface rock. 

 
Regional scale sampling will occupy an entire day once per week, while farm scale and high 
resolution area sampling will parallel in the same day on the same farm, four times a week, 
alternating between Krui and Merriwa area farms, as per the schedule in Table 5 

During the 4 week experiment, ground crew will be organised into 4 teams of 3 people (with 
exception of the Pembroke farm which will have 4 people), each team acting independently 
within the daily schedule (apart from daily morning and evening briefings).  Each team will 
be assigned 2 focus farms, one within the Krui and one within the Merriwa sub-catchments, 
and will be responsible for all sampling operations within the assigned areas, as well as 
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Figure 18. Typical set up of the supplementary monitoring site. (front view, side view 
and top view); showing shallow (S), medium (M), and deep (D) CS616 soil moisture 
sensors; 0-5cm Stevens HydraProbe (HP); CS T107 (T), 1 cm (T1), 2.5 cm (T2) and 4cm 
(T3) soil temperatures; Thermal infrared (TIR) and leaf wetness (L) sensors.  
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general monitoring and reporting to the ground crew leader. Exact location of soil moisture 
sampling points will be provided – see section 7. 

5.3.1 Regional scale sampling 
One of the objectives of the NAFE ‘05 campaign is to provide ground verification data for the 
AMSR-E soil moisture retrieval algorithms.  For this purpose, soil moisture measurements 
will be made at many locations within the focus farms and along the roadsides in the 
surrounding areas on days when there are both am and pm overpasses of AMSR-E for the 
study area. The main objectives are to:  
 

1. Provide an estimate of the areal average and spatial variation of near-surface soil 
moisture content within an AMSR-E footprint (~50km) at the nominal time of satellite 
overpass. 

2. Develop and verify approaches to downscaling low resolution near-surface soil 
moisture estimates such as those from AMSR-E to 1km or better resolution using 
higher resolution remotely sensed thermal and visible data. 
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Figure 19. Planned sampling locations for regional scale soil moisture monitoring. 
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Overpass dates and time are shown in Table 1. On these dates, PLMR flights with nominal 
1km ground resolution will be undertaken concurrent with the regional ground sampling.  
Regional ground sampling of near-surface soil moisture will be undertaken by team leaders 
using iPAQ based HydraProbe systems (see section 7) at predefined GPS-located points 
approximately 1km apart.  These points will be located in the respective two farms (one in 
each of the Krui and Merriwa sub-catchments) teams are responsible for and along the sides 
of main roads crossing the study area.  The ground sampling grid according to team is shown 
in Fig. 19.  Sampling will follow as closely as possible a regular 1km grid within the farm 
boundaries; sampling will occur mostly on the existent farm tracks in order to decrease the 
total sampling time.  Outside the farm boundaries, sampling will be undertaken in the areas 
adjacent the road, at a distance from it sufficient to avoid localized moisture anomalies due to 
artefacts of the road.  These sites would preferably be made “over the fence” to more closely 
represent the surrounding land use conditions, but without actually entering onto private land. 
The sampling illustrated in Fig. 19 is expected to take approximately 6 hours. See table 6 for 
detailed sampling times per each team. 

Concurrently with soil moisture measurements, teams will collect the following supporting 
data across both focus farms in their responsibility during regional sampling days: 

 
• Gravimetric soil moisture samples (also used for soil texture); 
• Vegetation biomass samples;  
• Vegetation type characterisation; 
• Land use classification; 
• Crop height measurements; 
• Leaf wetness observations. 

Table 6. Estimated regional sampling times. An average driving speed of 20 Km/h is 
assumed. 

Point N. Distance (km) Speed (Km/h) Time (hrs)
team 1 122 121 20 6.1
team 2 116 115 20 5.8
team 3 130 129 20 6.5
team 4 99 98 20 4.9
 

Table 5. Ground sampling calendar for NAFE.  

`    AMSR sampling    Farm scale sampling    High resolution sampling

Monday 31/10
AMSR area
Krui Area
Merriwa Area

Monday 7/11
AMSR area
Krui Area
Merriwa Area

Monday 14/11
AMSR area
Krui Area
Merriwa Area

Monday 21/11
AMSR area
Krui Area
Merriwa Area

Friday 11/11Thursday 10/11Wednesday 9/11Tuesday 8/11

Tuesday 22/11 Wednesday 23/11 Thursday 24/11 Friday 25/11

Thursday 17/11 Friday 18/11

Friday 4/11Tuesday 1/11 Wednesday 2/11 Thursday 3/11

Tuesday 15/11 Wednesday 16/11

Monday 31/10
AMSR area
Krui Area
Merriwa Area

Monday 7/11
AMSR area
Krui Area
Merriwa Area

Monday 14/11
AMSR area
Krui Area
Merriwa Area

Monday 21/11
AMSR area
Krui Area
Merriwa Area

Friday 11/11Thursday 10/11Wednesday 9/11Tuesday 8/11

Tuesday 22/11 Wednesday 23/11 Thursday 24/11 Friday 25/11

Thursday 17/11 Friday 18/11

Friday 4/11Tuesday 1/11 Wednesday 2/11 Thursday 3/11

Tuesday 15/11 Wednesday 16/11

`    AMSR sampling    Farm scale sampling    High resolution sampling

Monday 31/10
AMSR area
Krui Area
Merriwa Area

Monday 7/11
AMSR area
Krui Area
Merriwa Area

Monday 14/11
AMSR area
Krui Area
Merriwa Area

Monday 21/11
AMSR area
Krui Area
Merriwa Area

Friday 11/11Thursday 10/11Wednesday 9/11Tuesday 8/11

Tuesday 22/11 Wednesday 23/11 Thursday 24/11 Friday 25/11

Thursday 17/11 Friday 18/11

Friday 4/11Tuesday 1/11 Wednesday 2/11 Thursday 3/11

Tuesday 15/11 Wednesday 16/11

Monday 31/10
AMSR area
Krui Area
Merriwa Area

Monday 7/11
AMSR area
Krui Area
Merriwa Area

Monday 14/11
AMSR area
Krui Area
Merriwa Area

Monday 21/11
AMSR area
Krui Area
Merriwa Area

Friday 11/11Thursday 10/11Wednesday 9/11Tuesday 8/11

Tuesday 22/11 Wednesday 23/11 Thursday 24/11 Friday 25/11

Thursday 17/11 Friday 18/11

Friday 4/11Tuesday 1/11 Wednesday 2/11 Thursday 3/11

Tuesday 15/11 Wednesday 16/11
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The following variables will be measured once only by each team for both farms, with 
instrumentation and/or personnel rotated between farms as necessary: 
 

• Surface roughness measurements; 
• LAI measurements; 
• NDVI measurements; 
• Surface rock cover estimation. 

 
Detailed description of data sampling procedures can be found in sections 5.4 and 7. For a 
summary of the daily measurements of each group refer to Tables B1 and B2 in 
Appendix B. 
 

5.3.2 Focus farms measurements 
The purpose of farm scale sampling is to provide ground soil moisture and supporting data for 
verification of the aircraft soil moisture, soil temperature and vegetation mapping at different 
ground pixel resolutions.  Near-surface soil moisture will therefore be measured across the 
focus farms concurrently with aircraft overpasses at a range of spatial scales.  The objective is 
to cover as much of the farm extent and surface conditions present in the area as possible in a 
single day, with a combination of spatial resolutions.  This will provide both direct ground 
and downscaling verification of the aircraft measurements with sufficient spatial detail to 
capture sub-pixel variability.  The adopted sampling strategy (Fig. 20) is therefore a 
compromise between these objectives and logistic constraints such as number of ground 
personnel and time available.  
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Figure 20. Schematic of farm scale soil moisture sampling strategy. 
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Soil moisture measurements will be taken at many locations within the farm at various 
resolutions (500m, 250m, 125m and 62.5m), covering as much as possible of the range of 
land use, topographic, soil type and soil wetness conditions present across the farm. 
Furthermore, at each farm a small area of 150m by 150m size will be the focus of very 
intensive soil moisture sampling (12.5m and 6.25m).  Each farm will be sampled in one day 
by one team, which will be divided into 2 groups:  
 

• Group A (1 person) dedicated to the 500m, 250m and 125m sampling  
• Group B (2 people) dedicated to the high resolution area sampling, in the morning, 

and the 62.5m sampling in the afternoon. 
 
Exact sampling locations will be provided on the individual iPAQs. Group A will make use of 
the team vehicle to move across the farm, or walk to the sampling points in areas where 
driving is not feasible.  Sampling points will be located by use of a GPS receiver link to the 
iPAQ.  Similarly, Group B will identify the 62.5m sampling locations with the GPS and iPAQ 
system.  As individual GPS receiver position accuracy is insufficient for the high resolution 
area, sampling locations will be clearly marked and labelled on the ground (see section 6.2). 
The farm scale sampling grid for all the focus farms are shown in Fig. 21 and 22.  

The 150m x 150m areas herein referred to as “high resolution” areas will be sampled at very 
high resolution, down to 6.25m. This sampling approach has been chosen in order to  
(a) provide highly detailed ground information on the representativeness and variability 
expected from point soil moisture and vegetation biomass measurements used for accurate 
validation of the PLMR mapping and (b) validate the downscaling techniques with high 

Table 7. Characteristics of the high resolution sampling areas 

Farm topography vegetation 
cover purpose Soil type Reference  

Lat(Deg)    
Reference  
Long(Deg)

Pembroke gently sloping/  
contour bank

Native grass/ 
Wheat

vegetation 
cover  

variability
Black Basalt 150.1377 -32.0405

Stanley slope Native topography Red Basalt 150.1387 -32.0940

Roscommon flat Native
PLMR 

validation on 
native grass

Red Basalt 150.1460 -32.1754

Illogan flat Native grass/ 
Wheat

vegetation 
cover  

variability
Red Basalt 150.0572 -32.1454

Dales sloping/creek Native topography Black Basalt 150.4324 -31.9496

Midlothian flat Sorghum /   
Lucerne

vegetation 
cover  

variability
Black Basalt 150.3634 -32.0137

Merriwa Park gently sloping   Wheat
PLMR 

validation on 
crop

Black Basalt 150.4335 -32.0979

Cullingral flat Lucerne
PLMR 

validation on 
crop

Black Basalt 150.3413 -32.1621
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resolution ground data. For these reasons, the areas were selected in order to cover as many 
land cover conditions in the area as possible, while capturing detectable near surface  
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Farm Hi-res 
area 

62.5m  125m  250m  500m 1000m person
1 

person
2

person
3

person
4

Dales 289 140 58 41 21 6.5 6.5 6.8 none
Midlothian 289 140 86 157 8 6.5 6.5 6.5 6.7
Merriwa Park 289 140 138 41 6.5 6.5 6.8 none
Cullingral 289 197 89 7.1 7.1 5.5 none

 Nr. Of Sampling points Estimated sampling times (hrs)

Figure 21. Soil moisture sampling grids and estimated sampling times for all the four Merriwa 
area focus farms.  High resolution PLMR flight lines are also indicated with the mapping 
coverage.  
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moisture patterns within the 150m x 150m area. The areas chosen represent microtopographic 
conditions and non-homogeneous vegetation covers and soil type which are expected to 
produce the desired soil moisture variability. Table 7 describes the characteristics of each high 
resolution area with the reference coordinate for their centre point. As shown, all predominant 
land cover types are included (with the exception of Barley and Oats crops, which will be 
generally very short or dead at this time of year and can therefore be considered as short 
native grasses), and various combinations of microtopography and non-uniform land cover 
are captured. 

Teams will also collect the following supporting data at the focus farm on each farm sampling 
day: 

 
• Gravimetric soil moisture samples; 
• Vegetation water content samples;  
• Leaf wetness observations and dew amount. 
 

For a summary of the daily measurements of each group refer to Tables B1 and B2 in 
Appendix B. 
The following section describes the methods use to sample these auxiliary data and their 
significance. 
 

5.4 Supporting data 
A number of auxiliary data sets are needed together with soil moisture in order to characterise 
the surface conditions within the study area.  This information is necessary for various 
purposes: 
 

• to provide auxiliary data required to model the soil microwave emission; 

• to validate the observations from different remote sensors operating at different 
spectral bands which will be flown over the area; 

• to calibrate the ground sensors that will be used during the campaign.  
 
Supporting data that will be collected during the campaign include: 
 

• Gravimetric soil moisture samples; 

• Vegetation biomass and water content; 

• Vegetation type; 

• Landuse classification; 

• Vegetation Leaf Area Index (LAI) 

• Vegetation Normalized Difference Vegetation Index (NDVI) 

• Surface roughness 

• Soil textural properties 

• Surface rock cover  

• Leaf wetness 
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The following sections discuss the significance of the above information and individual 
sampling strategies are described. Details on how the measurement will be taken can be 
found in section 7. 
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Farm Hi-res 
area 62.5m 125m 250m 500m 1000m person

1
person

2
person

3
person

4

Pembroke 289 140 101 64 31 14 6.5 6.5 7.1 7

Stanley 289 135 227 6.3 6.3 7.1 none

Roscommon 289 140 223 6.5 6.5 6.9 none

Illogan 289 140 228 6.5 6.5 7.1 none

Estimated sampling 
time (hrs)Nr. Of Sampling points 

Figure 22. Soil moisture sampling grids and estimated sampling times for the four Krui area 
focus farms.  High resolution PLMR flight lines are also indicated with the mapping coverage. 
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5.4.1 Thermogravimetric soil moisture samples 
Volumetric samples of soil will be collected across the study area for both soil textural 
analysis and calibration of the Stevens Water HydraProbes®.  Teams will collect soil samples 
both during both: 
 

1. regional sampling days, requiring a minimum of 6 samples of different soil types and 
wetness condition combinations to be collected across each focus farm. 

2. farm scale sampling, requiring a minimum of 2 samples of different soil types and 
wetness condition (1 dryish and 1 wetish) combinations to be collected across each 
focus farm.  

 
In total, a minimum of 56 soil samples will be collected along the entire campaign. These 
volumetric samples (collected with a sampling ring for the same soil measured with the 
HydraProbe) will be dried in ovens at the end of each day to calculate the gravimetric water 
content and the bulk density.  From there the volumetric water content will be compared with 
HydraProbe measurements taken at the same locations. These samples will cover a wide 
range of soil types and wetness conditions, providing a calibration equation for each farm if 
not the entire region.  

5.4.2 Vegetation biomass and water content 
The amount of vegetation biomass (Kg/m2) and vegetation water content (g of water/g of 
biomass) present above the soil surface strongly affects the microwave emission observed.  
Information on the spatial and temporal variation of these two quantities is needed for 
microwave emission modelling and so that relationships with infrared and visible remote 
sensing observations can be established.  An overview of the sampling approach is as follows, 
with detailed sampling procedures given in section 7:  
 

1. During regional sampling days:  

o A total of 16 vegetation biomass “quadrant” samples will be collected on a 
grid across the high resolution area on both farms in weeks 1 and 4.  These 
samples are intended to give an estimate of spatial variability in vegetation 
biomass and water content for a specific vegetation type. 

o A minimum of 6 vegetation biomass “quadrant” samples will be collected 
across each farm, with the aim of collecting at least one sample for every land 
cover class.  Sampling locations should be the same for all four regional 
sampling days so they can be used to assess temporal variation in vegetation 
biomass and water content. 

2. During farm scale sampling days:  

o A minimum of 2 vegetation water content “grab” samples will be collected for 
the farm reference vegetation at the end of the day.  Sampling location and 
vegetation type will remain the same for all the sampling days.  These samples 
are intended to give an estimate of temporal variability in vegetation water 
content for specific vegetation types. 

o Information about the plant height, using scale on HydraProbe pole. 

o Absence/presence of leaf wetness at start of day and time of burn off noted. 
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o During two of the Merriwa catchment sampling days there will also be an early 
morning “dew effect” flight (see Table 8).  On these days 2 further vegetation 
water content “grab” samples will be collected for the farm reference 
vegetation at the beginning of the day.  The purpose of these samples is to 
determine the amount of leaf water, so care must be taken not to shake the 
vegetation and loose this water. 

5.4.3 Vegetation type 
This information is important for the analysis of visual and infrared remote sensing 
observations, as well as general site characterisation. Dominant vegetation type will be 
recorded at each sampling site at least once during regional and/or farm scale sampling using 
the predefined list of vegetation types. 

5.4.4 Land use classification 
Land use is useful information that supports the interpretation of remotely sensed data of 
various nature. It is therefore important to characterize the main land uses in the study area, to 
complement land use mapping obtained from satellites like Landsat. Land uses will be 
characterized by visual observation during ragional sampling days, assigning every area 
sampled to one of the following subclasses (selected as the predominant land use classes in 
the region) 
 

1. Native pasture 
2. Improved pasture 
3. Range land 
4. Agricultural land:  Fallow 
5. Agricultural land: Wheat 
6. Agricultural land: Sorghum 
7. Agricultural land: Lucerne 
8. Agricultural land: Canola 
9. Agricultural land: Oats 
10. Agricultural land: Barley 
11. Forest land 
12. Urban 
13. Water body 

5.4.5 Vegetation Leaf Area Index (LAI) 
LAI assigns a quantifiable value to the amount of vegetation on the ground. Simply put, LAI 
is the leaf area per unit ground area as seen when looking down on vegetation. This parameter 
can be related to satellite and aircraft observations at infrared and visible wavelength to 
provide mapping of vegetation biomass over large areas.  Given that the temporal variability 
of this parameter is expected to be moderate during the campaign, measurements of LAI will 
be undertaken across farms on only one occasion each, rotated between teams during regional 
sampling days (team 1 in week 1 through team 4 in week 4). Measurements will be made at 
50m spacing at particular location in each farm, selected for high resolution LAI sampling.  
More extensive measurements will be made across the Stanley focus farm. 

5.4.6 Vegetation Normalised Difference Vegetation Index (NDVI) 
NDVI is a measure of the green, leafy vegetation density or the lushness of vegetation, and is 
a function of the difference between the visible and near-infrared sunlight that reflects off the 
vegetation.  Ground measurements of this parameter can be used to verify satellite and aircraft 
observations, expected to provide vegetation biomass and downscaling information over large 
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areas.  Given that the temporal variability of this parameter is expected to be moderate during 
the campaign, measurements of NDVI will be taken together with the LAI measurements. 

5.4.7 Surface roughness 
Surface roughness affects the microwave emission from the soil by effectively increasing the 
surface area of electromagnetic wave emission. Although its effect on observations at L-band 
frequency has been shown to be very poor, it is important to characterise the spatial variation 
of this parameter across the different land cover types. As temporal variation in surface 
roughness is expected to be secondary to spatial variation, it will be estimated once only 
during the campaign at a minimum of 4 locations on each farm to capture the different 
roughness characteristics according to land cover type. Measurements will be made using a 
pin profiler which will be rotated between teams on regional sampling days (team 1 in week 1 
through team 4 in week 4).  

5.4.8 Soil textural properties 
Information on soil textural properties is very important for modelling the microwave 
emission from the soil as it strongly affects the dielectric behaviour of the soil, a main factor 
in determining the microwave emission. Laboratory soil textural analysis will be performed 
on a subset of the soil samples for fraction of sand, clay and silt. 

5.4.9 Surface rock cover  
The effect of surface rock cover on microwave emission of the soil is still unclear and has not 
received special attention, despite the fact that large parts of the earth’s surface has significant 
fractional surface rock coverage.  One of the objectives of NAFE is to provide preliminary 
insight into this effect. This will be achieved by visually estimating the percentage of surface 
rock covered at all sampled sites on at least one occasion.  Furthermore, rock temperature will 
be monitored by installing a set of sensors on a rock in the Stanley focus farm. 

5.4.10 Leaf wetness 
Passive microwave soil moisture retrieval algorithms generally rely on one fundamental 
assumption: that the temperature of the soil and the vegetation canopy are the same.  This 
condition is more likely to be met early in the morning, when the effect of solar radiation is 
still minimal.  For this reason, satellites missions are generally planned with local overpass 
times early in the morning and late in the evening (eg, 6:00am/pm for SMOS and Hydros).  
However, the presence of dew on vegetation at that time of day is likely to affect the accuracy 
of the passive microwave observation.  One of the objectives of NAFE is to analyse the effect 
of dew on the microwave signal.  This will be accomplished with two targeted “dew effect” 
aircraft flights during the campaign (see Table 8). On these days ground crew will 
additionally collect two vegetation samples at the start of the day when dew is still present 
(see section 7 for details). In order to support the leaf wetness measurement made by the 
permanent stations, ground crew will be required to provide a visual estimate of the leaf 
wetness conditions during the early hours of the day. This will be accomplished by assigning 
a value to the wetness state of the plants, ranging from 0= no dew, 1 = moderately wet, 3 = 
very wet.this values will be promted in the individual iPAQs 
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6 Airborne Monitoring 
One of the major scientific components of the NAFE ‘05 field campaign is soil moisture 
mapping with the Polarimetric L-Band Multibeam Radiometer (PLMR) onboard the Small 
Environmental Research Aircraft (SERA). Technical details about the platform and scientific 
payload are presented in section 3. 

PLMR will be flown together with the thermal imager on all flights.  Additionally, for the 
Krui and Merriwa regions there will be NDVI scanner flights at the start, middle and end of 
the campaign, there will be digital photography at the start of the campaign only, and there 
will be lidar coverage undertaken most likely in February.  The PLMR flights will be made at 
a range of flying heights/resolutions across areas of different size throughout the northern half 
of the Goulburn River experimental catchment (see Figs. 23 and 24, and Table 6).  

In parallel with the flights of SERA, the area will be the object of a study conducted by a team 
from the ESA’s SMOS project. This group will be flying an aircraft carrying the EMIRAD 
system, The airborne, imaging, polarimetric EMIRAD system employs Ku (16 GHz) and Ka 
(34 GHz) band polarimetric radiometers at 2 different incidence angle (0° and 40°) to measure 
microwave britghtness temperatures.  

The aircraft will be based at Scone airport (Fig. 2) and will operate daily from there.  The air 
crew will be based in Scone and will be responsible for all pre-flight and post-flight activities. 

The most important component of the campaign is the high resolution soil moisture mapping 
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Figure 23. Schematic view of PLMR flights. Indicated flight heights are nominal mean 
altitudes above ground level. 
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over the focus farms. Such high ground resolution (62.5m) with an airborne passive 
microwave sensor is unprecedented (apart from a brief field trial). Therefore the scientific 
significance of this campaign will be outstanding.  Intermediate, medium and low resolution 
flights will provide mapping of soil moisture at coarser scales but for larger areas, providing 
the linkage with satellite footprints, allowing the multiple scientific objectives of the NAFE 
‘05 campaign to be addressed.  

Before illustrating in detail the flight plans and schedules for NAFE ‘05, it is helpful to 
explain briefly the rationale behind the flight line planning. 

6.1 Flight plans 
Flight routes and coverage’s at different altitudes have been carefully optimised in order to 
meet a number of objectives and logistic constraints.  These objectives include: 
 

• to cover as much of the study area at multiple ground resolutions during the campaign 
so as to obtain spatial soil moisture patterns at different scales for an extensive area; 

• to map the same area at multiple ground resolutions within the same day to avoid so 
much as possible temporal differences between maps at different resolutions; 

Table 6. PLMR flight description. Labels for the flight lines naming convention are also 
indicated. See table C2 in Appendix C for details about Medium and high resolution actual 
flight altitudes ASL 

FLIGHT 
NAME 

FLIGHT 
ALTITUDE 

(AGL) 

FLIGHT 
ALTITUDE 

(ASL) 

NOMINAL 
GROUND 

RESOLUTI
ON 

SWATH COVERAGE LABEL 

Low 
Resolution 10000ft 3430m 1000m 6000m 

Regional 
plus Krui 

and 
Merriwa 
sub-areas 

A 

Intermediate 
Resolution 5000ft 1910m 500m 3000m 

Krui and 
Merriwa 
sub-areas 

B 

Medium 
Resolution 2500ft 1050 -

1270m 250m 1500m Farms C 

High 
resolution 625ft 480 -700m  62.5m 375m Farms D 

Multi angle 2500ft 1210m 250m 1500m 
Merriwa 

Park focus 
farm 

E 

Dew effect 5000ft 1910m 250m 1500m Merriwa 
sub-area F 

NDVI 5000ft 1910m 2m 3000m 
Krui and 
Merriwa 
sub-areas 

G 

Aerial 
photography 5000ft 1910m 0.5m 3000m 

Krui and 
Merriwa 
sub-areas 

G 
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• to obtain patterns of brightness temperature nested between different resolution for 
scaling purposes; and 

• to have high resolution areas falling within the central pixels of the swath at each 
altitude (beam 1 or 2) to ensure they are not inadvertently missed due to diversions 
from planned flight paths and wing level attitude, or variations in ground elevation. 
 

The main constraints include: 
 

• to have sufficient overlap between adjacent flight lines in order to avoid areas of no 
data due to aircraft roll or variations in ground elevation; 

• to have sufficient overlap to allow temporal correction of data back to a reference 
time; 

• to have ground sampling points at the centre of aircraft pixels; 

• to have a nested network of ground sampling grids linked between different ground 
sampling resolution (e.g. every second sampling point at 250m spacing is also a 
sampling point for 500m spacing); 

• to keep the total number of mission flight hours for NAFE ‘05 below 92 hrs, due to 
legislative regulations; and 

• to keep individual flights to not more than 4-5 hours and daily total flight hours below 
6, to allow time for pre-flight and post-flight activities, avoid need for refuelling, and 
to allow the pilot to have a toilet break!! 

 
Fig. 24 illustrates schematically the way flight lines at different altitudes and ground sampling 
points at different resolution are linked in order to meet the above criteria. 
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Figure 24. Schematic view of flight plan rationale. 
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6.2 Low resolution mapping 
One of the objectives of NAFE ‘05 is the mapping of soil moisture at satellite footprint scale 
from an airborne platform.  This component of the airborne campaign will provide the 
necessary link between the passive microwave observations at high resolution and the 
equivalent spaceborne observation over large areas for scaling purposes.  Furthermore, low 
resolution observations from the aircraft are easier to accurately validate than the satellite 
observations, due to the smaller ground pixel size achievable (1km against 50km).  This will 
allow more accurate verification of the satellite-retrieved soil moisture over large areas by 
making use of the validated 1km product obtained with the aircraft.  This will also provide 
invaluable data for verification of AMSR-E downscaling algorithms and exploring the 
scaleability of radiobrightness equations from tower to AMSR-E scales. 

Low resolution mapping flights will be flown at a nominal altitude of 10,000ft AGL.  Actual 
altitude above sea level will be of 3430m, which results from flying above the median 
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Figure 25. PLMR low resolution flightlines for farm scale days on Krui area. Black 
solid lines are the flight lines at 10,000ft altitude (AGL), dashed black lines are the 
areas covered by the mapping. 
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elevation of the terrain in the Northern Goulburn study area (see table C1 in Appendix C for 
details about terrain elevation and flight altitude). Ground pixel resolution will vary from 
approximately 861m to 1066m due to variable terrain elevation, with a mean resolution of 
1km. Low resolution flights will be undertaken on various dates with different coverage’s 
during the campaign: 
 

• During regional days, low resolution flights will occupy the entire daily flying time 
and the coverage will be the area approximately covered by a satellite footprint (see 
Fig. 19 in section 5.3.1); 

• During farm scale days, low resolution flight will be undertaken together with 
intermediate, medium and high resolution flights, with coverage being one of the two 
sub-catchment study areas, either Krui or Merriwa (see Figs. 25 and 26). 
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Figure 26. PLMR low resolution flight lines for farm scale days on Merriwa area. 
Black solid lines are the flight lines at 10,000ft altitude (AGL), dashed black lines 
are the areas covered by the mapping. 
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A detailed flight schedule for NAFE05 is shown in Table 8.  Coordinates for starting and 
ending points of all the sets of flight lines, together with reference coordinates for the 
mapping extents, are given in Appendix A. For low resolution flight lines refer to Table A1 
(for regional days) and A2 (for farm scale days). 

6.3 Intermediate resolution mapping 
Flights at intermediate altitudes will allow investigation of the scaling nature of the 
microwave signature of soil moisture and will provide the link between regional scale 
microwave observations and the high resolution mapping, which is one main scientific 
objective of this campaign.  The acquisition of microwave brightness temperatures at so many 
different resolutions is unprecedented.  Investigation will focus on the relationship between 
brightness temperatures measured at different spatial resolution, down- and up-scaling issues. 
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Figure 27. PLMR intermediate resolution flight lines over the Krui study area. 
Purple solid lines are the flight lines at 5,000ft altitude, dashed purple lines are the 
areas covered by the mapping. 
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Intermediate resolution mapping will include flights at a nominal 5,000ft AGL over 2 sub-
areas in the northern half of the Goulburn River experimental study area, the Krui catchment 
and the Merriwa catchment.  The actual planned flight altitude due to terrain elevation is 1910 
ASL. This results from flying over the median terrain elevation of the Northern Goulburn 
study area. This reference elevation is the same for the low resolution and the intermediate 
resolution flights, and was chosen in order to maintain consistency between observations at 
different altitudes (i.e. linear scaling between ground pixels at different resolutions). These 
flights will entirely cover the NAFE focus farms and surrounding areas, and will therefore 
constitute an adequate medium resolution “frame” to the high resolution mapping of the 
individual farms. The only exception to this is the Illogan focus farm in the Krui study area.  
This farm is somewhat dislocated with respect to the other 4 farms in the area, being slightly 
isolated to the west. Given the restriction on the flight times, and the fact that the other 3 
farms are aligned on a North-South corridor, a decision was made to exclude this farm from 
the 5,000ft and 10,000ft altitude flights. The farm is covered by the 2,500ft and 625ft flights. 
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Figure 28. PLMR intermediate resolution flight lines over the Merriwa study area. 
Purple solid lines are the flight lines at 5,000ft altitude, dashed purple lines are the 
areas covered by the mapping. 
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Intermediate resolution flightlines will generally have different coordinates then those for low 
resolution flights. The lower altitude creates problems of a different nature which require 
dislocation of the flight paths (e.g, terrain elevation, matching with ground monitoring 
network and spatial sampling etc…). Tables A3 and A4 in Appendix A and Figs. 27 and 28  

6.4 Medium resolution mapping 
Flights at medium altitudes will allow investigation of the scaling nature of the microwave 
signature of soil moisture and will provide the link of the regional scale microwave 
observations with the high resolution mapping which is a main scientific objective of this 
campaign. 
 

S1

G6

K4

K3

K2

K1

0 5
Km

Krui Area
Pembroke

Stanley

Roscommon
Illogan Legend

SASMAS Site

NAFE focus farm

2500ft routes

2500ft flight area

High resolution area

Catchment boundary

 
Figure 29. PLMR medium resolution flight lines over the Krui study area. Blue 
solid lines are the flight lines at 2,500ft altitude, dashed blue lines are the areas 
covered by the mapping.  
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Mapping at medium resolution will be undertaken at farm scale, at a nominal altitude of 
2,500ft AGL, providing full coverage of all the NAFE focus farms at a ground resolution of 
approximately 250m. Actual flight altitude for these flights will be variable between farms, 
due to terrain elevation. Unlike for the low and intermediate flights, terrain elevation has a 
major impact on the ground resolution obtainable from these altitudes. In particular, due to the 
different mean elevations of the focus farms, it is not feasible to fly the whole medium 
resolution flight line set with constant altitude above sea level. This would in fact result in 
highly variable ground resolution. With the aim to maintain the highest possible consistency 
between the soil moisture maps, a decision was made to fly at 2,500ft (and 625ft for the high 
resolution flights) above the maximum elevation within each farm. This will guarantee greater 
uniformity in ground resolution as well as respect of the minimum flight altitude allowed 
without a low-level clearance, being 500ft. As for the medium resolution flight lines, flight 
altitude will vary between 1050m and 1270m ASL for the respective farms (see Appendix C), 
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Figure 30. PLMR intermediate resolution flight lines over the Merriwa study area. 
Blue solid lines are the flight lines at 2,500ft altitude, dashed blue lines are the areas 
covered by the mapping.  
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resulting in a ground resolution between 240m and 308m.(see table C2 Appendix C for 
details)  Medium resolution flight lines are described in Figs. 29 and 30 and Tables A5 and 
A6 in Appendix A. 

6.5 High resolution mapping 
The most important phase of the NAFE ‘05 campaign will be the monitoring of soil moisture 
at high resolution. PLMR will be flown at a nominal altitude of 625ft AGL to provide a 
nominal grid of 62.5m average near-surface soil moisture.  Such a high resolution in passive 
microwave remote sensing is unprecedented, and will give the opportunity to study the 
microwave emission from the soil surface at very high detail.  Together with the thermal-
infrared, near-infrared and visible sensors onboard the SERA, the data provided by PLMR 
will allow development of downscaling techniques from coarser resolution measurement.  
The relatively small size of the ground pixels will also overcome one of the biggest problems 
faced by remote sensing validation campaigns in the past; relating ground point measurements 
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Figure 31. PLMR high resolution flight lines over the Krui study area. Red solid 
lines are the flight lines at 625ft altitude, dashed red lines are the areas covered by 
the mapping 
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as being representative of the soil moisture content for a much larger and non-uniform area 
for remote sensing validation.  The validity of such an assumption is obviously weak and has 
been a constraint for accurate validation of satellite soil moisture products to date.  During 
NAFE ‘05, intense ground sampling of soil moisture on the areas covered by high resolution 
aircraft mapping will provide highly detailed evaluation of the PLMR soil moisture product 
over a range of topographic and land cover conditions. 

High resolution mapping flights will therefore be the core of the NAFE ‘05 aircraft campaign.  
Each farm will be mapped at 62.5m resolution twice a week (see Table 8) concurrently with 
intense ground monitoring of soil moisture as described in previous sections.  The time to 
cover the single farm will be small (approximately 20 minutes) therefore there shouldn’t be 
any appreciable time variation in soil moisture or temperature affecting the patterns. High 
resolution flight lines are described in tables A7 and A8 in Appendix A and illustrated in Figs. 
31 and 32 for the Krui and Merriwa area focus farms. The actual flight altitude for this set of 
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Figure 32. PLMR high resolution flight lines over the Merriwa study area. Red solid 
lines are the flight lines at 625ft altitude, dashed red lines are the areas covered by 
the mapping 
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flights will vary between 480m and 700m ASL for the respective farms, resulting in a ground 
resolution between 51m and 121m (see table C3 Appendix C for details). 

6.6 Multi-incidence mapping 
A number of high resolution flights have been scheduled for the specific purpose of 
answering the important science question of multi-incidence angle retrieval of soil moisture.  
During these flights PLMR will be mounted on the SERA so as to have the 6 beams looking 
along the flight direction, 3 forward and 3 backward.  In contrast to the “pushbroom” 
configuration, this set up will allow the same location on the ground to be remotely observed 
at three or more different incident angles.  Given that every observation at a particular angle is 
bi-polarised, this will provide a set of six or more independent brightness temperature 
observations. The combination of these measurements potentially allows retrieval of auxiliary 
data in addition to soil moisture. Together with intensive ground sampling, these observations 
will provide a useful dataset to investigate multi-angle retrieval techniques.  
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Figure 33. PLMR multi incidence angle flight lines over the Merriwa study area. 
Orange solid lines are the flight lines at 2,500ft altitude, dashed orange lines are 
the areas covered by the mapping in multi-angle configuration. 
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Multi-incidence observations will be undertaken at one particular farm, Merriwa Park in the 
Merriwa study area, on the same days when the area will be covered by multi-scale flights 
(see flight schedule in Table 8). Therefore, this experiment won’t require extra ground 
sampling apart from the regular one. The Merriwa Park farm has been chosen for this 
experiment due to his smooth topography and easy accessibility, which makes it very suitable 
for the intensive farm scale ground sampling required for this experiment. Furthermore, due 
to is proximity to Scone Airport, this will make sure that multi-incidence angle flights won’t 
interfere too much with the regular multi-scale flights held on the same day. For this 
experiment, PLMR will be flown following the high resolution routes over the farm, as 
described in previous sections, but at a nominal altitude of 2,500ft AGL.(1210m ASL) This 
will provide multi-angle coverage of the farm at a nominal resolution of 250m., with a range 
between 239m and 272m Fig. 33 illustrates this set of flight lines. As seen in the plot these 
flights are not expected to provide full coverage of the farm area, due to the distance between 
the flight lines being larger then the swath from that altitude. The start and end point 
coordinates are given in table A9 in Appendix A. 
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Figure 34.  PLMR dew effect flight lines at 5,000ft over the Merriwa study area. 

 



 47

6.7 Dew effect 
In order to analyse the effect of vegetation dew on the soil microwave signal, an early 
morning flight will be undertaken in the Merriwa area during some of Merriwa area sampling 
days. It is hypothesised that by comparison with the regular flights later in the day, this data 
will allow quantification of the role of vegetation dew on the microwave emission from the 
soil surface. Dew effect flights will include a loop covering the 4 focus farms in the Merrriwa 
area, as shown in Fig. 34. One single loop will be flown as early in the morning as possible. 
The nominal altitude for this flight will be 5,000ft AGL. This will allow direct comparison 
with the multi-scale 5,000ft flights over the area later on during the day. The actual flight 
altitude will be 1910m ASL, resulting from flying over the mean elevation of the Merriwa 
study area. This will result in a ground resolution between 405m and 554m. Subsequent to 
this loop the aircraft will return to Scone airport and take off for the regular multi-scale flights 
later in the day, when the dew has dried off.  The coordinates of the main waypoints in the 
dew effect flight loop are listed in Table A10 of Appendix A. 
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Figure 35. Flight lines for NDVI observations and aerial photography at 5,000ft 
over the Goulburn study area.  
 



 48

6.8 NDVI 
The Normalized Difference Vegetation Index, calculated from the visible and near-infrared 
radiation reflected by the vegetation, is a very useful parameter to characterise biomass 
density over large areas. For radiative transfer microwave modelling purposes, it is very 
important to collect information about the spatial and temporal variability of this quantity in 
order to properly quantify the masking of the microwave signal emitted from the soil by the 
vegetation canopy. For this purpose, the Tri-Spectral NDVI scanner onboard the SERA will 
be used to obtain high-resolution NDVI measurement for the study area. Given that NDVI is 
not expected to vary significantly over a 1 month time period, NDVI flights will be limited. 
On a date prior to commencement of the field campaign (~October 28th ), a dedicated NDVI 
flight will be undertaken to cover the Krui and Merriwa sub-areas (see Fig. 35). This flight 
will have a nominal altitude of 5,000ft AGL, actual flight altitude 1910m ASL, resulting in a 
ground resolution of approximately 2m. Subsequently and depending upon instrument 
availability, two other full coverage flights are planned on two dates during and at the end of 
the campaign, to ensure temporal variation is captured. NDVI flight lines are described in 
Table A11 of Appendix A. 
 

6.9 Aerial photography 
High resolution aerial photo coverage of the Northern Goulburn study area will be undertaken 
concurrently with NDVI observations on the flight prior to the field campaign start only. 
Refer to section 6.8 for flight line details. 

6.10 Calibration 
The polarimetric L-band multibeam radiometer needs “warm” and “cold” calibration before, 
during and after each flight.  The before and after flight calibrations are achieved by removing 
PLMR from the aircraft and making brightness temperature measurements of a calibration 
target and the sky (Fig. 36).  The during flight calibration is accomplished by measuring the 
brightness temperature of the sky during a series of steep turns and of a water body.  The 
water body is Lake Glenbawn, located approximately 100km east of the study area (Fig. 37).  
Ground requirement are the monitoring of the water temperature and salinity within the top 
1cm layer of water. Both quantities will be monitored continuously during the campaign using 
a UNIDATA 6536B® temperature and salinity sensor connected to a logger, located at LAT & 
LONG to be defined.  Furthermore, transects of water temperature and salinity in the top 1cm 
layer will be undertaken with a handheld temperature and salinity meter (Hydralab Quanta®) 
on four occasions.  This will involve making 2km long north-south and east-west transects at 
100m spacing once per week, centred on the monitoring station.  The purpose of these 
measurements is to check for spatial variability.  The air crew located at Scone airport will be 
responsible for these measurements. 
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6.11 Flight schedule 
All the flights described in the previous sections will be coordinated as per the calendar 
shown in Table 8. On regional days only low resolution flights will be undertaken covering 
the whole Northern Goulburn study area, concurrently with AMSR overpasses as described in 
section 2.1. The other days of the week will be occupied alternatively by multi-scale coverage 
of the two sub-areas, the Krui catchment and the Merriwa catchment. On these dates, flights 
will be undertaken at low, intermediate, medium and high resolution in this order. All the sub-
area will be entirely covered at each altitude, before descending to the following altitude. In 
Table 8 tentative NDVI flights are also indicated.  
 
 

 

 
Figure 36. Undertaking a sky cold point calibration with PLMR and the calibration box 
used for warm point calibration. 
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Figure 37. The location of Lake Glenbawn and Scone airport. The calibration flight line 
is schematically shown in solid white line. Dotted orange lines schematically indicate the 
planned water temperature and salinity transects. The approximate location of the 
permanent monitoring station is shown in blue. 
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This general schedule is likely to be affected by the weather conditions. In case of clouds, 
flights might be only partially completed, as per the following criteria 

• On regional sampling days, flight altitude will be moved below the clouds.  If clouds 
are lower than 5000ft no flights will be undertaken; 

• On farm sampling days, only the flights with altitude lower then the clouds will be 
undertaken. If clouds are lower then the 2500ft no flights will be undertaken. 

 
The flying time saved during these dates is expected to be used for extra NDVI mapping 
flights. 

For logistic purposes, it is important to maintain the total number of hours flown in any single 
flight to around 4-5 hours and a daily total of not more than 6 hours, to allow time for pre-
flight and post-flight activities on the PLMR and on the aircraft. This represented a major 
constraint in the planning of flight lines. Table 9 reports the estimated flight hours, including 
individual estimates for each set of flight lines and a summary of the daily total. As shown, 
the total number of hours is slightly higher then allowed (92 hours) for the whole field 
campaign. Nonetheless, the effective total is likely to be smaller due to possible adverse 
weather conditions resulting in cancelled flights and conservative flight time estimates.  The 
estimates for NDVI/photography flights is not included in this total as the initial flight will be 
done on a separate aircraft, meaning that these hours do not count towards the aircraft 
maintenance requirement.  While the second and third NDVI flights are planned for the same 
aircraft, it is expected that hours for this will become available due to cancellation of two or 
more days of flying as a result of poor weather conditions.  The NDVI flights have been 
estimated at 4.4 hours.   

Table 8. Schedule of flights during NAFE’05 
Mon 24/10 Sat 29/10

Norhern Goulburn
Mon 31/10 Sat 5/11

Norhern Goulburn
Krui Area
Merriwa Area

Mon 7/11 Sat 12/11
Norhern Goulburn
Krui Area
Merriwa Area

Mon 14/11 Sat 19/11
Norhern Goulburn
Krui Area
Merriwa Area

Mon 21/11 Sat 26/11
Norhern Goulburn
Krui Area
Merriwa Area

Thur 24/11Tue 22/11

Wed 2/11 Thur 3/11

Thur 17/11Wed 16/11

Fri 4/11

Tue 8/11 Wed 9/11 Thur 10/11 Fri 11/11

Tue 1/11

Fri 18/11

Fri 25/11

Tue 15/11

Tuey 25/10 Wed 26/10 Thur 27/10 Fri 28/10

Wed 23/11

   Low resolution  Intermediate res.   Medium res.

  Multi-angle    Dew effect    NDVI & Photo    NDVI (tentative)

   High resolution
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7 Field Work 
7.1 General guidance 
Sampling is conducted every day. It is canceled by the group leader if it is raining, there are 
severe weather warnings or a logistic issue arises.  
 

• Know your pace. This helps greatly in locating sample points and gives you 
something to do while walking.  

• All farmers in the area are aware of our presence on their property during the 4 weeks 
field campaign. However, if anyone questions your presence, politely answer 
identifying yourself as a scientist working on a University Of Melbourne soil moisture 
study with satellites. If you encounter any difficulties just leave and report the problem 
to the group leader.  

• Although gravimetric and vegetation sampling are destructive, try to minimise your 
impact by filling holes. Leave nothing behind.  

• When sampling on cropped areas, always sample or move through a field along the 
row direction to minimise impact on the canopy.  

•  Please be considerate of the landowners and our hosts. Don’t block roads, gates, and 
driveways. Keep sites, labs and work areas clean of trash and dirt.  

Table 9. NAFE’05 flight times. Times have been calculated assuming 
the indicated aircraft speed.  

Flight Distance (Km)
Aircraft 
Speed 
(Km/h)

Flight 
Time (hrs)

Calibration 25.0 144 0.2
Ferry Scone airport-Krui area 143.1 180 0.8
Ferry Scone airport-Merriwa area 82.7 180 0.5
Ferry Scone airport-AMSR area 129.3 180 0.9
Low resolution regional area 385.4 144 2.7

Low resolution 26.5 144 0.2
Intermediate resolution 84.5 144 0.6
Medium resolution 129.8 144 0.9
High resolution 262.3 144 1.8

Low resolution 61.0 144 0.4
Intermediate resolution 162.5 144 1.1
Medium resolution 77.7 144 0.5
High resolution 250.0 144 1.7
Multiangle flights 35.0 144 0.9
Dew  effect flights 64.4 144 1.1

3.7
4.5
4.5
5.3
5.5
93.8

Krui days (Cal+Ferry+Low+intermediate+medium+high)
Merriwa days (Cal+Ferry+Low+intermediate+medium+high)

TOTAL CAMPAIGN (4 weeks)

Merriwa days + multiangle flights
Merriwa days + dew effect flights

Summary

Merriwa area

Krui area

Regional days (Cal + Ferry + Low resolution)
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• Avoid driving through cropped areas. 
• Beware of the possible presence of stocks in the sampling areas.  
• Watch your driving speed, especially when entering towns. Be courteous on dirt and 

gravel roads, lower speed=less dust.  
• Drive carefully and maintain a low speed (~4 km/h) when going through tall grass 

fields. Hidden boulders, trunks or holes are always a danger. 
• When parking in tall grass for prolongated periods of time, turn off the engine. The 

catalytic converters can be a fire hazard.  
• Close any gate you open as soon as you pass.  
• For your own security, carry a cell phone or UHF transmitter. Check the mobile 

phonecoverage over your sampling area and be aware of the local UHF 
securityfrequencies. 

• In case of breakdown of any part of the sampling equipment, report immediately to 
the group leader. 

7.2 Focus farms 
Sampling of the farm area is intended to provide near-surface (0-5cm) hydra probe soil 
moisture measurement across the farm at the highest possible resolution, provided all the 
accessible areas on the property are covered by sampling. Together with soil moisture, 
supporting information are needed, for purposes of microwave emission modelling and the 
characterization of the  land cover distribution in the area. 

The person responsible for farm scale sampling (generally this will be each team’s leader, see 
Table 12) will be required to measure or characterise the following quantities (for detailed 
description on the sampling procedures, please refer to section 7.5): 
 

• 0-5cm soil moisture using the Stevens water Hydra Probe® instrument at each sampling 
location; 

• 0-5 cm gravimetric soil moisture (also used for soil texture and soil bulk density): a 
minimum of two samples are required, 1 dry and 1 wet. Location of these samples 
should vary from day to day in order to cover different soil types; 

• Dew present at the location. A numeric code will be used to represent the amount: 0 = 
no dew; 1=some dew; 2=a lot of dew. This is a purely qualitative measure. (this is only 
required until dew dries off completely); 

• Vegetation type at each location  
• GPS locations of all sample point locations 

 
The soil moisture measurements will be taken on grids that will generally vary between farms 
(see section 4.7.2). The planned sampling locations for each farm will be loaded onto the 
iPAQ, and visible with the GIS software ArcPad. Sampling will involve navigating to the 
sampling location through the use of the GPS receiver, which displays the real-time position 
on the same ArcPAd screen where the sampling grid is visible, and then once located the 
point takes all the required measurements. All the measurements will be electronically stored 
in the iPAQ, by prompting the values into forms. For details see section 7.5.1.  

Each person responsible for the farm scale sampling will be equipped with the items listed 
below. The person will be individually responsible for the use and care of the equipment 
throughout the campaign, and must report any damage to the group leader immediately so that 
actions can be taken to repair or substitute the damaged item. 
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• 1 4WD vehicle or quad bike 
• 1 iPAQ pocket PC  
• 1 wireless GPS receiver 
• 1 Stevens Water Hydra Probe Stevens water Hydra Probe® 
• 1 Bumpack 
• 1 Gel cell battery 
• 1 Gel cell battery connector 
• 1 spare gel cell battery 
• 1 soil sampling kit including: sampling ring (approximately 7.5cm diameter and 5cm 

depth), hammer, garden trowel, blade, gloves, plastic bags, rubber bands, permanent 
markers; 

• 1 hardcopy of the farm sampling plan 
• 1 fieldbook 
• 1 UHF receiver. 
• Pen 

7.3 High resolution focus areas 
High resolution areas are 150m x 150m in size and are intended to provide high resolution 
near-surface soil moisture measurements for the validation of the PLMR high resolution 
passive microwave observations. Within each farm, 1 such area has been selected as 
explained in section 4.7.2. In every team there will be 2 people specifically dedicated to the 
sampling of these areas (in the morning) and the surrounding 62.5m grid (in the afternoon). 

The personnel responsible for the focus areas will be required to measure or characterise the 
following quantities (For detailed description on the sampling procedures, please refer to 
section 7.5): 

• 0-5cm soil moisture using the Stevens water Hydra Probe® instrument at each sampling 
location; 

• GPS locations of all sample point locations (only in the afternoon for 62.5m sampling , 
NOT for high resolution areas) 

• Vegetation water content: 2 samples (“grab” type, see section 7.6.4) at the end of the 
day at two corners of the high resolution areas (farm reference vegetation). The 
location of these samples will remain the same throughout the campaign. 

• Vegetation dew: 2 samples (“grab” type) at the beginning of the day at two corners of 
the high resolution areas (farm reference vegetation). The location of these samples 
will remain the same throughout the campaign. These samples will be required only 
when dew effect flights are scheduled for the day (see Table 8). 

Each person responsible for the farm scale sampling will be equipped with the items listed 
below. The person will be individually responsible for the use and the care of the equipment 
throughout the day, and must report any damage to the group leader immediately so that 
actions can be taken to repair or substitute the damaged item.  
 

• 1 iPAQ pocket PC  
• 1 wireless GPS receiver 
• 1 Stevens Water Hydra Probe Stevens water Hydra Probe® 
• 1 Bumpack 
• 1 Gel cell battery 
• 1 Gel cell battery connector 
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• 1 spare gel cell battery 
• 1 vegetation sampling kit including: quadrant (50cm x 50cm), vegetation clipper, 

scissor, gloves, plastic bags, rubber bands, permanent markers 
• 1 hardcopy of the farm sampling plan 
• 1 fieldbook 
• Pen 

 
Morning 
The high resolution areas will be clearly marked prior to the field campaign with 4 pegs (1.5m 
high) in the 4 corners of the 150m x 150m grid. Given that some of these areas will be in 
paddocks with crops up to 1m high, the top of the pegs will be coloured white, ensuring that 
they will are clearly visible. Pegs will remain in place during the entire campaign and are not 
to be removed. The area within the grid is to be sampled at two different resolutions: the 
whole grid (150m x 150m) will be sampled on a 12.5m grid, while an inner sub-grid (75m x 
75m) will be the object of a 6.25m intensive sampling. The sampling resolution chosen is 
intended to maintain consistency between the PLMR observations (aboard the aircraft) and 
the ground sampling for data upscaling and downscaling purposes. The sampling will be 
undertaken using Stevens water Hydra Probe® to take one 0-5cm soil moisture reading at each 
point of the 12.5m and 6.25m grids. The probe readings will be stored electronically in the 
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ground 
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iPAQ (see section 7.5.1). 

The 12.5m and 6.25m sampling points will be marked by use of ropes labelled at 12.5m and 
6.25m spacings. The system is explained hereby and illustrated schematically in Fig. 39. Two 
of the ropes (side rope 1 and side rope 2) will be laid prior to the field campaign and will 
remain in place for the entire four weeks. These ropes will be labelled with alphabetic 
characters; 12.5m points will be labelled with upper case, from “A” to “M”, 6.25m points will 
be marked with lower case letters, from “a” to “m”, starting at 37.5m from the edge of the 
high resolution area and forming an inner grid of 75m x 75m. The cross rope, will be 
removable, and will be laid at the beginning of each sampling day and collected at the end of 
the day, to be used on the other farm the next day. On this rope 12.5m points will be marked 
with large numbers from 0 to 12, while 6.25 m will be marked with small numbers from 0 to 
12. Each point will therefore be uniquely identified by a letter/number combination (eg, B14). 
As shown in Fig.38, where a point belonging to the 12.5m grid will overlap a point belonging 
to the 6.25m grid, the point will be identified with both labels. 

The sampling strategy for the two people dedicated to the high resolution areas will be the 
following:  
 

• Upon arrival at the high resolution area in the morning, lay down the cross rope on row 
“A” between points A0 and A12.  

• Sample row “A” converging to the middle from the side ropes (i.e. 1 person starts at 
A0, the other at A12, and meet in the middle) 

• When finished the row, move the cross rope to next row “B” and repeat the sampling. 
• When at row Da (beginning of 6.25m inner grid), sample all the points on the row in 

sequence  
• When finished all the grid, remove the cross rope. 
 

Some useful items on this sampling strategy are: 
 

• Due to the length of the cross rope (150m) and the presence of vegetation (up to 1m 
high in places), the process of moving the rope sideways and tending it between the 
two side ropes can be difficult. It is suggested that the rope be moved in the following 
manner: 

1. When the two people sampling the hi-resolution grid meet in the middle of 
the rope, together, they should pick up the rope and walk approximately 
12.5m (or 6.25m) in the direction the rope is to be moved 

2. Still holding the rope securely, each individual should walk back towards 
their respective side ropes 

3. Upon reaching the side rope untie the cross rope and move to the next 
sampling point along the side rope 

4. Pull the cross rope tight from each end so it clears the ground and then lay 
it down. 

5. Tie the cross rope to the side rope and begin sampling. 
• In the inner 75m x 75m square, where the 12.5m grid is overlapped with the 6.25m 

grid, it is recommended to sample all the points in sequence as they appear on the rope, 
NOT the 12.5m before and the 6.25m after.  

The planned sampling grids for each high resolution area will be loaded onto the iPAQ, and 
visible with the GIS software ArcPad. Sampling will involve navigating to the sampling 
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location using the ropes and taking the measurements which will be electronically stored in 
the iPAQ, by prompting the values into forms. For details see section 7.5.1. 
 
Afternoon 
In the afternoon the people responsible for high resolution areas will be required to sample the 
62.5m planned sampling grid, taking 0-5cm soil moisture sampling with Stevens water Hydra 
Probe® at each point. The 62.5m sampling grid will have to be divided between the two 
personnel by mutual agreement in order to optimise the sampling time. 

The planned sampling locations for each farm will be loaded onto the iPAQ, and visible with 
the GIS software ArcPad. Sampling will involve navigating to the sampling location through 
the use of the GPS receiver, which displays the real-time position on the same ArcPAd screen 
where the sampling grid is visible, and then once located the point take all the required 
measurements. All the measurements will be electronically stored in the iPAQ, by prompting 
the values into forms. For details see section 7.5.1. 

7.4 Regional sampling 
Regional sampling will take place every monday and is intended to provide large scale (1km) 
near surface soil moisture measurements for validation of the PLMR and AMSR-E soil 
moisture product, as well as for scaling purposes as outlined in the objectives section of this 
work plan. On these dates, the sampling operations will be divided into 2 main phases: 

• Soil moisture sampling across the region (including farms) at 1km resolution 

• Vegetation sampling at the high resolution and surrounding areas  

7.4.1 Soil moisture sampling at regional scale 
Teams will sample at 1km spacing the two respective farms, one in the Merriwa and one in 
the Krui area (see Table 12), as well as the areas immediately adjacent to the main roads 
connecting the two farms. At each sampling location, teams will be required to measure or 
characterise the following quantities (for detailed description on the sampling procedures, 
please refer to the section 7.6): 
 

• 0-5cm soil moisture using the Stevens water Hydra Probe® instrument at each sampling 
location; 

• Landuse (on week 2 only); 
• Vegetation type (on week 2 only); 
• Dew present at the location. A numeric code will be used to represent the amount: 0 = 

no dew; 1=some dew; 2=a lot of dew. This is a purely qualitative measure. (this is only 
required until dew dries off completely); 

• Percentage of surface rock cover: visual estimation and digital photography. This is to 
be done only on one occasion; 

• GPS locations of all sample point locations 
 

Furthermore, the following quantities will need to be measured throughout the day, following 
the indicated criteria. 

 
• Vegetation Biomass: a minimum of 6 samples per farm, aiming at the dominant 

vegetation cover type in each farm; 
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• 0-5 cm gravimetric soil moisture (also used for soil texture and soil bulk density): a 
minimum of 6 samples per farm are required, aiming at different soil types and 
wetness conditions; 

• Surface roughness using pin profiler: a minimum of 4 measurements per farm are 
required. This is to be done only on one occasion due to instrument availability 

 
The soil moisture measurements will be taken on grids that will generally vary between farms 
(see section 4.7.2). The planned sampling locations for each farm will be loaded onto the 
iPAQ, and visible with the GIS software ArcPad. Sampling will involve navigating to the 
sampling location through the use of the GPS receiver, which displays the real-time position 
on the same ArcPAd screen where the sampling grid is visible, and then once located the 
point take all the required measurements. All the measurements, apart from the surface 
roughness, will be electronically stored in the iPAQ, by prompting the values into forms. For 
details see section 7.5.1.  

Each person responsible for the soil moisture sampling during regional days will be equipped 
with the items listed below. 
 

• 1 iPAQ pocket PC  
• 1 wireless GPS receiver 
• 1 Stevens water Hydra Probe® 
• 1 Bumpack 
• 1 Gel cell battery 
• 1 Gel cell battery connector 
• 1 spare gel cell battery 
• 1 vegetation sampling kit including: quadrant (50cm x 50cm), vegetation clipper, 

scissor, gloves, plastic bags, rubber bands, permanent markers 
• 1 soil sampling kit including: sampling ring (approximately 7.5cm diameter and 5cm 

depth), hammer, garden trowel, blade, gloves, plastic bags, rubber bands, permanent 
markers; 

• 1 hardcopy of the farm sampling plan 
• 1 fieldbook 
• Pen 

 

7.4.2 Vegetation sampling at the high resolution areas and surroundings 
Intensive vegetation sampling will be undertaken at each farm’s soil moisture high resolution 
area by at least 2 team members not involved in the soil moisture sampling. Every high 
resolution area will have to be sampled in half a day, one in the morning and one in the 
afternoon, accordingly with the farm visited by the team. Sampling will involve 
measurements of the following quantities: (for detailed description on the sampling 
procedures, please refer to the section 7.6): 

 
• Vegetation biomass: a minimum of 16 samples (“quadrant” type, see section 6.6.4) 
• Vegetation height at each vegetation sampling site. This will be done only on week1 

and week 4  
• Vegetation Leaf area index (LAI): at each vegetation sampling site. This will be done 

on one week only during the campaign due to instrument availability. 
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• Vegetation Normalised Difference Vegetation Index (NDVI) at each vegetation 
sampling site. This will be done on one week only during the campaign due to 
instrument availability. 

 
There will be a specific ground crew member dedicated to the LAI and NDVI measurement, 
which will rotate through the teams on regional days (i.e. will make measurement of LAI and 
NDVI on each week on different farms). 

All the above quantities will be initially measured on a 50m grid in the high resolution area, 
subsequently on two transects at 62.5m spacing (centred on the high resolution area) in the 
surrounding areas. These additional measurements will be depending on time availability. 
This sampling scheme is illustrated in Fig. 40. At each sampling location all the above 
quantities will be measured, with some repeats for the LAI and NDVI measurement as 
indicated in section 7.4.2.1 and 7.4.2.2 below. It is suggested to first sample the high 
resolution area, then transect 1 from west to east, followed by transect 2 from south to north. 

The group responsible for vegetation sampling during regional days will be equipped with the 
items listed below (collectively): 
 

• 1 iPAQ pocket PC  
• 1 wireless GPS receiver 
• 1 Bumpack 
• 1 Gel cell battery 
• 1 Gel cell battery connector 
• 1 spare gel cell battery 
• 1 vegetation sampling kit including: quadrant (50cm x 50cm), vegetation clipper, 

scissor, gloves, plastic bags, rubber bands, permanent markers 
• 1 hardcopy of the farm sampling plan 
• 1 fieldbook 
• Pen 

 
• 1 LAI 2000 device 
• 1 Handheld radiometer device 

 
Normalised Difference Vegetation Index (NDVI) 
NDVI measurements will focus on the 150m x 150m high resolution grid. A measurement 
will be taken at each of the 16 vegetation biomass and water content sample points on the 
high resolution grid. Upon completion of these 16 measurements over the high resolution 
grid, time permitting, NDVI measurements will then be taken on two transects of the 62.5m 
farm scale grid.  

One of the ground crew personnel (Jose Fenollar) will be specifically dedicated to the 
NDVI and LAI measurements. He will rotate through the teams spending one day with 
each team on regional sampling days (Mondays), this way covering the LAI/NDVI 
requirements once per each farm during the campaign. 
 
Leaf Area Index (LAI)  
LAI measurements will also focus on the 150m x 150m high resolution grid and be made at 
the same locations as for NDVI measurements.  
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7.5 Sampling protocols 
7.5.1 iPAQ procedures 
Each person will be operating one of the iPAQs, for use with the Stevens water Hydra Probe®, 
both during regional and farm scale days. Every person will be responsible for their own 
iPAQ throughout the entire campaign. All iPAQs and accessories will be labelled with 
numbers, the same number indicating the accessories belonging to the same individual set. 
Basic items for the daily use of the iPAQ are the following: 
 
Morning 

• Check that the battery is at 100% recharge (Fig.41) 
 
Start of sampling 

• Take the iAPQ and GPS device out of the container. Install the iPAQ on the mount (see 
section 7.5.2) 

• Ensure the gel cell battery, iPAQ, GPS receiver and hydra probe are all properly 
connected. 

• Turn on the iPAQ by pressing the button at the top right corner of the device (Fig.41) 
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Figure 40. Vegetation sampling scheme for regional days 
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• Open ArcPad by tapping the program 
access icon on the top left corner of the 
iPAQ screen (Fig.41) and select 
“ArcPad”. 

• If working with GPS: 
o Turn on the GPS receiver  
o Establish a wireless connection 

between GPS and iPAQ (see 
below) 

o Activate the GPS in ArcPad, by 
tapping the “GPS” icon and 
selecting “GPS active” 

 
During the day 

• Ensure the iPAQ is constantly plugged 
into the gel cell battery. If so, the orange 
light on top of the device will be blinking 
(recharging) or still (fully recharged). 

• Ensure the wireless connection with the 
GPS is active. If so the Bluetooth 
indicator on the iPAQ will be blinking 
blue. 

 
Evening 

• At the end of the sampling: 
o Turn off the iPAQ and the GPS device 
o Disconnect the iPAQ from the cables connected to its USB port 
o Disconnect the battery adaptor from the gel cell battery 
o Take the iPAQ off the mount and store it together with the GPS device in the 

iPAQ container. DO NOT leave the iPAQ on the mount, as it could get 
damaged during the car trip back to Merriwa. 

• Download the data collected into the desktop computer in the right folders (see section 
7.5.8 for detailed archiving procedures) 

• Load into the iPAQ the blank files for the next day 
• Plug the iPAQ for recharge and leave overnight 
 

Connect the GPS to the iPAQ  
A connection between iPAQ and the GPS device is required for (i) farm scale soil moisture 
sampling (1km, 500m, 250m or 125m resolution)  (ii) high resolution area surroundings soil 
moisture sampling (62.5m resolution) and (iii) regional days soil moisture sampling. 

The GPS device needs to be recognised by the iPAQ BEFORE activating the GPS from 
ArcPad, as explained in the previous section. To establish a wireless connection between 
iPAQ and the GPS device: 
 

• Tap the “GPS connection” icon in the bottom right corner of the screen 
• Activate Bluetooth by tapping the “Bluetooth” icon 
• Select “Bluetooh Manager” 
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Figure 41. iPAQ basic features 
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• Tap and hold the icon representing the GPS device you are connecting to, and select 
“connect”. If this is successful, two horizontal green arrows will, be added to the GPS 
device icon 

• Exit from Bluetooth manager 
 
iPAQ Troubleshooting 
The iPAQ doesn’t respond to any input. 
Perform a soft reboot of the device by GENTLY pressing the button on the bottom side of the 
device with the iPAQ pencil. The GPS connection will then have to be re-established and 
ArcPad started again. No data will be lost. 
 
The iPAQ is dead, the battery indicator doesn’t blink despite the battery being properly 
connected. 
The iPAQ battery is too low. Extract the battery, leave it disconnected from the device for 5 
minutes, re-insert the battery and leave charging for at least 30 minutes, until the battery 
indicator starts blinking again. 
 
The iPAQ doesn’t connect with the GPS device 
Make sure the GPS device in turned on and charged 
 
GPS Troubleshooting 
There’s no GPS icon in the Bluetooth manager 
The GPS device hasn’t been bonded with the iPAQ. Make sure the GPS device is turned on 
and charged. To bond the GPS device, tap “new” and select “explore a Bluetooth device”. 
When the GPS device is detected, tap the serial port option “SPP serial port”. When the bond 
is confirmed, tap “finish” and connect to the GPS device as explained above in “Connect the 
GPS to the iPAQ connection” 
 
ArcPad Error: no fix GPS position 
The GPS device is unable to determine a fix position. Stay in place and wait for a few minutes 
until a fix position is achieved.  
 
ArcPad Error: too many data are received from your GPS device 
Press ok and Ignore 
 

7.5.2 HydraProbe sampling procedure 
System set-up 
The soil moisture measuring system will be set up as follows (see Fig. 42): 

• Stevens water Hydra Probe® firmly attached at the bottom of a PVC pole 
• iPAQ mounted on top of the pole. The Hydra probe cable is directly connected to the 

USB port at the bottom of the iPAQ (see Fig. 41), through a sequence of converters 
which will be firmly attached to the pole. 

• The gel cell battery necessary to provide power to the iPAQ, the GPS device and the 
Hydra probe will be carried in a bumpack around the waist, together with the GPS 
device 
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• The gel cell battery will be connected 
to all the devices through a single 
cable running from the bumpack to 
the pole, firmly attached to the pole at 
waist height. 

• Disconnection from the pole will be 
possible by unplugging the gel cell 
battery adaptor in the bumpack 

 
The iPAQ has been programmed in order to 
automatically read the Hydra probe at the 
desired sampling location when a specific 
command is sent from the iPAQ, and storing 
the probe readings in a file together with the 
GPS coordinates provided by the GPS 
device. This is achieved with the software 
“ArcPad”, a Geographic Information System 
for Handheld devices. Hereby the ArcPAd 
sampling procedures are described: 

The ArcPad program developed for 
NAFE’05 to read the Hydra probe has 
essentially two functions: 
 

1. GPS mode: Stores the readings of the 
probe with the coordinates given by 
the GPS device. This will be used 
during the soil moisture sampling at 
farm scale and regional scale and will 
be active when the GPS is made active in ArcPad 

2. GRID mode: Stores the readings of the probe with the coordinates of the points visited 
by the user on a predefined grid. This will be used for the sampling of the high 
resolution areas, where the predefined grid is that illustrated in section 7.3. This mode 
will be active when the GPS is deactivated. 

 
In both cases, all the necessary commands will be given through the ArcPad screen, with 
basically no need to access any ArcPAd menu items. On the ArcPad screen there will be 4 
visible layers: 

• Topographic map of the area 
• Grid of planned sampling locations 
• Grid of effective sampling locations: this is the file that will be edited every time a soil 

moisture reading is taken. 
• GPS position indicator 

 
Sampling procedure 
The procedure for taking a soil moisture reading with this system is: 
 

1. Navigate to the sampling point: 
o If in GPS mode, the exact location will be indicated by the overlapping of the 

GPS position indicator and the sampling point on the planned sampling grid 

 
Figure 42. Typical set up of a soil moisture 
measuring unit, with hydra probe 
communicating directly to an iPAQ and a 
wireless GPS receiver. Everything is powered 
by a battery carried by the user. 
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o If in GRID mode, point will be identified on the ground, as explained in 
section 7.3 

2. Insert the probe vertically in the ground, until the probe head base is in intimate contact 
with the ground surface.  

3. Take a hydra probe reading: 
o If in GPS mode: tap the question mark icon on the bottom left corner of the 

ArcPad menu. This will activate the program that reads the hydra probe 
values. To take a reading, tap ANYWHERE on the screen and wait. 

o If in GRID mode: tap the question mark icon on the bottom left corner of the 
ArcPad menu. To take a reading, tap on the point labelled as the point you 
navigated to on the ground (e.g. B17) and wait 

4. The process of reading the hydra probe takes some 4-5 seconds. During this time wait 
and DO NOT tap anything on the iPAQ screen 

5. After 4-5 seconds, a form appears in ArcPad containing several text boxes: 
o The point sequential number (for GPS mode) or the point label (for GRID 

mode) 
o The Hydra probe soil moisture reading (in volumetric water content fraction) 
o The Hydra probe soil temperature reading (in Celsius degrees) 
o A comment text box 
o A vegetation type text box, to be chosen from a drop down list 
o A landuse text box, to be chosen from a drop down list 
o A surface rock cover text box, to be chosen from a drop down list 
o A dew estimation text box, to be chosen from a drop down list 
o A text box for the vegetation sample sequential ID 
o A text box for the soil sample sequential ID 

6. After checking on the form that all the values have been properly inserted, the user can: 
o Accept the point by tapping “ok” on the top right corner of the form. This will 

store the point and measurement taken. 
o Cancel the point by tapping “cancel”, next to the “ok” button. This will erase 

the current record permanently. You will then need to repeat the above process 
to retake the readings. 

 
ArcPad troubleshooting 
Error windows might appear while interrogating the probe through ArcPad. Error messages 
are generally vague and of the kind “error, line 89, source text unavailable”. Usually, these are 
associated with lack of power to the probe or disconnection of one of the many component of 
the iPAQ-Hydra probe system. The general rule is to press “ok” on the error window, wait a 
few seconds and retry the command. If the error persists, please do the following: 
 

• Check that all the connections are firm 
• Check that the battery adaptor is firmly connected to the battery 
• Check that the iPAQ USB serial port is firmly connected 
• Check that the iPAQ is not low in battery 

 
If the problem persists, change the gel cell battery with the spare one.  
 

7.5.3 Gravimetric sampling procedure 
• Remove vegetation and litter.  
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• Lay the ring on the ground  
• Put the wooden base horizontal on top of the ring and use the hammer to insert the 

ring in the ground, until its upper edge is levelled with the ground surface. 
• Use the garden trowel to dig the side of the ring. The hole should reach the bottom of 

the ring (5cm) and sufficiently large to fit the spatula 
• Use the spatula to cut the 0-5cm soil sample at the bottom of the ring 
• Place the 0-5cm soil sample in the plastic bag and seal with the rubber band provided 
• Label the external plastic bag as farm/team/date(dd-mm-yy)/time(hh:mm)/Sample 

ID 
 

7.5.4 Gravimetric soil moisture sample processing  
All gravimetric soil moisture samples are processed to obtain a wet and dry weight. It is the 
sampling teams responsibility to deliver the samples, fill out a sample set sheet, one sheet per 
day per team, and record a wet weight at the field headquarters. All gravimetric soil moisture 
samples taken on one day will be put to dry in the ovens at 105oC in the evening and will 
remain in the ovens until the following evening (approximately 24 hours).  
 
Wet Weight Procedure  

1. Turn on balance.  
2. Tare.  
3. Obtain wet weight to two decimal places and record on sheet.  
4. Process your samples in numeric order, carefully emptying contents in the trays 

provided.  
5. Place the used bags in order. The labelled bags will be needed for permanently storing 

the samples after the drying procedure is finished. 
 
Dry Weight Procedure  

1. All samples should remain in the oven for a minimum of 20-22 hours at 105oC.  
2. Turn off oven and remove samples for a single data sheet and place on heat mat. These 

samples will be hot. Wear the gloves provided  
3. Turn on balance.  
4. Tare.  
5. Obtain dry weight to two decimal places and record on sheet.  
6. Process your samples in sample numeric order, returning samples to the original plastic 

bags and store in the assigned locations.  
7. Load new samples into oven.  
8. Turn oven on.  

 

7.5.5 Vegetation sampling procedure 
 
Vegetation biomass ( “quadrant”  type sample) 
A 0.5m x 0.5m quadrant will be used to obtain vegetation samples. The procedure for 
vegetation biomass sampling is as follows: 
 

1. Note and record type of vegetation to be sampled (e.g. crop, native grass, improved 
pasture) 
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2. Randomly place 0.5m x 0.5m quadrant on ground near area to be sampled 
3. Label bag provided using a permanent marker with the following information: 

farm/team/date(dd-mm-yy)/time(hh:mm)/Sample ID 
4. Take photo of area to be sampled prior to removal of vegetation 
5. Record sample location with GPS and/or sample location reference number 
6. Remove all aboveground biomass within the 0.5m x 0.5m quadrant using vegetation 

clipper and scissors provided  
7. Place vegetation sample into labelled bag provided 
8. Close bag with sample using rubber bands provided 
9. Take photo of sample plot following removal of aboveground biomass. 

 
Vegetation water content (“grab”  type sample) 
The purpose of the grab sample is to characterise the ratio between vegetation dry biomass 
and vegetation water content, and monitor its evolution in time. Therefore a grab type 
vegetation samples is taken simply cutting off the part of a reference plant that sticks out of 
the ground.  These g/g measurements can later be scaled to g/m2 using the reference 
vegetation biomass measurements from quadrants. 
 
Vegetation dew sample 
This kind of sampling is done in a very similar way to the “grab” vegetation water content. 
Please refer to previous sections for sampling procedures. Particular attention will have to be 
paid in order to make sure that all the water present on the plant is collected in the sample 
bag. It is suggested to cover the entire plant with the sample bag before cutting it at ground 
level. 
LAI measurements 
Measurements of Leaf Area Index will be taken with an Exotech Inc. LAI-2000® device, 
operated exclusively by one team member. Sampling procedures for this instrument therefore 
will not be included in this work plan.  
 
NDVI  measurements 
Measurements of Normalised Difference Vegetation Index will be taken with an Exotech Inc. 
Hand Held Radiometer 100BX® device, operated exclusively by one team member. Sampling 
procedures for this instrument won’t therefore be included in this work plan.  
 

7.5.6 Oven drying procedure – vegetation 
Vegetation samples collected will be processed either in Merriwa or at The University of 
Newcastle. It is the responsibility of the teams to deliver the vegetation samples to NAFE 
headquarters at the end of the day, weigh and store them in the appropriate place. The 
procedure for vegetation biomass processing will be as follows: 
 

1. Weigh samples before drying in ovens and record green biomass 
2. Weigh the plastic bag and tag and record weight and subtract from sample green 

biomass 
3. Dry samples in oven at 40oC until constant weight is reached 
4. Weigh dry vegetation samples and determine dry biomass. 
5. Vegetation water content will be determined by subtracting the sample dry biomass to 

the sample green biomass 
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7.5.7 Surface roughness procedure 
Surface roughness measurements will be taken a using a 1 m long drop pin profiler with a pin 
separation of 25 mm (see Fig. 43). At each surface roughness sampling location, 2 
measurements will be taken with respectively North-South and East-West orientation. The 
procedure for one measurement is a s follows: 
 

1. Note on the field book the position of the roughness measurements. 
2. Position the profiler making sure that all the pins touch the soil surface. The pins 

MUST NOT be inserted into the ground or resting on top of vegetation. 
3. Note on the field book the height reached by each pin, as read on the background grid. 

Pins has to be read from left to right, and indicated on the field book with sequential 
numbers from 1 to 41. 

 
In the evenings, all readings will then be transcribed into an appropriate excel file named 
“Surface roughness”, into the folder named as the farm of interest. 

7.5.8 Data archiving procedures 
All data collected during the day will be downloaded and backed up upon return to the NAFE 
headquarters on desktop PCs. There will be 2 desktop computers available for the 
downloading operations. It will be the responsibility of the teams to download all data 
collected with the iPAQs onto the appropriate folders (see “downloading” section below) and 
to insert into an excel worksheet all the data collected in the fieldbooks.  
 
 

 
Figure 43. Pin profiler for surface roughness measurements 



 67

File structure 
 

 
Downloading 

• iPAQ data: Each person will download the iPAQ shapefile “hydra.shp” into the folder 
“Farm name”/iPAQ/”date”/.The file hydra.shp MUST be renamed with the person 
name  BEFORE downloading, when the file is still on the iPAQ. Downloading will 
be done with the software Microsoft ActiveSync installed on the desktop computers. 
To download: 

o Connect the iPAQ to the desktop computer through the iPAQ USB cable 
o Start Microsoft ActiveSync 
o Establish a “Guest” partnership between the iPAQ and the desktop computer 
o Navigate to the /SD card/Goulburn folder on the iPAQ 
o Rename the file hydra.shp with your name 
o Copy the file and past it into the appropriate folder on the desktop computer 

(see Fig. 44) 
• Vegetation data: Each team will insert into a excel worksheet named 

“Veg_weights.xls” contained in the folder “Farm name”/VEGETATION/”date”/ ,the 
samples ID of the vegetation samples taken, as a reference for the subsequent drying 
operations. 

• Gravimetric data: Each team will insert into a excel worksheet named 
“Soil_weights.xls” contained in the folder “Farm name”/GRAVIMETRIC/”date”/ ,the 
samples ID and  wet weight of the soil samples taken. 

• Surface roughness data: The readings of the pin profiler will be inserted be each team 
into a excel worksheet named “Profiler.xls” 
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Figure 44. Tree diagram of the NAFE file structure 
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• AMSR sampling data: Each team will download the the iPAQ shapefile 
“AMSR_teamX.shp” into the folder AMSR SAMPLING/”date”/ 

 
Downloading 
Daily data will be backed up on both DVD’s and external hard disk drive. It will be the 
responsibility of the project leader to do the back up. 

8 Logistics 
8.1 Operation bases 
Ground crew will be based in the town of Merriwa, located in the heart of the study area. The 
NAFE ’05 headquarters will be at the local Anglican Church Hall (Fig. 45 and 46).  The hall 
will be equipped with all the equipment needed for pre-sampling and post-sampling 
operations, including scales for sample weighing, ovens for soil and vegetation sample 
drying, computers for data downloading and processing, storage spaces for processed samples 
and equipment. It will be the responsibility of each team to make sure instruments and tools 
are stored properly overnight. The hall kitchen provides all sorts of facilities that can be used 
for breakfast. It is left to the individuals to arrange their own breakfast supplies, through the 
local bakery or supermarket (see Fig. 46). 
One of the ground crew members, Rodger Young, will be based at the hall and will be 
dedicated to instrument repair and general technical support. Breakdowns and instrument 
faults must be reported to him at the end of each day. 

Air crew will be based in Scone and operate both the SERA and the EMIRAD aircraft out of 
the Scone Airport (see Fig 47 and 48). 
 

 
Figure 45. NAFE’05 headquarters 
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Figure 46. Map of Merriwa town centre map with NAFE ’05 logistic locations. 
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Figure 47. Map of Scone town centre 
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8.2 Accommodation 
A block of rooms has been reserved for ground crew participants at the only motel in 
Merriwa, the “El Dorado” motel (see details below and Merriwa map in Fig. 46). Participants 
have been pre-assigned to rooms (Table 10), depending on the period of stay and the 
institution of origin, to facilitate check-in and check-out operations and payment. The rooms 
are single, double, triple or family rooms, and mostly they will be shared between participants 
(on a male/female basis). At your arrival, check in at the reception and make sure you provide 
your details. At departure, payment will be done on an individual basis.  A number of the 
participants from Newcastle University have elected to be accommodated at one of the pubs 
in town, the Royal Hotel, and are responsible for their own arrangements. 
The air crew will be accommodated at the Isis Motel in Scone. A block of rooms have been 
already booked and details are given in Table 11. 

8.3 Meals 
Meals arrangements are left to individuals to organise. However, following are some 
suggestions to facilitate organisation of the ground crew: 
 

• Breakfast: supplies can be bought at the local supermarket (see Fig. 46) and 
prepared/eaten at the NAFE’05 headquarters’ kitchen; 

• Lunch: can be bought at the local supermarket or at the Merriwa bakery (see Fig. 46). 
To facilitate this, Rodger Young will take orders for the sandwiches the day before, 
and collect them at the bakery every morning.  Expenses will be billed to your tab. 

• Dinner: apart from the supermarket (if you want to do this make sure you buy your 
supplies in advance, as the supermarket might be close by the time you get back from 
your sampling), the only options for dinner are the Royal Hotel (only on the weekends, 
see Fig. 46), the Returned Services League Club, and the Bowling Club, which serves 
some Chinese food as well as regular meals (Fig. 46). 

 

 
   Figure 48. PLMR hangar at Scone airport and a view of the airstrip 



 71

 
 
 
 

Table 10. Accommodation logistics for the ground crew at Merriwa “El Dorado” motel 

Room N. People Start date End date N. days Price  
($/night )

Total 
room

5 Viviana Maggioni*   
Jennifer Grant 29/10/2005 26/11/2005 28 69 1932

13 Jetse Kalma** 29/10/2005 26/11/2005 28 38 1064

10
Patricia De Rosnay  

Gilles Boulet      
(Kauzer Saleh )

29/10/2005 12/11/2005 14 80 1120

10
Rob Pipunic*      

Chris Rüdiger*     
Stuart Jones*

12/11/2005 26/11/2005 14 80 1120

7 Rodger Young*     
Olivier Merlin* 24/10/2005 26/11/2005 33 69 2277

8 Rocco Panciera* 
Marco Rinaldi* 24/10/2005 2/12/2005 40 69 2760

14 Jose Fenollar      
Daniele Biasioni*   24/10/2005 26/11/2005 33 55 1815

15  Michael Berger 24/10/2005 5/11/2005 13 45 585
 

 

Table 11. Accommodation details for air crew at Scone “Isis” Motel 

Room N. People Start date End date N. days Price  
($/night )

Total 
room

1 Jon Johanson 27/10/2005 26/11/2005 30 60 1560

2 Helmut Thompson 4/11/2005 26/11/2005 30 60 1200

4 Sten Schmidl 
Soebjaerg 4/10/2005 12/11/2005 16 60 480

6 Jorg Hacker 
(+Shakti) 27/10/2005 2/11/2005 6 68 408

14 Jeff Walker 27/10/2005 26/11/2005 30 60 1560

15 Ed Kim 29/10/2005 26/11/2005 28 60 1440

16 Valerio Paruscio 29/10/2005 26/11/2005 28 60 1440

17 Patrick Wurstein 28/10/2005 28/11/2005 31 60 1620

18 Jan Balling 9/11/2005 26/11/2005 17 60 900
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8.4 Internet 
Due to the remoteness of the area, internet service will be very limited. The only option in 
town is the local library (see Fig 46). As per an agreement reached with the library 
management, access for NAFE’05 participants will be available between 8-9pm, only on 
Monday, Wednesday and Thursday. There will be 10 computers available and the hourly fee 
will be $2.50 per user, to be paid individually. 
In Scone, Internet will be available at the Upper Hunter regional library. Refer to the section 7 
for contact details. 

8.5 Maps and directions 
8.5.1 Getting there  
Airport shuttle 
There will be three “Airport Shuttle” runs provided by NAFE, Saturday 29th October, 
Saturday 12th November and Saturday 26th November. Please make sure we have your 
arrival and departure details if you require this service. 
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By car 
 
From Sydney Airport (Mascot) to Maitland (New England Highway) 
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From Newcastle Airport (Williamtown) to Merriwa 
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From Newcastle Airport (Williamtown) to Scone 
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8.5.2 Getting around 
Krui Farms: 
 
ILLOGAN: 
• Travel approximately 28 km west along Golden Hwy 
• Turn left onto Comiala Road 
• Travel approximately 7km south down Comiala Road & ‘Illogan’ property marked on left 
 
STANLEY: 
• Travel approximately 24km west along Golden Hwy 
• On right hand side of Golden Hwy 
 
ROSSCOMMON: 
• Travel approximately 20km west along Golden Hwy 
• Turn left onto Redwell Road 
• Travel approximately  7km south down Redwell Road (sampling site on right hand side of 

road);  
 
PEMBROKE: 
• Travel approximately 25km west along Golden Hwy 
• Turn right onto Pembroke Road 
• Travel approximately 11km north along Pembroke Road 
 
Merriwa Farms: 
 
MERRIWA PARK: 
• Turn right off Golden Hwy onto Venacher St (Royal Pub corner) 
• Turn right onto Macartney St 
• Travel approximately 6km along Merriwa-Scone Road 
• Turn off to left to access property 
 
CULLINGRAL: 
• Travel approximately 500m west along Golden Hwy 
• Turn left onto Cullingral Road 
• Travel approximately 1km south along Cullingrat Road.  Cullingral homestead is marked 

on left 
 
MIDLOTHIAN: 
• Turn right off Golden Hwy onto Venacher St (Royal Pub corner) 
• Turn right onto Macartney St 
• Turn left onto Coulsons Creek Road (i.e. follow Willow Tree signage) 
• Travel approximately 4.5km north along Coulsons Creek Road 
• Turn left onto Mountain Station Road.  The Midlothian property is on left of road 

(approximately 1km) 
 
DALES: 
• Turn right off Golden Hwy onto Venacher St (Royal Pub corner) 
• Turn right onto Macartney St 
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• Turn left onto Coulsons Creek Road (i.e. follow Willow Tree signage) 
• Travel approximately 19km north along Coulsons Creek Road 
• Dales property on right hand side of road 
 

8.6 Groups 
The ground crew segment will be based in Merriwa and coordinated by Prof. Jetse Kalma. 
This group will be responsible for all the soil moisture and supporting data measurement in 
the Northern Goulburn study area. The sampling operations will be undertaken by 4 teams 
acting independently. Each team will be assigned two of the eight focus farms, one in the 
Merriwa sub-catchment and one in the Krui sub-catchment. Each team will sample the same 
two farms for the entire field campaign. Table 12 indicates the composition of each team and 
the focus farm assigned to each group. The air segment will operate from the Scone airport 
and will be coordinated by Jeff Walker (Table 13).  

Table 12. NAFE ’05 ground crew segment. Group leaders are indicated in red. 
Weeks 1,2 Weeks 3,4 Vehicles Krui area Merriwa area 

Team 1

Rocco Panciera    
Marco Rinaldi      

Patricia DeRosney  
Gilles Boulet       

Rocco Panciera  
Marco Rinaldi     
Rob Pipunic      

TBD

White Rodeo  4WD 
(STT 296)  Melb Uni   

+ 1 Quad bike
Pembroke Midlothian

Team 2

Greg Hancock     
Cristina Martinez    

Jose' Fenollar      
Viviana Maggioni    

Mark Thyer

Greg Hancock   
Cristina Martinez  

Jose' Fenollar    
Viviana Maggioni

White Toyota Prado 
4WD (UNI 211) 
Newcastle Uni

Stanley Cullingral

Team 3

Jetse Kalma       
Jennifer Grant      
Patricia Saco      

Daniele Biasioni    

Jetse Kalma     
Jennifer Grant    

Daniele Biasioni   

Silver Toyota Prado 
4WD (UNI 033)  
Newcastle Uni

Roscommon Dales

Team 4
 Tony Wells       
Olivier Merlin       

Kauzeer Saleh   

 Chris Rüdiger   
Olivier Merlin     
Stuart Jones     

Newcastle Uni Illogan Merriwa Park

Table 13. NAFE’05 Air crew members  

Jeff Walker  27-Oct 26-Nov

Jorg Hacker + Shakti 27-Oct 2-Nov

Valerio Paruscio 29-Oct 26-Nov

Ed Kim 29-Oct 26-Nov

Garry Willgoose 29-Oct 26-Nov

Chris Dever only day trips

Jon Johanson 27-Oct 26-Nov

PLMR
Helmut Thompson 4-Nov 26-Nov
Michael Berger 24-Oct 5-Nov
Patrick Wurstein 28-Oct 28-Nov
Sten Schmidl Soebjaerg 4-Nov 12-Nov
Jan Balling  9-Nov 26-Nov

EMIRAD 
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8.7 Training sessions 
Two training sections have been scheduled to ensure all the participants to NAFE are familiar 
with the project objectives, the sampling strategy  and the use of all the instruments involved 
in the sampling. Training sessions will take the whole day and are scheduled for Sunday 30th 
October  and Sunday 13th October, to match the arrival of new participants to the second two 
weeks of the campaign. Training session will be held at the NAFE’s headquarters (morning), 
and at the respective farms (afternoon), with the schedule and activities indicated in table 13 

Training on instrument use will include:  

• iPAQ basics 

• Soil moisture sampling with Stevens Hydra Probe® 

• Soil moisture sampling on high resolution areas 

• Gravimetric soil sampling 

• Vegetation biomass sampling 

• Vegetation water content sampling 

• Vegetation dew sampling 

• Vegetation dew estimation 

• Vegetation height estimation 

• Vegetation type estimation 

• Surface roughness measurements 

• Surface rock cover estimation 
 

8.8 Daily activities 
The Hall will be the meeting point for the morning group assembly, breakfast and sampling 
preparation. At the end of the day, group will report to the hall, download the data collected, 

Table 14. Schedule of training sessions 
Time Place Activities Coordinators

8.00am - 8.30am NAFE headquarter Presentation of NAFE'05 Jetse Kalma

8.30am - 9.30am NAFE headquarter Presentation of NAFE'05 sampling strategy Rocco Panciera

9.30am - 10.30am Example focus farm Instrument use explanation (all together)           Rocco Panciera     
Cristina Martinez   

10.30am - 12.30pm Example focus farm Instrument use practice (in teams) Team leaders

12.30pm - 1.30pm Lunch

1.30pm - 6.00pm Team farms

Study areas recognition(2 farms):                      
*Farm scale sampling points survey                   
*High resolution areas survey                            
*High 

Team leaders
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put the samples in the oven for drying, control the instruments, ensure electronic devices are 
recharged overnight and report to the project leaders. Daily operations will proceed as per the 
following schedule: 
 

o 7.00am:  Gathering of the teams at the NAFE headquarters. 
                      Breakfast 
                      Morning briefing 
                      Review of the activity of the day on the notice board 
                      Preparation of the instruments and tool for the sampling 
o 7.30am:  Teams departure for the sampling locations 
o 7-30am – 12.30pm:  Sampling operations 
o 12.30pm – 1.30pm:  Lunch  
o 1.30pm – 5.30pm:    Sampling operations 
o 6.00pm:  Teams return to the hall 
                      Report to the project leaders 
                      Data downloading on the desktop/laptop computers 
                      Soil and vegetation samples in ovens for drying 
                      Recharge of electronic devices 

 

8.9 Farm access and mobility 
Farms will be accessed every day for the sampling operations. Transport from Merriwa to the 
farm and across the farm for sampling will be done on the team 4WD vehicle. Please note that 
4WD driving on off-road areas and farm tracks can lead to injury and death and requires 
extreme attention and care. Sampling of the farm area will require driving along tracks and 
through paddocks, while walking will be necessary where driving is unfeasible, due to 
particular topographic or vegetation. In particular, driving through cultivated areas should be 
avoided at all times, due to the serious damage the transit could cause to crops. 

The sampling locations have been organised so that only reasonably accessible areas will be 
object of the sampling. Project and team leaders have good knowledge of the areas, and in 
most cases they will be responsible for the farm scale sampling. The planned sampling 
locations will not be numbered, and no specific indication will be given as to the order to 
follow in covering the points. Due to logistic constraints, it will be left to the individuals to 
plan their own preferred sampling routes. However, following are some recommendations to 
make the sampling as uniform and consistent as possible between different farms and 
different days: 

• Plan ahead: decide your sampling route and be consistent with it between sampling 
days.. This will ensure consistency between the soil moisture maps produced during 
the campaign. 

• Sample from the big scale to the small scale: It is recommended to start from the 
coarse scale points, then sample the smallest scale points, then increase depending on 
the time left. 

• Sample on a “paddock” base: we are interested in spatial patterns, so groups of points 
are preferred to long lines of points. If you get to a fence, make sure you sampled all 
the points within the paddock before getting to the next one (provided this doesn’t 
conflict with the previous note). 
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• Take the sample exactly at the location indicated on the map: exception to this rule 
might be the case of a sampling point falling to close to an undesirable location which 
might create local soil moisture condition not representative of the site (e.g. an 
isolated tree in a vast short grass area or creek). In the case, shift the sampling far 
enough to capture the average site conditions (up to 30m depending on grid 
resolution)  

• Always sample in the same locations as the previous days to ensure consistency. 
 
Remember that NAFE’05 activities are allowed by the property owners in the agreement that 
no damage will be caused to the properties. In particular: 
 

• Be aware of the presence of stock on most of the farms during the sampling activities. 
Most of the animals are inoffensive cows and sheep, which will generally keep distant. 
However, in some cases cows could be inquisitive. A particular case is the Merriwa 
Park farm; Bulls are present on one of the paddocks. Although they shouldn’t 
represent particular risk, always check the position and movement of the stock. Team 
members assigned to Merriwa Park will be advised properly of the conditions. 

• Many farm in the area adopt the so called “intensive cell grazing” technique. This 
results in a dense network of interconnected single electric wires, all converging into a 
certain number of “nodes”, where transit between paddocks is made easy through 
electrically isolated holds. Generally, it will be possible to crawl below or step over 
the wires without risk. When driving through these areas, locate the nearest node to 
transit into the next paddock. 

• In the case of heavy rain, stop sampling and wait for better weather conditions: this is 
both to avoid damage to the electronic instrumentation used for the sampling and also 
to prevent excessive “digging” of the muddy farm tracks by the vehicle wheels. 

 

8.10 Communications 
Communications between team members and team and project leaders is important both from 
a logistic and safety point of view. In every team there will be at least two mobile phones and 
a UHF transmitter. One mobile phone will stay with the team leader, who will be sampling at 
farm scale, while the other will stay with the team members who will be sampling the high 
resolution areas. This will provide contact within the individual teams. On most farms the 
mobile phone coverage is extensive, while on some it is poor. On the farms with only partial 
coverage, team members should agree on some “check times” (at least 1 every hour) during 
the morning and the afternoon, for the farm scale sampler to report to the high resolution 
areas and indicate the areas he/she will be sampling next. In case a check time is missed by 
the farm scale sampler, actions should be taken by the team members to ensure his/her safety. 
In particular: 

• Contact with the missing team member should be immediately attempted with the 
mobile phone. 

• If that fails, contact should be made with the project leaders with mobile phone. The 
project leaders should attempt contact with UHF. The local emergency channel is 
Channel 8 Duplex. To connect to this channel via the UHF receiver: 

 
(1) press the DUP (i.e. duplex) button on the UHF 
(2) then dial channel 8 
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• If that failed, the project leader should immediately bring a vehicle to the farm and 
start searching in the areas indicated by the other team members 

 
Team leaders should make themselves familiar with the use of the UHF transmitter and 
the emergency frequency indicated above. 
 

8.11 Safety 
There are a number of potential hazards in doing field work. The following has some good 
suggestions. Common sense can avoid most problems. Remember to:  

• When possible, work in teams of two  
• Carry a phone or UHF receiver 
• Know where you are. Keep track of your position on the provided farm map. 
• Do not touch or approach any unidentified objects in the field.  
• Notify your NAFE supervisor after returning to the field headquarters  
• Dress correctly; long pants, long sleeves, boots, hat  
• Use sunscreen.  
• Carry plenty of water for hydration.  
• Notify your teammate and supervisors of any preexisting conditions or allergies before 

going into the field.  
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• Beware of harvesting machinery. Several crops will be harvested during November. 
When sampling on crop, always make sure your presence is noted and watch out for 
the moving harvesting machines. 

• Beware of Snakes. Always wear sturdy boots to avoid bites. refer to 
http://www.australianfauna.com/australiansnakes.php for detailed info about the most 
common of australian snakes species. 

 
The temperature used for the soil drying ovens is 105

o
C. Touching the metal sample cans or 

the inside of the oven may result in burns. Use the safety gloves provided when placing cans 
in or removing cans from a hot oven. Vegetation drying is conducted at lower temperatures 
that pose no hazard. 
 

9 Contacts 
Field work  
 

 
 

Emergency 
 

local UHF Channel 8 Duplex
Ambulance  12 1233
Merriwa Hospital 6548 2006  6532 5000
Merriwa Police 6548 2203 0408 293 423
Poison information center 13 1126
Merriwa Rescue Quad 6548 2538  

 
 
 
 

Team Mobile 

Air crew coordinator  0413 023 915

Team  1 0431 688 696

Team  2 0409 328 942

Team  3/Ground crew 
coordinator 0427 426 217

Team  4 - weeks 1,2 n/a

Team  4 - weeks 3,4 0410 131 407

technical support 0417 504 593Rodger young

Nam e

Jeffrey W alker

Chris Rüdiger 

Panciera Rocco

Greg Hancock

Jetse Kalm a

Tony W ells

 
 



 83

Farmers 
 

Farm Farmer Name Home Phone Mobile Phone
Illogan Robert & Maree Goodear (02) 63761129 n/a

Stanley Doc & Fiona Strahan (02) 65485154 n/a

Roscommon Tony & Joanna O'Brien (02) 65485161 n/a

Pembroke Matthew & Marion Dowd (02) 65487233 0428 233 891

Cullingral Peter McNamara n/a 0407 257 154

Merriwa Park Martin Nixon (02) 65482225 n/a

Midlothian Mike Gilder (02) 65482219 0429 482 219

Dales James & Judy Bettington (02) 65488563 n/a  
 
 
Accommodation & logistics  
 
El Dorado Motel 
50 Bettington Street 
Merriwa NSW 2329 
Telephone: (02) 6548 2273 
Facsimile: (02) 65482208 
Rating: **1/2 
 
Royal Hotel 
Bettington Street 
Merriwa NSW 2329 
Telephone: (02) 6548 2235 
 
NAFE headquarters 
@ Anglican Church Hall 
Pat Kirkby 
(H): (02) 65482424 
(M): 0407132436 
 
 
Medical 
 
Merriwa Community Hospital 
Mackenzie Street 
Merriwa NSW 2329 
Telephone: (02) 6532 5000 
Facsimile: (02) 6532 5005 
http://www.hnehealth.nsw.gov.au/docs/transport_merriwa.pdf 
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Merriwa Pharmacy 
106 Bettington Street 
Merriwa NSW 2329 
Tekephone: (02) 6548 2213  
 
 
Car rentals 
 
Off Road Rentals 
1370 North Road 
Huntingdale VIC 3166 
Phone (03) 9543 7111 
Fax (03) 9562 9205 
Email: manager@offroadrentals.com.au 
 
 
Scone 
 
Isis Motel 
250 New England Hwy Scone NSW 2337 
ph: (02) 6545 1100 
 
Upper Hunter Regional Library (with internet access) 
214 Kelly St Scone NSW 2337 
ph: (02) 6545 1451 
 
 
NAFE’05 
 
Professor Jetse Kalma  
School of Engineering, 
University of Newcastle, 
Callaghan NSW 2308  
Australia.  
Phone 02 4921 5736  
Fax 02 4921 6991  
mailto:jetse.kalma@newcastle.edu.au 
 
Dr. Jeffrey P. Walker 
Senior Lecturer in Environmental Engineering 
Room 409, Building D 
Department of Civil and Environmental Engineering 
The University of Melbourne 
Victoria 3010 
Australia.  
Phone: 03 8344 5590 
Fax: 03 8344 6215 
Email: j.walker@unimelb.edu.au 
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Rocco Panciera  
PhD candidate 
Room 322, Block C 
Department of Civil and Environmental Engineering 
The University of Melbourne 
Parkville,Victoria 3010,Australia 
Phone: +61 03 8344 4955 
Fax: +61 03 8344 6215 
Email:rocco@civenv.unimelb.edu.au 
 

10  Equipment List 
The following tables list all the equipments that will be required for NAFE’05, grouped per 
person, team and operation base 
 

 
 

TOTAL       
(15 PEOPLE)

hx2110 iPaq 1 15
ipaq container box 1 15
postpack 1 15
ipaq storage card 1 15
hydra probe 1 15
sampling pole 1 15
ipaq mount 1 15
bumpack 1 15

foam (4 hydra probe) 1 15
ipaq split sync cable 1 15
ipaq power cable 1 15
ipaq AC adaptor 1 15

GPS receiver 1 15
GPS battery recharge kit 1 15
GPS power jack 1 15

coinverter CONV485 1 15
battery connector 1 15
gel cell battery 2 30

electrial isolating  gloves (pair) 1 15
hat 3 45
sunscreen bottle 1 15
insect repellent 1 15

PERSONAL EQUIPMENT
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TOTAL          (4 
TEAMS)

4WD vehicle 1 4
UHF receiver 1 4
rope (150m) 3 12
hi-res area pegs 8 32
rope pegs 32 128
plier 1 4
light hammer 2 8
duck tape roll 4 16
screwdriver 1 4
tool container box 1 4
hardcopy farm map 3 12
hardcopy whole area map 1 4
copy of workplan 1 4
pencil 6 24
field book 3 12
first aid kit 1 4
water jerry can 1 4
flags/colored stripes 10 40
Vegetation sampling kit 2 8
       * 1  veg clipper 8
       * 1  pair of scissors 8
       * 1 vegetation quadrant 8
       * 304 plastic bags 1216
       * 304 rubber bands 1216
Soil sampling kit 2 8
        * 1 soil sample ring 8
        * 1 garden trowel 8
        * 1 blade 8
        * 1 spatula 8
        * 1 wooden  base 8
        * 604 plastic bags 2560
        * 604 rubber bands 2560
       *  4 markers for bags 16

TEAM EQUIPMENT
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NAFE'05 headquarters
ovens 2
scales 2
alluminium tray 300
weight recording form 4
samples container boxes 4

desktop computer 2
field laptop 1
backup dvd 50
backup hard drive 1
color printer 1
laptop wall projector 1
cd's with data 1

multi plug base 5
gel cell battery charger 4
plug extension 5

notice board 1
board pencils 10

Monitoring  stations
TIR sensor 4
dew sensor 6
stands 4
soil temp sensor 31
starlogger 8
starlogger download cable 2
gel cell battery 22
rock temp sensor

instruments
pin profiler 1
hand-held temp sesnor 1
Licor LAI sensor 1
NDVI sensor 1
handheld IR radiometer 1
quad 1
quad helmet 1
theta probes 7

repairing kit
starlogger screwdriver 2
terminal strip screwdriver 2
duck tape roll 4
wire stripper 2
wire cutter 2
solder 1
hammer 1
spare gel cell/wire multi connectors
spare wires
mutlimeter

GENERAL EQUIPMENT - Merriwa
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UNIDATA salinity/temp sensor unit 1
gell cell battery 3
floating station 1
backup dvd 10
backup hard drive 1
field book 2
gps unit 1
handheld sal/temp sensor 1
boat 1
laptop for lake station 1

GENERAL EQUIPMENT - Scone
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11 Appendix A: Flight Line Coordinates  
Table A1. PLMR low resolution mapping flight lines and coverage reference coordinates for 
AMSR sampling days. The corners are counted clock-wise starting from North-West. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

A1 10000 11265 43 150.0568 -32.2981 150.0688 -31.9033
A2 10000 11265 43 150.1216 -31.9044 150.1098 -32.2993
A3 10000 11265 43 150.1629 -32.3004 150.1744 -31.9056
A4 10000 11265 43 150.2273 -31.9067 150.2159 -32.3016
A5 10000 11265 43 150.2684 -32.3026 150.2795 -31.9078
A6 10000 11265 43 150.3323 -31.9089 150.3214 -32.3037
A7 10000 11265 43 150.3744 -32.3048 150.3851 -31.9100
A8 10000 11265 43 150.4379 -31.9111 150.4275 -32.3058  
 

corner Longitude 
(Deg)

Latitude 
(Deg)

1 150.0376 -31.9141
2 150.4690 -31.9241
3 150.4580 -32.2914
4 150.0257 -32.2820  

 
 
Table A2. PLMR low resolution mapping flight lines and coverage reference coordinates for 
farm scale sampling days. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

A9 10000 11265 26 150.1485 -32.1965 150.1561 -31.9574
A10 10000 11265 30 150.3715 -31.9098 150.3635 -32.1846
A11 10000 11265 30 150.4165 -32.1857 150.4243 -31.9109   
                            Krui                                                         Merriwa 

Longitude 
(Deg)

Latitude 
(Deg)

crn 1 150.3325 -32.1713
crn 2 150.3397 -31.9210
crn 3 150.4560 -31.9233
crn 4 150.4490 -32.1737  

 

Longitude 
(Deg)

Latitude 
(Deg)

crn 1 150.1173 -32.1825
crn 2 150.1243 -31.9668
crn 3 150.1875 -31.9682
crn 4 150.1809 -32.1839
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Table A3. PLMR intermediate resolution mapping flight lines and coverage reference 
coordinates for the Krui area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

B1 5000 6265 26 150.1825 -31.9580 150.1750 -32.1971
B2 5000 6265 26 150.1485 -32.1965 150.1561 -31.9574
B3 5000 6265 26 150.1297 -31.9569 150.1220 -32.1967  
 

Longitude 
(Deg)

Latitude 
(Deg)

crn 1 150.0376 -31.9141
crn 2 150.4690 -31.9241
crn 3 150.4580 -32.2914
crn 4 150.0257 -32.2820  

 
 
Table A4. PLMR intermediate resolution mapping flight lines and coverage reference 
coordinates for the Merriwa area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

B4 5000 6265 30 150.4507 -31.9114 150.4430 -32.1861
B5 5000 6265 30 150.4165 -32.1857 150.4243 -31.9108
B6 5000 6265 30 150.3980 -31.9097 150.3900 -32.1851
B7 5000 6265 30 150.3635 -32.1846 150.3715 -31.9098
B8 5000 6265 30 150.3448 -31.9094 150.3370 -32.1840  
 

Longitude 
(Deg)

Latitude 
(Deg)

crn 1 150.3276 -31.9208
crn 2 150.4658 -31.9232
crn 3 150.4591 -32.1739
crn 4 150.3205 -32.1710  
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Table A5. PLMR medium resolution mapping flight lines for the Krui area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

C1 2500 3778 4 150.0598 -32.1683 150.0612 -32.1259
C2 2500 3778 4 150.0744 -32.1262 150.0730 -32.1686
C3 2500 3876 6 150.1221 -32.1949 150.1238 -32.1420
C4 2500 3876 6 150.1371 -32.1423 150.1354 -32.1952
C5 2500 3876 6 150.1486 -32.1954 150.1503 -32.1426
C6 2500 3855 4 150.1512 -32.1127 150.1524 -32.0742
C7 2500 3855 4 150.1392 -32.0739 150.1378 -32.1124
C8 2500 3855 4 150.1248 -32.1120 150.1260 -32.0736
C9 2500 4073 11 150.1264 -32.0614 150.1297 -31.9569
C10 2500 4073 11 150.1429 -31.9572 150.1396 -32.0617
C11 2500 4073 11 150.1526 -32.0620 150.1561 -31.9574
C12 2500 4073 11 150.1693 -31.9577 150.1660 -32.0630
C13 2500 4073 11 150.1793 -32.0633 150.1825 -31.9580  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Stanley
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1169 -32.0855
crn 2 150.1601 -32.0865
crn 3 150.1597 -32.1005
crn 4 150.1164 -32.0996  

 

Illogan
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.0528 -32.1373
crn 2 150.0815 -32.1380
crn 3 150.0808 -32.1561
crn 4 150.0523 -32.1555

  

Pembroke
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1210 -31.9669
crn 2 150.1901 -31.9684
crn 3 150.1876 -32.0499
crn 4 150.1182 -32.0485

Roscommon
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1145 -32.1536
crn 2 150.1581 -32.1545
crn 3 150.1572 -32.1838
crn 4 150.1135 -32.1828  
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Table A6. PLMR medium resolution mapping flight lines and coverage reference coordinates 
for the Merriwa area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

C14 2500 3448 4 150.3373 -32.1839 150.3386 -32.1399
C15 2500 3774 12 150.3460 -32.1049 150.3493 -31.9937
C16 2500 3774 12 150.3625 -31.9939 150.3593 -32.1052
C17 2500 3984 6 150.4292 -32.1342 150.4309 -32.0744
C18 2500 4175 9 150.4410 -31.9949 150.4433 -31.9112
C19 2500 4175 9 150.4301 -31.9109 150.4277 -31.9946  

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cullingral
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3300 -32.1536
crn 2 150.3462 -32.1539
crn 3 150.3459 -32.1712
crn 4 150.3294 -32.1709  

 

Midlothian
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3300 -32.1536
crn 2 150.3462 -32.1539
crn 3 150.3459 -32.1712
crn 4 150.3294 -32.1709

 

Merriwa P.
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.4226 -32.0876
crn 2 150.4383 -32.0879
crn 3 150.4373 -32.1205
crn 4 150.4217 -32.1201  

Dales
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.4216 -31.9229
crn 2 150.4511 -31.9234
crn 3 150.4496 -31.9832
crn 4 150.4200 -31.9825
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    Table A7. PLMR high resolution mapping flight lines for the Krui area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

D1 625 2198 11 150.1792 -31.9580 150.1760 -32.0626
D2 625 2198 11 150.1727 -32.0625 150.1759 -31.9579
D3 625 2198 11 150.1726 -31.9578 150.1694 -32.0624
D4 625 2198 11 150.1661 -32.0624 150.1693 -31.9577
D5 625 2198 11 150.1660 -31.9577 150.1627 -32.0623
D6 625 2198 11 150.1594 -32.0622 150.1627 -31.9576
D7 625 2198 11 150.1594 -31.9575 150.1561 -32.0621
D8 625 2198 11 150.1528 -32.0621 150.1561 -31.9574
D9 625 2198 11 150.1528 -31.9574 150.1495 -32.0620
D10 625 2198 11 150.1462 -32.0619 150.1495 -31.9573
D11 625 2198 11 150.1461 -31.9572 150.1429 -32.0618
D12 625 2198 11 150.1396 -32.0618 150.1428 -31.9571
D13 625 2198 11 150.1395 -31.9571 150.1363 -32.0617
D14 625 1980 4 150.1425 -32.0737 150.1413 -32.1123
D15 625 1980 4 150.1380 -32.1123 150.1392 -32.0736
D16 625 1980 4 150.1359 -32.0735 150.1347 -32.1122
D17 625 1980 4 150.1314 -32.1121 150.1326 -32.0735
D18 625 1980 4 150.1293 -32.0734 150.1281 -32.1120
D19 625 1980 4 150.1248 -32.1120 150.1260 -32.0733
D20 625 1980 4 150.1227 -32.0732 150.1214 -32.1119
D21 625 2001 6 150.1536 -32.1424 150.1520 -32.1954
D22 625 2001 6 150.1487 -32.1953 150.1504 -32.1424
D23 625 2001 6 150.1470 -32.1423 150.1454 -32.1952
D24 625 2001 6 150.1421 -32.1952 150.1437 -32.1422
D25 625 2001 6 150.1404 -32.1421 150.1387 -32.1951
D26 625 2001 6 150.1354 -32.1952 150.1371 -32.1421
D27 625 2001 6 150.1338 -32.1420 150.1321 -32.1951
D28 625 1903 4 150.0798 -32.1645 150.0809 -32.1306
D29 625 1903 4 150.0776 -32.1306 150.0765 -32.1645
D30 625 1903 4 150.0732 -32.1644 150.0743 -32.1305
D31 625 1903 4 150.0710 -32.1304 150.0699 -32.1643
D32 625 1903 4 150.0666 -32.1642 150.0676 -32.1303
D33 625 1903 4 150.0643 -32.1303 150.0632 -32.1641
D34 625 1903 4 150.0599 -32.1641 150.0610 -32.1302
D35 625 1903 4 150.0577 -32.1301 150.0566 -32.1640  
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Pembroke
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1374 -31.9671
crn 2 150.1811 -31.9681
crn 3 150.1783 -32.0499
crn 4 150.1347 -32.0489  

 

Stanley
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1203 -32.0855
crn 2 150.1441 -32.0859
crn 3 150.1437 -32.1000
crn 4 150.1198 -32.0994

 

Roscomm
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1315 -32.1538
crn 2 150.1552 -32.1544
crn 3 150.1543 -32.1837
crn 4 150.1306 -32.1831  

 

Illogan
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.0555 -32.1374
crn 2 150.0826 -32.1380
crn 3 150.0820 -32.1561
crn 4 150.0549 -32.1555
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Table A8. PLMR high resolution mapping flight lines for the Merriwa area. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

D36 625 2300 9 150.4444 -31.9952 150.4467 -31.9113
D37 625 2300 9 150.4434 -31.9112 150.4410 -31.9951
D38 625 2300 9 150.4377 -31.9951 150.4400 -31.9111
D39 625 2300 9 150.4367 -31.9111 150.4343 -31.9950
D40 625 2300 9 150.4310 -31.9949 150.4334 -31.9110
D41 625 2300 12 150.4301 -31.9109 150.4277 -31.9949
D42 625 1899 12 150.3691 -31.9941 150.3659 -32.1052
D43 625 1899 12 150.3626 -32.1051 150.3658 -31.9940
D44 625 1899 12 150.3625 -31.9939 150.3593 -32.1050
D45 625 1899 12 150.3560 -32.1050 150.3592 -31.9939
D46 625 1899 12 150.3559 -31.9938 150.3527 -32.1049
D47 625 1899 12 150.3494 -32.1048 150.3526 -31.9937
D48 625 1899 12 150.3493 -31.9937 150.3460 -32.1048
D49 625 1899 12 150.3427 -32.1047 150.3459 -31.9936
D50 625 1899 12 150.3426 -31.9935 150.3394 -32.1046
D51 625 1573 4 150.3320 -32.1398 150.3307 -32.1838
D52 625 1573 4 150.3340 -32.1839 150.3353 -32.1398
D53 625 1573 4 150.3386 -32.1399 150.3373 -32.1839
D54 625 1573 4 150.3406 -32.1840 150.3419 -32.1400
D55 625 1573 4 150.3452 -32.1401 150.3439 -32.1841
D56 625 2109 6 150.4226 -32.1341 150.4243 -32.0743
D57 625 2109 6 150.4276 -32.0743 150.4259 -32.1342
D58 625 2109 6 150.4292 -32.1342 150.4309 -32.0744
D59 625 2109 6 150.4342 -32.0745 150.4325 -32.1343
D60 625 2109 6 150.4358 -32.1344 150.4375 -32.0745  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Cullingral
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3296 -32.1534
crn 2 150.3468 -32.1538
crn 3 150.3463 -32.1713
crn 4 150.3290 -32.1709  

 

Midlothian
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3401 -32.0058
crn 2 150.3708 -32.0064
crn 3 150.3683 -32.0927
crn 4 150.3376 -32.0921

 

Cullingral
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3296 -32.1534
crn 2 150.3468 -32.1538
crn 3 150.3463 -32.1713
crn 4 150.3290 -32.1709  

 

Merriwa P.
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.4216 -32.0874
crn 2 150.4391 -32.0878
crn 3 150.4383 -32.1206
crn 4 150.4208 -32.1204
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Table A9. PLMR multi-angle mapping flight lines over the Merriwa Park farm. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

E1 2500 3984 6 150.4226 -32.1342 150.4243 -32.0744
E2 2500 3984 6 150.4276 -32.0745 150.4259 -32.1343
E3 2500 3984 6 150.4292 -32.1344 150.4309 -32.0745
E4 2500 3984 6 150.4342 -32.0746 150.4325 -32.1344
E5 2500 3984 6 150.4358 -32.1345 150.4375 -32.0747  
 

Longitude 
(Deg)

Latitude 
(Deg)

crn 1 150.4226 -32.0874
crn 2 150.4385 -32.0878
crn 3 150.4375 -32.1206
crn 4 150.4216 -32.1203  

 
 
Table A10. PLMR dew effect flight lines waypoints 
Waypoint 

No.
Altitude 
AGL (ft)

Altitude 
ASL (ft)

Longitude 
(Deg)

Latitude 
(Deg.)

F1 5000 6265 150.4291 -32.1374
F2 5000 6265 150.4297 -31.9174
F3 5000 6265 150.4297 -31.9174
F4 5000 6265 150.4265 -31.9752
F5 5000 6265 150.3553 -31.9985
F6 5000 6265 150.3523 -32.1034
F7 5000 6265 150.3403 -32.1412
F8 5000 6265 150.3392 -32.1793
F9 5000 6265 150.3556 -32.1791  
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Table A11. Flight lines coordinates and coverage reference coordinates for NDVI 
observations. 

Line No. Altitude 
AGL (ft)

Altitude 
ASL (ft)

Length 
(km)

Start 
Longitude 

(Deg)

Start 
Latitude 
(Deg.)

Stop 
Longitude 

(Deg)

Stop 
Latitude 
(Deg.)

G1 5000 6265 4 150.0549 -32.1682 150.0563 -32.1257
G2 5000 6265 4 150.0674 -32.1260 150.0661 -32.1685
G3 5000 6265 4 150.0772 -32.1687 150.0786 -32.1262
G4 5000 6265 26 150.1093 -32.1963 150.1169 -31.9566
G5 5000 6265 26 150.1280 -31.9568 150.1208 -32.1963
G6 5000 6265 26 150.1319 -32.1966 150.1391 -31.9571
G7 5000 6265 26 150.1501 -31.9574 150.1428 -32.1972
G8 5000 6265 26 150.1539 -32.1974 150.1615 -31.9575
G9 5000 6265 26 150.1726 -31.9577 150.1654 -32.1973
G10 5000 6265 26 150.1765 -32.1976 150.1836 -31.9581
G11 5000 6265 26 150.1947 -31.9583 150.1873 -32.1982
G12 5000 6265 30 150.3256 -32.1835 150.3334 -31.9090
G13 5000 6265 30 150.3447 -31.9094 150.3368 -32.1838
G14 5000 6265 30 150.3479 -32.1840 150.3558 -31.9096
G15 5000 6265 30 150.3669 -31.9098 150.3590 -32.1842
G16 5000 6265 30 150.3702 -32.1845 150.3780 -31.9100
G17 5000 6265 30 150.3891 -31.9102 150.3813 -32.1847
G18 5000 6265 30 150.3925 -32.1849 150.4002 -31.9105
G19 5000 6265 30 150.4114 -31.9107 150.4036 -32.1852
G20 5000 6265 30 150.4148 -32.1854 150.4225 -31.9110
G21 5000 6265 30 150.4336 -31.9112 150.4259 -32.1856
G22 5000 6265 30 150.4371 -32.1858 150.4448 -31.9111
G23 5000 6265 30 150.4559 -31.9114 150.4482 -32.1861  
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

                           Illogan 
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.0492 -32.1372
crn 2 150.0849 -32.1380
crn 3 150.0843 -32.1560
crn 4 150.0485 -32.1552  

                            Krui 
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.1099 -31.9665
crn 2 150.2011 -31.9686
crn 3 150.1945 -32.1840
crn 4 150.1031 -32.1820

                         Merriwa 
Longitude 

(Deg)
Latitude 
(Deg)

crn 1 150.3266 -31.9205
crn 2 150.4622 -31.9233
crn 3 150.4553 -32.1736
crn 4 150.3193 -32.1708  
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12 Appendix B: Team Task Sheets 
Table B1. Task sheet for Team 1. All activities to be done by all members of the team over 
 the four  week campaign unless specified otherwise. “FL”,”VL” stands for fixed  or variable 
sampling locations between days.Tasks in red are for team leaders, in blue for other members. 

 
Farm scale sampling: Pembroke (Krui days), Cullingral (Merriwa days) 

Measurement Extent Spacing N. of 
Samples Comments 

Soil moisture (hydra 
probe) 

High resolution 
grid /FL 12.5/6.25m 289 morning 

Soil moisture (hydra 
probe) Farm scale/FL 62.5m Pemb: 140 

Mid: 140  afternoon 

Vegetation water 
content samples(grab 
type) 

Farm scale/FL - 2 End of day 

Dew vegetation samples Farm scale/FL - 2 

On dew 
flight days 

(early 
morning) 

Soil moisture (hydra 
probe) Farm scale/FL 1000/500/2

50/125m 
Pemb: 210 
Mid: 251  

Gravimetric soil samples Farm scale/VL - >2 1 dry/1 wet 

Vegetation type Farm scale 1000/500/2
50/125m  Week 1 

only 

Dew visual observation Farm scale -  Until 
drying 

 

Team Members Rocco Panciera, Marco Rinaldi Patricia DeRosney, Gilles Boulet   
, Rob Pipunic 

Farm Sites Pembroke (Krui)  
Midlothian (Merriwa) 

 
Regional sampling: Pembroke (morning), Midlothian (afternoon), connecting roads 

Measurements Extent Spacing N. of 
Samples Comments 

Vegetation biomass 
samples (quadrant type) 

High resolution 
areas/FL 50m/62.5m 16 

p/farm 
Week 1,4 

only 

Vegetation height Farm/ FL 50m/62.5m - Week 1,4 
only 

Soil moisture (hydra 
probe) 
 

Regional/FL 1 km 122  

Gravimetric soil samples Farm/VL - >6 
p/farm 

Different soil 
type/wetness 

Vegetation biomass 
samples (quadrant type) Farm/FL - >6 

p/farm 
1 each land 

cover 
Vegetation type Farm 1km - Week 2 only 
Landuse Regional 1km - Week 2 only 

Surface roughness Farm  >4 
p/farm Week 2 only 

Surface rock cover Farm 1km - Week 2 only 
LAI (Jose Fenollar) Farm 62.5m - Week 1 only 
NDVI (Jose Fenollar) Farm 62.5m - Week 1 only 
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Table B2. Task sheet for Team 2. All activities to be done by all members of the team over 
 the four  week campaign unless specified otherwise. “FL”,”VL” stands for fixed  or variable 
sampling locations between days. Tasks in red are for team leaders, in blue for other members 

 
Farm scale sampling: Stanley (Krui days), Cullingral (Merriwa days) 

Measurement Extent Spacing N. of 
Samples Comments 

Soil moisture (hydra 
probe) 

High resolution 
grid /FL 12.5/6.25m 289 morning 

Soil moisture (hydra 
probe) Farm scale/FL 62.5m Sta: 135 

Cull: 197 afternoon 

Vegetation water content 
samples(grab type) Farm scale/FL - 2 End of day 

Dew vegetation samples Farm scale/FL - 2 

On dew 
flight days 

(early 
morning) 

Soil moisture (hydra 
probe) Farm scale/FL 125m Sta: 227 

Cull: 89  

Gravimetric soil samples Farm scale/VL - >2 1 dry/1 wet 

Vegetation type Farm scale 125m  Week 1 
only 

Dew visual observation Farm scale -  Until 
drying 

 

Team Members Greg Hancock, Cristina Martinez, Jose Fenollar & Vivianna 
Maggioni, Mark Thyer 

Farm Sites Stanley (Krui)  
Cullingral (Merriwa) 

 
Regional sampling: Stanley (morning), Cullingral (afternoon), connecting roads 

Measurements Extent Spacing N. of 
Samples Comments 

Vegetation biomass 
samples (quadrant type) 

High resolution 
areas/FL 50m/62.5m 16 

p/farm 
Week 1,4 

only 

Vegetation height Farm/ FL 50m/62.5m - Week 1,4 
only 

Soil moisture (hydra 
probe) 
 

Regional/FL 1 km 116  

Gravimetric soil samples Farm/VL - >6 
p/farm 

Different soil 
type/wetness 

Vegetation biomass 
samples (quadrant type) Farm/FL - >6 

p/farm 
1 each land 

cover 
Vegetation type Farm 1km - Week 2 only 
Landuse Regional 1km - Week 2 only 

Surface roughness Farm  >4 
p/farm Week 3 only 

Surface rock cover Farm 1km - Week 2only 
LAI (Jose Fenollar) Farm 62.5m - Week 2 only 
NDVI (Jose Fenollar) Farm 62.5m - Week 2 only 
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Table B3. Task sheet for Team 3. All activities to be done by all members of the team over 
 the four  week campaign unless specified otherwise. “FL”,”VL” stands for fixed  or variable 
sampling locations between days. Tasks in red are for team leaders, in blue for other members 

 
Regional sampling: Roscommon (morning), Dales (afternoon), connecting roads 

Measurements Extent Spacing N. of 
Samples Comments 

Vegetation biomass 
samples (quadrant type) 

High resolution 
areas/FL 50m/62.5m 16 

p/farm 
Week 1,4 

only 

Vegetation height Farm/ FL 50m/62.5m - Week 1,4 
only 

Soil moisture (hydra 
probe) 
 

Regional/FL 1 km 130  

Gravimetric soil samples Farm/VL - >6 
p/farm 

Different soil 
type/wetness 

Vegetation biomass 
samples (quadrant type) Farm/FL - >6 

p/farm 
1 each land 

cover 
Vegetation type Farm 1km - Week 2 only 
Landuse Regional 1km - Week 2 only 

Surface roughness Farm  >4 
p/farm Week 4 only 

Surface rock cover Farm 1km - Week 2 only 
LAI (Jose Fenollar) Farm 62.5m - Week 3 only 
NDVI (Jose Fenollar) Farm 62.5m - Week 3 only 

 
Farm scale sampling: Roscommon (Krui days), Dales (Merriwa days) 

Measurement Extent Spacing N. of 
Samples Comments 

Soil moisture (hydra 
probe) 

High resolution 
grid /FL 12.5/6.25m 289 morning 

Soil moisture (hydra 
probe) Farm scale/FL 62.5m Ros: 140 

Dales: 140 afternoon 

Vegetation water content 
samples(grab type) Farm scale/FL - 2 End of day 

Dew vegetation samples Farm scale/FL - 2 

On dew 
flight days 

(early 
morning) 

Soil moisture (hydra 
probe) Farm scale/FL 500/250/12

5m 
Ros: 223 

Dales: 120  

Gravimetric soil samples Farm scale/VL - >2 1 dry/1 wet 

Vegetation type Farm scale 500/250/12
5m  Week 1 

only 

Dew visual observation Farm scale -  Until 
drying 

 

Team Members Jetse Kalma, Jennifer Grant, Patricia Saco, Daniele Biasioni  
Farm Sites Roscommon (Krui)  

Dales (Merriwa) 
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Table B4. Task sheet for Team 4. All activities to be done by all members of the team over 
 the four  week campaign unless specified otherwise. “FL”,”VL” stands for fixed  or variable 
sampling locations between days. Tasks in red are for team leaders, in blue for other members 

 
Regional sampling: Illogan (morning), Merriwa Park (afternoon), connecting roads 

Measurements Extent Spacing N. of 
Samples Comments 

Vegetation biomass 
samples (quadrant type) 

High resolution 
areas/FL 50m/62.5m 16 

p/farm 
Week 1,4 

only 

Vegetation height Farm/ FL 50m/62.5m - Week 1,4 
only 

Soil moisture (hydra 
probe) 
 

Regional/FL 1 km 99  

Gravimetric soil samples Farm/VL - >6 
p/farm 

Different soil 
type/wetness 

Vegetation biomass 
samples (quadrant type) Farm/FL - >6 

p/farm 
1 each land 

cover 
Vegetation type Farm 1km - Week 2 only 
Landuse Regional 1km - Week 2 only 

Surface roughness Farm  >4 
p/farm Week 1 only 

Surface rock cover Farm 1km - Week 2 only 
LAI (Jose Fenollar) Farm 62.5m - Week 4 only 
NDVI (Jose Fenollar) Farm 62.5m - Week 4 only 

 
Farm scale sampling: Illogan (Krui days), Merriwa Park (Merriwa days) 

Measurement Extent Spacing N. of 
Samples Comments 

Soil moisture (hydra 
probe) 

High resolution 
grid /FL 12.5/6.25m 289 morning 

Soil moisture (hydra 
probe) Farm scale/FL 62.5m Illo: 140 

Merr: 140 afternoon 

Vegetation water content 
samples(grab type) Farm scale/FL - 2 End of day 

Dew vegetation samples Farm scale/FL - 2 

On dew 
flight days 

(early 
morning) 

Soil moisture (hydra 
probe) Farm scale/FL 250/125m Illo: 228 

Merr: 179  

Gravimetric soil samples Farm scale/VL - >2 1 dry/1 wet 

Vegetation type Farm scale 250/125m  Week 1 
only 

Dew visual observation Farm scale -  Until 
drying 

 

Team Members Tony Wells, Chris Rüdiger, Olivier Merlin, Kauzeer Saleh, Stuart 
Jones  

Farm Sites Illogan (Krui)  
Merriwa Park (Merriwa) 
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13  Appendix C: Flight Elevations 
 

Table C2. Flight altitude and ground resolution for PLMR medium resolution flights 

Flight Altitude over 
local maximum 

elevation (ft AGL)

FINAL FLIGHT 
ALTITUDE 

m(ASL)
Minimum ground 

pixel sixe(m)
Maximum ground 

pixel size (m)
Pembroke 2400 1240 240.0 293.8
Stanley 2400 1170 240.0 281.8
Roscommon 2400 1180 240.0 274.6
Illogan 2400 1150 240.0 263.5
Dales 2400 1270 240.0 309.3
Merriwa Park 2400 1210 240.0 273.6
Midlothian 2400 1150 240.0 292.3
Cullingral 2400 1050 240.0 272.1

Table C3. Flight altitude and ground resolution for PLMR high resolution flights. 

Flight Altitude over 
local maximum 

elevation (ft AGL)

FINAL FLIGHT 
ALTITUDE 

m(ASL)
Minimum ground 

pixel sixe(m)
Maximum ground 

pixel size (m)
Pembroke 525 670 52.5 106.3
Stanley 525 600 52.5 94.3
Roscommon 525 610 52.5 87.1
Illogan 525 580 52.5 76.0
Dales 525 700 52.5 121.8
Midlothian 525 580 52.5 104.8
Merriwa Park 525 640 52.5 86.1
Cullingral 525 480 52.5 84.6

Table C1. Elevation statistics for the study area and the focus farm 
MIN (m) MAX (m) RANGE (m) MEDIAN(m) MEAN (m)

Norther Goulburn 180 807 627 375 384
Krui area 273 686 414 396 399
Merriwa area 220 676 456 365 372
Pembroke 346 510 204 394 399
Stanley 316 443 127 358 355
Roscommon 344 450 106 392 393
Illogan 348 420 72 381 384
Dales 330 541 211 398 404
Midlothian 259 419 159 310 312
Merriwa Park 380 483 102 413 416
Cullingral 222 319 98 233 244
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1. Introduction to the HDAS 

The Hydraprobe Data Acquisition System (HDAS) is a spatially enabled soil moisture, 

temperature and salinity measurement platform that logs all relevant information into GIS 

format using ArcPad
®
.  The HDAS was developed by the Department of Civil and 

Environmental Engineering at the University of Melbourne and is composed of a Stevens 

Water Hydraprobe
®
, an iPAQ

®
 pocket PC, and a Bluetooth GPS receiver (Fig. 1). The 

pocket PC is used to (Fig. 2): 

 

• display a map of the sampling area; 

• communicate with the GPS receiver to get the real time position; 

• display the sampling position on a background map; 

• communicate with the Hydraprobe to take readings of soil moisture, temperature 

soil salinity, soil conductivity, real and imaginary soil dielectric constant;  

• obtain metadata including sample date, time and ID; 

• input any additional metadata such as vegetation type and general comments; 

• store the metadata and Hydraprobe readings in a GIS shape file;  

 

Figure 1. a) The Hydraprobe Data Acquisition System (HDAS), b) schematic of the 

HDAS system functionality, and c) the Stevens’ Hydraprobe.  
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• display the location of the Hydraprobe measurements on the map. 

 

  
 

Figure 2.  The HDAS interface in a) navigation and b) data entry modes. 

 

The Stevens’ Hydraprobe is a soil sensor for measuring soil moisture, temperature and 

salinity (for details, see Hydra Soil Moisture Probe User manual in the “Documentation” 

folder that accompanies this manual).  The instrument determines soil moisture and 

salinity by making a high frequency (50 MHz) complex dielectric constant measurement.  

A complex dielectric constant measurement resolves simultaneously the capacitive and 

conductive parts of a soil's electrical response.  The capacitive part of the response is 

most indicative of soil moisture while the conductive part reflects predominantly soil 

salinity.  Temperature is determined from a thermistor incorporated into the probe head. 

As a soil is wetted, the low dielectric constant component of air is replaced by the much 

higher dielectric constant component of water.  Thus, as a soil is wetted, the capacitive 

response (which depends upon the real dielectric constant) increases steadily.  Through 

the use of appropriate models, the dielectric constant measurement can be directly related 

to soil moisture.  The dielectric constant of moist soil has a small, but significant, 

dependence on the soil temperature while soil conductivity varies strongly with 

temperature.  The soil temperature measurement that the Hydraprobe makes is used to 

remove temperature effects, and the raw voltages measured by the probe converted to soil 

moisture using some circuitry in the probe head.  A soil type option can be set when 

programming the circuitry of each probe; Sand, Silt or Clay. In case no knowledge of the 

soil type is available, it is recommended by the manufacturer that the option “silt” be 

chosen. This affects the calculation of soil moisture output done internally by the 

Hydraprobe.  Nevertheless, in the current version of the HDAS system described in this 
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document, this soil type option is by-passed and a soil-specific calibration is applied to 

the raw Hydraprobe dielectric measurements, which are unaffected by the soil type 

option setting. Therefore the soil type to which the probe is initialized has no effect on 

the output (see section 21). 

 

 



 5 

2. How to use this manual 

This manual covers a variety of information, ranging from simple use of the system 

through to general guidance on customisation of the acquisition software for a particular 

application.  Consequently the manual has been organised as follows: 

 

• If you simply need to operate the HDAS system which has been already set-up 

for your study area: go to section 3 

• If you need to set-up the physical HDAS system: go to section 4; 

• If you need to set-up the HDAS system software: go to section 5; 

• If you need to adapt the HDAS system software to your specific needs: go to 

section 6; 

• If you are having trouble with using the HDAS system: go to section 7; 

• For details about the HDAS soil moisture output, its calibration and expected   

accuracy, go to section 8. 

 

NOTE: The HDAS system software provided with this manual has been developed using 

an iPAQ hx2110 with Pocket PC operating system Windows Mobile 2003 and ArcPad 

version 6.03. The software provided may not work with other makes of iPAQ or versions 

of software.  
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3. Using the HDAS system 

This section assumes that the HDAS system has already been set up and all the necessary 

files and software have been loaded on the iPAQ.  If that is not the case, refer to sections 

4 and 5 before reading this section. 

 

3.1. Navigating the iPAQ 

This section gives a brief introduction to general navigation of an iPAQ (numbers 

reference to Fig. 3): 

 

• To turn the iPAQ on/off: use the button at the top right corner of the device (1). 

NOTE that the iPAQ goes into sleep mode after a couple of minutes when on 

battery power.  To revive it, press the on/off button again; 

• To access any program (eg, ArcPad or file explorer), use the “Start” button on the 

top left corner (2) and select the program from the drop-down list. NOTE: Only 

recently used programs are available from this list; all programs are available in 

the folder “programs”; 

• To change iPAQ settings like sleeping time, screen brightness, battery saving 

options etc, select “settings” from the “start” drop-down list; 

• To minimise ArcPad, tap the blue cross on the bottom toolbar (14). NOTE: this 

does not exit the program, which can be maximised by tapping the program icon 

on the bottom toolbar of the main windows screen; 

• To exit ArcPad, tap the red cross on the top toolbar (5). 

                

Figure 3.  a) General iPAQ commands and b) HDAS interface through the ArcPad 

software 
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3.2. Starting the HDAS system 

Follow the procedure outlined below to start the HDAS system (numbers reference to 

Fig. 3): 

 

1. Turn on the iPAQ by pressing the button at the top right corner of the device (1); 
2. Start ArcPad by tapping the “program” access icon on the top left corner of the 

iPAQ (2) screen and selecting “ArcPad”; 

3. Load the ArcPad map file with the “load map” command (4), or individually the 

background map and sampling locations shape file (if you have them) together 

with hydra.shp and/or hydraGRID.shp with the “load layers” command (6); 

4. Turn on the GPS receiver; 
5. Establish a Bluetooth connection between the GPS and iPAQ (see section 3.3); 
6. Activate the GPS in ArcPad by tapping the “GPS” icon (8) and tapping “ok”. 

 

3.3. Connecting the GPS to the iPAQ 

The GPS device needs to be bonded with the iPAQ and a connection established 

BEFORE activating the GPS from ArcPad; see section 5.4 on how to bond the GPS if not 

already done.   

 

To establish a Bluetooth connection between the iPAQ and the GPS device: 

 

1. Tap the “GPS connection” icon in the bottom right corner of the screen (3); 

2. Activate Bluetooth by tapping the “Bluetooth” icon (3); 
3. Select “Bluetooth Manager”; 

4. Tap and hold the icon representing the GPS device you are connecting to, and 
select “connect”.  If this step is successful, two horizontal green arrows will be 

added to the GPS device icon. NOTE: if the GPS device is not present see section 

5.4 on bonding the GPS; 

5. Exit from the Bluetooth manager. 

Quick reference to HDAS use (refer to Fig. 3) 

• Activate the Hydraprobe by tapping the “Hydraprobe” command (10); 

• Navigate to an intended sampling location (16) making use of the GPS position 

indicator (15) and/or a map of the area; 

• With the “Hydraprobe” button depressed, tap anywhere on the screen to 

interrogate the probe; 

• View the Hydraprobe readings and fill in other information in the ArcPad forms 

as desired (see Fig. 4); 

• Store the measurement with the spatial coordinates by tapping “ok” at the top 

of the form or cancel reading by tapping the “X”; 

• The coordinates stored are those from the GPS if activated, or the position on 

the screen if the GPS is not activated; 

• Move to the next sampling location and take another reading. 
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3.4. Taking a Hydraprobe reading 

Follow the procedure outlined below to take a Hydraprobe reading: 

 

1. Select the “Hydraprobe” command (10) on the bottom left corner of the HDAS 

Toolbar menu to activate the program that reads the Hydraprobe values. NOTE: 

this button must be depressed in order to take a reading of the Hydraprobe – 

should only need to be depressed once; 

2. Navigate to the sampling point by moving to the desired location in the 

landscape or until the GPS position indicator is overlapping with the desired 

sampling location on the ArcPad display; 

3. Insert the Hydraprobe vertically in the ground, until the base of the Hydraprobe 
head is at the ground surface level.  Be sure to not create air gaps when inserting 

the probe.  Apply steady pressure to the footplate to assist with insertion in hard 

soils; 

4. Take a Hydraprobe reading by tapping anywhere on the screen and wait for 5-9 
seconds (Be patient! DO NOT tap anything on the iPAQ screen during this 

time); 

5. After 5-9 seconds, a form appears in ArcPad containing three pages (Fig. 4), 

each containing several text boxes: 

NOTE: It is not uncommon to have problems receiving a valid GPS signal from the GPS 

receiver (i.e. no “position fix” is available).  First check that the GPS receiver has a 

lock on the GPS satellites as indicated by a status light; it may take several minutes for 

this to occur after first turning the GPS receiver switch to on.  If the GPS status light is 

active and the problem persists, un-bond the GPS device from the iPAQ by removing the 

GPS device icon in the Bluetooth manager connection list, then re-bond the GPS as 

described in section 5.4 and repeat the connection procedure above.   

 
 

Figure 4. General layout of the pages in the HDAS form: a) Probe readings page;  

b) Vegetation page and c) Extra page. 
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 Probe readings page 

• Point sequential number – AUTOMATICALLY FILLED but can be 

manually edited 

• Hydraprobe soil moisture reading (in volumetric water content fraction) - 

AUTOMATICALLY FILLED 

• Hydraprobe soil temperature reading (in degrees Celsius) - 

AUTOMATICALLY FILLED 

• Hydraprobe soil salinity reading (in g of NaCl per liter) - 

AUTOMATICALLY FILLED 

• Comment text box - MANUAL 

 

Vegetation  page 

• Vegetation type text box, to be chosen from a drop down list- MANUAL; 

• Landuse text box, to be chosen from a drop down list- MANUAL; 

• Vegetation sample ID text box- MANUAL 

 

Metadata  page 

• Soil sample sequential ID – MANUAL. 

 

6. Navigate throughout the three pages and fill in the desired text boxes. NOTE: 
there is no specific order required when completing the forms in order to 

successfully save the points. Nevertheless, apart from the point sequential 

number the AUTOMATICALLY FILLED fields cannot be changed/deleted. 

 

7. The user can: 

• Accept the point by tapping “ok” on the top right corner of the form 

(Fig.4).  This will store the point and measurement taken. 

• Cancel the point by tapping the “X” next to the “ok” button (Fig.4).  This 

will discard the current record permanently. 

 

 

NOTE: Before the form appears, an error message might be displayed warning that the 

measured soil dielectric constant is out of a specific range. This in general means that the 

soil volume sampled by the probe is disrupted or with significant air gaps affecting the 

reading. After pressing “ok” on the error window, It is suggested to cancel the current 

point (by tapping the “X” on the form), insert the probe carefully at a different location 

and repeat the reading. 
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3.5. Creating and deleting points manually  

To create a point in the shape file without reading the Hydraprobe: 

• Make the hydra or hydraGRID shape file editable by taping on the “layer control” 

(7) and checking the editable box next to the shape file and taping “ok”; NOTE: 

this will display an “editing” toolbar which will be placed between the HDAS 1
st
 

and 2
nd
 default toolbars (see Fig. 3b); 

• Tap on the “add point” button on the new toolbar (the icon is a single blue dot to 

take position from screen, or blue dot with GPS to take position from the GPS) to 

activate the editing mode; 

• Tap on the screen to create a point at the desired location and tap “ok”. 

 

To delete a point in the shape file: 

• Make the hydra or hydraGRID shape file editable by taping on the “layer control” 

(7) and checking the editable box next to hydra.shp and taping “ok”; 

• Tap on the black arrow (11) to activate the selection mode; 

• Select the point to be deleted by tapping on it once; 

• Tap on the red cross (13) and click “Yes”. 

 

3.6. Review the values stored at a location 

To review a point in the shape file: 

• Make the hydra or hydraGRID shape file editable by taping on the “layer control” 

(7) and checking the editable box next to hydra.shp and taping “ok”; 

• Tap on the “information” button in the menu (12); 

• Tap on the point to be reviewed; 

 

3.7. Editing the values stored at a location 

The values stored at a location are saved into fields of the hydra or hydraGRID shape 

files and can be edited manually: 

• Make the shape file editable by taping on the “layer control” (7) and checking the 

editable box next to the shape file and taping “ok”; 

• Tap on the black arrow in the menu (11) to activate the selection mode; 

• Select the point to be edited by tapping on it twice; 

• Tap on a field to select it; 

• Edit the selected field by using the key board (the key board appears when 

clicking on the icon at the bottom of the screen) and click “ok”. 

NOTE: The HDAS has been developed to save the Hydraprobe readings together with 

the spatial coordinates measured by the GPS device.  In case the GPS is turned off at the 

time of taking a reading, the reading will be saved in the shapefile “hydraGRID”, with 

coordinates corresponding to the location tapped on the ArcPad screen by the user.  

Otherwise the reading is saved in the shapefile “hydra”.  A warning of this will be 

displayed upon saving the point. 
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4. HDAS physical and electrical system setup 

The components listed in Table 1 and illustrated in Fig. 5 are required to set up the 

HDAS system.  All the electronic devices, including iPAQ,  Hydraprobe and GPS 

receiver, are powered by a small 12V gel cell battery carried in a bumbag. This provides 

sufficient power for day-long sampling with the system in a field portable configuration. 

 

The HDAS system components are to be assembled as follows: 

 

• Connect the Hydraprobe signal cable to the “RS485” side of the CONV485 

adaptor; 

• Connect the “RS232” side of the CONV485 adaptor to the iPAQ Split sync 

(RS232/USB) cable; 

• Connect the 5V iPAQ power cable to the iPAQ Split sync (RS232/USB) cable;  

• Neatly thread the Hydraprobe and iPAQ cables through the pole assembly; 

• Firmly attach the Hydraprobe at the bottom of the pole assembly; 

• Mount the iPAQ cradle on the top of the pole assembly; 

• Place the GPS receiver, power adapters, gel cell battery and any loose cable in the 

bumbag which is to be carried around the waist. IMPORTANT: Make sure that the 

battery terminals will not be short circuited!! 

• Connect the 12V/5V power adaptor to the gel cell battery; 

• Connect the Hydraprobe, iPAQ and GPS power cables to the 12V/5V power 

adaptor when ready to operate; 

• Mount the iPAQ in the iPAQ cradle and attach the iPAQ Split sync (RS232/USB) 

cable when ready to operate. 

 

                                                 
1
 For detailed diagrams on how to modify these items refer to section 9 of this manual. 

Table 1. The HDAS components. 
 

Component Origin 

Hydraprobe (12V), iPAQ (5V) and 

GPS (5V) power cables 
Commercially available 

12V gel cell battery Commercially available 

Bumbag Commercially available 

Aluminum pole  Custom made 

iPAQ cradle Commercially available 

CONV485 adaptor Commercially available 

12V/5V power adaptor Made from commercial components 

Split sync (RS232/USB) cable Modified from commercially available
1
 

Stevens Water Hydraprobe
® 

Modified from commercially available
1
 



 12 

 

 
 

Figure 5. The HDAS electrical setup 
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5. HDAS software and file system setup 

Use of the HDAS relies on two connections: 

 

• Hydraprobe to iPAQ through the sync cable, and 

• GPS receiver to iPAQ through Bluetooth 

 

Setting up of the HDAS system requires connection of the iPAQ with a desktop computer 

and preparation of spatial database on the desktop computer.  The following two sections 

illustrate how to achieve these tasks. 

 

5.1. Connection with a desktop computer 

• Install Microsoft ActiveSync
®
 on the desktop computer; 

• Turn on the iPAQ, connect it to the computer and establish a connection; 

• Access the iPAQ file system through the “connect” command in ActiveSync
®
; 

• To install software on the mobile device, please refer to the software manual; 

• To exchange files with the iPAQ, simply copy and paste them between the iPAQ 

and the desktop PC folders. 

 

5.2. Preparation of spatial data in ArcGIS 

A variety of spatial data can be imported into ArcPad to serve as background information 

to your spatial acquisition system (eg topographic maps, road networks, predefined 

sampling locations, etc).  The process of getting spatial data into the ArcPad environment 

requires the availability of ArcGIS installed on a desktop computer, and involves the 

following steps: 

 

• Download and install ArcPad extension for ArcGIS from www.esri.com; 

• Upload your spatial data into ArcGIS; 

• Load all the layers you want to be part of your spatial acquisition system; 

• Use the “Get data for ArcPad” command to create an ArcPad map file with all the 

desired layers.  All the files will be saved into the folder “Data for ArcPad”; 

• Connect your iPAQ to the desktop computer using ActiveSync
®  
(see section 5.1); 

• Copy and paste the folder “Data for Arcpad” as your desired working directory on 

your iPAQ.  Note: it is recommended your working directory be on the storage 

card in case of complete battery depletion. 

 

5.3. Connection with Hydraprobe 

The iPAQ communicates with the Hydraprobe through its serial port, generally called 

COM1 (located at the bottom of the iPAQ).  The GIS software ArcPad
®
 manages the 

communication with the Hydraprobe and therefore needs to be installed on the iPAQ.  It 

is recommended that ArcPad version 6.03 be used. 
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The following extension must also be installed on the iPAQ (included in the HDAS file 

package in the “Utilities” folder): 

 

1. ArcPad menu fix extension (for ArcPad® 6.0.3): solves some problems 

associated with menu items display in ArcPad on iPAQ model hx2110.  To 

install, copy and overwrite the “ArcPad.exe” executable file into the ArcPad 

folder on your iPAQ (Program files/Arcpad/). 

 

The files that must be uploaded on the iPAQ in order to run the HDAS system are listed 

below, grouped by folder on the iPAQ where they are to be copied (all files are included 

in the HDAS file package in the “Data files” and “Software” folders): 

 

 

REQUIRED FILES 

 

        In /Program files/Arcpad/Applets 

 

1. Visual Basic script file “hydra_code.vbs” and Arcpad applet file 

“hydra_applet.apa”: These files contain the VB routines and forms that ArcPad 

uses to interrogate the Hydraprobe, and they must be the only .vbs and .apa files 

in this folder as ArcPad loads them automatically on start up; 

 

2. Parameter file “Parameters.dbf”: This table contains 5 parameters that are used 

in the HDAS soil moisture calculations explained in section 8. The file can be 

edited in order to use custom parameters.; 

 

3. Bitmap file “Hydra_icon”: This file is required in order to have the Hydraprobe 

button icon properly displayed as in Fig. 2; 

 

        In Custom working directory 

 

4. Shape file “hydra.shp” must be uploaded into the desired working directory on 

the iPAQ, which can be any directory in the iPAQ file system.  It is 

recommended that the working directory be located on your storage card in case 

of power depletion. This shapefile is where the measurements will be saved 

together with the GPS coordinates. NOTE: all the files associated with the 

shapefile must be loaded into the same directory; 

 

5. The shape file “hydraGRID.shp” must be uploaded into the desired working 

directory on the iPAQ.  This shapefile is where the measurements taken when the 

NOTE: The coordinate systems of all the files loaded on the iPAQ MUST be the same for 

ArcPad to display them.  A simple trick to do this is to open the image file on a desktop 

version of ArcPad, then create a new file “hydra.shp” into this project and save the 

whole thing as a .apm map file. 
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GPS is disconnected will be saved.  

        In /Program files/Arcpad/System 

6. Default configuration file “ArcPad.apx”: This file sets the visibility of the 
inbuilt toolbars and the custom toolbars, and also adds the functionality to allow 

the coordinates (from the GPS receiver or screen) to be saved into the relevant 

fields of the data shapefiles (“hydra” or “hydraGRID”); 

 

       OPTIONAL  FILES 

 

        In Custom working directory 

 

7. A shapefile with any name, containing pre-established sampling locations can be 

loaded into you ArcPad working directory. 

 

8. An image of the monitoring area (i.e. topographic map) can be loaded into the 

desired ArcPad working directory to help with navigation.  It is recommended 

that the image be in MrSid compressed format to optimise the performance of 

ArcPad.   

 

9. An ArcPad map file (*.apm) can be created and loaded into the ArcPad working 

directory, containing the shapefiles “hydra.shp” and “hydraGRID.shp”, 

together with the shape file for pre-established sampling locations and the image 

Table 2. ArcPad serial port and GPS settings. 

Serial port Com1

Baud rate 9600

Parity None

Rts control Enable

Dtr control Enable

Data bits 8

Stop bits 1

Serial port Com8

Baud rate 4800

Parity None

Rts control Disable

Dtr control Disable

Data bits 8

Stop bits 1

Infrared checkbox Checked

AUX tab

GPS tab
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file.  This file simplifies the management of all the files and setting by grouping 

them into a single file.  NOTE: An .apm file can be created using the desktop 

ArcPad by loading all the desired files and then choosing “save map as” from the 

“folder” menu. 

 

The ArcPad settings regarding the serial communication with Hydraprobe – accessible 

through the Arcpad setting menu button (8) – must be set as indicated in Table 2. 

5.4. Connection with GPS device 

Virtually any GPS device can be used with the HDAS system, provided it can be 

connected with the particular iPAQ used and that it can be read from ArcPad.  There are 

some known issues with the connection of ArcPAd and some brands of GPS devices (see 

ESRI support website: http://support.esri.com/index.cfm?fa=homepage.homepage). The 

configuration described in this section is valid for Bluetooth devices only. 

 

The Bluetooth
® 
software necessary to bond GPS devices must be installed on the iPAQ in 

order to use HDAS.  This is generally part of the default Pocket PC software suite that 

comes with the iPAQ and does not require any particular action from the user.  The 

ArcPad settings regarding GPS and serial communication – accessible through the 

Arcpad setting menu, button (8) – must be set as indicated in Table 2. 

 

Before attempting any connection with the GPS device, a bond needs to be created 

between the device and the iPAQ.  To create the bond:  

 

1. Tap the “GPS connection” icon in the bottom right corner of the screen (3); 

2. Activate Bluetooth by tapping the “Bluetooth” icon; 
3. Select “Bluetooth Manager”; 

4. Select “new” at the bottom right corner of the screen and scroll down until 

“Explore a Bluetooth device”.  Tap “next” on the bottom right; 

5. Wait for the GPS device to be detected and its icon displayed in the blank page. 

This might take a few minutes. NOTE: in this phase, ALL Bluetooth devices that 

are switched on and within the range of action of Bluetooth will be shown. Make 

sure to identify the correct GPS device if multiple systems are in use. 

6. Tap on the GPS icon; 
7. A wizard will appear with the services offered by the GPS receiver.  Select the 

service that is available and tap “next”; 

8. An information page will appear confirming that the bond has been created. 

Review the information and tap “finish”. 

 

 

 

The bond between iPAQ and GPS device is temporary and can be interrupted (for 

example, if the GPS device battery goes flat or the GPS device stays out of range for a 

prolonged period). If you are having trouble getting a signal from you GPS device in 

ArcPad, most probably it is because the bond has been broken. 
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6. Customising the HDAS system  

A lot of changes can be made to the HDAS system, some of which could require complex 

programming and different set-ups of the electronic devices involved.  This section 

simply serves as a reference for the resources and actions that are needed in order to 

customise the system for some of the most simple and obvious changes.  

 

6.1. Different data acquisition and storing 

The files that control the communication and storing of data between the iPAQ, the GPS, 

and the Hydraprobe are: 

 

• The ArcPad applet file “hydra_applet.apa”: determines the structure and entries 

of the ArcPad forms that are displayed, and the custom toolbars.  It also calls the 

visual basic script file for processing tasks. 

• The visual basic script file “hydra_code.vbs”: contains the VB commands to 

process tasks like opening the serial port, interrogating the probe etc. 

• The default configuration file “ArcPad.apx”.  Determines the visibility of the 

inbuilt toolbars. 

 

Both files are saved into the applets folder on your iPAQ (/Arcpad/Applets).  These files 

can be modified within the ArcPad Application Builder Environment software (a default 

component of the ArcPad installation package).  Most applications require none or very 

simple Visual Basic programming.  Please refer to the ArcPad Application Builder help 

to learn more about customising these files. 

 

The files where the data are stored are: 

 

• Shapefile “hydra.shp” when the GPS is turned on 

• Shapefile “hydraGRID.shp” when the GPS is turned off 

 

The structure and content of these files can be easily changed to match the way data are 

stored by the .apa and .vbs files.  These files must be created/changed in ArcPad, with the 

command “new layer”. 

 

Table 3 shows the structure of the hydra and hydraGRID shape file fields in the current 

HDAS system setup.  The record format and whether the record value is updated 

automatically or is prompted by the user are also indicated. 

 

6.2. Different iPAQ or GPS 

The HDAS system was developed with HP iPAQ hx2100 series running Windows 

Mobile 2003 and ArcPad
®
 version 6.0.3.  Use of different iPAQ models and software 

versions might create problems that cannot be entirely predicted.  To solve these 
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problems please refer to the ESRI support website: http://support.esri.com/index.cfm?fa= 

homepage.homepage. 

 

Important issues to consider when testing new configurations are:  

 

• Compatibility between ArcPad version and iPAQ operating system.  In general, 

the latest ArcPad releases are only compatible with latest Windows Mobile 

versions, and commercially available iPAQs. 

• Known bugs of ArcPad new releases.  Check on the ESRI support website for 

known problems of every ArcPad release and service pack patches that fix these 

problems. 

• Serial ports on the iPAQ. Serial ports are internally addressed by the iPAQ’s OS 

with the code COMX.  ArcPad refers to the port as named by the OS.  In general, 

the bottom port (Hydraprobe serial cable) is addressed as COM1, and the 

Bluetooth port (GPS) as COM8, but that can change between iPAQs.  If so, the 

correct port name needs to be substituted in the ArcPad AUX and GPS settings 

(see Table 2). 

Table 3. Structure of the files hydra.shp and hydraGRID.shp. 

FIELD NAME DESCRIPTION FORMAT INPUT 

DATE Date of acquisition MM/DD/YY Automatic 

TIME Time of acquisition HH.MM.SS. AM/PM Automatic 

POINT ID Sequential number of sample Integer Automatic 

LATITUDE Geographic latitude Decimal Automatic 

LONGITUDE Geographic longitude Decimal Automatic 

TEMP_C Soil temperature  [C] Decimal Automatic 

CONDUCT Soil conductivity [S/m] Decimal Automatic 

CONDUCT_TC Temperature corrected soil conductivity (S/m) Decimal Automatic 

SALINITY Soil salinity [g of NaCl/l] Decimal Automatic 

REAL_DC Real dielectric constant Decimal Automatic 

REAL_DC_TC Temperature corrected real dielectric constant Decimal Automatic 

IMAG_DC Imaginary dielectric constant Decimal Automatic 

IMAG_DC_TC Temperature corrected imaginary dielectric constant Decimal Automatic 

CAL_MOISTU HDAS calibrated soil moisture [%v/v] Decimal Automatic 

COMMENT User comment Text User-prompted 

VEG TYPE Vegetation type at sampling location Text User-prompted 

LANDUSE Landuse at sampling location Text User-prompted 

VEG ID Vegetation sample # Integer User-prompted 

SOIL ID Soil sample # Integer User-prompted 
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• GPS data protocol.  Every GPS device has a communication protocol which has 

to be set in the “protocol” page of ArcPAd settings.  New GPS devices with 

different, un-supported protocols can still be used, but some C/C++ programming 

is required in this case (see ArcPad Application Builder help). 

 

7. Troubleshooting 

7.1. iPAQ troubleshooting 

The iPAQ doesn’t respond to any input. 

Perform a soft reboot of the device by pressing the button on the bottom side of the 

device with the iPAQ pencil.  The GPS connection will then have to be re-established and 

ArcPad started again.  No data will be lost. 

 

The iPAQ is dead, the battery indicator doesn’t blink despite the battery being properly 

connected. 

The iPAQ battery is too low. Extract the battery, leave it disconnected from the device 

for 5 minutes, re-insert the battery and leave charging for at least 30 minutes, until the 

battery indicator starts blinking again. 

 

The iPAQ doesn’t connect to my desktop computer. 

Make sure you are using the latest version of Microsoft ActiveSync.  Make sure the iPAQ 

cable is properly connected to the desktop computer. 

 

7.2. GPS troubleshooting 

The iPAQ doesn’t connect with the GPS device. 

Make sure the GPS device is turned on and charged. 

 

There is no GPS icon in the Bluetooth manager. 

The GPS device hasn’t been bonded with the iPAQ.  Make sure the GPS device is turned 

on and charged.  To bond the GPS device, tap “new” and select “explore a Bluetooth 

device”.  When the GPS device is detected, tap the serial port option “SPP serial port”.  

When the bond is confirmed, tap “finish” and connect to the GPS device as explained 

above in “Connect the GPS to the iPAQ connection”. 

 

ArcPad Error: no fix GPS position. 

The GPS device is unable to determine a fix position.  Stay in place and wait for a few 

minutes until a fix position is achieved.  Make sure the GPS status light is active and the 

GPS is bonded to the iPAQ. 

 

ArcPad Error: too many data are received from your GPS device. 

Press ok and Ignore. 
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7.3. ArcPad troubleshooting 

ArcPad Error appears when I try to interrogate the probe. 

Error windows might appear while interrogating the probe through ArcPad.  Error 

messages are generally vague and of the kind “error, line 89, source text unavailable”. 

Usually, these are associated with lack of power to the probe or disconnection of one of 

the HDAS components.  The general rule is to press “ok” on the error window, wait a 

few seconds and retry the command.  If the error persists, please do the following: 

 

• Check that all the connections are firm 

• Check that the battery adaptor is firmly connected to the battery 

• Check that the iPAQ USB serial port is firmly connected 

• Check that the iPAQ is turned on and not low in battery 

• Check that all the system components are powered properly 

• Check that the GPS and AUX page of the Arcpad settings menu (accessible 

through the Arcpad setting menu button (8) in Figure 3b) are set as indicated in 

Table 2. NOTE: these settings could have been changed during reboot or if the 

iPAQ battery went flat 

 

Repeated error at source code line 83 or “Bad reading” message box 

This error has been observed in particular on new versions of iPAQ running releases of 

windows mobile higher then 2003. to solve it: 

• Unplug and plug the iPAQ USB serial port (see figure 3a) 

• Reeboot the ipaq 

• Restart your HDAS session (see section 3.2) 

 

 

8. HDAS soil moisture calculation 

The HDAS output stored in the “hydra” and/or “hydraGRID” shapefiles includes a range 

of probe output quantities at each reading point. These include four voltage readings 

which are interpreted as soil characteristics including the real and imaginary components 

of the soil-water mixture dielectric constant, soil conductivity, soil temperature, soil 

moisture and soil salinity. All these quantities are calculated internally by the probe head 

and stored in the “hydra” or “hydraGRID” shapefiles as output from the probe. Note that 

these outputs are unaffected by the already discussed soil type option to which each probe 

is initialized. For details about these calculations, please refer to the Hydraprobe manual 

included in this package.  

 

The accuracy of the standard Hydraprobe soil moisture output has been found by several 

independent field tests to be poorer than the stated manufacturer accuracy; this was 

observed particularly in clay soils characterised by warm temperatures. Moreover, in 

clayey soils, the Hydraprobe standard output showed highly reduced sensitivity to 

changes in soil moisture over approximately 30% v/v moisture content. Therefore, the 

current version of the HDAS system described in this document provides an advanced 
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soil moisture output (CAL_MOISTU in table 3); This is calculated by the HDAS 

software using the calibration developed by [1]-[3]. This robust calibration is 

implemented in the HDAS software together with a soil temperature correction 

developed and tested by [4]. This soil moisture value, and NOT the Hydraprobe standard 

output, is also that displayed on the IPAQ screen during sampling. 
 

This advanced soil moisture product implicitly accounts for variation in soil type through 

the imaginary and real parts of the dielectric constant and exhibits better accuracy over a 

variety of soils (+/3.5%v/v) than that from the manufacturers soil type dependent 

relationship. It is also more stable with respect of variations in soil temperature, 

particularly for clay soils. A detailed description of the calibration equations can be found 

in [4], a copy of which is included in this HDAS file packaged in the “documentation” 

folder. However, we want to draw attention to two important issues to be considered 

when using this advanced  soil moisture product: 

 

 

• The two main steps of the calibration are 1) Correction of the output real 

dielectric constant (REAL_DC in table 3) for soil temperature effect and 2) 

calculation of soil water content as a function of the corrected value of the 

dielectric constant. Both steps involve the use of parameters derived from 

experimental data. Although the soil samples used to derive these parameters 

cover a wide range of soil types, some error in the calculation of soil moisture 

might remain. Soil specific calibration of these parameters is recommended (see 

later in this section for details on how to apply custom parameters). 

• In the case of very low values of measured real dielectric constant (less than 2.5), 

the resulting calibrated soil moisture value (CAL_MOISTU in table 3) might be 

negative. This is generally due a bad insertion of the probe tines in the soil which 

creates air gaps in the volume sampled, therefore reducing the value of soil 

dielectric constant (for air the value is ~1 and for dry soil ~2.5). In this case the 

soil moisture value is set automatically to zero by the HDAS software. It is 

recommended that readings with the real part of the soil dielectric constant 

(REAL_DC in table 3) less than 2.5 to be removed from any analysis 

8.1. Custom calibration 

If independent estimation of soil water content (e.g, gravimetric soil samples) and soil 

temperature is available, the parameters used in the HDAS calibration and soil 

temperature correction equations described in [4] can be calculated for the specific soil 

type(s) present in the study area and updated in the file Parameters.dbf (see section 5.3). 

This operation will ensure the custom parameters are used to calculate the HDAS soil 

moisture output displayed on the IPAQ screen when sampling and saved in the output 

files. 

These parameters include: 

• Parameter DCZERO: for future use 
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• Slope (SLKAPPA) and offset (OFFKAPPA) of linear regression for parameter 

“K”, in eq. (1) in [4], for soil temperature correction. Default values are 

respectively 0.011 and 0.0065; 

• Slope (SLCONSTA) and offset (OFFCONSTA) of the calibration equation (3) in 

[4], for soil moisture calculation. Default values are respectively 11.0 and -18.0; 

To change the default parameters, simply open the “parameters.dbf” file with 

Microsoft Excel, edit the values of the parameters (see Table 4) and save the file. 

 

 

 

 

 

 

 

Table 4. Content of the parameters file 
DCZERO SLKAPPA OFFKAPPA SLCONSTA OFFCONSTA

2.7000 0.0110 -0.0065 11.0 -18.0  
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9. Wiring diagrams 
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A3 Calibration Accuracy of the Polarimetric L-band 

Microwave Radiometer (PLMR)  

This appendix presents an estimation of PLMR calibration accuracy based 

on the ground (sky and blackbody) calibration performed during NAFE’05 

experiment. The estimation presented hereafter was undertaken in collaboration 

with Mark Goodberlet from ProSensing, which is the company responsible for 

the initial design and construction of PLMR. 

This Appendix briefly describes: (i) The PLMR calibration procedures 

utilised during the NAFE’05 experiment, and (ii) the procedures used to 

calculate the PLMR calibration accuracy from NAFE’05 calibration data. 

Finally, conclusions are drawn and improvements to the PLMR calibration 

procedures are proposed. 

It should be noted that: 

• the PLMR calibration accuracy reported in this document is specific to 

the NAFE’05 campaign and therefore relevant only to NAFE’05 PLMR 

data. Aging of the instrument will change this estimation for data 

collected after NAFE’05; and 

• it is recommended that the procedure described in this document be 

adopted to re-calculate the PLMR calibration accuracy each time 

calibration data like those collected in NAFE’05 become available. 

In the following discussion, the six PLMR beams are indicated with three 

digits indicating the polarisation, the beam number and the side of the 

instrument the beam is pointing at. For example, beam ‘V3L’ indicates the V 

polarised, third beam on the left side of the instrument. Table A3.1 gives the 

looking angle for each beam indicated with the above convention. 
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A3.1 Calibration Procedures 

On Seventeen dates during November 2005, 

pre- and post -flight calibration was performed 

against a blackbody target (“warm cal”) and 

clear sky (“cold sky”). At each calibration 

session, PLMR was left observing the target 

(sky or blackbody) for 15min. In warm 

calibration, PLMR beams were pointing 

downward to the blackbody box; in cold cal, 

PLMR beams were pointing at ~45º above the 

horizon looking at clear sky (see Figure A3.1). 

For each calibration session, a value of 

PLMR observed TB for each beam and 

polarisation was calculated as the average of the 

15min record, after manually removing anomalous readings (e.g., aircrafts 

crossing PLMR FOV during cold cal). For each warm cal, a 15min average 

value of blackbody TB was calculated from the average of 15 temperature 

sensor data inside the blackbody box, assuming emissivity 1. The TB of the sky 

was assumed to be 8K. 

Table A3.1. PLMR beams 

nomenclature and incidence 

angle. 

Beam 

Incidence 

Angle (from 

Nadir) 

3L -38.5º 

2L -21.5º 

1L -7º 

1R +7º 

2R +21.5º 

3R +38.5º 

 

Figure A3.1. The configuration of the PLMR radiometer in (a) warm 

calibration and (b) cold calibration. 
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For each day, beam specific and polarisation specific calibration parameters 

were calculated as the average slope and offset of the pre- and post-flight 

calibration slope and offset between PLMR observed TB and target TB (see 

Figure A3.2). These daily parameters were then used to perform a daily 

adjustment of the PLMR TB. 

A3.2 Calculation of the Calibration accuracy 

The following steps indicate the procedure used to calculate the PLMR 

calibration accuracy using all the daily calibration data from the NAFE’05 

experiment: 

1. the PLMR-measured TB were plotted against the known target (sky and 

blackbody) TB (see Figure A3.3) for all the calibration sessions; 

2. the slope and offset of the regression between  PLMR-measured and 

target TB were calculated for each beam and each polarisation using the 

available observations; 

3. the PLMR calibration accuracy (δY) was computed for each beam and 

each polarisation as: 

 

Figure A3.2. Example of post-flight calibration, for vertical 

polarisation, on day October 31
st
. 
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       which is the variance of a linear combination of random variables, when 

applied to the equation of the linear regression between the known 

target TB (Y) and the PLMR-measured TB (X): 
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where 

o 1Y∂  and  0Y∂  are the Root Mean Square Errors (RMSE) around the 

regression line of, respectively, the blackbody and the sky data; 

o X0 and Y0 are the average of X and Y for the sky calibration target; 

and  

 

Figure A3.3. Example of plot between the PLMR-

measured TB and the target TB. Red crosses are  the 

warm calibration, blue crosses are the cold calibration 

data. The green line indicates the regression of all 

data. 
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o X1 and Y1  are the average of X and Y for the blackbody calibration 

target; 

4. using (A3.3), the calibration accuracy was calculated for each target TB 

Y, using the corresponding X  calculated for each Y using (A3.4): and 

5. using the radiometer noise-equivalent delta-temperature (NEDT, 

estimated by the manufacturer to be 0.7K), the NEDT-free PLMR 

accuracy was calculated as: 

)0.7-( 22NEDT_FREE
YY ∂=∂ . (A3.5) 

Since the NEDT quantifies the instrument radiometric uncertainty, the 

NEDT-free accuracy includes only the calibration error deriving from 

uncertainties in the sky and blackbody calibration and the instrument drift 

during the field campaign. 

A3.3 Results and Discussion 

Results of the accuracy estimation are shown in Figure A3.3 and Table A3.2  

for each beam at each polarization and for target TB in the range 0-320K.  The  

PLMR accuracy appeared the be poorer for V polarisation. Moreover, it 

appearsed to be poorer  for outboard beams (beams 3L and 3R) as opposed to 

the better accuracy for inboard, nadir looking beams (beams 1L and 1R). Beam 

1R at V polarisation showed an overall poor performance with respect to all the 

other beams 

The reason for the apparent poorer accuracy at V polarisation and for 

outboard beams (beams 3L and 3R) was attributed by the manufacturer to the 

higher sidelobe levels of V-pol beams compared to H-pol beams. This made V-

pol beams more sensitive to radiation coming from directions well off the beam 

pointing direction during calibration, being greater for the outboard beams 

which were more likely to be partially detecting the emission of targets at the 
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edges of the field of view during calibration. This sidelobe effect made both the 

sky target and the blackbody calibration error appear higher for V-pol than H-

pol.  

Inspection of the instrument revealed that beam 1RV had suffered a 

significant loss of gain with respect to the factory calibration. This was 

corrected in September 2008 with updated factory calibration parameters. 

A3.4 Conclusions and Future Recommendations 

The accuracy of PLMR in the brightness temperature range observed over 

water and land during the NAFE’05 campaign (150–300K) was estimated to be 

 

Figure A3.4. Estimated PLMR accuracy for target TB in the range 0-320K 

calculated with 20K step, for each beam and each polarisation. The top panels 

show the accuracy when PLMR noise-equivalent delta-temperature 

(NEDT=0.7K) is included in the calculation. Bottom panels show the NEDT-

free PLMR accuracy. 
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better than 1 K at H polarization and 2.5 K for V polarization. This was 

calculated excluding the outboard beams (3R and 3L) and beam 1RV, for the 

reasons discussed in the previous section. 

To avoid the problem with the higher sidelobes in the outboard beams in 

future application, the following improvements to the calibration procedures 

described in section 0 were recommended: 

Table A3.2. Estimated PLMR accuracy for target TB in the range 0-320K 

calculated with 20K step, for each beam and each polarisation. The top table is 

the estimated PLMR accuracy including NEDT, the bottom table is the 

accuracy without NEDT. 

 

V3L V2L V1L V1R V2R V3R H3L H2L H1L H1R H2R H3R

320 4.71 2.85 2.44 2.23 2.78 4.63 0.99 0.94 0.88 0.89 0.95 0.96

300 4.40 2.67 2.28 2.04 2.59 4.33 0.91 0.87 0.81 0.82 0.87 0.88

280 4.10 2.49 2.13 1.94 2.42 4.04 0.86 0.81 0.76 0.77 0.82 0.83

260 3.81 2.31 1.99 1.93 2.26 3.75 0.82 0.77 0.74 0.74 0.80 0.80

240 3.54 2.15 1.86 2.02 2.12 3.48 0.80 0.74 0.74 0.73 0.82 0.79

220 3.28 1.99 1.76 2.19 2.00 3.23 0.81 0.73 0.76 0.75 0.86 0.81

200 3.03 1.85 1.67 2.44 1.90 2.99 0.83 0.73 0.81 0.78 0.93 0.84

180 2.82 1.73 1.61 2.73 1.83 2.78 0.88 0.75 0.87 0.83 1.02 0.90

160 2.63 1.63 1.58 3.06 1.79 2.60 0.94 0.78 0.95 0.90 1.13 0.98

140 2.48 1.55 1.58 3.41 1.79 2.46 1.02 0.83 1.04 0.98 1.25 1.07

120 2.37 1.50 1.61 3.79 1.81 2.36 1.11 0.89 1.14 1.07 1.37 1.16

100 2.31 1.48 1.66 4.17 1.88 2.31 1.21 0.96 1.25 1.17 1.51 1.27

80 2.31 1.50 1.74 4.57 1.97 2.31 1.31 1.04 1.36 1.27 1.64 1.38

60 2.36 1.54 1.85 4.97 2.08 2.37 1.42 1.12 1.48 1.38 1.79 1.50

40 2.46 1.62 1.97 5.38 2.22 2.47 1.53 1.20 1.60 1.49 1.93 1.62

20 2.61 1.72 2.11 5.79 2.37 2.62 1.65 1.29 1.72 1.60 2.08 1.74

0 2.79 1.84 2.26 6.21 2.54 2.80 1.77 1.39 1.84 1.71 2.23 1.87

V3L V2L V1L V1R V2R V3R H3L H2L H1L H1R H2R H3R

320 4.64 2.75 2.32 2.10 2.67 4.57 0.63 0.55 0.44 0.47 0.57 0.58

300 4.34 2.57 2.17 1.92 2.50 4.27 0.58 0.51 0.40 0.42 0.51 0.53

280 4.05 2.40 2.02 1.82 2.33 3.98 0.55 0.48 0.38 0.40 0.50 0.51

260 3.76 2.23 1.89 1.83 2.18 3.70 0.54 0.46 0.40 0.41 0.52 0.51

240 3.49 2.07 1.77 1.93 2.04 3.44 0.56 0.46 0.45 0.45 0.58 0.54

220 3.23 1.92 1.67 2.12 1.92 3.18 0.60 0.48 0.53 0.51 0.67 0.59

200 2.99 1.78 1.59 2.38 1.83 2.95 0.65 0.51 0.61 0.58 0.77 0.66

180 2.77 1.66 1.53 2.68 1.76 2.73 0.72 0.56 0.71 0.66 0.89 0.75

160 2.58 1.55 1.50 3.02 1.72 2.55 0.80 0.61 0.81 0.75 1.01 0.84

140 2.43 1.47 1.50 3.38 1.72 2.41 0.89 0.67 0.92 0.85 1.14 0.94

120 2.31 1.41 1.52 3.75 1.74 2.30 0.99 0.73 1.02 0.94 1.27 1.05

100 2.25 1.38 1.58 4.14 1.80 2.25 1.09 0.80 1.13 1.04 1.41 1.16

80 2.24 1.39 1.65 4.53 1.89 2.24 1.19 0.88 1.25 1.14 1.55 1.27

60 2.29 1.42 1.75 4.94 2.00 2.29 1.29 0.95 1.36 1.24 1.69 1.38

40 2.38 1.49 1.87 5.34 2.13 2.39 1.40 1.03 1.47 1.35 1.83 1.49

20 2.52 1.58 2.00 5.75 2.28 2.53 1.50 1.11 1.58 1.45 1.97 1.61

0 2.70 1.69 2.14 6.17 2.44 2.71 1.61 1.18 1.70 1.56 2.11 1.72

Target TB 

(K)

PLMR Calibration Error with NEDT (K)

PLMR Calibration Error without NEDT (K)

Target TB 

(K)
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• sky calibration: sky calibration should be performed individually for the 

left and right side of the instrument (i.e., calibration for 3R, 2R and 1R 

separate from that of 1L, 2L and 3L). For each calibration, PLMR should 

be tilted of approximately 22º with respect to the horizontal, so that 

beams 2 (left or right) will be pointing vertically up; and 

• blackbody calibration: it should be ensured that the blackbody material 

completely surrounds the antenna side of PLMR, so that the outboard 

beams are not partially detecting the radiation of non-blackbody 

materials. 
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Improved Understanding of Soil Surface Roughness
Parameterization for L-Band Passive Microwave

Soil Moisture Retrieval
Rocco Panciera,Member, IEEE, Jeffrey P. Walker, and Olivier Merlin

Abstract—Surface roughness parameterization plays an impor-
tant role in soil moisture retrieval from passive microwave obser-
vations. This letter investigates the parameterization of surface
roughness in the retrieval algorithm adopted by the Soil Moisture
and Ocean Salinity mission, making use of experimental airborne
and ground data from the National Airborne Field Experiment
held in Australia in 2005. The surface roughness parameter is
retrieved from high-resolution (60 m) airborne data in different
soil moisture conditions, using the ground soil moisture as input
of the model. The effect of surface roughness on the emitted signal
is found to change with the soil moisture conditions with a law
different from that proposed in previous studies. The magnitude
of this change is found to be related to soil textural properties: in
clay soils, the effect of surface roughness is higher in intermediate
wetness conditions (0.2–0.3 v/v) and decreases on both the dry and
wet ends. Consequently, this letter calls for a rethink of surface
roughness parameterization in microwave emission modeling.

Index Terms—Microwave radiometry, National Airborne Field
Experiments (NAFE), soil moisture, Soil Moisture and Ocean
Salinity (SMOS), surface roughness.

I. INTRODUCTION

PASSIVE microwave remote sensing is an increasingly

utilized technique to monitor surface soil moisture over

large areas due to its all-weather capabilities, limited noise

induced by the vegetation canopy, and high sensitivity to the

dielectric properties of the soil–water medium [1]. Year 2009

will see the launch of the first soil-moisture-specific passive mi-

crowave mission, the Soil Moisture and Ocean Salinity (SMOS)

mission carrying an L-band interferometric radiometer. The soil

moisture retrieval algorithm adopted by SMOS requires in-

formation on the land-surface characteristics which contribute

to the microwave emission of the Earth’s surface. At L-band

frequencies, vegetation water content (VWC) and soil surface

roughness have the highest impact on the surface emission for

a given soil moisture condition. Therefore, the choice of the

parameters used to model the effect of surface roughness on the

emission is of primary importance.

Manuscript received June 20, 2008; revised October 15, 2008 and
November 16, 2008. This work was supported by the Australian Research
Council under Infrastructure Grants LE0453434 and LE0560930 and Research
Grant DP0557543.
The authors are with the Civil and Environmental Engineering, The Uni-
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Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LGRS.2009.2013369

Surface roughness is generally parameterized with the semi-

empirical model proposed by [2], which makes use of two

parameters: HR which is related to measurable geophysical

characteristics of the soil surface, such as standard deviation

(σS) and correlation length (LC) of the surface height profiles,
and a polarization mixing parameter QS that can be estimated

from calibration to passive microwave measurements. While

QS was found to have very low values at L-band [3], the

dependence of HR on the surface roughness characteristics is

not well known. Moreover, the best geophysical parameters to

describe HR over agricultural fields were found to be the slope

parameter (m = σS/LC) and the surface soil moisture [3]. The
dependence of HR on soil moisture was explained by an effect

of volume scattering: the spatial fluctuations of the dielectric

constant within the soil volume are stronger during drying out,

producing an important “dielectric” roughness effect in addition

to the “physical roughness” effect linked to the soil surface

height. Recent results obtained over bare and grassy surfaces

at the European SMOSREX site have proposed a linear decay

of HR with increasing soil moisture between a transition soil

moisture point and the field capacity, with constant values of

HR outside those limits [4], [5]. This letter extends the earlier

tower-based results to scales more representative of future

SMOS footprints using aircraft data at L-band, supported by

detailed ground measurements of soil moisture, soil tempera-

ture, VWC, and surface roughness.

II. DATA

The data used in this letter were collected during the National

Airborne Field Experiment 2005 (NAFE’05). This was a large-

scale airborne experiment conducted in Australia in November

2005 (full details about the experiment can be found in [6]). The

four-week long campaign was conducted in the Goulburn river

catchment (32◦ S, 150◦ E, Fig. 1), a semiarid area of grazing

lands with native grass cover and some cropped areas (mainly

wheat and barley). Heavy rainstorms delivered approximately

50 mm of cumulative rainfall during the first two weeks of

the campaign, followed by a dry-down period until the end

of the experiment. Aircraft L-band measurements were taken

at 60-m resolution over eight experimental farms two times a

week, with supporting ground monitoring of the top 5-cm soil

moisture undertaken weekly at high-resolution site within each

experimental farm (see Fig. 1). This letter focuses on the air-

craft observations taken at the center of the high-resolution sites

where ground soil moisture was monitored at 6–12-m spacing.

1545-598X/$25.00 © 2009 IEEE
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Fig. 1. NAFE’05 experiment ground-sampling layout with land-cover map.
The high-resolution sites, focus of this letter, are labeled.

The high-resolution sites presented a variety of land-surface

conditions and land covers. Stanley, Dales, and Roscommon

were characterized by native pasture; Pembroke, Merriwa Park,

Cullingral, and Illogan were cropped fields (a mix of wheat,

barley, and oats); whereas Midlothian was split between a bare

fallow field and a lucerne crop. Soil type was clay or clay loam

for most sites, with the exception of Roscommon and Illogan

(sandy loam and silt loam).

Soil moisture observations (0–5 cm) were made by means

of the Hydraprobe Data Acquisition System, which integrates

a GPS receiver with the Vitel HydraProbe in a portable

geographic information system framework. Such observa-

tions were calibrated against gravimetric measurements (taken

throughout the campaigns at different locations) and laboratory

data, yielding an estimated accuracy of ±3.5 %v/v [7]. VWC

at each high-resolution site and its temporal variation were

determined by means of biomass samples taken every week.

Surface physical roughness was characterized with 1-m long

pin profilers with two perpendicular sets of readings made at

five locations within each experimental farm.

III. SURFACE-ROUGHNESS RETRIEVAL

The radiative transfer model used in this letter to simulate

the surface emission is the L-band Microwave Emission of

the Biosphere (L-MEB) model, described in detail in [8]. The

model will be the core of the soil moisture retrieval algorithm

adopted for the SMOS mission. The effects of soil and vege-

tation on the surface brightness temperatures are described in

L-MEB by the so-called “τ−ω model”

TB(ϑ, P ) = (1 − ωϑ,P )(1 − γϑ,P )(1 + Γϑ,P γϑ,P )Tv

+ (1 − Γϑ,P )γϑ,P TEFF (1)

where P represents the measured polarization (H or V ), ϑ is
the observation angle, ω and γ are, respectively, the vegetation
scattering albedo and transmissivity, and the two T terms are

the temperatures of the vegetation and the soil effective tem-

perature. The vegetation transmissivity γ is calculated from the
vegetation optical depth, τ(γ = exp(τ/ cos ϑ), which can be
linearly related to the VWC as τ = b∗VWC through the exper-
imental parameter b, which depends on the plant structure and

the sensor frequency and incidence angle [9]. To account for

this angular effect, the expression τ = b∗VWC is used to calcu-
late a NADIR-equivalent optical depth, which is then modulate

with the incidence angle based on two polarization-dependent

and vegetation-specific structure parameters, tth and ttv . The
reflectivity of a rough soil Γ, which is also sensitive to the
observation angle and measured polarization, is derived from

the smooth soil Fresnel reflectivity Γ∗ as a function of the ob-

servation angle through the model soil parametersHR andNRP

Γ = Γ∗ exp
[

−HR cos(ϑ)NRP

]

. (2)

In this letter, the values for the model parameters used

were those proposed for the soil moisture retrieval of the

future SMOS mission for native grass and wheat crops

(J.-P. Wigneron, personal communication). NRV was set to −1

or 0 and NRH to 0 or 1 (respectively for crop and grass). Veg-

etations scattering albedo was set to 0 (crops) and 0.05 (grass).

VWC was determined from ground samples, whereas the ef-

fective soil temperature was determined using surface (2.5 cm)

and deep (15 cm) soil temperature measurements from the

local monitoring stations (see Fig. 1) at the time of the aircraft

overpass using the formulation proposed in [3]. Vegetation

temperature TV was approximated with the soil temperature at

2.5 cm. Soil texture was determined from 5-cm samples taken

nearby each high-resolution site.

The parameters with the highest impact on the soil moisture

retrieval using the described model are b and HR. The existing

estimates of b andHR (“SMOS default,” Table I) were initially

verified by using them to retrieve soil moisture and compare

it with the ground soil moisture observations. “SMOS default”-

retrieved soil moisture is shown in Fig. 2 against the ground soil

moisture, and the mean absolute error of the retrieval (MAE)

are listed for each site in Table I. It is shown that, by using

“SMOS default” values for both b andHR parameters, large re-

trieval errors (underestimation) are obtained, particularly for the

crop sites (Pembroke, Merriwa Park, and Cullingral), whereas,

for the grass sites, the errors are much smaller. Given the

confounding influence of parametersHR and b on the retrieved
soil moisture, with an increase in HR and b generally having
the same effect of increasing the overall emission, these results

indicate that the value of either or both parameters proposed for

the SMOS retrieval are too low. It was therefore necessary to

perform a site-specific calibration to separate the effect of the

two parameters and to address the main objective of this letter,

the surface roughness parameter.

Given the availability of five to eight daily bi-polarized

aircraft observations at multiple angle for each high-resolution

site, both parameters can be retrieved by taking advantage

of the multi-angular capabilities of the L-MEB model and

using the ground-measured soil moisture as input of the model.

Two different calibration approaches were used. First, it was

assumed that the “SMOS default” values for bwere correct, and
HR was calibrated for each individual site. Second, b and HR

were alternatively calibrated at each site and each day through

a sequence of iterations; at each step, the value of b used as
input to calibrate HR was the average of the values calibrated

across all days in the previous step, whereas b was calibrated
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TABLE I
VALUES OF PARAMETER b AND HR AND MEAN ABSOLUTE ERRORS (MAE, [%v/v]) OF SOIL MOISTURE RETRIEVAL FOR SMOS DEFAULT

AND THE TWO SITE-SPECIFIC CALIBRATION APPROACHES DISCUSSED IN THE TEXT. MEAN AND ± STANDARD DEVIATION IN
TIME OF CALIBRATED PARAMETERS IS SHOWN. ∗ = NATIVE GRASS; ∗∗ =MIX FALLOW/LUCERNE; ∗∗∗ = CROP

Fig. 2. Retrieved versus ground-observed soil moisture using (black symbols)
SMOS default parameters and (gray symbols) NAFE’05 calibrated b and HR.
Asterix indicates native grass sites; circles indicate crop sites. Vertical error
bars indicate± of the standard deviation of observed soil moisture within each
footprint.

using the calibrated values of HR for each day in the previous

step. The iterations were repeated until the mean values of both

parameters would not change significantly between subsequent

iterations. This process led to an adjustment of the values

of both parameters to match the observed emission, while

minimizing the temporal variation or retrieved parameters b,
which is only dependent on the plant structure and is therefore

not expected to change in time.

In both approaches, all the bi-polarized multi-angular obser-

vations available for each site on each observation day were

used to retrieve one single value of the parameter for the site.

Although the available range of incidence angles varied slightly

between sites, due to differences in aircraft flight lines and

attitude, on average each site was observed over a range of

angles of 20◦. This is indicated in the second column of Table I.

IV. RESULTS

The calibrated values of both the b and HR parameters for

the two approaches and the MAE of soil moisture retrieval are

shown in Table I, together with the standard deviations of the

retrieved values across the monitoring days to highlight the

temporal variation of the parameters. Note that the MAE was

calculated using the average values of the parameters for each

site. Overall, the SMOS values of b were found to be suitable
for crops in the study area, whereas the values of HR had to be

increased significantly from the SMOS default values in order

to obtain an accurate soil moisture retrieval. This could be due

to differences in agricultural practices between the NAFE’05

study area and the European sites typical of most SMOS studies

which provided estimates of HR. For the native grass sites, the

SMOS values ofHR were found to be suitable, whereas values

of b were somewhat too low.
It should be noted that the iterative calibration of b and

HR produced very high values for parameter b in some cases.
In particular, the Midlothian, Dales, and Cullingral sites had

unrealistically high b values (above ∼0.5), which cannot be

explained by the effect of the standing vegetation alone. This

can be explained by very high surface roughness or some

other sources of emission, like, for example, litter or rainfall

intercepted on the plant, not explicitly modeled but implicitly

accounted for in the high values of b. It should be noted that
these sites also exhibited very high values of HR in the first

calibration approach (individual HR calibration with b fixed),
confirming the hypothesis of an actual deficit in the emission

budget. The joint calibration of b and HR at the Dales site did

not improve the soil moisture retrieval. Analysis of the aircraft-

observed surface emission at this site revealed very poor sen-

sitivity to the ground-measured soil moisture, which could be

explained by the presence of a litter layer that remained moist

and, thus, saturated the signal. This effect has been observed

also at some European sites [5]. The Dales site was therefore

not considered further in this analysis.

It is interesting to note the lower values of HR calibrated

at the sites with more sandy soils (Roscommon and Illogan),

which was not expected, as soil texture should not affect the

physical roughness of the surface. This could be an effect

of the dielectric model used by the L-MEB algorithm, the

Dobson model [10], which is known to have poorer perfor-

mance on sandy soils. It is also shown in Table I that similar soil

moisture retrieval errors are obtained with the two calibration

approaches (calibration of only HR and calibration of both

parameters). Nevertheless, the second approach guarantees that
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Fig. 3. Retrieved parameter HR as a function of ground soil moisture for
all the high-resolution sites; using SMOS values for parameter b for (a) sandy
soils and (b) clayey soils, and using site-specific calibrated values of b for
(c) sandy soils and (d) clay soils. Dashed colored lines are the best fit for each
site. Solid gray lines show the value of the Choudhury parameter for physical
roughness (average of all sites = 0.25), whereas solid black lines indicate the
roughness–soil moisture relationship proposed by Saleh et al. [5]. (blue dots
and solid lines) Soil moisture heterogeneity at 6-m spacing is also displayed for
each high-resolution site and each date with cubic fit.

any vegetation effect be removed from the calibrated values of

HR, which makes it more suitable for the purpose of this letter.

The soil moisture retrieved using these calibrated parameters is

plotted against the ground soil moisture in Fig. 2 for comparison

with SMOS default retrieval.

In order to investigate the dependence of HR on soil mois-

ture, HR was retrieved for each bi-polarized observation of the

high-resolution sites. This approach provides more data points

at a wider range of soil moisture conditions than when using all

the observations at once to retrieve on value ofHR for each day

(as done thus far). The retrievedHR as a function of the ground-

observed soil moisture is shown in Fig. 3. In this plot the results

obtained using both sets of values of parameter b (SMOS value
and calibrated b) are presented, and the high-resolution sites
are grouped by soil type, upon observing a strong soil-type

dependence of retrieved values of parameter HR in Table I.

It is observed that the values of HR are not constant but

rather change with respect to the soil moisture conditions.

In the intermediate-to-wet range of soil moisture conditions

(0.2 v/v to saturation), the general trend is that of a decrease of

the parameter from higher value in intermediate wetness condi-

tions to lower values in wet conditions. This is observed for all

soil types and regardless of whether parameter b is calibrated
or not. The trend is consistent with what were already observed

in previous studies using a tower radiometer at the European

SMOSREX site [4], [5]. The linear regression proposed in those

studies (for natural grass) is shown in Fig. 3 for comparison.

It is notable how, in the case where b is calibrated (bottom
panels shown in Fig. 3), this trend is matched by the values

ofHR retrieved in this letter for clay soils. On more sandy soils

instead, the values of HR are much lower, although the linear

decrease with soil moisture conditions is maintained.

It is also notable in Fig. 3 that, for clay soils and when

drier conditions are encountered, a negative trend between HR

and soil moisture seems to dominate, after a peak of HR is

reached at around 0.2–0.3 v/v soil moisture conditions. This

is not visible for the Pembroke site, which nevertheless did not

experience conditions drier then 0.2 v/v. The observed decrease

of HR on dry conditions is in contrast with previous studies

which reported constant values of HR in this range, as well as

above the field capacity [4], [5]. This could have been due to

the fact that the soil types in the sites analyzed by those studies

were mainly sandy, whereas the decrease was observed here

mainly for clays and clay loams.

In [4] and [5], it was suggested that the decrease of HR

with increasing soil moisture is associated with the presence of

micro-scale heterogeneity in soil moisture during drying. This

would add a component of dielectric roughness to the physical

roughness of the soil surface which would instead dominate

on wet conditions where soil moisture is more uniform at the

microscale. On the same line of thought, the decrease of HR

observed in Fig. 3 in the dry end could be associated to the

decrease in micro-scale dielectric heterogeneity that one would

expect in drying clay soils due to lower limit imposed by

the residual or wilting points. At the dry end, therefore, the

physical-roughness component of HR would become increas-

ingly dominant, and the dielectric-roughness component would

decrease.

In Fig. 3, the physical-roughness component is quantified

through the classical Choudhury parameter [11] = (2 kσS)2,
function of the standard deviation of the surface heights and

the wavenumber k. Here, the average between all the high-
resolution sites (0.25) was taken as a reference, resulting from

an average σS of 8.4 mm (2-mm standard deviation) across the

eight sites. It is clear that, for clay soils and when calibrated

values of b are used (lower left panels as shown in Fig. 3),
the values of HR approach the physical-roughness component

toward both the dry and wet soil moisture ends. The range

of HR values between extreme and intermediate soil moisture

conditions exhibited by clay soils in Fig. 3 is on the order

of 0.3–0.5. On bare soil, this would correspond to an error

in soil moisture retrieval of 15–20 %v/v. For many of the

cases presented here, therefore, using a constant value or a

simple linear decrease of HR with soil moisture could lead to

significant soil moisture retrieval errors.

The comparison between the relationship of HR and soil

moisture on sandy and clay soils shown in Fig. 3 further

supports the hypothesis of dielectric roughness induced by

micro-scale heterogeneity of soil moisture. One would in fact

expect this heterogeneity to be higher in clay soils due to the

highest water retention property of these. This was verified

by analyzing the variance of the soil moisture measurement

taken at 6- and 12-m spacing throughout each high-resolution

site. This is shown in Fig. 3 (blue right axis in lower panels),

where the soil moisture variance is plotted against the mean

soil moisture for each area and each day. For clay soils, the

soil moisture heterogeneity is in fact much higher (nearly

double that of sandy sites) and achieves a maximum around
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0.3–0.45 v/v with a rapid decrease below 0.3 v/v. For sandy soil,

this heterogeneity is smaller, with corresponding lower values

ofHR. The implicit assumption is made here that the soil mois-

ture dependence of the heterogeneity at the 6-m scale is a good

approximation of that of the micro-scale heterogeneity which

would be observed on very small soil samples and which is

expected to determine the dielectric roughness. The goodness of

this assumption is difficult to verify, and therefore, the measure

of heterogeneity adopted here is to be thought of only as an indi-

cation of the relative magnitude of soil moisture heterogeneity

between soil types and its variation with wetness conditions.

Further investigation is needed in order to understand what is

the scale at which the soil moisture heterogeneity mostly affects

the relationship between soil moisture and microwave emission

and how this effect can be parameterized through HR as a

function of soil type or accounted for in a soil dielectric model.

Moreover, it should be better understood whether the smaller

value of HR are not an artifact of the poor performance of the

Dobson model on sandy soils.

V. CONCLUSION

Effective parameterization of surface roughness is important

for passive microwave remote sensing of soil moisture. In

this letter, the dependence of surface roughness on soil mois-

ture microscale heterogeneity was investigated using aircraft

and ground soil moisture observations. The surface roughness

parameter was found to be not constant but rather variable,

depending on soil moisture conditions and soil type. On clay

soils, it exhibited a maximum at intermediate soil moisture

conditions (∼0.25 v/v) and a decrease toward both dry and wet

conditions, whereas on sandy soils, it exhibited lower values

and a monotonic decrease going from dry to wet conditions.

In the intermediate wet soil moisture range (0.25 v/v to satu-

ration), a soil moisture dependent linear relationship similar to

that proposed by previous studies [4], [5] was found to apply

well to the crops and native grasses on clay soils. However,

the values of roughness approached the contribution of the

surface physical roughness (∼0.28) on both the wet and dry

ends. This was explained as the effect of a dielectric component

in the microwave roughness which is related to soil moisture

microscale heterogeneity. It was shown that this effect might be

higher in clay soils and maximum at intermediate soil moisture

conditions when the water retention properties of clay deter-

mine high spatial variability. These results indicate the need

to model the dielectric component of the surface roughness

effect on the soil emission as a function of the soil textural

properties and soil moisture. This letter also suggested that the

values of HR proposed for SMOS might be too low to provide

accurate soil moisture estimates over crop sites, whereas they

are suitable for native grass-covered sites.
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A5 The 3P-S Approach 

The second alternative approach tested in this thesis consists of performing a 

three-parameters retrieval: the retrieved parameters are (i) the soil moisture of 

the moderate vegetation fraction, (ii) the optical depth of the moderate 

vegetation fraction and (iii) the soil moisture of the forest fraction. The optical 

depth of the forest fraction is imposed a priori as in 2P-S. This approach 

relaxes the assumption of uniform soil moisture between the two fractions on 

which the previous approaches are based.  

Since the retrieval of three parameters is attempted, it is necessary to have a 

minimum of three concurrent observations. These can be obtained, for example, 

using bi-polarised observations at two different incidence angles. As explained 

in Chapter 5. However, the regional airborne data were collected with the 

radiometer in “pushbroom” configuration in order to allow monitoring of a 

large area within one day, implying that only two observations for every ground 

location were available (single-angle, V and H-pol). While one option was to 

create observations of each ground location at multiple angles by applying an 

incidence angle normalisation procedures like that described in section 5.3.2.1, 

this is somewhat artificial and requires a strong assumption to be made on the 

angular dependence of the microwave emission over different land surface 

conditions. 

Before attempting the 3P-S approach using the NAFE’05 airborne data, a 

proof-of-concept was performed using a simple synthetic scenario in order to 

assess the potential of the approach to reduce the error with respect to the 2P-S 

approach, as well as to check for algorithm convergence when retrieving three 

parameters with a limited number of independent observations. 
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A5.1 Application of 3P-S to a Synthetic Scenario 

The synthetic scenario consisted of a mixed pixel composed by two 

fractions, one of forest the other one of a moderate vegetated land over type 

(grassland), having different soil moisture contents. Three heterogeneous soil 

moisture scenarios were simulated (dry, intermediate and wet), all characterised 

by a fixed soil moisture difference between the grass and forest fraction 

(20%v/v). In line with that observed with ground data in Chapter 6, the forest 

fraction was always considered to be drier than the grass fraction. Therefore the 

soil moisture of the forest was set to 5, 20 and 35%v/v and that of grass was 25, 

40 and 55%v/v respectively in the “dry”, “intermediate” and “wet” scenarios. 

The average pixel soil moisture was then calculated by mixing those values 

weighted by the respective fraction of the pixel. In order to simulate TB 

observations for the mixed pixel, the optical depth of the grassland was set to 

0.05 and that of the forest to 0.57, while for the other L-MEB parameters, the 

values specifically evaluated in the NAFE’05 conditions and used throughout 

this thesis were adopted (see Table 5.2). Moreover, the pixel was assumed to 

have a uniform surface temperature of 300K and a uniform soil texture with 

21% sand and 36% clay content. Dual-polarised TB observations of the mixed 

pixel were then simulated for each scenario, by running the L-MEB model in 

forward mode separately for the two fractions and aggregating the resulting 

TB’s at each polarisation and angle using their respective pixel fractions. This 

was done for a variety of incidence angles. 

In order to check for convergence of the retrieval algorithm and to provide a 

statistically significant data set, the simulated TB observations were perturbed 

with an assumed measurement error of 2K standard deviation before 

performing the retrieval. This involved adding a Gaussian noise, fully 

correlated between polarisation and incidence angles, with a standard deviation 

of 2K. This created for each observation a set of 100 independent observations. 

An average soil moisture retrieval error was than calculated for each scenario as 
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the average of the 100 simulations, and the model convergence assessed using 

the error variance.  

The mean and variance (in square root) of the error using the 3P-S approach 

is compared with that using the 2P-S approach in Figure A5.1 in the case of a 

pixel of group B (50% of pixel occupied by forest and 50% by grass), as a 

function of the range of incidence angles used. In this first case, for each range 

of angles two dual-polarised observations were simulated and used for retrieval, 

the two incidence angles obtained by summing and subtracting half the range to 

the center angle 38º. The 3P-S approach improved the 2P-S approach in 

intermediate and wet conditions. However, in dry conditions 3P-S had greater 

error than 2P-S. It can be seen in the right panel that this is associated with a 

strong variance of the error due to the TB noise, indicating that the 3P-S has 

poorer convergence in dry conditions, causing the greater soil moisture retrieval 

error. This is likely due to the fact that in dry conditions the increased soil 

emissivity decreases the impact of the different land cover types on the “above 

canopy” emissivity of each pixel fraction (see Figure 8.3), therefore creating a 

larger amount of soil moisture distribution within the fraction which satisfy the 

optimisation criteria. In intermediate and wet conditions the error obtained with 

3P-S had a variance comparable to that of 2P-S. This variance was 

approximately 2%v/v, which is the amount expected for a 2K noise in TB.  

It is also notable that increasing the range of incidence angle (always using 

only two observations) did not improve the performance of 2P-S. Rather, both 

the error and the variance of 3P-S decreased with increasing range of incidence 

angles. The improvement was more evident on intermediate soil moisture 

conditions, whereas in dry conditions the wider the range of incidence angles 

the greater the retrieval error and poorer the convergence (resulting in a greater 

variance of the error). The increased accuracy in intermediate and wet 

conditions is expected, since observations at different angles yield more 

information on the angular variation of the soil-vegetation microwave emission 
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characteristics as opposed to observations with similar angle. The degradation 

of the retrieval for dry conditions and wider ranges of angles is attributed to 

poor algorithm convergence as shown in the right panel of Figure A5.1. 

In Table A5.1 the comparison between 3P-S and 2P-S shown in Figure A5.1 

is extended to the case of a pixel of group A (80% of pixel occupied by forest 

and 20% by grass) and one of group C (20% of pixel occupied by forest and 

80% by grass). For simplicity, only results for the case with 30º incidence angle 

range are shown in this table. For the 3P-S approach the error in the retrieved 

values of the individual fractions is shown together with the error in pixel 

average soil moisture. It can be seen that the algorithm tended to smooth out the 

soil moisture gradient by overestimating the soil moisture of forest and 

underestimating that of grass. The error was greater for the land cover type with 

the smaller fraction (i.e., the forest fraction in group A pixels and the grass 

fraction in group C pixels). However when forest and grass had the same 

fraction (group B pixels) the error was greater over forest. This was more 

 
Figure A5.1. Comparison between the 3P-S (solid lines) and 2P-S (dashed 

lines) soil moisture retrieval from two dual-polarised observations with 

increasing incidence angle difference. The (a) average error in soil moisture 

retrieval and (b) the square root of the variance of the error due to a 2K noise in 

the observations are  shown for three average soil moisture conditions of the 

pixel: 15%v/v (○), 30%v/v () and 45%v/v (+). 
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pronounced in the dry case, in which the algorithm was found to exhibit higher 

instability earlier on. This indicates that the error of the 3P-S approach in 

retrieving soil moisture estimates of the sub-pixel fractions are due to poor 

sensitivity of the pixel average TB to changes in soil moisture over the land 

cover type having the smallest fraction, with the soil moisture of the forest 

fraction presenting the greatest error when the fractions are the same. However, 

at the pixel level, these partial errors generally cancelled each other out. 

Consequently, the 3P-S approach improved the 2PS in all cases, except for the 

case of significant forest fraction (group B and C) and in dry conditions. It 

should be noted that when going towards wetter conditions, the errors tended to 

decrease.  

In Figure A5.2 the results of a second synthetic test are shown. In this case 

the 3P-S approach was applied using ten incidence angles rather than only two 

as in the previous test. This was done by dividing each range of incidence angle 

in nine equal intervals. This test was performed since only a limited number of 

independent observations can be simulated at multiple angles using the single-

angle airborne data, without introducing significant assumptions. Therefore this 

test had the objective to understand whether the performance of the 3P-S 

Table A5.1. Comparison between the performance of 2P-S and 3P-S 

approaches for three synthetic scenarios and for land cover categories.  

Soil Moisture Error (%v/v) 

Group 

Pixel 

Soil 

Moisture 

(%v/v) 

2P-S 

Mixed 

Pixel 

3P-S 

Mixed 

Pixel 

3P-S 

Grass 

fraction 

3P-S 

Forest 

Fraction 

21 1.6 1.1 -1.8 12.8 

36 1.3 0.4 -0.9 5.7 

A. 

Forest<40% 

51 1.3 0.3 -0.5 3.2 

      15 3.2 6.0 -11.8 23.9 

30 2.7 0.6 -2.2 3.5 

B. 

 Forest =40-60% 

45 2.6 0.3 -0.9 1.5 

      9 2.4 3.3 -23.2 9.9 

24 2.0 1.3 -5.6 3.0 

C.  

Forest >60% 

39 2.0 1.1 -5.2 2.7 
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approach improved when increasing the number of independent observations 

available, and therefore whether testing the 3P-S with airborne data at only a 

few incidence angles would be relevant. 

The results show that the accuracy of 3P-S did not improve when using 10 

dual-polarised observations in comparison to only 2. Rather, the accuracy of the 

3P-S was largely unchanged, and in dry conditions the results were even 

slightly worse. Panel b of Figure A5.2 also shows that using 10 observations 

did not improve the convergence of the algorithm, which was also degraded in 

many cases.  

These results are in agreement with those of [Davenport, 2008 #54], the only 

other study which analysed the effect of sub-pixel heterogeneity in a multi-

angle, SMOS type synthetic scenario. In that study it was found that multi-

angular retrievals are more affected by the sub-pixel heterogeneity of soil 

moisture than single angle retrievals. This was attributed to the difficulty 

encountered by the algorithm in finding values of the retrieved parameters that 

matched the variety of non linear soil moisture-microwave emission curve, 

 
Figure A5.2. Soil moisture retrieval using the 3P-S approach with 10 dual-

polarised observations (dashed lines) or 2 dual-polarised observations (solid 

lines) covering the same range of incidence angles. In (a) the average error in 

soil moisture retrieval and in (b) the square root of the variance of the error due 

to a 2K noise in the observations are shown for three average soil moisture 

conditions of the pixel: 15%v/v (○), 30%v/v () and 45%v/v (+). 
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which vary with the incidence angle. This implies that, even though multi-

angular observations might allow more accurate soil moisture retrieval on 

homogeneous scenes, this might not be an advantage on scenes that are 

characterised by highly heterogeneous land surface conditions. 

This synthetic test showed that the 3P-S approach could improve the soil 

moisture retrieval accuracy of the 2P-S approach, but only when the forest 

fraction is less than 40% (group A pixels) and the pixel is relatively moist, due 

to poor algorithm convergence. It was also shown that only a slight 

improvement in retrieval accuracy derived from increasing the range of 

incidence angles of the available observations, and that increasing the number 

of incidence angle observations for a given incidence angle range did not 

improve the retrieval. In the following section, 3P-S approach is tested with the 

NAFE’05 airborne data. 

A5.2 Application of 3P-S with Airborne Data 

The 3P-S approach was applied to the NAFE’05 airborne data and compared 

to the performance of the 2P-S approach presented in section 8.3.1. To this end, 

SMOS observations were simulated at 7º incidence angle in addition to the 

38.5º observations used thus far for 2P-U and 2P-S approaches. This allowed 

the 3 parameters to be retrieved by 3P-S (soil moisture of the forest fraction, 

soil moisture of the moderately vegetated fraction, and optical depth of the 

moderately vegetated fraction) by using 4 observations for each SMOS pixel (V 

and H-pol at 7º and 38.5º incidence angle). The choice of these two incidence 

angles, having a range of 31.5º, was motivated by the fact that these are the 

centre angles of the PLMR radiometer outer (±38.5º) and inner (±7º) beams, 

and by the synthetic results that showed the maximum angular range 

correspond to a maximum improvement of the 3P-S approach in most scenarios 

tested. 
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The additional 7º observations were obtained from the 1km regional TB in 

the same way as the 38.5º observations, by using the incidence angle 

normalisation procedure described in section 5.3.2.1 and aggregating the 

normalised 1km TB to 5, 10, 20, 30 and 40km. Table A5.2 shows the average 

and standard deviation of the 1km TB normalised at the two different angles. It 

is shown that while the averages for all data sets increase according to the 

drying conditions, the 38.5º observations have a larger difference between 

average V and H-pol. 

Making use of the dual-polarised observations at 7º and 38.5º, two soil 

moisture values and one optical depth were retrieved for each coarse-resolution 

pixel. The soil moisture values are those of the forest fraction and that of the 

moderately vegetated fraction of the pixel, whereas the optical depth value is 

that of the moderately vegetated fraction of the pixel. Note that this includes 

both the grassland and crop fraction, meaning that although the L-MEB is run 

Table A5.2. Comparison of the mean and standard 

deviation of the 1km regional brightness temperature 

observations normalised at 38.5º and 7º, used to 

obtain the dual-polarised, bi-angular coarse-resolution 

observations for the testing of the 3P-S approach with 

real data. 

Date TB (H) 

38.5º 

TB (V) 

38.5º 

TB (H)  

7º 

TB (V) 

7º 

31/10 237.7 

±11.9 

255.3 

±10.0 

241.4 

±11.9 

243.3 

±9.8 

7/11 241.4 

±10.1 

261.3 

±7.5 

246.7 

±10.3 

249.8 

±7.6 

14/11 264.7 

±6.5 

277.8 

±5.1 

270.1 

±6.6 

272.6 

±5.2 

21/11 270.9 

±4.0 

282.2 

±2.9 

276.8 

±4.1 

279.2 

±3.1 
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in forward mode separately (and with specific parameters) for the three 

fractions (forest, crop and grassland), the soil moisture is assumed to be the 

same between the crop and the grassland fraction. This is consistent with the 

SMOS L2 algorithm. Moreover, the analysis conducted thus far has shown no 

correlation between the retrieval error and the crop fraction. Conversely, the 

error was highly correlated with the ratio between forest fraction and the 

moderately vegetated fraction (crop and grass). A value of pixel average soil 

moisture was then calculated as the average of the 2 soil moisture values, 

weighted by the respective pixel fraction. This was done since the soil moisture 

retrieved by the algorithm for each fraction is essentially a soil moisture 

measurement with a support proportional to the area covered by the land cover 

type. 

In Table A5.3 the performance of the 3P-S approach is compared to the 2P-S 

approach. For direct comparison with the 2P-S, the 3P-S approach was run here 

after relaxing the 20%v/v constraint on the retrieved soil moisture, since in the 

previous section this was found to give the best results when using 2P-S. The 

soil moisture retrieval using the 3P-S approach was found to be overall less 

accurate than the 2P-S approach. In particular, on the first two days (October 

31
st
 and November 7

th
, generally wet conditions) the 3P-S approach resulted in 

a significant wet bias which significantly impacted the overall soil moisture 

retrieval error. However, on dry days the two approaches yielded a similar 

accuracy.  

In the synthetic analysis in the previous section it was shown that the burden 

of 3 parameters to be retrieved caused a difficulty with convergence of the 

optimisation algorithm. To check whether the errors observed in Table A5.3 

were a result of that problem, the 3P-S retrieval was repeated by simulating a 

2K measurement error (same to what was done in the synthetic case). A set of 

100 perturbed observations was thus created for each pixel. Soil moisture of the  
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forest and moderately vegetated fraction were then retrieved and the variance of 

the error calculated for each fraction individually. The error in soil moisture 

retrieved over both fractions and the error variance are shown in Figure A5.3 as 

a function of both the amount of forest fraction of the pixel and the observed 

pixel average soil moisture. 

It can be seen that, as observed in the synthetic analysis, the retrieval was 

very inaccurate for the forest fraction (blue dots, panel “a”). Here, very high 

soil moisture values were retrieved for the forest when the observed conditions 

were actually dry and low soil moisture values were retrieved when the soil was 

actually wet (panel “b”). These errors only occurred when the forest fraction 

was small (panel “b”). Conversely, the soil moisture of the moderately 

Table A5.3. Errors in retrieved soil moisture (SM) and optical depth (TAU) at 

5km resolution obtained using the 2P-S and 3P-S approaches. All RMSE and 

biases are relative to the pixel average values, apart from (
+
) which is relative 

to the optical depth of the moderately vegetated fraction. 

  2P-S  3P-S 

Group Date 

SM 

RMSE 

(%v/v) 

SM 

 Bias 

(%v/v) 

ΤAU 

RMSE 

(
+
)  

SM 

RMSE 

(%v/v) 

SM 

Bias 

(%v/v) 

ΤAU 

RMSE 

(
+
)  

31/10 3.6 1.8 0.02  4.4 3.1 0.02 

7/11 2.0 -0.8 0.02  3.7 3.2 0.02 

14/11 2.1 -1.3 0.02  1.6 -0.8 0.05 

A.  

Forest 

<40% 

21/11 2.2 -1.5 0.02  2.8 -2.4 0.10 

      3.1   31/10 4.6 2.6 0.04  6.4 5.4 0.06 

7/11 2.6 -1.5 0.05  5.1 4.8 0.05 

14/11 1.1 -1.0 0.08  0.7 0.0 0.03 

B. 

 Forest 

>40% 

<60% 
21/11 1.5 -1.2 0.07  1.7 -1.6 0.14 

         3.5   31/10 3.3 2.4 0.09  6.7 6.1 0.23 

7/11 0.9 0.1 0.05  9.8 5.7 0.19 

14/11 0.8 -0.6 0.08  0.5 -0.3 0.16 

C.  

Forest 

>60% 

21/11 0.6 -0.5 0.12  0.9 -0.8 0.17 

         Total 2.5 -0.3 0.04  3.9 1.2 0.08 
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vegetated fraction (red dots) was underestimated in dry conditions and 

overestimated in wet conditions (above 30%v/v pixel average soil moisture), 

and tended also to increase when this fraction was smaller (i.e., toward higher 

forest fraction in panel “b”).  It should be noted that, despite the magnitude of 

the errors in the retrieved soil moisture of the forest shown in the figure, the  

error in pixel average soil moisture shown in Table A5.3 are of much smaller 

magnitude. This is because the pixel average soil moisture was calculated from 

the value retrieved in the individual fractions using the respective pixel 

fractions as weights.  

 
Figure A5.3. 3P-S average soil moisture (SM) error (top panels) and variance of 

the error (bottom panel) after a 2K noise was added to the each 5km resolution 

observation. Blue dots indicate the error of the soil moisture retrieved for the 

forest fraction, red dots the error for the moderately vegetated fraction. Both 

quantities are displayed as a function of the pixel average soil moisture (left 

panels) and the forest fraction within the pixel (right panels). 
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In the lower panels of Figure A5.3, it can be appreciated that the highest soil 

moisture retrieval errors were associated with a strong increase in the variance 

of the error due to the added measurement noise. For most pixels, the variance 

of the error was equal or less than 2.5%v/v, with a maximum at intermediate 

soil moisture conditions. This is equal to the variance obtained with the 

synthetic example, and indicates that the algorithm had overall a good 

convergence. However, as observed in the synthetic analysis, the error variance 

increased in dry conditions for both the forest and moderately vegetated 

fraction (panel “c”), and increased for each land cover types when the 

respective pixel fraction gets small (panel “d”). Moreover the variance was 

generally higher for the forest fraction. This is expected due to the greater 

optical depth of forest with respect to that of a moderate vegetation surface, 

meaning the overall emissivity is less sensitive to soil moisture changes in the 

forest fraction. Additionally, this effect will be even smaller when the fraction 

occupied by forest decreases.  Note that a strong increase in the error variance 

of the forest soil moisture was also observed for very wet soil moisture 

conditions of the mixed pixel, above 50%v/v. This was not observed in the 

synthetic case, where the soil moisture conditions analysed were not greater 

than 45%v/v. it should be noted that such wet conditions, although observed 

within relatively small areas (5km), are less likely to happen at the SMOS 

resolution of 40km. 

These results are fairly consistent with those indicated by the synthetic test, 

where the algorithm was found to overestimate the soil moisture of the forest 

fraction and underestimate that of the moderately vegetated fraction. However, 

it can be seen in Figure A5.3 that at around 30%v/v the error over both 

fractions changed sign. In the synthetic test this “inversion” was not observed, 

although it was noticed that both errors were more severe when the pixel was in 

dry conditions (15%v/v), whereas they both decrease in intermediate and wet 

conditions (30%v/v and 45%v/v), matching the decrease of errors from dry to 

intermediate conditions observed with real data. It is likely that the “inversion” 
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was not observed in the synthetic test due to the soil moisture difference 

imposed between the two fractions, which was fixed to 20% for all cases (dry to 

wet) and therefore non entirely representative of all the cases encountered when 

using real data. 

As a result of the poor sensitivity of the mixed pixel retrieval to the soil 

moisture of the sub-pixel fractions, the 3P-S resulted in larger errors than the 

2P-S approach as seen in Table A5.3. Although in a synthetic scenario the 

partial soil moisture errors in the sub-pixel fractions cancelled each other out, 

this did not happen when using real data. A possible way to avoid this problem 

in an operational scenario would be to constrain the soil moisture of forest to an 

a priori value in order to increase the convergence of the algorithm. In order to 

check whether this would improve the overall retrieval of the 3P-S, the value of 

soil moisture of the forest fraction was set to that of the ground observations 

and retrieving only the soil moisture and optical depth of the moderately 

vegetated fraction of the pixel. This simulated the optimal scenario in which a 

perfect estimation of the soil moisture of the forest fraction was available from 

another source.  

 

Table A5.4. Soil moisture error obtained with the 3P-S approach depending on 

the a priori information on the soil moisture of forest. The soil moisture 

retrieval RMSE, and bias calculated for the monitoring period are shown for 

each group of pixel. 
*
=without a priori information on the soil moisture of 

forest; **=with a priori information on the soil moisture of forest. 

Group A 

Forest<40% 

Group B 

Forest=40-60% 

Group C 

Forest>60% Retrieval 

Approach RMSE Bias RMSE Bias RMSE Bias 

2P-S 2.8 -0.3 2.8 -0.3 1.8 0.4 

3P-S* 2.8 1.3 4.2 2.2 4.2 2.4 

3P-S
**

 3.2 0.9 3.4 1.9 1.9 1.0 
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The performance of the 3P-S approach with and without the a priori  

information on the soil moisture of the forest fraction are shown in Table A5.4, 

where a global RMSE and bias is given for each group of pixels. The variance 

of the retrieval error is shown for both fractions in Figure A5.4. Imposing the a 

priori information on the soil moisture of the forest fraction did not improve the 

retrieval on group A pixel, whereas it slightly improved the retrieval in group B 

pixels and strongly improved in group C pixels. Figure A5.4 shows that the 

variance of the error of the moderately vegetated fraction was still high in dry 

conditions, and increased significantly with respect to the case when no a priori 

information on the soil moisture of forest was used (see Figure A5.4, bottom 

panels). Moreover, as the fraction of the pixel occupied by the moderately 

vegetated fraction decreased the error variance increased significantly. This is 

the reason why in group C pixel the 3P-S still showed residual error despite the 

soil moisture of the forest being imposed as the correct one. Similarly, on group 

B pixels the accuracy was improved when using a priori information on the soil 

 

Figure A5.4. Variance of the 3P-S soil moisture retrieval error when using a 

priori information on the soil moisture of forest plotted as a function of (a) the 

pixel average soil moisture and the (b) forest fraction within the pixel (right 

panels). Blue dots are the data for the forest fraction, red dots are for the 

moderately vegetated fraction.  
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moisture of forest, but the poor sensitivity of the pixel emissivity to the soil 

moisture value of the moderately vegetated fraction keeps the error above that 

obtained with the 2P-S approach.  

A5.3 Conclusions on the Applicability of the 3P-S Approach 

In summary, there was no case where the 3P-S yielded more accurate results 

than for the 2P-S approach. Since in this test the most accurate estimate of the 

forest fraction was used (that retrieved at 1km resolution using L-MEB 

parameters and optical depth specifically calibrated for the forest of the study 

area), it is not expected that the accuracy of 3P-S could be improved further. 

The algorithm convergence might be improved when a larger number of 

observations at multiple incidence angles are available. However, this could not 

be tested here due to the limited amount of incidence angles at which 

observations were available. Moreover, the synthetic test suggested that the use 

of multiple observations is not necessarily an advantage in the presence of 

strong land surface heterogeneity, since no improvement in soil moisture 

accuracy or algorithm convergence was observed when moving from two to ten 

observations within the same range of incidence angles.  




