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ABSTRACT 

This thesis focuses on Land Surface Model (LSM) data assimilation for optimising latent (LE) and 

sensible (H) heat flux prediction.  These fluxes influence cloud formation (hence precipitation) and 

atmospheric thermodynamics, therefore predicting them accurately is important for initialising 

Numerical Weather Prediction (NWP) forecasts.  Applying data assimilation to update prognostic 

LSM state variables (typically soil moisture and soil temperature) with observed information can 

improve LE and H predictions.  Furthermore, any overall improvement to modelled water balances 

will also have broader benefits in a water management context (i.e. for agriculture, water 

accounting etc.). 

Options for initialising LSM states includes assimilating screen-level atmospheric variables, and 

various remotely sensed land surface variables.  Soil moisture and skin temperature data have been 

demonstrated as useful for directly impacting soil moisture and temperature states.  The potential 

benefits of assimilating remotely sensed LE and H products into LSMs, for optimising LE and H 

prediction, have yet to be explored in detail. 

Evaluating LE and H assimilation is therefore a major objective of this thesis.  It is examined in 

relation to assimilating different combinations of remote sensing data types, including soil moisture 

and skin temperature.  Three main studies were undertaken: a synthetic-twin study; a one-

dimensional study assimilating in-situ field observations; and a study assimilating remotely sensed 

data, including LE and H products.  Field collection of LE and H (eddy covariance system), multi-

depth soil moisture and temperature, and meteorological data over a full year was integral to this 

research.  These data played a significant role in most experiments. 

The point scale proof-of-concept synthetic study demonstrated improved LE and H prediction from 

assimilating LE and H observations over a three month period, similar to improvements from skin 

temperature, and surpassing improvements made by soil moisture assimilation which produced the 

best root-zone soil moisture prediction.  Assimilation frequency was important, with LE, H and 

skin temperature data representing cloud-free conditions, and approximating twice-daily MODIS 

thermal data, producing better fluxes than when representing the nearly fortnightly repeat time of 

Landsat. 

For the one-dimensional field data study, assimilation spanned one year with the time series of 

thermal related data filtered based on cloud-cover at the field site.  Combined assimilation of 

different data types was also included.  This study showed strong improvement to LE prediction 

from assimilating observed LE and H.  While combined skin temperature and soil moisture 

assimilation improved LE the most, and also balanced this with simultaneous improvements to soil 
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moisture and temperature states.  Improved soil moisture prediction from assimilating only near-

surface soil moisture data translated to smaller LE improvement than from assimilating LE and H, 

or combined skin temperature and soil moisture. 

The remotely sensed data study examined the assimilation of 25 km AMSR-E soil moisture data 

and of 5 km LE and H products derived from AQUA satellite based thermal observations.  

Experiments were performed with 5 km resolution model simulations spanning a year.  Relative 

to data from 10 point scale in-situ stations, AMSR-E assimilation degraded the root-zone moisture 

predictions overall – with an average increase in RMSE of >100% compared to no assimilation.  

However, relative to single point-scale eddy covariance data, it improved LE prediction compared 

to no assimilation (RMSE reduced by 15%), with marginal improvement to H (reducing RMSE 

by ~1%).  Assimilation of LE and H data derived from remote sensing improved both LE and H, 

reducing RMSE by ~13% and ~9% respectively compared to no assimilation.  Repeated 

assimilation experiments using a range of increasing observational error for LE and H data 

(upwards from σ=50 Wm-2) showed improvements to LE and H predictions with observational 

error of between 80 and 90 Wm-2. 

Validating results from spatial remote sensing studies is limited with sparsely distributed in-situ 

point-scale data.  Furthermore, scale discrepancies between assimilated remotely sensed data, 

simulation resolution and point validation data make it challenging to understand the cause of the 

apparent poorer moisture predictions from the AMSR-E assimilation.  The most important finding 

from this thesis is that assimilating LE and H can improve LSM predictions of LE and H beyond 

improvements from soil moisture, and beyond improvements from assimilating skin temperature 

alone.  Another key finding was the potential of combined near-surface soil moisture and skin 

temperature data assimilation to improve LE predictions beyond what assimilating LE and H data 

can, while also improving the root-zone state predictions.  This is important to verify in follow-up 

studies given that remotely sensed LE and H require additional effort for derivation which is based 

on skin temperature data in the first place.  The right combination of multiple data types may 

therefore be the best solution in the long run for optimising heat fluxes and improving water 

balance predictions. 
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1 INTRODUCTION 

Fluxes of latent (LE) and sensible (H) heat from the land surface influence the dynamics of the 

lower atmosphere, thus playing a key role in our weather and climate.  Initialising Land Surface 

Models (LSMs) for optimal heat flux prediction is therefore important for weather forecasting.  

The overarching aim of this thesis is to contribute to existing knowledge on the best ways to 

optimise predictions from LSMs using remotely sensed information in a data assimilation 

framework.  In addition to the climate and weather forecasting context, improving heat flux 

prediction is also relevant for a range of other problems that depend on accurate and timely land 

surface water and energy balance information for their solution. 

This thesis evaluates the relative merits of assimilating different remote sensing data types into a 

LSM, in the context of yielding the most accurate land surface heat flux feedbacks (LE and H) to 

the atmosphere.  Specifically, observed LE and H, surface skin temperature (the radiative 

temperature of the land surface, from here on referred to as skin temperature), and near-surface soil 

moisture are evaluated as the remotely sensed land surface observation types most likely to 

positively impact on LSM heat flux feedbacks.  The individual and joint assimilation of these 

variables has been evaluated in terms of their impact on predictions of soil moisture and 

temperature states, together with the resultant LE and H predictions which characterise the land-

atmosphere interaction. 

Using an early version of the LSM that is a component of Australia’s climate modelling and 

Numerical Weather Prediction (NWP) system, an ensemble Kalman filter (EnKF) was applied to 

assimilate both synthetic and in-situ observations representing typical remote sensing data types in 

a series of numerical experiments.  The thesis concludes with a data assimilation application using 

actual remote sensing data products derived from MODIS and AMSR-E observations.  

Consequently, the trade-off between data type, temporal repeat and spatial scale have been 

explored through the use of these different observations. 

1.1 RESEARCH MOTIVATION 

LSM data assimilation research has received increased attention over the past 1 to 2 decades, driven 

largely by its potential for improving predicted land surface energy and water balance quantities 

for applications such as climate and NWP modelling (Balsamo et al., 2007; Mahfouf, 2010; 

Reichle et al., 2007; Van Den Hurk et al., 2002).  Also facilitating this growth is the availability of 

different observation types from remote sensing that are related to the land surface water and 

energy balances – including near-surface soil moisture from microwave sensors (Kerr, 2001; Owe 
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et al., 2008), skin temperature based on thermal infra-red imagery (Kumar & Kaleita, 2003), and 

instantaneous LE and H products derived using skin temperature (Bastiaansen, 1998; Su, 2002).  

Some of these data types have not been comprehensively explored for LSM assimilation 

applications and, in particular, there are very few published examples assimilating LE and/or H nor 

are there many studies looking at different combinations of these four variables. 

An important LSM in the Australian context is the Community Atmosphere Biosphere Land 

Exchange model (CABLE: Kowalczyk et al., 2006, 2013), which is part of the Australian 

Community Climate Earth-System Simulator (ACCESS) set up for Australia’s climate and NWP 

modelling (Kowalczyk et al., 2013; Law et al., 2012; Puri et al., 2013).  The CSIRO Biosphere 

Model (CBM: Wang & Leuning, 1998; Wang et al., 2001, 2007) is an earlier version that was 

developed and used in-house by CSIRO researchers and has a similar structure for water and 

energy balances as CABLE – it was made available at the beginning of this research and hence for 

consistency has been used for all experimental work presented in this thesis.  LSM data assimilation 

is seen as an integral part of any NWP within ACCESS (Puri et al., 2013), yet its application to 

CABLE and the CBM has not previously undergone rigorous testing. 

Consequently, the main motives for this thesis are: 

1) The need to better understand the relative impacts on LSMs from assimilating different 

observation types, or combinations of different observation types, that have not been 

comprehensively tested; and, 

2) To understand the impacts from data assimilation specifically on the CSIRO Biosphere Model 

(CBM) and determine how suitable different observation types are for this model in terms of 

improving state variables and heat fluxes.  This is important for informing future model 

development and data assimilation research into CABLE. 

The ability to consistently improve LE and H prediction through the assimilation of key remote 

sensing observations will ultimately lead to better LSM initialisation for optimal weather and 

seasonal forecasts.  Moreover, examining assimilation impacts on soil moisture and temperature 

state variables in conjunction with the related heat fluxes is expected to highlight limitations related 

to LSM physics and parameterisation, informing improvements that can be made for them.  

Scrutinising the impacts on CABLE from assimilating different data types and understanding the 

associated limitations is important prior to using it for operational NWP and performing 

assimilation in the more complex land-atmosphere coupled mode.  Hence with CBM and CABLE 

sharing the same general structure for state variable and heat flux relationships, data assimilation 

experiments performed with CBM in this thesis will contribute knowledge relevant to the ongoing 

development of ACCESS and Australia’s NWP and climate prediction. 
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1.1.1 IMPORTANCE OF LAND-ATMOSPHERE FEEDBACK PREDICTION 

The main function of a LSM in climate and weather prediction systems is to quantify latent and 

sensible heat flux feedbacks to the lower atmosphere.  These fluxes characterise the transfer of 

energy as latent heat in the form of water vapour (LE) and sensible heat (H) from the land surface 

to the atmosphere (Brutsaert, 2005).  Subsequent condensation of the evaporated/vegetation-

transpired water into cloud – leading to precipitation – is associated with a release of heat energy, 

which together with near surface heat conductance contributes to atmospheric convection, thus 

driving the thermodynamics of the atmosphere and hence our weather and climate (Brutsaert, 

2005; Pitman, 2003). 

With atmospheric processes strongly dependent on land surface LE and H feedbacks, these fluxes 

are the lower boundary conditions for atmospheric model equations, hence the importance of LSM 

initialisation to optimise predicted heat flux accuracy for climate modelling and NWP (Balsamo et 

al., 2007; Dirmeyer et al., 2009; Viterbo & Beljaars, 1995; Viterbo & Beljaars, 2004).  As a key 

water supply for evapotranspiration (ET), soil moisture content is an important water balance 

component linking in with the energy balance.  It regulates the proportions of net radiation 

available at the land surface that are converted into LE and H, and therefore soil moisture state 

variables are typically the target of LSM initialisation (de Rosnay et al., 2013; Dharssi et al., 2011; 

Koster et al., 2004).  Soil temperature is also an important part of the land surface energy balance, 

with heat transfer and storage through the soil profile directly linked to skin temperature and 

therefore LE and H, so it is also recognised as an important state for LSM initialisation (Balsamo 

et al., 2007; Chen et al., 2007; Entekhabi et al., 1994). 

1.1.2 PROBLEMS WITH LAND MODELS 

The partitioning of available net radiation energy at the land surface into LE and H feedbacks to 

the atmosphere is a process that depends on a range of factors: soil moisture content, soil 

temperature, various soil physical properties, vegetation cover, and physical and biological 

properties relating to particular vegetation types.  LSMs are an attempt to relate these factors in a 

mathematical framework, together with meteorological variables, for predicting water evaporation 

from soil and/or its transpiration through vegetation (LE) and the transfer of sensible heat (H) into 

the lower atmosphere on a continuous time scale. 

LSMs are limited in that they represent highly variable and complex physical systems with 

simplified and/or empirically derived mathematical relationships.  Another major shortcoming is 

that parameter values are often difficult to set because there is not enough data on model soil and 

vegetation properties to accurately represent the high temporal and spatial variation of these 
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quantities (Franks & Beven, 1999; Yates et al., 2003).  While field measurements can assist in 

parameterising models at the point scale with considerable effort (Mertens et al., 2005), this is more 

challenging when modelling across spatially heterogeneous landscapes without measurements on 

a scale or of an extent relevant to a particular application (e.g. spatial remotely sensed soil moisture 

data is not of a depth that can provide direct information on root-zone soil hydraulic properties).  

The complexity of many models means they often contain too many parameters for them all to be 

optimised with unique solutions given a limited number of relevant types of field measured data 

(Franks & Beven, 1999).  Errors in meteorological forcing data also impact on the quality of model 

output.  Overall, LSM predictions are inherently uncertain, with prediction uncertainty typically 

increasing through time. 

Data assimilation is well suited for improving LSM predictions (e.g. Crosson et al., 2002; Reichle 

et al., 2008) by sequentially updating/correcting prognostic state variables through time whenever 

new observed information becomes available.  A key feature of assimilation is the factoring in of 

estimates of uncertainty inherent in both models and observed data, in order to appropriately weight 

the degree of model state adjustment for improved predictions.  Estimates of errors in different 

related model variables provide information to relate the updates made directly to one variable 

from an observation with updates to other related model variables.  Global coverage and regular 

temporal repeat of emerging remote sensing data streams, related to land surface state and flux 

quantities, improves the prospects for routinely improving LSM predictions over different spatial 

scales via data assimilation. 

The hypothesis put forth in this thesis is that due to imperfect model structure and parameter 

estimates, the greatest improvements to predictions of any particular LSM state or flux from data 

assimilation would come from assimilating observations of the same variable or one that is most 

closely related to it.  Under this hypothesis, model states would best be adjusted by the observation 

chosen to suit the variable of interest in spite of structural inaccuracies.  In addition, this would not 

necessarily result in the most physically realistic values for all states.  If the aim for NWP is to 

optimise LE and H prediction, then it seems intuitive to test the assimilation of LE and H 

observations.  Very little research has focused on the assimilation of remotely sensed instantaneous 

estimates of these quantities, perhaps partly due to the fact that these are emerging products 

(derived using remotely sensed skin temperature observations).  Validation of such products and 

development of standard uncertainty estimates required for data assimilation are still major 

challenges, which are exacerbated by the sparseness and scale differences of independent flux 

measurement sites distributed across the world. 

In the context of getting the best predictions possible from imperfect models for a specific purpose, 

understanding whether assimilating LE and H data is a better strategy than assimilating soil 
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moisture or skin temperature for improving LE and H predictions is important.  It is also important 

to consider how assimilating different combinations of data types, to target different parts of the 

LSM water and energy balance, can simultaneously impact on states and fluxes.  If the structure of 

LSMs cannot ensure that optimal improvements made to any variable will cause optimal 

improvements to all related quantities, more pragmatic data assimilation strategies targeted at 

particular applications are necessary. 

1.2 OBJECTIVES AND SCOPE 

The overall objective of this research was to conduct modelling experiments for examining the 

impacts of assimilating different data types – all of which are available from remote sensing – on 

CBM state and heat flux predictions. 

This broader objective was broken down into the components listed below, the first few of which 

were necessary for facilitating the experiments: 

 Undertake a field study to obtain data to support the study, including the set-up and 

management of in-situ LE, H, soil moisture, soil temperature and meteorological data 

collection for at least a full seasonal cycle over a year.  These provided for experiments 

in a simpler one-dimensional modelling scenario, prior to more complex spatial 

experiments with remotely sensed data, while also providing for validation of different 

experiment results; 

 Source available remote sensing data products for assimilation.  Most importantly, 

instantaneous LE and H products, so that assimilation of these could be tested in a real 

spatial modelling scenario alongside that of a near-surface soil moisture product 

representing a more commonly assimilated remotely sensed data type; 

 Develop an EnKF for the CBM which includes model error specification and an 

associated ensemble generation strategy, as well as applying a technique for 

removing/minimising systematic bias between model state predictions and real 

observed data prior to their assimilation. 

The model experiments progressed from one-dimensional synthetic-twin and real in-situ field data 

modelling scenarios, followed by a more realistic spatial application scenario using remotely 

sensed data.  The one-dimensional studies were more controlled in terms of there being more 

reliable uncertainty estimates for models and observations at the point scale, such that model 
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impacts could be understood with greater certainty before carrying out the spatial study.  The 

specific objectives were: 

 Carry out a proof-of-concepts study over a short period, via synthetic-twin 

experiments, ensuring the EnKF algorithm works correctly with the CBM and whether 

assimilating the different data types show promising results worthy of further 

investigation using real observation-based data sets; 

 Perform a one-dimensional study assimilating the data types used in the synthetic-twin 

study – with additional joint assimilation of different combinations of those data – but 

using real point scale data from independent in-situ field measurements that traverse 

major seasonal changes, for a more robust examination of impacts on the CBM; 

 With knowledge from the previous studies on how assimilating LE and H observations 

may impact the CBM compared to a more commonly assimilated product such as soil 

moisture, undertake a study assimilating remotely sensed LE, H, and soil moisture data 

products.  Validate results with independent in-situ data available for the study region 

and assess whether similar conclusions can be drawn as per results for the one-

dimensional studies. 

By addressing this list of specific objectives which involves experimental simulations and 

quantitative analyses, a better understanding is gained about which data assimilation strategies are 

most beneficial for improving the prediction of heat flux feedbacks to the atmosphere.  In 

particular, whether assimilating remotely sensed LE and H data is promising.  General insight was 

also gained into some current limitations of remotely sensed LSM data assimilation, including 

limitations LSMs themselves can pose – in terms of the relationships between key prognostic state 

variables and diagnostic heat fluxes – to applying data assimilation effectively. 

The scope of this research was confined to a series of data assimilation experiments performed 

using a specific LSM and assimilation algorithm.  Using the objectives above as a guide, the 

primary focus was on assimilating different observation types and analysing the impacts each had 

on predictions from that LSM.  The scope of the research does not include: 

 Improving the physics of the LSM (the CBM was used on an “as is” basis); 

 A comparison and/or evaluation of the diverse range of data assimilation algorithms, 

or of a broad variety of techniques that can be applied in implementing the EnKF; or 

 LSM assimilation within a coupled land-atmosphere model system. 
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1.3 THESIS ORGANISATION 

This thesis is arranged into eight chapters including this introduction chapter. 

Chapter 2: Covers a review of literature and provides a synthesis of background information 

underpinning the work in this thesis.  This includes summaries of: Energy and water interaction 

between the land surface and atmosphere; In-situ measurement methods and remote sensing 

observations related to the data types used in experiments in this thesis; Characteristics of LSMs 

and how formulations have changed over time; and, Data assimilation background including some 

of the different methods.  The chapter concludes with a survey of past LSM data assimilation 

applications highlighting knowledge gaps that motivated the experimental work in this thesis. 

Chapter 3: Provides specific details on the modelling tools used – the CSIRO Biosphere Model 

(CBM) and the Ensemble Kalman Filter (EnKF) algorithm.  It details the CBM structure including 

key relationships between state variables and fluxes relevant to data assimilation.  Details are also 

given on the EnKF/CBM implementation including ensemble generation methods. 

Chapter 4: All of the data sets that were used are presented here including maps showing 

geographic locations of measurement sites and the spatial extent of products.  Reference to data 

sources and methods used for deriving products are also included in addition to the particular 

experiment in this thesis that they were used for. 

Chapter 5: The synthetic-twin study is presented here.  As a proof-of-concept, this study examines 

the impacts from assimilating synthetically derived LE, H, skin surface temperature and near-

surface soil moisture data on the CBM. 

Chapter 6: This covers the one-dimensional field data assimilation study, where real LE, H, skin 

surface temperature and near-surface soil moisture data from point-scale field measurements were 

assimilated. 

Chapter 7: Presented here is the spatial data assimilation study using real remotely-sensed 

products – namely near-surface soil moisture derived from AMSR-E observed microwave data, 

and instantaneous LE and H derived from MODIS surface temperature data. 

Chapter 8: The conclusions chapter where the over-arching findings across the three experimental 

studies are discussed.  Specifically in terms of the potential for improving heat flux and soil state 

predictions by assimilating LE and H data, compared to assimilating other remotely sensed land 

surface data types.  Challenges to performing optimal data assimilation for LSMs are also discussed 

along with directions for further research. 
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2 BACKGROUND AND LITERATURE SURVEY 

This chapter is a synthesis of background information underpinning the experimental work carried 

out for this thesis.  It is based on a review of literature and sets the context for the following 

chapters.  Included are brief descriptions of the land surface in terms of key water and energy 

balance components.  Approaches to quantifying some of these components – both from in-situ 

and remote sensing observations – which are relevant to observations used in this research are also 

discussed.  A general overview is then given of the main features of LSMs and how their 

development has evolved through time into the typical modern day models such as the one used in 

this research.  This is followed by a summary of data assimilation and evolution of its application 

to LSMs, highlighting how the research in this thesis contributes to a broader body of work. 

2.1 THE LAND SURFACE 

The term ‘land surface’ used here refers broadly to the earth’s landscapes at the interface with the 

atmosphere, inclusive of vegetation and the unsaturated soil zone between the soil surface and the 

groundwater table.  Water and energy exchanges between the land surface and the atmosphere are 

linked, and the fundamentals of the science behind our current understanding of these continuous 

processes can be found in introductory texts on hydrology such as those of Beven (2012), Ladson 

(2008) and Brutsaert (2005).  These texts were drawn upon for much of the generic background 

information summarised in this section with other sources referenced where relevant. 

2.1.1 THE ENERGY BALANCE 

Fig. 2.1 is a schematic of the major land surface energy balance components described here.  Land 

cover influences surface albedo which represents the fraction of total incoming shortwave (solar) 

radiation that is reflected away from it, while the remaining fraction is absorbed.  Some generic 

albedo values given by Brutsaert (2005) for different surfaces include: ~0.8-0.9 (highly reflective) 

for fresh snow; ~0.05-0.15 (minimal reflection and high absorption) for moist dark soil; and, ~0.15-

0.25 for green grass.  Longwave radiation (or thermal infrared energy) plays a key role in the energy 

balance, with the land surface emitting it and absorbing it from the atmosphere.  Emitted longwave 

radiation from the land surface can be described by the Stefan Boltzmann law 

4

skTLW  ,      (2.1) 
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where LW represents the emitted longwave radiation,  the emissivity,   the Stefan 

Boltzmann constant ( 42181067.5  KmJs ) and skT  the radiative temperature of the land 

surface (representing contributions from soil and vegetation surfaces), which is referred to hereon 

in as the skin temperature.  For a perfect black body the value of   is 1 and approximate values 

for some different surfaces from Brutsaert (2005) include: ~0.99 for fresh snow; ~0.95-0.98 for 

bare soil; 0.96-0.97 for tree vegetation; and, ~0.97-0.98 for grassy vegetation. 

The total sum of the major vector quantities of radiation – incoming shortwave ( SW ), incoming 

longwave ( LW ), reflected shortwave ( SW ) and emitted longwave ( LW ) – defines the net 

radiation (RN) that is available to the land surface, so 

LWLWSWSWRN  .      (2.2) 

The terrain, soil type, and vegetation type and cover of the land surface typically varies over a 

range of spatial scales (Richter et al., 2004; Yates et al., 2003) which translates to variations in 

albedo and emissivity.  This spatial heterogeneity implies that there can be significant variation in 

RN across landscapes which receive similar amounts of incoming radiation.  Most 

 

Figure 2.1: Schematic of the major energy balance components at the land surface. 
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of the RN available to the land surface is subsequently partitioned to produce either latent (LE) or 

sensible (H) heat flux feedbacks to the atmosphere, in addition to a residual (typically smaller) 

energy flux into the soil termed the soil heat flux (G) as illustrated in Fig. 2.1.  From Hsieh et al. 

(2009), G can be up to 50% of the RN for dry soil surfaces in some conditions.  Soil temperature 

(TSoil) shares a strong relationship with G and is an important state of the land surface energy 

balance (De Ridder, 2009).  The governing equation for soil temperature and heat transport is 

z
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,      (2.3) 

where the expression for heat transport after Fourier is 

dz

dT
kG Soil .      (2.4) 

The terms t and z in Eqs. (2.3) and (2.4) are time and the depth below the surface respectively, 

whereas ρs and cs are the soil properties of bulk density and specific heat capacity respectively, and 

k is the soil thermal conductivity.  These equations illustrate that G is proportional to the magnitude 

of the vertical soil temperature gradient.  The variation in TSoil at the near-surface (which relates to 

Tsk) has a strong diurnal component, resembling the diurnal variation of RN driven by day-

time/night-time maximum/minimum of SW  forcing incident upon the land surface (Eq. (2.2)).  

As soil depth increases, the temperature variation increasingly represents only seasonal time scale 

changes.  Fig. 2.2 illustrates the contrasting temporal variation of TSoil at different depths via a data 

series measured for this research at Kyeamba Creek in Australia. 

 

Figure 2.2: Soil temperature variation at three depths – Kyeamba Creek, Australia. 
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As summarised throughout much of the literature (e.g. Beven, 2012; Brutsaert, 2005; Ladson, 

2008; and many others), LE, H and G are the main quantities resulting from RN partitioning at the 

land surface (Fig. 2.1. and Eq. (2.2)) and therefore the energy balance can be represented as 

GHLERN  .      (2.5) 

A major factor controlling the partitioning of RN, and an important link between the land surface 

energy and water balances, is the amount of soil moisture available for soil evaporation (E) and 

plant transpiration via root uptake (in combination referred to as evapotranspiration or ET), where 

ET is the expression of LE as a quantity of vaporised/transpired water over a given time interval.  

As soil moisture content (θ) approaches zero, LE becomes minimal and a greater portion of 

available energy at the land surface is fed-back to the atmosphere as conductive heat with an 

increase in H.  Hence θ regulates RN partitioning into the major heat flux components (Reichle et 

al., 2002), thus influencing the Bowen ratio (Bowen, 1926): 

LEHBo  .      (2.6) 

2.1.2 THE WATER BALANCE 

The natural water supply to the land surface is from precipitation in the form of rainfall or snow.  

Only rainfall is considered relevant here due to the snow-free environments for which the 

modelling experiments were carried out.  Rain water either directly reaches the soil surface or is 

intercepted by vegetation cover from where it can evaporate or drip through to the soil surface.  At 

the soil surface it either evaporates, infiltrates into the soil or becomes gravity-driven surface runoff 

which flows into topographic depressions or waterways.  For rainfall to become surface runoff 

there needs to be a sufficient surface gradient and the rate of rainfall needs to exceed the rate of 

infiltration (which typically decreases with increasing θ), and if the soil is saturated (maximum θ) 

there is no infiltration and practically all rainfall becomes runoff (Beven, 2012).  Therefore θ is a 

very important state in the overall water balance given its effect on different hydrologic processes, 

including its key role in determining LE and H. 

The definition of θ in this thesis is the volumetric soil moisture content, which using the notation 

from Brutsaert (2005), 
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is the total volume of water (VH2O) contained in the pore space of a given bulk soil sample, per total 

volume of that sample (  ).  The maximum possible θ (being for saturated soil: θsat) is equivalent 

to the soil porosity, or the volume of pore space between solid particles (with volume Vsolids) where 











 solids

sat

V
1 .      (2.8) 

Pore space varies with soil type due to differing proportions of different sized soil particles (i.e. 

sand, clay and silt) and it is a pathway for infiltrated water to percolate through.  The rate of 

infiltration is dependent on the soil hydraulic conductivity (K), potential gradient (ψ) and rainfall 

rate.  For ψ, the holding force between water and the soil matrix (e.g. capillarity) is the dominant 

factor, with the terms pressure head, matric potential or soil suction commonly used for it.  As soils 

drain post saturation, a balance between gravity and the capillary forces in the pores is eventually 

reached, and the term for θ when this occurs is the field capacity (θFC).  Wilting point (θWilt) refers 

to a lower limit of θ beyond which plants can no longer extract water and they wilt.  The range of 

θ between θFC and θWilt defines the available water capacity, which is generally accepted as an 

approximation of the range within which water is available for extraction by plant roots (McKenzie 

et al., 2000), and is therefore important with regard to ET. 

A well-established mathematical formulation for vertical water flux through pore space of 

unsaturated soils, as a function of key soil properties, is Richards’ equation (Richards, 1931): 
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The term z represents the vertical distance below the land surface while D(θ) is the soil moisture 

diffusivity where, 
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Solving Eq. (2.9) therefore relies on relationships between θ, ψ and K such as that of Brooks and 

Corey (1964), with 
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In Eq. (2.11), ψaep represents air entry potential (also referred to as the suction at saturation) and Ks 

in Eq. (2.12) is the hydraulic conductivity at saturation, while θres is the residual or air-dry soil 

moisture content (for ψ approaching infinity).  The term b is a non-dimensional constant, 

sometimes called the pore size index (Beven, 2012) or Campbell b parameter (Williams et al., 

1992) in relation to the work of Campbell (1974) where the following was used: 
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Eq. (2.13), in addition to 
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are the relationships of Clapp and Hornberger (1978) for solving Richards’ equation.  They are a 

slight variation on the Brooks and Corey (1964) relationships (Eqs. (2.11) and (2.12)), with the 

difference being that θres is made redundant for a smoother parabolic function relating the full range 

of values for θ, ψ and K.  The van Genucthen (1980) model is another representation of soil-water 

retention that is widely referenced in the literature, and is expressed as: 
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The parameters α and n in Eq. (2.15) relate to ψaep and pore size distribution respectively. 

As noted previously, the heterogeneity of the land surface includes variation in soil type and hence 

some of the key properties such as θsat, K, ψ, θFC and θWilt can vary both laterally and with depth 

down to sub 1 metre scale.  This can contribute to high spatial variability of θ, which in combination 

with varying vegetation type and cover, and associated plant water use, may also contribute to the 

spatial variability of heat fluxes (Kalma et al., 2008; Western et al., 2004).  Spatial variability of 

these quantities adds to the challenge of estimating them over large spatial regions and over long 

time periods, particularly where observed data are sparse or do not support the spatial scale of 

information that is required. 
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2.2 OBSERVING LAND SURFACE QUANTITIES 

The availability of different spatially distributed data types related to land surface water and energy 

balance quantities, as observed from a range of satellite based sensors, is a motivating factor behind 

much of the data assimilation research over the past couple of decades aimed at improving LSM 

prediction.  Hence it is also a motivator for the research in this thesis, where the assimilation of 

observation types that have yet to be widely tested in LSM assimilation studies (i.e. LE and H) is 

examined, along with that of Tsk and soil moisture observations for which there is a larger body of 

published work.  An important component of this research includes assimilation of in-situ field 

observed data at the point scale, prior to examining the more complex scenario of remotely sensed 

data assimilation. 

If carefully managed, in-situ field observations can generally be made on flexible time scales and 

calibrated such that their uncertainty is better understood compared to remotely sensed data.  A 

higher degree of confidence in estimated observational uncertainty for in-situ point scale data 

makes them valuable for better understanding the relative impacts that different data types can have 

on a LSM when assimilated.  This is particularly true when the model simulation, the assimilated 

observations, and the validation data all represent approximately the same spatial scale – which is 

relatively easy to achieve with point scale field monitoring. 

By contrast, remotely sensed data assimilation for spatially distributed modelling, which is 

ultimately of most interest for applications such as operational NWP and catchment water balance 

studies, involves greater complexity and therefore greater uncertainty.  The processing of raw 

remotely sensed observations to produce specific data products is done with algorithms/models 

which can be complex, imperfect and introduce errors.  Also, varying degrees of landscape 

heterogeneity can occur within remotely sensed measurement footprints, where spatial disparity 

between in-situ validation data and remotely sensed data (and the relative sparsity of in-situ 

monitoring across the world) presents a challenge for properly characterising uncertainty (Glenn 

et al., 2007; Kalma et al., 2008), and which also limits the ability for robust validation of 

model/assimilation output. 

Spatial resolution and temporal repeat differs between remote sensing data types, which may add 

to the level of complexity when different remotely sensed data types are assimilated together.  As 

an example, repeat times for observations of thermal energy related to Tsk (and therefore 

instantaneous LE and H estimates) can be as sparse as every 16 days from Landsat-7 ETM with 

~60 m resolution, or as frequent as twice-daily (for daytime ET active times) from Moderate 

Resolution Imaging Spectroradiometer (MODIS) with ~1 km resolution (Li et al., 2004).  The 

temporal repeat of passive microwave observations for deriving near-surface soil moisture data 
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products is typically more frequent, from sub-daily to every 3 days, but the spatial resolution is 

much broader in the order of 10’s of km (e.g. Owe, et al., 2008). 

With two separate studies presented in this thesis based on assimilating real data observations – a 

one-dimensional modelling study where point scale field measurements are assimilated, and a 

spatial study where remotely sensed data products are assimilated – the following sub-sections give 

an overview of observation methods relevant to the data that were used.  For each data type, in-situ 

field measurement techniques are discussed first, followed by discussion of the remotely sensed 

data. 

2.2.1 SOIL MOISTURE 

Techniques for ground based soil moisture content measurements includes gravimetric and in-situ 

dielectric based reflectometry techniques – techniques used to collect soil moisture data that were 

available for this research. 

Determining soil moisture via the gravimetric method (Black, 1965) involves weighing a field 

collected soil sample of known volume as soon as possible after collection and weighing the same 

sample after it has been oven dried at 105°C for >24 hours.  Thus the total volume, the mass of 

water and mass of dry soil particles for a sample are all known and with some basic calculations 

the soil moisture content can be determined using Eq. (2.7).  This is a relatively accurate method 

of determining soil moisture if done carefully due to the direct use of an actual field sampled 

volume of soil and simplicity of the measurements and calculations involved.  A drawback of the 

gravimetric method is the destructive sampling (at the point-scale) and the human effort required 

for it, which limits the temporal frequency and the spatial coverage that can be achieved. 

Dielectric based techniques are used to measure soil moisture in-situ and are also limited to the 

point-scale, but can be set up for continuous measurement over time.  They provide non-destructive 

measurements where probes of a known length are inserted in the soil and act as waveguides for 

transmitted electromagnetic pulses (Topp et al., 1980).  The propagation time of a pulse along the 

waveguides is a function of the dielectric constant of soil surrounding them.  Since liquid water 

has a high dielectric constant relative to dry soil the electromagnetic pulse travel time is a strong 

function of soil moisture content, thus time measurements from these instruments can be converted 

to soil moisture content via a calibration equation. 

Commonly used sensor types relevant to the soil moisture data used in this research include 

conventional Time Domain Reflectometry (TDR) systems such as the TRASE TDR (Soil Moisture 

Equipment Corp., 1989), and those termed water content reflectometers such as the Campbell 
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Scientific CS615 sensor (Campbell Scientific Inc., 1996) and its successor the CS616 (Campbell 

Scientific Inc., 2002).  With these latter types from Campbell Scientific, the frequency at which the 

pulse is reflected from the end of the waveguides is measured and the pulse period usually 

recorded.  They differ from the conventional TDR (e.g. the TRASE system) for which multiple 

reflections along the length of the waveguide are detected so the entire waveform can be analysed 

and the pulse travel time determined. 

In a field based comparative study by Walker et al. (2004), a number of ground based soil moisture 

sensors were compared including the TRASE TDR and the CS615.  The TRASE connector-type 

TDR yielded the most accurate soil moisture content using the manufacturer supplied Topp 

calibration equation (Topp et al., 1980) when compared against gravimetrically determined 

standard measurements – its measurements were within the manufacturer specified uncertainty 

interval.  Western and Seyfried (2005) note that a CS615 type sensor is generally less accurate and 

more sensitive to variations in soil properties and temperature than a conventional TDR instrument, 

which is likely related to the lower operating frequency (Seyfried & Murdock, 2001, 2004).  They 

also demonstrate a general soil temperature correction and soil moisture content calibration 

relationship for the CS615 that can cater for soil type variability.  Establishing such a relationship 

requires soil temperature measurements and several independent soil moisture measurements (with 

both gravimetric and conventional TDR based measurements included in their demonstration 

examples) for different soil type/locations.  The newer CS616 sensor operates at a higher frequency 

to the CS615 and Rudiger et al. (2010) have developed generalised calibration equations for them 

where soil texture information from particle size analysis are used in soil moisture calculations.  

Gravimetric, TDR and CS615/6 measurements of soil moisture were used in this research. 

The work of Ulaby et al. (1982) and Ulaby et al. 1986) provides details on background theory and 

some practical aspects of remote sensing for soil moisture which is based on measuring microwave 

radiation.  As presented by Wagner et al. (2007), key microwave bands in the electromagnetic 

spectrum that are relevant for soil moisture retrieval (with specific frequency (f) and wavelength 

(λ) ranges) are: L-band (f = 1-2GHz, λ = 30-15cm), C-band (f = 4-8GHz, λ = 7.5-3.8cm) and X-

band (f = 8-12GHz, λ = 3.8-2.5cm).  Microwave remote sensing can typically provide 

measurements for soil moisture estimation for the top few centimetres of soil, where the penetration 

depth into the soil is ~0.1-0.2 times the wavelength (Moran et al., 2004).  Analogous to the basic 

principles behind the in-situ methods mentioned previously, microwave emissions from soil are 

sensitive to the soil dielectric constant which varies greatly with soil moisture content (Jackson et 

al., 1996; Moran et al., 2004).  Passive and active microwave remote sensing are two distinct 

approaches relating to soil moisture retrieval. 
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For the passive approach a radiometer sensitive to natural microwave emissions from the land 

surface is used with the brightness temperature (TB) being the actual quantity measured.  TB is a 

product of the emissivity of a surface and its physical temperature (Jackson et al., 1996).  

Independent measurement of physical temperature enables emissivity to be determined, which then 

provides the link to estimate soil moisture content.  Some examples detailing soil moisture retrieval 

from TB measurements can be found in works by Gao et al. (2006) and Owe et al. (2008) amongst 

others.  Surface roughness and increased vegetation cover can hamper the ability to retrieve soil 

moisture from the measurements, but this becomes less of a problem with increased wavelength 

(Jackson et al., 1996; Moran et al., 2004).  Active sensing techniques are radar based where 

microwave pulses are transmitted to the land surface and a backscattering coefficient (σo) is 

determined by comparing transmitted and received signals (Jackson et al., 1996).  Soil moisture 

can be retrieved using σo which is related to emissivity and hence is sensitive to contrasts in 

dielectric properties between wet and dry soil (Jackson et al., 1996; Ulaby et al., 1986). 

The appeal of active techniques is that they can provide higher spatial resolution data than passive 

techniques (Entekhabi et al., 2010).  However, algorithms for retrieving soil moisture from σo are 

more complicated than from passive radiometer data (Jackson et al., 1996), with issues of 

sensitivity to surface roughness and vegetation still needing to be fully overcome (Moran et al., 

2004; Wagner et al., 2007).  Change detection algorithms (e.g. Wagner et al., 1999) are a promising 

approach for addressing the challenges of active sensor moisture retrieval.  The basis of these is 

that noise in the measured signal is assumed to either be constant over time (bare ground roughness 

and topography) or have seasonal periodicity (vegetation).  The challenge is to adequately quantify 

and correct for the noise, and while some algorithms may do a reasonable job at this, vegetation 

may not always have the same seasonal variation over time in some regions.  The soon to be 

launched Soil Moisture Active Passive (SMAP) mission satellite combines both a passive 

radiometer and active radar that will provide data with the best features of both sensing techniques 

– the greater overall certainty associated with passive microwave data retrieval and higher spatial 

resolution of active data (Entekhabi et al., 2010). 

The C-band Advanced Microwave Scanning Radiometer (AMSR-E) on the NASA AQUA 

satellite (Njoku et al., 2003) is a prominent passive sensor which recently ceased operation (in 

October 2011), having provided approximately two repeat observations per day from descending 

and ascending overpasses at ~01:30-02:00 and ~13:30-14:00 respectively (local times).  

Observations represent ~1-2 cm soil depth and derived moisture products can have a spatial 

resolution down to ~25 km (Owe et al., 2008).  Close to a 10 year observation series exists from 

AMSR-E and it has been replaced by its successor AMSR2 (Imaoka et al., 2010) which has similar 

measurement specifications.  Another passive sensor is the L-band Microwave Imaging 
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Radiometer with Aperture Synthesis (MIRAS), which is on the European Space Agency (ESA) 

managed Soil Moisture and Ocean Salinity (SMOS) satellite (Kerr et al., 2010).  Moisture data 

from this sensor represents the top ~5 cm of soil with ~40-50 km spatial resolution, and a temporal 

repeat of ~3 days corresponding to ascending and descending overpasses at ~06:00 and ~18:00 

respectively for local times.  A prominent active sensor is the C-band Advanced Scatterometer 

(ASCAT; Wagner et al., 2013) on the Meteorological Operational satellite (MetOp), which has 

approximately twice daily repeat coverage for Australia at ~08:30 (ascending overpass) and ~21:30 

(descending overpass) local times (Su et al., 2013).  ASCAT soil moisture data represent the top 

~1-2 cm with spatial resolution down to ~12.5 km (Wagner et al., 2013), and are typically produced 

as a scaled wetness index from 0-100% as opposed to explicit volumetric moisture content 

quantities. 

Moisture products from these particular passive and active sensors have been validated against in-

situ moisture observations across different regions world-wide. Most recently, Su et al. (2013) 

assessed SMOS, AMSR-E and ASCAT over south-eastern Australia, and Albergel et al. (2012) 

assessed both SMOS and ASCAT (together with a blended observation/model product) for parts 

of Africa, Europe, the USA and Australia.  From these studies, the overall error in the passive and 

active sensor products appear relatively comparable.  While there is variation in the temporal 

repeat, spatial resolution and observation depths between them, they each contain information 

which can potentially contribute to improved model prediction via data assimilation.  However, 

incorporating the full range of moisture products available from the different sensors and based on 

various retrieval algorithms into data assimilation experiments was beyond the scope of this 

research. 

For the spatial remotely sensed data assimilation experiments in this thesis, the AMSR-E soil 

moisture product derived using the Land Parameter Retrieval Model (LPRM), developed jointly 

by the Vrije Universiteit Amsterdam and NASA (VUA-NASA: Owe et al., 2008) was used.  An 

evaluation of this product by Draper et al. (2009a) over south eastern Australia determined root 

mean square differences (RMSD) of ~0.02-0.04 vol/vol relative to most in-situ validation data sites 

used, after systematic biases between them and AMSR-E estimates were removed.  The evaluation 

also found that moisture estimates from the local night time (descending) overpass were generally 

more accurate than for day time, which is supported by the more recent work of Su et al. (2013). 

2.2.2 SKIN TEMPERATURE 

Skin temperature (Tsk) is a key variable linked to land surface physical processes (Wan & Dozier, 

1996), sharing a relationship with energy and water fluxes as is evident through Eqs. (2.1), (2.2) 

and (2.5).  Testing the assimilation of real Tsk data was done in the one-dimensional in-situ field 
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data experiments (chapter 6) for this thesis.  The Tsk observations used were derived via Eq. (2.1) 

using measurements of remotely sensed LW  from a CNR1 four-way net radiometer (Kipp & 

Zonen, 2002), installed ~1 m above the ground at a field monitoring site discussed in chapter 4. 

Satellite remotely sensed Tsk data is based on measured thermal infrared emissions from the land 

surface (Li et al., 2004; Wan & Dozier, 1996) with λ in the range of ~3-15 μm on the 

electromagnetic spectrum.  From Kustas et al. (2003) and Li et al. (2004) some of the key data 

sources and their specifications include: Landsat Thematic Mapper (ETM) which provides ~60 m 

resolution imagery with an approximate fortnightly temporal repeat; Moderate Resolution Imaging 

Spectroradiometer (MODIS) providing coarser ~1 km resolution imagery, but with higher 

maximum temporal repeat of twice per day in daytime ET active periods – once daily from each 

of the Terra and Aqua platforms at ~10:00-10:30 and ~13:30-14:00 local overpass times 

respectively; and, there are also geostationary satellites such as the Geostationary Operational 

Environmental Satellites (GOES) measuring at 4km resolution with temporal repeat of ~30 

minutes over a fixed geographic region. 

In reality, satellite-based Tsk data timescales are often irregular and less than the above mentioned 

frequencies as cloud cover obscures the measurement of thermal infrared emissions (Wan et al., 

2004).  With Tsk related to emissivity (Eq. (2.1)), which varies with surface roughness and 

vegetation type, supplementary sensor data on emissivity is essential for reliable spatially 

distributed retrievals (Snyder et al., 1998), as is correcting the raw thermal data for atmospheric 

effects for satellite measurements of Tsk (Li et al., 2004). 

Temporal repeat times associated with Landsat and MODIS remote sensors were used as the basis 

for Tsk assimilation frequency in the synthetic and one-dimensional field data experiments (chapters 

5 and 6).  A more frequent GOES data time scale was not imposed in these experiments in the 

interests of testing assimilation impacts for more conservative data availability scenarios (i.e. 

where assimilation frequency is less than the forcing data frequency and model integration time 

step).  Uncertainty for Landsat Tsk data are assumed to be in the range of ~1-2 K based on the work 

of Li et al. (2004) and Sobrino et al. (2004), which is the same range assumed for data from MODIS 

based on Wan et al. (2004) and Wang and Liang (2009), while an uncertainty estimate of ~2 K is 

given for data from GOES by Sun et al. (2004). 

2.2.3 LATENT AND SENSIBLE HEAT FLUXES 

As discussed in the introduction, Latent (LE) and sensible (H) heat fluxes are the land surface 

processes most crucial for NWP initialisation.  Hence the interest here in testing the assimilation 
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of observation-based estimates of these quantities, an approach not well published in the scientific 

literature compared to the assimilation of other observation-based quantities such as soil moisture. 

Shuttleworth (2007) and Wang et al. (2012) provide reviews of the science that has contributed to 

the understanding of ET/LE and different measurement techniques developed over preceding 

decades.  Brutsaert (2005) also covers the principles behind different techniques for quantifying 

LE and H, and two main approaches are distinguished: i) aerodynamic or mass transfer 

formulations describing air and water vapour transport in the Atmospheric Boundary Layer (ABL); 

and ii) energy balance formulations focusing on the energy available to the land surface.  Although 

it is noted that these approaches will nearly always need to be considered in combination.  In the 

context of turbulent flow and mass transfer in the ABL, a general assumption is that the largest 

gradients of phenomena of relevance to LE and H (such as humidity and temperature) are in the 

vertical direction and by contrast the horizontal gradients are approximated to be zero (Brutsaert, 

2005).  As such, formulations typically involve mean values of measurements over a given time 

interval from different points in a vertical profile.  An example illustrating the general form of 

using mean vertical profile values is the following representation of the Bowen ratio (Eq. (2.6)) as 

presented by Brutsaert (2005): 
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Here, T and q represent temperature and specific humidity respectively, the overbar represents the 

mean value for a given time interval, cp is the specific heat capacity of air and Le the latent heat of 

vaporisation for water.  The subscripts 1 and 2 represent measurements from two separate levels 

in the vertical direction.  Energy balance approaches rely on relationships (or variations of them) 

shown in Eqs. (2.2) and (2.5), and energy balance component measurements that are available, to 

define the fluxes that are of interest. 

It can be assumed that for a wet surface the value of q is the saturation value at the surface 

temperature (Ts), as is the water vapour pressure (e) value, which is linked to q and air pressure (p) 

by the following from Brutsaert (2005): 
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The work of Penman (1948) is significant in that it permeates some of the present day techniques 

for estimating LE and H from measurements and involves a combination of energy balance and 

aerodynamic formulations.  Underpinning his work is an approximation describing the change in 

saturation vapour pressure (esat) with temperature which can be summarised as 
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Where subscripts s and a represent the surface and air (at some reference level) respectively, and 

where 
sat
se  and 

sat
ae  are saturation vapour pressure values as a function of the respective 

temperatures of the surface and the air.  The formulation for evaporation (E) from Penman (1948) 

is 
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Ea is a term for the drying ability or evaporative demand of the air and is a function of: i) the 

saturation vapour pressure deficit ( a
sat
a ee  ) which represents the ability of air to take on water 

vapour, where ae  is the mean ambient vapour pressure; and, ii) the wind speed which influences 

the movement of saturated air away from, and drier air to, an evaporating surface.  The term γ is 

the psychrometric constant 
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The Penman-Monteith method (Monteith, 1965) is an extension of the earlier work by Penman for 

calculating ET/LE from surfaces with vegetation as follows 
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where ρ is the air density, and ra and rs are terms for aerodynamic and surface (incorporating 

vegetation) resistances respectively.  Eq. (2.21) is the basis for the standard method adopted by 

The United Nations Food and Agricultural Organisation (FAO) to calculate reference ET (or 

equivalent LE) – otherwise known as the FAO-56 Penman-Monteith equation – for a hypothetical 

grass crop treated as being well watered (i.e. for representing potential ET) and of uniform height 

(Allen et al., 1998).  The FAO-56 method incorporates formulations for the resistances ra and rs 

which are functions of wind speed and Leaf Area Index (LAI) respectively, where standard 

meteorological observations are required as input.  Limitations exist of course where the extent of 

such information is sparse relative to the spatial scale of interest and land cover variation.  

Moreover, effort is required to calibrate calculated reference/potential ET for different 
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environments/vegetation cover which is dependent on additional direct measurement and/or 

ancillary data.  Likewise the estimation of actual ET for a real water limited scenario from this 

process requires measured soil moisture content to adjust potential ET for water availability. 

Observations of LE and H can be made on fine time scales (e.g. ~sub-hourly to hourly) via the 

eddy covariance method (Brutsaert, 2005; Burba, 2013), one of the most direct ways currently 

available to measure these fluxes.  Ground based observations from this method, which were made 

and used for experimental work in this thesis, can only be made at small scales, usually ranging 

from 100’s of metres to a few kilometres.  Swinbank (1951) is one of the earliest published 

examples demonstrating the potential of measuring heat fluxes by sampling eddies at a fixed point 

as they move through the atmosphere.  More recent work by Brutsaert (2005) outlines the 

theoretical detail behind the eddy covariance method, along with Burba (2013) who presents a 

thorough background summary on it, which includes practical aspects related to present day 

measurement technology and data processing.  These sources were the basis of much of the 

information presented in the following paragraphs. 

Eddy covariance theory is predicated on mass transfer, where the net positive vertical component 

of flux in turbulent air flow that occurs within the ABL describes the movement of latent and 

sensible heat from the land surface.  This is represented by the following equations for latent and 

sensible heat flux: 

wqLE a
  ;      (2.22) 

and, 

wTCH pa
  .      (2.23) 

In Eqs. (2.22) and (2.23) q  and T   are fluctuations in specific humidity (water vapour 

concentration) and temperature of the air respectively, and w  is the vertical velocity of the air, all 

of which are measured at a given rate (10 or 20 Hz are commonly used rates), with the overbar 

denoting the calculation of cross-correlations over some averaging period (e.g. 30 minutes).  The 

term a  is the air density and pC  the specific heat capacity for air. 

Eddy covariance instrumentation developed over recent decades can make the continuous rapid 

measurements required to determine flux quantities.  As one of the most direct and detailed heat 

flux measurement methods, it is therefore one of the most accurate currently available.  The system 

used for eddy covariance data collection in this research consisted of the Campbell Scientific 

CSAT 3D sonic anemometer (Campbell Scientific Inc., 1998) and a Licor 7500 open path gas 
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analyser (LI-COR Inc., 2003).  The CSAT 3D sonic anemometer measures wind speed along three 

non-orthogonal axes from which the vertical component of wind speed ( w  in Eqs. (2.22) and 

(2.23)) is determined.  It also measures the speed of sound (or sonic virtual temperature) for the 

term T   in the sensible heat flux calculation (Eq. (2.23)).  The Licor 7500 measures the 

concentrations of water vapour (for q  in Eq. (2.22)) and carbon dioxide in the air. 

The complexity of eddy covariance systems and of the turbulent flow which they measure means 

there are different potential sources of error in final period averaged values for LE and H.  Burba 

(2013) outline a series of detailed processes for error correction using raw high frequency data if it 

is available, prior to period averaging.  The energy balance (Eq. (2.5)) is routinely used to quality 

check period averaged heat flux values against direct in-situ observations of RN and G.  To satisfy 

Eq. (2.5), HLE   and GRN   should theoretically share a 1:1 linear relationship, indicating 

perfect energy balance closure.  However, gaps in energy balance closure due to underestimated 

eddy covariance fluxes are a recognised problem (Shuttleworth, 2007), a problem Twine et al. 

(2000) investigated in an experimental study.  They suggest that errors in RN and G from in-situ 

instruments are minimal overall compared to errors in eddy covariance LE and H data.  Moreover, 

the Bowen Ratio (Bo: Eq. (2.6)) for these data were assumed reliable.  Under this assumption a 

reasonable approach for correcting LE and H data is to adjust it against RN and G data, while 

maintaining Bo as constant, to force closure of the energy balance as represented by Eq. (2.5). 

Reviews of different techniques for quantifying LE and H from remote sensing have been 

presented by Kustas and Norman (1996) and more recently by Kalma et al. (2008).  Instantaneous 

estimates of these quantities from remotely sensed observations are of particular interest with 

regards to assimilation for LSMs run on hourly to sub-hourly time scales.  The techniques best 

suited for providing such estimates include the surface energy balance methods as summarised by 

Kalma et al. (2008) which rely on Tsk data.  Examples of these include the Surface Energy Balance 

Algorithm (SEBAL) (Bastiaanssen et al., 1998), the Surface Energy Balance System (SEBS) by 

Su (2002) and the two-source model (TSM) approach (e.g. Norman et al., 1995). 

The general approach of these techniques is to estimate H as accurately as possible and then in 

combination with RN and G, which are relatively easy to determine (Kalma et al., 2008), LE can 

be calculated via Eq. (2.5).  Estimating H is the main challenge and is dependent on vertical 

differences between the aerodynamic surface temperature (Taero) and near surface air temperature 

(Ta) at a reference height, and on aerodynamic resistance to heat transfer (rah), via the following 

(Boulet et al., 2012) 



24 

 

 

ah

aaeropa

r

TTC
H





.      (2.24) 

The Monin-Obukov Similarity Theory is relevant for heat flux formulations factoring vertical 

aerodynamic and mass transfer, and specifically for the terms rah and Taero, as described by Kustas 

et al. (2007) and Liu et al. (2007).  This theory relates turbulent fluxes in the lower atmosphere 

with vertical wind and temperature profile differences.  From Liu et al. (2007) some of the key 

quantities include the zero-plane displacement d (the mean height above ground where wind speed 

becomes zero due to vertical structure such as trees) and separate stability parameters terms which 

are a function of: i) the reference height z (e.g. height from top of the vegetation canopy; ii) 

roughness length for momentum transfer z0m (the height at which wind speed reaches the surface 

value); and, iii) the roughness length for heat transfer z0h (the height at which temperature reaches 

the surface value). 

The aerodynamic resistance to heat transfer rah can be calculated using local wind speed and Ta for 

the reference height z, and also the different roughness lengths z0m and z0h for atmospheric 

stability terms as outlined in Liu et al. (2007).  The term Taero is complex, representing temperature 

related to a mix of air, soil and vegetation surfaces (Boulet et al., 2012).  It is described specifically 

by Boulet et al. (2012) as the average air temperature close to vegetation, within its canopy, and at 

the aerodynamic level height which is defined as the sum of the displacement height (d) and the 

roughness length for momentum (z0m).  Determining Taero is difficult and it cannot be measured 

by remote sensing so Tsk is often used as a proxy, although the discrepancy between Taero and Tsk 

can be relatively large for non-uniform vegetation cover (Boulet et al., 2012; Kalma et al., 2008; 

Kustas & Norman, 1996).  This could potentially be a major source of error for estimated heat 

fluxes. 

A TSM approach is where an explicit distinction between fluxes from the soil and from the 

vegetation is made – with the total fluxes being the sum of fluxes from each surface.  For 

approaches such as SEBAL or SEBS, the fluxes between soil, vegetation and the atmosphere are 

treated as a single combined surface (Kalma et al., 2008).  The TSM approach presented by 

Norman et al. (1995) can account for possible differences between Taero and measured Tsk.  It is 

based on using directional remotely sensed Tsk, along with the fraction of vegetation cover or LAI 

data and other standard meteorological data to help determine separate soil surface and vegetation 

canopy surface temperature values.  Both of these are used in resistance calculations and thus heat 

fluxes which are subsequently determined have the separate contributions from soil and vegetation 

incorporated. 
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The SEBAL algorithm (Bastiaanssen et al., 1998) involves a calibration technique aimed at dealing 

with possible discrepancies between Taero and measured Tsk.  An assumption is made that the 

vertical temperature gradient (difference between Taero and Ta – in the numerator of Eq. (2.24)) has 

an approximate linear relationship with observed Tsk.  The premise for the calibration technique is 

that the temperature gradient is assumed zero for a wet extreme (where LE >> H and H 

approximates to zero) and assumed to be at a maximum for a dry extreme where LE approximates 

to zero and H reduces to a function of RN and G (Eq. (2.5)).  From remotely sensed data for a region 

of interest, an extreme wet ( 0H ) and extreme dry ( 0LE ) pixel are identified.  They 

represent anchors in the Tsk data coverage between which values for the temperature gradient term 

(𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑎) can be calculated for all pixels based on the assumed linear relationship between the 

temperature gradient and Tsk.  A limitation with this algorithm is the reliance on subjective decision 

making by users to identify extreme wet and dry anchor points for a particular remote sensing 

scene (Gokmen et al., 2012). 

The SEBS approach (Su, 2002) involves a range of remote sensing data for key quantities including 

Tsk, albedo,   and for vegetation cover and characteristics, in addition to commonly available 

meteorological data.  It is rigorous with several modules for estimating RN and G, and depending 

on the range of meteorological and vegetation data available, the displacement height d and 

roughness height for momentum z0m (required for Monin-Obukhov based calculations) can be 

determined via methods of either Massman (1997) or Brutsaert (1999).  In addition to detail 

discussed in Kalma et al. (2008), examples of studies using SEBS heat flux estimates include 

McCabe and Wood (2006) and Su et al. (2005, 2007). 

Kalma et al. (2008) noted that spatially distributed heat flux data had yet to be used effectively for 

routine evaluation and improvement of LSMs.  At present there is still no known wide-spread and 

routine use of instantaneous heat flux estimates (as per satellite overpass times) for this purpose.  

Kalma et al. (2008) also note that for remote sensing based data the inability to evaluate it in a 

distributed manner is a serious limitation.  An obvious reason is the limited number of locations 

where direct in-situ measurements of heat fluxes are made (with instruments such as eddy 

covariance systems) over multi-year time scales. 

Both Glenn et al. (2007) and Kalma et al. (2008) discuss the assessment of remotely sensed LE 

and H data using in-situ measurements.  The main challenges include scale disparities between 

station measurements and remotely sensed pixel resolution, and how meaningful assessments are 

for locations far removed from a station when the landscape is heterogeneous or the possibility of 

varying meteorological conditions exists.  Kalma et al. (2008) state that from about 30 published 

works involving validation of remotely sensed LE and H against independent ground data there is 

an average root mean squared error value of ~50 Wm-2.  With remotely sensed Tsk being the main 
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input for deriving these heat fluxes, the temporal repeat imposed on the assimilated LE and H data 

series in the experiments that did not involve satellite remote sensing data (chapters 5 and 6) was 

identical to that for Tsk. 

2.3 LAND SURFACE MODELS (LSMs) 

It is well established that soil moisture and temperature states share a link with weather and climate 

through regulating the partitioning of available energy at the land surface into LE and H (Beljaars 

et al., 1996; Koster et al., 2004; Koster et al., 2011; Pielke et al., 1998; Pitman, 2003; Ridder, 2009; 

Sellers et al., 1997; van den Hurk et al., 2010).  LSMs are designed to represent these state/flux 

processes, which relate to the water and energy balance components summarised in section 2.1, in 

order to support tasks such as Numerical Weather Prediction (NWP) and climate modelling.  By 

definition a LSM is a mathematical framework representing mass, momentum and energy transfer 

in the lower boundary of the atmosphere over continental areas via processes such as LE and H 

(Levis, 2010).  They include energy balance calculations for quantifying these fluxes, which factor 

in physical characteristics of the land such as vegetation cover and associated plant transpiration, 

along with formulations linking soil state dynamics (Ek et al., 2003; Overgaard et al., 2006). 

From Pitman (2003), typical calculations of LE and H in LSMs are of the form incorporating water 

vapour and temperature gradients between the land surface and a reference level in the vertical, 

along with resistance terms (as in Eqs. (2.16) to (2.21)).  For example, in using the saturation vapour 

pressure difference (
a

sat

s ee  ) for LE, 
sat
se  is the saturation vapour pressure at the surface 

temperature (Ts) and ae  the vapour pressure of the air at a reference level.  Likewise, using the 

temperature difference between the land surface (Ts) and a reference level air temperature (Ta) is 

typical for H. 

Running LSMs requires time series meteorologic forcing data inputs which provide values for 

water and energy supply to the land surface (as precipitation and incident radiation quantities) 

along with values for near surface atmospheric conditions with which calculations are made for 

evaporative demand.  Model specific parameter data is required to quantify soil and vegetation 

properties which influence water and energy fluxes, and a list of inputs specific to the Australian 

CBM/CABLE model (Kowalczyk et al., 2006, 2013; Wang & Leuning, 1998; Wang et al., 2001, 

2007) is provided in chapter 3.  For a coupled LSM and atmosphere in NWP and climate modelling 

systems, meteorological forecasts within the system provide the forcing.  Alternatively, 

uncoupled/stand-alone LSMs can be forced with meteorological variables which are usually 

routinely observed by meteorological agencies.  This latter approach was used for this research as 

experiments focused on impacts on the LSM used (CBM), without the added complexity and 
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uncertainties of a coupled system (progressing towards future research in such systems which are 

used operationally is essential however). 

Important soil parameters in LSMs are those relating to the water retention/mobility properties of 

soils which impact on water availability to plants and hence available energy partitioning (key 

properties are given in section 2.1: porosity, field capacity, wilting point and hydraulic 

conductivity).  Data on these properties suitable for global or continental scale model applications 

are generally available from databases associated with broad scale global or national soil type maps 

(e.g. McKenzie et al., 2000; Batjes, 2002).  Key vegetation parameters can include (amongst others 

depending on the complexity of the particular model being used) time varying LAI from remote 

sensing, the distribution of roots in the soil and the vegetation canopy height (relating to land 

surface roughness and aerodynamic resistances), all of which impact on heat fluxes (Pitman, 2003).  

As with soil, there are also databases of vegetation parameters associated with global scale maps 

of vegetation or biome types (e.g. Potter et al., 1993).  Spatially and/or temporally varying soil and 

vegetation parameters enable landscape heterogeneity to be represented in LSMs so that the 

variability of energy and water balance components are better predicted – although such variability 

is limited by the scale and accuracy of the available parameter data. 

In contrast to parameters, prognostic state variables require initial conditions to be prescribed and 

subsequent values are calculated as a function of previous model time step values.  Hence they 

retain some memory relating to water and energy balances as they change with new forcing data 

at each time step.  Key state variables in LSMs typically include soil moisture content and soil 

temperature (e.g. Dai et al., 2003; Kowalczyk et al., 2006). 

The level of detail that has been incorporated into LSMs over the past few decades has increased 

in an attempt to improve their accuracy with more realistic representations of soil, vegetation and 

atmospheric interactions.  To set the context and give an overview, the following paragraphs 

provide a synthesis of the work of Pitman (2003) and Sellers et al. (1997) who categorised models 

as first, second or third generation in their reviews of LSM development. 

First generation models are the most simplistic, with the bucket model from Manabe (1969) being 

a prime example.  A single 15cm soil layer is used in this model – it fills from precipitation, after 

filling any precipitation becomes surface runoff and water depletion from the soil occurs via ET.  

For determining ET a potential value is calculated (using the vapour pressure gradient form as 

described earlier) and then a simple linear soil moisture availability factor (β) based on the bucket 

water content ( 10    from completely dry to saturation) is used as a multiplier to determine 

actual ET.  An aerodynamic resistance term is used in ET calculations and vegetation canopy 

(stomatal) resistance is not included.  This is a major limitation since plant stomatal control on 
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transpiration in the presence of freely available water has an influence on ET (Milly & Shmakin, 

2002).  Stomatal resistance describes the regulation of water vapour transpiration through stomates 

in plant leaves. 

With the exception of surface albedo which is linked to vegetation distribution, the Manabe (1969) 

model uses globally uniform values for surface parameters (Milly & Shmakin, 2002) thus spatial 

water and energy balance variations may not be represented as realistically as possible.  This 

situation is improved with newer models (second and third generation).  Pitman (2003) notes that 

only 1 or 2 soil layers are generally included in first generation models and that soil temperature 

variations might also not be adequately represented from short term to multi-annual time scales.  

Milly and Shmakin (2002) note that neglect of ground heat storage in the Manabe (1969) model is 

a limitation for modelling at sub-daily time scales, whereas net change in heat storage on daily or 

longer time scales can be considered negligible.  Sub-daily heat storage changes are a function of 

G and soil temperature changes through the vertical soil profile, which are important components 

of the land surface energy balance as discussed in sub-section 2.1.1.  The importance of good soil 

temperature representation in LSMs for weather and climate modelling is discussed by Ridder 

(2009). 

Second generation (or biophysical) models according to Sellers et al. (1997) have more advanced 

vegetation representation than first generation ones which are described as representing vegetation 

as passive, spongelike structures separating the soil and atmosphere.  The aim for second 

generation models was said to represent a soil-vegetation system for interacting with the 

atmosphere.  Some of the advances in these models include differentiating between soil and 

vegetation cover for representing spatial variation in albedo, dealing with absorption of visible 

bands from incoming radiation (in the photosynthetic range) and reflection of near infrared 

wavelengths by vegetation, representing the impact of vegetation on momentum transfer which 

relates to LE and H, and, the inclusion of a biophysical control on ET via the representation of 

stomatal resistance for the vegetation canopy (Pitman, 2003; Sellers, 1997).  Thus unlike first 

generation models, vegetation canopy resistance was incorporated and according to Sellers et al. 

(1997) it was possible to calculate heat fluxes more accurately overall due to the more realistic 

biophysically based model structure. 

Second generation models usually contain multiple soil layers with root distribution and improved 

soil temperature and moisture representation (Pitman, 2003).  In terms of hydrology, they include 

canopy interception (and evaporation) with a more complex representation of soil moisture 

dynamics typically using Richard’s equation (Pitman, 2003).  Some examples of second generation 

models are the Biosphere-Atmosphere Transfer Scheme (BATS) by Dickinson (1984), the Simple 

Biosphere Model (SiB) by Sellers et al. (1986) and the VB95 model (Viterbo & Beljaars, 1995) 
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developed for European Centre for Medium Range Weather Forecasts (ECMWF) and which was 

the LSM implemented in Australia’s NWP system in 1999 (Richter et al., 2004). 

Despite an explicit representation of vegetation in second generation models, Pitman (2003) notes 

a limitation with them is that stomatal resistance is based on empirical relationships.  In developing 

third generation (or physiological) models the mechanisms of plant stomatal functioning driven by 

photosynthesis were considered in more detail.  Thus explicit representation of photosynthesis and 

the use of CO2 by vegetation in relation to stomatal resistance and transpiration is a typical feature 

of them (Pitman, 2003; Sellers et al. 1997).  Other processes in third generation models such as 

soil hydrology and soil temperature are usually similar to representations used in second generation 

models (Pitman, 2003). 

Examples of third generation models include the Simple Biosphere Model 2 (SiB2) by Sellers et 

al. (1996), the CSIRO Biosphere Model (CBM: Wang & Leuning, 1998; Wang et al., 2001, 2007) 

used in this research and its successor the Community Atmosphere Biosphere Land Exchange 

model (CABLE: Kowalczyk et al., 2006; Kowalczyk et al., 2013).  The CBM was made available 

for the research in this thesis and its use was continued in all of the studies carried out after the 

release of CABLE for the sake of consistency.  A detailed description of the CBM structure and 

operation is provided in chapter 3.  It has similar formulations for the energy balance and hydrology 

as the current version of CABLE, which is distributed as a community based model and as such is 

continually evolving (Law et al., 2012). 

Despite advancement over the years that has improved the representation of some complex 

physical processes in contemporary models compared to earlier models, imperfect model structure 

and errors in input data are ubiquitous with modelling, contributing to prediction uncertainty.  

Uncertainty in initial state conditions, meteorological forcing data and parameter data are all 

sources of input error, both in terms of measurements accuracy and representation of spatial and 

temporal variability.  Hence techniques such as data assimilation can play an important role in 

improving model predictions when additional information from independent observations are 

available. 

2.4 DATA ASSIMILATION 

Estimating the true state of a physical system for a given time is referred to in the geophysical 

sciences as the analysis (Holm, 2003).  Data assimilation is described by Holm (2003) as being 

an analysis which combines time distributed information from observations and a dynamic 

model of the physical system.  Data assimilation and the statistics underpinning it are covered 

in detail by Evensen (2009) where the important point is made that there are infinitely many 
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equally likely solutions from a model’s integration through time (due to the different sources 

of uncertainty mentioned in the preceding section).  Thus it makes more sense to consider the 

probability distribution function (pdf) for a model variable than single deterministic 

predictions.  With knowledge of the pdf we can estimate the most likely value (the mean) and 

uncertainty (the variance) for a particular variable(s) of interest. 

From Evensen (2009), data assimilation is the computation of the pdf of the model solution 

conditioned on measured observations.  Essentially, observed quantities which can be on a variety 

of spatial and time scales and are related to model variables, are used to update model variables in 

a way which factors in the uncertainty of both observed and modelled quantities.  From Houser et 

al. (2010; pg. 549-550), land surface data assimilation is an approach which: “...aims to utilise both 

our knowledge of land surface processes as embodied in a LSM, and information that can be gained 

from observations, to produce an improved, continuous land surface state estimate in space and 

time”.  Model data fusion is sometimes used as an umbrella term for the different approaches to 

combining observed and modelled information for improving predictions, encompassing both 

parameter optimisation and state updating (e.g. Keenan et al., 2011; Wang et al., 2009).  The term 

data assimilation is considered to be more specific based on much of the literature referenced 

throughout this thesis and its use here refers exclusively to model state updating. 

2.4.1 WHY DATA ASSIMILATION 

Using independently observed information to improve model predictions is not new.  Model 

calibration is well published particularly for hydrological applications, where discussion of and 

reference to some different approaches can be found in Vrugt et al. (2006).  A typical strategy is 

to calibrate for a particular variable (or variables) by optimising model parameter values so that 

some objective function for differences between predictions and observations of the variable(s) of 

interest is minimised.  Wang et al. (2001, 2007) applied optimisation to the CBM (the LSM used 

in this research) with model vegetation parameters adjusted based on eddy covariance 

measurements to improve heat and CO2 flux predictions for an Australian eucalypt forest site. 

Vrugt et al. (2006) highlight that in contrast to optimisation with a focus limited to parameters, 

data assimilation adds specific value in sequentially updating model state variables through time 

whenever new measurements become available, to continuously improve predictions and estimate 

prediction uncertainty.  The time step dependency of prognostic state variables enables the impact 

of updates to be carried forward to modelling time steps where observations are not available.  

Evensen (2009) indicates there are differences in opinion between research communities about 

which approach – data assimilation or identifying parameters via optimisation – is best for 

providing proper scientific knowledge and improving modelled outcomes. 
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Mitchell et al. (2004) noted that decades long improvements to atmospheric state initialisation for 

NWP and seasonal climate prediction using data assimilation had set the scene for LSM data 

assimilation research.  This has progressed over recent years and the United Kingdom Meteorology 

Office (UK Met) is one institution where operational LSM assimilation of remotely sensed soil 

moisture has been implemented within a NWP system (Dharssi et al., 2011).  LSM state updating 

with data assimilation is therefore recognised as being extremely valuable for NWP initialisation. 

Parameter optimisation may also be of value in the NWP context, however for a remotely sensed 

product such as soil moisture which represents only the top few centimetres of soil there is no direct 

comparison for finding optimal soil properties over the deeper rooting zones which fluxes depend 

on.  Robust data assimilation techniques require the factoring in of model uncertainty and therefore 

state updating can be beneficial where there is sub-optimal input data.  Data assimilation can also 

update other unobserved model variables (e.g. root-zone moisture states) based on their 

relationship with the observed model variable.  For Australia’s current NWP system, broad scale 

global soil and vegetation parameters are used directly in the LSM with no optimisation applied to 

them (Dr P. Steinle, Data Assimilation Team Leader, Australian Bureau of Meteorology, pers. 

comm., May 2011).  The strengths of data assimilation with its recognised benefits for NWP 

initialisation has informed the research scope for this thesis – it is confined to testing the 

assimilation of different observation types and using fixed parameter data directly as they were 

available, as is done in Australia’s weather prediction system. 

2.4.2 DATA ASSIMLATION TECHNIQUES 

Walker and Houser (2005) distinguish between dynamic observer and direct observer data 

assimilation techniques.  Dynamic observer assimilation is aimed at finding the best fit 

between predicted model states and observations, constrained only by the initial state 

uncertainty and the observation uncertainty.  It is likened to a calibration approach where the 

initial state values for a given assimilation period are optimised based on the full series of 

observations over that entire period.  Four-dimensional variational (4DVAR) assimilation is 

an example of a dynamic approach and a limitation is that no model error is assumed (Bouttier 

& Courtier, 1999; Holm, 2003). 

Walker and Houser (2005) summarise direct observer assimilation as using the innovation – 

defined as the difference between an observation and a model prediction of the observation – 

to sequentially update model predicted state variables, whenever observations are available.  

The product of the innovation and a weighting factor – where the weighting represents the 

relative uncertainty in the observation and model predictions – is added to the predicted state 

variables in order to update them.  Holm (2003) lists optimal interpolation (OI), three-
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dimensional variational assimilation (3DVAR) and the Kalman filter as common data 

assimilation algorithms, which are all direct observer approaches.  Walker and Houser (2005) 

also list these along with nudging, as used for soil moisture in Australia’s NWP system (Draper 

& Mills, 2008), statistical correction, successive correction and analysis correction.  The early 

approach of direct insertion is also mentioned. 

With direct insertion, predicted model states are simply replaced with available observed 

information.  Model or observation uncertainty is totally disregarded (the observation is treated 

as being perfect) and this approach is therefore very limited.  Differences between most of the 

other aforementioned approaches relate largely to how their respective weighting factors are 

defined. 

For nudging the weighting is a function of both space and time (relating to the influence an 

observation has on model predictions in terms of proximity and time lag), of the estimated 

observation quality and of a nudging factor which is typically chosen to ensure any state 

adjustment is realistic relative to rates of change of physical processes in the model (Stauffer 

& Seaman, 1990).  The weighting for OI is based on estimated observation error and a 

simplified approximation of model prediction error covariance that remains constant for all 

time steps – it is often a prescribed estimate incorporating spatial correlation with an 

assumption that any location in a modelled region is only influenced by observations within a 

limited/fixed surrounding area (Bouttier & Courtier, 1999; Holm, 2003; Walker & Houser, 

2005).  This way of dealing with model error is typically the same for the 3DVAR approach 

(Walker & Houser, 2005).  The strategy behind 3DAVR avoids directly determining a 

weighting factor.  Instead the predicted states, the innovation, and estimates of observation 

and model prediction error are used in a cost function and its gradient to iteratively solve for 

updated states by minimising the cost function (Bouttier & Courtier, 1999; Holm, 2003). 

The Kalman Filter (KF), first presented by Kalman (1960), forms the basis of more modern 

variations such as the extended Kalman filter (EKF) and ensemble Kalman filter (EnKF).  The 

weighting factor for KF approaches (called the Kalman gain) is based on estimates of observation 

error and on the model prediction error covariances being propagated forward in time along with 

the predictions themselves.  With the standard KF a linearisation of non-linear models such as 

LSMs (through determining the tangent linear of the model) is used to estimate error covariances 

at each assimilation time (Bouttier & Courtier, 1999).  By definition the EKF is where the model 

prediction is linearised using a Taylor’s series expansion (Walker & Houser, 2005).  While error 

covariances can be propagated forward and estimated at assimilation times, actually defining the 

total model error in the first place – consisting of errors from initial conditions, forcing data, model 
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physics and parameters – is extremely difficult (for any assimilation approach) and ad-hoc 

estimates are often made (Bouttier & Courtier, 1999; Walker & Houser, 2005). 

Unlike the EKF, the EnKF (Evensen, 1994; Evensen, 2009) is a much more robust assimilation 

approach that avoids the need for computationally expensive propagation of error covariances 

through time and determining tangent linear models (Reichle et al., 2002).  Instead a Monte-Carlo 

approach is used where an ensemble of parallel model predictions is used to represent model 

prediction error.  Ensembles can be generated by applying random perturbations to different inputs 

and/or model states to represent errors relevant to each.  Estimating prediction error covariances 

for determining the Kalman gain weighting factor is done using the ensemble spread at each 

assimilation time step. 

Reichle et al. (2002) compared the EKF and EnKF and noted that the EnKF was more robust and 

flexible in covariance modelling with slightly superior performance, thus it is well suited for LSM 

applications.  The flexibility in prescribing error perturbations to model inputs for the EnKF means 

that some error ensembles can propagate naturally through the model making it possible to achieve 

more realistic dynamic error covariances through time than for approaches such as OI or 3DVAR 

where more rigid structures are used.  However as mentioned previously, accurately defining total 

model error from all sources (especially model physics) is still a major challenge for any approach. 

From this review of common data assimilation approaches, the EnKF was chosen as the technique 

to use for experiments in this thesis due to its robustness – it is easy to implement, efficient and has 

been shown to perform strongly against the EKF.  It has also been used in its own right for various 

published assimilation studies (with some of these referenced in following sections here and in 

following chapters).  A description of the EnKF and its implementation for experiments in this 

thesis is presented in chapter 3, while the generic KF formulation on which it is based is as follows: 
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where subscript k refers to the assimilation time step, superscript f refers to a prediction and 

superscript a refers to an analysis (from an update).  The model state vector is denoted by X and 

the observation is denoted by Z.  The difference between an observed value and a model predicted 
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where P represents the error covariance of the predicted model states and R is the error covariance 

of the observation.  The matrix H is a nonlinear operator that relates the state vector X to the 

observation Z, with superscript T denoting the matrix transpose.  Therefore, if P is large compared 

to R (i.e. observations more trustworthy than model prediction), then K will approximate to 1 when 

X and Z are the same scalar quantity (i.e. H = 1), and the innovation will be relied upon heavily to 

adjust the predicted states due to the small relative observation error.  Alternatively, where R is 

large compared to P, K will approach 0 and the observation will not be trusted sufficiently leaving 

the final analysis vector a

kX  relatively unchanged, since the model’s prediction is likely to be more 

reliable in this case. 

Evensen (2009) and Maybeck (1979) present comprehensive detail on the KF including its 

statistical basis.  It is discussed with reference to Bayes’ theorem, given it is designed to determine 

the most likely value of a model state (the analysis) based on the pdf for an a priori model 

prediction conditioned on the pdf for some observed estimate of the modelled quantity.  The pdf 

variances for predictions and observations are the quantities used for P and R respectively in Eq. 

(2.26).  As highlighted by Evensen (2009) and Maybeck (1979), amongst others, the statistical 

assumptions about the prediction and observation error distributions for an optimal KF are that 

they are zero mean (unbiased), independent of each other, represent random white noise, and are 

Gaussian.  Errors may not be strictly Gaussian in reality, however it is often the case that only the 

mean and variance of error processes are known, and without clear knowledge of higher moment 

statistics a Gaussian distribution is the best assumption for the KF to minimise error in the analysis 

(Maybeck, 1979). 

2.4.3 THE BIAS PROBLEM 

The KF is a linear combination of modelled and observed information (Eq. (2.25)), and based on 

the error distribution properties discussed in the previous section it deals specifically with 

correcting for random error in finding an optimal model prediction.  Therefore systematic biases 

between modelled and observed time series represent a challenge for data assimilation, which is 

an issue covered in numerous publications such as Drusch et al. (2005) and Reichle and Koster 

(2004). 

For observations of a state variable such as soil moisture from remote sensing or in-situ 

instrumentation, the dynamic range is a function of the measuring instrument(s) and algorithm 

(with associated uncertainty) used to derive it.  This range, along with the mean state over longer 

time periods (e.g. multi-annual or at least a full annual seasonal cycle) is likely to differ to that from 

a LSM which has its own inherent uncertainty issues arising from different sources, including 
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structural error and poor information on soil parameters such as wilting point and field capacity 

(amongst others), which influence moisture dynamics (Koster & Milly, 1997). 

Moreover, observation depths for remotely sensed microwave based data such as AMSR-E (~1-2 

cm) are 2 to 5 times thinner than the surface soil layer in some LSMs resulting in disparate temporal 

dynamics (Drusch et al., 2005).  However this was not an issue for soil moisture assimilation in 

this research where observed depths could be approximately matched to equivalent CBM soil layer 

depths.  Remotely sensed data with a broad spatial scale (10’s of km) can also be difficult to 

validate over extended regions where well calibrated in-situ data is sparse, adding to the uncertainty 

in relation to bias.  While bias between LSM states and remotely sensed observations of them is 

recognised as a problem, which must be dealt with in some way for meaningful comparisons to be 

made in the context of data assimilation, the relative contribution to overall bias from the model 

and observations is difficult to define.  Without independent information enabling the source(s) of 

bias to be accurately identified and quantified, treating it remains a challenge. 

A tractable and therefore typical approach to treating the bias problem is to rescale observations 

prior to assimilation such that the observed data series matches the model climatology.  This can 

be done via matching the cumulative distribution function (cdf) of the observed series to the 

modelled one (e.g. Draper et al., 2009b; Drusch et al., 2005; Reichle et al., 2007; Reichle & Koster, 

2004), or matching the observed series mean and standard deviation to that of the modelled series 

– as done by Draper et al. (2009a) in minimising bias between AMSR-E and in-situ soil moisture 

data series.  Although such approaches aimed at bias removal are relatively well published they 

are not necessarily optimal.  Reichle and Koster (2004) defined a relationship for rescaling 

remotely sensed soil moisture to model predictions over a one year period, and when applied to a 

nine-year long data series it reduced the bias but did not completely remove it.  This highlights the 

difficulty of thoroughly understanding bias relative to true climatology, especially where only short 

data series are available. 

Despite the rescaling approach to treat observation/model state bias having limitations, it is the best 

known option at present for when there is a lack of additional information independent of the 

assimilated observations and model state predictions.  Holm (2003) discusses bias as a serious issue 

impeding the full potential of data assimilation but states that it must be dealt with in some way 

given that assimilation is based on merging independently sourced and unbiased information.  

Rescaling was applied in this thesis for experiments which involved real data assimilation and with 

clear bias between observed and modelled states over a one year period (i.e. bias could be 

determined for a full cycle of seasons). 
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2.4.4 SYNOPSIS OF LSM DATA ASSIMILATION RESEARCH 

An early example of investigating the ability of data assimilation to improve model soil moisture 

and temperature state predictions is a synthetic study by Entekhabi et al. (1994).  This study 

demonstrated the potential for improving soil moisture and temperature predictions over a 1 m 

deep soil profile by assimilating data that is representative of remotely sensed skin temperature and 

soil moisture observations of only the top few centimetres of soil (the typical depth range of real 

remotely sensed soil moisture data). 

Synthetic studies are based on model outputs from some benchmark simulation designated as the 

“truth”, and on a “degraded” simulation which is a result of prescribing different/erroneous inputs 

(either initial conditions, forcing data, parameters, or any combination of these) compared to those 

used for the “truth”.  Synthetic observations are obtained by sampling data from the “truth” output 

series for the desired variable(s) at the desired temporal resolution.  By assimilating these into the 

“degraded” simulation, the data assimilation performance can be assessed based on its ability to 

retrieve the original “truth” output series.  Given that such studies are very controlled, with a known 

“truth” and known error(s) as prescribed for the “degraded” simulation, they are valuable as a 

proof-of-concept when examining the feasibility of new data assimilation strategies. 

In addition to the work of Entekhabi et al. (1994) there are a range of synthetic LSM data 

assimilation studies in the literature from over the years, including the work of Balsamo et al. 

(2007), Kumar et al. (2009), Reichle et al. (2008), and Walker and Houser (2004).  Across these 

examples there is clear indication that assimilating near-surface soil moisture and/or skin 

temperature observations has potential for improving model predictions of soil moisture (including 

over the deeper root-zone), soil temperature and heat fluxes. 

Testing LSM data assimilation with real observed data is essential towards developing and having 

confidence in real-world assimilation applications, although it entails certain challenges which are 

not encountered in synthetic studies.  Specifically, in dealing with real data it is unlikely that the 

truth is perfectly known (hence the purpose of assimilation in the first place) where the best 

estimate of it relies on well defined observational and model prediction errors.  Therefore, in the 

absence of reliable data independent of the assimilated observations and model predictions, this is 

difficult to achieve – as is performing robust validation of assimilation results to assess the viability 

of particular assimilation strategies.  This also relates to the difficulty in understanding the true 

source of any bias between observations and model predictions as discussed in the previous section. 

Various studies assimilating real one-dimensional point-scale data have been published, such as 

those by De Lannoy et al. (2007), Heathman et al. (2003), Li & Islam (1999) and Sabater et al. 
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(2008) which involve soil moisture assimilation, and further demonstrate the potential for 

improving root-zone soil moisture prediction.  There is also the work of Meng et al. (2009) where 

the focus was on skin temperature assimilation and the potential for improving LE prediction is 

shown.  One-dimensional studies using real observations are also a valuable part of the process of 

testing LSM assimilation, as at point-scale monitoring sites (the source of data used in the studies 

referenced above) different data sets can be collected and quality controlled relatively easily to 

support both assimilation and validation for site based simulations.  Moreover, testing the impacts 

on a model with real independently measured data is done without the added uncertainty from large 

discrepancies in spatial scale between data sets.  By contrast, spatially distributed modelling with 

remotely sensed data assimilation is more susceptible to the challenges of defining error and 

performing validation – given the overall lack of global coverage of independent data at a range of 

spatial scales. 

Ultimately though, the aim of LSM assimilation in NWP and many hydrological applications is to 

use remotely sensed observations for improved spatially distributed modelling.  Therefore, in 

progressing beyond synthetic studies and one-dimensional studies using point-scale field data to 

test the viability of particular LSM assimilation strategies, research into remotely sensed data 

assimilation is imperative despite the challenges.  Many of the published remotely sensed data 

assimilation studies for LSMs have focused on assimilating microwave data, or the near-surface 

soil moisture products derived from them.  These include Draper et al. (2012), Liu et al. (2011), 

Margulis et al. (2002), Peter-Lidard et al. (2011), Reichle et al. (2007) and Reichle and Koster 

(2005).  While Huang et al. (2008), Lakshmi (2000), Reichle et al. (2010) and Xu et al. (2013) 

present examples of assimilating remotely sensed thermal infrared based skin temperature into 

LSMs. 

Most LSM assimilation studies in the literature appear to involve soil moisture and/or skin 

temperature observations.  This is reflected in the range of example references presented in the 

preceding paragraphs, for which the works associated with them collectively show the benefits that 

assimilating these data types can have for either soil moisture, soil temperature and/or heat flux 

predictions.  Assimilating other data types has also been examined in some studies, such as LAI 

(e.g. Sabater et al., 2008), and also heat fluxes for which the only known published examples – 

outside of the research conducted for this thesis – are the assimilation of remotely sensed LE data 

by Schuurmans et al. (2003) and by Pan et al. (2008).  Schuurmans et al. (2003) showed impacts 

on modelled ET which appeared promising but there was no validation with independent data, 

while Pan et al. (2008) assessed assimilation results using independent model predictions and 

showed improvement to soil moisture with no improvement to ET. 
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Hence separate to the experimental work in this thesis, published research into the assimilation of 

heat flux data is limited, with inadequate validation of resulting flux predictions in studies where it 

was assimilated (i.e. without using independent observations – as outlined above).  Consequently, 

the question of whether assimilating heat flux data has merit for improving heat flux predictions, 

in comparison to assimilating other more commonly used data types, is largely unanswered – with 

this thesis aimed at making a contribution towards answering it. 

Of the other (non heat flux assimilation) studies referenced previously in this sub-section, some 

involved validation of heat flux predictions (Margulis et al., 2002; Meng et al., 2009; Peter-Lidard 

et al., 2011; Reichle et al., 2010; Xu et al., 2013), with some potential shown for improving them.  

Most of the soil moisture assimilation studies referenced herein focused primarily on how soil 

moisture prediction is impacted, particularly over the root-zone for which any improvement is 

often assumed to increase the likelihood of improved heat flux predictions.  Mahfouf (2010) notes 

that of the various studies into assimilating near-surface soil moisture, relatively few have 

examined the impact that the resulting root-zone moisture predictions have on atmospheric model 

forecasts of screen-level (2 m above ground) air temperature and relative humidity.  While the 

scope of the work in this thesis is limited to assimilation into a stand-alone LSM, the focus on heat 

flux predictions is key given their influence on air temperature and relative humidity. 

In the context of NWP, Mitchell et al. (2004) note that in contrast to assimilation for atmospheric 

models which has been established since the late 1970s, LSM assimilation is a much newer 

practice.  They attribute some of the earliest examples of real-time assimilation in coupled land-

atmosphere systems as being carried out at the National Centers for Environmental Prediction 

(NCEP) in the USA and the European Centre for Medium Range Weather Forecasts (ECMWF), 

with reference to Kalnay et al. (1996) and Gibson et al. (1997) respectively.  LSM assimilation in 

NWP has typically involved adjusting soil moisture states via nudging or OI, driven by differences 

between observed and modelled screen-level air temperature and humidity (de Rosnay et al., 2014; 

Douville et al., 2000; Mahfouf, 2010).  This approach does not always lead to improved soil 

moisture states (Drusch et al., 2009).  Research has seen progress towards the use of more optimal 

data assimilation techniques such as the KF, motivated by a need to take advantage of the 

increasing availability of different remotely sensed information on the land surface such as soil 

moisture (de Rosnay et al., 2013; Drusch et al., 2009; Mahfouf, 2010). 

Operational assimilation of remotely sensed land surface data (as opposed to only screen-level 

data) for soil state analysis in NWP is rare at present, with UK Met believed to be the only 

institution where it is carried out.  It was implemented there in mid-2010 after it was demonstrated 

that assimilating soil moisture data along with screen-level data, using an existing UK Met nudging 

scheme, lead to improvements in both soil moisture and screen-level forecasts for various regions 
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of the world (Dharssi et al., 2011).  It is noted by de Rosnay et al. (2013) that the use of a simple 

nudging scheme at UK Met might limit the ability to optimally include other land surface 

observation types in the assimilation.  Testing of remotely sensed soil moisture data assimilation 

by de Rosnay et al. (2013) in the ECMWF forecasting system, with the KF land surface 

assimilation scheme that was implemented there in late-2010, showed neutral impacts on soil 

moisture and screen-level forecasts.  They assert that ongoing improvement in the moisture data 

product they used (ASCAT) is expected to result in improved soil moisture analysis.  They also 

mention the longer-term value of the KF scheme is in the ability to include additional land surface 

data products, and that the analysis of other model variables such as soil temperature and those 

related to vegetation and snow cover needs to be investigated. 

The CABLE LSM is a component of the Australian Community Climate and Earth System 

Simulator (ACCESS) which is used for climate prediction and Australia’s NWP (Kowalczyk et 

al., 2013; Puri et al., 2013).  There is currently no operational land data assimilation 

implementation within ACCESS although it is planned as part of ongoing development (Puri et 

al., 2013).  As previously mentioned, the CBM used in this thesis for LSM assimilation 

experiments shares similar water and energy balance formulations with CABLE.  Not only is there 

currently no operational LSM assimilation within ACCESS, there is no known published work 

involving assimilation into CBM/CABLE outside that which is presented in this thesis, or that of 

Pipunic et al. (in press) which focused exclusively on assessing the ability of remotely sensed soil 

moisture assimilation to improve root-zone moisture prediction. 

2.5 CHAPTER SUMMARY 

Based on a survey of the literature, this chapter has provided detailed background information 

relevant to the work carried out to meet the objectives of this thesis as outlined in the introduction 

chapter.  This includes highlighting knowledge gaps within the broader context of LSM data 

assimilation research, which the experiments in following chapters make some contribution 

towards narrowing. 

It is well established in the literature that soil moisture and temperature are key states related to the 

exchange of water and energy between the land surface and atmosphere via LE and H, which in 

turn influence air temperature and humidity in the lower atmosphere.  Varying soil and vegetation 

properties impact the spatio-temporal dynamics of soil moisture and temperature, and hence also 

of LE and H.  There are different ways in which data related to key land surface quantities – such 

as near-surface soil moisture, skin temperature and heat fluxes (LE and H) – can be observed, either 

in-situ or from remote sensing.  Characterising the spatio-temporal variation of such quantities 
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across broad regions (catchments, continents etc.) is best served with remote sensing.  Various 

published studies provide generalised quantitative error estimates for these land surface data types 

which are valuable for data assimilation, and were used to guide observational error for 

experiments in this thesis.  Some of the literature surveyed outlined practically useful techniques 

for quality control and correction of raw data collected in-situ with certain instruments.  These were 

informative for managing some of the in-situ field data collected for this thesis. 

LSMs have evolved over the past few decades towards more physically based representations of 

the land surface – including soil moisture mobility based on Richards’ equation and representation 

of plant CO2 use and photosynthesis as a function of stomatal conductance.  The CBM used for 

this thesis is a physically based LSM with these features, and was the basis for the CABLE model 

which is part of Australia’s climate prediction and NWP system (ACCESS).  Errors in the input 

data and imperfect model structure are typical sources of error in LSM predictions.  While 

assimilation of different land surface data types available from remote sensing has shown potential 

for improving soil state and heat flux predictions across various publications. 

Many of the published LSM assimilation studies have examined the assimilation of soil moisture 

data, with skin temperature assimilation also having been tested in a range of studies.  By contrast, 

research into the assimilation of LE and H data is limited in the literature, and the potential that 

using these data may have for improving predictions of LE and H – which is important for NWP 

(and water management more generally) – remains unclear.  Hence this thesis has sought to 

contribute to a better understanding of the possible merits of assimilating LE and H data, in 

comparison to the use of data types for which a broader body of published research exists. 

LSM data assimilation is clearly recognised as important for state initialisation in NWP and climate 

modelling.  Operationally it has usually relied on observed screen-level atmospheric variables to 

adjust LSM soil states using OI or nudging schemes.  With a growing body of research showing 

the benefits of directly assimilating emerging land surface data products for soil state prediction, 

there is a move towards assimilating such products operationally in NWP systems – UK Met 

implemented the assimilation of remotely sensed soil moisture with its nudging scheme in mid-

2010.  There is also suggestion in the literature of a need to progress towards using more optimal 

LSM data assimilation schemes such as the KF for NWP systems, to better handle the different 

land surface data products becoming available.  The EnKF is therefore a suitable choice to use for 

comparing the assimilation of different data types in this thesis, with its use here based on research 

showing it to be computationally more efficient than the EKF but without the filter performance 

being degraded. 
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In addition to focusing on knowledge gaps surrounding the potential value of assimilating LE and 

H data, this thesis also plays an important role in examining data assimilation with the CBM as the 

results have implications for the CABLE model (which shares similar water and energy balance 

formulations) within ACCESS.  LSM assimilation is planned for ACCESS but is not yet 

implemented, moreover the work presented herein is believed to be the first published work on 

sequential assimilation of land surface related data into the CBM/CABLE model. 

As with many of the published research studies, the experiments here are applied to a stand-alone 

implementation of the CBM, to assess and understand impacts on the model in its own right 

without the added complexity of a coupled atmospheric model.  Also in the literature are many 

examples where assimilation is assessed in simplified/controlled synthetic-twin studies or point-

scale one-dimensional studies.  The value of such studies as a proof-of-concepts is recognised here.  

Hence the sequence of experimental work that is presented – starting with the synthetic study, 

followed by the one-dimensional field data study, and culminating in the remotely sensed data 

assimilation study which by comparison is more complex given the added spatial uncertainty. 
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3 MODEL AND ASSIMILATION IMPLEMENTATION 

All experimental studies in this thesis were performed using the CSIRO Biosphere Model (CBM: 

Wang & Leuning, 1998; Wang et al., 2001, 2007).  As discussed in previous chapters this model 

was the basis for (and shares similar water and energy balance formulations) with the CABLE 

model (Kowalczyk et al., 2006, 2013) which is part of Australia’s NWP and climate simulator 

(ACCESS: Kowalczyk et al., 2013; Puri et al., 2013).  Plans for LSM data assimilation within 

ACCESS (Puri et al., 2013) requires a greater understanding of how data assimilation can be best 

utilised to consistently improve CABLE predictive skill of LE and H feedbacks to the atmosphere 

– starting with its uncoupled performance in the first instance.  Thus the assimilation experiments 

performed with the CBM that are presented here make an important contribution towards 

developing this understanding. 

The EnKF data assimilation algorithm was applied in all experiments where the key technical 

aspect involved generating ensembles of parallel model simulations and of observations in order 

to represent the relative uncertainties of each.  As discussed in chapter 2, this algorithm was chosen 

because it is relatively easy to implement and is economical with the use of computing resources 

compared to other techniques such as the EKF.  This chapter provides details on the CBM and 

EnKF implementation. 

3.1 CSIRO BIOSPHERE MODEL (CBM) 

Scientists at Australia’s Commonwealth Scientific and Industry Research Organisation (CSIRO) 

developed the CBM (Wang & Leuning, 1998, Wang et al., 2001, 2007), which has become the 

Community Atmosphere Biosphere Land Exchange (CABLE) model.  It was designed to quantify 

the vertical exchange of heat, water and CO2 fluxes between the land surface (consisting of bare 

soil, snow and vegetation surfaces) and the atmosphere.  Heat and water fluxes are of primary 

interest in this research and thus details relating to CO2 are not included here.  Much of the model 

details presented in this section are sourced from the CABLE technical report (Kowalczyk et al., 

2006), through personal communication with Dr Ying-Ping Wang (one of the model developers at 

CSIRO Marine and Atmospheric Research), and from working knowledge of the CBM source 

code.  Fig. 3.1 summarises some of the main features of the CBM to provide a general reference 

for descriptions that are given. 
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Figure 3.1: Schematic of CBM showing two-leaf canopy scheme and six layer soil scheme with key 

features relating to the energy and water balance.  
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3.1.1 GENERAL STRUCTURE 

The CBM consists of a detailed canopy scheme with vegetation placed above the ground enabling 

aerodynamic and radiative interaction between the ground and the vegetation (Raupach, 1997).  In 

addition to the canopy scheme there is a snow scheme for representing snow-pack and a soil 

scheme for representing the hydrology of the unsaturated soil zone.  Vegetation roots are placed 

within the soil profile to provide a link between the vegetation and soil moisture content.  Snow 

cover was not a relevant feature of the environments that were modelled in this research and thus 

details on the snow scheme are not presented. 

Vegetation is represented using a two-leaf sub-model (Wang & Leuning, 1998) that differentiates 

between a “big” sunlit and a “big” shaded leaf, where LE and H from the canopy to the atmosphere 

(LEC and HC) are calculated separately for the two leaves as are other related quantities such as 

photosynthesis, stomatal conductance and leaf temperature.  There is a canopy storage term 

representing rainfall interception such that LEC and HC are determined for dry and wet fractions of 

the canopy.  Calculations of LE and H from the soil underneath the canopy (LES and HS) are also 

made, thus the total quantities of LE and H calculated by the CBM are the respective sums of the 

components from the soil and from the canopy. 

The soil scheme consists of six computational layers for calculating the fluxes of water and heat 

transfer.  It is a one-dimensional scheme with no lateral movement or topographic effects 

accounted for.  Darcy’s law describes water flux through soil as a function of unsaturated hydraulic 

conductivity (K) and matric potential (ψ), and together with the relationships of Clapp and 

Hornberger (1978) (Eqs. (2.13) and (2.14)) it is used to form Richard’s equation, which calculates 

soil moisture over time in the CBM.  Calculations of soil moisture for the soil layers includes a 

term for root extraction for evapotranspiration (LEC).  The top soil layer includes representation of 

infiltration which depends on rainfall, runoff and evaporation, while for the bottom layer 

gravitational drainage works to restore soil moisture to its field capacity (θFC).  Both soil moisture 

and soil temperature from the previous model time step, and fluxes from the current time step, are 

used in solving for soil moisture and soil temperature at the current time step. 

A heat conduction equation (combination of Eqs. (2.3) and (2.4)) is used for calculating the vertical 

soil temperature over time.  This incorporates volumetric heat capacity terms for the portions of 

dry soil, soil moisture and ice content, in addition to a thermal conductivity term based on Johansen 

(1975), which is a function of soil moisture and weighted by a normalised thermal conductivity 

term (Kersten number).  At the soil surface, the net heat flux is given by G (Fig. 3.1, Eqs. (2.4) and 

(2.5)) with the lower boundary condition being zero heat flow.  Soil moisture content and soil 

temperature of each of the six soil layers are prognostic state variables, which are initialised via 
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user input at the first model time step and updated at subsequent time steps as a function of the 

previous time step value. 

The general form of the land surface energy balance as represented by Eq. (2.5) is key to 

determining LE and H (with change in canopy heat storage not considered).  In the CBM, the 

portion of total land surface Rn that is available to the vegetation canopy is a function of vegetation 

cover – as quantified by the leaf area index (LAI) parameterisation – which determines the amount 

of LEC and HC.  Hence the LAI will influence the relative proportion of total LE and H coming 

from the canopy to that from the soil by regulating the amount of Rn that is available to each of the 

surfaces. 

Calculations of LE and H can be summarised using the following general form: 

 
Erefsurfa rqqLE         (3.1) 

and 

 
Hrefsurfpa rTTcH   ,      (3.2) 

where refT  and refq  are air temperature ( airT ) and specific humidity ( airq ) at the reference level, 

surfT  and surfq  are the surface (i.e. soil or leaf) values, a  is air density, pc  is the specific heat, 

Hr  is the total resistance for heat and Er  the total resistance for water exchange between the surface 

and a reference level.  The calculation of Er  is the sum of aerodynamic resistance, boundary layer 

resistance and stomatal resistance for water vapour, and Hr  is the sum of aerodynamic resistance 

and boundary layer resistance for heat.  Determining values of surfT  is an important task in the 

CBM heat flux calculations.  For soil fluxes surfT  is represented by the soil temperature of the top-

most soil layer ( 1ST ) which is a prognostic state variable, and for canopy fluxes it is represented 

by a leaf temperature variable ( leafT ), which is determined iteratively assuming thermodynamic 

equilibrium at each model time step after being initialised with meteorological forcing data.  

Specific detail on the sequence of calculating LE and H for the canopy and soil, including their 

relationship with prognostic model state variables, is given in section 3.1.3. 

3.1.2 METEOROLOGICAL FORCING DATA AND PARAMETERS 

The meteorological forcing data inputs for the CBM are: 

 Incoming shortwave radiation; 
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 Incoming longwave radiation; 

 Air temperature; 

 Rainfall 

 Specific humidity; 

 Wind speed; 

 Air pressure; and, 

 Atmospheric CO2 concentration. 

In each modelling experiment, the CO2 concentration was set to a uniform value of 370 ppm as an 

approximation of current atmospheric concentrations, with all other forcing variable values taken 

from measured time series data that were available.  Data sources are summarised in chapter 4 and 

descriptions of the data use are included in the experimental chapters. 

Key physical properties of soil and vegetation that influence the water and heat fluxes between the 

land surface and the atmosphere are represented by model parameters.  Soil parameter values are 

essential for solving Richard’s equation and for calculating heat transfer through the soil profile, 

affecting the moisture content in soil layers that is available for LE, along with the value of 1ST  

required for soil fluxes.  The CBM can only be parameterised with the same set of soil parameters 

for all six soil layers.  This limits the ability to represent depth varying properties that can occur 

with contrasting soil horizons.  Some major impacts from key vegetation parameters include 

determining the amount of Rn that is available to the vegetation canopy, linking available soil 

moisture and transpiration through the root distribution, and regulating transpiration efficiency 

based on properties relating to photosynthesis.  Important vegetation and soil parameters are 

summarised in Tables 3-1 and 3-2 respectively.  The different sources of key parameter data used 

in this research are presented in chapter 4 and the assignment of parameter values for different 

experiments is discussed in the relevant experimental chapters. 
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Table 3-1: Key vegetation parameters in the CBM relevant to LE and H. 

PARAMETER DESCRIPTION UNITS 

LAI (Leaf Area Index) Area of vegetation cover per unit area of bare ground - 

froot Fraction of plant roots in each soil layer - 

canst1 
Maximum amount of water intercepted by the 

canopy 
mm/LAI 

ejmax 
Maximum potential electron transport rate of the top 

leaf 
mol/m2/s 

vcmax Maximum RuBP carboxylation rate of the top leaf mol/m2/s 

Hc Height of the canopy m 

TVJmin Minimum temperature for the start of photosynthesis °C 

TVJmax Maximum temperature for the start of photosynthesis °C 

Taul 
Leaf transmissivity for 3 wavelength bands – visible, 

near infra-red (NIR) and thermal infra-red (TIR) 
- 

Refl 
Leaf reflectance for 3 wavelength bands – visible, 

NIR and TIR 
- 

tauw 
Woody tissue transmissivity for 3 wavelength bands 

– visible, NIR and TIR 
- 

Refw 
Woody tissue reflectance for 3 wavelength bands – 

visible, NIR and TIR 
- 
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Table 3-2: Key soil parameters in the CBM affecting the water balance and heat transfer through the 

soil profile, and hence LE and H. 

PARAMETER DESCRIPTION UNITS 

c3 
Fraction of soil moisture content above field capacity 

in bottom-most layer (L6) which drains 
- 

cs Heat capacity of soil minerals J/kg/C 

ρs Soil density kg/m3 

Ks Hydraulic conductivity at saturation m/s 

Ψaep 
Air entry potential (termed soil suction at saturation 

in CBM parameter file) 
m 

b b parameter from Campbell (1974) - 

θFC Volumetric soil moisture content at field capacity vol/vol 

θsat 
Volumetric soil moisture content at saturation 

(porosity) 
vol/vol 

θWilt Volumetric soil moisture content at wilting point vol/vol 

Refsbare Bare soil reflectance - 

 

 

3.1.3 DETAILS OF FLUX CALCULATIONS 

Parameter and initial state variable values are input into the CBM by the user and other key model 

variables are initialised at the beginning of each model time step.  The calculation of canopy fluxes 

are made prior to soil fluxes, which are both performed within an iterative loop for a stability 

parameter (Fig. 3.2).  The stability parameter is necessary for applying the far field and near field 

theory to estimate aerodynamic resistance between the reference height and the canopy, and 

between the canopy and soil surface (see Raupach et al. 1997).  These aerodynamic resistance 

values from the soil to the canopy (ra0) and from the canopy (ra1) are needed for flux calculations.  

Four iterations are used to determine a final stability parameter value and hence also resistances, 

other flux related variables and of course fluxes themselves.  An iterative approach is used due to 
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a number of the quantities involved being interdependent and therefore needing to be solved 

simultaneously. 

Determining Rnc is done prior to canopy heat fluxes (LEC and HC) and plays a part in their 

calculation.  It is a function of key parameters (including LAI, taul, tauw, refl and refw, see Table 

3-1) and meteorological forcing for the current time step.  Since the true value of Rnc requires 

knowledge of Tleaf which is unknown, isothermal conditions are assumed for Rnc where 

airrefleaf TTT   (from the meteorological forcing data).  Values of LEC and HC are calculated for 

both Lsunlit and Lshaded between the canopy and the reference level within the Tleaf iterative loop (Fig. 

3.2, where for the canopy leafsurf TT  ).  Preceding the Tleaf loop, aerodynamic and vegetation 

boundary layer resistances are defined.  Isothermal Rnc values remain unchanged within each Tleaf 

loop iterations where the following sequence occurs: 

1) airleaf TT   and leaf surface vapour pressure deficit (Dleaf) is set to Dair (from meteorological 

forcing) for the initial iteration; 

2) Either one or both of Tleaf and Dleaf are used in the calculations of photosynthesis and canopy 

conductance values for heat (Gh), radiation (Gr) and water (Gw, which is a function of stomatal 

conductance for water).  The link between soil moisture and stomatal conductance is an indirect 

one tracing back through the photosynthesis calculation to a soil water availability term given by, 

    WiltFCWiltfrootrwater   ,      (3.3) 

where rwater is a fraction representing the total soil moisture available for transpiration across all 

soil layers (denoted by i), given the current values of soil moisture (θi) and the associated parameter 

values (Tables 3-1 and 3-2); 

3) LEC is calculated using a Penman-Monteith combination equation, 

 

  wrh

rhairpanc

C
GGG

GGDcR
LE









,      (3.4) 

which is of the form represented by Eq. (2.21) with   and γ and given by Eqs. (2.18 and 2.20) 

respectively.  Here in Eq. (3.4) Rnc is the isothermal net radiation ( airleaf TT  ) for the radiation 

energy absorbed by the canopy, the vapour pressure deficit is represented by D (described in step 

1)), and conductance terms (Gh, Gr and Gw) are used instead of resistances (i.e. ra and rs); 
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4) Based on the land surface energy balance relationship (Eq. (2.5), excluding the soil heat flux 

term since this is for the canopy), the isothermal Rnc and the value of LEC from Eq. (3.4) are used 

to determine HC with the following, 

   rhhCncC GGGLERH  ;      (3.5) 

5) Using HC from Eq. (3.5), a new value of Tleaf is calculated based on the form of Eq. (3.2) where 

surfleaf TT   and conductance terms are used instead of the resistance rH, 

 
hpaCairleaf GcHTT  ;      (3.6) 

6) With values determined at previous steps in the loop, a new value for Dleaf is calculated; 

7) Thus with new values of Tleaf and Dleaf, the loop repeats from steps 2) through to 6) until the 

difference between the new Tleaf value from step 5) and the one prior to its calculation is less than 

0.1. 

At the end of the above iteration process when the Tleaf difference condition in step 7) has been met, 

the final canopy flux calculations are then performed based on wet and dry canopy portions.  The 

term cansto (Fig. 3.1) represents the canopy water storage resulting from rainfall interception and 

is a function of LAI and canst1 (Table 3-1) – it is used to calculate a wet canopy fraction.  Wet 

canopy fluxes are subsequently determined using similar calculations to Eqs. (3.4) and (3.5) except 

that heat, radiation and water conductance terms for a wet canopy are used instead, and the 

calculations are weighted by the wet canopy fraction.  The dry canopy fraction is multiplied by the 

final LEC and HC values from the Tleaf loop to obtain dry canopy flux values.  Therefore, the total 

calculated canopy fluxes, LEC and HC, for the current model time step are the sums of the wet and 

dry components. 

Calculation of Rns follows the canopy flux calculations, as do calculations for LES and HS (Fig. 3.2) 

which are based on the form of Eqs. (3.1) and (3.2) respectively where the resistance terms in each 

(rE and rH) are both represented here by 10 aa rr   (see Fig. 3.1).  The result from Eq. (3.1) is 

essentially a potential evaporation term and is thus weighted by an available water factor (wetfac) 

for the top soil layer to get LES where 

   WiltFCWiltwetfac   1 .      (3.7) 
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Figure 3.2: Flow diagram summarising the order of major processes involved in calculating heat 

fluxes, skin temperature and model states in the CBM. See Kowalczyk et al. (2006) for more 

comprehensive detail. Refer to Fig. 3.1, and Tables 3-1 and 3-2 for variable name descriptions.  
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Also for LES, the qsurf term is the soil specific humidity at saturation which is a function of the top 

soil layer temperature (ST1).  Whilst for HS, the current time step value of ST1 is used for Tsurf.  

Values for both LES and HS are calculated twice, with the first calculation using the reference level 

values of Tair and qair.  Subsequent to this is a complex formulation from Raupach et al. (1997) 

which is used to determine values for within canopy temperature and specific humidity (Twc and 

qwc).  Thus the second and final calculations of LES and HS for the current time step use these values 

of Twc and qwc for Tref and qref. 

The total skin temperature (Tsk) of the land surface is the sum of the canopy and soil components 

of radiative temperature from the longwave radiation balance which is calculated for each surface.  

For soil, ST1 is the temperature term used in the longwave radiation balance, and for the canopy it 

is a canopy temperature term (TC) which is derived using the final Tleaf value determined from the 

Tleaf iterative process.  The contribution from each component to the total skin temperature value is 

a function of LAI – where a very small LAI value (i.e. minimal vegetation cover) results in a larger 

contribution from the soil and vice-versa as summarised by the following: 

        4
1

44

1 1 CTLAIfSTLAIfTsk  .      (3.8) 

In Eq. (3.8), f(LAI) represents a variable that is a function of LAI and describes the fraction of total 

radiation that can get through to the soil surface. 

In the final steps of the sequence outlined in Fig. 3.2, the soil heat flux G is calculated based on the 

energy balance equation (Eq. 2.5) and using Rns, LES and HS.  Prior to final soil moisture and 

temperature state value updates by the soil scheme, LEC for the current time step is used to 

determine soil moisture loss from vegetation transpiration.  The fractions of vegetation roots 

assigned to each soil layer (froot parameter) are used as weighting factors to divide the total 

transpired water amount between layers.  A comparison is then made to check if the calculated 

transpiration water loss from each layer exceeds the available soil moisture content.  If it does, the 

value for transpired water loss is then reset to the amount of available soil moisture for the 

respective layer(s) where this occurs.  A final update is then made to LEC for the current time step 

by summing all the transpiration water loss amounts determined for each soil layer with roots.  The 

final transpiration water loss amounts are also deducted from the current soil moisture content 

values for each layer.  Final updates to soil moisture and soil temperature state values are then 

made which are carried forward to the beginning of the next model time step. 
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3.1.4 SUMMARY OF KEY CBM CHARACTERISTICS 

The most important feature regarding all heat flux calculations in terms of this research is the 

relationship that the fluxes share with the twelve prognostic model state variables – θ1 to θ6 and 

1ST  to 6ST .  These are the variables updated and re-initialised by the data assimilation and thus 

observations must be able to relate and impact on them, and in turn, they need to impact on the 

modelled heat fluxes in a way that reflects the real world relationships between the states and fluxes 

in order for there to be any potential benefits from performing the assimilation. 

Formulations for LES and HS have the most direct link with the CBM states through wetfac (Eq. 

(3.7)) and the use of ST1 for both fluxes.  Alternatively, the canopy scheme for vegetation fluxes is 

considerably more complex where the strongest link to model states is between soil moisture and 

LEC via the root distribution in the soil layers (e.g. the rwater term, Eq. (3.3)).  There is no direct 

link between soil temperature and the canopy fluxes (only indirectly via the soil moisture and soil 

temperature relationship), with the non-prognostic Tleaf variable (initialised with meteorological 

forcing data and determined iteratively at each time step) representing the surface temperature in 

energy balance calculations for the vegetation canopy.  Similarly for the skin temperature 

calculation, the soil surface contribution is linked directly to the ST1 state variable but the canopy 

contribution is dependent on Tleaf (Eq. (3.8)).  Thus for increasing vegetation cover (i.e. increasing 

LAI) the direct connection between total skin temperature and soil state variables will decrease. 

With some relationships between state variables and heat fluxes in the CBM being more complex 

and/or weaker than others, an additional benefit of this research is identifying any limitations there 

may be to constraining CBM heat flux predictions with certain observed data types via data 

assimilation. 

3.2 ENSEMBLE KALMAN FILTER (EnKF) IMPLEMENTATION 

Chapter 2 covered the general background of data assimilation and Kalman filtering, followed by 

a summary of different assimilation applications to LSMs from the literature.  The specifics of the 

EnKF and its implementation in this research are presented here. 

The general form of the Kalman Filter is summarised by Eqs. (2.25) and (2.26) in Chapter 2.  A 

Monte Carlo approach forms the basis of the EnKF, where an ensemble of randomly perturbed 

model simulations run in parallel for the same time period is used, and the ensemble spread 

represents prediction uncertainty for determining the model error covariance P, as required for 

calculating the Kalman gain K (Eq. (2.26)).  Formulation of the EnKF as used in this research can 

be summarised as follows (Evensen, 1994; Houtekamer & Mitchell, 1998; Walker & Houser, 
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2005).  The background state covariance matrix for determining the model error covariance at 

assimilation times, with f denoting a prediction and k denoting the current time step, is defined as 

1
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where x are individual ensemble members of the state prediction matrix X, and the over-bar 

represents the ensemble mean across all members.  With the EnKF it is the ensemble mean which 

is taken to be the true value of the state.  The number of ensemble members is denoted by m and 

the choice of this number for the experiments is discussed in chapter 5 (proof-of-concepts synthetic 

study).  However, explicit calculations of 
f

kP  are not actually required and the analysis equation 

for state updating (Eq. (2.25)) can be written as 

kk
f
k

a
k bBXX

T ,      (3.10) 

where 

TT
HPB k

f
kk  ,      (3.11) 

and 

)()( 1 f

kkkk

f

kkk ZyRHPHb
T  

.      (3.12) 

In Eq. (3.12), y is the observation Z with an error term as follows 

 kk Zy ,      (3.13) 

where   represents random observational error with zero mean and covariance R.  Estimates of 

error ranges for observed variables were used to define the covariance R – values used in each 

study are presented in respective experimental chapters.  An ensemble of m random perturbations 

were generated within the estimated error ranges and added to the observed data values to produce 

observation ensembles y with covariance R as per Eq. (3.13). 

The first term in brackets of Eq. (3.12) is calculated as 
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where 
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and z are individual ensemble members of the predicted observation (Z
f

k ) and the over-bar denotes 

the ensemble mean.  Hence, it is unnecessary to solve for H and therefore B can be calculated as 
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In summary bk is calculated using Eqs. (3.13), (3.14), (3.15) and R (with predicted observation 

ensemble members z used for Z
f

k  in Eq. (3.13)), and 
T

B k  is calculated using Eq. (3.16).  Then 

substitution of bk and 
T

B k  into Eq. (3.10) updates the ensemble members for each state variable at 

assimilation time steps.  For all experiments in this research the model’s soil moisture and soil 

temperature were updated, so the state prediction matrix X consisted of the CBM state variables θ1 

to θ6 and 1ST  to 6ST  (Fig. 3.1). 

In addition to generating ensembles for observed data (as mentioned on the previous page), the 

EnKF implementation also involved generating ensembles of model inputs by perturbing estimated 

state initial conditions and the time series of each meteorological forcing variable in order to 

represent modelling errors introduced by each.  Using these ensembles of inputs resulted in 

ensembles of CBM predictions for approximating prediction uncertainty.  Inaccurate model 

physics and uncertain parameters also contribute to model error, but these contributions have not 

been specifically treated in this thesis. 

For the year-long simulations in the one-dimensional and remotely sensed data assimilation studies 

(chapters 6 and 7), state variables were also directly perturbed just prior to the state update 

calculations, as a form of covariance inflation to counter the potential for filter divergence (e.g. 

Anderson & Anderson, 1999).  Over extended periods spanning seasonal changes, maintaining 

good approximations of model error with the EnKF can be very challenging, with filter divergence 

a potential symptom of progressively degraded error representation by ensembles (Anderson & 

Anderson, 1999; Li et al., 2009).  This is where a narrowing of predicted ensembles reduces model 

error covariances P to a point where the EnKF is sub-optimal, and poor model predictions could 

potentially persist with negligible corrective impact from observations.  As an example, an 

ensemble spread for soil moisture state error, as a consequence of an ensemble of perturbed rainfall 

forcing, may narrow towards a single moisture value after a prolonged period of drying without 

further rainfall.  To reduce this risk, one approach is to slightly inflate the spread of ensemble 

members about the ensemble mean prior to state updating, using multiplicative or additive inflation 

(Anderson & Anderson, 1999; Anderson, 2007; Li et al., 2009). 
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Accurate ensemble representation of model prediction error as it evolves through time for different 

variables is non-trivial, particularly for complex models such as the CBM.  Investigating model 

error and quantifying it in terms of all of its intricate detail, and due all possible sources, is beyond 

the scope of this research.  Ensemble representations of error here are approximations where the 

focus is on comparing the merits of assimilating different observation types via three separate 

studies.  The treatment of model error for assimilation experiments was the same within each 

respective study, therefore differences in experiment results within each study were due only to the 

observation data assimilated. 

All perturbations used for ensemble generation were from a random number generator, which 

produced random numbers from a Gaussian distribution with zero mean (μ=0) and standard 

deviation of 1 (σ=1).  Uncertainty range estimates for the data being perturbed (e.g. initial state 

variables) were used for multiplying with the generated random numbers, and the resulting 

perturbations added to the data values – resulting in an approximate Gaussian ensemble spread 

representative of the data error (with the original data value the ensemble mean). 

The approach of Turner et al. (2008) was used as a guide for creating ensembles of time series 

meteorological forcing data.  It involves prescription of two types of error for creating ensemble 

members, with i) separate random perturbations generated at each model time step in the 

experiment period and added to the data value (time dependent random measurement error), and 

ii) a single random perturbation generated once and applied at each time step in the period (offset 

or spatial representative error from using point scale forcing data).  Using notation from Turner et 

al. (2008), where for a measured forcing variable value o
kh  at time step k, the value of the jth 

ensemble member is determined as 

jj
k

o
k

j
k hh   .      (3.17) 

From Eq. (317) j
k  is the time dependent (with time step k) measurement error for each ensemble 

member j resulting from random perturbations created with a standard deviation σ1.  The term j  

is the offset error term from perturbations generated once for each ensemble member j (note no 

time step index) with a standard deviation σ2.  Hence the overall standard deviation σ of the 

ensemble spread about the ensemble mean μ for the time series data is approximately the value for 

σ2 (given it represents the offset of members from μ). 

The standard deviations (σ1 and σ2) of generated perturbations can vary with time in some cases.  

Their variation is dependent on the forcing variable data type – categorised by Turner et al. (2008) 

as either unrestricted, semi-restricted or restricted – and their values are also defined by Turner et 
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al. (2008) using the parameters   and  , which are constants relating to measurement and offset 

error respectively.  Estimating values for   and   to provide appropriate standard deviations for 

error perturbations is ideally done by comparing multiple sets of observed forcing data, if available, 

from the region that is of interest for modelling (assuming only point scale data sets are available). 

Regarding data type categories, unrestricted variables are described as measured on a scale with 

no maximum or minimum bounds, and errors are considered independent at any point on the 

measurement scale and so perturbations are added directly to each data value.  Perturbation 

standard deviations are represented by 

 1 ,      (3.18) 

and 

 2 .      (3.19) 

Semi-restricted data are described by Turner et al. (2008) as having a lower or upper bounding 

limit and errors are assumed to be proportional to measurements (multiplicative) with perturbations 

added as a percentage of measured values.  Therefore if a particular variable has a minimum bound 

of zero then there is assumed to be no error if the measured value is zero (such as with rainfall) – 

a measurement of zero rainfall may indeed be erroneous in reality (i.e. a detection error) although 

this adds another level of complexity to generating error perturbations that is not dealt with here.  

For measured values o
kh  of a variable that has an upper bound maxh  or a lower bound minh , 

measurement error standard deviation can be represented by 

  o
khh  max1     or      min1 hho

k  ,      (3.20) 

and for the offset 

  khh ˆ
max2      or      min2

ˆ hhk  .      (3.21) 

Restricted data are described by Turner et al. (2008) as measured on a scale with an upper and 

lower bound.  An example is cloud cover fraction where at the end points of the measurement 

domain, the sky is either completely clear or completely covered (low/no uncertainty) and more 

uncertain in the middle.  Turner et al. (2008) note that the perturbations can be generated via a 

variable approach where error is a function of the measurement, and the maximum error is added 

at the mid-point of the measurement domain and reduces linearly to zero at the domain boundaries.  

Or simply with an approach similar to that used with unrestricted data (Eqs. (3.18) and (3.19)) with 

error perturbations treated as independent of measurements, but where values are truncated at the 
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boundaries of the measurement scale to avoid ensemble values occurring outside of realistic value 

bounds. 

For their work, Turner et al. (2008) drew upon multiple sets of point scale forcing data from sites 

scattered around the region where their modelling was focused.  Having a range of data sets 

available should enable better characterisation of offset or spatial representation error for point data 

and is hence valuable for assisting the choice of   and   values.  Turner et al. (2008) describe 

how choosing these parameter values and associating data type categories with variables can be 

guided by analysing scatter plots with: i) the standard error between the values of a variable from 

different neighbouring data sets, plotted against, ii) the average of the values across the data sets.  

Generally, the average standard error from scatterplots for unrestricted data is a reasonable 

estimates for   and   (where the spread of scatter over standard error values can also provide a 

general estimate for  ).  While the slope of the mid-point line through such scatterplots for semi-

restricted data provides an approximation for   and  .  At most there were two complete forcing 

data sets from the region where modelling was focused for the research in this thesis, and the error 

perturbation techniques summarised here from Turner et al. (2008) were drawn upon as a guide. 

For the synthetic study (chapter 5) a single regional forcing data set was used that was available at 

the time of the study.  The ensemble generation process discussed here was loosely followed in 

that work for simplicity.  No complimentary data sets were used to help estimate parameters for 

defining σ1 and σ2, and the semi-restricted data type category was applied for generating ensembles 

for all variables except air temperature where the unrestricted category was applied.  Guiding the 

choice of   and   values were estimates of instrument measurement uncertainty along with 

choices ensuring that offset error would provide a broader ensemble spread than the instrument 

error range.  Two forcing data sets were available from the area where the real data assimilation 

studies (chapters 6 and 7) in this research were focused.  A single set of forcing data was used to 

run the CBM in each study, while the two sets enabled differences between values from each to be 

analysed and assist with defining the overall ensemble spread σ for each variable. 

The covariance inflation applied for experiments in chapters 6 and 7 was additive.  Perturbations 

were added to each a priori soil state ensemble member at assimilation time steps, to slightly 

increase their spread about the ensemble mean.  The value of σ used for these perturbations was 

chosen based on the CBM soil layer.  Specifically, for the top-most soil layer, moisture 

perturbations with σ=0.01 vol/vol and soil temperature perturbations with σ=1°C were added.  For 

subsequent soil layers, these values of σ used for the top-most layer were scaled down, based on 

the fraction of the top-most layer thickness (2.2 cm) to the layer thickness of the respective states 

being perturbed.  For example, the second layer is 5.8 cm thick, therefore the scaling applied to σ 
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used for the top-most soil layer was 2.2/5.8 (=0.38), and for the 15.4 cm thick third layer the scaling 

applied was 2.2/15.4 (=0.14), and so on.  This scaling is an attempt to factor in that for 

deeper/thicker soil layers, random error is likely to be increasingly dampened compared to the 

near-surface. 

3.3 CHAPTER SUMMARY 

This chapter describes key features of the CSIRO Biosphere Model (CBM), the precursor to the 

Community Atmosphere Biosphere Land Exchange (CABLE) model which shares much of the 

same structure for the water and energy balance and is part of Australia’s weather and climate 

simulation system.  Features pertinent to this research are the formulations for latent and sensible 

heat fluxes (LE and H) and skin temperature – each consisting of soil and vegetation canopy 

components – and any relationship they may share with the soil moisture and soil temperature 

prognostic state variables for the six CBM soil layers.  These state variables are the target of data 

assimilation updates with the Ensemble Kalman Filter (EnKF) aimed at improving LE and H 

predictions.  Implementing the Monte-Carlo based EnKF was also described, with ensembles for 

initial state condition and meteorological forcing data uncertainty used to produce estimates of 

uncertainty for model predictions, and with additive perturbation applied to state ensembles as a 

form of covariance inflation in some experiments.  A description of study sites and data sets that 

were used in this research are presented in the next chapter. 
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4 STUDY REGION AND DATA PROVENANCE 

The data used in this research have been measured within, or in the vicinity of, the Kyeamba Creek 

catchment in south eastern Australia.  Kyeamba Creek is a tributary of the Murrumbidgee River, a 

major waterway in the southern portion of the Murray Darling Basin.  Fig. 4.1 provides a contextual 

view of the region containing all of the ground based monitoring locations from where 

experimental data were sourced, set against a back-drop of false colour Landsat imagery.  A close-

up in the lower right of Fig 4.1 shows the location of the Murray Darling Basin within Australia 

and the relative location and scale of the Kyeamba Creek catchment.  The city of Wagga Wagga 

is located ~30 km to the north west of the catchment and is a major urban centre that has a Bureau 

of Meteorology (BoM) weather station (ID 072150) located on its outskirts (Fig. 4.1).  Reference 

to BoM data in this chapter refers to data from that particular station. 

Based on statistics for the Wagga Wagga BoM weather station observations 

(http://www.bom.gov.au/climate/averages/tables/cw_072150.shtml), the annual average rainfall in 

the region for the period 1941-2014 is ~570 mm/year, and annual average minimum and maximum 

air temperatures over a similar period are 9.0°C and 22.1°C respectively.  A Digital Elevation 

Model (DEM) is displayed in Fig. 4.2 to provide an overview of the elevation variation across the 

Kyeamba Creek catchment region. 

 

Figure 4.1: A map of the region where all experimental data originated. South eastern Australia is 

shown in the panel on the bottom right of the main map with the Murray Darling Basin coverage and 

relative location of the Kyeamba Creek catchment (black spot) for reference. 

http://www.bom.gov.au/climate/averages/tables/cw_072150.shtml
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Figure 4.2: Elevation variation across the Kyeamba Creek catchment, with sites relevant to the data 

used in this research also displayed. 

Soil moisture data monitoring sites within the Kyeamba Creek catchment shown in Fig. 4.1 (and 

the other maps of the catchment presented in this chapter) were originally set-up and managed by 

the Department of Infrastructure Engineering (formerly Civil and Environmental Engineering) at 

The University of Melbourne.  Currently they form part of the OzNet monitoring network (Smith 

et al., 2012) which is jointly supported by The University of Melbourne and Monash University in 

Australia. 

A range of in-situ water balance, energy balance and meteorological observations have been made 

across the different sites shown in Figs. 4.1.  They are summarised in the following sections, as are 

the remotely sensed products and sources of parameter data used in the CBM for this research.  

Monitoring station locations shown in the above-referenced figures are relevant to the different 

experimental studies in this thesis.  For the synthetic-twin study (chapter 5) most of the forcing 

used was based on Wagga Wagga BoM station data, along with data from some OzNet stations.  

The one-dimensional field data study (chapter 6) relied mostly on Kyeamba Creek flux station 

data, with some BoM station and OzNet station data used.  While the remotely sensed data study 

(Chapter 7) also relied on flux station site and BoM station data, together with data from all soil 

moisture stations (Figs. 4.1).  The particular OzNet stations relevant to the respective experimental 

studies are specified in following sections. 
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4.1 KYEAMBA CREEK SOIL MOISTURE STATIONS 

Data from nine of the Oznet soil moisture monitoring stations (Smith et al., 2012; 

www.oznet.org.au/kyeambasm.html) were used in this research and are shown with their 

respective Oznet labels in Fig. 4.1.  Measurements of interest made at the stations include rainfall, 

soil moisture and soil temperature.  These particular stations fall within the spatial domain of the 

remotely sensed products (section 4.5) used in the remotely sensed data assimilation study (Chapter 

7) and were thus used for ground validation.  The meteorological forcing dataset used in the 

synthetic-twin study (see section 4.2) includes rainfall from the K2 and K3 stations.  Rainfall data 

from K10 station was used to fill gaps in the rainfall series recorded at the Kyeamba Creek flux 

station (~200 m distant), as used for the one-dimensional field data and remotely sensed data 

studies. 

Data from the nine stations had been previously processed and made available on the Oznet website 

(referenced above) from where they were sourced.  Stations K1 to K5 have been operating since 

2001 and the available data processed to a 30 minute time step, while the newer installations of 

K6, K7, K10 and K11 have been in operation since 2004 with the available data processed to a 20 

minute time step.   

In-situ measurements of soil moisture at all of the stations cover a depth profile down to 90 cm via 

three separate 30 cm long Campbell Scientific water content reflectometer probes installed at 

consecutive depth intervals from the surface.  This is illustrated in Fig. 4.3 taken from the Oznet 

website – CS615 probes (Campbell Scientific Inc., 1996) were used at the older monitoring sites 

and CS616 probes (Campbell Scientific Inc., 2002) at the newer ones.  Surface soil moisture has 

also been measured over the 0-8 cm depth range at the older monitoring stations (with a CS615 

probe inserted at a small angle from the surface), and over the 0-5 cm range at the newer stations 

with a Hydraprobe sensor (Vitel Inc., 1994).  The soil temperature measurements at the older 

stations (Fig. 4.3) cover depths of 4 cm, 15 cm, 45 cm and 75 cm, while at the newer stations they 

are made for 2.5 cm and 15 cm. 

Periodic soil moisture measurements were also made at the stations using Time Domain 

Reflectometer (TDR) probes (Trase system, Soil Moisture Equipment Corp., 1996), along with 

gravimetrically determined soil moisture, to assist with calibrating Campbell Scientific probe and 

Hydraprobe sensor data.  Calibration of the CS615 and CS616 probe data was based on the work 

of Western and Seyfried (2005) and Yeoh et al. (2008) respectively, and Hydraprobe calibrations 

were based on the work of Merlin et al. (2007). 

 

http://www.oznet.org.au/kyeambasm.html
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Figure 4.3: A schematic of the above and below ground monitoring at the older soil moisture stations 

(K1 to K5). For newer stations (K6, K7, K10 and K11), Hydraprobe sensors (0-5 cm) were used for the 

near-surface moisture and CS616 probes for the three deeper moisture. 

4.2 KYEAMBA CREEK REGIONAL FORCING DATA 

A 30 minute time scale data set compiled from meteorological observations relevant to the 

Kyeamba Creek catchment region has been produced by The University of Melbourne for the years 

2000-2007, with details described by Siriwardena et al. (2003).  It was aimed at providing a ready-

made meteorologic forcing dataset for conducting LSM experiments applied around the catchment 

and has been utilised for modelling in the synthetic-twin data study.  The variables making up the 

dataset are: 

 Incoming shortwave radiation; 

 Incoming longwave radiation; 

 Rainfall; 

 Air temperature; 

 Wind speed; and, 

 Specific humidity. 
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Data for each of these variables except rainfall are based on Wagga Wagga BoM weather station 

observations.  The rainfall data is taken from the K2 soil moisture monitoring station (Fig. 4.1) – 

in the synthetic study the K2 rainfall was replaced by the rainfall data series from K3 as part of 

producing a “degraded” model input (chapter 5). 

This Kyeamba Creek forcing data set was also used to help estimate representative uncertainty for 

Kyeamba Creek flux station site meteorological data used in the one-dimensional and remotely 

sensed data studies.  Estimates of forcing data uncertainty ranges for implementing the EnKF in 

each experimental study are presented in the respective experimental chapters. 

4.3 KYEAMBA CREEK FLUX STATION SITE 

Elevation at the site (147.56°E, -35.39°S) is approximately 230m above sea level.  The site is on 

the alluvial flats of the creek valley (Fig. 4.2), approximately 30 km south east of the Wagga Wagga 

BoM weather station and only about 200 m distance from the K10 soil moisture station in a non-

irrigated grass pasture area – with cleared farmland representative of most the creek catchment 

(Fig. 4.1).  Heat fluxes, meteorological forcing, soil moisture and soil temperature were measured 

at various rates and were all processed to a 30 minute time step. 

These data sets were collected primarily for this research, to facilitate modelling experiments for 

the one-dimensional study and also for use in the remotely sensed data assimilation study.  

Therefore, considerable effort was spent for a period spanning >1 year to set-up and manage an 

eddy covariance system for heat flux measurements, along with instrumentation for the other above 

and below ground data listed in the previous paragraph.  Unlike the readily-available data sets 

related to the other stations, some of the data collected from this site required processing, quality 

checking and calibration before use in the experiments. 

4.3.1 SUB-SURFACE MONITORING 

Soil moisture related data were recorded once per a 30 minutes at this site over four depths – 0-8 

cm, 0-30 cm, 30-60 cm and 60-90 cm – using CS615 probes in an identical set-up as with the soil 

monitoring stations illustrated in Fig. 4.3.  The actual data recorded were period measurements of 

the probe waveguide signals in ms (related to moisture content of surrounding soil via the dielectric 

constant).  Soil temperature was measured at six depths at the site – 2 cm, 5 cm, 10 cm, 20 cm, 50 

cm and 100 cm – using UNIDATA 6507A temperature thermistor probes (Unidata Australia, 

1997).  Two HFT3 heat flux plates (Campbell Scientific Inc., 2004) were also installed at 8 cm 

from the surface to measure ground heat flux (G), accompanied by temperature thermocouple 

probes installed above them at 6 cm and 2 cm from the surface. 
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To facilitate calibration and conversion of period measured CS615 probe data to a volumetric 

moisture content value, TDR soil moisture measurements coinciding with the depths of the 

installed CS615 probes were also made throughout the year for wet and dry conditions, as were 

gravimetric measurements using collected soil samples.  Literature on field based studies presented 

in chapter 2 (section 2.2.1) indicated that TDR systems are generally more accurate than the CS615 

probes.  For the TDR data at this site the system was set to directly collect volumetric moisture 

content values (i.e. using the standard installed calibration equation; Topp et al., 1980).  The 

gravimetric method used to determine volumetric moisture for soil samples is based on mass 

differences between a soil sample of known volume just after collection and after being oven dried 

at 105°C for >24 hours. 

The first part of the calibration process involved correcting the raw CS615 moisture probe period 

data for temperature effects (using site measured soil temperature data) as outlined by Western and 

Seyfried (2005), to produce period measurements relative to a temperature of 25°C.  Temperature 

corrected period data were then plotted against the available independent moisture measurements 

for the times that they coincide, to establish the linear relationships for conversion to volumetric 

moisture content values as shown in Fig. 4.4.  After rearranging the equations for these fitted linear 

relationships to solve for x (soil moisture content), they were then applied to the full 30 minute 

series of temperature corrected period measurements (y) to produce moisture data series used in 

some of the experiments (Fig.4.5). 

 

Figure 4.4: Calibration of CS615 soil moisture probe data from the Kyeamba Creek flux station site. 

Shown are the relationships for calculating volumetric soil moisture content (x) from temperature 

corrected soil moisture probe period measurements (y). 
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Figure 4.5: Soil moisture content data series for 2005 from CS615 probe period measurements at 

Kyeamba Creek flux station site, calculated using calibration relationships shown in Fig. 4.4. 

With only twenty-one independent moisture measurements (from the TDR and gravimetric 

methods combined) across all four probe depths, there is no additional data independent of those 

used for calibration with which to verify the calculated CS615 moisture series plotted in Fig. 4.5.  

The Root Mean Squared Difference (RMSD) between the twenty-one moisture measurements 

used for calibration and the calculated values from CS615 data across all depths is 0.017 vol/vol.  

The data series in Fig. 4.5 show the seasonal soil moisture dynamics for different depth ranges at 

the flux station site, with the increased austral winter/spring moisture storage from ~June-

November.  A number of spikes in the series for the 60-90 cm depth range is a notable feature and 

they have been interpreted as indicative of elevated groundwater for brief periods, though no other 

data are available to directly verify this.  While the moisture data for this depth is not used for any 

quantitative modelling or analysis, it provides additional information to consider when interpreting 

results for this site in some of the real data experiments. 

Measured values for G at 8 cm depth were post processed in order to produce values representative 

of the fluxes at the soil surface.  This involved using the temperature thermocouple data measured 

over the top 8 cm above the heat flux plates (i.e. each record is the temperature difference over 

preceding previous 30 minute period), together with the calibrated 0-8 cm soil moisture data series, 

to calculate heat storage in the top 8 cm of soil with which to correct measured G data to represent 

fluxes at the surface.  Details of this procedure are presented in the instrument manual for the HFT-

3 heat flux plates (Campbell Scientific Inc., 2004). 
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4.3.2 ABOVE GROUND MONITORING 

The 3D eddy covariance instrumentation, which consisted of a CSAT 3D sonic anemometer 

(Campbell Scientific Inc., 2003) and Licor 7500 open path gas analyser (LI-COR, Inc., 2003), was 

elevated 3 m above the ground for an approximate fetch of 300 m with raw data measured at 10 

Hz and processed online by the data logger to 30 minute block averaged LE and H values.  Visits 

to the site were limited to approximately once per month because of proximity to Melbourne and 

funding, hence the 10 Hz flux data were not stored. 

A CNR1 four-way net radiometer (Kipp and Zonen, 2003) measured the incoming and outgoing 

components of short and longwave radiation from which the total net radiation (RN) at the surface 

was calculated.  Other meteorological data recorded were rainfall using a tipping bucket rain gauge 

(0.2 mm resolution with 30 minute totals calculated), screen-level (2 m above ground) air 

temperature and relative humidity with a Vaisala HMP45C probe and radiation shield (Campbell 

Scientific Inc., 2004), atmospheric pressure with a CS105 barometric pressure sensor (Campbell 

Scientific Inc., 2004), and wind speed and direction using a 03001-5 R.M. Young cup and vane 

wind sentry (Campbell Scientific Inc., 1996) mounted on the station mast at just above 3m height.  

All of these meteorological data, except for rainfall were recorded at a rate of 0.5 Hz and aggregated 

to the 30 minute as with the rest of the site data.  These data were the main source of meteorological 

forcing in both one-dimensional and remotely sensed data studies (chapters 6 and 7). 

In filtering of the 30 minute eddy covariance data, obvious spurious data points from visual 

inspection were removed as a first pass, including extreme valued records of >1,000 Wm-2.  While 

records for conditions that can affect data quality were also removed.  This includes periods of 

rainfall, as water beading on the open path CO2/H2O gas analyser lens will interfere with 

measurements.  Also periods where the overall wind direction (averaged over the 30 minute block) 

was through the instrument mounting infrastructure – the eddy covariance system was oriented to 

point directly south (180°), therefore the filtered records coincided with wind from between 60° 

and 300° relative to north.  With a maximum possible 18,000 covariance samples used to calculate 

the 30 minute flux averages (with 10 Hz sampling), diagnostic data for the number of covariance 

samples in each 30 minute flux average were also used to remove any record calculated with less 

than 15,000 samples (83%).  Advection and a lack of turbulence at night time may compromise 

eddy covariance data quality, hence only records from between 6:00 am and 6:00 pm were used. 

The energy balance of LE+H (after filtering) versus RN-G indicates 82% closure (Fig. 4.6).  Based 

on the work of Twine et al. (2000), 100% closure was forced by adjusting LE and H data (while 

maintaining a constant Bowen Ration (Eq. (2.6)) to match LE+H to RN-G.  This resulted in the 

filtered and energy balance corrected LE and H data used for experiments in this research. 
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Figure 4.6: Scatterplot showing the energy balance gap for eddy covariance measured LE and H (post 

filtering) against measured RN and G data from the Kyeamba Creek flux station site. Prior to forcing 

closure based on Twine et al. (2000). 

4.4 ASSIMILATED REMOTELY SENSED PRODUCTS 

The remotely sensed data assimilation study (Chapter 7) focussed on a portion of the Kyeamba 

Creek catchment corresponding to a single 25 km pixel of soil moisture data derived from AMSR-

E passive microwave brightness temperature observations (Figure 4.4).  The particular AMSR-E 

soil moisture product used in the study was derived using the Land Parameter Retrieval Model 

(LPRM) developed by Vrije Universiteit Amsterdam (VUA) in collaboration with NASA (Owe et 

al., 2008).  The data are on a once daily timescale corresponding to the AQUA satellite descending 

overpass of approximately 2:00 am local time, and they represent a spatially averaged value 

sampled to a 25 km pixel for the top ~1-2 cm of soil.  Based on examination of this product against 

in-situ moisture data across a broader region of south east Australia (incorporating Kyeamba 

Creek) by Draper et al. (2009a) and Su (2013), data from the descending satellite over pass was 

found to be of better quality than from the ascending overpass (~2:00 pm local time), hence the 

choice of the 2:00 am data for use in this research. 

The remotely sensed instantaneous LE and H data products used for the work in chapter 7 were 

derived via the SEBS algorithm (Su, 2002) and provided by Prof. Eric Wood and Dr. Raghuveer 

Vinukollu (Princeton University, pers. comm., October 2008).  They are based on a range of 

remotely sensed meteorological and energy balance observations including skin temperature from 

the AQUA platform (Dr. Raghuveer Vinukollu, Princeton University, pers. comm., October 2008).  
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Details of SEBS instantaneous heat flux retrieval by Prof. Eric Wood’s research group at Princeton 

University, who provided the data, are given by Vinukollu et al. (2011).  The temporal repeat of 

the products that were provided is once-daily for 2:00 pm local time.  Figure 4.7 illustrates the 5 

km spatial resolution of the provided data covering the study domain (the single AMSR-E pixel 

extent) – note the relative uniformity of the agricultural/grassland environment over this domain 

highlighted by the Landsat image. 

 

Figure 4.7: Extent of the remotely sensed data study domain marked out by a 25 km AMSR-E soil 

moisture data pixel, with pixels of the finer resolution (5 km) SEBS LE and H coverage. 

4.5 MODEL PARAMETER DATA SOURCES 

Tables 3-1 and 3-2 (Chapter 3) list key vegetation and soil parameters in the CBM.  Parameter data 

used for modelling in each study are described in the experimental chapters, with all parameter 

data used for this thesis drawn upon from a variety of sources.  This included a combination of 

third party data sets that were provided, default global data values from the CBM/CABLE model 

documentation and field estimates from the Kyeamba Creek region.  In the case of the synthetic-

twin study, some of the values were randomly chosen. 

Vegetation parameter values provided in the CABLE user guide (Abramowitz, 2006), for the 

agricultural/C3 grassland classification from Potter et al. (1993) were chosen as representative of 

the Kyeamba Creek region.  While field estimates of the percentage of roots in each CBM soil 
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layer (froot) and average canopy height (hc) were made at the Kyeamba Creek flux station site and 

assumed representative of the entire catchment.  These are: 10%, 40%, 45% and 5% for froot in 

layers 1 through to 4 respectively (refer to Fig. 3.1 for depths); and, 25 cm for hc. 

Two separate data sets were used for Leaf Area Index (LAI) values: 1) An older one from Lu et al. 

(2003) on an approximate 5 km spatial scale used for the synthetic-twin experiments (values from 

within the Kyeamba Creek catchment were used); and, 2) A newer one on an approximate 1 km 

spatial scale based on the fraction of Photosynthetically Active Radiation (fPAR) data product 

from Donohue et al. (2008) that was used in the one-dimensional and remotely sensed data studies.  

The older data set 1) consists of monthly averaged values determined using visible and near infra-

red reflectance data from the Advanced Very High Resolution Radar (AVHRR) for the period 

1981-1994.  Data were averaged over this entire period for each month resulting in single monthly 

LAI values.  In the newer data set 2), LAI is based on fPAR derived from AVHRR red and near 

infra-red reflectance data and the values are unique monthly averages per year (as opposed to single 

monthly values averaged over several years).  Randomly chosen examples of LAI from the two 

data sets are shown in Fig. 4.8 highlighting the different spatial scales between them. 

Key soil parameter values used as representative of the Kyeamba Creek region were determined 

from a combination of soil samples taken at the flux station site and soil property interpretations 

(McKenzie et al., 2000, 2003) relating to a 1:100,000 scale soil landscape map of the region (Chen 

& McKane, 1997) – the mapped soil units are displayed in Fig. 4.9.  Available data for these soil 

units based on interpretations from McKenzie et al. (2003) consists of A and B horizon values for 

wilting point (θWilt: moisture content at 15 bar), field capacity (θFC: moisture content at 0.1 bar), 

saturated hydraulic conductivity (Ks) and bulk density (ρs).  These are all inputs to the CBM, and 

they were also used to derive values for the other following CBM soil parameters for which there 

was no data: moisture content at saturation (θsat), air entry potential (ψaep) (also termed soil suction 

at saturation) and the Campbell b parameter.  These properties and their relationships with soil 

moisture mobility are described in section 2.1.2 of chapter 2. 

From the available soil property data listed above, θsat was determined as 

𝜃𝑠𝑎𝑡 = [1 − (𝜌𝑠 2650⁄ )],      (4.1) 

where the value 2,650 kg/m3 is a standard value for density of mineral solids.  Values for ψaep and 

b were then determined from θWilt, θFC and θsat using Eq. (2.13) from Campbell (1974) which relates 

ψaep and b with the fraction of moisture content to solve for the pressure head (ψ).  Thus given the 

value of ψ is 150 m for θWilt and 1 m for θFC (and θsat is determined), these two known values for ψ 

and the corresponding two known soil moisture values (θ) of θWilt and θFC were used to solve for 

both ψaep and b simultaneously with Eq. (2.13). 
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Figure 4.8: 1) Example of Older LAI data at 5 km resolution from Lu et al. (2001) used in the synthetic-

twin study; and, 2) Example of a newer 1 km LAI dataset based on fPAR data from Donohue et al. 

(2008), used in the one-dimensional field data and remotely sensed data assimilation studies. 
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Figure 4.9: Map of different soil units in the Kyeamba Creek region (Chen & McKane, 1997), each 

associated with interpreted parameter values for both A and B soil horizons (McKenzie et al., 2003). 

Comparing Figs. 4.7 and 4.9, the spatial domain for the remotely sensed data study (chapter 7) is 

not completely covered by the 1:100,000 scale mapped soil units (with associated model parameter 

data) for the Kyeamba Creek catchment.  The missing coverage is mostly in the north eastern 

region of the remotely sensed data study domain.  Therefore soil parameter data from McKenzie 

et al. (2000), which are associated with broader scale mapped soil units from the Atlas of Australian 

Soils (Northcote et al., 1960-1968) and also soil type interpretation from Northcote (1979), was 

used to supplement the missing coverage for this particular study. 

4.6 DATA PROVENANCE SUMMARY 

The Kyeamba Creek region, including the Wagga Wagga BoM station 072150, is the geographic 

focus for this research and hence the origin of all field data that were used.  Where the LE and H, 

soil moisture and temperature, and meteorological data from the different monitoring sites 

described, in addition to remotely sensed products and parameter data sets which were sourced for 

the region, were the basis for the data assimilation experiments presented throughout this thesis.  

The Kyeamba Creek flux station site with the eddy covariance system and associated monitoring 

was the only site set-up and managed especially for this thesis research, which included quality 

control and data processing work.  All of the other data used were sourced and used “as is”.  
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Specific details on the use of the different data sets for experiments are included in the following 

three chapters. 
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5 SYNTHETIC DATA ASSIMILATION 

 

This chapter has been published as: 

Pipunic, R. C., Walker, J. P., & Western, A. W. (2008). Assimilation of remotely sensed data for 

improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sensing 

of Environment, 112, 1295–1305 (data assimilation special issue). 

 

The numbering of sections, figures and tables in the original publication have been altered for this 

chapter, to be consistent with the thesis chapter numbering.  Also the references have been 

incorporated into the full list of references at the end of this thesis. 
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5.1 ABSTRACT 

Predicted latent and sensible heat fluxes from Land Surface Models (LSMs) are important lower 

boundary conditions for numerical weather prediction.  While assimilation of remotely sensed 

surface soil moisture is a proven approach for improving root-zone soil moisture, and presumably 

latent (LE) and sensible (H) heat flux predictions from LSMs, limitations in model physics and 

over-parameterisation mean that physically realistic soil moisture in LSMs will not necessarily 

achieve optimal heat flux predictions.  Moreover, the potential for improved LE and H predictions 

from the assimilation of LE and H observations has received little attention by the scientific 

community, and is tested here with synthetic twin experiments.  A one-dimensional single column 

LSM was used in 3-month long experiments, with observations of LE, H, surface soil moisture and 

skin temperature (from which LE and H are typically derived) sampled from truth model run 

outputs generated with realistic data inputs.  Typical measurement errors were prescribed and 

observation datasets separately assimilated into a degraded model run using an Ensemble Kalman 

Filter (EnKF) algorithm, over temporal scales representative of available remotely sensed data.  

Root Mean Squared Error (RMSE) between assimilation and truth model outputs across the 

experiment period were examined to evaluate LE, H, and root-zone soil moisture and temperature 

retrieval.  Compared to surface soil moisture assimilation as will be available from SMOS (every 

3 days), assimilation of LE and/or H using a best case MODIS scenario (twice daily) achieved 

overall better predictions for LE and comparable H predictions, while achieving poorer soil 

moisture predictions.  Twice daily skin temperature assimilation achieved comparable heat flux 

predictions to LE and/or H assimilation.  Fortnightly (Landsat) assimilations of LE, H and skin 

temperature performed worse than 3-day moisture assimilation.  While the different spatial 

resolutions of these remote sensing data have been ignored, the potential for LE and H assimilation 

to improve model predicted LE and H is clearly demonstrated. 

5.2 INTRODUCTION 

The land surface provides a continuous feedback of latent (LE) and sensible (H) heat flux to the 

atmosphere, which drives our weather and climate.  Hence the accuracy of heat flux outputs from 

land surface models (LSMs) plays an important role in the accuracy of weather and climate 

forecasts from coupled atmospheric prediction models (Pitman, 2003).  LE and H result from the 

partitioning of available net radiation energy at the land surface, and this feedback is related to a 

combination of soil moisture content, soil temperature, various soil physical properties, vegetation 

cover, and physical and biological properties relating to particular vegetation types.  LSMs are an 

attempt to relate these factors in a mathematical framework, together with meteorological 

variables, for predicting water evaporation from soil and/or its transpiration through vegetation 
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(LE) and conductance of heat (H) to the atmosphere on a continuous time scale.  The CSIRO 

Biosphere Model (CBM) is one such model (Wang et al., 2001) and was used for undertaking the 

experiments in this study. 

Models such as CBM are limited in that they represent highly variable and complex physical 

systems with simplified and/or empirically derived mathematical relationships.  Another 

shortcoming of LSMs is that they are often over-parameterised – there is not enough data on model 

soil and vegetation parameters to accurately represent the highly variable temporal and spatial 

variation of these quantities (Crosson et al., 2002; Franks & Beven, 1999; Yates et al., 2003).  

While field measurements can assist in parameterising models at the point scale with considerable 

effort (Mertens et al., 2005), accurate parameterisation becomes increasingly difficult when 

modelling across spatial regions.  Model predictions are therefore inherently uncertain, with 

prediction uncertainty typically increasing through time.  Data assimilation is one technique 

commonly used to correct LSM predictions (e.g. Crosson et al., 2002).  This is where observed 

quantities of a particular variable with known uncertainty are used to adjust predicted model state 

variables such as soil moisture and temperature, and hence other related quantities such as LE and 

H at the observation time (Walker & Houser, 2001).  The data assimilation process compares the 

uncertainty in the observation with that in the model prediction to determine the correction 

required; the data assimilation technique applied in this research is the Ensemble Kalman Filter 

(EnKF) algorithm (Evensen, 1994). 

Many examples exist in literature where data assimilation has been used to improve LSM 

predictions with efforts mainly focussing on improving soil moisture prediction.  An early example 

by Entekhabi et al. (1994) demonstrates the ability to retrieve the true soil moisture profile of a 

model from an initial poor guess by assimilating remotely sensed passive microwave and thermal 

infrared data.  The study uses a simplified soil scheme and is a synthetic experiment primarily 

aimed at testing the assimilation algorithm.  Walker and Houser (2001) present a synthetic study 

on surface soil moisture assimilation motivated by the need to improve soil moisture initialisation 

for climatological and hydrological predictions.  Synthetically generated surface soil moisture 

observations were assimilated into a catchment based LSM with degraded initial moisture values.  

Observations were assimilated every 3 days to replicate the temporal scale of surface soil moisture 

data that would be available from satellite sensors.  It is shown that the assimilation could retrieve 

the true soil moisture content for the entire soil profile.  To augment past synthetic studies, Crow 

and Wood (2003) mention the need to further test assimilation applications using real data to better 

understand the challenges of data assimilation in an operational context.  In their study, airborne 

measurements of 1.4GHz surface brightness temperature (equivalent to the data that will be 

available from the SMOS satellite sensor) were assimilated into a LSM to correct soil moisture 
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predictions.  Surface state and flux predictions from assimilation outputs were found to be more 

accurate than predictions from open loop modelling. 

Some early studies (Bouttier et al., 1993; Mahfouf, 1991) have shown that assimilating screen level 

(2 m above ground) air temperature and relative humidity observations can correct soil moisture 

for improved numerical weather prediction.  Seuffert et al. (2003) assimilated a combination of 

synthetic 1.4GHz brightness temperature observations together with screen level air temperature 

and relative humidity measurements to test the potential for improving soil moisture.  Assimilation 

of all of these variables was shown to result in the greatest improvement in soil moisture and heat 

flux predictions compared to assimilating the screen level variables or brightness temperature data 

alone.  McNider et al. (1994) showed using two experiments that assimilation of surface skin 

temperature had a positive impact on model predictions.  A one-dimensional experiment was 

conducted with field measured thermal infrared data from a downward-looking radiometer, and a 

spatial experiment was performed using GOES satellite thermal infrared observations.  A more 

recent example by Margulis and Entekhabi (2003) examined the assimilation of skin temperature 

together with screen level air temperature and relative humidity into a coupled land surface-

atmospheric boundary layer model with both a synthetic experiment and a one-dimensional 

application using field measured radiometer data.  Again, the results showed that assimilating 

multiple observation types allowed for more robust estimation of model states and fluxes. 

The aim of most of these assimilation experiments was to correct root-zone soil moisture prediction 

and hence indirectly correct the heat flux predictions, but achieving physically correct soil moisture 

estimates through data assimilation does not guarantee improved heat flux prediction feedbacks to 

the atmosphere.  Consequently, this study tests the hypothesis that assimilation of remotely sensed 

LE and H observations themselves could potentially produce better heat flux predictions than 

assimilation of soil moisture observations, or the skin temperature observations from which they 

are derived.  Only one example can be found in literature dealing with LE assimilation 

(Schuurmans et al. 2003), which shows promising results.  However, the results are largely 

unverified and more research is required to determine if and how well assimilation of LE and H 

can improve heat flux, soil moisture and soil temperature predictions from LSMs. 

Different techniques for estimating LE and H from remotely sensed data have been developed and 

widely reported in literature over recent years (i.e. Bastiaanssen et al. 1998; Jiang & Islam, 2001; 

Kustas & Norman, 1996).  The energy balance algorithms used to estimate these quantities, such 

as SEBAL (Bastiaanssen et al., 1998), are based on satellite observations of thermal infrared 

measurements of skin temperature, available from GOES, MODIS and Landsat sensors.  Repeat 

coverage of these satellites over the same geographical location typically occur twice daily at 1km 

resolution for MODIS (morning and afternoon), approximately every fortnight at 30m resolution 
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for Landsat and hourly at 4km resolution for the geostationary GOES satellite.  These temporal 

scales for thermal infrared data are best case scenarios, which are unlikely over long periods due 

to cloud cover.  In contrast, the soon to be launched SMOS satellite will provide data at 50km 

resolution on a three daily temporal scale irrespective of cloud cover (Kerr et al., 2001).  While 

such variations in spatial resolution are potentially important, this paper presents a synthetic one-

dimensional data assimilation study as a proof of concept.  Moreover, this study demonstrates the 

relative impact of LE, H, skin temperature and surface soil moisture assimilation on LSM 

prediction of LE, H, and root-zone soil moisture and temperature, using the typical remote sensing 

repeat times for the respective data types, ignoring potential cloud impacts. 

5.3 DATA ASSIMILATION 

The original Kalman Filter (KF) is an optimal recursive data processing algorithm first presented 

by Kalman (1960), and forms the basis for more modern variations such as the EnKF (Evensen, 

1994) which was applied in this study.  A good introduction to the Kalman filter is presented by 

Maybeck (1979), and Walker and Houser (2005) provide a review of different data assimilation 

techniques relating to hydrology, land surface modelling and remote sensing.  In terms of land 

surface modelling, data assimilation aims to use available observations of model variables with 

known uncertainty to correct model predictions which are not optimal due to a combination of 

uncertain initial conditions, errors in meteorological forcing data, errors in model physics, and poor 

knowledge of model parameters. 

When applying the KF to nonlinear systems, the Extended Kalman Filter (EKF) results.  This 

requires calculation of a tangent linear model which can result in poor state and error forecasts due 

to model non-linearities.  The EnKF overcomes the linearization issue through a Monte Carlo 

approach, where an ensemble of parallel model runs is generated for the same time period.  The 

model error covariance is then determined from the ensemble spread at the assimilation time step 

and the ensemble mean taken as the best estimate of the model state.  Reichle et al. (2002) present 

a comparison between the EKF and EnKF in a synthetic soil moisture assimilation study and found 

the EnKF to be more robust and flexible in covariance modelling, and its performance slightly 

superior. 

The EnKF is one form of a number of direct observer assimilation methods which differs from the 

EKF only in the way in which model covariances are estimated.  It can be summarised as follows: 
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where subscript k refers to the assimilation time step, superscript f refers to the forecast value and 

superscript a refers to an analysis (updated) value.  The model state vector is denoted by X and the 

observation is denoted by Z.  The difference between an observed and model predicted value 

)( f

kk ZZ   is the innovation and is weighted by the Kalman gain (K).  Together they determine 

the correction added to the forecast state vector.  In addition to projecting from Z to X space, K is 

a scaling factor that represents the relative uncertainty of model predicted and actual observations 

based on the covariance matrices.  Therefore 
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where P represents the error covariance of the forecast model states and R is the error covariance 

of the observation.  The matrix H is a nonlinear operator that relates the state vector X to the 

observation Z, with superscript T denoting the matrix transpose.  Therefore, if P is large compared 

to R (i.e. observations more trustworthy than model prediction), then K will approximate to 1 when 

X and Z are the same scalar quantity (i.e. H = 1), and the innovation will be relied upon heavily to 

adjust the forecast states due to the small relative observation error.  Alternatively, where R is large 

compared to P, K will approach 0 and the observation will not be trusted sufficiently leaving the 

final analysis vector 
a

kX  relatively unchanged, since the model’s forecast is understood to be more 

reliable in this case. 

Implementation of the EnKF in this study can be summarised as follows (Evensen, 1994; 

Houtekamer & Mitchell, 1998; Walker & Houser, 2005).  The background state covariance matrix 

for determining the model error covariance at assimilation times is defined as 

1

))((






m

f

k

f

k

f

k

f

kf

k

T
xxxx

P ,      (5.3) 

where x are individual ensemble members of the state forecast matrix X and the over-bar represents 

the ensemble mean across all members.  The number of ensemble members is denoted by m.  

However, explicit calculations of 
f

kP  are not actually required and Eq. (5.1) can be written as 
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A perturbed observation y replaces the actual observation Z in Eq. (5.1) and is defined as 

 kk Zy ,      (5.7) 

with   being a random observation error term that has zero mean and covariance R.  For each 

observation variable, the typical uncertainty for remotely sensed measurements is used to 

determine its error range, representing covariance R.  Prior to assimilation, a random number 

generator, which generates numbers with a normal distribution and zero mean is used to generate 

a single number within this error range which is then added to the observation resulting in a 

perturbed observation value y.  The random number generator is then used again to generate an 

ensemble of observation values about y resulting in an observation ensemble with covariance R 

(more details on observations are given later).  Also 
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where z are individual ensemble members of the perturbed observation and the over-bar denotes 

the ensemble mean. Hence, it is unnecessary to solve for H and therefore B can be calculated as 
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Therefore calculation of bk using Eqs. (5.6), (5.7) and (5.8), and 
T

B k  using Eq. (5.10), then 

substituting into Eq. (5.4) will update each individual ensemble member at assimilation time steps.  

Ensemble generation used the approach developed by Turner et al. (2008), which is discussed 

further on. 

5.4 EXPERIMENT DATA AND METHODOLOGY 

A synthetic experiment was set up as a proof of concept for the assimilation of remotely sensed LE 

and H, and inter-comparison with the assimilation of skin temperature and surface soil moisture.  

Synthetically derived observations of LE, H (including a joint combination of LE and H), surface  
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Figure 5.1: A comparison between key soil parameter values used in truth and degraded scenarios that 

were derived from an available catchment data set. Truth values are from a point location and degraded 

values are catchment area weighted averages. 

soil moisture and skin temperature were separately assimilated into the CBM forced with data from 

the first three months of 2003 (January 1 to April 1), and the results compared to see which 

approach produced the more accurate prediction of LE, H, root-zone soil moisture and temperature.  

Two model scenarios were used in the experiments – a truth scenario where knowledge of 

meteorological forcing, state initial conditions and parameters is assumed to be perfect, and a 

degraded scenario which used degraded meteorological forcing, initial conditions and parameters.  

Fig. 5.1 shows key soil parameter values used in each scenario.  In addition, saturated hydraulic 

conductivity values of 4.310-6 ms-1 for the truth and 1.110-5 ms-1 for the degraded scenario were 

applied, as were monthly averaged Leaf Area Index LAI values for January, February and March 

(0.30, 0.31 and 0.35 for the truth scenario and 0.33, 0.33 and 0.39 for the degraded scenario).  All 

input data required to run the models was taken from the Kyeamba Creek catchment in South 

Eastern Australia to provide realistic input values.  However, the modelling is not intended to 

represent a particular geographical location. 

5.4.1 THE CSIRO BIOSPHERE MODEL (CBM) 

The CBM is a single column model dealing with the exchange of energy, water and CO2 between 

a vertical profile represented computationally using six soil layers with uniform soil properties, the 

land surface, vegetation and the atmosphere (Wang et al., 2001).  The thicknesses of the soil layers 

from top to bottom are 2.2, 5.8, 15.4, 40.9, 108.5 and 287.2 cm respectively with a total soil column 

thickness of 4.60 m.  Each layer has a value for soil temperature and moisture for calculating 

evaporation, respiration and soil heat flux.  Moisture movement through the layers is governed by 

Richards’ equation, the snow scheme is that of Kowalczyk et al. (1994), and a bulk aerodynamic 

formulation is used to model soil evaporation (Mahfouf & Noilhan, 1991).  Amongst the input 
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(forcing) data required to run the CBM are air temperature, downward short and long wave 

radiation, specific humidity, wind speed, precipitation and barometric pressure. 

Four surface types are represented including bare soil, snow (snow does not occur in this study) 

and a two-leaf canopy model (Wang & Leuning, 1998) which calculates fluxes of LE, H and CO2 

for a ‘sunlit’ and ‘shaded’ leaf canopy.  A formulation for canopy turbulence is also included based 

on theory developed by Raupach (1989).  Some important vegetation parameters in the model 

include LAI, canopy height, canopy water storage capacity per unit LAI, average leaf size, the 

fraction of roots by mass in each soil layer and a number of other parameters related to plant 

photosynthesis.  Vegetation properties for uniform grassland were applied in this study which 

included typical monthly averaged LAI values for grassland in south eastern Australia and a canopy 

height of 20 cm.  Total values of LE and H calculated by the model represent the respective sums 

of LE and H for the soil surface and for the vegetation canopy.  Using LAI values and a radiation 

extinction coefficient, the fraction of radiation transmitted through the vegetation canopy is 

calculated from which LE and H can be calculated for both the soil surface and the canopy. 

5.4.1.1 MODEL INPUT DATA 

Input forcing data used by this study includes a continuous series of half hourly meteorological 

data compiled for the Kyeamba Creek catchment from 2000 to present (Siriwardena et al., 2003).  

It consists of point scale data recorded at the nearest Bureau of Meteorology (BOM) station 

(Wagga Wagga, ~30 km distant) and precipitation data measured at one of the University of 

Melbourne monitoring sites within the Kyeamba Creek catchment.  Given the half hourly temporal 

resolution of meteorological forcing data, the model was run at half hourly time steps for all of the 

experiments.  Soil parameter data have been estimated by Dr. Neil McKenzie (CSIRO Land and 

Water, pers. comm., 2005) based on different soil units across the catchment.  These soil units have 

associated values for field capacity, wilting point, soil bulk density and hydraulic conductivity at 

saturation, all required as inputs to the CBM.  Leaf area index data was sourced from a monthly 

average, 0.05˚ by 0.05˚ spatial resolution publicly available data set derived from remotely sensed 

Advanced Very High Resolution Radiometer visible infrared and near infrared images (Lu et al., 

2001). 

5.4.1.2 TRUTH SCENARIO 

The half hourly Kyeamba Creek meteorological dataset (Siriwardena et al., 2003) was used 

directly in its available form for the truth scenario.  It includes incoming short wave and long wave 

radiation, air temperature, wind speed, and specific humidity for the catchment.  As no data was 

available for atmospheric pressure or CO2 concentration, generic values of 980 mbar and 370 ppm 
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were assigned respectively for the entire time series of the experiment period.  Precipitation data 

used for the truth forcing was sourced from a University of Melbourne monitoring site in the 

Kyeamba Creek catchment.  This location was also used to obtain point estimates of soil and 

vegetation parameter input into the truth model.  Soil moisture content and temperature profiles 

were not available at the same site for the start of the modelling period (January 1, 2003, 00:30 

hours).  Therefore initial moisture and temperature values were estimated for the six CBM layers 

based on University of Melbourne data measured at nearby sites for the same time in other years.  

While arbitrary initial conditions could have been assumed for this synthetic study, these observed 

quantities were used to provide a set of realistic and internally consistent values. 

5.4.1.3 DEGRADED SCENARIO 

This scenario represents the model prediction results anticipated from the use of erroneous and/or 

averaged forcing and parameters which is a likely situation when modelling with real data.  Hence, 

spatial input data was averaged within the Kyeamba Creek catchment boundary, or in the absence 

of spatially distributed data either random perturbations were added (within known uncertainty 

limits) to the data used in the truth scenario or data was taken from an alternative location within 

the catchment. 

Meteorological forcing inputs were generated by adding random perturbations within determined 

error ranges to each meteorological data variable used in the truth scenario.  The error range for 

each variable was determined through personal communications with Dr. John Gorman (March 

7th, 2006) from the BoM National Climate Centre who is knowledgeable on the typical quality of 

BoM data.  Precipitation was taken from an alternate University of Melbourne monitoring location 

in the Kyeamba Creek catchment to that used for the truth scenario.  Table 5-1 summarises the 

error ranges within which the BoM forcing data variables and the University of Melbourne 

precipitation data were perturbed including the average daily standard error between truth and 

degraded scenario variables over the 91 day experiment period. 

Area weighted averages of available soil and vegetation parameter data within the Kyeamba Creek 

catchment boundary were calculated for the degraded scenario.  Poor initialisation of model states 

through either lack of data or high uncertainty in the data is a common source of model error which 

can increase model uncertainty over time, even with accurate forcing and parameters.  Initial 

moisture and temperature values were set to extreme values (higher soil moisture content and lower 

temperature) compared to the typical summer time values at the start of the experiment period in 

the truth scenario.  This would test the assimilation in a worst case scenario where no information 

is available to initialise model states.  Fig. 5.2 shows initial soil moisture and temperature value 

differences between the truth and degraded scenarios, as well as the ensemble ranges. 
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Table 5-1: Model forcing variables with associated uncertainty ranges, daily standard errors between 

truth and degraded values, data type category and values for calculating measurement and offset error 

standard deviations used in ensemble generation (from Turner et al., 2008). 

Forcing variable 
Quoted 

uncertainty 

Daily 

Average 

Std Error 

Category 
h 

domain 
ξ χ 

SW Radiation (W m-2)  2% 2.2 Semi-

restricted 

(0, ∞) 0.01 0.04 

LW Radiation (W m-2)  3% 3.1 Semi-

restricted 

(0, ∞) 0.003 0.05 

Precipitation (mm)  0.2 0.2 Semi-

restricted 

(0, ∞) 0.2 0.2 

Air Temp. (˚C)  0.5 0.4 
Unrestricted 

(-∞, ∞) 0.9 0.4 

Wind Speed (m s-1)  1.03 0.4 Semi-

restricted 

(0, ∞) 1.0 0.3 

Sp. Humidity (g kg-1)  5% 1.2 104 Semi-

restricted 

(0, ∞) 0.0025 0.06 

 

 

 

Figure 5.2: Truth and degraded scenario initial conditions for soil moisture and temperature. Dashed 

lines show the minimum and maximum of the ensemble ranges for initial soil moisture and temperature. 

Fig. 5.3 highlights the effect of degraded inputs on the truth model.  This shows corresponding LE 

and H outputs from partial open loop simulations resulting from individually using degraded 

scenario meteorological forcing, initial condition and parameter data into the truth model, with the 

truth and full open loop (degraded) simulation outputs included for comparison.  The degraded 

forcing and parameters each cause slight but noticeable differences in model output compared to 

the truth, with degraded parameters having a greater effect on LE than on H.  In contrast, the 

degraded initial conditions cause the greatest deviation from the truth and account for most of the 

error represented by the full open loop simulation, as they had the greatest uncertainty imposed. 
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Figure 5.3: Outputs of LE and H showing the effect on the truth predictions from 3 separate partial 

open loop simulations – a) Truth simulation with degraded meteorological forcing, b) Truth simulation 

with degraded initial conditions, and c) Truth simulation with degraded parameters. 

5.4.2 SYNTHETIC OBSERVATION DATA 

Truth scenario outputs were sampled at selected time intervals to create synthetic observation data 

sets of LE, H, joint LE and H, surface soil moisture (from the upper-most 2.2cm thick soil layer in 

the CBM) and skin temperature.  The time intervals used to sample these variables correspond with 

the temporal scales of remote sensing platforms that provide information on these quantities (see 

Table 5-2).  Hence, assimilation of each observation set into the degraded model scenario was 

intended to emulate the assimilation of available observations. 

Two separate observation data sets were created for each of LE, H, joint LE and H, and skin 

temperature from the truth scenario outputs; twice daily to emulate MODIS observations and 

fortnightly to emulate observations from Landsat.  The top soil layer moisture content was sampled 

once every three days to generate a surface soil moisture observation data set emulating SMOS  
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Table 5-2: Key characteristics of remotely sensed data types tested in this synthetic study 

Observed quantity 
Quoted 

accuracy 

Corresponding 

satellite/sensor 

Temporal 

resolution 

Spatial 

resolution 

LE (Wm-2)  50 MODIS, Landsat 
Twice daily, 

fortnightly 
1km2, 30m2 

H (Wm-2)  50 MODIS, Landsat 
Twice daily, 

fortnightly 
1km2, 30m2 

Surface soil moisture 

(%vol/vol) 
 4 SMOS Every 3 days 50km2 

Skin temperature (K)  2 MODIS, Landsat 
Twice daily, 

fortnightly 
1km2, 30m2 

 

 

observations.  Uncertainty for remotely sensed estimates of these four variables varies throughout 

the literature with typical estimates being those given in Table 5-2 for skin temperature (Kaleita & 

Kumar, 2000; Sun et al., 2004), LE and H (French et al., 2005), and surface soil moisture (Kerr et 

al., 2001).  These uncertainty ranges were used to prescribe error perturbations to observations and 

generate observation ensembles during the assimilation experiments.  Prior to each assimilation 

step, a random error value was added to observations within the respective uncertainty range for 

each observation to generate an observation ensemble as required by the EnKF. 

5.4.3 MODEL ENSEMBLE GENERATION AND ERRORS 

The EnKF uses an ensemble of model trajectories to represent likely uncertainty in a model 

prediction.  The main sources of error in a model prediction include i) erroneous initial conditions, 

ii) erroneous meteorological forcing data, and iii) limitations in model physics.  The uncertainty in 

model physics and inclusion of biases has not been treated in this study.  Normally distributed 

random numbers with zero mean and unit variance were generated and used to calculate error 

perturbations for initial conditions and meteorological forcing data within desired ranges when 

creating ensembles. 

Soil moisture and temperature state initial condition values across the six CBM layers for the 

degraded scenario were perturbed within a selected range to generate ensembles that reflected the 

uncertainty in initial conditions.  The uncertainty range was chosen such that the true values (i.e. 

truth scenario initial conditions) were captured within the ensemble (Fig. 5.2).  As a result, 

degraded scenario initial soil moisture (27% vol/vol) was perturbed with random error within a 

possible range of  15% vol/vol, which spans most of the range between wilting point (11.9% 
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vol/vol) and porosity (42.3% vol/vol).  The initial soil temperature value (10˚C) was perturbed with 

random values within  15˚C for ensemble generation.  Generating initial condition ensembles 

with a large spread about the chosen value is especially important when assimilating with real data 

if a priori knowledge of initial conditions is poor, as it increases the likelihood of including the true 

value.  The techniques described by Turner et al. (2008) were employed here to assign random 

errors to degraded scenario meteorological forcing data and generate each forcing data ensemble, 

using the parameters specified in Table 5-1. 

5.5 RESULTS AND DISCUSSION 

Statistically, a greater number of ensemble members results in an ensemble mean and covariance 

which is closer to reality.  However, this comes with increased computation burden.  Consequently, 

it is desirable to use the minimum number of ensemble members while still obtaining a satisfactory 

estimate of the ensemble mean and covariance.  Therefore the first assimilation experiment 

undertaken was to determine the minimum number of ensemble members required to achieve 

optimal results from application of the EnKF to the CBM, so as to optimise the computing power 

available for the subsequent assimilation experiments.  An observation data set consisting of once 

daily LE values sampled from the truth scenario output was used for this purpose, with LE 

observation errors assigned as in Table 5-2. 

Assimilation over the experiment period with this set of observations was performed separately 

using five different ensemble sizes – 10, 20, 30, 50 and 100 members.  Root mean square error 

(RMSE) values were calculated between LE outputs from the truth simulation and from 

assimilation runs performed with each ensemble size to determine an optimal number of ensemble 

members.  Fig. 5.4 is a plot of the number of ensemble members against RMSE values between 

LE outputs.  The value corresponding to 0 ensembles is the RMSE value between the truth and full 

open loop outputs for reference.  As the declination in RMSE was minimal for more than 20 

ensembles, an ensemble size of 20 members was chosen as adequate for carrying out the remaining 

assimilation experiments. 

Fig. 5.5 shows a series of plots comparing outputs for the first 6 days of the joint assimilation of 

LE and H twice per day, with that of surface soil moisture once every 3 days..  The plots show the 

initial impacts of the assimilation on four specific CBM outputs – LE, H, root-zone soil moisture 

and root-zone soil temperature.  Root-zone soil moisture and temperature are taken as the average 

values across the top four soil layers in the model, weighted by each layer’s thickness (2.2, 5.8, 

15.4 and 40.9 cm), covering a total depth of 64.3 cm. 
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Figure 5.4: Ensemble size comparison results for the 91 day experiment period, showing RMSE 

between truth and assimilated LE outputs for different number of ensemble members. 

Based on Fig. 5.5, heat flux outputs for the first 6 days of the experiment period showed that the 

twice daily LE and H (proxy for MODIS derived data) assimilation retrieved truth LE and H 

outputs more quickly and accurately than soil moisture assimilation every 3 days (SMOS 

observation proxy).  The assimilation frequency is the most likely reason for this.  However, this 

is an idealised case that assumes cloud-free conditions.  While it is unrealistic to expect twice-daily 

coverage continually, results from the fortnightly assimilation of LE and H (proxy for Landsat 

derived data) show the corresponding loss of skill that could be expected when extended cloud 

cover periods exist.  In contrast to the LE and H results, it is evident in this initial 6 days that soil 

moisture assimilation is better than LE and H assimilation for retrieving the true soil moisture, as 

expected.  A reason for this is that LE and H assimilation has a direct impact on model LE and H, 

which is used to adjust both soil moisture and temperature states accordingly, whereas assimilating 

surface soil moisture has a direct impact on the model soil moisture alone.  Consequently, the soil 

temperature is not impacted directly and thus LE and H predictions are initially degraded by soil 

moisture assimilation. 

A full comparison of all the assimilation results over the entire 91 day experiment period is given 

in Fig. 5.6, which summarises the RMSE between the truth and all of the assimilation outputs for 

LE, H, root-zone soil moisture and temperature.  Of the heat flux and skin temperature assimilation 

experiments, assimilating twice a day (MODIS) achieves better retrieval of truth predictions than 

fortnightly assimilation (Landsat).  This result is due to temporal resolutions; results may be 

different if spatial resolution effects are taken into account.  The spatial resolution differs greatly 

between MODIS and Landsat, which have 1 km and 30 m pixels respectively.  If there is significant 

heterogeneity at scales less than 1 km in the landscape, this would have potentially significant 

impacts on the assimilation accuracy. 
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Figure 5.5: Outputs from joint LE and H and surface soil moisture assimilation, for estimating a) LE, 

b) H, c) root-zone soil moisture, and d) root-zone soil temperature. 

Of the twice daily assimilations, the RMSE values indicate that LE assimilation achieves slightly 

better LE predictions than H assimilation and vice-versa.  The root-zone soil moisture predictions 

for LE assimilation are slightly worse than for H assimilation.  Also evident is the considerably 

lower root-zone soil temperature RMSE from H assimilation, as H is more closely related to soil 

temperature in the model formulation than LE.  On the fortnightly time scale, LE assimilation 

results in better predictions for both LE and H, while also producing better root-zone soil moisture 

predictions but poorer soil temperature than H assimilation.  Comparing the individual LE and H  
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Figure 5.6: RMSE values for the difference between assimilation and truth outputs of LE, H, root-zone 

soil moisture (θ) and root-zone soil temperature (Tsoil) covering the 91 day experiment period from 

assimilating LE, H, surface soil moisture (θ) and skin temperature (Tskin) combinations. *Note that the 

RMSE between Open Loop and truth outputs (not included in the published paper) are: 98.7 Wm-2 for 

LE; 64.1 Wm-2 for H; 0.049 vol/vol for root-zone soil moisture; and, 4.2° C for root-zone soil 

temperature. 

assimilation results for the two time scales, LE assimilation produces the best LE results in both 

cases, and whichever assimilation produces the best soil moisture prediction also achieves the 

better H prediction; H assimilation achieves the best soil temperature in both cases as expected.  

Joint LE and H assimilation twice daily achieves similar improvements to both LE and H 

predictions compared with assimilation of each variable individually on a twice daily time scale.  

On a fortnightly scale, joint LE and H assimilation produces similar improvements in LE and H as 

fortnightly LE assimilation, and greater improvements than fortnightly H assimilation. 

Assimilating surface soil moisture every 3 days resulted in poorer LE predictions than any of the 

twice daily heat flux assimilation experiments but had considerably lower RMSE for root-zone soil 

moisture prediction than any other experiment, reinforcing the qualitative interpretations of the 

initial 6 days of assimilation shown in Fig. 5.5.  Regarding H predictions, soil moisture assimilation 

produced outputs that have ~1-2% vol/vol lower RMSE than from twice per day joint LE and H, 

and LE assimilation, but higher RMSE than from twice per day H assimilation.  When considering 

the spatial resolution of remotely sensed observation data available (~1 km 1 km for LE and H 

from MODIS and ~50 km 50 km for surface soil moisture from SMOS), assimilation of LE 
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and/or H could potentially produce better overall heat flux predictions from a LSM such as the 

CBM for a period that is relatively cloud free, compared with soil moisture assimilation based on 

the results here.  However, more detailed analyses are required for a range of different initial 

conditions, parameter inputs, temporal and spatial resolutions in order to show definitively that 

assimilating a particular variable can consistently produce better LE and H predictions. 

The assimilation of skin temperature twice a day resulted in predicted heat flux accuracies that 

were very similar to those from twice daily heat flux assimilation experiments.  Fortnightly skin 

temperature assimilation achieved similar predictions of LE and H to fortnightly LE and joint LE 

and H assimilation, and better predictions than fortnightly H assimilation.  When compared with 

the heat flux assimilation experiments for corresponding time scales, skin temperature assimilation 

has a strong impact on improving root-zone soil temperature, as shown by the small RMSE values. 

The ability of skin temperature assimilation to match the predictive accuracy of heat fluxes from 

the heat flux assimilation experiments is likely to be related to the strong relationship that skin 

temperature has with the surface net radiation, which directly impacts on the surface energy 

balance and thus strongly influences both LE and H in the model.  An interesting implication of 

these results is the apparent lack of benefit in assimilating LE and H estimates representing 

quantities that would be derived from remotely sensed skin temperature observations as compared 

to direct skin temperature assimilation.  However, these results may be an artefact of how the LE 

and H estimates were derived in this synthetic study, as the same skin temperature – LE/H 

relationships are used in the assimilation as for LE and H observation generation, which will not 

be the case with actual remote sensing data.  Therefore LE and H derived from real remotely sensed 

skin temperature using an algorithm (such as SEBAL) must be assimilated and compared with 

direct skin temperature assimilation to make definitive statements in this regard.  A key question 

is whether an energy balance model such as SEBAL can provide better LE and H estimates than 

an LSM through skin temperature assimilation. 

5.6 CONCLUSIONS 

This paper has compared the assimilation impact of LE, H, skin temperature and surface soil 

moisture observations, representing typically available remotely sensed data and temporal repeat 

(MODIS, Landsat and SMOS), to understand the relative impact on LSM predictions of LE, H, 

root-zone soil moisture and temperature, in a synthetic experiment framework.  Soil moisture 

assimilation is the more traditional approach for improving LSM predictions, and as expected, 

showed the most direct impact on root-zone soil moisture.  While it also improved heat flux 

predictions, the other approaches performed comparatively in terms of H predictions and slightly 
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better in terms of LE predictions, when assimilated on a twice daily time scale, as these variables 

share more direct relationships with LE and H in the model.  Moreover, they were able to have a 

direct impact on soil temperature predictions, which is not possible with direct soil moisture 

assimilation. 

While this study clearly demonstrates that assimilation of LE and/or H has the potential to improve 

LE and H predictions to at least a similar degree as soil moisture assimilation, when tested under 

idealised conditions, the results may be different when cloud impacts and contrasting spatial 

resolutions are taken into consideration.  Moreover, assimilating LE and H on a fortnightly 

temporal scale that is comparable to Landsat, resulted in significantly poorer LE and H predictions 

compared to twice daily LE and H assimilation that would be available from MODIS, and 3 day 

soil moisture assimilation that would be available from SMOS.  This shows that if cloud cover 

reduces the temporal quality of remotely sensed LE and H observations (also of skin temperature), 

it can reduce the predictive performance of LE and H considerably.  Hence, further research is 

required to make definitive conclusions regarding the best variables to assimilate for improved LE 

and H prediction.  This includes assimilating over a range of different time scales, soil moisture 

conditions, soil and vegetation parameters, and using real remotely sensed observations so that the 

different spatial scales and error sources can be considered.  Since LE and/or H, and skin 

temperature assimilation has shown promise for improving predictions of LE and H in these 

experiments, further field-based studies are warranted.  Moreover, assimilation of a combination 

of the available data may provide the best results, complementing the different spatial and temporal 

characteristics with the different land surface variables that are observed. 
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6 ONE-DIMENSIONAL FIELD DATA ASSIMILATON 

 

This chapter has been published as: 

Pipunic, R. C., Walker, J. P., Western, A. W., & Trudinger, C. M. (2013). Assimilation of multiple 

data types for improved heat flux prediction: A one-dimensional field study. Remote Sensing of 

Environment, 136, 315–329. 

 

The numbering of sections, figures and tables in the original publication have been altered for this 

chapter, to be consistent with the thesis chapter numbering.  Also the references have been 

incorporated into the full list of references at the end of this thesis. 
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6.1 ABSTRACT 

Accurate latent (LE) and sensible (H) heat flux partitioning from Land Surface Models (LSMs) is 

important for numerical weather prediction.  Land data assimilation can play a key role in 

improving heat flux prediction by merging information from a range of remotely sensed products 

with LSMs.  This paper demonstrates this potential for an open grassland site in Australia via one-

dimensional experiments spanning a year-long period.  With a focus on how a LSM is impacted, 

in-situ field observations were assimilated.  Data types as available from passive microwave and 

thermal infra-red remote sensors were tested for their impact, with individual and joint assimilation 

of LE and H, near-surface soil moisture, and skin temperature observations – all on time scales 

approximating satellite overpass intervals.  Assessed against independent data from field 

observations, the multi-observation approach of joint near-surface soil moisture and skin 

temperature assimilation made the greatest improvements to LE (expressed as daily 

evapotranspiration; ET), being slightly better than for joint LE and H assimilation.  This result 

questions the value of using LE and H retrievals from thermal imagery within an assimilation 

context.  Individually, skin temperature assimilation was one of the best performers for soil 

temperature estimates but with degraded root-zone soil moisture estimates and minimal ET 

improvements.  Likewise, near-surface soil moisture assimilation produced the greatest root-zone 

soil moisture improvement but with relatively modest ET improvement.  Combined near-surface 

soil moisture and skin temperature assimilation balanced the improvements to both soil moisture 

and temperature states along with strong improvements to ET estimates, highlighting the benefits 

of multi-observation assimilation. 

6.2 INTRODUCTION 

Land Surface Models (LSMs) require careful initialisation in order to achieve accurate latent (LE) 

and sensible (H) heat flux prediction.  Relative humidity and temperature in the lower atmosphere 

are influenced by LE and H from the land surface (Denman et al., 2007), and hence LSM state 

initialisation impacts Numerical Weather Prediction (NWP) model skill (Beljaars et al., 1996; Case 

et al., 2008; Chen et al., 2001, 2007; Koster et al., 2004).  Due to spatial and temporal land surface 

heterogeneity and the resulting complexity of water and energy exchanges between soil, 

vegetation, and the atmosphere, characterising these interactions with LSMs is inherently 

uncertain.  Thus a challenge for NWP is to obtain the most accurate LE and H predictions from 

LSMs whilst maintaining realistic model physics and state estimates.  Global coverage and regular 

temporal repeat of land surface state and flux quantities from current and emerging remote sensing 

data provides an opportunity to meet this challenge through data assimilation, the process whereby 
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such information is combined with model estimates (factoring in uncertainty estimates for each) to 

produce the best predictions possible. 

Remotely sensed information relevant to LSMs includes microwave brightness temperature, which 

is related to soil moisture content (e.g. Gao et al., 2006; Njoku & Entekhabi, 1995) and forms the 

basis of global soil moisture data products such as those derived from Advanced Microwave 

Scanning Radiometer (AMSR-E/AMSR2) data (Imaoka et al., 2010; Owe et al., 2008) or the 

European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) data (Kerr, 2001).  Active 

microwave sensor data such as from the Advanced Scatterometer (ASCAT) are also valuable for 

deriving soil moisture content (Wagner et al., 1999) and have been used for assimilation research 

in an NWP context (e.g. Mahfouf, 2010), including use for testing a newly implemented 

assimilation scheme in an operational system (de Rosnay et al., 2013) and for operational 

forecasting (Dharssi et al., 2011).  Thermal infra-red (TIR) data provide information on skin 

temperature and hence model soil temperature states, which are an important part of the land 

surface energy and water balance (Entekhabi et al., 1994; Viterbo & Beljaars, 1995).  Moreover, 

skin temperature based on data from sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS: e.g. Wan & Li, 1997) and Landsat Thematic Mapper (TM: e.g 

Sobrino et al., 2004) can be combined with other remote sensing data to derive spatially distributed 

LE and H data products using algorithms such as METRIC (Allen, et al., 2007), SEBS (Su, 2002), 

and SEBAL (Bastiaanssen, et al., 1998). 

In many coupled NWP systems soil moisture is treated as a tuning variable and adjusted in non-

physical ways to produce fluxes that are congruent with atmospheric observations (Douville et al., 

2000; Mahfouf, 1991; Rhodin et al., 1999; Seuffert et al., 2004).  With the aim of achieving more 

physically realistic LSM predictions of soil states (i.e. soil moisture and temperature) and heat 

fluxes (i.e. LE and H), a common assumption is that more accurate root-zone soil moisture should 

lead to improved heat fluxes, due to the role of profile soil moisture in regulating the partitioning 

of available energy at the land surface (Reichle et al., 2007).  To this end, and spurred by the 

emergence of remotely sensed soil moisture products, there has been considerable LSM 

assimilation research focusing on soil moisture. 

The potential for improving root-zone soil moisture predictions with near-surface soil moisture 

assimilation (remote sensing products characterise the top few centimetres of soil at most) has been 

demonstrated via synthetic studies (Entekhabi et al., 1994; Kumar et al., 2009; Pipunic et al., 2008; 

Reichle et al., 2008; Walker and Houser, 2004).  Real data on near-surface moisture has been 

assimilated in one-dimensional in-situ field experiments (Li and Islam, 1999; Sabater et al., 2008; 

Walker et al., 2001a).  Experiments using remotely sensed products have also shown some 

potential in terms of improving root-zone soil moisture (Draper et al., 2009b; Reichle & Koster, 
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2005; Reichle et al., 2007), but few have demonstrated impacts on atmospheric prediction 

(Mahfouf, 2010).  Skin temperature assimilation has also been investigated via synthetic 

experiments (e.g. Entekhabi et al., 1994; Pipunic et al., 2008) and real data experiments involving 

both in-situ field and remotely sensed data (Huang et al., 2008; Lakshmi, 2000; McNider et al., 

1994; Meng et al., 2009; Reichle et al., 2010), showing promise for the improvement of model 

states and/or heat fluxes. 

Assimilating combinations of different observation types is expected to provide better overall 

model constraint through direct impact on different variables simultaneously.  Research into such 

strategies is important as the availability of different remotely sensed data increases.  Examples 

include synthetic experiments for combined assimilation of observations relating to remotely 

sensed soil moisture and skin temperature by Entekhabi et al. (1994) and Balsamo et al. (2007) for 

an NWP context (whose study also incorporated screen-level variables).  While Balsamo et al. 

(2007) assessed the contribution to atmospheric screen-level prediction from different 

observations, and highlighted the importance of soil state and land surface heat fluxes to screen-

level prediction, neither study explicitly assessed land surface flux predictions. 

Pan et al. (2008) assimilated both remotely sensed microwave brightness temperature (linked to 

soil moisture) and an LE/ET product.  Assessed against independent model predictions there was 

improvement to soil moisture but not to ET, leading them to conclude that improvement from 

assimilating remotely sensed ET remains challenging.  The strategy of assimilating heat flux 

observations has received minimal attention in literature.  Other examples are limited to 

Schuurmans et al. (2003) who assimilated remotely sensed ET retrievals from the SEBAL 

algorithm (Bastiaanssen et al., 1998), showing impacts on modelled ET that appeared promising 

but with no independent data for validation, and the assimilation of both LE and H in a synthetic 

study by Pipunic et al. (2008) which showed improved flux predictions.  Hain et al. (2012) 

assimilated soil moisture estimates which they retrieved using an ET product derived from TIR 

remote sensing, along with microwave based soil moisture estimates.  However they did not 

explicitly assimilate ET itself and only evaluated assimilation impacts on modelled soil moisture, 

with the soil moisture data derived from the ET product making the best improvements to modelled 

root-zone moisture. 

Current challenges with remotely sensed data assimilation include disparate spatial and temporal 

resolution between data sources available for model input, assimilation and validation, and 

considerable errors in both remotely sensed products and models (Reichle et al., 2007).  From an 

operational NWP perspective, the ultimate aim is to utilise available land surface and screen-level 

meteorological observations for assimilating into a system where the LSM and atmospheric model 

are coupled.  The scope of this study covers only LSM assimilation, as it is important to thoroughly 
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test a LSM offline first and understand the impacts (and limitations) from assimilating different 

data types – starting with point-scale scenarios where observational uncertainties from in-situ 

measurements are better understood, prior to testing in more complex spatial scenarios and coupled 

systems involving greater uncertainty. 

This paper examines the impact from assimilating different data types on soil states and heat fluxes 

for the CSIRO Biosphere Model (CBM, Wang et al., 2001, 2007) – a version of the Community 

Atmosphere Biosphere Land Exchange (CABLE) model (Kowalczyk et al., 2006; Wang et al., 

2011).  The work presented here is an extension to the synthetic twin experiments of Pipunic et al. 

(2008) which demonstrated the potential of assimilating remotely sensed product types other than 

soil moisture to improve heat flux predictions.  That study was based on simulations limited to a 3 

month period forced with data from summer/early-autumn and with relatively uniform/sparse 

vegetation cover (LAI ~0.30-0.40).  While it demonstrated that LE, H and skin temperature 

assimilation could provide comparable and/or better improvement to heat fluxes than near-surface 

soil moisture assimilation alone, it also showed that improved soil moisture predictions from near-

surface soil moisture assimilation did not translate to the best overall LE and H predictions. 

Here we extend on the proof-of-concept study of Pipunic et al. (2008) via year-long experiments 

spanning the full vegetation growth cycle and using real in-situ observations of LE, H, near-surface 

soil moisture and skin temperature.  This includes combinations of observations that represent 

multi-sensor data assimilation approaches not examined in the synthetic study.  While different 

temporal scales are taken into account, including the masking of optical data by cloud, this paper 

does not address the important issue of the contrasting spatial scales between optical and passive 

microwave products. 

6.3 MODELLING AND ASSIMILATION 

The CSIRO Biosphere Model (CBM, Wang et al., 2001, 2007) used in this study was developed 

in Australia by scientists at the Commonwealth Scientific and Industry Research Organisation 

(CSIRO), Marine and Atmospheric Research division.  It was used for the synthetic study by 

Pipunic et al. (2008), and for consistency, was used in the extension of that work presented here.  

As a precursor to the current Community Atmosphere Biosphere Land Exchange (CABLE) model 

(Kowalczyk et al., 2006; Wang et al., 2011), which is planned for use as the LSM for Australia’s 

NWP (Law et al., 2012), the CBM shares similar formulations for the land surface water and 

energy balances.  The data assimilation scheme used for all experiments in this study was the 

Ensemble Kalman Filter (EnKF, Evensen, 1994). 
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A description of the CABLE model by Kowalczyk et al. (2006) provides details on the energy 

balance and soil scheme, which are very similar in the two versions (CBM and CABLE).  The 

CBM soil profile has a total depth of 4.60 m and consists of six layers of fixed thickness which are 

(from the uppermost to the bottom layer): 2.2, 5.8, 15.4, 40.9, 108.5 and 287.2 cm.  Soil moisture 

movement is only in the vertical direction between layers and is calculated based on Richard’s 

equation, with individual prognostic soil moisture and soil temperature state variables being 

associated with each layer.  However, only a single set of soil parameter values can be specified 

for all soil layers, resulting in uniform properties over the whole soil profile.  Linking with the 

vegetation scheme is through the plant root distribution, where the percentage of roots in each soil 

layer can be specified by the user.  Vegetation in the CBM is represented by a detailed two leaf 

canopy model – a “big” sunlit and a “big” shaded leaf (Wang & Leuning, 1998) – which includes 

aerodynamic and radiative interaction between the ground and the vegetation (Raupach et al., 

1997).  Also included in the CBM are calculations for photosynthesis, leaf temperature, and 

stomatal conductance. 

The Leaf Area Index (LAI) parameter plays a key role in determining the relative fraction of canopy 

cover to bare soil.  Net radiation is calculated separately for the vegetation canopy and soil surface, 

as is LE and H where total LE and H outputs are the sum of the canopy and soil components.  Total 

skin temperature from the CBM is based on a combination of the soil and canopy surface 

temperature components involved in longwave radiation balance calculations and is summarised 

as follows: 

√[{1.0 − 𝑓(𝐿𝐴𝐼)} × 𝑇𝑐𝑎𝑛4] + [𝑓(𝐿𝐴𝐼) × 𝑇𝑠𝑜𝑖𝑙4]
4

.      (6.1) 

The soil component (Tsoil) is the temperature state variable of the top-most soil layer (0-2.2 cm), 

while the canopy surface component (Tcan) is based on a non-prognostic leaf temperature variable 

which is determined iteratively at every model time step (after initialisation with air temperature 

from meteorological forcing) as part of the vegetation canopy energy balance calculations.  

Relative contributions from soil and vegetation components to the total skin temperature are 

determined by a weighting factor  f(LAI), which is a function of LAI that describes the fraction of 

radiation (from 0 to 1) transmitted through the canopy. 

The aim with sequential data assimilation techniques, such as the EnKF used in this work, is to 

update and correct prognostic state variables, with an expectation that key diagnostic variables, 

such as heat fluxes, will consequently be improved.  Updates were applied here to soil moisture 

and soil temperature states for each of the six CBM soil layers.  In relation to heat fluxes, the top-

most soil layer moisture and temperature states are closely related to the soil component of LE, 

while the soil moisture states for layers which have roots are used in a water availability term linked 
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to the vegetation component of LE, and hence also indirectly linked to leaf temperature.  The 

temperature state variable of the top-most soil layer is closely linked to calculations for the soil 

component of H, whereas the vegetation canopy component results from vegetation energy balance 

calculations, involving the vegetation component of LE and the non-prognostic leaf temperature 

variable (both indirectly linked to soil moisture).  Details of the EnKF and its application to the 

CBM are contained in Pipunic et al. (2008). 

For meaningful comparisons to be made between observation-based and LSM predicted state data 

as part of data assimilation, systematic biases must be removed (Drusch et al., 2005; Reichle & 

Koster, 2004).  Bias can be due to representative differences, such as differences in soil depth or 

spatial scale between observations and model estimates, and also uncertainties specific to different 

sources of information.  These include uncertain LSM parameters such as wilting point and field 

capacity (amongst others) which influence moisture dynamics (Koster & Milly, 1997), while 

observation-based data may have different dynamics as a results of a particular observing 

instrument or algorithm used to estimate final quantities from remotely sensed observations.  

Although instrument bias is typically of limited concern for well calibrated in-situ installations, the 

correct treatment of bias remains a challenge, particularly using LSMs and remotely sensed 

products in the absence of adequate information enabling its source(s) to be accurately identified 

and quantified. 

Rescaling approaches such as cumulative distribution function (cdf) matching of observed data 

series to LSM state climatology prior to assimilation are now considered de rigueur for bias 

removal (e.g. Draper et al., 2009b; Drusch et al., 2005; Reichle & Koster, 2004).  Reichle and 

Koster (2004) demonstrated that rescaling remote sensing derived surface soil moisture to model 

predictions for a one year period reduced observation-model bias over a subsequent nine year 

series, but did not fully remove it.  This highlights the difficulty in thoroughly understanding and 

dealing with such bias, especially if only short data series are available.  Keeping in line with 

current standard practice, observation-model bias for land surface states in this study were 

eliminated by rescaling the observed data series prior to assimilation, by matching the mean and 

standard deviation to that of the CBM predicted series.  In the long-term however, research effort 

should focus on better understanding and treating bias in LSMs which may involve improvements 

to model physics and/or better parameterisation – likewise for remotely sensed land data products 

given the ultimate aim is operational assimilation. 
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6.4 STUDY SITE AND DATA 

The one-dimensional modelling experiments presented in this paper were carried out for a flux 

station site in south eastern Australia, located on non-irrigated pasture within a mainly agricultural 

area at Kyeamba Creek (Fig. 6.1).  Site instrumentation consisted of an eddy covariance system, 

meteorological sensors, soil moisture and soil temperature sensors.  Smith et al. (2012) summarises 

the main instruments used and briefly describes the landscape of the Kyeamba Creek catchment.  

Key environmental characteristics and CBM parameter values that were used for modelling 

experiments here are summarised in Table 6-1. 

This site was managed by this paper’s lead author and no details have previously been published 

on the basic processing for this data, thus some are included herein.  Kyeamba Creek is a tributary 

of the Murrumbidgee River, located in the south of Australia’s Murray Darling Basin.  The flux 

station location was on the alluvial flats of the creek valley approximately 20 km south east of an 

Australian Bureau of Meteorology (BoM) automatic weather station in the town of Wagga Wagga 

(Fig. 6.1).  Heat fluxes, meteorological variables, soil moisture and soil temperature data were all 

measured for a full year period from January 1st to December 31st 2005 and processed to a 30 

minute time-step.  The total percentage of instrument down-time at the site was approximately  

 

Figure 6.1: Map showing locations of the Kyeamba Creek flux station study site, Wagga Wagga BoM 

automatic weather station, and NSW Office of Water discharge gauges for Kyeamba Creek near 

Ladysmith and Book Book. Grey elevation contour lines in metres.  The Oznet soil moisture and rainfall 

monitoring site is situated ~200 m west of the flux station.  A broad scale overview of the Kyeamba 

Creek site location in south eastern Australia is shown in the bottom right hand corner with the black 

boundary delineating the Murray Darling Basin. 



101 

 

Table 6-1: Summary of Kyeamba Creek flux station site characteristics and key model input data 

relevant to numerical experiments. 

Managing institution The University of Melbourne 

Location (WGS84) 147.56°E, -35.39°S 

Elevation – metres above sea level ~233 

Vegetation Grass pasture (non-irrigated) 

* LAI Range ~0.25 (Summer/Autumn) – 3.0 (Spring) 

Average canopy height (m) ~0.25 

Dominant soil type Silty loam 

Soil bulk density (kg/m3) 1,475 

Soil porosity (vol/vol) 0.450 

Soil field capacity (vol/vol) 0.360 

Soil wilting point (vol/vol) 0.070 

Soil hydraulic conductivity at saturation (m/s) 8.33 10-6 

Soil suction at saturation (m) 0.505 

^ Long term average annual rainfall (mm/yr) ~575 

§ Spinup period (simulation repeated 12 times) 

Total rainfall (mm): 

Jan 1st 2004 – Dec 31st, 2004; 

585 

† Experimental period 

Total rainfall (mm): 

Jan 1st 2005 – Dec 31st, 2005; 

595 

* Based on AVHRR-derived monthly data used for simulations over the 2004 and 2005 

^ For the period 1941-2012 at the Australian Bureau of Meteorology (BoM) Wagga Wagga station 

(http://www.bom.gov.au/climate/averages/tables/cw_072150.shtml) shown in Fig. 6.1. 

§ Most of the meteorological forcing generated from BoM Wagga Wagga station data (Siriwardena et al., 

2003), with rainfall data from the K10 Oznet station (Smith et al., 2012) ~200m from the flux station site. 

† All data are site measured, with small gaps in the forcing in-filled using Wagga Wagga BoM data and 

rainfall gaps in-filled using the nearby K10 Oznet data (Smith et al., 2012). 

 

 

10%, with the longest consecutive gap being about 16 days from day of year (DoY) 59 to 75.  

Meteorological data gaps were in-filled using 30 minute meteorological data compiled from BoM 

Wagga Wagga automatic weather station data (Siriwardena et al., 2003), with the exception of 

rainfall for which supplementary data was available from an adjacent OzNet monitoring station 

(Smith et al., 2012) approximately 200 m away (see http://www.oznet.org.au/k10.html).  

Corresponding gaps in the LE, H, soil moisture and soil temperature data series were not in-filled. 

The LE and H were measured with an eddy covariance system consisting of a CSAT 3D sonic 

anemometer (Campbell Scientific Inc., 1998) and LI-7500 open path gas analyser (LI-COR Inc., 

2003).  They were elevated 3 m above ground giving an approximate maximum fetch of 300 m.  

http://www.bom.gov.au/climate/averages/tables/cw_072150.shtml
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A CNR1 four-way net radiometer (Kipp and Zonen, 2002) measured the incoming and outgoing 

components of short and longwave radiation for determining the total net radiation at the land 

surface (RN).  Ground heat flux (G) was also measured using two HFT3 ground heat flux plates 

(Campbell Scientific Inc., 1999) buried 8 cm below the surface, and corrected to represent G at the 

land surface using temperature thermocouple and soil moisture measurements in the 0-8 cm layer 

of soil as outlined in the HFT3 manual (Campbell Scientific Inc., 1999). 

The LE and H data were filtered for spurious values and conditions known to compromise the 

quality of 3D eddy covariance measurements (e.g. rainfall), and night time data (from 6pm to 6am) 

were discarded.  The energy balance gap between  HLE   and  GRN   was approximately 20% 

and the technique of Twine et al. (2000) was applied to achieve closure.  This method adjusts LE 

and H to achieve a closed energy balance against measured )( GRN   while maintaining a constant 

Bowen Ratio )/( LEH .  The root mean square error (RMSE) between the LE and H data before 

and after closing the energy balance was just under 40 Wm-2 for each. 

Soil moisture observations were made over depths of 0-8 cm, 0-30 cm, 30-60 cm and 60-90 cm 

using CS615 water content reflectometer probes (Campbell Scientific Inc., 1996), and calibrated 

using a number of independent gravimetric and TRASE Time Domain Reflectometer (TDR, Soil 

Moisture Equipment Corp., 1989) volumetric soil moisture measurements made under wet and dry 

conditions.  After soil temperature correction of raw CS615 data following Western and Seyfried 

(2005), a calibration relationship was established with an accuracy of ~0.02 vol/vol (section 4.3.1). 

Soil temperature was measured at depths of 2 cm, 5 cm, 10 cm, 20 cm, 50 cm and 100 cm with 

Unidata 6507A temperature thermistor probes (Unidata Australia, 1997). 

The meteorological variables measured at the station include incoming short and longwave 

radiation, rainfall, air temperature, wind speed, saturation vapour pressure and station level 

barometric air pressure – specific humidity was derived from barometric air pressure and saturation 

vapour pressure.  These were all used for model forcing over the experimental period (2005).  

Incoming short and longwave radiation used for forcing were measured with the two CNR1 

upward facing sensors, whereas all four separate CNR 1 sensor measurements (upward and 

downward facing for both short and longwave) were combined for RN to correct the LE and H data 

used for assimilation as described above.  Thus the corrections to LE and H partly involved the 

same incoming radiation data used for CBM forcing, but also the separately measured outgoing 

short and longwave radiation and G which were not used for any model input or results validation.  

Also, measurements from only the downward facing outgoing longwave radiation sensor, 

independent of the forcing data, were used to construct the assimilated skin temperature data set. 
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A separate meteorological series spanning 2004 from Wagga Wagga BoM data (Siriwardena et 

al., 2003), with rainfall data from the adjacent OzNet station (Smith et al., 2012; 

http://www.oznet.org.au/k10.html), was used as forcing for spinning up the model.  The total 

rainfall used for the 2004 spin up and for the 2005 experiment periods are both close to the long 

term average of annual rainfall for the region, based on comparison with data from BoM records 

as shown in Table 6-1. 

An actual evapotranspiration (ET) series was also derived for 2005 to provide a data set 

independent to the eddy covariance measurement series.  This derived ET series was used for 

assessing LE predictions, as the assimilated heat flux observations were sampled from the eddy 

covariance series.  The site specific data available to achieve this were rainfall – also used for model 

forcing – and root-zone (estimated to be within the top 60 cm for the grassland) soil moisture data 

consisting of both 0-30 cm and 30-60 cm deep probe measurements, which are independent of the 

0-8 cm measurements used for soil moisture assimilation. 

This ET series was based on calculating differences between rainfall totals and root-zone soil 

moisture storage changes over time.  It was calculated on a fortnightly time scale to minimise 

excessive noise in the series from moisture probe data, which is likely to be more prominent with 

respect to small moisture changes over shorter time scales.  Potential ET calculated from 

meteorological data was used as an upper-bound for truncating any of the calculated actual ET that 

exceeded it.  Of the twenty fortnightly ET totals that could be calculated from the available data, 

35% of them clearly exceeded the corresponding potential ET and were hence reset to the potential 

value – all of these reset totals occurred consecutively in time spanning from the DoY 169 total 

through to DoY 302, in the austral winter and spring (mid-June to end of October).  Deep drainage 

(below the 0-60 cm root-zone) and/or saturation excess surface runoff are the most likely reasons 

for the calculated ET exceeding its potential in this wetter/cooler period of the year when soil 

moisture was high.  The total for DoY 316 immediately following this period exceeded the 

potential ET by a negligible amount (57.8 mm compared to 57.4 mm). 

Outside the period from the DoY 169 total to DoY 316, where calculated ET exceeded potential 

ET, all of the fortnightly totals were considerably below potential.  Within one of the driest periods 

of the year (late autumn) the calculated ET for the fortnight ending at DoY 141 was -4.1 mm.  This 

negative value is attributed to soil moisture probe measurement errors in the dry conditions.  Over 

the 60 cm measurement depth, 4.1 mm of water represents approximately 0.007 vol/vol moisture 

content, which is well within the moisture probe data error of ~0.02 vol/vol.  Any ET occurring in 

the fortnight ending DoY 141 is therefore likely to be at or near the minimum for the year and close 

to zero. 
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This ET series provides for validation, enabling comparisons to be made between ET determined 

in two independent ways using the same rainfall data – from a complex model (CBM prediction 

with and without assimilation) and calculated from direct field measurements of soil moisture 

storage (supplemented with potential ET where appropriate).  A regression between fortnightly 

rainfall and the calculated ET resulted in an R2 of 0.07, indicating that the storage processes in the 

soil largely remove any dependence of the calculated ET on rainfall at a fortnightly time step.  In 

constructing this series there was an assumption that, outside the period where calculated ET was 

limited to potential ET, there was no surface run-off over unsaturated soil in the pasture field where 

measurements were made. 

From the station site there was no visually discernible gradient for at least a few hundred metres 

surrounding it.  Where calculated ET totals were below potential, the near-surface and root-zone 

moisture were below saturation and 30 minute rainfall intensities (maximum observed was 8.4 mm 

in 30 minutes) were less than the estimated saturated hydraulic conductivity (Table 6-1), which 

equates to a 30 minute total of 15 mm.  The hydraulic conductivity estimate comes from regional 

soil data analysis by McKenzie et al. (2000, 2003).  Hence all of the rainfall for these periods is 

likely to have infiltrated into the soil. 

The period of high root-zone soil moisture storage in the experimental year spans most of winter 

and spring with the main increase towards maximum storage beginning in June from ~DoY 160.  

By ~DoY 190 the storage approaches its maximum, and moisture content levels persist close to 

field capacity through to ~DoY 290 in mid-October, sometimes peaking near saturation (values 

for these properties are in Table 6-1 and their origin discussed later in this section).  The highest 

root-zone storage occurs within the period where potential ET dominates the constructed ET 

validation series, with rainfall that exceeded the potential assumed to have been balanced by 

percolation below the 60 cm root-zone depth and/or run-off.  The 60-90 cm soil moisture probe 

data – which were not used for modelling or quantitative validation in this study – shows no notable 

change in moisture content below the root-zone from the beginning of the year until ~DoY 200. 

Possible groundwater interaction at the site is evident in the form of three separate extreme spikes 

in the 60-90 cm moisture data series that correspond with flow events (Table 6-2) in Kyeamba 

Creek at Book Book and Ladysmith (Fig. 6.1).  This is indicative of lateral recharge of 

groundwater, followed by discharge (i.e. bank storage processes), related to flow events in 

Kyeamba Creek located ~350 m to the west of the study site.  There are no independent 

measurements to verify the peak values of these moisture data spikes (up to and above ~0.55 

vol/vol) which have only been interpreted qualitatively as indicators of groundwater influence, and 

while root-zone soil moisture data show some increases at these times they are not similarly 

extreme.
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Table 6-2: Summary of major spikes in soil moisture data for below the root-zone (60-90cm) corresponding to spikes in Kyeamba Creek discharge both upstream and 

downstream from the point in the creek closest to the study site. 

 Period 1 

60-90 cm Soil Moisture Spike 

Period 2 

60-90 cm Soil Moisture Spike 

Period 3 

60-90 cm Soil Moisture Spike 

Data Set Increase to Peak 
Days at 

Peak 

Consecutive 

Days Rain 

Total to Peak 

Increase to Peak 
Days at 

Peak 

Consecutive 

Days Rain 

Total to Peak 

Increase to Peak 
Days at 

Peak 

Consecutive 

Days Rain 

Total to Peak 

60-90 cm Soil Moisture 

at Flux Station 

DoY 252-253 

0.26-0.63 vol/vol 

(~110 mm) 

9 
DoY 252-253 

~56 mm 

DoY 270-272 

0.29-0.57 vol/vol 

(~80 mm) 

Data 

Gap 

DoY 269-272 

~40 mm 

DoY 310-311 

0.19-0.55 vol/vol 

(~110 mm) 

1 
DoY 311 

27 mm 

Discharge at Ladysmith 

(~14 km Upstream) 

DoY 251-253 

17-5,588 Ml/day 
1 - 

DoY 270-272 

77-2,046 Ml/day 
1 - 

DoY 310-311 

38-1,106 Ml/day 
1 - 

Discharge at Book Book 

(~4 km Downstream) 

DoY 251-253 

11-1,754 Ml/day 
1 - 

DoY 270-271 

32-937 Ml/day 
1 - 

DoY 310-311 

23-291 Ml/day 
1 - 

 

 

 

1
0
5
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Groundwater interaction could have implications for the fortnightly ET validation series, 

particularly following the final 60-90 cm moisture data spike shown in Table 6-2 (DoY 311) 

leading into the spring/summer transition – the few days after this and beyond is where ET 

calculated from changes in root-zone moisture storage were maintained in the final data series as 

they were either equal to or less than the potential ET.  In this period there might have been a small 

groundwater contribution to ET via capillary rise into the root-zone, which would be captured in 

the total ET of the validation series via soil moisture data, but which could not be quantified 

separately to it. 

Soil parameters used in the CBM (see Table 6-1) were determined from a combination of samples 

collected at the site as part of this study, and soil property interpretations (McKenzie et al., 2000, 

2003) relating to a 1:100,000 scale soil landscape map of the region (Chen & McKane, 1997).  

Particle size analysis performed on site samples determined that the top 60 cm of soil is fairly 

uniform and predominantly silty loam with clay and sand contents of ~12% and ~33% respectively 

(CSIRO particle analysis, May, 2007).  A-horizon values from the map related soil interpretations 

(McKenzie et al., 2003) were used for wilting point (assumed to be the moisture content at 15 bar), 

field capacity (assumed to be the moisture content at 0.1 bar) and saturated hydraulic conductivity.  

Bulk density and porosity were determined using volumetric soil samples taken from the top 60 

cm at the site, and together with the map related values for wilting point and field capacity, soil 

suction at saturation and the Campbell’s b parameter were calculated. 

Vegetation canopy height and the percentage of roots in each model soil layer were estimated from 

field observations.  Leaf Area Index (LAI) values used for the site were monthly averages derived 

from 0.01° resolution Advanced Very High Resolution Radaiometer (AVHRR) fPAR 

(Photosynthetically Active Radiation) data of Donohue et al. (2008).  The fPAR data were 

converted through a fractional cover estimate (fPAR/0.95; see Lu et al., 2003) from which LAI was 

estimated (Choudhury, 1989).  Values of LAI from such estimates are known to become less 

reliable when they are greater than ~3.0 (Carlson & Ripley, 1997; Lu et al., 2003).  Moreover, 

McVicar et al. (1996) found that more than 90% of field sampled LAI values from a similar pasture 

environment in south east Australia were below 3.0.  Therefore, any of the LAI estimates made for 

this site greater than 3.0 (for August through to November) were set to 3.0.  Other parameter values 

used were provided with the CBM/CABLE model (default values; see Abramowitz, 2006) 

pertaining to the agricultural/C3-grassland category from a global vegetation dataset based on 

Potter et al. (1993). 
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6.5 METHODOLOGY 

A one-dimensional CBM set-up was used following Pipunic et al. (2008) but with real field 

observations from point scale in-situ measurements, approximately representing overpass times of 

remotely sensed product types that can be derived from MODIS and AMSR-E observations.  The 

grassland site where observations were made represents a land-cover for which remotely sensed 

microwave and thermal infra-red measurements are typically reliable.  CBM simulations were 

performed using fixed parameters (derived from site specific information where possible or from 

regional datasets as outlined at the end of the previous section) and with the model uncalibrated, 

as is the case with the current LSM in Australia’s NWP system (Dr P Steinle, Data Assimilation 

Team Leader, Australian Bureau of Meteorology, pers comm., May 2011). 

Numerical experiments performed for this study included model simulations for 2005 with: i) no 

assimilation (denoted as “Open-Loop”); ii) LE and H observations assimilated together (denoted 

as “LEH_Assim”); iii) near-surface soil moisture observations assimilated (denoted as 

“SM_Assim”); iv) skin temperature – derived from observed outgoing longwave radiation – 

assimilated (denoted as “Tsk_Assim”); v) a combination of all observations assimilated – LE, H, 

near-surface soil moisture and skin temperature (denoted as “ALL_Assim”); and, vi) a 

combination of near-surface soil moisture and skin temperature assimilated (denoted as 

“SMTsk_Assim”).  Available field observations of soil moisture and soil temperature, along with 

the calculated fortnightly ET estimates, were the independent data used for comparing with 

simulation outputs and assessing the impact of each assimilation option on predicted flux and state 

values. 

Initial state conditions used for all the simulations were obtained from spinning up the CBM 

through repeated simulation using the one year meteorological forcing data series for 2004.  The 

spin up was carried out until differences between model state values of soil moisture and 

temperature for the start of the year matched those at the end of the year for all soil layers to within 

0.001 vol/vol and 0.01° C respectively.  This took 12 iterations, with most of this time attributable 

to minimising the differences for the deeper soil layers.  CBM simulation time steps are governed 

by the time scale of forcing data and are therefore 30 minutes in this study. 

In implementing the EnKF data assimilation algorithm, error estimates of field measurements were 

used to define the uncertainty range for generating observation ensembles, and these are 

summarised in Table 6-3.  Model uncertainty for the EnKF is defined from the spread of an 

ensemble of model predictions, which in this study was the result of performing simulations with 

ensembles of key model inputs.  Specifically, these were ensembles of initial state conditions and 

forcing data variables that represented error range estimates of each, since these inputs contribute  
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Table 6-3: In-situ observations of remotely sensed data types used in this study, with estimated 

additive error ranges used for ensemble σ values, and satellite sensor information that each observation 

represents. 

Observed quantity Additive error 

(ensemble σ) 

Corresponding 

satellite/sensor 

Temporal 

resolution used 

Spatial res. 

available 

LE (Wm-2)  50 MODIS 
Twice daily, 

filtered for cloud 
~1km x 1km 

H (Wm-2)  50 MODIS 
Twice daily, 

filtered for cloud 
~1km x 1km 

Near-surface soil 

moisture (vol/vol) 
 0.04 AMSR-E 

Once per day 

(am) 
~25km x 25km 

Skin temperature (K)  2 MODIS 
Twice daily, 

filtered for cloud 
~1km x 1km 

 

 

to overall model error.  Inaccurate model structure and parameterisation are also major sources of 

model error, which due to their complexity are very difficult to represent with ensembles.  Hence 

they have not been treated directly in the ensemble generation for this study.  Ensemble generation 

is discussed later. 

In all simulations for numerical experiments spanning 2005, ensembles of model inputs included 

perturbed 2005 forcing data (Table 6-4) and perturbed initial state conditions, with covariance 

inflation applied to model state ensembles just prior to state update calculations.  Fixed values of 

key parameters are included in Table 6-1.  More detail on perturbing model inputs and states for 

ensemble generation follows.  The ensemble mean of each simulation is taken as the modelled 

estimate of the truth. 

Table 6-4: Meteorological forcing variables perturbed for ensemble generation. Comparisons 

between Kyeamba Creek and Wagga Wagga BoM point measurements assisted with estimating the σ 

(as per Turner et al., 2008) for ensemble generation. 

Forcing variable Estimated σ for ensembles 

Short-wave in ~15% 

Long-wave in ~35Wm-2 

Precipitation ~60% 

Air Temperature ~2˚C 

Wind Speed ~45% 

Specific Humidity ~0.0007kg/kg 
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6.5.1 ASSIMILATION OBSERVATIONS 

The field observations used for assimilation were sub-sampled from the original one-dimensional 

observation data sets, guided by daytime satellite overpass times of MODIS and the night-time 

overpass time of AMSR-E; while AMSR-E recently ceased operation its successor AMSR2 is 

expected to provide similar data (Imaoka et al., 2010).  Other studies where the focus incorporated 

the Kyeamba Creek region found that AMSR-E soil moisture produced from local night-time 

overpass data was of superior quality to that from daytime data (Draper et al., 2009a; Su et al., 

2013).  Hence the soil moisture data were sampled daily at 2am local time, approximating the 

night-time AMSR-E overpass, while it is acknowledged that AMSR-E data would not always be 

available every day for this site. 

Thermal infra-red related observations – LE, H and skin temperature – were sampled twice daily 

at 10am and 2pm local time to represent data available from MODIS for daytime when ET is most 

active.  Sampling skin temperature for assimilation on the same time steps as LE and H provides 

an important insight into the relative merits of assimilating these different data types, given that the 

derivation of instantaneous remotely sensed LE and H uses remotely sensed skin temperature.  

While these data can also be derived at hourly (MTSAT1R) and bi-weekly (Landsat TM) 

timescales, only the MODIS timescale is explored here.  Pipunic et al. (2008) explored the 

assimilation of bi-weekly LE, H and skin temperature and found that they resulted in much poorer 

results than for MODIS intervals.  Since clouds can obscure remotely sensed TIR data, which relate 

to skin temperature and hence also LE and H observations, further sub-sampling of these 

observations at MODIS overpass times was performed for cloud free conditions (defined here as 

where incoming solar radiation for the site was greater than 90% of expected clear sky radiation 

for the day).  Cloud screening for real MODIS data would likely involve greater complexity and 

uncertainty, especially with partial cloud cover, compared to the procedure using in-situ ground 

data adopted here.  The frequency of assimilated observations is displayed on plots of simulation 

results in Figs. 6.2 through to 6.4. 

The root mean square error between eddy covariance LE and H data before and after closing the 

energy balance is ~40 Wm-2 each.  A review of derivation methods for TIR based remotely sensed 

heat fluxes by Kalma et al. (2008) found the average root mean square error for such data to be 

~50 Wm-2 based on a survey of validation studies.  Consequently, this value was used here for the 

assimilated LE and H uncertainty.  For soil moisture, a value of 0.04 vol/vol was used.  While in-

situ calibration results indicated an uncertainty of ~0.02 vol/vol, this was increased for consistency 

with errors in satellite derived observations for a similar Australian environment (Draper et al., 

2009a).  As direct TIR data were not available, skin temperature observations were derived using 

measured outgoing longwave radiation by solving for the temperature term in the Stefan-
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Boltzmann equation using an assumed emissivity of 0.98 (Wan & Dozier, 1996).  The uncertainty 

range used for these observations was 2 K, based on some error range estimates for remotely sensed 

skin temperature quoted in literature (e.g. Kaleita & Kumar, 2000; Sun et al., 2004; Wang & Liang, 

2009). 

The shallowest volumetric soil moisture measurements made were 0-8 cm and consequently these 

were the observations assimilated.  They correspond exactly with the depth averaged values over 

the top two CBM soil layers (2.2 and 5.8 cm respectively) but exceed the observation depth of real 

AMSR-E soil moisture data (~1-2 cm), which might have implications for appropriately 

representing remotely sensed data assimilation. 

In a synthetic study by Walker et al. (2001b) the depth of assimilated soil moisture data had no 

significant influence on the time taken to retrieve the deeper root-zone moisture profile, although 

the authors note that the ability to impact the deeper moisture profile from assimilating near-surface 

observations depends on the correlation between soil moisture states over depth.  A more detailed 

synthetic study by Kumar et al. (2009) spanning multiple years, and using multiple LSMs with 

different subsurface physics and soil layer depths, found that when the coupling between the 

surface and root-zone is stronger the benefit of assimilating near-surface soil moisture observations 

to improve root-zone prediction is higher. 

To the authors’ knowledge, no studies using real data for a broad range of observation depths exist 

in the literature, thus it is not clear to what extent the measurement depth can influence root-zone 

impacts in real systems.  The possibility exists that the 0-8 cm near-surface soil moisture used here 

might sometimes have a stronger correlation with the root-zone compared to the top ~1-2 cm, and 

thus its assimilation may also have an overstated impact on the root-zone compared to assimilating 

data for the shallower AMSR-E product depth.  It was not possible to investigate this issue here as 

the 0-8 cm measurements were the shallowest available, hence why only satellite overpass repeat 

intervals were considered in relation to representing remotely sensed moisture data. 

6.5.2 OBSERVATION MODEL BIAS REMOVAL 

Prior to assimilation, the in-situ near-surface soil moisture used for assimilation was rescaled, to 

eliminate systematic differences relative to the CBM predicted near-surface soil moisture series 

from Open-Loop, both in terms of its annual mean and its standard deviation.  For skin temperature 

there was no significant difference in terms of the mean and standard deviation between 

observations and comparable Open-Loop predictions (based on an F-Test for variances followed 

by a t-Test for means assuming equal variances) hence this data series was not rescaled.  The soil 

moisture rescaling was applied using: 
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where the rescaled near-surface soil moisture observations '
Obs  used for assimilation were 

calculated using the mean (μ()) and standard deviation (σ()) of the 0-8 cm observed series ( Obs ), 

and of the series of CBM Open-Loop moisture predictions depth averaged over 0-8 cm ( CBM ) for 

coincident time steps in the experiment period. 

6.5.3 ASSIMILATION IMPLEMENTATION AND ASSESSMENT 

Different ensemble sizes were tested with the EnKF and 20 ensemble members were found to be 

sufficient for use with the CBM, congruent with earlier findings from the synthetic-twin study by 

Pipunic et al. (2008).  Ensemble generation involved adding random perturbations to model initial 

conditions and forcing data, and to observations as ensembles of observations were assimilated.  

Perturbations were derived from random numbers generated with a normal distribution around a 

mean (μ) of zero with a standard deviation (σ) equal to the estimate of the error standard deviation 

of the particular data being perturbed.  Ensembles were produced such that members were spread 

within the 95% confidence interval (C.I.) as determined from the assumed data uncertainty. 

For observations (treated as ensemble means), the σ values were based on the estimates of 

observational uncertainties in Table 6-3.  Ensembles of initial model state conditions were 

generated from the spun-up initial soil moisture and temperature values.  While initial state 

perturbations do not persist in contributing to long-term ensemble error representation (unlike 

forcing perturbations which apply throughout a simulation time series) they were used for initiating 

the ensemble spread with values of σ=0.03 vol/vol selected here for perturbing initial soil moisture 

and σ=3° C for perturbing initial soil temperature in each layer.  The approach of Turner et al. 

(2008) was used as a guide for generating meteorological forcing ensembles, which factors in 

measurement error and representative errors when using forcing data from multiple point locations.  

Both flux station site forcing data and data from the ~20km distant Wagga Wagga BoM station 

(for gap filling) were used here – discrepancies between the full 2005 series of these two datasets 

were used to estimate representative error for each variable (based on Turner et al., 2008).  The 

approximate errors relating to ensemble generation are included in Table 6-4. 

Given that model structural error or parameter uncertainty were not specifically accounted for in 

the ensemble generation, and with the potential for filter divergence to affect EnKF performance 

over time, covariance inflation (e.g. Anderson & Anderson, 1999) was applied prior to updating at 

assimilation times.  It was applied by adding small perturbations to each state ensemble member 
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to slightly increase the spread about the mean prediction.  For the CBM near-surface soil layer (2.2 

cm thick), soil moisture ensemble members were inflated by adding random perturbations 

generated with σ=0.01 vol/vol, while σ=1°C was used for soil temperature.  These σ values ensured 

a small inflation of ensemble spreads to increase the likelihood that state error quantities associated 

with unknown parameter and model structure errors are factored in at update times.  For additive 

inflation of subsequent deeper soil layer ensembles, σ values were scaled down fractions of the 

values used for the surface layer, with the scaling based on the ratio between the surface layer 

thickness and each subsequent layer’s thickness.  This was to account for the expectation that 

random state errors are dampened with the deeper/thicker soil layers, which has implications for 

state error correlations between layers, and hence EnKF error covariances and filter performance.  

The use of covariance inflation and basic assumptions about error correlations are employed here 

in the absence of a complete understanding of all errors that would enable optimal depictions of 

them with predicted ensembles.  A detailed investigation for understanding all aspects of model 

error is a major task beyond the scope of this study. 

Assessments of the model simulations were made by comparing predictions with independent field 

data for the variables of interest – ET, root-zone soil moisture, and surface and root-zone soil 

temperature.  Root Mean Squared Error (RMSE) and Nash Sutcliffe coefficient of efficiency (E) 

metrics for quantifying magnitudes of error, and the coefficient of determination (R2) for 

quantifying the goodness of fit in terms of variance, were used to assess simulation predictions 

against the independent field data.  Prior to these assessments, state variable predictions from all 

simulations (Open-Loop and assimilation experiments) were rescaled so that their mean and 

standard deviation matched that of the corresponding time series of independent field observed 

states used for comparison (by substituting relevant values into Eq. (6.2)).  This ensured that the 

subsequent state comparisons were bias free relative to the best available representation of the true 

states as observed with in-situ soil temperature probes and soil moisture probes that were calibrated 

for the site. 

Soil moisture comparisons were made for two different depths, including the near-surface (0-8 cm) 

representing the depth of the assimilated soil moisture observations (as a sanity check) and the 

deeper 0-60 cm profile (an average of 0-30 cm and 30-60 cm field observations) corresponding to 

the estimated vegetation root-zone.  For soil temperature, comparisons were made between the 

shallowest observation (2 cm) and the top soil layer in the model (0-2.2 cm), being the prognostic 

temperature variable linked to the LE and H soil component calculations.  A weighted average of 

soil temperature measurements throughout the soil profile was used for comparison with the model 

root-zone (0-60 cm) prediction. 
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Figure 6.2: Plots of fortnightly ET totals for Kyeamba Creek showing: Observed validation series, 

Open-Loop simulations, and from top to bottom the assimilation experiment outputs from a) 

LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, e) SMTsk_Assim. Dots along the top of 

each plot correspond to the assimilation frequency (right hand axis) for LE, H and skin temperature 

observations (black), and soil moisture observations (grey). 
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Figure 6.3: Plots of daily averaged (midnight to midnight) soil moisture for Kyeamba Creek showing: 

Observed validation series, rescaled Open-Loop simulations and in each row the rescaled assimilation 

experiment outputs from a) LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, e) 

SMTsk_Assim. Dots along the top of each plot correspond to the assimilation frequency (right hand 

axis) for LE, H and skin temperature observations (black), and soil moisture observations (grey). 
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Figure 6.4: Plots of daily averaged (midnight to midnight) soil temperature for Kyeamba Creek 

showing: Observed validation series, rescaled Open-Loop simulations and in each row the rescaled 

assimilation experiment outputs from a) LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, 

e) SMTsk_Assim. Dots along the top of each plot correspond to the assimilation frequency (right hand 

axis) for LE, H and skin temperature observations (black), and soil moisture observations (grey). 
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6.6 RESULTS 

Fortnightly totals of ET were calculated from 30 minute simulation outputs in order to compare 

with the independent ET series that was derived directly from field observed data.  Therefore a 

fortnightly scale was the smallest time unit for which ET comparisons were made.  It is 

acknowledged that for NWP the diurnal surface heating is very important and hence comparisons 

for the full series of 30 minute heat flux predictions would be informative.  However, it was not 

possible to make independent comparisons at a 30 minute time step here, given the available 

validation data.  Comparisons for soil moisture and soil temperature were both made using daily 

averaged (midnight to midnight) values from the 30 minute observed and simulated series.  

Rescaling the simulated series of these states to match the observations was applied to the daily 

averages prior to any comparisons. 

Figs. 6.2 to 6.4 are time series plots showing observed site data together with simulation predictions 

and the frequency of assimilated observations included across the upper horizontal axis.  Each 

vertical sequence of five plots in the figures shows simulation results from a separate assimilation 

experiment.  Qualitative descriptions comparing simulated and observed time series based on these 

plots are presented in following sub-sections.  Quantitative comparisons for all experiments in the 

form of RMSE, E and R2 values between observed and simulated values are provided in Table 6-

5.  These scores were calculated using the data on the same time scales on which they are plotted 

in Figs. 6.2 to 6.4 and highlight the best performing simulation(s) overall relative to observed 

validation data.  Fig. 6.5 shows the changes made by each experiment in terms of RMSE between 

observations and predictions relative to RMSE between Open-Loop predictions and observations. 

 

Figure 6.5: Comparative improvements over Open-Loop made by each assimilation experiment in 

terms of RMSE reduction for heat flux and soil state predictions.
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Table 6-5: Statistics for comparisons between simulations (rows) and independent observations over the 2005 experiment period, calculated after removing biases for state 

variables. Bold values indicate most improvement to simulated values of interest (Columns). 

 ET (mm/fortnight) SM 0-8cm (vol/vol) SM 0-60cm (vol/vol) ST 0-2cm (˚C) ST 0-60cm (˚C) 

 R2 RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2 RMSE E 

Open-Loop 0.71 10.8 0.63 0.83 0.052 0.82 0.84 0.042 0.83 0.86 2.1 0.86 0.88 1.6 0.88 

LEH_Assim 0.88 8.6 0.76 0.88 0.044 0.87 0.85 0.041 0.84 0.86 2.1 0.86 0.87 1.7 0.86 

SM_Assim 0.83 9.4 0.72 0.94 0.032 0.93 0.95 0.024 0.95 0.87 2.0 0.87 0.90 1.4 0.90 

Tsk_Assim 0.85 9.8 0.70 0.94 0.031 0.94 0.83 0.043 0.82 0.89 1.8 0.89 0.93 1.2 0.93 

ALL_Assim 0.87 9.0 0.75 0.94 0.030 0.94 0.80 0.047 0.79 0.88 2.0 0.88 0.89 1.5 0.89 

SMTsk_Assim 0.89 8.2 0.78 0.94 0.030 0.94 0.87 0.038 0.87 0.89 1.9 0.88 0.94 1.1 0.94 

 

 

 

1
1
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6.6.1 OPEN-LOOP COMPARISONS 

6.6.1.1 OPEN-LOOP ET OUTPUT 

Differences between predicted ET from Open-Loop and the estimates from observations vary 

across the experiment year (Fig. 6.2).  From the austral summer at the start of the year through to 

early winter at around DoY 160, the observation derived ET was over-predicted by as much as ~20 

mm/fortnight (~DoY 40).  Therefore, possibly too much of the rainfall in this period became ET 

via the model, presumably due to inaccurate soil and vegetation parameters and/or physical 

processes in the model, and hence incorrect soil moisture (in both the near-surface and root-zone 

– Fig. 6.3).  As noted in section 6.4 the observed 60-90 cm moisture series, beneath the root-zone 

as defined here, is static throughout this period ruling out any groundwater contribution.  Another 

contributing factor may be that time invariant root distribution in the model over-states the amount 

of water drawn for transpiration from deeper soil in periods where grass is shorter and its growth 

is sparse around the site (especially where Open-Loop root-zone moisture is over-estimated).  The 

vegetation cover in this period from the beginning of the year to ~DoY 160 is minimal where LAI 

values range from 0.39 to 0.85 with a mean of 0.53. 

Through the winter and most of spring (from DoY 160 to 316) where most of the observation based 

ET values were set to the calculated potential ET, in what is predominantly an energy limited period 

with relatively high moisture storage in the soil profile for the year, Open-Loop ET predictions 

track the observation series closely with the only noticeable difference being negligible over-

predictions of ~5 mm/fortnight occurring for the ~DoY 260 and 274 totals.  This close match is 

not surprising given that with high water availability in the soil profile the CBM is expected to 

predict ET close to the potential rate. 

After DoY 316 to the end of the year (most of November through December) is where the largest 

discrepancies occur, with observed ET under-predicted by Open-Loop by as much as 30 

mm/fortnight.  This period is characterised by warming where the high soil moisture storage of 

winter/spring transitions to a water limited scenario with increased incoming radiation, and where 

high vegetation cover for November (LAI of 3.0) declined in December (LAI of 1.21).  As discussed 

in section 6.4 there is evidence indicating possible groundwater interaction around DoY 311 (refer 

to Table 6.2).  Thus any water added to the soil profile as a result could have contributed to root-

zone water availability for ET over the following days or weeks.  This may explain the large under-

prediction of ET by Open-Loop after DoY 316, as the only water supply information available for 

CBM calculations was from rainfall forcing data. 
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6.6.1.2 OPEN-LOOP SOIL MOISTURE OUTPUT 

Plots in Fig. 6.3 also show variation in differences between Open-Loop soil moisture predictions 

and observations throughout the experimental period.  Early in the year through summer and 

autumn (to ~DoY 120), the depletion of Open-Loop soil moisture compared to observations for 

the near-surface assimilation depth (0-8 cm) is from higher peak values and up to twice as fast in 

parts, particularly in early February (~DoY 35-40) where the peak is over-estimated by ~0.09 

vol/vol.  Following on, between ~DoY 120 and 160, the observations indicate a mostly dry period 

where they are increasingly over-estimated.  Much of these discrepancies from the beginning of 

the year to ~DoY 160 are consistent with Open-Loop over-estimating ET in this period.  The 

response of the Open-Loop near-surface soil moisture at ~DoY 160 in June to the beginning of the 

major increase in winter/spring moisture storage is accurately timed, with some over-estimation 

persisting through the first half of this period.  In the spring/summer dry-down period there is 

another large discrepancy, with the Open-Loop under-estimating observations by as much as ~0.15 

vol/vol, which is again consistent with the ET under-estimation in this period (Fig. 6.2). 

Deeper root-zone (0-60 cm) soil moisture content from Open-Loop shows a similar relationship in 

terms of variation with respect to observations as for the near-surface moisture plots, albeit with 

the magnitude of variations being less pronounced.  In particular, the over-estimation and more 

rapid depletion of root-zone moisture compared to observations for instances in the first ~100 days 

and under-estimation around ~DoY 320-330 (Fig. 6.3) are consistent with the respective over-

estimation and under-estimation of ET for periods incorporating these times (Fig. 6.2).  As noted 

in relation to ET predictions, inaccurate model parameters could have contributed to discrepancies 

between Open-Loop predictions and observations here, while the inability to prescribe different 

soil parameters with depth for different model layers might also be a contributing factor. 

6.6.1.3 OPEN-LOOP SOIL TEMPERATURE OUTPUT 

Surface soil temperature plots (0-2 cm) in Fig. 6.4 show a general pattern of Open-Loop predictions 

under-estimating observations in the drier austral summer/autumn period up to ~DoY 150.  Then 

across the first half of winter from June to mid-July (~DoY 150-200) which includes some of the 

coolest temperatures of the year the Open-Loop tracks the observations very closely.  From mid-

winter until the end of the year as the temperature increases, predictions mainly over-estimated the 

observations with the largest differences (up to 6°C) occurring in November between ~DoY 310-

330 – the period in which Open-Loop soil moisture and ET predictions under-estimated their 

respective observations by relatively large magnitudes (Figs. 6.2 and 6.3) and where groundwater 

interaction is a possibility (Table 6-2). 
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As with soil moisture, the deeper 0-60 cm root-zone soil temperature predictions from Open-Loop 

exhibit a similar pattern of discrepancy with observations as for the near-surface soil temperature.  

The main difference being the root-zone series has less day-to-day variation, as expected, and the 

differences with observations are sometimes slightly less in magnitude than the corresponding 

differences for near-surface soil temperature. 

6.6.2 ASSIMILATION COMPARISONS 

6.6.2.1 ASSIMILATION ET OUTPUT 

From the beginning of the year up to early winter at ~DoY 160, where Open-Loop ET predictions 

over-estimate observations (Fig. 6.2), the best overall improvements to ET were from simulations 

where the assimilation involved skin temperature observations and combinations of variables (i.e. 

Tsk_Assim, ALL_Assim and SMTsk_Assim).  The only notable impact from LEH_Assim here 

was in the summer with some improvement within the first ~60 days.  When only soil moisture 

was assimilated (i.e. SM_Assim), no notable impact or improvement was made to ET estimates 

for this entire period. 

Through the mainly energy limited period with increased moisture availability that covers most of 

winter/spring (between ~DoY 160 to 316), where observed and Open-Loop ET series are at or near 

potential ET with no notable differences between them, the predictions from every experiment 

were maintained at approximate potential ET values.  While each assimilation experiment made 

clear improvements to ET in the period between DoY 316 and ~DoY 330-340, where Open-Loop 

under-estimated the observed series most.  All of the experiments except for SM_Assim resulted 

in very close matches to the maximum observed ET at ~DoY 330 although unlike SM_Assim they 

caused over-estimation from ~DoY 340 onwards where Open-Loop and observations were 

relatively close. 

6.6.2.2 ASSIMILATION SOIL MOISTURE OUTPUT 

From the beginning of the year through to ~DoY 160, being before the major winter/spring 

moisture storage period, predictions of near-surface soil moisture (0-8 cm) were improved overall 

by each data assimilation approach compared with Open-Loop.  SM_Assim improvements were 

the most consistent (Fig. 6.3) while for other approaches where either skin temperature or LE and 

H observations were involved in the assimilation, soil moisture was slightly degraded by over-

correction at ~DoY 40-50 during the dry-down after high rainfall.  Improvements to near-surface 

soil moisture were also made by each simulation over the remainder of the year after ~DoY 160, 

with simulations involving skin temperature observations (i.e. Tsk_Assim, ALL_Assim and 
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SMTsk_Assim) performing particularly well over the spring to summer dry-down period post 

~DoY 310.  The consistency of SM_Assim in making some improvement across all seasons of the 

experiment year in relation to near-surface moisture observations (the 0-8 cm series which 

assimilated observations were sampled from) instilled confidence in the assimilation scheme. 

For root-zone soil moisture, SM_Assim produced the best overall improvement across the year.  

Predictions from the other simulations which involved skin temperature and/or heat flux 

observations in the assimilation were poorest and most degraded in drier periods within the first 

half of the year and at the end post ~DoY 320 (Fig. 6.3a, c, d and e).  During the wetter 

winter/spring period these simulations performed reasonably well, improving parts of the root-

zone moisture series and without any extreme degradation.  In this period the moisture content was 

more uniform over the root-zone and near-surface moisture dynamics were more strongly 

correlated with dynamics through the root-zone depth. 

A possible reason for the better and more stable results in the wetter period is that the ensemble 

generation might have produced more adequate error representations for predicted observations 

and predicted root-zone moisture states here.  In which case the resulting EnKF error covariances 

would have been a good reflection of actual error correlations between these predictions, hence the 

more reasonable root-zone moisture state updates.  Compared to wetter seasons, moisture 

dynamics were more weakly connected through the root-zone in drier periods where greater 

contrasts in moisture over depth occurred – e.g. such as wetter near-surface soil from isolated rain 

events compared to drier deeper soil.  The degraded root-zone moisture in drier periods from most 

simulations may have been due to poorer error representations for these particular conditions, such 

that EnKF covariances did not adequately reflect error correlations between predictions of 

assimilated observations and the different root-zone soil moisture states. 

6.6.2.3 ASSIMILATION SOIL TEMPERATURE OUTPUT 

Fig. 6.4 illustrates soil temperature outputs from all simulations for the CBM surface soil layer (0-

2.2 cm) and root-zone (0-60 cm).  The relevance of the surface soil layer temperature here is its 

use in the soil component of the CBM calculated total skin temperature (Eq. (6.1)), and also in the 

calculation of soil components of LE and H.  Assimilation impacts on the surface soil layer 

temperature appear relatively minor across all of the simulations, and any impacts that were made 

are most noticeable for warmer periods, including from ~DoY 40 to 100 in the first half of the year 

and towards the end of the year from ~DoY 300 to 340 where the impact on ET was greatest from 

all assimilation approaches.  The best improvements for these periods were from Tsk_Assim, 

which is expected due to the surface soil layer temperature being linked directly to skin temperature 

in the CBM. 
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For periods of high vegetation cover, such as the second half of the year (where LAI is 2.4 for July, 

3.0 from August through November, and 1.2 for December), the direct impact on heat fluxes from 

any surface soil layer temperature state adjustments were minimal.  The adjustments to ET at the 

end of the year (> ~DoY 316) from Tsk_Assim are assumed to be related to impacts on soil 

moisture (compare Figs. 6.2c and 6.3c).  This is likely due to the vegetation canopy components 

of LE and H in the CBM dominating the total predicted values of LE and H in this period, where 

the vegetation canopy surface temperature used in the CBM vegetation heat flux calculations (also 

for the vegetation component of skin temperature – see Eq. (6.1)) is based on the non-prognostic 

leaf temperature variable.  Hence, for the LEH_Assim simulation there is very little impact on 

surface soil layer temperature for the period at the end of the year from ~DoY 316 onwards (Fig. 

6.4a), which coincides with some of the greatest adjustments to ET predictions (Fig. 6.2a).  While 

for ~DoY 40 where LEH_Assim had some noticeable impact on correcting surface soil layer 

temperature, coinciding with an adjustment to ET, there is minimal vegetation cover (LAI of 0.6) 

and therefore surface soil layer temperature values feature more prominently here in calculated LE 

and H totals from the CBM. 

The experiments Tsk_Assim and SMTsk_Assim made the greatest changes/improvements to root-

zone soil temperature predictions reinforcing that skin temperature observations are the main driver 

for soil temperature state impacts.  From Figs. 6.4c and e, the greatest improvements were made 

in the first half of the year between ~DoY 80 to 160 where vegetation cover was low and the Open-

Loop under-estimated observations, and also towards the end of the year post ~DoY 280 

incorporating the period where vegetation cover was highest and also where ET adjustments were 

greatest.  LEH_Assim and SM_Assim had minimal overall impact on root-zone temperature across 

the year by comparison (Figs. 6.4a and b), with root-zone soil temperature generally lacking a 

strong relationship with heat fluxes, particularly as vegetation cover increases (in the second half 

of the year). 

6.7 DISCUSSION 

Based on the results presented, the overall differences between simulations are summarised and 

interpreted here.  From the R2 and E scores for Open-Loop predictions (Table.6-5) the dynamics 

of the validation ET data series in this study were generally more difficult to simulate than near-

surface and root-zone soil moisture and temperature observations.  LEH_Assim was expected to 

produce amongst the best ET predictions given that state updates were driven only by heat flux 

observations.  While it led to a strong reduction in RMSE of 20% compared to predictions from 

Open-Loop, the level of improvement trailed that made by SMTsk_Assim which reduced RMSE 

by 24% but was greater than improvements from ALL_Assim which reduced RMSE by 17%.  The 
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comparative improvements between these three simulations are supported by all of the metrics 

used.  Although these were the top three performers for ET amongst all of the experiments, their 

impact on root-zone soil moisture predictions were varied, with ALL_Assim producing the most 

degraded results of all experiments, SMTsk_Assim making fairly solid improvements, and 

LEH_Assim making only minor overall improvement. 

The relatively poor impact LEH_Assim had on state variables in contrast to strong ET 

improvements as per the quantitative scores highlights the challenge of simultaneously improving 

all state variables and heat fluxes given the inherent uncertainties associated with complex 

relationships between them in LSMs.  Scores for SM_Assim and Tsk_Assim indicate they made 

amongst the greatest improvements to soil moisture and temperature state variables respectively 

along with SMTsk_Assim which performed well for both.  This supports the expectation that 

assimilated observations will usually lead to strong improvements for the most directly related 

model variables. 

Despite SM_Assim producing the best root-zone soil moisture with a reduction in RMSE of over 

40%, the corresponding reduction in RMSE of 13% for ET indicates only a modest improvement 

relative to validation data compared with other experiments.  When considered together with the 

top three experiments for ET improvement which had varied impacts on root-zone soil moisture, 

it is clear that specifically improving root-zone moisture will not necessarily optimise the heat flux 

predictions.  Moreover, the inconsistency between quantitative soil temperature scores for 

SMTsk_Assim and LEH_Assim, which both strongly improved ET, and between the strong soil 

temperature and only modest ET improvements from Tsk_Assim compared to those from 

LEH_Assim, supports the qualitative time series interpretations (discussed in the previous section) 

that improved soil temperature prediction does not always make a strong contribution to ET 

improvement throughout the whole year – particularly as vegetation cover increases. 

Comparing the impacts on ET from LEH_Assim and from experiments using skin temperature and 

no heat flux observations is of particular interest when considered in a remote sensing context.  

LEH_Assim represented the assimilation of LE and H data which would first need to be derived 

from thermal and visible remote sensing imagery using an energy balance model separate to the 

LSM.  However, remotely sensed skin temperature represented in Tsk_Assim and SMTsk_Assim 

is more directly available from the thermal imagery used in deriving LE and H.  The results for ET 

prediction from both SMTsk and LEH_Assim (Table 6-5 and Fig. 6.5) indicate that there may be 

no significant benefit from assimilating remotely sensed LE and H over using skin temperature 

together with an observation directly related to the water balance (i.e. soil moisture) for improving 

heat flux prediction, especially when considering the additional modelling required to produce 

remotely sensed LE and H. 
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Quantitative results for the SMTsk_Assim experiment highlight some clear benefits of multi-

observation assimilation.  It produced the greatest improvements to ET relative to validation data 

of any experiment, presumably due to cumulative positive impacts from the different observations 

used, which when assimilated separately each improved ET to lesser degrees (through Tsk_Assim 

and SM_Assim experiments).  The multi-observation approach of ALL_Assim also produced 

relatively strong ET improvements, but was inconsistent in terms of state variable improvements, 

with root-zone soil moisture having been degraded more than from any other experiment.  This 

may be due to the combined impact of LE, H and skin temperature (which produced poor or 

degraded root-zone soil moisture via LEH_Assim and Tsk_Assim) outweighing any beneficial 

impacts from the soil moisture observations.  The worst impacts on root-zone moisture from 

ALL_Assim were mainly for drier periods, which is congruent with the worst impacts from 

LEH_Assim and Tsk_Assim (compare Figs. 6.3a, c and d). 

The SMTsk_Assim multi-observation approach and SM_Assim were the only simulations in this 

study which simultaneously improved predictions of all of the assessed variables against validation 

data (Table 6-5 and Fig. 6.5).  This demonstrates that assimilating soil moisture and directly 

impacting the model water balance improved soil state variables and ET, while incorporating an 

additional observation type linked directly to model energy balance calculations (skin temperature) 

could still lead to improved state variables, and most importantly in the NWP context, also produce 

optimal ET predictions.  The added benefit of SMTsk_Assim is of course the potential for good 

ET prediction while avoiding the intermediate modelling step to estimate LE and H from thermal 

and visible imagery when assimilating remotely sensed data. 

The varying assimilation results during the year, and particularly the degradation caused by some 

of the assimilation scenarios, point to the likelihood of systematic model errors.  As an example, 

the root distribution in CBM soil layers is represented by user prescribed parameter values which 

are time-invariant.  With a seasonally varying vegetation cover (see LAI range in Table 6-1) it is 

likely that rooting depth varies with different growth phases, and thus the connection between ET 

and deeper layer soil moisture in the model may be overstated for periods of sparse vegetation 

cover.  This may also explain the excessive reduction in root-zone soil moisture from LEH_Assim 

and Tsk_Assim in the first half of the year, coinciding with reductions in ET (Figs. 6.2a-6.3a and 

6.2c-6.3c).  These errors are likely to be quite intricate and require more detailed data than is 

available here to properly address.  It is also worth noting that in this respect uncertainties in the 

subsurface (soil properties, root water extraction profiles, etc.) are severe.  Progress in this area 

may result in more accurate estimates of error covariances and hence better assimilation outcomes 

overall. 
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6.8 CONCLUSIONS 

This paper has presented one-dimensional Open-Loop and various data assimilation runs of the 

CBM for a temperate grassland site in southern New South Wales, Australia.  Comparisons 

between Open-Loop and validation data suggest that accurate modelling of heat fluxes is most 

difficult for water limited scenarios where ET rates are below potential.  This is evident from the 

poorer Open-Loop predictions of ET in the first ~60 days of the year spanning late summer and 

through all of autumn where the soil profile is mostly at its driest, and for a period towards the end 

of the year around the spring/summer transition where moisture storage is below maximum.  Exact 

causes of the poorer predictions are likely to be varied, including parameter uncertainty, model 

structural limitations, and possibly isolated instances of groundwater contribution where rainfall 

forcing data may not have accounted for the total water supply for the LSM water balance. 

Five different assimilation runs were conducted using real field data for a selection of times 

corresponding to approximate satellite overpasses relevant to each data type: latent and sensible 

heat (LEH_Assim); 0-8cm soil moisture (SM_Assim); skin temperature (Tsk_Assim); all four of 

these (ALL_Assim); and 0-8cm soil moisture combined with skin temperature (SMTsk_Assim).  

It was demonstrated that the multi-observation approach of SMTsk_Assim produced the greatest 

improvements to ET relative to validation data constructed from independent field observations.  

This is to be contrasted with the traditional SM_Assim approach which led to the strongest root-

zone soil moisture improvements but with relatively modest ET improvements.  Thus accurate 

root-zone soil moisture prediction does not necessarily translate to optimal heat fluxes. 

The LEH_Assim approach made strong improvements to ET as expected, second only to those 

from SMTsk_Assim.  From a remote sensing perspective this implies that incorporating skin 

temperature from thermal imagery together with soil moisture observations in the data assimilation 

may be more beneficial to LSM heat flux accuracy than assimilating LE and H alone, which first 

needs to be derived using the same thermal imagery via a separate energy balance model.  A major 

strength of SMTsk_Assim in this study was in balancing impacts on the model energy and water 

balances to improve both soil moisture and temperature states in addition to ET. 

Consequently, this study demonstrates the value of multi-observation assimilation into a LSM 

using real observations.  This provides a sound basis for further multi-observation assimilation 

studies using remotely sensed data products, including remotely sensed LE and H assimilation, to 

better understand and draw stronger conclusions about its potential benefits. 
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7 REMOTELY-SENSED DATA ASSIMILATION 

The one-dimensional study presented in chapter 6 reaffirmed some key findings from the synthetic-

twin study (chapter 5) through the use of real field observations on approximate remote sensing 

timescales.  Specifically, assimilating LE and H was again shown as being able to produce better 

CBM predictions of LE and H overall compared with assimilating only near-surface soil moisture.  

The value of assimilating skin temperature observations to improve LE and H prediction was also 

demonstrated in both chapters 5 and 6. 

As the final phase in assessing the assimilation of LE and H, alongside that of data more commonly 

used in past LSM assimilation studies, this chapter presents assimilation experiments using real 

remotely sensed data.  This has the most direct relevance to spatially distributed modelling as used 

in NWP (and most model applications for water resource management).  There is a greater level 

of complexity (and hence uncertainty) in this context than for the point based scenarios, especially 

where the spatial resolution and/or spatial distribution of different data used for simulation input, 

assimilation and validation differs between variables.  The experiments here are confined to 

comparisons between assimilating remotely sensed instantaneous LE and H products (the testing 

of which is a major objective in this thesis) and a near-surface soil moisture product (a product 

more commonly used for LSM data assimilation). 

7.1 EXPERIMENTAL DATA 

The LE and H data used were produced via the SEBS algorithm (Su, 2002) at 5 km spatial 

resolution and with a minimum time step of once-daily, corresponding to the MODIS AQUA 

overpass at ~2:00pm local time.  They were produced and provided by Prof. Eric Wood and Dr. 

Raghuveer Vinukollu at Princeton University (pers. comm., October 2008), with Vinukollu et al. 

(2011) describing the production of SEBS data.  Near-surface soil moisture data that were 

assimilated are from AMSR-E observations (the descending satellite overpass at ~2:00am local 

time), derived via the LPRM algorithm (Owe et al., 2008).  The model forcing and validation data 

used, the latter of which includes heat fluxes from the Kyeamba Creek eddy covariance system 

(used in experiments for chapter 6), and in-situ soil moisture and temperature data from OzNet 

monitoring stations across the Kyeamba Creek catchment (Smith et al., 2012), are described in 

chapter 4. 

The simulation experiments were carried out for the full calendar year of 2005 (as per the 

experiments in chapter 6), given that LE and H validation data from the eddy covariance system 

cover this annual period.  Marking out the study domain for assimilation experiments is the single 
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25 km by 25 km AMSR-E soil moisture data pixel covering most of the Kyeamba Creek catchment 

(Fig. 4.7).  Modelling was performed at 5 km resolution within this domain (with the CBM run as 

a series of single columns for calculating vertical water and energy fluxes) corresponding to each 

SEBS data pixel.  The meteorological forcing data set is the same as that used in the one-

dimensional field data study (see chapter 6) and it was applied across the whole domain.  Any 

spatial variation in CBM predictions (without assimilation) between the 5 km pixels is due to 

spatial variation in the parameter data (see Figs. 4.8 and 4.9). 

Values used for the key model soil parameters of θWilt, θFC, Ks and ρs (see Table 3-2, chapter 3), for 

each simulation pixel, are based on soil property interpretations (McKenzie et al., 2000, 2003) 

associated with soil units of the Wagga Wagga 1:100,000 soil landscape map (Chen and McKane, 

1997) shown in Fig. 4.9 (chapter 4).  Supplementary data from McKenzie et al. (2000) based on 

the broader scale Atlas of Australian Soils was also used where the 1:100,000 map had no coverage 

within the study domain, as described in section 4.5.  Spatial analysis determined which mapped 

soil unit had the largest areal coverage within each pixel, and the associated soil parameter values 

were assigned to pixels accordingly.  Values obtained for θWilt, θFC, and ρs were used to determine 

θsat, ψaep and Campbell’s b parameter values for each pixel using Eq. (2.13) from Campbell (1974) 

as discussed in section 4.5.  For the simulation pixel collocated with the Kyeamba Creek flux 

station, the same parameter values as used for the one-dimensional field data study (chapter 6) 

were applied (where ρs was determined from analysis of site-sampled soil). 

For the key vegetation parameter of LAI, values derived from the Donohue et al. (2008) fPAR 

product based on AVHRR data (Fig. 4.8 (2)) were used, where the ~1 km resolution data were 

spatially averaged within each 5 km simulation pixel.  Conversion from the fPAR product to LAI 

is discussed in chapter 6.  The plant root-zone was defined uniformly across simulation pixels as 

~0-60 cm, with root presence assigned to the top four CBM soil layers (64.3 cm depth in total: see 

froot values in section 4.5) – the same as for experiments in chapter 6 where this depth was based 

on field estimates from the grass pasture at the flux station site, with pasture being a major land 

cover type across the study region presented in this chapter.  A vegetation canopy height of 25 cm 

was also applied for all pixels, based on an estimate of the annual average pasture height at the flux 

station site.  For all other parameters not mentioned above in this or the previous paragraph (see 

Tables 3-1 and 3-2), default values provided with the CBM/CABLE model (Abramowitz, 2006) 

were applied uniformly across simulation pixels.  These include vegetation parameter values 

associated with the agricultural/C3-grassland category of a global vegetation dataset (Potter et al., 

1993). 

There is an obvious difference in spatial representation that limits the robustness of 

comparing/validating remotely sensed products and spatially distributed model output with a finite 
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number of point-scale in-situ measurements.  However, these are the only independent datasets 

that were available. 

Four of the nine Kyeamba Creek OzNet soil moisture station datasets in the study domain (K6, 

K7, K10 and K11) are missing near-surface soil moisture records (0-8cm) over the 2005 

experimental period, while root-zone soil moisture data (from 0-30 cm and 30-60 cm 

measurements) are available for all nine including the flux station site.  The average of soil moisture 

for 0-30 cm and 30-60 cm is used to represent the 0-60 cm root-zone soil moisture profile.  Fig. 

7.1 illustrates the relative location of in-situ stations and simulation pixels, using separate plots that 

show which pixels are collocated with available in-situ near-surface and root-zone soil moisture 

data respectively. 

Availability of in-situ soil temperature data over the experimental period varies for different depths 

across OzNet stations within the study domain.  Only shallow/near-surface soil temperature data 

is considered in this study, for which availability is most consistent across the greatest number of 

sites (compared to ~60 cm root-zone data).  As noted in chapter 6, near-surface soil temperature is 

most relevant to modelled fluxes as only the CBM top soil layer (0-2.2 cm) temperature is directly 

involved in energy balance calculations.  Referring to Fig. 7.1, the shallowest temperature records 

available are at 4 cm depth at K1, K2, K3, K4 and K5, and for 2 cm depth at the flux station site. 

 

Figure 7.1: The black 25 km by 25 km modelling domain boundary over the Kyeamba Creek catchment, 

matching a single AMSR-E pixel, with grey 5 km by 5 km simulation pixels within. Locations of the 

OzNet stations K1-K7 and K10-11 (Smith et al., 2012) and the flux station (FS) are shown. Shaded 

simulation pixels highlight coincidence with available in-situ station data for: a) near-surface soil 

moisture (0-8 cm) and temperature (4 cm at OzNet sites, and 2 cm at FS); and, b) root-zone soil moisture 

(0-60cm). 
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7.1.1 AMSR-E SOIL MOISTURE PREPARATION 

The choice to use AMSR-E soil moisture data from descending (~2:00 am local time) satellite 

overpass observations was based on the evaluation study by Draper et al. (2009a) over south 

eastern Australia (incorporating the study region in this chapter), which showed it had lower error 

than data from ascending overpasses.  A 5-day moving average filter was applied to reduce random 

noise in the downloaded year-long AMSR-E moisture series, as done by Draper et al. (2009a).  

Most gaps in the once per day (at 2:00 am) series were consequently filled, except where there was 

fewer than two records within the 5-day averaging window (in which case the whole 5-day window 

period was left as a data gap).  Prior to assimilation, bias was removed between the noise-reduced 

AMSR-E soil moisture data, and CBM predictions without assimilation (from this point on referred 

to as Open-Loop_sp) for the top soil layer moisture state (0-2.2 cm), by matching data series means 

and standard deviations (as done in chapter 6: Eq. (6.2)).  Here the AMSR-E data series (for the 25 

km by 25 km pixel defining the study domain: Fig. 7.1) was rescaled so that the mean and standard 

deviation over the year-long experiment period matched that of the Open-Loop_sp moisture series 

(from the spatial average of predictions across all 5 km simulation pixels within the study domain). 

Fig. 7.2 illustrates the AMSR-E descending overpass (~2:00 am) moisture data series for the 

different stages in its preparation, from the original downloaded series to the final noise-reduced 

and rescaled series used for assimilation.  The uncertainty estimated for the rescaled AMSR-E data 

(Fig. 7.2), as used for data assimilation, was informed by the AMSR-E moisture evaluation study 

of Draper et al. (2009a).  They determined a Root Mean Square Difference (RMSD) of ~0.08 

vol/vol for original/unscaled descending overpass data for the Kyeamba Creek region using in-situ 

data from a number of OzNet stations.  Based on the rescaling applied here (Fig. 7.2), the standard 

deviation of the original AMSR-E moisture series (~0.12 vol/vol) was scaled down by a factor of 

2.4 to fit that of the Open-Loop_sp series (~0.05 vol/vol).  Applying this factor to the unscaled 

RMSD uncertainty estimate of ~0.08 vol/vol results in an uncertainty estimate of >0.03 vol/vol for 

the rescaled AMSR-E moisture series here – which was rounded up to the nearest whole percentage 

point of 0.04 vol/vol for use in data assimilation. 
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Figure 7.2: Different series of the daily (~2:00 am) AMSR-E soil moisture data (~1-2 cm) over the 

experiment period in preparation for data assimilation. The series of Open-Loop_sp soil moisture 

predictions from the CBM (0-2.2 cm) is also shown, representing spatially averaged predictions across 

the 25km by 25km study domain, as used for rescaling the AMSR-E series. 

7.1.2 SEBS LE AND H DATA CHECKING 

The SEBS estimates of instantaneous LE and H made available for this research are based on 

observations of the land surface (including skin temperature) from the AQUA satellite platform at 

~2:00 pm (local time) overpasses, and therefore correspond to ET active times.  Allowing for 

missing data for numerous days, there are a total of 157 days with 2:00 pm LE and H records over 

the 2005 experiment period, with a few pixels in the study domain missing data for some of these 

days.  Prior to assimilation, the SEBS data were checked against eddy covariance flux data to 

ensure that they were reasonable estimates.  The eddy covariance data provides the only 

independent direct measurements of LE and H in the study region and therefore comparison was 

only possible for a single 5 km SEBS pixel (see Fig. 7.1 with FS location marked). 

Qualitatively the SEBS LE and H estimates represent seasonal dynamics reasonably well (Fig. 

7.3).  There appears to be greater scatter within the plotted data sets for both fluxes in approximately 

the first ~150 days of the year, which is the warmer/drier (water limited) part of the year, and within 

which a few relatively large rainfall events occurred (up to ~20 mm in some days).  SEBS LE 

values are mostly higher than eddy covariance values across this period, being closer to Open-

Loop_sp predictions at times, while SEBS H values slightly are lower than eddy covariance values 

but appear better matched overall, compared with LE. 



132 

 

 

Figure 7.3: LE (left) and H (right) data from: Kyeamba Creek flux station measurements, SEBS 

estimates and CBM Open-Loop_sp predictions for the collocated 5 km simulation pixel (Figure 7.1). 

Plotted points are for the 76 2:00 pm time steps in 2005 for which records coincide in each data set. 

For the austral winter period (DoY ~150 to ~240), much of which is energy limited with soil 

moisture storage mostly at or near maximum (refer to Fig. 6.3), there is less scatter overall and 

smaller differences between the three data sets for both LE and H, compared with other parts of 

the year (Fig. 7.3).  This suggests that the different methods of quantifying LE and H are possibly 

most reliable during periods where water availability is not limited and LE is at or near its potential.  

Some of the largest differences for the year between the plotted datasets are in the spring/summer 

period from DoY ~240 to the end of the year, where evaporative demand increases eventually 

leading to depletion of the winter/spring soil moisture storage. 

Despite some obvious differences between the SEBS and eddy covariance data sets in Fig. 7.3, 

SEBS appears to realistically represent fluxes (considering the scale discrepancies of a ~200-300 

m measurement fetch vs a 5 km pixel) and therefore has potential to benefit LSM predictions 

through data assimilation.  From these data, the coefficient of determination (R2) between eddy 

covariance and SEBS LE is 0.55, compared to 0.38 between eddy covariance and Open-Loop_sp 

LE.  For H, the R2 between eddy covariance and SEBS is 0.60, compared to 0.57 between eddy 

covariance and Open-Loop_sp.  Therefore SEBS represents annual seasonal heat flux variations 

for 2005 slightly better than the Open-Loop_sp, based on the 76 coincident samples (Fig. 7.3) from 

the full 157 days with both LE and H SEBS data for the pixel collocated with the flux station. 

An important part of the year-long study period is the several days surrounding DoY 320, where 

eddy covariance LE values are at or near maximum and differences with Open-Loop_sp 

predictions are amongst the greatest for the year (Fig. 7.3).  The very high eddy covariance LE (and 

low H) compared to Open-Loop_sp here is thought to follow temporary groundwater elevation 

(from lateral recharge related to spikes in the flow of nearby Kyeamba Creek) which may have 
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provided water for LE, as discussed in chapter 6 (section 6.4).  Such a process is not represented in 

the CBM which only receives water input as rainfall forcing, hence it would explain the large 

discrepancy between field-observed and Open-Loop_sp fluxes.  SEBS LE (H) values are also 

greater (less) than Open-Loop_sp predictions for the days surrounding DoY 320 (with some 

closely matched to eddy covariance values).  The SEBS data therefore supports the interpretation 

of the Open-Loop/observation discrepancy from chapter 6 for this short period, reinforcing 

confidence in SEBS as containing useful information for the region.  If any groundwater interaction 

is only at the small/local scale within a few hundred metre range of Kyeamba Creek (no data is 

available to directly verify it or quantify its extent), the impacts may not be represented by the 5 

km scale of the SEBS data.  Therefore other factors may be contributing to the large differences 

between broader scale remotely sensed data and Open-Loop_sp around DoY 320 and following 

days, such as model inaccuracies related to depleting soil moisture at this time of year, coupled 

with the high vegetation cover and the complexities of vegetation heat flux calculations. 

The observation uncertainty value used for SEBS LE and H assimilation was 50 Wm-2, based on a 

survey by Kalma et al. (2008) of a range of remotely sensed heat flux validation studies.  In the 

absence of a number of independent data sets distributed across the study domain, as was the case 

for AMSR-E validation in the region by Draper et al. (2009a), it is difficult to confidently assess 

how appropriate this uncertainty value is for this product in this environment.  With 50 Wm-2 used 

for the main assimilation experiment, a number of additional assimilation runs were considered for 

a range of increasing observation uncertainty values (more detail is provided in the following 

section).  This was to examine the sensitivity of assimilation output to different uncertainty values 

for the specific SEBS data set used here. 

7.2 EXPERIMENTS AND METHODOLOGY 

This remotely sensed data assimilation study includes spatially distributed CBM simulations at 5 

km resolution, over the 25 km by 25 km AMSR-E pixel domain (Fig. 7.1), with: 

 No assimilation (Open-Loop_sp) – predictions are plotted for data comparisons in Figs. 

7.2 and 7.3 above; 

 Joint assimilation of SEBS LE and H products (LEH_Assim_sp); and, 

 AMSR-E near-surface soil moisture assimilation (SM_Assim_sp). 

All simulations were run with a 30 minute time step as determined by the 30 minute meteorological 

forcing data.  The Ensemble Kalman Filter (EnKF) assimilation algorithm, as described in chapter 
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3 (section 3.2) and applied in chapters 5 and 6 studies, was applied for LEH_Assim_sp and 

SM_Assim_sp.  The experiments here involved comparing predictions from the simulations listed 

above with the in-situ validation data (from eddy covariance and OzNet soil moisture stations: Fig. 

7.1), to assess assimilation impacts on CBM heat fluxes and state variables relative to Open-

Loop_sp predictions.  The specific variables assessed were mostly the same as for chapter 6 – LE, 

H, near-surface soil moisture (0-8 cm) and root-zone soil moisture (0-60 cm), while for soil 

temperature only the near-surface (~4 cm records for ~0-8 cm depth) was considered due to varied 

data availability for the OzNet stations in the study period.  Assessments were made using R2 and 

Root Mean Square Error (RMSE) metrics between simulation output and validation data, for 

summarising explained variance and quantifying overall differences respectively. 

The first step was to set-up meteorological forcing and spatial parameter data for model input for 

the 5 km simulation pixels across the study domain – assigning spatially varying input data values 

to pixels is described in the first few paragraphs of section 7.1.  No lateral/horizontal interaction 

was implemented between simulation pixels for forcing data or model processes, with modelling 

strictly representing vertical heat and water exchanges for each pixel using the same meteorological 

forcing. 

All of the simulations – Open-Loop_sp, LEH_Assim_sp and SM_Assim_sp – were initialised with 

the same set of state variable values obtained from spinning-up the CBM.  Spin-up consisted of 

repeated yearly simulations for each pixel with the 2005 experimental forcing data, until the 

differences between soil moisture and soil temperature state values for the initial/final time steps 

of the year were <0.001 vol/vol and <0.1 respectively.  The number of spin up years varied between 

pixels – ranging from 6 to 12 years – due to spatially varying parameter values. 

The approach to generating ensembles of simulations in implementing the EnKF was identical to 

that for experiments in chapter 6 and is described in section 6.5.3.  With the spatially distributed 

modelling here, state perturbations (for initial conditions and covariance inflation) were generated 

separately for each 5 km simulation pixel in all assimilation experiments. 

7.2.1 SEBS LE AND H ASSIMILATION 

SEBS data and CBM simulation pixels have identical 5 km resolution coverage (shown in Fig. 7.1 

with grey boundaries).  The full series of available SEBS LE and H data for the experiment year 

(157 once per day records at 2:00 pm local time) were jointly assimilated pixel-for-pixel into the 

CBM over the study domain for LEH_Assim_sp.  Innovations were calculated as differences 

between SEBS and CBM LE and H, and soil moisture and temperature states for all six CBM soil 

layers were updated.  As previously mentioned, the main LEH_Assim_sp experiment was 
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performed with an observational uncertainty value for SEBS data (both LE and H) of 50 Wm-2.  

Assessments of the predicted states and fluxes from this simulation are compared with assessments 

of SM_Assim_sp predictions. 

A number of repetitions of LEH_Assim_sp were also carried out separate to the main experiment, 

to examine the impact of different SEBS uncertainty values on improvements in LE and H 

predictions.  This was done repeatedly with observational uncertainty increased by 10 Wm-2 each 

time until there was no improvement in LE and H prediction. 

7.2.2 AMSR-E SOIL MOISTURE ASSIMILATION 

The de-noised and rescaled series of 2:00 am (local time) AMSR-E soil moisture data that were 

assimilated for SM_Assim_sp are displayed in Fig. 7.2.  As described in section 7.1.1, temporal 

averaging filled some gaps in the original series for days with missing data, while gaps remain 

where the number of consecutive days with missing data was too large for the 5-day averaging 

window (near the end of the year scattered between ~DoY 280 to 330).  There are a total of 326 

records in the AMSR-E data set that were assimilated using an observational uncertainty of 0.04 

vol/vol. 

Fig. 7.1 illustrates the discrepancy between AMSR-E data and simulation spatial resolutions, and 

comparisons in Fig. 7.2 are made using spatially averaged Open-Loop_sp predictions.  Innovations 

for the EnKF were therefore calculated between AMSR-E values (representing ~1-2 cm depth) for 

the single 25 km by 25 km pixel (the study domain), and the spatial average of all 5 km by 5 km 

CBM moisture predictions (for the 2.2 cm deep top soil layer) within it.  Updates to soil moisture 

and temperature state variables in CBM’s six layers, based on the single innovation for the whole 

study domain, were subsequently applied to the individual 5 km simulation pixels. 

7.3 DATA ASSIMILATION RESULTS 

Results from the assimilation experiments are presented separately for the different predictions that 

are of interest – firstly for LE and H, followed by soil moisture and then soil temperature.  Graphical 

time series comparisons between validation data and outputs from Open-Loop_sp, LEH_Assim_sp 

and SM_Assim_sp are included, as are the R2 and RMSE quantities for differences between 

assimilation outputs and validation data, and differences between Open-Loop_sp outputs and 

validation data. 
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7.3.1 LE AND H PREDICTION 

Assessing LE and H predictions relied on the eddy covariance data from the Kyeamba Creek flux 

station, hence the focus here is solely on predictions from the single simulation pixel within which 

it is located (Fig. 7.1).  There are a total of 2,298 irregularly spaced 30 minute records for both LE 

and H in the eddy covariance validation series over the experiment period.  The time series outputs 

from each simulation (also 30 minute time steps) were sampled to match the validation series, 

resulting in 2,298 temporally coincident records across all data sets with which comparisons were 

made.  Weekly averages were calculated for each data set from the matching 30 minute records to 

enable clearer qualitative comparisons in annual time series plots (Fig. 7.4).  For quantitative 

comparisons, R2 and RMSE were calculated using all 2,298 matching records, with the results 

summarised in Table 7-1. 

From Fig. 7.4, LE and H assimilations (LEH_Assim_sp) had a relatively minor impact on LE and 

H predictions compared with Open-Loop_sp for most of the year (week 1 to approximately week 

44 (DoY ~305)).  The LE series from LEH_Assim_sp shows slightly increased over-prediction 

relative to eddy covariance data for most of the period between weeks 11 and 24 (DoY ~75 to 

~165), consistent with SEBS LE over-estimation for this period (Fig. 7.3).  The impact on H in this 

same period appears smaller overall with both Open-Loop_sp and assimilation predictions being 

in better agreement with eddy covariance data than for LE, reflecting the closer match between 

SEBS and Open-Loop_sp H data here. 

The greatest impact in the year from LEH_Assim_sp, for both fluxes, is between weeks 44 and 48 

(DoY ~305 to ~335).  This is the period within which differences between eddy covariance 

observations and Open-Loop_sp are greatest, with groundwater interaction (which CBM does not 

represent) interpreted as a possible contributor to large LE observations, as discussed in section 

7.1.2 and in chapter 6 (section 6.4).  The plots in Fig. 7.4 show clear improvements to LE and H in 

this period from assimilating the SEBS data. 

Fluxes from SM_Assim_sp are also a relatively close match to those from Open-Loop_sp for most 

of the year, in this case from week 1 to approximately week 36.  There are some slight 

improvements for the latter half of autumn (week ~16 to ~22), which is the driest part of the year 

at the flux station.  During this period assimilation of soil moisture led to the best representation of 

eddy covariance data of the three simulations.  The SM_Assim_sp fluxes are degraded for part of 

spring, most prominently from weeks ~40 to ~44 with a sharp reduction in LE (increase in H) 

coinciding with a large under-estimation of Open-Loop_sp soil moisture by AMSR-E data (see 

DoY ~280 to ~285 in Fig. 7.2).  Despite gaps in the AMSR-E data series over the following few 

weeks, SM_Assim_sp then mostly improved the fluxes from week ~44 to the end of the year. 
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Figure 7.4: Weekly averaged LE (left) and H (right) from the three main simulations and eddy 

covariance observations, for the 5 km simulation pixel collocated with the flux station (Figure 7.1). 

Weekly averages were calculated with the 2,298 matching time series records in each data series. 

Both LEH_Assim_sp and SM_Assim_sp had the strongest impact on modelled fluxes in the final 

few months of the year from austral spring to summer, where moisture storage in the soil profile 

declines from its annual maximum.  The greatest improvements from both approaches are between 

weeks ~44 to ~48, where eddy covariance and Open-Loop_sp discrepancies are greatest and where 

there is some evidence for groundwater interaction (~DoY 320 at least locally around the flux 

station site as previously discussed).  With reference to Fig. 7.4, it is the improvements in this short 

period which contribute to the bulk of the overall annual improvement to flux predictions – to LE 

from both LEH_Assim_sp and SM_Assim_sp, and to H from LEH_Assim_sp – as indicated by 

the quantitative results in Table 7-1. 

The short period of degraded flux outputs from SM_Assim_sp (centred on weeks ~40 to ~44) is 

an obvious limitation on the level of improvement to LE in terms of R2 and RMSE.  While for H 

it appears to be the main factor in the overall poor results from these metrics, where the degraded 

prediction is more pronounced for slightly longer (from week ~36) than for LE.  The negative 

impacts in this period are presumably related to the large footprint of AMSR-E and its under-

estimation in relation to the spatially aggregated CBM predictions across the 25 km domain (e.g. 

DoY ~280-285 in Figure 7.2), which may not represent local conditions in the vicinity of the flux 

station.  Alternatively, error in the AMSR-E data might be greater for this period, in which case 

the single observational error term used for the whole experiment period may not be appropriate.  

However this cannot be determined from any of the data available for this research. 

Experiments examining the use of different SEBS data uncertainty values for LEH_Assim_sp 

consisted of four repeated simulations, additional to the main simulation using 50 Wm-2.  Fig. 7.5 

illustrates the change in R2 and RMSE scores for the full year predictions of LE and H from the 
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various increased uncertainty values.  These results indicate that SEBS data are still valuable for 

improving both LE and H prediction via assimilation, as implemented in this study, with 

observational uncertainty of up to 80-90 Wm-2.  It is noted that improvements with the larger 

uncertainty values examined here are mainly due to impacts made in relation to the very large 

discrepancy between Open-Loop_sp and observed data between weeks ~44 and ~48 (Fig. 7.4). 

Table 7-1: R2 and RMSE for predicted LE and H time series from the main simulations relative to 

eddy covariance data. These were calculated from the 2,298 matching 30 minute records between data 

sets, for the single simulation pixel collocated with the flux station. Values indicating greatest 

improvement over Open-Loop_sp are in bold, and degraded impact is indicated by grey italics. 

 

 

 

Figure 7.5: R2 (left) and RMSE (right) results for predicted LE and H over the experiment period, from 

repeats of LEH_Assim_sp using progressively increased observational uncertainty values – above the 

50 Wm-2 used in the main experiment simulation that was assessed against SM_Assim_sp. Horizontal 

lines mark the R2 and RMSE for Open-Loop_sp predictions, representing the limit beyond which (below 

for R2 and above for RMSE) the LEH_Assim_sp results indicate no improvement. 

 

 
LE H 

R2 RMSE (Wm-2) R2 RMSE (Wm-2) 

Open-Loop_sp 0.56 81.5 0.55 73.6 

LEH_Assim_sp 0.69 70.8 0.60 66.9 

SM_Assim_sp 0.68 69.3 0.53 72.6 
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7.3.2 SOIL MOISTURE PREDICTION 

As mentioned previously, the availability of in-situ soil moisture data from OzNet stations over the 

experiment period differs for the near-surface (0-8 cm) and root-zone (0-60 cm: the depth average 

of 0-30 cm and 30-60 cm measurements), with data available from six and ten stations respectively 

(see Fig. 7.1).  Validation involved depth-weighted averaging soil moisture state predictions for 

relevant CBM soil layers to match the in-situ data depths.  For 0-8 cm the top two CBM soil layers 

(2.2 and 5.8 cm thick respectively) were averaged, while for 0-60 cm the averaging calculation 

used the top three soil layers (2.2, 5.8 and 15.4 cm thick respectively: 23.4 cm in total) and a 

fraction (36.6/40.9) of the fourth layer from the surface (which is 40.9 cm thick).  Furthermore, 

where there are more than one validation data series available within the same 5 km simulation 

pixel they were averaged to produce a single validation series for the pixel – this was done for 

stations K4 and K5 (for near-surface and root-zone data), and for station K10 and the flux station 

(for root-zone data, with near-surface data only available for the flux station site). 

Time series comparisons for soil moisture are presented in Fig. 7.6 with plots of available near-

surface and root-zone data for the simulation pixels that are collocated with validation data (greyed 

pixels in Fig. 7.1).  The plots are of daily averaged (midnight to midnight) data, for which rescaling 

has been applied to match the means and standard deviations of simulation output series with in-

situ observed series, in order to minimise annual biases between them resulting from soil parameter 

and structural errors in the model (as done with results in chapter 6).  The daily averaged and 

rescaled data were used to calculate R2 and RMSE for quantitative validation over the experiment 

year.  Table 7-2 summarises average values for these metrics across all of the simulation pixels 

relevant to the validation. 

There were no overall improvements to soil moisture predictions for the year from either 

LEH_Assim_sp or SM_Assim_sp, with near-surface and root-zone soil moisture predictions 

degraded in both experiments according to averaged R2 and RMSE.  While these metrics also 

indicated degraded results for all of the individual pixel validations from both experiments.  The 

negative impacts from LEH_Assim_sp are less pronounced than from SM_Assim_sp, as evident 

in most of the time series plots (Fig. 7.6). 

The flux station pixel results in Fig. 7.6 (associated with OzNet K10 for the near-surface and OzNet 

K10 & FS for the root-zone) show that LEH_Assim_sp moisture predictions track those from 

Open-Loop_sp fairly closely for most of the year, similar to heat flux predictions.  The overall poor 

results from this simulation are due mainly to short periods of degraded soil moisture within the 

first ~160 days of the year.  This is presumably related to a few large differences between SEBS 

and modelled fluxes in this period (mainly the earlier half of it – see Fig. 7.3) where some 
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SEBS/Open-Loop_sp differences are as high as 100-200 Wm-2.  Large rainfall events occurred at 

the flux station site for a few days scattered across this period.  With the root-zone moisture here 

at or near its minimum for the year, the main effect of the high rainfall events was rapid wetting 

and drying of the near-surface soil (see in-situ moisture in Fig. 7.6). 

Most notable for the flux station pixel is the improved soil moisture prediction from 

LEH_Assim_sp between DoY ~280 to ~320, for both the near-surface and root-zone.  Here the 

moisture storage in the soil profile depletes from near the winter/spring maximum, with Open-

Loop_sp predicting the depletion slightly too early compared to in-situ data, resulting in under-

estimated moisture (Fig. 7.6).  It is an important period within which groundwater is thought to 

have contributed to root-zone soil moisture (around DoY ~311 or soon after, see section 6.4 in 

chapter 6), which could not be represented by Open-Loop_sp.  The scale of any such groundwater 

interaction is unknown, therefore the 5 km scale SEBS data may not necessarily contain strong 

information related to it.  This implies the improved moisture here from LEH_Assim_sp could also 

be from correcting Open-Loop_sp prediction error related to model structure and parameter errors. 

Degradation of soil moisture from SM_Assim_sp varies across the different plots in Fig. 7.6.  In 

the first ~160 days, where moisture is mainly near its minimum for the year, there are clearly some 

poor root-zone results with examples of positive bias relative to Open-Loop_sp (e.g. K1, K2 and 

K3).  A major contribution to the overall degraded results is the sharp reduction in soil moisture 

for most of the validated pixels around DoY ~280, which is where AMSR-E under-estimates 

Open-Loop_sp in Fig. 7.2.  This, along with other incidences of sharp impacts from SM_Assim_sp 

in some plots, indicates possible issues with error representation that result in too much weight 

given to short-term variations in AMSR-E data, along with some deeper moisture state updates 

being too sensitive to the near-surface impacts.  Specifically, AMSR-E error might be larger for 

some periods and not be well represented by the single observational uncertainty value used (0.04 

vol/vol).  For the flux station pixel (FS and K10&FS plots) SM_Assim_sp improved moisture 

prediction briefly between DoY~300 and ~330, which approximately coincides with some 

improvement it made to LE and H (see weeks ~44-48 in Fig. 7.4). 
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Table 7-2: R2 and RMSE for predicted soil moisture time series from the main simulations, relative to 

in-situ OzNet moisture data. These are averages of values calculated for all of the individual simulation 

pixel results plotted in Figure 7.6. Values indicating greatest improvement over Open-Loop_sp are in 

bold, and degraded impact is indicated by grey italics. 

 

 

 
Near-Surface Moisture (0-8 cm) Root-Zone Moisture (0-60 cm) 

R2 RMSE (vol/vol) R2 RMSE (vol/vol) 

Open-Loop_sp 0.76 0.048 0.84 0.027 

LEH_Assim_sp 0.74 0.051 0.78 0.032 

SM_Assim_sp 0.66 0.059 0.48 0.050 
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Figure 7.6: Daily averaged (midnight to midnight) time series plots of available 0-8 cm near-surface 

(left) and 0-60 cm root-zone (right) soil moisture data from: OzNet in-situ observations, and the three 

main simulations performed for this study. All simulated data series have been rescaled by matching 

their means and standard deviations with those of the observed series, for bias-free comparisons. (Plots 

continue on next page). 
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(Figure 7.6 continued) 
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7.3.3 SOIL TEMPERATURE PREDICTION 

As with soil moisture, preparation of soil temperature predictions for validation involved averaging 

them over depth ranges where necessary so they are comparable to in-situ observations.  For 

comparisons with the 4 cm deep measurements from OzNet sites K1 to K5, the depth-weighted 

average between the top CBM soil layer temperature (2.2 cm thick) and temperature of the second 

layer from the surface (5.8 cm thick) were used (for a 0-8 cm depth average, with 4 cm the mid-

point).  While for the 2 cm deep temperature measurements from the flux station site, direct 

comparisons were made with temperature of the top CBM soil layer.  Temperature data were 

available from both K4 and K5 stations within the same 5 km simulation pixel (Fig. 7.1), hence 

the average of the two series (K4&5) were used for validating predictions for that pixel. 

The final preparation of simulated and observed temperature series for validation also followed the 

same procedure as applied for soil moisture – daily averaging of each series (midnight to midnight), 

and in order to minimise bias, rescaling the annual mean and standard deviations of the simulated 

series to match those of the annual observed series.  Time series plots of temporally averaged and 

rescaled series are shown in Fig. 7.7.  While R2 and RMSE metrics summarising the performance 

of simulations relative to observations are shown in Table 7-3 (which are averages of R2 and RMSE 

calculated for the individual pixels corresponding to the separate plots in Fig. 7.7). 

All of the time series comparisons and quantitative results, in Fig. 7.7 and Table 7-3 respectively, 

indicate an overall negligible impact on near-surface temperature predictions from LEH_Assim_sp 

and a minor impact from SM_Assim_sp.  The most noticeable impacts are increased/degraded 

temperature from SM_Assim_sp in some plots for a short period around DoY ~280, coinciding 

with the reduced/degraded soil moisture prediction (Fig. 7.6) related to the dip in the assimilated 

AMSR-E soil moisture estimates (Fig. 7.2).  The only noticeable impacts from LEH_Assim_sp  

Table 7-3: R2 and RMSE for predicted near-surface soil temperature time series from the main 

simulations, relative to in-situ OzNet temperature data. These are averages of values calculated for all 

of the individual simulation pixel results plotted in Figure 7.7. Values indicating greatest improvement 

over Open-Loop_sp are in bold, and degraded impact is indicated by grey italics. 

 

 

 

 

 
Near-Surface Temperature 

R2 RMSE (°C) 

Open-Loop_sp 0.86 2.2 

LEH_Assim_sp 0.86 2.1 

SM_Assim_sp 0.83 2.4 
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are very minor, with a slight increase/improvement around DoY ~40 in some plots, and very slight 

decrease/improvement around DoY ~280 (opposite to the increased/degraded impact from 

SM_Assim_sp here for some plots). 

 

 

Figure 7.7: Daily averaged (midnight to midnight) time series plots of available near-surface soil 

temperature data from: OzNet in-situ observations (4 cm), Kyeamba Creek flux station (FS) site 

observations (2 cm), and the three main simulations performed for this study. All simulated data series 

have been rescaled by matching their means and standard deviations with those of the in-situ observed 

series, for bias-free comparisons. 
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7.4 DISCUSSION 

Interpretations and possible implications of key results from the previous section are discussed 

here.  Fig. 7.8 is included for reference, providing a summary of the overall change in RMSE 

between predicted and observed series as a consequence of the different data assimilation 

approaches. 

The most important result from this study is that the remotely sensed heat flux data products were 

capable of positively impacting on CBM predicted heat fluxes via data assimilation, as was a 

remotely sensed near-surface soil moisture product.  The reduction in RMSE from assimilation 

relative to Open-Loop_sp predictions (Fig. 7.8) shows clear improvements to LE for the single 

simulation pixel for which validation was possible, with reductions of ~13% and 15% from 

LEH_Assim_sp and SM_Assim_sp respectively.  While the RMSE for H was reduced by ~9% 

from LEH_Assim_sp but only ~1% from SM_Assim. 

The bulk of the annual improvement to heat fluxes, from both assimilation approaches, can be 

attributed to the period of DoY ~300-330 (~week 44-48; Fig. 7.4) where Open-Loop_sp 

predictions were poorest, under-estimating eddy covariance LE observations by nearly 200 Wm-2 

and over-estimating H by nearly 100 Wm-2 (for weekly averages).  This period is interesting due 

to the evidence of groundwater interaction (somewhere in the days post DoY ~311, as discussed 

in chapter 6) which is not represented in the CBM, providing a possible explanation for the poor 

Open-loop_sp predictions at least locally in the vicinity of the flux station site. 

 

Figure 7.8: Changes in RMSE from the assimilation experiment outputs compared to RMSE for Open-

Loop_sp outputs. With RMSE calculated relative to in-situ validation data for the variables of interest. 

RMSE for each output variable are averages of values calculated for individual validation sites across 

the study domain. A positive change indicates improvement to the predictions over the experiment year, 

and a negative change indicates degradation. 
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Any groundwater interaction is thought to be linked to lateral recharge from very large but isolated 

flow increases in Kyeamba Creek, which runs approximately north/south through the centre of the 

study domain shown in Fig. 7.1, and only a few hundred metres west of the flux station as shown 

in Fig. 6.1 in chapter 6.  This would therefore have had to occur for a considerable area along the 

length of the creek valley in order for the broad scale remotely sensed data (5 km resolution for 

heat fluxes and 25 km for soil moisture) to contain any related information (namely, from increased 

root-zone soil moisture via capillary action). 

There is the possibility that remotely sensed data here have large errors and that some 

improvements to LE and H from data assimilation are due to chance, which is not possible to test 

given the spatial discrepancies between >=5 km resolution spatial data and the few available 

independent field measured data sets at the point scale.  However, testing LEH_Assim_sp with a 

series of increasing SEBS data uncertainty values, showed improvements to heat flux predictions 

could be made with uncertainty up to 80-90 Wm-2.  This suggests there is a real anomaly in the 

SEBS heat fluxes relative to Open-Loop_sp predictions (at least for the period of DoY ~300-330 

or week ~44-48; Fig. 7.4), which is supported by other data sources (e.g. eddy covariance) as 

described throughout this chapter and in chapter 6. 

Soil moisture predictions from both assimilation experiments show some improvements for the 

flux station site from DoY ~300 leading up to around DoY ~320, where the strongest 

improvements to heat flux predictions are made.  It is unlikely that broader scale remotely sensed 

data (especially 25 km for AMSR-E) would contain considerable groundwater related information 

here in relation to recharge from high flows in Kyeama Creek.  Therefore prediction errors related 

to model physics and parameters would likely play a role in the large discrepancies between Open-

Loop_sp predictions and the remotely sensed products for this period leading into summer with 

high grass cover and depleting soil moisture.  Aside from this period, soil moisture prediction was 

degraded overall in both experiments and across all of the pixels that were validated (Figs. 7.6).  

This was especially the case for SM_Assim_sp where the RMSE for near-surface and root-zone 

moisture is ~24% poorer and ~89% poorer respectively compared to Open-Loop_sp predictions, 

while for LEH_Assim_sp the RMSE is ~6% poorer and ~19% poorer for the near-surface and 

root-zone moisture respectively (Fig. 7.8). 

Better soil moisture results were expected from SM_Assim_sp than those obtained here.  The poor 

impacts on soil moisture vary over the annual experiment period (Fig. 7.6) and a number of 

possible factors may have contributed to the overall strongly degraded predictions.  One of these 

factors possibly relates to the wilting point parameter in the CBM defining a rigid lower boundary 

for moisture state prediction.  This is illustrated in the near-surface moisture series for stations K1, 

K2 and K3 over drier periods (e.g. the first ~160 days of the year), where in-situ data minimums 
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drop below the fixed wilting point boundary in some instances (Fig. 7.6).  When the mean of 

predicted moisture state ensembles for the EnKF approaches wilting point, any ensemble member 

values which would be less than the prescribed wilting point, as a consequence of applying 

Gaussian perturbations, will be set to the wilting point value by the CBM.  The result can be a 

clumping of ensemble members with values at or close to wilting point, contributing to a positively 

biased ensemble mean away from this minimum moisture boundary.  This may have contributed 

to biased impacts on moisture predictions in the earlier drier part of the year for K1, K2 and K3 

root-zones.  In addition, apart from the technical assimilation issues, in reality soil evaporation can 

cause drying below wilting point; however this is prevented in the model physics. 

Other negative impacts from SM_Assim_sp on predicted soil moisture include some sharp and 

overly strong updates.  The large negative impact at around DoY ~280 (which also limited the 

overall annual improvements SM_Assim_sp made to both heat fluxes) may relate to poorer 

AMSR-E estimation here, or to near-surface moisture variability at small spatial scales in which 

case there is the possibility of a mismatch in the moisture representation across the different spatial 

scales of individual 5 km simulations, 25 km AMSR-E data and the local/point scale in-situ 

measurements.  Again, this cannot be accurately determined from the data available for this study.  

However this particular impact and some overly strong impacts of higher frequency variation 

(especially for the root-zone) indicate that more careful treatment of model error representation is 

required for future work – both in terms of achieving covariances between the predicted and the 

deeper moisture states that lead to more realistic state updates, and more sophisticated 

observational error representation (i.e. reflecting non-stationarity). 

The overall negligible impact on near-surface soil temperature from LEH_Assim_sp highlights the 

minimal role it has in determining heat fluxes in the CBM where there is considerable vegetation 

cover, with the most direct links soil temperature has to LE and H being via the soil components 

of heat flux calculations.  For days around DoY ~320 in the soil temperature plot for the flux station 

pixel (Fig. 7.7; denoted FS) where heat flux improvements were greatest (Fig. 7.4; weeks ~44-48) 

and vegetation cover high (LAI of 3.0), there is little noticeable impact on soil temperature.  The 

greatest impact on soil temperature in most of the time series plots (Fig. 7.7) is from SM_Assim_sp, 

with degraded/increased temperature impacts coinciding with the decreased/degraded moisture 

and LE impacts around DoY ~280 (see also Fig. 7.8). 

7.5 CONCLUSIONS 

Assessing the assimilation of spatial remotely sensed data products is inherently difficult due to 

the lack of spatially distributed in-situ data for assessing remotely sensed data uncertainty or 
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validating assimilation results.  Here it was demonstrated that instantaneous LE and H products 

derived from the SEBS algorithm for ~2:00 pm each day, using remotely sensed skin temperature 

and other ancillary data from the AQUA platform, could improve heat flux predictions from a 

LSM via assimilation, based on validation for a single simulation pixel.  While the ability to 

accurately assess standard published uncertainty estimates for assimilated data products is limited 

without adequate independent data, in this particular study the LE and H products still had 

beneficial impacts when assimilated with error estimates of 80-90 Wm-2. 

Assimilating an AMSR-E near-surface soil moisture product also improved heat flux predictions.  

But it strongly degraded soil moisture predictions for all validation sites over the experimental year, 

which in turn is likely to have hindered greater improvement to heat fluxes.  The effects of sub-

optimal error representation, for AMSR-E and model states, and spatial scale discrepancies 

between assimilated data and simulation outputs are likely to be factors in the poor results.  Greater 

focus on these issues is therefore required to achieve better performance for soil moisture 

prediction. 

Results for soil temperature support those from chapter 6, where it is clear that soil temperature 

generally does not play as much of a direct role in heat flux predictions as soil moisture state 

changes do where vegetation cover is high. 
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8 FINAL DISCUSSION AND CONCLUSIONS 

This thesis has covered three distinct yet complimentary LSM data assimilation studies.  When 

considering the findings of each in combination, a clear contribution towards understanding 

the requirements for better predictive skill of key land surface water and energy balance 

processes, using both models and observed information, has been developed. 

8.1 SUMMARY OF ASSIMILATION STUDIES 

8.1.1 SYNTHETIC DATA ASSIMILATION 

The synthetic assimilation study in chapter 5 involved a series of short proof-of-concept 

experiments, where CSIRO Biosphere Model (CBM) derived synthetic observations of data types 

that are available from remote sensing were assimilated over a ~3 month simulation period.  The 

ability of LE and H assimilation to improve LE and H predictions was examined, in comparison to 

assimilating near-surface soil moisture and skin temperature. 

Synthetic observations were sampled from outputs of a CBM “truth” simulation and assimilated 

into a “degraded” simulation, with assimilation results assessed based on how closely they 

retrieved the “truth” output series.  The “degraded” simulation was set-up using different inputs to 

those used for the “truth”.  This included degraded initial state values (extreme wet soil moisture 

and warm soil temperature by comparison), different values for key soil hydraulic parameters and 

LAI, rainfall data measured at an alternate site ~5 km distant, and for all other forcing variables a 

perturbed series of the “truth” data.  The EnKF implementation was based on simulating the 

“degraded” scenario using ensembles of perturbations generated for initial state conditions, and 

forcing variables to represent error ranges for each.  At assimilation update time steps, the synthetic 

observations were perturbed once before ensembles were generated to represent their respective 

measurement errors.  This was guided by information from the literature on typical error 

characteristics for the remotely sensed products that each data type represented. 

Synthetic LE, H and skin temperature observations, analogous to data from remotely sensed 

thermal infrared sensors, were assimilated on two different temporal scales – once every fortnight 

to represent using data from Landsat thermal imagery, and twice daily at 10 am and 2 pm (local 

ET active times) to represent using data from MODIS.  Near-surface soil moisture observations 

were assimilated once every three days as an approximation of SMOS repeat coverage. 
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Results showed that assimilation frequency was important, with the twice daily assimilation of 

thermal related data types at approximate MODIS overpass times producing better LE and H 

predictions than for the ~fortnightly frequency corresponding to Landsat overpasses. The other 

major result was that assimilating LE and H at the twice daily MODIS frequency was roughly 

comparable to skin temperature assimilation (at the same frequency).  The LE and H assimilation 

reduced the RMSE for LE prediction by 78% compared with no assimilation (“degraded” series), 

while the RMSE reduction for H from LE and H assimilation was 66%.  Reductions in RMSE for 

both heat flux predictions from skin temperature assimilation were within 1% of the reductions 

from LE and H assimilation. 

Compared with assimilating thermal related data types on the twice-daily time scale, near-surface 

moisture assimilation improved LE to a lesser degree (with 74% reduction in RMSE compared to 

no assimilation) despite it clearly producing the best root-zone soil moisture retrieval.  While 

improvements to H were similar, with the reduction in RMSE within 1% of the reductions from 

both of the thermal related data assimilation experiments.  Skin temperature assimilation produced 

the best retrieval of the “truth” root-zone soil temperature.  These percentage values of relative 

change in RMSE were calculated compared to the RMSE values between Open Loop outputs and 

the “truth” which were not presented in the original published version of the paper (RMSE between 

Open Loop outputs and the “truth” for each variable of interest is included in the caption for Fig. 

5.6 in this thesis). 

This proof-of-concept study therefore demonstrates the potential value of LE and H data 

assimilation in producing optimal LE and H predictions.  The comparable level of improvement to 

these predictions from assimilating skin temperature is an important result from a remote sensing 

perspective, given that instantaneous LE and H data products would be derived from skin 

temperature.  It was also a valuable study in establishing an assimilation methodology for the CBM, 

being the first published sequential data assimilation study with this model.  An obvious limitation 

is that the synthetic observations are not truly independent, having all been derived from the same 

CBM simulation.  Hence any relationship that the near-surface soil moisture, heat fluxes and skin 

temperature “observations” share would be a function of the formulations of the model that they 

are assimilated into. 

The level of complexity of this study was also limited.  The ~3 month experimental period, with 

minimal vegetation cover (LAI < 0.4), did not cover key seasonal variations such as major changes 

in root-zone profile soil moisture storage and vegetation cover.  The single column point scale 

simulations means that spatial discrepancies between different remotely sensed products – as 

represented by synthetic observations – were ignored.  Moreover, idealised temporal resolutions 

for data related to thermal remote sensing (heat fluxes and skin temperature) were also used, 
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consisting of the maximum number of potential observations without factoring the effects of cloud 

interference. 

8.1.2 ONE-DIMENSIONAL FIELD DATA ASSIMILATION 

Some of the limitations with the synthetic-twin assimilation study were addressed in the one-

dimensional field data study carried out for the Kyeamba Creek flux station site (Chapter 6).  

Importantly, the assimilation used real data that was measured in-situ with different instruments, 

so the observed series for each data type are mostly independent of each other – one minor 

exception being that the measured outgoing longwave radiation used to calculate skin temperature 

was also used together with a number of other datasets in correcting eddy covariance data (to close 

the energy balance).  The use of real data also meant that model structural errors could influence 

the results.  The simulation experiments spanned the full seasonal cycle over a one-year period, 

and the LE, H and skin temperature observations were assimilated on more realistic remote sensing 

time scales with data series filtered for cloudy conditions. 

Observational data series for assimilation were sampled from in-situ measurements to approximate 

remote sensing time scales.  For LE and H (from eddy covariance data) and skin temperature (from 

applying the Stefan Boltzmann equation using outgoing longwave radiation data), the sampling 

was done according to approximate MODIS thermal infrared local overpass (ET active) times at 

~10:00am and ~2:00pm, followed by filtering for cloud cover.  Near-surface soil moisture (from 

0-8 cm reflectometry probe data) were sampled for the ~2:00am (descending) AMSR-E local 

overpass time.  To remove annual state variable model/observation bias prior to data assimilation, 

the sampled soil moisture series annual mean and standard deviation were rescaled to match that 

of the CBM predicted series without assimilation.  This was an important extension to the 

assimilation approach in the synthetic study that was necessary to meet the underlying assumptions 

of the EnKF. 

In addition to repeating the combined LE and H assimilation, skin temperature assimilation, and 

near-surface soil moisture assimilation applied in the synthetic study, other multiple data 

assimilation scenarios were also examined: combined LE, H and skin temperature data; and 

combined LE, H, skin temperature and near-surface soil moisture data.  Ensembles of initial state 

conditions and meteorological forcing inputs (representing errors estimated from differences 

between flux station site data and ~30 km distant Bureau of Meteorology station data) were 

generated to produce prediction ensembles for the EnKF.  State ensemble inflation was also applied 

in this study with perturbations added to a-priori ensemble members at EnKF analysis time steps.  

To represent damped state error with deeper/thicker soil layers, the standard deviations of 

perturbations used for inflating each CBM soil layer state were a fraction of the standard deviations 
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applied for the top-most soil layer, based on the relative thicknesses between each soil layer and 

the top-most soil layer. 

Assimilation results were validated against independent site measured data series of root-zone soil 

moisture, near-surface and root-zone soil temperature, and ET.  The ET validation series was 

constructed using local data on rainfall and changes in root-zone moisture storage, as a fortnightly 

data set that was independent of the eddy covariance series (used for assimilation).  Some results 

support findings from the synthetic-twin study, such as LE and H assimilation producing strong 

ET improvements (20% reduction in RMSE compared to no assimilation), exceeding 

improvements made from skin temperature assimilation (10% reduction in RMSE compared to no 

assimilation) and near-surface soil moisture assimilation (14% reduction in RMSE compared to no 

assimilation). The soil moisture assimilation produced the best overall root-zone soil moisture 

prediction.  Combined skin temperature and near-surface soil moisture assimilation produced the 

best overall ET prediction by a small margin (23% reduction in RMSE compared to no 

assimilation). 

Despite the strong ET improvement from LE and H assimilation, the slightly better ET prediction 

from assimilating skin temperature together with near-surface soil moisture in this study again 

raised the question of whether LE and H assimilation is worthwhile from a remote sensing 

perspective, especially given that these data would need to first be derived from skin temperature.  

The combined skin temperature and near-surface soil moisture assimilation experiment also 

balanced improvements to ET with improvements to soil moisture and temperature states.  This 

implies that assimilating skin temperature and near-surface soil moisture together may be the most 

suitable for simultaneously improving LSM states and diagnostic fluxes. 

With regard to soil temperature states, there is no direct link with the vegetation transpiration 

component of fluxes calculated by the CBM.  Therefore impacts on soil temperature for the latter 

part of the year where vegetation cover was high had no direct effect on flux predictions.  The top-

most soil layer temperature is involved in calculations for soil LE and H contributions, and 

therefore earlier in the year where vegetation cover is lowest, assimilation impacts on soil 

temperature would have had some impact on total heat flux predictions. 

The late spring to early summer period was of particular interest in this study.  During this period 

the CBM predictions of ET were very low relative to validation data, with the differences between 

the two datasets at their greatest for the year.  Assimilating eddy covariance heat fluxes strongly 

improved ET in this period, with skin temperature and near-surface soil moisture assimilation also 

making clear improvements.  This supports the interpretation of poor heat flux predictions from 

the model during this period.  Spikes in discharge data for Kyeamba Creek (flowing ~300 m from 
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the flux station), and in soil moisture sensor records below the root-zone indicate that temporary 

interaction between the root zone and groundwater might have occurred in this period.  

Consequently, the effects of any water supplied to the soil root-zone via capillary effects would be 

captured in the different field measurements, but would not be represented by the CBM – hence 

large under-predictions of ET would result.  Poor ET predictions here may also be an artefact of 

model process errors associated with depleting soil moisture and near maximum vegetation cover, 

where the total model fluxes are dominated by vegetation flux calculations. 

There were some periods across the different experiments where assimilation had a degrading 

impact on model state and/or flux predictions.  This is likely related to sub-optimal representation 

of model errors from ensemble predictions, particularly if the resulting error correlations between 

different variables is poor (e.g. between near-surface soil layer moisture and deeper root-zone soil 

layer moisture, or between LE and deeper root-zone moisture states).  Seasonal observation/model 

bias is another factor that may explain the degraded results.  Addressing these problems is non-

trivial and relates to the issue of limited independent data availability, which inhibits a complete 

understanding of all aspects of model error and the accurate representation of it for optimal 

assimilation performance. 

8.1.3 REMOTELY SENSED DATA ASSIMILATION 

The potential benefits for LSM heat flux prediction from assimilating different observation types, 

including the rarely examined approach of LE and H assimilation, has been demonstrated in the 

synthetic-twin and one-dimensional field data studies.  In the remotely sensed data study (Chapter 

7), the focus was narrowed to compare LE and H assimilation (as a very rare approach in the 

literature) with near-surface soil moisture assimilation (a very common approach in the LSM 

assimilation literature). 

Experimental simulations with the CBM were performed at 5 km spatial resolution for a 25 km by 

25 km region covering most of the Kyeamba Creek catchment, and for the same annual period 

(2005) as the one-dimensional field data study.  Remotely sensed LAI (aggregated from ~1 km 

spatial resolution) and soil hydraulic properties from regionally mapped soil units were input as 

spatially distributed parameters and a single set of meteorological forcing (measured at Kyeamba 

Creek flux station) was used for the whole study domain.  Spatially varying model predictions 

without assimilation were therefore due to spatially distributed parameter inputs. 

One experiment involved assimilating a single pixel of an AMSR-E near-surface soil moisture 

product derived from descending overpass observations (approximately daily at ~2:00am), 

representing ~1-2 cm depth at 25 km pixel resolution (defining the study region boundary), into 
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the top-most CBM soil layer (2.2 cm).  The AMSR-E data were prepared by applying a 5-day 

moving average filter to dampen temporally varying random noise.  While model/observation bias 

was removed by rescaling the AMSR-E data series so that the annual mean and standard deviation 

matched that of the annual CBM predicted series for the top layer soil moisture.  In a second 

experiment, MODIS thermal infrared based LE and H data products at 5 km pixel resolution, 

derived with the SEBS algorithm for the daily ~2:00pm (ET active) overpass time, were 

assimilated. 

The EnKF implementation was the same as for the one-dimensional field data study (perturbed 

initial states, forcing data and additive covariance inflation of a priori states), with ensemble 

perturbations generated for every 5 km simulation pixel in the 25 km by 25 km study region.  The 

5 km scale CBM predictions were spatially averaged to match 25 km AMSR-E data for the 

innovation calculations, while updates using the calculated innovation were applied to the 

individual 5 km pixels.  Uncertainty information for both remotely sensed data products was taken 

from literature.  For AMSR-E this information was based on a past validation study that covered 

the region used in this study (Draper et al., 2009a).  While for LE and H a value was also taken 

from literature based on a survey of a range of published validation studies (Kalma et al., 2008). 

Results from assimilating the remotely sensed data were mixed.  The LE and H assimilation clearly 

improved both LE and H predictions overall relative to eddy covariance data (with 13% and 9% 

reductions in RMSE respectively compared to no assimilation), for the single 5 km simulation 

pixel collocated with the flux station site.  This further demonstrated the ability of LE and H 

assimilation to make strong heat flux improvements as in the previous two studies.  Inconsistent 

impacts were found throughout the experiment period from AMSR-E assimilation (improvements 

in some periods and degradation in others). However, this produced slightly better improvement 

to LE and negligible improvement to H predictions overall (15% and 1% reductions respectively 

in RMSE compared to no assimilation).  In the absence of robust error estimates for the remotely 

sensed LE and H data specifically for the region, it was encouraging that modelled heat fluxes were 

still improved by LE and H assimilation using error values at least 60% greater than the generic 50 

Wm-2 value taken from literature as used in the earlier experiment. 

The large discrepancy between modelled and observed LE in the late spring period for the flux 

station site – as corrected for by assimilation at the local/point scale in the one-dimensional field 

data study – was improved here by assimilating the 5 km SEBS data products, and from the 25 km 

AMSR-E moisture assimilation.  Therefore, with the broad-scale remotely sensed data sets 

(compared to one-dimensional study data) making improvements to the under-predicted LE in late 

spring, the interpretations in the one-dimensional study of local groundwater interaction being a 

possible major cause for the large model/observation differences is brought into question.  This 
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implies model process errors associated with the dynamics of moderate soil moisture, together with 

maximum vegetation cover of late spring, may play a more significant role in the poor heat flux 

predictions during this period. 

Point scale data from ten different in-situ monitoring sites across the study region were used to 

validate root-zone soil moisture predictions for collocated 5 km simulation pixels.  Averages of 

comparison metrics across the sites showed degraded soil moisture output from both assimilation 

experiments, reflecting the overall degradation or negligible improvement for each site 

individually.  AMSR-E assimilation degraded predictions for the root-zone (and the near-surface 

when validated against data from six in-situ sites) more than the LE and H assimilation did. 

There was minimal net impact on near-surface soil temperature predictions from both assimilation 

experiments over the year-long period, based on the average of validation metrics from 

comparisons with point scale in-situ data from six monitoring sites.  A minor 

decrease/improvement in predicted soil temperature from LE and H assimilation for flux station 

site comparisons in late spring, where vegetation cover was at its maximum, coincides with the 

improvement to heat flux predictions here.  Given the lack of a direct relationship in the CBM 

between soil temperature and heat fluxes for vegetated surfaces – as highlighted in the one-

dimensional study results – the impact on temperature in this period would likely be a flow on 

effect from more direct impacts on soil moisture which was increased.  The stronger temperature 

impact from AMSR-E assimilation in this period (some degradation and some improvement) also 

reflects strong impacts on soil moisture states. 

In addition to reaffirming that LE and H assimilation may have some value for improving heat flux 

predictions using remotely sensed data, this study has further highlighted some of the difficulties 

in improving model predictions from data assimilation.  The particularly poor soil moisture results 

indicate a number of possible issues.  These include the likelihood of inadequate observation and 

model error representation, with sub-optimal error correlations between different state and heat 

flux variables a likely consequence as discussed in relation to some of the one-dimensional study 

results.  There were also instances where the minimum CBM moisture content (which is defined 

rigidly by wilting point values) appears to have caused biased ensemble predictions, as a result of 

ensemble members with moisture values falling below wilting point being reset to wilting point 

values.  Very poor results from AMSR-E soil moisture assimilation may partly be a reflection of 

scale discrepancies between the 25 km AMSR-E domain, the simulation pixels and point validation 

data.  It was not possible to examine these issues in further detail with the data that were available. 
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8.2 SYNTHESIS 

The relative value of assimilating different remotely sensed data types was demonstrated across 

the three assimilation studies.  This provides useful insights contributing towards optimising LSM 

predictions as required for NWP initialisation, with implications for improved water balance 

modelling in general. 

8.2.1 DATA ASSIMILATION AND CBM/CABLE 

Importantly, the first published implementation and demonstration of sequential data assimilation 

with the CBM was produced in this thesis.  The CBM is the basis for the soil and canopy scheme 

of the newer CABLE model, which therefore has similar formulations relating soil moisture and 

temperature states with heat fluxes, and is in ongoing development for use in global climate model 

simulations and possibly for Australia’s NWP.  Hence the findings here have relevance for how 

data assimilation might best be used to maximise the predictive skill of this model for these uses 

into the future.  They also highlight some limitations of LSM data assimilation which can be useful 

for focussing future research towards improving outcomes from its application. 

8.2.2 COMPARATIVE PERFORMANCE OF DIFFERENT DATA TYPES 

Of more general interest, assimilating LE and H data was a key component of this research.  The 

motivation was the minimal published research examining the assimilation of these data types 

compared with soil moisture or skin temperature data, and the hypothesis that LE and H 

assimilation should have the greatest impact on LE and H prediction improvement.  The basis for 

this hypothesis is that predictions of a particular variable(s) of interest is expected to be best served 

by assimilating data types that are most directly related to it, due to LSM structural errors which 

are generally difficult to quantify and represent for assimilation.  This hypothesis was tested for 

soil moisture and temperature states, as well the heat flux predictions, by assimilating the different 

data types and different combinations of them. 

Results from LE and H assimilation were consistent across each of the studies in producing 

amongst the greatest improvements to heat flux predictions overall.  However, they did not strictly 

affirm the above stated hypothesis, with joint skin temperature and soil moisture data assimilation 

producing the best heat flux improvement in some cases.  Nonetheless, an important contribution 

has been made, as remotely sensed heat fluxes have been shown to make improvements; there are 

only two other known published works that have carried out heat flux data assimilation (with 

limitations in their results validation).  The strong promise shown from using these data, at least 
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for improving heat flux predictions, which is a specific requirement for NWP, indicate that more 

comprehensive research with them is worthwhile. 

With skin temperature data also contributing to some of the best heat flux predictions, the question 

of whether assimilating heat flux data or skin temperature data is the preferable approach is still 

unanswered, noting that LE and H are derived from skin temperature in the first place.  Again, 

more detailed research comparing the assimilation of the two data types is warranted for a more 

definitive answer to this question.  A key result from the one-dimensional field data study was that 

the strongest improvement of ET, with simultaneous improvement of root-zone soil moisture and 

temperature state predictions, was from combined skin temperature and near-surface soil moisture 

assimilation.  This shows that using data directly linked to the water balance (near-surface soil 

moisture) and data directly linked to the surface energy balance (skin temperature) may be 

complimentary and mutually beneficial in constraining different model processes.  Beyond 

potential benefits for NWP initialisation, such improvements to both moisture storage and fluxes 

will also be valuable for overall water balance modelling, thus benefiting water accounting and soil 

water analysis/forecasting for a range of resource management applications. 

The well-published approach of assimilating only near-surface soil moisture did make 

improvements to heat fluxes though they were not always amongst the strongest improvements.  

In the synthetic-twin and one-dimensional field data studies it produced the best overall root-zone 

soil moisture predictions, which did not translate to the strongest heat flux improvement.  This 

likely relates to imprecise error representation for model structural inaccuracies as mentioned in 

relation to the hypothesis stated earlier.  However the large scale AMSR-E soil moisture 

assimilation clearly degraded root-zone moisture predictions in relation to the ten separate 

validation data sites for the remotely sensed data study, while still making strong improvement to 

LE according to the single flux station site pixel.  These results underscore the difficulty in 

achieving consistently robust data assimilation performance for all related LSM states and 

diagnostic fluxes. 

8.2.3 MODEL STRUCTURAL ISSUES 

Understanding factors that limit the performance of LSM data assimilation can be informative for 

focusing future research and maximising the benefits of its application.  Difficulties in accurately 

representing model prediction error is a major limitation, which is a function of structural error 

(from generalised formulations) and input data errors (in initial state conditions, and parameter and 

forcing data).  These can be due to measurement inaccuracy, poor spatial representation, or use of 

generalised/default values of model parameters because of a lack of available data.  Importantly, 

this work highlighted some key issues relating to strengths and limitations of the CBM (with some 
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relevance to the newer CABLE model and LSMs in general) in a data assimilation context, which 

are now discussed. 

For full year CBM simulations without assimilation, predicted heat fluxes were best matched with 

observations (from both eddy covariance and remotely sensed derived data) over the mainly energy 

limited winter and early spring months, where soil profile moisture content was at or near 

maximum.  It is therefore assumed that water was readily available in this period, such that ET was 

mostly dependent on atmospheric demand and occurred at or near potential, which is thus relatively 

straight forward to calculate based solely on atmospheric data and canopy characteristics.  This 

implies that modelling heat fluxes is likely to be most reliable for these seasonal conditions (with 

LSMs incorporating a standard potential ET calculation using atmospheric and vegetation cover 

data) – an interpretation supported by the comparisons between the model and observed data. 

The generally poorer heat flux predictions relative to observations where root-zone soil moisture 

storage was below maximum (from late summer to autumn early in the year, and late spring to 

summer later in the year), indicates that modelled fluxes are more error prone when they have a 

greater dependency on modelled moisture dynamics to scale potential ET calculations for water 

limited conditions.  Soil moisture states in the CBM are used in a linear water availability term for 

scaling potential ET, hence this may not be an adequate representation.  While for vegetation 

transpiration, the dependency on complex calculations related to plant stomatal conductance and 

photosynthesis involving additional parameters, may contribute to error.  Especially with 

generalised values for these parameters. 

The vegetation component of heat fluxes is particularly challenging to model accurately under soil 

moisture controlled ET conditions.  This is supported by the largest differences between observed 

and modelled heat fluxes occurring in the late spring to early summer period in the year-long 

experimental studies, where the predominantly grass pasture was at its fullest cover with 

diminishing soil moisture store.  Large discrepancies occur for both the point scale simulation 

relative to eddy covariance data in the one-dimensional study, and the 5 km scale simulation 

relative to remotely sensed flux data for the assessed pixel collocated with the flux station. 

Point scale ancillary data used in the one-dimensional study indicated that large discrepancies in 

late spring to summer may have been due to groundwater interaction, which the CBM does not 

represent.  This interpretation highlights an example where the lack of representation of a certain 

processes in a LSM potentially contributes to predictive error.  However, large discrepancies were 

still evident relative to the much broader scale remotely sensed data (assimilating 25 km scale 

AMSR-E and 5 km heat flux data each considerably reduced discrepancies between the 5 km heat 

flux simulations and flux station data), implying a more general issue with poor CBM predictions 



160 

 

related to particular seasonal conditions – i.e. water limited ET with high vegetation cover – may 

also play a role. 

The lack of a direct relationship between soil temperature states and vegetation heat fluxes is also 

highlighted in relation to the maximum vegetation cover of late spring to summer.  Strong impacts 

on heat flux predictions here from assimilating heat flux data coincided with minimal impacts on 

soil temperature.  Results from the one-dimensional study showed that with improvements to soil 

temperature in this period from skin temperature assimilation, corresponding improvement to ET 

prediction could be explained as an indirect effect from impacts on soil moisture.  Soil temperature 

is directly involved in calculating the soil components of LE and H, which are a larger proportion 

of total heat fluxes for sparser vegetation cover. 

The changing relationships between state variables and heat fluxes across seasons and as vegetation 

cover changes implies temporally varying errors associated with these relationships.  Examples 

from the CBM (and the newer CABLE model) structure which can contribute to temporally 

varying errors include having user-assigned fractions of plant roots for each soil layer which are 

fixed over time.  Where there are large seasonal changes in vegetation, such as with pastures in the 

Kyeamba Creek region in this study, a fixed root depth might over-state transpiration from deeper 

soil layers for seasons in the annual growth cycle where grass is not fully developed and coverage 

is sparse.  Also, the soil hydraulic properties for all six soil layers are fixed with identical parameter 

values (i.e. no depth variation), which would likely result in inaccurate vertical water redistribution 

that will affect ET.  Quantifying the combination of these examples of structural error together with 

parameter data errors (e.g. for soil layer root fractions and hydraulic property values) in terms of 

contribution to overall prediction error over time is not straight forward. 

8.2.4 DATA ASSIMILATION TECHNIQUE ISSUES 

EnKF data assimilation is fundamentally based on relationships between errors in the observations 

and model predictions, and thus quantifying the errors is critical.  Correlation between different 

LSM state and diagnostic variable errors is important in determining how the EnKF propagates 

state updates to different parts of the model.  In addition to the difficulty in defining errors for a 

particular instance in time, temporally varying model prediction error for LSM states and fluxes, 

and correlations between them, are very difficult to quantify accurately and represent with 

ensembles.  A major reason is the complexity of some non-linear model relationships together with 

a general lack of independent data to enable detailed analyses of all aspects of error. This is a 

general limitation to achieving optimal LSM data assimilation performance that would extend 

beyond this work and the CBM/CABLE models. 
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Detailed examination of all aspects of model prediction error was beyond the scope of this thesis.  

However, a general representation of overall error statistics using available information ensured 

reasonable EnKF performance for most experiments.  This involved prescribing errors to initial 

state conditions, and to forcing data inputs informed by measurement error estimates, and estimates 

of representative errors between data sets measured at different locations.  For the full year 

experiments where real data were assimilated, additive inflation was also applied to background 

state ensembles at analysis time steps.  Over prolonged periods of state updating, predicted 

ensemble spreads dependent on forcing perturbation can collapse towards a single value (especially 

over longer rain-free periods).  Consequently, model error may become under-stated such that the 

EnKF is no longer effective, possibly even leading to divergence between the mean prediction and 

observations.  Ensemble inflation to increase their spread at update times reduces this risk, and 

accounts for the fact that there are other errors which could not be explicitly defined (e.g. from 

model structure and parameter data).  The relative thicknesses of soil layers were used to scale the 

ensemble inflation in this work, factoring in the dampening of state errors for deeper/thicker layers 

– ensuring more realistic error correlation between states in different layers compared to applying 

uniform inflation. 

Another challenge to achieving optimal EnKF performance is accounting for potentially biased 

ensemble means near state boundary values.  This problem was interpreted from some results in 

the remotely sensed data study and is an artefact of the CBM having the wilting point parameter 

value as the minimum boundary for soil moisture content (also relevant to CABLE).  With 

perturbed soil moisture content not able to drop below the wilting point value, multiple ensemble 

members can be fixed at this minimum boundary, leading to a positively biased ensemble mean.  

Moisture content can drop below the wilting point in reality.  The remotely sensed assimilation 

study also highlighted the added dimension to the challenge of defining error when dealing with 

spatially distributed modelling and comparing observed and modelled data at different spatial 

scales.  The lack of independent data for different spatial scales limited the ability to analyse errors 

related to scale discrepancies between data sets in any detail.  It was also a limitation to better 

understanding the nature of the poor results for soil moisture state prediction in this study, 

especially from assimilating the spatially disparate AMSR-E moisture data. 

Model error issues discussed here in relation to the work in this thesis revolve around the challenges 

of quantifying key aspects of prediction error – from model structure, input data and spatial 

representation/discrepancies – and accurately representing them with ensembles for optimal EnKF 

performance.  These issues are ubiquitous with LSM data assimilation applications in general, 

while some model structure issues will be model specific.  Non-stationarity of prediction error 

variances, and of correlations between them for different variables, can add to the difficulty in 
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defining error and should be part of the focus of future research towards improved model error 

representation. 

Observational data error is an important component of the EnKF due to its role in calculating the 

Kalman gain that weights innovations for state updating.  Removing bias between predicted model 

states and observations of them prior to their assimilation, typically through rescaling approaches 

such as cdf matching or matching data series means and standard deviations is also important, since 

a fundamental assumption of data assimilation is that it deals specifically with random differences 

between observed and modelled anomalies from the true mean state.  Non-stationary state bias 

with seasonal variation (from either model predictions or observations, or both) may not be 

completely accounted for when applying corrections based on annual statistics of data series, as 

was done for the year-long experiments in this work using mean and standard deviation rescaling, 

which could limit data assimilation performance. 

Corrections can be applied for observed/modelled state biases as defined for different time scales 

(e.g. seasonal, annual, multi-annual etc.), though it is not always possible to know if biases defined 

for a particular time scale within a certain period actually represent true climatological bias between 

data sets.  Defining and removing seasonal ‘bias’ for a one year period (the maximum experimental 

length in this work) may result in removal of some differences in true seasonal anomalies relative 

to longer-term climatological bias, as noted by Draper et al. (2009b).  Even bias defined for 

multiple years may not necessarily reflect true climatological bias, or that of the immediate future, 

when considering periods such as the Millenium Drought which affected south east Australia from 

~2001-2009 (van Dijk et al., 2013).  This implies that for modelling forward in time – whether for 

NWP in the shorter term or climate in the longer term– rescaling of assimilated data using previous 

time period definitions of bias could inhibit optimal assimilation.  Therefore the lack of long data 

series for hydrologic states is a limitation in terms of bias removal.  For remotely sensed soil 

moisture data, the operational period of AMSR-E spanned ~2002-2011, which is most of the 

Millennium Drought period, while SMOS has so far been in operation for less than five years. 

Defining and quantifying errors for observed data of course relies on the availability of suitable 

independent validation data, or on techniques such as triple collocation, which can determine 

observed data error variances based on three independent estimates of the same quantity (e.g. 

Scipal et al., 2008).  Data produced from remotely sensed observations are inherently more difficult 

to validate than point scale data, given the obvious spatial disparity with in-situ data which is 

mostly collected at the point scale.  Monitoring networks such as OzNet in Australia provide 

regionally distributed in-situ soil moisture validation data, but are very isolated on a global scale.  

The relative expense and complexity of eddy covariance systems means that the most accurate in-
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situ validation data for remotely sensed LE and H products are even more limited than for soil 

moisture. 

General error estimates for different remotely sensed products, based on various validation studies 

for a range of locations/environments, are presented in peer-reviewed literature.  Relying on such 

values is an option in the absence of local validation data for a study region (the error quantity used 

for AMSR-E moisture data in this thesis was from an earlier validation study for this product using 

OzNet data (Smith et al., 2012) distributed across the Kyeamba Creek region).  However, general 

estimates may not be representative of particular regions, and non-stationary error variances cannot 

be represented with single values.  Triple collocation can therefore be a valuable alternative for 

error estimation that is well suited for remotely sensed data.  This is on the assumption that three 

independent data sets with a large number of coincident observations in time are available for the 

quantity of interest, with strictly no correlation between their residual error terms – a possible 

limitation if available data are derived from the same or similar raw observations – and the 

relationship between the data sets are linear.  Bias between data sets due to different observing 

sensors and derivation algorithms may also be an issue, similar to that discussed above in relation 

to model/observation bias. 

8.3 FINAL CONCLUSIONS 

Assimilating key land surface related data types obtainable from remote sensing – near-surface soil 

moisture, skin temperature, and LE and H – into the CBM can clearly improve LE and H 

predictions as required for NWP.  This capability is presumed to also hold for the CABLE model, 

due to its very similar soil and canopy scheme relating soil moisture and temperature states with 

heat fluxes.  Improved fluxes/ET over longer time scales are also important for improved water 

balance modelling, which will benefit a range of water resource management applications. 

Specifically, LE and H data assimilation, which included a demonstration using remotely sensed 

products, is shown to consistently produce some of the strongest improvements to heat flux 

predictions amongst the data types tested, based on the experiments performed.  This finding is 

important given the minimal research afforded to LE and H assimilation to date in the peer 

reviewed literature. 

Near-surface soil moisture assimilation also improves heat fluxes.  Though even when it produced 

the greatest improvements to root-zone moisture prediction, this did not necessarily translate to 

better heat flux predictions than from assimilating LE and H – presumably due to model structural 

inaccuracies with LSM moisture states and heat flux relationships.  Therefore, despite near-surface 
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soil moisture assimilation providing clear value for LSM prediction, on its own it may not be the 

best option for achieving optimal heat fluxes. 

Assimilating skin temperature on its own has potential to improve heat flux prediction to a similar 

degree as LE and H assimilation, though there were lesser improvements in some experiments.  

Thus the degree of improvement may not always be consistent for a model such as CBM (and 

CABLE), where the strength of the relationship between state variables (particularly soil 

temperature), skin temperature and heat fluxes varies temporally with vegetation cover. 

Assimilating a combination of data types, which individually are more closely related to different 

parts of a LSM, can be complimentary in balancing their respective impacts on different variables.  

As highlighted by the combined assimilation of skin temperature and near-surface soil moisture, 

which improved ET prediction more than from LE and H assimilation, and simultaneously 

improved root-zone soil moisture and temperature state predictions – which is particularly 

encouraging from a water balance modelling perspective.  This result for ET prediction indicates 

that strategic use of skin temperature data may possibly remove any need for assimilating remotely 

sensed LE and H products (derived using skin temperature) where the aim is to improve heat fluxes.  

Though more comprehensive follow-up research is required to determine this with greater 

certainty. 

8.4 FURTHER WORK 

Based on the work in this thesis, a number of key unresolved issues associated with LSM data 

assimilation were identified.  Addressing these was beyond the scope of this thesis, however they 

provide clear direction for focussing future research. 

Insight was gained into which land surface data types(s) have the greatest potential for improving 

heat flux prediction, and for simultaneous improvement of state variables.  Follow-up research that 

would clarify and verify these findings, and also advance the knowledge acquired from this 

research include: 

 More comprehensive comparisons between LE and H data assimilation and skin 

temperature assimilation – specifically with remote sensing data, where the same skin 

temperature data used to derive the LE and H products is assimilated.  This would clarify 

whether remotely sensed LE and H calculated from skin temperature can provide 

additional skill to LSM LE and H predictions, compared to directly assimilating the skin 

temperature into the LSM; 
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 Conducting comparison experiments over longer time periods with different remotely 

sensed products for each data type (from different sensor data and retrieval algorithms), 

and using different LSMs, to determine how generally applicable the findings are; 

 Carrying out the comparison experiments with the latest version of the CABLE model to 

verify the applicability of the conclusions; and 

 For land surface observation data types shown to improve offline LSM fluxes and states 

when assimilated, test the assimilation of them with the LSM coupled to an atmospheric 

model (i.e. for CABLE within ACCESS), and assess impacts on predicted screen-level air 

temperature and humidity in addition to heat fluxes and soil states. 

 

A major issue in terms of optimising LSM performance is the need to improve error representation.  

This requires more research into the following: 

 Correlations between errors for different LSM variable predictions – e.g. between near-

surface and deeper soil moisture states, or between all state variables and heat fluxes.  This 

would need to be model specific; 

 Error non-stationarity – how the error for different predictions vary, which also affects the 

correlations between them; 

 More detailed examination of LSM structural error and quantifying/correcting it; 

 Error related to spatial discrepancies between assimilated data and simulated resolutions; 

 Better ensemble generation for the EnKF – including whether Gaussian ensembles are 

always appropriate/realistic, such as for soil moisture values near boundary values (i.e. 

wilting point); 

 More comprehensive examination of bias between data sets – in terms of defining it and 

better techniques for correcting it; 

 Evaluating the design of in-situ monitoring to maximise the benefits for validating spatial 

data from remote sensors and simulations; and 

 A detailed review of the relative benefits of triple collocation to quantify error for different 

remotely sensed data types. 
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