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Summary  

Soil moisture is a key variable that controls the exchange of water and 

energy fluxes between the land surface and the atmosphere. However, the 

temporal evolution of soil moisture is neither easy to measure nor monitor at 

large scales because of its high spatial variability. This is mainly a result of 

the local variation in soil properties and vegetation cover. Thus, soil 

moisture prediction models are normally used to predict the evolution of soil 

moisture, but these models are based on sparse measurements of soil 

hydraulic parameter information or typical values. Therefore, more accurate 

and detailed soil hydraulic parameter data is vital if regional or global soil 

moisture predictions are to be made with the required accuracy. To 

overcome this limitation, it is hypothesised by this thesis that the soil 

hydraulic properties, e.g. hydraulic conductivity, porosity, field capacity, 

and wilting point, may be derived through model calibration to remotely 

sensed near-surface soil moisture observation.  

To test this hypothesis, the work presented in this thesis is conducted in 

three distinct steps. The Joint UK Land Environment Simulator (JULES) 

was used for this purpose, as it was identified as a suitable soil moisture 

prediction model for the proposed work. The soil hydraulic parameters most 

sensitive to soil moisture prediction were determined and were thus the 

focus of this research.  

In the first step, the proposed methodology was tested via a one-dimensional 

synthetic twin-experiment. The intent was to identify the most suitable 

meteorologic conditions for soil property retrieval, and hence make the most 

efficient use of computational resources when applying the methodology at 

large scales. The methodology was also tested for four different soil types 

including a homogeneous column of sand, a homogeneous column of clay, a 

duplex column of clay over sand, and a duplex column of silty sand over 

clay.  
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In the second step, field measurements of soil moisture from the OzNet Soil 

Hydrological Monitoring Network over the Murrumbidgee Catchment have 

been utilized. The purpose being to determine the feasibility and the level of 

accuracy that can be expected for soil hydraulic property estimation of 

duplex soil profiles in a semi-arid environment using near-surface soil 

moisture observations under naturally occurring conditions. The soil 

hydraulic parameters retrieved from near-surface soil moisture 

measurements were validated against field and laboratory measured data. 

The derived root zone soil moisture predictions using the retrieved 

parameters were also validated against field observations from the same 

network.  

The last step of this thesis was to apply the methodology to a larger area, the 

size of a Soil Moisture and Ocean Salinity (SMOS) satellite footprint. 

However, rather than using a single soil moisture value for the entire 

demonstration area, a downscaled soil moisture product, Disaggregation 

based on Physical And Theoretical scale Change (DisPATCh), was used in 

the retrieval of soil hydraulic parameters. Spatial maps for the parameters, 

including surface and root zone, were obtained for the focus area. 
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Chapter 1  

Introduction  

This thesis presents a methodology to retrieve the spatial distribution of soil 

hydraulic properties in the soil profile, utilizing a combination of infrequent 

near-surface soil moisture observations and a soil moisture prediction 

model. The methodology is developed with global application in mind, 

utilizing the near-surface soil moisture data now available from remote 

sensing satellites. A series of numerical and experimental studies have been 

performed for a series of one-dimensional soil columns and a small test site 

to demonstrate the potential of this methodology. 

 

1.1 Statement of Problem 

The water and energy fluxes at the land-atmosphere interface depend 

heavily on the soil moisture content, which imposes a significant control on 

evaporation, infiltration and runoff. Moreover, the rate of water uptake by 

vegetation in the vadose zone is regulated by the soil moisture content (Kerr 

et al., 2000, Wigneron, 2003), since soil, besides providing nutrients for 

plant growth, serves as a reserve for the moisture that plants require. While 

soil moisture is only a minute fraction (approximately 0.0005%) of the 

global water reserves (the majority of which is contained in the world 

oceans), there could be no life on earth without this water (Strahler and 

Strahler, 2002). However, the temporal evolution of soil moisture is not 

easy to measure or monitor at large scales due to its spatial variability, being 

largely driven by local variation in soil properties and vegetation cover. 

Consequently, soil moisture estimates are typically made using soil moisture 

prediction models with low-resolution and/or erroneous soil hydraulic 

property information.  
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The problem therefore is that the soil property information currently 

available at global scale is a soil texture map (Latham, 1981b), requiring a 

reliance on look up tables of soil hydraulic property information for 

representative soils. These soil hydraulic parameters are normally calculated 

from predictive functions that utilize measurable parameters (McBratney et 

al., 2002). However, these functions cannot be extrapolated beyond the 

geomorphic region or soil type under which they were first developed. Thus, 

soil moisture predictive models have an urgent need for more accurate and 

detailed soil parameter data sets than are currently available, in order to 

undertake regional or global simulation studies at high spatial resolution 

with the required accuracy.  

From the very early days of remote sensing, satellite observations have been 

used to derive information about atmospheric and oceanic parameters, either 

on a fully or quasi-operational scale (Ulaby et al., 1986). This is because 

satellite and airborne sensors are able to provide long term series of data 

over wide areas, albeit only for the near-surface. However, comparatively 

little attention has been given to applying these techniques in soil parameter 

estimation. Hence, the motivation for this work is to develop a more 

accurate method of obtaining hydraulic properties of the soil profile 

utilizing remote sensing observations. 

 

1.2 Objectives and Scope 

The primary objective of this thesis is utilizing near-surface soil moisture 

observations to retrieve the near-surface and root zone hydraulic properties 

of a heterogeneous column of soil. The work presented in this thesis uses 

simulated data, in-situ monitoring, and a disaggregated dataset of soil 

moisture from the Soil Moisture and Ocean Salinity (SMOS) satellite 

mission, to develop and demonstrate the proposed methodology for 40km × 

40km test site. Some of the additional objectives include; 



 

 

C
h
ap

te
r 

 1
: 

In
tr

o
d

u
ct

io
n
 

1-3 

 

 Finding an appropriate soil moisture prediction model for the 

proposed work.  

 Ascertaining the spatial and temporal discretization of the 

model for numerical stability. 

 Identifying the most suitable technique for initializing the soil 

moisture of the prediction model, when field observations 

were not available. 

 Determining the most sensitive soil parameters for soil 

moisture prediction. 

 Identifying the best meteorological conditions for retrieval of 

the soil profile hydraulic parameters using near-surface soil 

moisture observations.  

 

1.3 Outline of Approach 

Surface soil moisture data are used to calibrate a soil moisture prediction 

model, with derived soil hydraulic properties validated against reference 

values and soil moisture prediction skill (see Figure 1.1). Validation steps 

include synthetic experiments, one-dimensional experiments with field / 

laboratory derived soil properties and in-situ measurements of root zone soil 

moisture, and spatial patterns in soil hydraulic properties compared against 

available soil texture maps.  

As an initial step, a suitable soil moisture prediction model was selected for 

the proposed work. Through a sensitivity analysis of the model, the soil 

hydraulic parameters that are most sensitive to the soil moisture predictions 

were then identified. Using atmospheric forcing data and initial guess soil 

hydraulic parameters, the soil moisture prediction model simulates a time 

series of near-surface and root zone soil moisture. An optimization 

algorithm is then used to iteratively minimize the difference between the 

observed and predicted near-surface soil moisture, by changing the model 

soil hydraulic parameters. The ‘retrieved’ soil hydraulic parameters are then 
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validated with field or laboratory measured data, and the root zone soil 

moisture predictions from the same parameters validated against field 

measurements. 

 

 

Figure 1.1: Schematic of the retrieval process. 

 

The work presented in this thesis focuses on the Yanco region in the 

Murrumbidgee Catchment, in New South Wales of Australia. The field 

observed soil moisture used in the optimization and the validation processes 

are from the OzNet Hydrological Monitoring Network (Smith et al., 2012). 

The OzNet network has been in operation since 2001 and comprises of soil 

moisture and soil temperature observations at various depths. The 

atmospheric forcing data used to drive the soil moisture prediction model at 

a single point were derived from the Yanco automatic weather station 

(Siriwardena et al., 2003), while the Australian Community Climate and 

Earth-System Simulator (ACCESS BoM, 2010) and the Australian Water 

Availability Project (AWAP Jones et al., 2007) datasets were used for the 

larger demonstration area. 

 



 

 

C
h
ap

te
r 

 1
: 

In
tr

o
d

u
ct

io
n
 

1-5 

 

1.4 Thesis Organization 

This thesis is divided into seven chapters. Chapter 2 is an extensive review 

of literature pertaining to the different aspects of the proposed methodology. 

The study area of this work, the Murrumbidgee Catchment in Australia, is 

also introduced here. Based on the available test data and the critical review 

of literature, a detailed outline of the soil hydraulic property estimation 

algorithm tested by this thesis is presented. Chapter 3 selects the soil 

moisture prediction model and optimization algorithm most suitable for the 

proposed work, followed by an assessment of the soil moisture prediction 

model’s numerical stability. The chapter concludes with an assessment of 

the most suitable manner for initializing the soil moisture. Chapter 4 

demonstrates the potential of the proposed methodology in the context of a 

synthetic twin experimental framework. Field observations are then used to 

test the proposed methodology in Chapter 5 for a single soil column 

application, while Chapter 6 demonstrates the feasibility of utilizing 

satellite observed near-surface soil moisture to retrieve soil hydraulic 

parameters of the surface and root zone, using a 1km resolution downscaled 

soil moisture product covering a single SMOS pixel. Chapter 7 presents the 

conclusions and discusses future work, including a possible global 

application. 

Some sections of this thesis are based on either all or part of the following 

publications; 

1. BANDARA, R., WALKER, J. P. & RÜDIGER, C. 2013. Towards 

soil property retrieval from space: A one dimensional  

twin-experiment. Journal of Hydrology. 

2. BANDARA, R., WALKER, J. P. & RÜDIGER, C. Land Surface 

Model Initialization: Comparison of ‘pre-run’ and ‘spin-up’ in semi-

arid regions. Environmental Modelling and Software – under review. 

3. BANDARA, R., WALKER, J. P. & RÜDIGER, C. Towards soil 

property retrieval from space: A one-dimensional field study. 

Journal of Hydrology – under review. 
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4. BANDARA, R., WALKER, J. P. & RÜDIGER, C. Towards soil 

property retrieval from space: A spatially distributed field 

application. Journal of Hydrology – in preparation. 

5. BANDARA, H. R. S., WALKER, J. P., RUDIGER, C., PIPUNIC, 

R., DHARSSI, I. & GURNEY, R. 2011. Towards soil hydraulic 

parameter retrieval from Land Surface Models using near-surface 

soil moisture data. International Congress on Modelling and 

Simulation. Perth, Australia: Modelling and Simulation Society of 

Australia and New Zealand. 

The following co-authored paper has also contributed to the work of this 

thesis, in so much as this extensive airborne field campaign has contributed 

important validation data. While the post-processing of the experimental 

data was done as a group, my main role was in soil moisture sampling 

across 6 weeks in the first experiment and 3 weeks in the second 

experiment. 

1. PEISCHL, S., WALKER, J. P., RÜDIGER, C., YE, N., KERR, Y. 

H., KIM, E., BANDARA, R. & ALLAHMORADI, M. 2012. The 

AACES field experiments: SMOS calibration and validation across 

the Murrumbidgee River catchment. Hydrology and Earth System 

Sciences, 16, 1697-1708. 
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Chapter 2   

Literature Review 

This chapter presents the importance of soil moisture and its influence on 

environmental applications, followed by the different techniques that are 

currently available for its acquisition. Consequently, this study focuses on 

model prediction, utilizing disaggregated SMOS soil moisture over the 

Murrumbidgee Catchment for the retrieval of soil hydraulic parameters. 

However, the different approaches to soil moisture mapping are first discussed. 

With soil moisture prediction models still being the only feasible approach for 

estimating soil moisture in the root zone globally, there is a strong demand for 

accurate maps of the soil hydraulic parameters that are used by these models. 

Consequently, the current state-of-the-art in soil classification maps and soil 

hydraulic parameter data is also presented. This is followed by a discussion of 

how spaceborne information can be used for soil classification, including 

application of remote sensing for soil property estimation and the knowledge 

gaps, with the majority of previous work focusing on synthetic studies or 

engineered soils under controlled drainage conditions, a methodology for the 

retrieval of soil hydraulic properties under natural conditions is proposed using 

near-surface soil moisture measurement, as a calibration constraint. This forms 

the basis for the remainder of this thesis.  

 

2.1 Background  

Soil moisture has an important role, being one of the crucial parameters that 

control hydrometeorological processes from the micro to meso scale. Thus it is 

the key variable controlling the exchange of water and heat energy between the 
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land surface and the atmosphere, through evaporation and plant transpiration, 

with numerous studies having observed a strong relationship between the soil 

moisture and precipitation variability (Hong and Kalnay, 2000, Koster et al., 

2004, Trenberth, 1998, van der Schrier and Barkmeijer, 2007). The soil 

moisture status contributes to both the latent and sensible heat exchange with 

the atmosphere, and hence the soil moisture status is an important contributor to 

the development of weather patterns and precipitation (Leese et al., 2000, Leese 

and Kermond, 2000). For example, Timbal et al. (2001) have observed that soil 

wetness fluctuations contribute to an increase in the persistence and variability 

of surface temperature and precipitation.  

Seneviratne et al. (2010), in their review, discuss the essential role that soil 

moisture plays in most scientific disciplines related to environmental sciences. 

Additionally, the rate of water uptake by vegetation in the vadose zone is 

regulated by the soil moisture content, since soil, besides providing nutrients for 

plant growth, serves as a store for the moisture that plants require (Leese et al., 

2000). However, soil moisture evolution is not easy to monitor on large scales, 

both from a logistical and an economic point of view, thus being among the 

most sought after variables from space. Although remote sensing techniques 

have been useful for surface soil moisture detection with passive microwave 

observations at L-band (Paloscia et al., 1993), there is still a great reliance on 

the prediction of soil moisture evolution using soil moisture prediction models. 

Apart from the fact that remote sensing of the soil moisture has errors due to 

soil type, vegetation cover, roughness, inadequate coverage with respect to 

time, coarse spatial resolution for soil moisture monitoring, and so on (Houser 

et al., 1998), remote sensing is not able to provide any direct information on the 

root zone. However, soil moisture prediction models suffer from inherent errors 

in their structure and parameterization, and so a combination of remote sensing 

and hydrologic modeling, with other sources of data, may be the answer to 

obtaining the best operational soil moisture estimates (Wei, 1995). Houser et al. 

(1998) state that there should be less error in the soil moisture prediction model 
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prediction when a combination of remote sensing and model simulations are 

used, compared to the use of either method alone.  

 

Figure 2.1: The panels compare volumetric water content (%) in the top meter of 

soil predicted by GLDAS, running Mosaic and forced with GDAS meteorology 

(top), to that predicted by the land model coupled to GDAS (middle), at 00Z on 31 

March 2001. GLDAS was initialized with GDAS states, including soil moisture, on 

1 March 2001. The predictions of soil moisture from the two systems display 

similar patterns, but the GLDAS field is more extreme, being wetter in locations 

such as Amazonia, southcentral Africa, and western Europe, and dryer in regions 

such as south-central Asia and central America. The bottom panel shows the 

difference between the two predictions. (Source: Houser et al., 2001) 



 

 

C
h
ap

te
r 

2
: 

L
it

er
at

u
re

 R
ev

ie
w

 

2-4 

 

Camillo and Schmugge (1983) demonstrated in their numerical study that there 

exists a relationship between model parameters that cannot be easily measured 

or even precisely defined (e.g. root density profile), to the measurable soil 

condition (matric suction profile), thereby initiating the hypothesis that the 

near-surface soil moisture content contains useful information for estimating 

root zone water storage and soil moisture profiles. Many studies (e.g Calvet and 

Noilhan, 2000, Crow and Wood, 2003, Das and Mohanty, 2006, Georgakakos 

and Baumer, 1996, Heathman et al., 2003) reporting similar findings have 

discussed this concept. However, to retrieve the soil moisture profile 

successfully, the selected mathematical model must include the correct 

specification of soil hydraulic properties (e.g. Heathman et al., 2003) and the 

dominant processes for the specific hydrological conditions (Walker et al., 

2001) as well.  

Remote sensing techniques, using satellite and/or airborne sensors, are able to 

supply time series data over wide areas, offering an innovative approach to 

estimating soil properties with high spatial resolution. Consequently, with the 

recent availability of soil moisture data from the Soil Moisture and Ocean 

Salinity (SMOS) mission (http://www.esa.int/esaLP/LPsmos.html), and soon to 

be launched Soil Moisture Active Passive (SMAP) mission 

(http://smap.jpl.nasa.gov/), the opportunity exists to develop accurate soil 

hydraulic parameter maps at global scale using the soil moisture information 

that these sensors afford (Vereecken et al., 2008). It also provides an 

opportunity to further constrain the spatial and temporal soil moisture profile 

dynamics through assimilation of the near-surface soil moisture measurements. 

Some of the key methods include; direct insertion, statistical correction, 

Newtonian nudging, inverse modeling, variational approaches and sequential 

data assimilation methods such as Kalman filtering techniques (Walker and 

Houser, 2005).  
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The following section discusses the different techniques that can be utilized to 

estimate soil moisture at different scales. 

 

2.2 Techniques to Estimate Soil Moisture 

Of the methods used for soil moisture estimation, the following three are most 

commonly used; (i) in-situ point observations, (ii) remotely sensed 

observations, and (iii) using soil moisture prediction models. This section 

discusses each of these methods in detail, with a focus on the advantages and 

disadvantages of each. 

 

2.2.1 Point Soil Moisture Observations 

The conventional in-situ point observation standard is the thermo gravimetric 

method (AS 1289.2.1.1-2005). In this method, the volumetric sample is oven-

dried at a temperature of 105°C and the change in mass related to the water 

content. However, as this is a destructive sampling method, with the collected 

soil being analyzed in a laboratory, it is not possible to make repetitive 

observations on the same soil sample or at the same location. Hence, to obtain a 

time-series of in-situ soil moisture at point scale, it is necessary to utilize non-

destructive methods. The use of time domain reflectometry soil moisture 

sensors such as Soil Moisture Equipment Corporation Trase
®
 and the Campbell 

Scientific Reflectometer can be offered as an alternative. The performance of 

these types of sensors have been analyzed and discussed in detail by Walker et 

al. (2004b). These electrical sensors can be installed either vertically or 

horizontally, with the measured soil moisture averaged for the zone of influence 

for the probe. Permanent installation of these sensors results in minimum 

destruction to the soil at the time of insertion. Consequently, the main 
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advantage is that the temporal soil moisture content changes can be monitored 

at the same site.  

The use of the Neutron scattering method is an indirect way of determining the 

moisture content of a soil. In this method, neutrons with high energy are 

emitted by a radioactive source into the soil and the number of slow neutrons 

returning to the detector per unit time counted. The soil moisture content is then 

estimated from a previously determined calibration curve of counts versus the 

volumetric moisture content. The gamma ray attenuation method, a radiation 

technique, can be used to determine the soil moisture contained within a 1 to 2 

cm soil layer. The changes in wet density are measured and the soil moisture 

content is determined by the density change (Zegelin, 1996). A detailed 

description and an in-depth analysis of these methods are found in Walker et al. 

(2004b).  

The major disadvantage in in-situ measurements is the relatively small zone of 

influence of the sensor to the region immediately adjacent. Hence, detailed and 

accurate information of the vertical profile can be obtained only at a single 

point, and to obtain information of the variability on a spatial scale, a dense 

network of sensors must be installed. However, these sensors are expensive to 

install and maintain and therefore, in-situ measurements over large areas are 

neither economical nor logistical. Moreover, they need a soil type-specific 

calibration to ensure that they accurately interpret and represent the volumetric 

water contents at different field sites (Blonquist Jr. et al., 2005, Kizito et al., 

2008, Western and Seyfried, 2005). This is because the calibration equations 

provided by the manufacturers are thus limited to a specific soil type under 

laboratory conditions, and normally cannot be applied to measurements taken in 

other types of soils (Rüdiger et al., 2010). 
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2.2.2 Remotely Sensed Soil Moisture 

Remote sensing is defined as any non-contact method of determining 

information regarding an object’s nature, properties or state. In this thesis it is 

defined as the acquisition of emitted or reflected electromagnetic energy from a 

location other than the point of observation, specifically measured by 

instruments operated on air- and space-borne platforms.  

Air borne platforms supporting remote sensing instruments have been useful in 

mapping large areas (Panciera et al., 2007, Panciera et al., 2006), and have 

served as a prototype for future satellite sensors. For the observation of soil 

moisture, sensors like the Multi-Spectral Scanner, Thematic Mapper, thermal 

infra-red line scanner, microwave radiometer and Synthetic Aperture 

Radiometer are more commonly used; a detailed discussion on the performance 

of these sensors can be found in Walker (1999).  

The dielectric properties of a soil determine the propagation characteristics for 

electromagnetic waves in a medium. Since the contrast in dielectric properties 

between dry soil and water is quite large, it is possible to monitor the moisture 

content based on the dielectric properties that are estimated from microwave 

techniques (Jackson et al., 1981). Measurements at microwave wavelengths 

have the benefit of (i) the atmosphere being effectively transparent, thereby 

providing all-weather coverage, (ii) vegetation being semi-transparent, allowing 

the observation of underlying surfaces, (iii) the microwave measurement being 

strongly dependent on the dielectric properties of the target, for soil, a function 

of the amount of water present, and (iv) the measurement being independent of 

solar illumination, making both day and night observations possible (Jackson, 

1993). Moreover, the response from natural surfaces has been shown to be 

mainly a function of surface roughness, moisture content and vegetation 

characteristics (Guglielmetti et al., 2008, Le Hégarat-Mascle et al., 2002, Loew, 

2006, Schwank et al., 2004, Wigneron et al., 2003). 
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There are two categories of microwave remote sensing; (i) active (e.g. Walker 

et al., 2004a) and (ii) passive (e.g. Njoku and Entekhabi, 1996). In active 

microwave sensing, electromagnetic waves are sent out by the instrument and 

the returned signal measured, while in passive microwave remote sensing it is 

the naturally emitted electromagnetic waves from the Earth surface that are 

measured and related to the soil moisture. Although both active and passive 

systems have shown potential for use in soil moisture data acquisition (Engman 

and Chauhan, 1995), there are some important fundamental differences that 

need to be understood. The active sensors are capable of providing high spatial 

resolution data, but when compared with the passive system their sensitivity to 

soil moisture is influenced more by roughness, topographic features, and 

vegetation. However, space-borne passive systems are only capable of 

providing a spatial resolution on the order of tens of kilometers (Engman and 

Chauhan, 1995). At the same time, satellite based remote sensing is only able to 

supply time series information of surface soil moisture data with 2-3 day repeat 

intervals over wide areas. Nevertheless, given that there are several satellites 

orbiting the earth that provide soil moisture information, it would be possible to 

obtain daily moisture time series by combing these different products. The 

penetration depth of a bare soil differs with the frequency of the band that is 

being used (e.g., L-band - ~ 5 cm, C-band - ~ 1 cm). The Advanced Microwave 

Scanning Radiometer (AMSR) (Njoku and Li, 1997), AMSR-Earth 

Observation System (which failed in October 2011) and AMSR-2 (launched in 

May 2012) offer products at different spatial resolutions (e.g. 10km and 25 km). 

By combining all of the AMSR products, it is expected that a time series of soil 

moisture spanning over twenty years will be available. However, given that 

these C-band observations are from the top ~ 1 cm layer only, the work 

presented in this thesis will not utilize AMSR data.  

The most useful frequency range for soil moisture sensing is at L-band – 1.4 

GHz, 21 cm – being an established technique for estimating the near-surface 

soil moisture with high sensitivity. Measurements at lower frequency are based 
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on the fact that the microwave emission from the Earth has large contrasts 

between land and water due to the large difference between the relative 

dielectric constant of water and dry soil. Additionally, the attenuation of the 

emitted radiation due to vegetation is moderate, and the influence of vegetation 

on the signal can be accounted for in vegetated areas with a biomass 

corresponding to an integrated water content of less than 5 kg/m (Kerr et al., 

2010). Launched in November 2009, the Soil Moisture and Ocean Salinity 

(SMOS) mission became the first dedicated soil moisture satellite. It is based on 

a dual polarized L-band radiometer using aperture synthesis (two-dimensional 

interferometer) so as to achieve a ground resolution of 50 km at the swath 

edges. A three day revisit cycle with an availability of 0.04 m
3
/m

3
 accuracy for 

soil moisture mapping is expected (Kerr et al., 2010, Kerr et al., 2001). An 

example of the soil moisture product from SMOS is shown in Figure 2.1. The 

Soil Moisture Active Passive (SMAP) mission will also focus on providing 

direct observations of soil moisture from space, using an L-band radiometer and 

radar (Entekhabi et al., 2010). Using a radar in conjunction with the radiometer 

is expected to increase the spatial resolution of the final product to 10 km. 

However, the launch date of the SMAP mission is late 2014 and therefore is out 

of context of this work.  

As discussed, passive microwave remote sensing is only capable of providing a 

spatial resolution on the order of tens of kilometers (Engman and Chauhan, 

1995), including the current Soil Moisture and Ocean Salinity (SMOS) mission. 

However, the scale at which most hydrological processes occur is 1km or less, 

meaning that the utilization of space-borne data in hydrological modelling is 

not always straight forward (Entekhabi et al., 1999). Therefore, downscaling or 

disaggregation methodologies are a necessity to improve the spatial resolution 

of soil moisture observed from space.  
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Figure 2.2: The global soil moisture synthesis from SMOS for the 14
th

, 15
th

 and 

16
th

 of August 2010. 

 

There have been a range of downscaling methods developed to distribute fine 

scale soil moisture within a coarse resolution pixel. Some of these 

methodologies are; (i) using empirical interpolation relationships between the 

spatial and temporal variability of the soil moisture and the behaviour of 

auxiliary data (e.g. topography, vegetation water content, soil texture, rainfall 

Kim and Barros, 2002), (ii) making use of fine-scale active microwave data for 

the interpolation of passive microwave data (Bindlish and Barros, 2002), (iii) 

coupling a radiative transfer model with a hydrological model to redistribute the 

soil water content spatially, as a function of local information on topography 

and soil properties (Pellenq et al., 2003), and (iv) using linear regressions 

between the vegetation index, surface skin temperature and near-surface soil 

moisture data with fine-scale optical data (Chauhan et al., 2003).  

The majority of these methods are based on the ‘triangle method’, which allows 

the pixel distribution from the image to fix the boundary conditions for the soil 

moisture prediction model (Carlson, 2007). This methodology utilizes high 

 



 

 

C
h
ap

te
r 

2
: 

L
it

er
at

u
re

 R
ev

ie
w

 

2-11 

 

resolution surface temperature and a vegetation index that are aggregated to the 

scale of the microwave observation for the purpose of building a linking model. 

This model is then applied at fine scale to disaggregate the passive soil moisture 

observations into high-resolution soil moisture. Based on the same concept of 

‘universal triangle’, Piles et al. (2011) utilized relationships between the VIS/IR 

parameters, the Normalized Difference Vegetation Index and land surface 

temperature, to the soil moisture status. This methodology combined the high 

spatial resolution offered by VIS/IR satellite data with SMOS observations to 

output accurate soil moisture estimates at high spatial resolution. Another 

approach tested by Piles et al. (2009) was deconvolution algorithms. 

Deconvolution algorithms can be defined as algorithms that optimally perform 

noise regularization and include auxiliary information in the reconstruction 

process. This methodology has been tested for synthetic and realistic brightness 

temperature images. It was found that both the spatial resolution and the 

radiometric sensitivity requirements can be achieved simultaneously (Piles et 

al., 2009).  

An alternative to the ‘triangle’ method was proposed by Merlin et al. (2008b) 

for SMOS, using MODerate resolution Imaging Spectroradiometer (MODIS) 

data, soil dependent parameters, and wind speed data. The downscaling 

procedure can be expressed via three main steps; (i) estimation of the soil 

evaporative efficiency from MODIS data, (ii) linking the soil evaporation 

efficiency to near-surface soil moisture via a physically based scaling function 

and, (iii) building a downscaling relationship to express high-resolution near 

surface soil moisture as a function of SMOS type observation and high 

resolution soil evaporative efficiency. The advantage of this innovative 

approach over existing methods is that it is capable of accounting for spatial 

variations in soil type and temporal variations in wind speed and near-soil 

moisture across the SMOS pixels (Merlin et al., 2008b). This methodology has 

been applied to several other studies by the author (e.g. Merlin et al., 2009, 

Merlin et al., 2008a, Merlin et al., 2010b). Disaggregation based on Physical 
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And Theoretical scale Change (DisPATCh) is a disaggregation algorithm 

presented by Merlin et al. (2011b), as a further improvement to Merlin et al. 

(2010a, 2008b). DisPATCh is committed to the disaggregation of soil moisture 

observations using high-resolution soil temperature data using a semi-empirical 

soil evaporative efficiency model and a first-order Taylor series expansion 

around the field-mean soil moisture.  

 

2.2.3 Soil Moisture Prediction Models 

Soil moisture prediction models predict the temporal evolution for soil moisture 

content. A special subset of these are the land surface models (LSMs), which 

simulate the continuous evolution for a wide range of land surface processes 

including plant transpiration, soil evaporation, and soil temperature, thereby 

providing the lower boundary conditions for meteorological models 

(Abramowitz et al., 2007, Sabater et al., 2008). Consequently, LSMs must be 

able to predict the energy, water, and carbon exchanges, with explicit 

representation of vegetation and soil types. Soil moisture prediction models 

generally require meteorological input data (temperature, precipitation, 

radiation and so on), as well as parameters that represent the vegetation and soil 

characteristics (Abramowitz et al., 2007). Each soil moisture prediction model 

is characterized by a unique land surface climatology, and therefore, even when 

identical forcing data, vegetation parameters and soil characteristics are used, 

the temporal soil moisture evolution will differ from model to model due to the 

complexity between model parameterization interactions (Koster and Milly, 

1996). This difference of soil moisture predictions between models can be 

observed in Figure 2.2.  

Of the large number of soil moisture prediction models used in the scientific 

community, the Canadian Land Surface Scheme (CLASS Verseghy, 1991) can 

be shown as one of the pioneering models that focuses mainly on the soil 
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system. To adequately reproduce the thermal regime, CLASS was designed to 

simulate fluxes for three layers of soil where the shallow layer (0-0.10 m) 

stored the diurnal temperature changes, the intermediate layer (0.10-0.35 m) 

resolved the temperatures in the middle rooting vegetation zone, while the deep 

layer (0.35 – 4.10 m) stored annual variations of temperature. 

Mosaic (Koster and Suarez, 1992, Koster and Suarez, 1996) was presented as 

“an efficient strategy for modeling the land surface boundary in general 

circulation models”, with its’ roots going back to the Simple Biosphere model 

(Sellers et al., 1986) . In Mosaic, each grid cell is divided into a ‘mosaic’ of 

tiles, based on the distribution of vegetation within the cell, with each tile 

behaving as an independent column of soil, thereby having no direct 

interactions with each other. With each tile coupled to the general circulation 

model atmosphere, any affect is through the atmosphere only. Each tile is 

assumed to be completely covered by one type of pre-defined vegetation and 

the average soil moisture and temperature for the grid square obtained by 

averaging relevant prognostic variables over the tile. The three soil reservoirs of 

Mosaic consist of a thin layer near the surface, a middle layer that encompasses 

the remainder of the root zone, and a lower ‘recharge’ layer for long term 

recharge. 

The Interaction Soil Biosphere Atmosphere (ISBA) model (Noilhan and 

Mahfouf, 1996) takes into account the gravitational drainage, the continuous 

formulation of soil transfer coefficients for heat and moisture, and surface drag 

coefficients. This model has been designed for meteorological models, and 

therefore comprises of a relatively simple scheme. However, it encompasses the 

most important components of the land surface process. Additionally, in ISBA, 

the soil hydraulic parameters are calculated within the model based on the soil 

texture information that is given as parameter information. 

Noah (Ek et al., 2003), the soil moisture prediction model used in the National 

Centers for Environmental Prediction mesoscale Eta model, consists of several 
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developments from its initial conception such as; increase from two soil layers 

to four with modifications to the canopy conductance formulation (Chen et al., 

1996), bare soil evaporation and vegetation phenology (Betts et al., 1997), 

surface runoff and infiltration (Schaake et al., 1997), and thermal roughness 

length treatment in the surface layer exchange coefficients (Chen et al., 1997). 

The Community Land Model (Oleson et al., 2010) is a community developed 

soil moisture prediction model, focusing on biogeophysics, incorporating 

scientific advances in understanding and representing land surface processes, 

expanding the model capabilities, and improving surface and atmospheric 

forcing datasets. 

The objective of the work presented in this thesis is on retrieving soil hydraulic 

properties from near-surface soil moisture. Therefore, the selected soil moisture 

prediction model should have characteristics that best facilitate the expected 

outcomes. The model should have the soil hydraulic properties (e.g. the 

volumetric water content at saturation, Clapp and Hornberger exponent, soil 

hydraulic conductivity at saturation, soil matric suction at air entry and so on) 

as direct inputs, given that the whole focus is on ‘retrieving’ them. Therefore, 

ISBA (Noilhan and Mahfouf, 1996) is not considered to be a suitable soil 

moisture prediction model for the proposed work. Another important factor was 

the set up of the soil layers in the model. This is because to correspond with the 

sensing depth of SMOS, the surface layer must have an approximate thickness 

of 0.05 m. This work will also utilize data from the Murrumbidgee soil 

moisture monitoring network (Smith et al., 2012), where soil moisture 

observations are made at different depths over the soil profile. Therefore, it 

would be advantageous to select a model that shows flexibility with the number 

of layers in addition to the individual layer thickness. Hence, CLASS 

(Verseghy, 1991), Mosaic (Koster and Suarez, 1992, Koster and Suarez, 1996), 

Noah (Ek et al., 2003), Community Land Model (Oleson et al., 2010) and so on 

do not meet this requirement given that their layers are fixed, and modifying the 

soil moisture prediction model is beyond the framework of this thesis. 
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The focus was on the soil moisture prediction models used by the Australian 

Bureau of Meteorology (BoM) for weather and climate predictions from 

Australian Community Climate and Earth-System Simulator (ACCESS). It was 

noted that the Met Office Surface Exchange Scheme (Cox et al., 1999) is used 

as the soil moisture prediction model for weather and climate predictions while 

the Community Atmosphere-Biosphere Land Exchange (CABLE) model 

(Kowalczyk et al., 2006) is used as the soil moisture prediction model for 

climate predictions. The soil moisture prediction model Joint UK Land 

Environment Simulator (JULES Best et al., 2011, Clark et al., 2011), is 

developed from the Met Office Surface Exchange Scheme and can be used 

either as a stand-alone model or coupled to a global circulation model. Hence, a 

detailed exploration on the two soil moisture prediction models CABLE and 

JULES is conducted later in this thesis from among the large number of models 

that are currently in use by the scientific community.  

In version 1.4 of CABLE, which was the model accessible to the community at 

the time of the work presented in this thesis, the soil moisture and soil 

temperature are simulated for six fixed layers, and this version of the model 

does not make provisions for the user to change either the number of layers or 

their thickness. Moreover, CABLE does not facilitate the specification of 

parameter data for individual layers of the profile. However, it is possible to 

initialize the soil moisture of all six soil layers. The JULES soil moisture 

prediction model has a default number of four soil layers but it is possible for 

the user to vary both the number of layers and their thickness. Additionally, the 

parameters and initial conditions for each of the selected soil layers can be 

specified. Although the Richard’s equation is used in the calculation of soil 

moisture for both models, there is a choice of using either of two commonly 

used constitutive relationships; Brooks and Corey (1964) or van Genuchten 

(1980). An evaluation of both soil moisture prediction models, CABLE and 

JULES, is presented in Chapter 3.  
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Soil hydraulic parameter data, either in the form of textural information (sand, 

silt, clay percentages) so that the model calculates the hydraulic parameter 

values, or as physical parameter values (hydraulic conductivity at saturation, 

matric suction at air entry, volumetric water content at saturation and so on), are 

a requirement for any soil moisture prediction model. These hydraulic 

parameters are soil specific parameters, and show significant variations with the 

changes in the particle size distribution. The Campbell/Clapp and Hornberger 

constitutive relationship is given by equation 2.1 and the Brooks and Corey 

constitutive relationship is given by equation 2.2.  

       
 

 
 
    

,        (2.1) 

where    is the saturated hydraulic conductivity,    the hydraulic conductivity, 

θ the volumetric soil moisture content, ϕ the soil porosity, and the exponent 

defined as the pore-disconnectedness index.. 

        
     

     
 
 

 ,        (2.2) 

where c is a soil texture parameter given by c = 2b + 3, and    the residual 

water content. 

It can be observed that the soil hydraulic conductivity is texture dependant. 

Equation 2.2 is a reasonable approximation for sandy soils and yet does not 

capture inflection of most real    curves (Walker, 2009). 

Because of this lack in data, soil moisture estimates using soil moisture 

prediction models typically suffer from physical parameterisation based on low-

resolution and/or erroneous soil property information (Grayson et al., 2006). As 

discussed, soil hydraulic parameters are either measured in-situ or in a 

laboratory as point measurements. Consequently, it is impractical to use this 

approach to derive detailed information on spatial variability of the soil 

properties due to the time consuming nature of the tests and the expenses 

involved (Steele-Dunne et al., 2010). Hence, pedotransfer functions (empirical 
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equations) are typically used to describe the relationship between the required 

soil hydraulic properties and easily measurable soil properties such as soil 

texture (Wösten, 1997, Wösten et al., 2001). Extrapolation over large areas 

yields crude estimates of soil hydraulic properties with large standard 

deviations (Vereecken et al., 1990, Vereecken et al., 1989), the accuracy of 

which deteriorates with the extent of the extrapolation, and thus adversely 

affects the accuracy of the model simulations.  

The origin of most global and local soil property maps is the Food and 

Agricultural Organization of the United Nations (FAO) soil texture map, known 

as the "World Soil Classification" (Latham, 1981b), with the soil hydraulic 

properties estimated from look-up-tables for ‘typical’ soil types (e.g. Clapp and 

Hornberger, 1978, Rawls et al., 1982). Yet, soils are heterogeneous with 

changes on the scale of centimeters, and so hydraulic parameter estimates from 

a typical soil type have large deviations from reality. Thus, the following 

section of this chapter will focus on the currently available soil classification 

maps and other hydraulic parameter information.  

 

2.3 Soil Classification Maps 

On a global scale, there are two supranational soil classification maps available. 

One such map is the Food and Agricultural Organization of the United Nations 

(FAO), known as the "World Soil Classification", first published in 1974 as the 

"UNESCO Soil Map of the World" at a scale of 1:5,000,000 (Latham, 1981b 

see Figure 2.3). The other soil map with a global coverage is at a scale of 1: 

10,000,000 and is a result of the work by Kovda and coworkers. Of these two, it 

has been accepted that the most appropriate source of soil information for 

studies at a continental, regional or global nature, is the world soil classification 

(Nachtergaele, 1999). However, there is no explanation of the procedures 

followed to measure the different soil properties to produce the FAO soil map 
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(McBratney et al., 2002). Hence, in accordance with FAO evaluation, 

uncertainties in the maps result from; (i) scale, (ii) methodology, (iii) purpose 

of presentation of source maps and, (iv) from the difficulty of correlating local 

map legends to FAO legends (FAO, 1971-1981).  

The FAO soil map initially consisted of 26 'Major Soil Groupings' with 106 

'Soil Units', based on existing knowledge on the formation, characterization and 

distribution of the soils (Latham, 1981a). The FAO global soil map gives an 

indication of the soil type, texture, and slope. Generalized from the UNESCO 

Soil Map of the World at a scale of 1:25,000,000, a revision came in 1990 

named the "Map of World Soil Resources". This version was further revised by 

changing the original projection, converting the FAO legend into the World 

Reference Base for Soil Resources, incorporating additional soil data obtained 

from new or revised soil map sources, and where possible, matching the soil 

unit boundaries with major landforms (http://www.fao.org/ag/agl/agll/wrb/ 

soilres.stm, Accessed October 25, 2012). The World Inventory of Soil Emission 

database, a project of the International Soil Reference and Information Centre, 

consisting of soil area-data and attribute-data, can be identified as another 

global soil dataset where the area-data are derived from the FAO soil map of 

the world, while the attribute-data shows the characterization of each soil unit 

on the map, derived from "quality controlled digital databases" and other 

sources of manuscripts (Batjes, 1994).  

The International Satellite Land Surface Climatology Project (ISLSCP) Phases 

I and II also use the FAO-UNESCO Digital Soil Map of the World as its' source 

of soil property information (Global Soil Data Task. 2000). The ISLSCP 

Initiative I was a pilot project that produced the first global land cover, 

hydrometeorology, radiation and soils data sets regridded to a common 1° by 1° 

format for 1987 to 1988. It was further extended to contain 50 global time 

series spanning the 10-year period 1986 to 1995, designed to support 

investigations of the global carbon, water and energy cycle and was termed 

http://www.fao.org/ag/agl/agll/wrb/
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ISLSCP Initiative II. These data sets are extensively used in weather forecast 

improvements, hydrological applications, macroscale basin modeling, 

biogeochemical and carbon tracer models, global carbon flux model 

comparisons, general circulation models, model validation and comparison, 

algorithm development and so on (Global Soil Data Task. 2000). Thus, the 

uncertainties in the FAO maps resulting from scale, methodology, source maps 

and so on are embedded in the work resulting from ISLSCP data.  

Supplementing the World Soil Classification are national and regional soil 

maps. In Australia there is the 'Atlas of Australian Soils', first compiled in 1968 

at a scale of 1:2,000,000. Despite the scale, the original compilation was at 

1:250,000 to 1:500,000. The digital version of the Atlas was created in 1990 

(http://www.asris.csiro.au/themes/Atlas.html, Accessed October 25, 2012). 

While this map provides only the broadest of soil information, with soil 

landscapes comprising a number of soil types, McKenzie et. al (2000) 

developed techniques for estimating soil properties from this data set, since soil 

type information by itself is of limited use. Therefore, based on the Factual Key 

of Northcote and at the level of the Principle Profile Form (Northcote, 1971), 

soil properties for the A and B horizons have been estimated. The horizon 

thickness, texture, clay content, bulk density, grade of pedality and saturated 

hydraulic conductivity are provided based on the data from the CSIRO National 

Soil Database.  

To further improve Australian soil mapping, the Australian Soil Resources 

Information System (ASRIS) was developed. The ASRIS consists of nationally 

consistent spatial estimates of key soil properties
1
 required for regional to 

national scale assessments. It also utilizes a hierarchy of mapping units with 

                                                
1 Texture, clay content, coarse fragments, bulk density, pH, organic C, depths to A1, B2, 

impeding layers, thickness of solum and regolith, θ-10 kPa, θ-1.5 MPa, plant available water capacity, 

Ksat, EC, aggregate stability, sum of exchangable bases, CEC, ESP, ASC, WRB, substrate type, 

substrate permeability. 

 

http://www.asris.csiro.au/themes/Atlas.html
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seven categories
2
 (Carlile, 2001, McKenzie, 2005). Nonetheless, it has some 

major weaknesses. The three topmost levels (L1-L3) provide descriptions of 

soils and landscapes across the complete continent, whereas the lower levels 

(L4-L6) provide more details especially on soil properties, provided that the 

mapping has been completed, while L-7 refers to an individual site in the field. 

However, the upper level have been generated using digital terrain analysis and 

refinements of existing geomorphic data and the lower levels have been derived 

from the component relating to state, territory and federal land databases. In 

particular, it focuses on large areas due to generalizations, and so cannot be 

applied to smaller areas like individual farms or small scale 

catchments/watersheds.  

Both the global and local maps are soil texture maps, requiring the use of look 

up tables (e.g. Clapp and Hornberger, 1978) containing soil hydraulic parameter 

data for ‘typical’ soil types. These soil hydraulic parameters have been derived 

using ‘pedotransfer functions’, where a pedotransfer function (PTF) was coined 

as “translating data we have into what we need” by Bouma (1989). Field 

morphology, texture, structure, pH are some of the most readily available data 

from soil surveys, and PTFs add value to this basic information by translating 

them into estimates of other more difficult to measure soil properties, like the 

soil hydraulic properties.  

Pedotransfer functions contribute to filling the gap between available soil data 

and any properties that are more useful or required for a particular model or, 

quality assessment. They can be further defined as predictive functions of 

certain soil properties from other easily, routinely, or even cheaply measured 

properties (McBratney et al., 2002). One limiting characteristic of PTFs is that a 

                                                
2 Level 1 (Division) - broad landform (slope and relief) and geology; Level 2 (Province) - 

landform, water balance, dominant soil order and substrate; Level 3 (Zone) - landform, regolith 

materials, age of land surface, water balance and dominant soil suborder; Level 4 (District) - 

groupings of geomorphically related systems; Level 5 (System) - local climate, relief, modal 

slope, lithology, drainage network and related soil profile class; Level 6 (Facet) - slope, aspect, 

land curvature and soil profile class; Level 7 (Site) - soil properties, surface condition and 

microrelief.  
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certain function cannot be extrapolated beyond specific constraints, in terms of 

geomorphic region or soil type, under which it was developed in the first place. 

Since the study area of this thesis is located within Australia, it was interesting 

to observe that the study by Williams et al. (1983) was the first comprehensive 

attempt to develop PTFs for Australian soils. This was followed with several 

other studies by Cresswell and Paydar (1996), McKenzie and Jacquier (1997), 

Minasny et al. (1999) and so on. 

 

 

Figure 2.3: The Food and Agricultural Organization (FAO) soil map of the 

world. (Source: www.fao.org) 

 

http://www.fao.org/nr/land/sols/
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Hence, the question arising is, how well do some selected PTFs interpolate soil 

hydraulic properties for typical soil types covering the globe. It is therefore very 

clear that there are many weaknesses in the existing soil data. Hence, it is 

necessary to identify an alternative way, rather than using PTFs, of obtaining 

the hydraulic properties pertaining to a soil. Thus, the next two sections review 

the possibilities of using remotely sensed data to (i) obtain different soil 

properties in general and (ii) obtain soil hydraulic parameters. 

 

2.4 Remote Sensing of Soil Properties 

The characterization of soil properties from remotely sensed data has been 

attempted as early as the 1920s, where aerial photographs were used to map soil 

boundaries. However, the challenges faced with that approach are; (i) the soil 

property representation at the surface does not necessarily correlate to changes 

throughout the root zone, and (ii) changes in surface tillage, rain compaction, 

moisture, and plant residue may all induce changes in apparent soil reflectance 

that approach or exceed spectral responses due to soil physical properties 

(Bushnell, 1932).  

It is also possible to determine the mineralogy of a soil from the spectral 

signatures of rock outcrops or from the mineral composition of bare soils, 

provided that the satellite data is of very fine resolution. Hence, the subtle 

differences in the spectral signature throughout the Visible and Near-Infra-Red 

to Thermal Infra-Red has been used to discriminate between different minerals 

(Mulder et al., 2011). While the spatial and spectral resolutions offered by both 

Landsat Thematic Mapper and MODIS have been found to be too coarse for 

mineralogy mapping (Dobos et al., 2000, Teruiya et al., 2008), it has been 

found that combining Landsat Thematic Mapper with Advanced Spaceborne 

Thermal Emission Reflection Radiometer data has been useful for mineral 

mapping. Moreover, by using multivariate prediction models in conjunction 
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with Advanced Very High Resolution Radiometer data, the spatial extent of the 

clay content of the lower Naomi Valley in eastern Australia has been mapped 

by Odeh and McBratney (2000), while Barnes and Baker (2000) were able to 

determine different soil texture classes (in Maricopa, Arizona) from a 

combination of Landsat Thematic Mapper, Satellite Pour l'Observation de la 

Terre, air borne spectroscopy and laboratory analysis.  

The spatially heterogeneous distribution of flora and fauna is a major 

contributor of the soil organic carbon (Scatena et al., 1996, Silver et al., 1994). 

Equally, the spatial distribution of soil organic carbon pools themselves, as well 

as biological processes in ecosystems, depend upon spatial variation in abiotic 

factors such as solar radiation, soil temperature and soil moisture (Parton et al., 

1987, Parton et al., 1988). Thus, one of the main indicators to be used in soil 

organic carbon mapping with remote sensing is the soil colour. The darker the 

soil colour, the more organic matter typically contained when compared to 

lighter soils. Hence, the visible part of the spectrum is often used to map the 

soil organic carbon content based on the soil colour (Viscarra Rossel et al., 

2006). However, there have been only a few studies that have demonstrated the 

capability to accurately determine the soil organic carbon from airborne hyper-

spectral sensors (e.g. Ben-Dor et al., 2002, Selige et al., 2006, Stevens et al., 

2006). 

Remotely sensed hyper-spectral satellite data are able to offer a synoptic view 

of a large area at one time, as well as a repetitive coverage. These two 

characteristics are important to observe the various soil properties that vary 

both in space and time. Some of these properties are: the degree of soil crusting 

as a result of rain-drop impact, soil texture, soil moisture, roughness, vegetation 

or residual crop cover (Barnes et al., 2003). The study of Gomez et al. (2008) 

focused on evaluating the potential for measuring soil organic carbon (in the 

Narrabri region of north western New South Wales in Australia) from the 

Hyperion hyper-spectral satellite. An important conclusion from this study was 
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that the spaceborne remotely sensed approach shows ‘potential’ for soil organic 

carbon prediction from hyperspectral data. By multiplying the soil organic 

carbon by a factor of 1.72 (Nelson and Sommers, 1982), the organic matter 

content of the soil can be obtained. The soil organic matter plays an important 

role in the retrieval of the soil moisture from remote sensing techniques, from 

both an airborne and spaceborne perspective, as it influences the amount of 

water retained in the soil. In this thesis, the effects of soil organic matter 

content on soil moisture will not considered, as it has been shown that within a 

selected agro-climatic region or watershed, the variation in organic matter is 

generally small enough to be considered as a non-important factor (Saxton et 

al., 1982). Also, given that the soil organic matter changes the water retention 

properties of the soil, it can be assumed that any soil hydraulic properties 

retrieved using the soil moisture prediction model would have already taken the 

influence of this into consideration.  

The study by Summerell et al. (2009) focused on the potential of soil mapping, 

through the detection of changes in spatial and temporal soil moisture patterns 

in the Livingstone Creek Catchment in south eastern Australia. Their study 

used the medium resolution data from the Polarimetric L-band Multibeam 

Radiometer to show strong spatial relationships with the landforms that reflect 

individual soil types. This study utilized airborne remotely sensed data at a 

higher spatial resolution than spaceborne systems. Different textured soils 

formed from different geology have different water holding capacities, which 

were correctly depicted. In their study, Summerell et al. (2009) have used the 

data corresponding to the horizontal polarization, pointing out that it is more 

sensitive to soil moisture than vertical polarization. Within the context of the 

work presented in this thesis, these conclusions are very important as it 

solidifies the potential of using soil moisture observations at L-band, for soil 

mapping under Australian conditions. 
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Soil moisture remote sensing is unarguably one of the most important quantities 

to improve soil moisture prediction model prediction. Nonetheless, current 

remote sensing methods are limited to a shallow observation depth. However, 

by assimilating observed near-surface soil moisture in to soil moisture 

prediction models, it is possible to improve the root zone soil moisture 

prediction. Moreover, the soil hydraulic properties have a major influence on 

the amount of water stored in a soil. Hence the next section is a review of 

studies that have utilized the surface soil moisture data for soil hydraulic 

parameter retrieval of the surface and root zone, with the objective of 

identifying gaps and limitations. 

 

2.5 Hydraulic Property Estimation from Remotely 

Sensed Soil Moisture 

Microwave remote sensing, being heavily affected by the contrast in dielectric 

properties between the dry soil and water, does not measure soil moisture 

directly. Hence, mathematical models must be used to relate the soil moisture 

content from the sensor measured response (de Troch et al., 1996). Moreover, 

the use of soil moisture measurements alone is not sufficient to provide unique 

and physically reasonable estimates of soil hydraulic properties at field scale 

(Vereecken et al., 2008), and therefore requires additional information to 

constrain parameter estimation. 

One of the earliest, perhaps the first, study to estimate the soil hydraulic 

parameters from passive microwave measurements and atmospheric forcing 

data was by Camillo et al. (1986). In this study, a soil physics model was used 

to solve the heat and moisture flux equations in the soil profile, and a 

microwave emission model to predict the soil brightness temperature. The 

model hydraulic parameters were then varied until the simulated soil brightness 

temperature agreed with the remotely sensed measurements obtained from a 
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dual-polarized L-band radiometer. However, the experiment was conducted 

within a time-frame of three days on three artificially modified plots, and did 

not capture the full wetting and drying cycle of the soils. A series of subsequent 

studies by Burke et al. (1997b, 1997a, 1998) clearly demonstrated the potential 

of soil property retrieval from remotely sensed soil moisture. In these studies, a 

Soil Water Energy and Transportation model was coupled with a microwave 

emission model to predict the microwave brightness temperature to estimate the 

soil hydraulic properties using passive microwave measurements. The objective 

was to calibrate the Campbell soil hydraulic parameters (Campbell, 1974) until 

the cumulative error between the observed (with measurements from a truck-

mounted L-band radiometer) and simulated brightness temperature is 

minimized. The study used a number of drying cycles on engineered soils of 

contrasting texture (loamy sand, loam and sandy loam) under both cropped and 

bare soil conditions. It tested the possibility of estimating soil hydraulic 

properties over a bare soil and over soya-bean covered soil. However, it has not 

been extended for different vegetation canopies.  

An alternate approach by Mattikalli et al. (1998) was to analyze soil moisture 

maps against soil property maps to identify a direct relationship between the 

soil moisture, their changes, and the soil texture. They identified that the 

temporal and spatial patterns observed in both brightness temperature and soil 

moisture closely followed the patterns of soil texture. They developed 

regression relationships for the ratio of percent sand to percent clay and 

effective saturated hydraulic conductivity in terms of brightness temperature 

and soil water content. These relationships were based on the temporal changes 

of brightness temperatures and near-surface soil moisture data observed during 

the Washita’92 campaign (Jackson et al., 1995). The authors quantified the soil 

texture by calculating the ratio of the percent of sand to percent of clay. Given 

that the ratio of the percent of sand to percent of clay does not account for soil 

organic matter, its use was restricted to (i) regions with small variations of soil 

organic matter and (ii) little spatial variations. They also identified that the 
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validity of the regression relationships was limited by the range of experimental 

conditions encountered; that is a dry period following a thorough wetting by 

considerable rainfall and without interruption by further rain. Despite these 

limitations, the findings of this study proved the long-term potential of 

employing spaceborne microwave remotely sensed observations for 

identification of soil texture and derivation of soil physical properties over large 

areas. Mattikalli et al. (1998) also argued that the remotely sensed soil 

properties better represent the soil controlled hydrologic processes than point 

measurements, as they provide areal specific hydrologic signatures (Mattikalli 

et al., 1998). However, these experiments need to be tested on spatially varying 

areas and under different meteorological conditions. 

To test the feasibility of using only remotely sensed data, with little or no 

information on soil texture, Chang and Islam (2000) made use of an artificial 

neural network and the principal of self-organization. Their methodology 

estimated the soil physical properties based on the physical linkage between 

soil hydraulic properties and soil moisture, during the dry down period only, 

based on the assumption that the dry down curves of soil moisture and 

brightness temperatures at different locations with similar soil texture would 

perform similarly. In their study, Chang and Islam (2000) used multi-temporal 

maps of near-surface brightness temperature, and as such, their derived soil 

texture map essentially corresponds only to near-surface textural properties. 

Therefore, it is not capable of providing explicit information on the profile soil 

moisture or texture (Chang and Islam, 2000). This study was conducted with 

the data gathered over the Washita’92 campaign (Jackson et al., 1995).  

The study by Ritter et al. (2003) demonstrated the possibility of estimating 

effective hydraulic properties from time series measurements of soil moisture 

data using inverse methods. However, this study clearly illustrated the problems 

of ill-posedness, which is an intrinsic problem of parametric models. The use of 

a genetic algorithm to identify the soil water retention and hydraulic 
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conductivity functions, through the inversion of a soil-water-atmosphere-plant 

(SWAP) model, has been tested by Ines and Mohanty (2008b) using observed 

near-surface soil moisture as a search criterion. Their study focused on three 

hydrological cases; (i) homogenous column of soil under free-drainage, (ii) 

homogenous column of soil with shallow water table, and (iii) heterogeneous 

soil column under free-drainage. The concluding remark was that “for the 

layered soil system, the approach was unsuccessful with only certain 

parameters identified” (Ines and Mohanty, 2008b), where the identifiable 

parameters were the shape parameters of the Mualem-Van Genuchten (van 

Genuchten, 1980) functions and the unsaturated water content. The 

methodology was then validated with laboratory measured unsaturated moisture 

and hydraulic conductivity relationships, soil moisture observed in the field, 

and soil hydraulic properties from the UNSODA unsaturated soil hydraulic 

database (Leij et al., 1997) from hydroclimatic regions including semihumid 

Oklahoma, humid Iowa and Illinois, and temperate humid China (Ines and 

Mohanty, 2008a). The main conclusion drawn from this study was that an 

effective homogeneous soil unit may fail to accurately represent a highly 

heterogeneous soil profile, given that only near-surface soil moisture data was 

used to estimate the effective soil hydraulic parameters. Hence, additional soil 

moisture data from deeper depths may be needed to better estimate effective 

soil hydraulic parameters in a highly heterogeneous soil. Ines and Mohanty 

(2009) then tested their methodology for large-scale parameter estimation 

applications using soil moisture data from airborne remote sensing. One 

important conclusion drawn from this study is the promising potential of near-

surface remote sensing and ground based soil moisture data. An important 

observation of their study was that any uncertainties in the remotely sensed data 

due to retrieval, calibration or geoprojection will propagate directly to the 

derived soil hydraulic parameters at the pixel-scale. However, they have only 

focused on homogeneous columns of soil in all their work, and therefore have 
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not explored the possibility of retrieving hydraulic parameters for a 

heterogeneous soil. 

Loew and Mauser (2008) investigated the potential of using surface soil 

moisture information to infer soil hydraulic parameters using uncertain 

observations. From their study, they inferred that although there is generally 

good potential to improve soil moisture prediction model parameterization by 

assimilating surface soil moisture, a high accuracy in soil moisture estimates is 

required to obtain reliable estimates of soil characteristics.  

Gribb et al. (2009) conducted a study on the effects of using soil hydraulic 

property information obtained from various measurement techniques, including 

in-situ measurements, laboratory tests, pedo-transfer functions and inverse 

modeling. The study used a 1-dimensional model prediction of soil moisture for 

two layers and the cumulative water flux from the bottom of the profile. The 

moisture retention curves from the different soil hydraulic property information 

were first compared with the in-situ measurements. They concluded that the 

soil hydraulic property estimates from inverse methods led to the best 

simulations of soil moisture dynamics, while laboratory multistep outflow tests 

performed poorly. However, the most important conclusion derived from their 

study was that commonly used pedotransfer functions performed poorly.  

Montzka et al. (2011) explored the potential of using surface soil moisture 

measurements from satellite platforms to retrieve soil hydraulic properties, by 

assimilating the top soil layer moisture observations and subsequently updating 

the states and hydraulic parameters of the model using a Particle Filter data 

assimilation method. They found that it was possible to correct biases arising 

from false parameterization and reduce the uncertainty of soil hydraulic 

parameters, provided the observations had a 3-day or better overpass repeat. 

They further recommended that SMOS has good potential to be used to obtain 

soil moisture profiles and hydraulic properties, but have not tested the approach 

with real satellite data or over large domains.  
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When reviewing current work that has utilized remotely sensed data for soil 

hydraulic parameter retrieval, several gaps were identified. Most work to date 

has focused on utilizing synthetic simulations (Ines and Mohanty, 2008b, 

Montzka et al., 2011), or observations on engineered soils (Burke et al., 1997b, 

Burke et al., 1997a, Burke et al., 1998, Camillo et al., 1986, Ines and Mohanty, 

2008b). Additionally, only a limited number of studies (Dane and Hruska, 

1983, Ritter et al., 2003, Ye et al., 2005, Yeh et al., 2005) have focused on 

estimating soil hydraulic properties from soil moisture observations under 

transient flow or naturally occurring boundary conditions. However, these 

studies have not utilized remotely sensed data, but various field observations 

like drainage or a moisture plume under impermanent flow conditions. Hence, 

it is identified that there is a need to retrieve soil hydraulic parameters of a 

heterogeneous soil profile from remotely sensed data under natural boundary 

conditions. 

There are many methods available to assimilate soil moisture measurements 

into the soil moisture prediction models so as to estimate or retrieve different 

soil properties. Some of these methods are; direct insertion, statistical 

correction assimilation, Newtonian nudging, inverse modeling, variational 

approaches and sequential data assimilation methods. The work presented in 

this thesis utilizes the inverse modelling approach for soil parameter retrieval 

and an overview of some of the available methods is given in the next section. 

 

2.6 Inverse Modelling 

When a model is created using some input values, it rarely matches well with 

observed or experimental data, and consequently methods are used to fit the 

user’s model response time series data (Kuczera, 1989). Since models are 

objective and reproducible, inverse modeling procedures are increasingly used 

to identify model parameters (Roulier, 2003), being the focus of this thesis. 
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Finsterle (2004) defines this process as “the process of estimating model 

parameters by matching a mathematical model to the measured data 

representing the system response at discrete points in space and time”. The 

‘measured data’ can include state variables (soil moisture, soil temperature, 

matric potential and so on), and/or fluxes (evapotanspiration, river discharge 

and so on). Hence, most inverse modeling techniques aim at finding an optimal 

set of parameter values within some particular model structure, where the 

model parameters are adjusted to minimize the difference between observed 

and modeled values. The algorithms used in inverse modeling can range from 

simple search algorithms that seek iterative improvement of an objective 

function, starting from a single location in the search space, to more advanced 

global search methods that would search the entire space of potential solutions.  

In most conventional optimization techniques, it is normally assumed that there 

exists only one minimum in the research region, and henceforth are called 

‘local search methods’. Normally, an iterative approach is used to generate a 

sequence of points that would converge to a point that would be termed as the 

‘solution’. Over time, many different inverse techniques have been applied in 

the field of hydrology. One such method is the Generalized Likelihood 

Uncertainty Estimation methodology by Beven (1993), which aims at ranking 

the parameter sets based on a likelihood scale. However, from the study by 

Gupta and Sorooshian (1998), Generalized Likelihood Uncertainty Estimation 

has weaknesses in the selection of prior parameter distributions, likelihood 

criterion, and cut-off thresholds. In order to provide a general error model, 

Kuczera (1989, 1994) introduced a regression model that implements the 

Bayesian nonlinear technique with an error model termed NLFIT. The error 

model makes the assumption that the random error can be expressed as a 

function of a random disturbance, which is distributed both normally and 

independently, with zero mean and constant variance. NLFIT then fits the user 

model to available time series data, making allowances for prior information on 

model parameters, identifying the most suitable error model, and inferring the 
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posterior probability distribution of the parameters. Further development 

resulted in the Bayesian total analysis methodology, specifically for 

hydrological models, which requires the direct incorporation, testing, and 

refining of all existing sources of data uncertainty in specific applications. This 

includes both rainfall and runoff uncertainties (Kavetski, 2006). However, 

Parameter ESTimation (PEST), a non-linear parameter estimator, developed by 

Doherty (1994a), is able to communicate with any model through its’ own input 

and output files. PEST uses the Gauss-Marquardt-Lavenberg method of non-

linear parameter estimation to optimize parameter values, and runs the model as 

many times as needed to find the parameter set for which the difference 

between model predictions and corresponding observations is as small as 

possible, in the weighted least square sense. It also gives the user flexibility to 

focus on any specific location within the dataset, and make ‘predictions’ about 

the parameters of interest. Particle swarm optimization (PSO Kennedy and 

Eberhart, 1995) is an optimization method based on the complex, collective 

behaviour of individuals in decentralized, self-organizing systems. This method 

is less susceptible to getting trapped in a local minimum since it is population-

based, and has the capability to control the balance between the local and global 

search space (Engelbrecht, 2005a). Swarms of birds, colonies of ants, schools 

of fish are some of the examples that can be identified from within Nature.  

The inverse solutions are quite sensitive to the initial conditions, when 

conventional optimizers are used, due to the fact that the objective functions are 

often topographically complex and may contain several local minima. The 

study by Pan and Wu (1998) presenting an annealing-simplex method, through 

the incorporation of simulated annealing strategies into a classical downhill 

simplex method, was found to converge to the global minimum at all times. The 

Differential Evolution Adaptive Metropolis by Vrugt et al. (2008), a novel 

Markov Chain Monte Carlo sampler, focuses on estimating the posterior 

probability density function of hydrologic models in complex, multi-

dimensional sampling problems. This algorithm uses differential evolution as a 
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genetic algorithm for population evolution, with a Metropolis selection rule that 

decides whether the candidate points should replace their respective parents or 

not.  

Only a brief introduction is given about the various techniques under this 

section. Detailed information on the selected models, their performance, and 

other characteristics are discussed in detail in subsequent chapters of this thesis. 

The next section of this chapter gives an overview of the methodology that has 

been proposed to achieve the objective of retrieving soil hydraulic parameters 

of a heterogeneous soil profile from remotely sensed data under natural 

boundary conditions. 

 

2.7 Proposed Methodology 

After reviewing the literature and identifying their strengths and weaknesses, a 

methodology to retrieve soil hydraulic parameters from near-surface soil 

moisture observations is proposed. The soil hydraulic parameters that are the 

focus of this thesis are; (i) Clapp and Hornberger (1978) exponent, (ii) 

hydraulic conductivity at saturation (mm/s), (iii) soil matric suction at air entry 

(mm/s), (iv) volumetric fraction of soil moisture at saturation (m
3
/m

3
), (v) 

volumetric fraction of soil moisture at the critical point equivalent to a soil 

suction of 3.364 m (m
3
/m

3
) and, (vi) volumetric fraction of soil moisture at the 

wilting point, equivalent to a soil suction of 152.9 m (m
3
/m

3
).  

Despite the fact that soil hydraulic properties play an important role in all 

environmental disciplines, look-up-table values linked to ‘typical’ soil texture 

classes are still the main source of information. These values are a result of a 

limited ground samples, pertaining to soil texture types, and come with large 

standard deviations from the mean. Thus, any resulting application of these soil 

hydraulic parameter values inherits their large standard deviation. Therefore, 

the need to have a set of soil hydraulic parameter values which are unique to the 
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area of interest, is necessary for better water resource management and water 

prediction. 

This thesis achieves the objective through three key studies; (i) synthetic twin 

experiment, (ii) field study with in-situ observation data, and (iii) field study 

with downscaled near-surface satellite observed soil moisture data for an area 

encompassing a SMOS pixel. A schematic of the methodology is shown in 

Figure 2.4. However, an assessment of models and methods is presented before 

the synthetic twin experiment, along with model stability, and how best to 

incorporate observations and set initial conditions to the soil moisture 

prediction model. All these studies are discussed in detail in subsequent 

chapters of this thesis, including the data that were used.  

 

 

Figure 2.4: The schematic of the proposed methodology. 

 

The area selected for this study is the Murrumbidgee Catchment, being typical 

of conditions across much of Australia. It has one of the most diverse climates, 
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ranging from semi-arid to humid with the land use including dry land and 

irrigated agriculture, remnant native vegetation, conservations and urban areas. 

The soil is of duplex nature, with the first layer (horizon A) being 

approximately 0.30 m deep. The Murrumbidgee Catchment is located in 

southern New South Wales (34° S to 37° S, 143° E to 150° E) and covers an 

area of 82,000 km
2
. The catchment is part of the Murray Darling Basin, located 

in south-eastern Australia. The elevation varies from 50 m in the west of the 

catchment to more than 2 000 m in the east (Geoscience Australia 2008). 

Climate variations are primarily associated with elevation, varying from 

semiarid in the west, where the average annual precipitation is 300 mm, to 

humid in the east, where average annual precipitation reaches 1900 mm in the 

Snowy Mountains (Australian Bureau of Rural Sciences 2001); maximum mean 

monthly precipitation occurs in the winter and spring. The mean annual areal 

actual evapotranspiration in the Murrumbidgee is roughly equivalent to 

precipitation in the west but represents only half of the precipitation in the east. 

Soils range from sands to clays, with the western plains dominated by finer-

textured soils and the eastern half of the catchment by predominantly medium 

to coarse textured soils (McKenzie et al., 2000). Land use in the catchment is 

predominantly agricultural with the exception of steeper parts of the catchment, 

which are a mixture of native eucalypt forests and exotic forest plantations 

(Australian Bureau of Rural Sciences 2006). Agricultural land use varies 

greatly in intensity and includes pastoral, more intensive grazing, broad-acre 

cropping, and intensive agriculture in irrigation areas along the mid lower 

Murrumbidgee. An overview of the characteristics of the Murrumbidgee 

catchment, as discussed above, is shown in Figure 2.5. 

For validating the model-retrieved soil hydraulic parameters, field and 

laboratory experimental analysis were conducted. A multi-layered soil moisture 

prediction model was used to simulate the soil profile from near-surface 

observations. The first study, a synthetic twin-experiment, helped to verify the 

appropriateness of the model, understand its limitations and any other 
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shortcomings since the ‘results’ were pre-known. The next study applied the 

concepts and theories to the real-world, where things were beyond the 

modeler’s control, while the final study tested the hypothesis with satellite 

derived near-surface soil moisture. Here, the SMOS soil moisture product, 

disaggregated at a 1 km scale, was used in place of the point observations. 

 

 

Figure 2.5: Overview of the Murrumbidgee River catchment and its climatic, 

topographic and soil diversity. Overlain is the outline of the AACES study area 

with the course of the Murrumbidgee River. The spatial dataset is publicly 

available through Australian Bureau of Rural Science (2001, 2006) and 

Geoscience Australia (2008). (Source: Peischl et al., 2012) 
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2.8 Chapter Summary 

The importance of soil moisture and its dynamic nature has been discussed. 

Investigations have shown that accurate soil moisture evolution, especially on a 

large scale, is impossible without utilizing spaceborne soil moisture 

observations in conjunction with data assimilation techniques. Moreover, 

literature shows that maps of soil hydraulic parameters are important for soil 

moisture prediction, yet accurate information is limited. Studies have also 

shown that soil hydraulic parameter estimation from spaceborne sensors has 

potential, especially from remotely sensed near-surface soil moisture. A 

methodology, utilizing surface data to calibrate the model, and using field and 

laboratory soil properties and root zone soil moisture for validation, to retrieve 

soil hydraulic properties pertaining to the complete soil profile from near-

surface soil moisture observations has been proposed, addressing these gaps.  
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Chapter 3  

Models Used In This Thesis 

This chapter presents the soil moisture prediction model and optimization 

approach used to undertake the work presented in the remainder of this thesis. It 

also addresses critical issues in relation to model operation. Consequently, the 

chapter comprises of five main sections; (i) an introduction to the soil moisture 

prediction models selected for testing, (ii) discussion and selection of the two 

optimizers that have been trialled in this work, (iii) identification of the most 

suitable soil moisture prediction model in the context of this study, (iv) an 

analysis of numerical stability limitations in the chosen soil moisture prediction 

model, and (v) an assessment of how best to initialize the chosen soil moisture 

prediction model. It has to be noted here that in the context of this chapter, the 

Joint UK Land Environment Simulator (JULES) has been run in a very basic 

manner so as to correspond with the Community Atmosphere-Biosphere Land 

Exchange (CABLE) model limitations. Much of the material presented here has 

been published in Bandara et al., 2011 and Bandara et al. – under review. 

 

3.1 Soil Moisture Prediction Models 

Soil moisture prediction models, of which land surface models are a subset, 

simulate the continuous time evolution of soil moisture.  Often these models 

also evolve other land surface processes, such as plant transpiration, soil 

evaporation, and soil temperature, thereby providing the lower boundary 

conditions for meteorological models (Abramowitz et al., 2007, 2008). There is 

an extensive number of soil moisture prediction models used in the scientific 

community, as discussed in Chapter 2. However, in the context of this thesis, 



 

 

C
h
ap

te
r 

3
: 

M
o
d
el

s 
U

se
d

 I
n

 T
h
is

 T
h

es
is

 

3-2 

 

the focus was to select from the soil moisture prediction models that are used in 

operations for the Australian continent. The Australian Bureau of Meteorology 

is currently using the Met Office Surface Exchange Scheme (Cox et al., 1999) 

as its soil moisture prediction model for weather and climate prediction using 

the Australian Community Climate and Earth-System Simulator (ACCESS). 

However, the intention is that at some point the Community Atmosphere-

Biosphere Land Exchange (CABLE) model (Kowalczyk et al., 2006) will be 

migrated into ACCESS. The Joint UK Land Environment Simulator (JULES 

Best et al., 2011, Clark et al., 2011) is a derivative of Met Office Surface 

Exchange Scheme that can be used either as a stand-alone model or coupled to 

a global circulation model. Hence, this thesis has determined to select between 

the CABLE and JULES soil moisture prediction models, as a subset of the large 

number of models currently in use by the scientific community. 

 

3.1.1 Joint UK Land Environment Simulator (JULES) 

The Joint UK Land Environment Simulator (JULES) is a process based soil 

moisture prediction model that simulates the fluxes of carbon, water, energy 

and momentum between the land surface and the atmosphere. It consists of four 

sub-models; soil, snow, vegetation and radiation (Best et al., 2011, Clark and 

Harris, 2009, Clark et al., 2011). Of these, the focus here is on the soil sub-

model and the simulation of soil moisture. By default, JULES uses four soil 

layers of 0.10 m, 0.25 m, 0.65 m and 2.0 m thickness, resulting in an overall 

soil depth of 3.0 m. However, both the number of layers and their thickness can 

be varied by the user, with the parameters and initial state values specified for 

each of the soil layers. Richard’s equation and either the Brooks and Corey 

(1964) or van Genuchten (1980) constitutive relationships can be used in the 

calculation of soil moisture. 
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JULES has a tiled model of sub-grid heterogeneity with nine surface types, (i) 

broad leaf trees, (ii) needle leaf trees, (iii) C3 (temperate) grass, (iv) C4 

(tropical) grass, (v) shrubs, (vi) urban, (vii) inland water, (viii) bare soil and (ix) 

ice, as shown in Figure 3.1. Each surface type is represented by a tile, and for 

each tile a separate energy balance is calculated. The energy balance of the grid 

box is thus calculated by weighting the values from each tile. The soil processes 

are modeled in several layers, and yet, all tiles lie-over and interact with the 

same soil column. Each grid-box requires meteorological variables (Table 3.1), 

soil properties (Table 3.2) and vegetation characteristics (Table 3.3). JULES 

can support any number of grid-boxes, including a single profile, limited only 

by the availability of computing power and input data (Clark and Harris, 2009). 

Additional information about the model and its’ physics can be found in Clark 

and Harris (2009), Best et al. (2011), and Clark et al. (2011). Version 3.0 has 

been used in this work. 

 

 

Figure 3.1: Schematic of JULES (Adapted from: http://www.jchmr.org/ 

jules/science/). 

 

http://www.jchmr.org/%20jules/
http://www.jchmr.org/%20jules/
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Table 3.1: Meteorological forcing data used in JULES. 

Data Units 

Downward component of short-wave radiation at the surface W m
-2 

Downward component of long-wave radiation at the surface W m
-2 

Rainfall rate kg m
-2
 s

-1 

Snowfall rate kg m
-2
 s

-1 

U component of wind m s
-1 

V component of wind m s
-1 

Atmospheric temperature K 

Atmospheric specific humidity kg kg
-1 

Surface pressure Pa 

 

 

Table 3.2: Soil ancillary data used in JULES. 

Parameter  Units 

Bare soil albedo (-) 

Dry soil thermal conductivity W m
-1

 K
-1 

Dry soil thermal capacity J K
-1

 m
-3 

Volumetric fraction of soil moisture at saturation  m
3
 m

-3
  

Volumetric fraction of soil moisture at critical point (for a soil suction 
of 3.364 m) 

m
3
 m

-3
  

Volumetric fraction of soil moisture at wilting point (for a soil suction 

of 152.9 m) 
m

3
 m

-3
  

Hydraulic conductivity at saturation mm s
-1 

Soil matric suction at air entry (Brooks and Corey relationship) m 

Clapp and Hornberger exponent (Brooks and Corey relationship) (-) 
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Table 3.3: Vegetation data used in JULES (without the Snow module) 

Data  Units 

Canopy height m 

Leaf Area Index (LAI) (-) 

Minimum canopy capacity kg m
-2

 

Rate of change of canopy capacity with LAI kg m
-2

 

Rate of change of vegetation roughness length for momentum with 
height 

(-) 

Ratio of the roughness length for heat to the roughness length for 

momentum 
(-) 

Infiltration enhancement factor (-) 

Root depth m 

Light extinction coefficient (-) 

Photosynthetically Active Radiation (PAR) extinction coefficient 
m

2
 leaf/m

2
 

ground 

Quantum efficiency  

mol CO
2
 per 

mol PAR 

photons 

Leaf reflection coefficient for Near Infra-Red (NIR) (-) 

Leaf reflection coefficient for visible light (VIS) (-) 

Leaf scattering coefficient for PAR (-) 

Leaf scattering coefficient for NIR (-) 

Allometric coefficient relating the target woody biomass to the LAI kg carbon m
-2

 

Woody biomass as a multiple of live stem biomass (-) 

Allometric exponent relating the target woody biomass to the LAI (-) 

Live stemwood coefficient  kg C/m/LAI 

Minimum turnover rate for leaves /360 days 
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Rate of change of leaf turnover rate with moisture availability (-) 

Rate of change of leaf turnover rate with temperature K
-1

 

Minimum leaf conductance for H2O m s
-1

 

Critical humidity deficit kg H2O/kg air 

Scale factor for dark respiration  (-) 

Moisture availability below which leaves are dropped (-) 

Scale factor relating Vcmax with leaf nitrogen concentration  (-) 

Top leaf nitrogen concentration kg N/kg C 

Ratio of root nitrogen concentration to leaf nitrogen concentration (-) 

Ratio of stem nitrogen concentration to leaf nitrogen concentration (-) 

Growth respiration fraction (-) 

Specific density of leaf carbon kg C/m
2
 leaf 

Temperature below which leaves are dropped  K 

Lower temperature for photosynthesis  °C 

Upper temperature for photosynthesis  °C 

Surface emissivity (-) 

 

3.1.2 Community Atmosphere Biosphere Land Exchange 

(CABLE)  

The Community Atmosphere Biosphere Land Exchange (CABLE) model is a 

multi-layered soil moisture prediction model which simulates the soil moisture 

and soil temperature for six fixed layers of 0.022 m, 0.058 m, 0.154 m, 0.409 

m, 1.085 m and 2.872 m in thicknesses, totaling to an overall depth of 4.6 m 

(Abramowitz, 2006, Kowalczyk et al., 2006, Wang et al., 2011). The 

community version of the model, at the time of doing this assessment, did not 
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make provisions for the user to change either the number of layers or their 

thickness. Moreover, this model does not facilitate the specification of different 

parameter data for individual layers of the profile. However, it is possible to 

initialize the soil moisture of all six soil layers. CABLE comprises five sub-

models, namely the radiation model, canopy meteorology model, surface flux 

model, soil and snow model, and ecosystem respiration model. The focus here 

is again on the soil (and snow) sub-model, which includes three prognostic 

variables, namely; soil temperature, liquid water and ice content. The soil 

moisture calculations are also made with the Richard’s equation, but with the 

Clapp and Hornberger (1978) constitutive relationship only. The meteorological 

forcing data needed to drive the CABLE model are as shown in Table 3.4, 

while the soil parameters are discussed under Table 3.5 and the key vegetation 

parameters in Table 3.6. Kowalczyk et al. (2006) discusses the model physics in 

detail. Version 1.4 of CABLE has been used in this work. 

 

Table 3.4: Meteorological forcing data used in CABLE. 

Data Unit 

Downward component of short-wave radiation at the surface W m
-2

 

Downward component of long-wave radiation at the surface W m
-2

 

Precipitation (soil + liquid) mm/time-step 

Surface air temperature K 

Surface wind speed m/s 

Surface specific humidity kg/kg 

Surface air pressure mbar or hPa 

Surface air carbon dioxide concentration mol/mol 
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Table 3.5: Soil ancillary data used in CABLE. 

Parameter  Unit  

Fraction of snow free shortwave soil reflectance (-) 

Parameter ‘b’ in Campbell equation (-) 

Fraction of soil which is clay (-) 

Fraction of soil which is sand (-) 

Fraction of soil which is silt (-) 

Soil specific hear capacity kJ/kg/K 

Hydraulic conductivity at saturation m/s 

Plant carbon pool rate constant l/year 

Soil bulk density kg/m
3
 

Plant respiration scalar (-) 

Volumetric water content at saturation m
3
/m

3
 

Volumetric water content at field capacity m
3
/m

3
 

Volumetric water content at wilting point m
3
/m

3
 

Suction at air entry  (m) 
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Table 3.6: Key vegetation parameters in the CABLE model 

Data  Units 

Area of vegetation cover per unit area of bare ground (LAI) (-) 

Fraction of plant roots in each soil layer (-) 

Maximum amount of water intercepted by the canopy mm/LAI 

Maximum potential electron transport rate of the top leaf mol/m
2
/s 

Maximum RuBP carboxylation rate of the top leaf mol/m
2
/s 

Height of the canopy m 

Minimum temperature for the start of photosynthesis °C 

Maximum temperature for the start of photosynthesis °C 

Leaf transmissivity for 3 wavelength bands – visible (VIS), near 
infra-red (NIR) and thermal infra-red (TIR) 

(-) 

Leaf reflectance for 3 wavelength bands – VIS, NIR and TIR (-) 

Woody tissue transmissivity for 3 wavelength bands – VIS, NIR 
and TIR 

(-) 

Woody tissue reflectance for 3 wavelength bands – VIS, NIR and 

TIR 
(-) 

 

3.2 Optimization Models 

Model predictions rarely match well with observations when using default 

parameters, and consequently methods are used to fit the user’s model response 

to time series data (Kuczera, 1989). Since models are objective and 

reproducible, inverse modeling procedures are increasingly being used to 

identify model parameters (Roulier, 2003), which is also the focus of this study. 

Finsterle (2004) defines this as “the process of estimating model parameters by 

matching a mathematical model to the measured data representing the system 

response at discrete points in space and time”. The ‘measured data’ can include 
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state variables (soil moisture, soil temperature, matric potential and so on), 

and/or fluxes (evapotanspiration, river discharge and so on). Hence, most 

inverse modeling techniques aim at finding an optimal set of parameter values 

within some particular model structure, where the model parameters are 

adjusted to minimize the difference between observed and modeled values. The 

algorithms used in inverse modeling can range from simple search algorithms 

that seek iterative improvement of an objective function, starting from a single 

location in the search space, to more advanced global search methods that 

covers the entire space of potential solutions. The following discussion focuses 

on two optimization techniques that have been identified as the most suitable in 

the context of the work presented in this thesis. 

 

3.2.1 Parameter ESTimation (PEST)  

The Parameter ESTimation (PEST) software (Doherty, 1994b) can be used for 

the retrieval of soil hydraulic parameters by calibrating the predicted-to-

observed near-surface soil moisture time series. As a nonlinear parameter 

estimator, PEST can be run independent of any model. It is easily implemented, 

with its automatic calibration procedure minimizing an objective function 

related to the square difference between the 'observed' and simulated variables. 

PEST uses the Gauss-Marquardt-Lavenberg non-linear parameter estimation 

method to optimize parameter values, and runs the model as many times as 

needed to find the parameter set for which the difference between model 

predictions and corresponding observations is as small as possible, in the 

weighted least squares sense. It also gives the user flexibility to focus on any 

specific location within the dataset, and make ‘predictions’ about the 

parameters of interest. However, the inverse solutions are quite sensitive to the 

initial conditions, when conventional optimizers are used, due to the fact that 

the objective functions are often topographically complex and may contain 

several local minima. The optimal parameter set is therefore defined as that for 
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which the sum of squared deviations between the model-generated observations 

and experimental observations is reduced to a minimum. Some parts of the 

work presented in this thesis utilize PEST as the optimization code. Doherty 

(2005) discusses the model and its performance in detail.  

PEST is derived by minimizing an objective function related to, but not equal 

to, the root mean square error between the model results and the observations. 

Goegebeur and Pauwels (2007) identified that under high observation errors 

and/or temporally sparse observations, PEST does not yield a solution. 

Additionally, the choice of the initial guess for the parameter values is an 

important issue in the application of PEST. In order to make PEST more 

versatile, PEST Driver – Multiple Search has been integrated into the PEST 

software, such that it seeks the global minimum in the objective function in a 

calibration context (Doherty, 2007).  

Given that the PEST Driver – Multiple Search is available only on the 

Windows version of the PEST software, and the work presented in this thesis 

was conducted on a Linux platform, an alternative optimization technique had 

to be identified. The reason being that, based on the conclusion by Goegebeur 

and Pauwels (2007), the results would be doubtful if PEST were to be used with 

temporally sparse observations like satellite data and in instances where the 

initial guess of the parameters to be retrieved are approximate. However, for the 

sensitivity analysis and the selection of the soil moisture prediction model, a 

synthetic-twin experiment was conducted where the ‘observed’ soil moisture 

was at a thirty-minute interval, thus circumventing the errors associated with 

temporally sparse observations. It was assumed that there were no observational 

biases or error, and that the parameters were pre-known, thereby avoiding 

erroneous initial guesses. Therefore, PEST has been used as the optimization 

software in the first step of this work. 
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3.2.2 Particle Swarm Optimization (PSO)  

Particle swarm optimization (PSO) is an algorithm based on the complex, 

collective behaviour of individuals in decentralized self-organizing systems, 

and are created through a population of individuals that interact both with each 

other and with the community (Kennedy and Eberhart, 1995). Swarms of birds, 

colonies of ants, and schools of fish are some of the examples that can be 

identified from within nature. In PSO, individuals, referred to as 'particles', are 

flown through a hyperdimensional search space where changes to its position 

are based on the social-psychological tendency of the individual to mimic the 

success of others. Any changes to the position of 'particles' within the search 

space are thus influenced by the experience or knowledge of its neighbours as 

well its' own experience (Engelbrecht, 2005a, Engelbrecht, 2008).  

The algorithm consists of three parts; (a) the momentum that states that the 

velocity of the ‘swarm’ cannot change abruptly, (b) the ‘cognitive’ or personal 

part (c1) that indicates the ‘particle’ learns from its’ own flying experience and 

fitness and, (c) the ‘social’ part (c2) that represents the cooperation with the 

other particles or the learning from the flying experience of the group (Kennedy 

and Eberhart, 1995). However, one disadvantage of updating the velocity of the 

algorithm is that it may become too high and cause particles to pass ‘good’ 

solutions, or become too slow and include ‘poor’ solutions, such that the search 

space is explored inadequately. Shi and Eberhart (1998) found that the use of an 

‘inertia weight’ was a suitable mechanism to control the velocity. Hence, the 

modified equation is used throughout this study; 

                                                                  

          (3.1) 

                     ,       (3.2) 

where the position and velocity of the i
th

 particle within a population of n 

particles in a D-dimensional search space are given by the vectors 

                   and                    respectively. Here w is the 
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inertia weight that slows down the velocity, while c1 and c2 are respectively the 

cognitive and social parameters. The factors r1(n) and r2(n) are random numbers 

between 0 and 1 that are regenerated in each iteration step. A selected objective 

function will evaluate each particle and assign a fitness function value. For each 

particle i, a vector                    is defined that points to the best 

position that this particle has reached up to this point in the iteration cycle. This 

is also the personal optimum of the particle out of the total population; the 

particle that reached the best fitness function value until this point is identified 

and denoted by vector    (Clerc, 2006, Engelbrecht, 2005a). The position and 

velocity of each particle is updated at each iteration step, from step n to step 

n+1 using equations 3.1 and 3.2.  

The performance of the algorithm is dependent on the choice of the three 

parameters w, c1 and c2, inherent to the routine itself, but unique to the problem 

at hand. In addition to these three parameters, the size of the swarm has a major 

influence on the convergence of the algorithm. Larger swarms will need more 

iterations to converge compared to smaller swarms (Engelbrecht, 2005a). 

It was discussed earlier that PSO uses an objective function in assigning fitness 

values and for this work, the root mean square error (RMSE) was chosen as the 

objective function, defined as; 

       
        

  
   

 
 ,       (3.3) 

where n is the number of data points, y is the 'true' (observed) data, and ŷ is the 

simulated data. The boundary conditions of the model parameters within the 

parameter space act as restrictions to the population members that attempt to 

move outside this space.  
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3.3 Soil Moisture Prediction Model Selection 

The JULES and CABLE soil moisture prediction models have been selected for 

the reasons discussed earlier in this chapter, with the purpose of selecting the 

most suitable soil moisture prediction model for soil hydraulic parameter 

estimation. The following work forms the body of a published peer reviewed 

conference paper (Bandara et al., 2011). 

The intent of this work was to maintain the community version of the models, 

and hence the original program codes were not modified. Of the many 

parameters used as inputs in these models, the interest here was on the 

parameters that defined the soil properties. While it would be ideal to retrieve 

all soil parameters, this is not practical for several reasons. For example, some 

parameters play a more direct role in soil temperature simulation than on soil 

moisture, and the large number of parameters used by soil moisture prediction 

models presents an equifinality issue. Moreover, the influence of some 

parameters on soil moisture simulation is comparatively higher than others. 

Hence, studies were conducted to identify the parameters to which the soil 

moisture simulation showed the most sensitivity. 

A synthetic-twin experimental approach was applied in this study. The 

predicted soil moisture for a selected soil type and its parameters (kept constant 

for both models) was used to simulate what is termed a 'true' time series of soil 

moisture states using the 'true' soil hydraulic parameters. The soil hydraulic 

parameters belonging to a different soil type were then substituted, with the 

resulting simulated soil moisture states termed 'open loop'. The 'true' twelve-

month time series soil moisture data corresponding to the surface layer (0-2.2 

cm) was then used to build the objective function that would be minimized by 

PEST to retrieve the original set of 'true' parameters. The optimized parameter 

values have the prefix 'retrieved' herein. 
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3.3.1 Data  

The work presented under this section is for a one-dimensional synthetic soil 

column. The meteorological forcing data along with the soil and vegetation 

parameters were obtained from site Y3 of the OzNet (http://www.oznet.org.au/) 

monitoring network (Smith et al., 2012), meaning that a comparison with actual 

observed soil moisture records could also be undertaken. This particular point is 

located near Yanco, NSW, with meteorological data available at 30-minute 

intervals. When specifying initial conditions for the models, field observed data 

for soil moisture and temperature corresponding to this station have been used. 

All data were for the year 2003, which had a record of soil moisture ranging 

from extremely dry conditions to extremely wet conditions. Figure 3.2 shows 

the 12-month field observation of soil moisture for Y3 at three depths. 

Since real soil hydraulic parameters for the simulated depths were not available 

for Y3 at the time of this work, the models were run using the default Food and 

Agriculture Organization of the United Nations' (FAO) soil texture map 

together with the default soil hydraulic parameter interpretation from Rawls et 

al. (1982). The results corresponded to a medium-fine silty clay soil type, and 

this was used in the 'true' run. For the 'open loop', soil hydraulic properties for a 

coarse-medium-fine sandy clay loam soil type were chosen, based on the same 

databases as the ‘true’ run. To calculate the dry thermal conductivity and heat 

capacity parameters from soil texture, which are required inputs for the JULES 

model, pedo-transfer functions from Cosby et al. (1984) have been used. 

 

3.3.2 Sensitivity Studies 

By decreasing the number of soil parameters to be retrieved, the complexity of 

the parameter space is reduced, thereby making the optimization more reliable, 

meaningful, and speedy. It was therefore necessary to identify those soil 

parameters having the greatest influence over the moisture simulation. 
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Consequently, pre-selected soil parameter variables were perturbed across a 

physically meaningful range and the corresponding output assessed for the 

impact.  

Both models simulate soil temperature as well as soil moisture. For their 

respective soil modules, CABLE requires eleven soil parameters while JULES 

uses eight. However, not all of these parameters contribute equally towards soil 

moisture calculation, and so to identify the parameters that are more sensitive to 

soil moisture simulation, the parameter sensitivity index has been used. 

Sensitivity is typically defined as the relative magnitude of changes in the 

model response as a function of relative changes in the values of model input 

parameters (Nearing et al., 1990). Thus, this study uses a single-value 

sensitivity index that represents a relative normalized change in output to a 

normalized change in input. The higher the absolute value of the index, the 

greater the impact an input parameter has on a particular output. An index of 

1.0 indicates that the output responds to the same degree as the tested input is 

perturbed around an average range; a negative value indicates that the input and 

output are inversely related (Al-Abed and Whiteley, 2002, Nearing et al., 1990, 

Walker, 1996). The sensitivity index is defined as  

    
     

     
 

    

    
,        (3.4) 

where I1 and I2 are the smallest and highest input values tested for a given 

parameter, Iavg is the average of I1 and I2, O1 and O2 are the model output values 

corresponding to I1 and I2, and Oavg is the model output value corresponding to 

Iavg (approximately the average of O1 and O2). The sensitivity index is 

calculated for each model time-step, and as it is both dimensionless and 

independent of the magnitude of the input and output, its value can be used to 

compare the sensitivity of the model to different variables (Baffaut et al., 1996).  

For each parameter tested for sensitivity, three soil moisture time series have 

been established using the published soil parameter data and the accompanying 

standard deviations given in Clapp and Hornberger (1978). The first time series 
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was generated using the parameter value minus the standard deviation, the 

second corresponds to the parameter value itself, and the third time series was 

from the parameter value plus the standard deviation. These three soil moisture 

time series were taken as the values of O1, Oavg and O2 respectively, with the 

parameter sensitivity index calculated as a time series with a single value of S at 

each instance of time.  

Table 3.7 contains the parameters that showed the highest sensitivity to soil 

moisture simulation together with the soil properties and standard deviations 

(S.D.) used to calculate the parameter sensitivity index. In the sensitivity 

analysis, the volumetric water content at wilting point in Rawls et al. (1982) 

was initially used. However, the resultant soil moisture prediction from CABLE 

was unrealistic, as the model did not dry-down below the wilting point, and 

showed a loss of sensitivity to the soil hydraulic parameters. Hence, a value 

near to the lowest observed soil moisture was used as the volumetric water 

content at wilting point for CABLE, resulting in a more realistic soil moisture 

simulation with higher model sensitivity Figure 3.2. While JULES had no such 

operational limitation, the same wilting point parameter value was used in the 

work throughout this paper in order to make both models as identical as 

possible for an unbiased evaluation. It was observed that the three parameters 

that showed the highest sensitivity were; volumetric water content at the critical 

point equivalent to a soil suction of 3.364 (also referred to as field capacity), 

volumetric water content at saturation, and the Clapp and Hornberger exponent. 
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Table 3.7: Parameter values used in conjunction with published uncertainty 

according to soil type, together with sensitivity index (S) for both the soil moisture 

prediction models. A higher value means the parameter is more sensitive. 

Parameter Value S.D. 
Sensitivity Index (S) 

CABLE JULES 

Clapp and Hornberger exponent (-) 10.4 4.45 0.196 0.284 

Suction at saturation (m) 0.490 0.31 0.048 0.042 

Hydraulic conductivity at 
saturation (mm/s) 

0.001 0.0005 0.044 0.108 

Volumetric water content at 

saturation (m
3
/m

3
) 

0.482 0.064 0.486 0.611 

Volumetric water content at field 

capacity (m
3
/m

3
) 

0.370 0.064 0.352 0.861 

Volumetric water content at 
wilting point (m

3
/m

3
) 

0.283 0.064 0.020 0.099 

 

 

Figure 3.2: The observed and model simulated soil moisture values, from top to 

bottom, a) 0-7cm, b) 0-30cm and c) 30-60cm. 

 



 

 

C
h
ap

te
r 

3
: 

M
o
d
el

s 
U

se
d

 I
n

 T
h
is

 T
h

es
is

 

3-19 

 

3.3.3 Parameter Retrieval 

To study the parameter retrieval capability of the two models, several parameter 

combinations were examined, such as the retrieval of a single parameter (Table 

3.8), retrieval of a subset of parameters (Tables 3.9 and 3.10), and the retrieval 

of all parameters sensitive to soil moisture simulations (Table 3.11). The 

number of layers and their thickness has been kept consistent for both models, 

with six layers of thicknesses 0.022 m, 0.058 m, 0.154 m, 0.409 m, 1.085 m and 

2.872 m, thus complying with pre-defined layers of CABLE. 

After recording the model simulation corresponding to the 'true' parameters, the 

soil parameter values were changed to those from the coarse-medium-fine 

sandy clay loam soil type (CABLE user guide: Abramowitz, 2006), in order to 

represent the uncertainty in published soil hydraulic parameter maps. It was 

then attempted to "retrieve" the original parameters using the PEST model, 

which changes the user specified parameters until a minimum value for the 

objective function between the 'true' and 'open loop' predictions of surface soil 

moisture is achieved. Hence, assuming that the top layer with 0.022 m thickness 

represented the near-surface soil moisture observation from satellite, the model 

simulations for the top layer were used in the retrieval process.  

 

3.3.4 Results and Discussion 

From the sensitivity analysis, six of the eleven soil parameters used in CABLE 

were found to have a significant influence on soil moisture prediction. 

Moreover, of the eight parameters used by JULES, the same six parameters 

showed the highest sensitivity (Table 3.5).  

The experimental approach included retrieval of (i) one parameter at a time, (ii) 

different combinations of two and three parameters, and (iii) all six parameters 

simultaneously. It was observed that the RMSE values of predicted soil 

moisture were very much lower when a single parameter value was retrieved, as 
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compared to retrieving two or more parameters. Tables 3.8 to 3.11 show the 

behavior of the soil moisture simulations when one, two, three and five input 

parameters, were presumed to be poorly known. The 'true', 'open loop' and 

'retrieved' parameter values are given together with the RMSE of the simulated 

soil moisture in the tables. It is observed from the above mentioned tables that 

CABLE yielded a lower RMSE in predicted soil moisture using the retrieved 

parameters when compared to the JULES model, but that the correct parameter 

values are not as accurately retrieved. It is also observed that the RMSE for the 

deepest layer is nearly zero for both models, which is mostly because the 

changes seen in the surface layer are not reflected in the deep layer on the 

timescales of this simulation.  

It was observed (see Tables 3.9 to 3.11) that when retrieving two or more 

parameters simultaneously, an overall low RMSE could be obtained for the 

surface soil moisture, but not all of the retrieved parameters resembled the 'true' 

values. The possibility to retrieve three parameters simultaneously is shown in 

Table 3.10. The standard deviations of the retrieved parameters for the Clapp 

and Hornberger exponent, matric suction at air entry and hydraulic conductivity 

at saturation, as approximated by PEST was; 0.05 m
3
/m

3
, 0.08 m

3
/m

3
 and 

0.00001 m
3
/m

3
 for JULES and 0.194 m

3
/m

3
, 0.183 m

3
/m

3
 and 1.003*10

-7
 m

3
/m

3
 

for CABLE. 

Soil moisture values predicted by JULES and CABLE, corresponding to the 

parameters used for the 'true' and the 'open loop' runs, are plotted in Figure 3.2 

against the field observation data for the same dates, with depths of 0-0.07 m, 

0-0.30 m and 0.30-0.60 m. The field observations were used as a means of 

comparison and therefore were not used to constrain the models. Since the 

simulations had different depths from field observations, all simulated values 

were transferred to the observation depths using weighted averages. From 

Figure 3.2 c, it was observed that the models did not represent the rainfall event 

close to DoY 57 for the 30-60 cm depth, though it was correctly modelled for 
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the near-surface and intermediate layers. A reason for this could be that there 

were preferential pathways under the very dry conditions (ie cracks) that 

allowed wetting at deeper depths, and this process is not represented by the 

model. It is observed from the figures that both models over-estimated the soil 

moisture after a rainfall event and did not dry down as quickly as the field 

observations. The depth 0.30-0.60 m shows an opposite result, where both 

models under-estimated the soil moisture. However, it must be highlighted that 

the parameters used as inputs for the models were not calibrated against field 

data. Some important characteristics and behavioral patterns of the selected soil 

moisture prediction models are also summarized in Table 3.12. 

 

3.3.5 Key Findings 

Some parameters like the Clapp and Hornberger exponent and volume of water 

at critical point were better ‘retrieved’ when compared to the other parameters. 

However, some of these limitations may be due to the selected optimization 

software.  

The major limitations of the CABLE model as compared to JULES are shown 

in Table 3.12. These include not having an option for multi-layer soil property 

input data, not having provisions to vary the soil layer thicknesses as desired by 

the user, and its inability to provide realistic simulations when using a realistic 

wilting point value. It is therefore concluded that the Joint UK Land 

Environment Simulator (JULES) was the more suitable soil moisture prediction 

model for soil hydraulic parameter retrieval of the two tested here, and will 

consequently be used throughout the remainder of this thesis. 
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Table 3.8: The "True", "Open Loop" and "Retrieved" parameter values with the root mean square error (RMSE) of soil moisture 

for each layer of the CABLE and JULES models after parameter retrieval and for the open loop. The "True" values of Layer 1 

were used as the observation. The retrieval is one parameter at a time. 

Parameter  
“

T
r
u

e
”

 V
a

lu
e
 

“
O

p
e
n

 L
o

o
p

”
 

V
a

lu
e
 

“
R

e
tr

ie
v

e
d

”
 V

a
lu

e
 Root Mean Square Error (RMSE) 

(“True”- “Retrieved”) (m
3
/m

3
) 

Root Mean Square Error (RMSE)  

(“True”- “Open Loop”) (m
3
/m

3
) 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

CABLE Model -Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 10.05 44.7 53.1 105.5 45.0 55.9 2.18 1854.8 1906.8 2145.1 1068.3 792.1 142.6 

Suction at saturation (m) -0.490 -0.299 -0.456 93.652 113.44 217.86 94.836 116.85 4.3397 664.05 840.37 1590.2 716.79 824.68 18.56 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.0008 288.65 356.65 674.45 297.23 361.48 11.179 2470.7 1859.1 3110.6 1586.3 1630.3 532.69 

Volume of water at saturation 

(m
3
/m

3
) 

0.482 0.420 0.454 

1097 1421.6 1154.7 897.85 275.49 41.653 3785 3239 2545.9 2138.9 555.72 99.437 
Volume of water at field capacity 
(m

3
/m

3
) 

0.370 0.255 0.369 

JULES Model - Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 10.44 0.0046 6.89 7.80 14.3 21.0 24.0 14.3 684.1 736.9 1243.6 1769.3 1926.2 

Suction at saturation (m) -0.490 -0.299 -0.518 0.0603 48.1 35.4 55.0 70.1 76.0 12.5 445.2 351.5 495.8 624.1 571.8 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.0008 14.3 459.3 832.8 358.5 436.1 1099.5 36.2 1575.4 1079.5 2874.7 7139.0 5658.2 

Volume of water at saturation 

(m
3
/m

3
) 

0.482 0.420 0.398 

121.4 1015.2 2984.0 3205.6 3501.3 2909.9 1547.6 7242.5 9925.9 9109.8 8077.1 11251.0 
Volume of water at field capacity 

(m
3
/m

3
) 

0.370 0.255 0.392 
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Table 3.9: Same as for Table 1.6, but for two parameters at one time. 

Parameter  

“
T

r
u

e
”

 V
a

lu
e
 

“
O

p
e
n

 L
o

o
p

”
 V

a
lu

e
 

“
R

e
tr

ie
v

e
d

”
 V

a
lu

e
 

Root Mean Square Error (RMSE) 

(“True”- “Retrieved”) (m
3
/m

3
) 

Root Mean Square Error (RMSE)  

(“True”- “Open Loop”) (m
3
/m

3
) 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

CABLE Model -Parameter retrieval (10
-5

) 

Suction at saturation (m) -0.490 -0.299 -0.050 

0.007 0.009 0.018 0.008 0.007 0.000 0.019 0.017 0.037 0.012 0.015 0.003 
Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.61E-05 

JULES Model - Parameter retrieval (10
-5

) 

Suction at saturation (m) -0.490 -0.299 -0.600 

0.012 0.007 0.013 0.003 0.00 0.00 0.051 0.062 0.025 0.008 0.014 0.00 
Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.0008 
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Table 3.10: Same as for Table 1.6, but for three parameters at one time. 

 

 

Parameter  

“
T

r
u

e
”

 V
a

lu
e
 

“
O

p
e
n

 L
o

o
p

”
 V

a
lu

e
 

“
R

e
tr

ie
v

e
d

”
 V

a
lu

e
 

Root Mean Square Error (RMSE) 

(“True”- “Retrieved”) (m
3
/m

3
) 

Root Mean Square Error (RMSE)  

(“True”- “Open Loop”) (m
3
/m

3
) 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

CABLE Model -Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 10.91 

0.003 0.003 0.008 0.004 0.005 0.000 0.039 0.030 0.051 0.021 0.017 0.007 
Suction at saturation (m) -0.490 -0.299 -0.200 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 

0.47E-

05 

JULES Model - Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 10.72 

0.013 0.016 0.024 0.013 0.004 0.00 0.044 0.028 0.032 0.043 0.038 0.002 
Suction at saturation (m) -0.490 -0.299 -0.457 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.0006 
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Table 3.11: Same as for Table 1.6, but for five parameters at one time. 

Parameter  

“
T

r
u

e
”

 V
a

lu
e
 

“
O

p
e
n

 L
o

o
p

”
 V

a
lu

e
 

“
R

e
tr

ie
v

e
d

”
 V

a
lu

e
 

Root Mean Square Error (RMSE) 

(“True”- “Retrieved”) (m
3
/m

3
) 

Root Mean Square Error (RMSE)  

(“True”- “Open Loop”) (m
3
/m

3
) 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

L
a

y
e
r
 1

 

L
a

y
e
r
 2

 

L
a

y
e
r
 3

 

L
a

y
e
r
 4

 

L
a

y
e
r
 5

 

L
a

y
e
r
 6

 

CABLE Model -Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 10.25 

0.042 0.045 0.059 0.034 0.015 0.008 0.043 0.051 0.068 0.038 0.019 0.006 

Suction at saturation (m) -0.490 -0.299 -0.200 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.26E-05 

Volume of water at saturation (m
3
/m

3
) 0.482 0.420 0.383 

Volume of water at field capacity 

(m
3
/m

3
) 

0.370 0.255 0.332 

JULES Model - Parameter retrieval (10
-5

) 

Parameter 'b' 10.4 7.12 9.96 

0.043 0.037 0.054 0.038 0.073 0.148 0.060 0.085 0.067 0.052 0.037 0.038 

Suction at saturation (m) -0.490 -0.299 -0.449 

Hydraulic conductivity at saturation 

(mm/s)    
0.001 0.006 0.0005 

Volume of water at saturation (m
3
/m

3
) 0.482 0.420 0.500 

Volume of water at field capacity 

(m
3
/m

3
) 

0.370 0.255 0.499 
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Table 3.12: Summary of the characteristics of the two models for soil 

parameter estimation. 

Description JULES CABLE 

Ability to specify multi-layer input data ●  

Ability to enter multi-layer initial conditions ● ● 

Ability to retrieve near-perfect parameter 

values 
●  

Ability to match the wetting-drying 'trend' of 

observations 
  ●

1
   ●

1 

Flexibility in varying the depths of the soil 

layers 
●  

Flexibility in varying the number of soil layers ●  

1
 using default parameters from global datasets 

 

3.4 Numerical Stability of JULES 

The JULES soil moisture prediction model can accommodate time-step 

sizes between 10 and 60-minutes, according to the time-step of the forcing 

data. Moreover, it can simulate a soil profile with as many as 30 user 

defined layers. To ensure that results are not affected by numerical 

instabilities using the selected time-step size and the number of layers, the 

numerical stability of the soil moisture prediction model was assessed.  

The Y5 site of the OzNet (http://www.oznet.org.au/) monitoring network 

(Smith et al., 2012) has been used for this simulation study, due to it being 

representative of conditions in much of the Murray Darling Basin of 

Australia. The meteorological forcing data required, including solar 

radiation, wind speed, and air temperature, were obtained from the 

automatic weather station located at the nearby Y3 station, while the 

specific soil and vegetation parameters, soil moisture, soil temperature and 

precipitation were obtained from the Y5 site itself. When specifying initial 

conditions for the soil moisture prediction model, field observed data for 
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soil moisture and temperature corresponding to station Y5 have been used. 

Using the particle size distribution data for Y5, the soil hydraulic parameters 

were calculated using the pedo-transfer functions of Cosby et al. (1984). 

While the maximum permissible time-step supported by JULES is an hour, 

numerical instabilities were observed when using this time-step. 

Consequently, a sensitivity analysis was conducted using time-steps of  

60-minutes (the maximum supported value), 30-minutes (the time-step of 

the forcing data), 20-minutes (the time-step of the in-situ observations),  

15-minutes and 10-minutes (the smallest time-step supported by JULES). 

As numerical stability is governed by space and time characteristics, several 

combinations of layer thicknesses and numbers of layers were also tested. 

To match the observation configuration, JULES was also configured to 

simulate five layers, being 0.05 m, 0.25 m, 0.30 m, 0.30 m and 2.00 m 

thickness. To test the model stability when the number of layers was 

increased and the layer thickness decreased, the five-layer model was split 

as shown in Figure 3.3. In the first step, the surface 0.05 m layer was split 

into two layers of 0.025 m, then the 0.25 m layer was split into two layers of 

0.125 m and so on until JULES consisted of 10 layers altogether.  

The simulations were then done at 10-minute, 15-minute, 20-minute, 30-

minute and 60-minute time-steps to investigate the performance of 5, 6, 7, 8, 

9 and 10 layers. Given that the 5 layers were split equally to reflect 10 

layers, the average soil moisture of which should theoretically correspond to 

the 5-layer simulation.  

From Figures 3.4, it is observed that the 60-minute time-step shows some 

significant numerical instability towards the end of the time-series, 

following the dry down period coinciding with a rain event before the start 

of summer. However, simulations using 30-minute, 20-minute, 15-minute or 

10-minute time-steps differed by less than 0.05 m
3
/m

3
, with no obvious 

model instabilities observed. At the same time, it can be observed that there 

is a significant difference, being more than 0.10 m
3
/m

3
, between the 5-layer 

simulation and the averaged 10-layer simulation. 
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Figure 3.3: The set up of the JULES model when testing the stability. From 

left to right; 5-layers, 6-layers, 7-layers, 8-layers, 9-layers and 10-layers. The 

thickness of each layer is shown within. 

 

The next part of the investigation was to identify the optimal number of 

model layers. For all time-steps, it is observed from Figures 3.4, that for the 

surface layer, the soil moisture at the start of the simulation (under very dry 

conditions) was higher for the 5-layer simulation. The influence of the soil 

layer directly below, as well as the transpiration from the soil, can be used 

as an explanation for these high values. Hence, tests were performed to 

identify the number of layers required to produce consistent results when 

using a 20 minutes time-step of the simulation. The surface layer from the 

5-layer simulation (0.05 m layer thickness) was split equally to form 6 

layers, while both the first and second layers were split equally to form a  

7-layer scenario, and all layers were split to form 10-layers (as shown in 

Figure 3.3). In the case of analyzing the soil moisture simulations, weighted 
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averages were taken where necessary. JULES showed a higher tendency to 

decouple the root zone from the surface under very dry conditions and thus, 

by increasing the number of layers and decreasing the layer thickness, the 

relationship between layers is strengthened and reduced the instances of 

numerical decoupling of the root zone from the surface. 

 

 

Figure 3.4: Soil moisture predictions using 5 and 10 layer simulations. The 10 

layers have been averaged to mimic 5 layers while all time-steps have been 

averaged to the 60-minute time-step. 
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Figure 3.5: The scatter plots showing the 5-layered, 6-layered and 10-layered 

simulations with the 7-layered simulation. (a) 0 – 0.025 m, (b) 0.025 – 0.050 m, 

(c) 0.050 – 0.175 m, (d) 0.175 – 0.300 m, (e) 0.300 – 0.600 m, (f) 0.600 – 0.900 

m, and (g) 0.900 – 2.900 m. 

 

It is observed from Figure 3.5 (a) – (d) that the soil moisture is lower when 

there are only 5 layers. These two plots, which split the surface 5 cm into 

two separate layers, the soil moisture of the surface exhibits the greatest 

deviation. In Figure 3.5 (d) – (g), the 6-layered simulation is wetter than the 

7-layered simulation, and the variation of soil moisture is very small. It is 

observed from all of the plots in Figure 3.5 (e) – (g) that the 10-layered 

simulation always falls on the 1-1 line, showing a lot less variation, 

indicating that when there are 7 or more layers, and when the layers are 

‘thin’, the predictions are stable.  

 

3.5 Model Initialization 

The JULES soil moisture prediction model have been selected to be used in 

the work presented in this thesis and the parameter selection has already 

been discussed (Clapp and Hornberger exponent, hydraulic conductivity at 

saturation, soil matric suction at air entry, volumetric fraction of soil 
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moisture at saturation, for a soil suction of 3.364 m and for a soil suction of 

152.9 m). The most stable model set-up has also been identified (7 layers) as 

well as the time-step (20 minutes) to be used. The next important step of this 

work is to set initial states to the soil moisture prediction model, given that 

field observations are not available at all times for all focus areas. The 

following work forms the body of a journal paper under review. 

 

3.5.1 Background  

Soil moisture prediction models simulate the temporal evolution of land 

surface processes, such as plant transpiration, soil evaporation, and 

evolution of soil moisture and temperature, thereby setting the lower 

boundary conditions for meteorological models (Abramowitz et al., 2007, 

Pitman, 2003). Consequently, soil moisture prediction models are typically 

capable of predicting the energy, water, and carbon exchanges, with explicit 

representation of vegetation and soil types. These models generally require 

meteorological input data (temperature, precipitation, radiation and so on), 

as well as parameters that represent the vegetation and soil characteristics 

(Abramowitz et al., 2007). Each soil moisture prediction model is 

characterized by a unique land surface climatology, and therefore, even 

when identical forcing data, vegetation parameters, and soil characteristics 

are used, the temporal evolution will differ from model to model due to the 

complexity between model parameterization interactions (Koster and Milly, 

1996). But more importantly, the reliability of any soil moisture prediction 

model simulation is governed by the accuracy of the initial conditions 

(Walker and Houser, 2001).  

As model climatologies differ from actual observations, ‘perfect’ initial 

conditions for a particular model are not necessarily a faithful depiction of 

the actual natural conditions. Instead, they are normally taken as the set of 

states that would result from a long-term simulation of a soil moisture 

prediction model with a consistent dataset (Rodell et al., 2005). Hence, 

careful attention to the soil moisture prediction model’s initialization 
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procedure is critical in model-based studies. The initial conditions are the 

spatially varying set of fields that describe the surface water and energy 

states at the instant that a simulation commences. These states normally 

include the water content and soil temperature for each soil layer, as well as 

the snow storage parameters. Generally, the snow pack accumulates during 

the winter and depletes over the summer season, meaning that this 

parameter has a short memory that resets itself each year. Moreover, while 

snow can be found in the upper reaches of the Murrumbidgee Catchment in 

Australia, there is no snow to be initialized for the Yanco focus area of this 

study. When compared to soil moisture, the soil temperature also has a short 

memory, and therefore reaches equilibrium quickly (Rodell et al., 2005). 

Hence, the focus of this study is on the initialization of the soil moisture 

states, which have a long-term memory generally spanning across several 

years.  

The most commonly used method for specifying initial conditions to a soil 

moisture prediction model, often referred to as model spin-up, is looping 

repeatedly through a single year until the inter-annual differences of the land 

surface states and/or fluxes have become small from one cycle to the next. 

This adjustment process should be physically realistic and meaningful, and 

in accordance with real world experience (Yang et al., 1995). However, a 

single year is only a snapshot in time and therefore cannot provide an 

accurate representation of long-term climatologies. Consequently, any 

regional meteorological anomalies will accumulate as anomalies in the land 

surface states until an unnatural equilibrium is achieved (Schlosser et al., 

2000).  

Delworth and Manabe (1988) defined spin-up based on e-folding time, 

which is explained as ‘the decay time scale in the absence of forcing’, where 

the decay time scale is the lag at which the autocorrelation function reduces 

to 1/e. Simmonds and Lynch (1992) have used the anomalies of 

evaporation, sensible heat flux, soil moisture content and two surface 

temperatures to obtain the halving time used to define the spin-up. In the 

Project for Intercomparison of Land Surface Parameterization Schemes 
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(PILPS) Phase 1 (Yang et al., 1995), spin-up time was defined as the 

number of yearly integrations necessary to yield changes in annual mean 

latent and sensible heat fluxes that were less than 0.1 Wm
-2

. They also 

identified that the length of the spin-up time was sensitive to the 

precipitation intensity, solar radiation forcing, vegetation cover and stomatal 

resistance. Chen et al. (1996) added the constraint that the tolerance on root 

zone soil moisture convergence cannot be larger than 0.1 mm, and identified 

that for the 23 soil moisture prediction models of the PILPS phase 2 study, 

the spin-up times varied from 1 to 60 years for a grassland site in the 

Netherlands, with the models starting at saturation. This highlights the wide 

range of spin-ups needed for different models.  

Cosgrove et al. (2003) examined three different initialization points to be 

used in conjunction with the spin-up methodology; (i) saturated, (ii) dry, and 

(iii) output from the National Centers for Environmental Prediction and 

Department of Energy Global Reanalysis 2. They identified that the last 

method led to the fastest spin-up, because of the nearer proximity to the 

equilibrium states, and that the spin-up time was affected differently 

according to soil, vegetation, and climate variables. Rodell et al. (2005) 

investigated 11 different methods of initializing a soil moisture prediction 

model, and the conclusion drawn from their study was that the most 

effective way of initializing the model was using a climatological spin-up. 

To overcome the unnatural equilibrium that a soil moisture prediction model 

attains through the repeated looping of data, and to find a more 

computationally efficient method, the work presented here focuses on 

testing a different, yet simple, technique to obtain the initial states of a soil 

moisture prediction model. In this case the model commences the simulation 

several years earlier and runs up to the target time of interest (this 

methodology is termed herein a ‘pre-run’), with three different methods of 

initializing the soil moisture prediction model pre-run; (i) field observed soil 

moisture for the full profile (as a control), (ii) point of saturation (0.55 

m
3
/m

3
) for all model layers, and (iii) observed surface layer soil moisture 

(such as that available from remote sensing) for the complete soil profile. 
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The main objectives were to; (a) study the impact of the pre-run 

initialization method, (b) determine the length of pre-run time-series 

required, and (c) compare the 'pre-run' and conventional 'spin-up' soil 

moisture prediction model initialization approaches.  

 

3.5.2 Model and Data  

The Joint UK Land Environment Simulator (JULES), derived from the Met 

Office Surface Exchange Scheme (Cox et al., 1999), is a process based soil 

moisture prediction model that simulates the fluxes of carbon, water, energy 

and momentum between the land surface and the atmosphere.  

The Y5 site of the OzNet (http://www.oznet.org.au/) monitoring network 

(Smith et al., 2012) has been used for this simulation study, due to it being 

representative of conditions in much of the Murray Darling Basin of 

Australia. The meteorological forcing data required, including solar 

radiation, wind speed, and air temperature, were obtained from the 

automatic weather station located at the nearby Y3 station, while the 

specific soil and vegetation parameters, soil moisture, soil temperature and 

precipitation were obtained from the Y5 site itself. When specifying initial 

conditions for the soil moisture prediction model, field observed data for 

soil moisture and temperature corresponding to station Y5 have been used. 

Using the particle size distribution data for Y5, the soil hydraulic parameters 

were calculated using the pedo-transfer functions of Cosby et al. (1984). 

 

3.5.3 Methodology 

The target period for this work was 1 January 2007 to 31 December 2010, 

and therefore all performance metrics have been calculated for this period. 

The reason for selecting this period is that the year 2007 was an 

exceptionally dry year while 2010 was exceedingly wet. Hence, this time 

period encompassed the complete spectrum of extreme dry to wet soil 
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moisture conditions. Forcing data for the Yanco region are available from 

January 1 2000 onwards, resulting in up to seven years of pre-run data. 

In this study, the work was conducted in three steps. First, the most suitable 

method of initializing the pre-run was determined from three alternatives; 

initialization with (A) the point of saturation for all layers, (B) field-

observed soil moisture for the full profile, and (C) profile initialized from 

surface only field observations and assumed uniform for the profile. Two 

soil moisture simulations were performed; one commencing on 1 January 

2000 and the second commencing on 1 January 2006. Second, the soil 

moisture was simulated with pre-runs starting from 1 January of each year 

from 2000 to 2006, with the objective to determine the length of the pre-run 

Third, the model was initialized after a number of spin-up iterations, 

including 100, 50 and, 10 to 2 spin-ups, for the year 2006, with the objective 

of comparing the performance of different ways of initializing the soil 

moisture prediction models. In all cases the initial states were determined 

for subsequent simulation of the soil moisture from 1 January 2007.  

Two scenarios, (i) 7 years of pre-run, where simulations commence in 2000, 

and (ii) 50 spin-ups for the year 2006, were chosen as the ‘benchmark’ 

simulations, based on evidence that these each provide stable results under 

their respective assumptions. For example, the RMSD between the 50 spin-

ups and 10 spin-ups was 0.0050 m
3
/m

3
 and 0.0106 m

3
/m

3
 for the surface and 

root zone, respectively, while it was 0.0055 m
3
/m

3
 and 0.0116 m

3
/m

3
 

between 100 spin-ups and 10 spin-ups. Given that the difference between 

the two sets of RMSD values is 0.0005 m
3
/m

3
 and 0.0009 m

3
/m

3
, 

respectively, it may be assumed that model equilibrium has been achieved 

after 50 spin-up runs. With the forcing data available from 1 January 2000 

onwards, the longest available pre-run is 7 years. The RMSDs increased by 

0.0003 m
3
/m

3
 for the surface and 0.0010 m

3
/m

3
 for the root zone when the 

length of the pre-run was shortened from six to five showing only a small 

variation, implying that stable simulations have been achieved with a 7-year 

pre-run.  
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The RMSD between these benchmark soil moisture simulations, and the 

subsequent simulations from other lengths of pre-run or spin-up, were used 

to study the relative performance of the different method of initialization 

techniques. The different pre-run results were compared with the pre-run 

benchmark, while the spin-up simulations are compared with the 50 cycle 

spin-up benchmark. Additionally, the different spin-up simulations are 

compared with the 7-year pre-run as the overall benchmark. The RMSD was 

always calculated for the target period of this study, being 1 January 2007 to 

31 December 2010. 

 

3.5.4 Results and Discussion 

3.5.4.1 Setting the pre-run initial states  

Initializing the soil moisture prediction models with observed soil moisture 

states is presumed to be the ideal case. However, since this is not possible 

for regional or global application, it was necessary to identify an alternate 

method that would yield similar results. Three different methods were tested 

here; (i) point of saturation being 0.55 m
3
/m

3
 for all layers of the soil 

moisture prediction model (A), (ii) field observed soil moisture for the 

entire profile (B), and (iii) profile initialized from surface only field 

observations and assumed uniform for the profile (C). To identify the most 

suitable method of initializing the soil moisture prediction model, the 

longest and shortest pre-run periods have been used in the evaluation, based 

on the assumption that these results encapsulate the hydrological extremes 

(Figure 3.6). The soil moisture simulations resulting from these three 

different methods of initialization have been compared against each other by 

calculating the RMSDs, as presented in Table 3.13. The first segment of the 

table shows the RMSDs between the simulations with pre-run commencing 

in 2000. Similarly, the lower half displays simulations with pre-runs starting 

in 2006.  
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Figure 3.6: The simulated soil moisture from using the different initial states; 

A – profile initialized uniform with the point of saturation (0.55 m
3
/m

3
), B – 

profile initialized with field observations and, C – profile initialized from 

surface only field observations and assumed uniform for the profile. The 

longest and shortest pre-run periods, 2000-2010 and 2006-2010 respectively, 

are shown. 

 

From both Table 3.13 and Figure 3.6, it is seen that the RMSD reached the 

lowest values between the simulations initialized with the point of saturation 

and those initialized with the observed soil moisture for the complete profile 

(ie. scenarios A and B). The obtained RMSD had a value of 0.0005 m
3
/m

3
 

for the surface and 0.0015 m
3
/m

3
 for the root zone when the pre-run 

commences in 2000, increasing slightly to 0.0007 m
3
/m

3 
and 0.0019 m

3
/m

3
 

when the pre-run commenced in 2006. Consequently, it was concluded that 

setting the initial condition to the point of saturation for the entire profile 

gave the best results for this water limited environment. The reason for this 

conclusion was that use of satellite observed near-surface soil moisture to 

uniformly initialize the entire profile was found to result in comparatively 

very different results.  

When the model is initialized at the point of saturation, the soil moisture 

prediction model quickly evaporates any excess water in this generally 

semi-arid region, resulting in a physically realistic soil moisture time-series. 

Conversely, initialization with the surface observations resulted in a dry 
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profile, as the surface soil moisture was quite low (0.05 m
3
/m

3
) due to 

prevailing dry conditions. In this case, the only way that additional water 

could be added to the soil column was through rainfall events, meaning that 

a longer pre-run was required to achieve the same result as for initialization 

with the saturation value. 

 

3.5.4.2 Impact of pre-run length  

The second objective of this study was to investigate the impact of the pre-

run length on the soil moisture initial states for the target period. Given that 

the longest period of the pre-run is 7 years, this has been considered as the 

‘benchmark’ for the analysis, with initial states taken as the point of 

saturation for the complete profile. As a first step, the RMSD between the 

benchmark and simulations with different pre-run periods was calculated. It 

is evident that pre-runs between 3 and 6 years of length yielded low RMSD 

values, with small variations between the different pre-run lengths, as seen 

in Figure 3.7 (a). There was a significant relative increase in the RMSD of 

the surface soil moisture from 0.0010 m
3
/m

3
 to 0.0017 m

3
/m

3
 when the pre-

run was reduced from 3 to 2 years, while the root zone soil moisture 

exhibited a relatively smaller step from 0.0033 m
3
/m

3
 to 0.0058 m

3
/m

3
. 

Unsurprisingly, the largest RMSDs of 0.0031 and 0.0077 m
3
/m

3
 for the 

surface and root zone soil moisture respectively, are observed for the 1-year 

pre-run, as suggested by the strong bias observed in the spin-up results 

based on the same year of 2006. It can be observed from Figure 3.8 (a) that 

when the soil moisture prediction model is initialized at the point of 

saturation, no matter how wet or how dry the following years are, the model 

is capable of simulating a physically meaningful time-series. Therefore, the 

longer the pre-run the more robust the results, with stable results achieved 

for the initial states after approximately 2 years for the conditions of this 

study site, irrespective of how the pre-run was initialised. 
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Table 3.13: The root mean square difference (RMSD) in the soil moisture 

estimates from 1 January 2007 to 31 December 2010, for the six different 

methods used to specify the initial states in Figure 3.6. Only the longest and 

shortest pre-runs have been considered. 

Description 

RMSD (m
3
/m

3
) 

Surface 
Root 

Zone 

Pre-run starting in 2000 

(i) simulations corresponding to initialization using 

the point of saturation (A) and observed soil 

moisture (B) 

0.0005 0.0015 

(ii) simulations corresponding to initialization 
using observed soil moisture (B) and surface 

observed soil moisture only (C) 

0.0014 0.0037 

(iii) simulations corresponding to initialization 
using the point of saturation (A) and surface 

observed soil moisture only (C) 

0.0019 0.0053 

Pre-run starting in 2006 

(i) simulations corresponding to initialization using  
the point of saturation (A) and observed soil 

moisture (B) 

0.0007 0.0019 

(ii) simulations corresponding to initialization using 
observed soil moisture (B) and surface observed 

soil moisture only (C) 

0.0078 0.0134 

(iii) simulations corresponding to initialization 
using the point of saturation (A) and surface 

observed soil moisture only (C) 

0.0078 0.0122 
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Figure 3.7: The root mean square difference (m
3
/m

3
) for both the surface and 

root zone, plotted against the length of the initialization simulation, when 

compared to (a): their individual respective bench marks and (b): the 7 year 

pre-run benchmark only. 
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3.5.4.3 Comparison of pre-run and spin-up methods 

The number of spin-ups that a soil moisture prediction model requires to 

reach equilibrium depends on the model physics and the climatology of the 

focus area, among other things. Figure 3.7 highlights the inverse 

relationship between the initialisation error and the length of the  

pre-run/number of spin-ups. While Figure 3.7 (a) shows that after 8 spin-up 

iterations the RMSD does not decrease significantly with further iteration, 

there is a continuous decline in the errors, resulting in a relatively large 

difference when reaching 50 spin-ups. However, Figure 3.7 (b) shows that 

the minimum RMSD is reached after 3 cycles of spin-up, when compared to 

the 7-year pre-run benchmark, which then increases when using more spin-

up runs. Figure 3.8 (b) shows the simulated root zone soil moisture for 2006 

corresponding to the first 10 spin-up iterations, with the first spin-up 

iteration being initialized at the point of saturation (0.55 m
3
/m

3
). It can be 

 

Figure 3.8: Initializing at the point of saturation (0.55 m
3
/m

3
), with root zone 

soil moisture shown for: (a) different lengths of pre-run, from 2000 to 2006, 

(b) the year 2006 corresponding to the 10 spin-up iterations; and (c) the target 

period of January 2007 to December 2010, with runs corresponding to the 

different pre-run lengths and the traditional spin-up of 50 cycles. 
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observed that for the root zone soil moisture all spin-up cycles were very 

close to each other, with the exception of the first cycle which commenced 

at the point of saturation. Figure 3.8 (c) shows that the initial conditions 

from a traditional spin-up are different from those derived using a pre-run. 

This is because an ‘unnatural equilibrium’ is attained when repeatedly 

running simulations using the same year of atmospheric forcing, due to the 

fact that a single year cannot provide an accurate representation of long-

term climatologies (Schlosser et al., 2000). This results in the model having 

“effective states” rather than “realistic states”. However, when using a pre-

run, an accurate representation of long-term climatologies is possible as it 

comprises of a number of consecutive years, encompassing a variety of 

climatologies. As opposed to the method of using spin-ups, the results 

obtained from using a pre-run are more robust and repeatable, thereby 

increasing the reliability of the simulation. 

For the conditions of this numerical experiment, it was also observed that 

the RMSDs for the root zone and the surface were close together when a 

pre-run was used to obtain initial conditions, as opposed to using a different 

number of spin-ups. The RMSDs between simulation results when using the 

two benchmark initialisations, a 7-year pre-run and 50 spin-ups, were 

0.0076 m
3
/m

3
 and 0.0193 m

3
/m

3
 for the surface and root zone respectively.  

 

3.5.5 Key Findings 

This study explored the benefits of using a pre-run to set the initial states of 

a soil moisture prediction model, as opposed to using a traditional spin-up. 

It has been demonstrated that the use of a pre-run provided a more realistic 

initialisation than the traditional spin-up approach for the semi-arid 

environment tested here. The spin-up resulted in an unnatural equilibrium 

where the bias was as much as 0.01 m
3
/m

3
 and 0.02 m

3
/m

3
 in the surface 

and root zone soil moisture. It was also observed that when the number of 

cycles in the spin-up increased, the model diverged from the reality. 

Moreover, it was found that the pre-run was best initialised using the point 
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of saturation for the entire soil profile for the water limited conditions of this 

study site, as the excess soil water was quickly lost due to evaporation. 

While in theory the initial conditions are unimportant, with the model 

resetting itself every time the boundary conditions (point of saturation or 

residual moisture content) are reached, the reality is that this occurs very 

rarely in practise, and was not achieved during the 10-year time period 

tested for this focus area. In addition to the more robust results achieved 

from the pre-run method, it was found that to achieve equivalent results to a 

2 year pre-run, more than 10 cycles of spin-ups were needed, thus increasing 

the computational requirements for initialisation. However, these 

conclusions may be specific to the JULES soil moisture prediction model 

and the semi-arid climate conditions in which it was tested. Thus a 2 year 

pre-run with saturated initial soil profile was recommended as the preferred 

initialization for the studies in this thesis using JULES. 

 

3.6 Chapter Summary 

This chapter identified that of the two soil moisture prediction models 

tested, JULES was found to be the most suitable for soil hydraulic 

parameter retrieval from surface soil moisture observations, being a multi-

layered model that allows multiple soil types and layer thicknesses to be 

user specified. Two optimization techniques have also assessed, with the 

PSO approach adopted as the most suitable global search method for this 

research. The JULES model was also tested for its numerical stability. A 7 

layer soil profile representation and time-step size of not greater than  

30 minutes minimized numerical instabilities. Moreover, commencing the 

simulation at least two years prior to the focus period with all layers at the 

point of saturation led to a more robust initialization result than the 

traditional spin-up approach. 
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Chapter 4  

One-Dimensional Twin-Experiment 

This chapter demonstrates the potential of the proposed methodology for soil 

hydraulic parameter estimation using a synthetic twin experiment framework, 

thus avoiding the need to deal with possible model-observation biases. 

Moreover, it explores a range of scenarios, with the objective to determine the 

best meteorologic conditions for soil property retrieval and hence the most 

efficient use of computational resources when applying the methodology at 

large scales. These scenarios include: (a) short dry-down period, (b) short dry 

period, (c) short wet-up period, (d) short wet period and (e) full 12-months with 

multiple wetting and drying periods. The methodology was also tested for four 

different soil types including a homogeneous column of sand, a homogeneous 

column of clay, a duplex column of clay over sand, and a duplex column of 

silty sand over clay. The work in this chapter has been published in the Journal 

of Hydrology (Bandara et al., 2013). 

 

4.1 Background  

The moisture content of the soil is a key variable controlling the exchange of 

water and energy fluxes between the land surface and the atmosphere, as it 

affects the evaporation and plant transpiration. Hence the soil moisture is an 

important contributor to the development of weather patterns including 

precipitation (Dirmeyer et al., 2009, Koster et al., 2004) and air temperature 

(Timbal et al., 2001). Indeed, soil moisture plays an essential role in most 

environmental processes (Seneviratne et al., 2010), and is one of the few 

important hydrological variables that is directly observable. Moreover, it has 
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been declared an Essential Climate Variable by the Global Climate Observing 

System (GCOS) (Stitt et al., 2011), and is therefore a reportable land surface 

parameter for the contributing members. However, the temporal evolution of 

high-resolution soil moisture is not straight forward to monitor across large 

scales, both from a logistical and an economic point of view, due to its high 

spatial variability. Both active and passive remote sensing methods are being 

utilized in soil moisture monitoring, including the Advanced Microwave 

Scanning Radiometer for Earth Observation System (C- and X-band) (Njoku 

and Li, 1997, Owe et al., 2008), Advanced Scatterometer (C-band) (Albergel et 

al., 2009) and Soil Moisture and Ocean Salinity (L-band) (Kerr et al., 2010). 

However, remote sensing techniques only provide information on the near 

surface layer of soil, and so there is still a great reliance on the soil moisture 

evolution predicted by soil moisture prediction models to obtain profile soil 

moisture information. Therefore, data assimilation techniques have been used to 

constrain root zone moisture estimates using satellite observations of near 

surface soil moisture (e.g. Albergel et al., 2008, Walker and Houser, 2001). 

Amongst other things, soil moisture prediction models are used to provide 

boundary conditions to weather and climate models, representing the land 

surface feedbacks to the atmosphere. Consequently, coupled land surface-

atmosphere schemes must be able to predict the energy, water, and carbon 

exchanges, with explicit representation of vegetation and soil types. The soil 

moisture prediction models generally require meteorological data (temperature, 

precipitation, radiation and so on) and parameters of vegetation and soil 

characteristics as inputs (Abramowitz et al., 2007). However, soil moisture 

estimates using soil moisture prediction models typically suffer from physical 

parameterisation based on low-resolution and/or erroneous soil property 

information (Grayson et al., 2006). Soil hydraulic parameters are either 

measured in-situ or in a laboratory as point measurements. Consequently, it is 

impractical to use this approach to derive detailed information on spatial 

variability of the soil properties due to the time consuming nature of the tests 
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and the expenses involved (Steele-Dunne et al., 2010). Hence, pedotransfer 

functions (empirical equations) are typically used to describe the relationship 

between the required soil hydraulic properties and easily measurable soil 

properties such as soil texture (Wösten, 1997, Wösten et al., 2001). 

Extrapolation over large areas yields crude estimates of soil hydraulic 

properties with large standard deviations (Vereecken et al., 1990, Vereecken et 

al., 1989), the accuracy of which deteriorates with the extent of the 

extrapolation, and thus adversely affects the accuracy of the model simulations. 

The origin of most global and local soil property maps is the Food and 

Agricultural Organization of the United Nations (FAO) soil texture map, known 

as the "World Soil Classification" (Latham, 1981b), with the soil hydraulic 

properties estimated from look-up-tables for ‘typical’ soil types (eg: Clapp and 

Hornberger, 1978, Rawls et al., 1982). Yet, soils are a heterogeneous resource 

that changes on the scale of centimetres, and so hydraulic parameter estimates 

from a typical soil type have large deviations from reality. 

Satellite based remote sensing is able to supply time series information of 

surface soil moisture data with 2-3 day repeat intervals over wide areas. 

However, given that there are several satellites orbiting the earth that provide 

soil moisture information, it would be possible to obtain daily moisture time 

series by combining these different products. Such data can potentially be used 

to estimate the hydraulic properties of the soil profile, through model 

calibration of observed and predicted surface soil moisture content. However, 

only a few studies have attempted to exploit such an approach. One of the 

earliest, perhaps the first, to estimate the soil hydraulic parameters from passive 

microwave measurements and atmospheric forcing data was by Camillo et al. 

(1986). In their study, a soil physics model was used to solve the heat and 

moisture flux equations in the soil profile, and a microwave emission model 

used to predict the soil brightness temperature. The model hydraulic parameters 

were then varied until the simulated soil brightness temperature agreed with the 

remotely sensed measurements from a dual-polarized L-band radiometer. 
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However, the experiment was conducted within a time-frame of only three days 

on three artificially modified plots, and did not capture the full wetting and 

drying cycle of the soils. Santanello et al. (2007) undertook a similar study 

using a six-week extended dry down period immediately following a rainfall 

event, and concluded that better performance can be expected when data during 

and immediately following a rainfall event are used. Harrison et al. (2012) 

extended the case study of Santanello et al. (2007) to include uncertainty 

estimation of soil hydraulic properties, concluding that remotes sensing 

estimates of soil moisture can lead to improved characterization of the 

uncertainties in soil moisture prediction modelling. One major difference 

between the above studies and the work presented in this chapter is, the soil 

hydraulic parameters are retrieved directly as opposed to inferring from the 

particle size distribution. More recently, a genetic algorithm was used by Ines 

and Mohanty (2008b) to identify the soil water retention and hydraulic 

conductivity functions, through the inversion of a soil-water-atmosphere-plant 

model using observed near-surface soil moisture as a search criterion. Their 

study focused on three hydrological cases, a homogeneous column of soil under 

free-drainage, a homogeneous column of soil with a shallow water table, and a 

heterogeneous soil column under free-drainage. This study found that the soil 

hydraulic properties for only the surface layer could be identified for the 

heterogeneous soil column. The methodology was also tested with laboratory 

measured soil moisture, matric potential and hydraulic conductivity data, 

demonstrating that an effective homogeneous soil unit may fail to accurately 

represent a highly heterogeneous soil profile. The point-scale study of Ines and 

Mohanty (2009) was then tested for large-scale parameter estimation using soil 

moisture data from airborne remote sensing. An important observation of this 

study was that any uncertainties in the remotely sensed data at the retrieval, 

calibration or geoprojection stages can propagate directly to the derived soil 

hydraulic parameters at the pixel-scale. However, they have only focused on 
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homogeneous columns of soil in all their work, and therefore have not explored 

the possibility of retrieving hydraulic parameters for a heterogeneous soil. 

There has also been a recent synthetic study by Montzka et al. (2011), which 

explored the impact of the temporal sampling rate on the ability to correct 

model states and estimate soil hydraulic parameters. They used the method of 

sequential data assimilation with a one-dimensional mechanistic soil water 

model on four different homogenous soil types. Consequently, their study did 

not encompass heterogeneous soils, meaning that they did not investigate the 

capability of retrieving the soil hydraulic parameters for both the surface and 

root zone of the soil profile simultaneously, using surface observations. 

However, they did demonstrate that the 3-day repeat period of the Soil Moisture 

and Ocean Salinity (SMOS) mission is suitable for correcting model simulation 

biases that result from false parameterization, thus reducing the uncertainty of 

soil hydraulic parameters. This is important, as it confirms the potential to 

retrieve soil hydraulic parameters using remotely sensed surface soil moisture 

information from satellite missions such as SMOS. 

This study develops a methodology, and determines the level of accuracy that 

can be expected, for soil hydraulic property estimation from heterogeneous soil 

profiles using near surface soil moisture observations, such as those that are 

available from satellites. Moreover, this study identifies the meteorological 

conditions under which the soil hydraulic parameters are best retrieved, so as to 

optimize the computational efficiency when applied to large areas. First, the 

most sensitive soil hydraulic parameters are identified through a series of single 

parameter retrieval experiments, followed by testing under a range of soil types, 

and application to multi-parameter retrieval for duplex soil profiles. This study 

uses the Joint UK Land Environment Simulator (JULES) as the multi-layered 

soil moisture prediction model (Best et al., 2011, Clark and Harris, 2009, Clark 

et al., 2011), and an optimization method that is based on the complex, 

collective behaviour of individuals in decentralized, self-organizing systems, 
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falling within the category of 'swarm intelligence' (Kennedy and Eberhart, 

1995). 

 

4.2 Site and Data Description  

The work presented in this chapter focuses on the Y3 site (34.6208 S,  

146.4239 E) located near Yanco, New South Wales, Australia. This is one of 

the OzNet soil moisture monitoring sites (Smith et al., 2012); 

http://www.oznet.org.au/, and is co-located with the Bureau of Meteorology 

automatic weather station (AWS) 074037. The soil is of duplex nature, with the 

first layer (Horizon A) being approximately 0.30 m deep. The site has an 

elevation of 164.7 m above mean sea level with the dominant surface soil type 

being silty sand (Australian Bureau of Rural Science). The surface (0-8 cm) soil 

moisture has been measured every 5 seconds and averaged to 30 minute 

intervals while the surface soil temperature (4 cm) has been measured at 6 

minute intervals. The precipitation was measured by the use of a tipping bucket 

rain gauge, with the cumulative rainfall recorded every 6 minutes (Smith et al., 

2012). 

This work focuses on the year 2003, which was a year where the soil moisture 

ranged from extremely dry (0.04 m
3
/m

3
 at the surface and 0.12 m

3
/m

3
 at the 

root zone) to extremely wet (0.45 m
3
/m

3
 at the surface and 0.38 m

3
/m

3
 at the 

root zone) conditions as shown in Figure 4.1. Daily rainfall totals were a 

maximum of 120 mm for the year 2003. The half-hourly atmospheric forcing 

data needed to drive the soil moisture prediction model were derived from the 

Yanco AWS data (Siriwardena et al., 2003). Initial conditions for the surface 

layer, corresponding to both the truth run and optimization process, were 

derived from in-situ observations of soil moisture and temperature. The texture 

information for the selected soil type was obtained from the default Food and 

Agriculture Organization of the United Nations' (FAO) soil texture map as well 

http://www.oznet.org.au/
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as from site observed particle size distribution data, and the soil properties used 

as input to JULES were calculated using the pedo-transfer functions of Cosby 

et al. (1984).  

To facilitate the investigation of meteorological conditions and their impact on 

soil hydraulic property retrieval, five different weather scenarios were selected 

as shown in Figure 4.1, including short dry-down (SDD), short dry (SD), short 

wet-up (SWU), short wet (SW), and year-long (LT) periods. The methodology 

was tested for four soil profiles as; (i) homogeneous column of sand, (ii) 

horizon A with loamy/silty sand and horizon B with clay, (iii) same as (ii) but 

with the horizons inter-changed and, (iv) homogeneous column of clay. The 

soil hydraulic parameters estimated from Cosby et al. (1984) pedo-transfer 

functions using the particle size distribution data corresponding to each chosen 

soil were termed as ‘true’ parameters. The reason for using field observed 

meteorological and initial surface soil moisture conditions to create the 

synthetic time series of “truth” soil moisture is to make this data as close as 

possible to typical field observations, but without any model biases. To obtain 

initial root zone soil state values throughout the profile from the surface 

observations, the soil moisture prediction model was spun-up to equilibrium.  

The soil moisture prediction model of this study is the JULES multi-layered 

soil moisture prediction model (Best et al., 2011, Clark and Harris, 2009, Clark 

et al., 2011). In Chapter 3, the performance of JULES was assessed and it was 

recommended a suitable model for this type of study. JULES was used to 

simulate time-series soil moisture corresponding to pre-determined soil 

hydraulic parameters, which provide the ‘true’ parameter values and 

corresponding surface and root zone soil moisture time-series. Soil hydraulic 

parameter(s) were then perturbed to represent the range of uncertainty in one or 

more parameters, yielding what has been termed here as the ‘test’ parameters 

and time-series soil moisture. Next the particle swarm optimizer was used to 

‘retrieve’ the perturbed parameter(s) by comparing the predicted and ‘true’ 
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surface soil moisture. The ‘retrieved’ parameter(s) are then validated against the 

‘true’ parameter value(s), and the root zone soil moisture corresponding to the 

‘retrieved’ parameter(s) validated against the ‘true’ soil moisture of the root 

zone. A schematic of the methodology is shown in Figure 4.2. 

 

 

Figure 4.1: Simulated surface (top) and root zone (bottom) soil moisture, the 

shaded areas from left to right represent, the short dry-down (SDD), the short dry 

(SD), the short wet-up (SWU), the short wet period (SW) and, long term (LT) 

periods. 

 

JULES has a tiled model of sub-grid heterogeneity with nine surface types 

available; broad leaf trees, needle leaf trees, C3 (temperate) grass, C4 (tropical) 

grass, shrubs, urban, inland water, bare soil and ice. However, the work 

presented here is for a single one-dimensional soil column with the surface 

assumed to be bare soil. This assumption does not impact the synthetic results 

here. Moreover, the results are expected to be representative of those from 

application in low-to-moderate vegetation conditions (grasslands, shrub lands), 

as the vegetation would only have a small impact on the evapotranspiration and 

the depth in the soil from which moisture is extracted by roots.  
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Richard’s equation and the Brooks and Corey (1964) constitutive relationships 

are used in the calculation of soil moisture. The soil hydraulic parameters that 

are retrieved in this chapter include; (a) Clapp and Hornberger exponent, (b) 

hydraulic conductivity at saturation, (c) soil matric suction at air entry, (d) 

volumetric fraction of soil moisture at saturation, (e) volumetric fraction of soil 

moisture at the critical point, equivalent to a soil suction of 3.364 m and, (f) 

volumetric fraction of soil moisture at wilting point, assumed to be for a soil 

suction of 152.9 m; see Table 4.1. 

 

 

Figure 4.2: Schematic of the parameter retrieval process. 
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Table 4.1: The shortened form of each soil hydraulic parameter, its' complete 

name and unit, where applicable 

Parameter  

(Shortened 

Name) 

Parameter name and unit 

b Clapp and Hornberger exponent (-) 

Ks Hydraulic conductivity at saturation (mm/s) 

suc Soil matric suction at air entry (mm/s)  

θs Volumetric fraction of soil moisture at saturation (m
3
/m

3
) 

θc 
Volumetric fraction of soil moisture at critical point (for a soil suction 

of 3.364 m) (m
3
/m

3
) 

θw 
Volumetric fraction of soil moisture at wilting point (for a soil suction 

of 152.9 m) (m
3
/m

3
) 

 

The Particle Swarm Optimization (PSO) has been implemented successfully in 

a diverse range of applications such as calibration of water and energy balance 

models (Scheerlinck et al., 2009), multi-machine power- system stabilizers 

(Abido, 2002), practical engineering designs (Hu et al., 2003), and structural 

designs (Perez and Behdinan, 2007). The work presented here uses the PSO 

code from Scheerlinck et al. (2009), and a detailed discussion of the algorithm 

is found in Chapter 3. 

As a first step of applying PSO, the ‘best’ parameters for driving the swarm in 

PSO need to be identified and specified. This is essential because the algorithm 

uses four parameters, three inherent parameters (inertia weight – w, cognitive 

component of the particle – c1, and social component of the particle – c2), and 

the population size to define the behaviour of the swarm. The first factor 

considered in this work was the size of the swarm, as larger swarms need a 

higher number of iterations to converge compared to smaller swarms, with very 

small swarms not yielding good solutions. Eberhart and Shi (2000) showed that 

a population size of 30 is an adequate sample size. This was also adopted by 
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Trelea (2003), Engelbrecht (2005a), Scheerlinck et al.(2009) and others. Hence, 

a population size of 30 particles was chosen for this study. 

Shi and Eberhart (1998) suggest that when w is less than 1, the PSO is able to 

find the global minimum quite fast because the PSO tends to act like a local 

search algorithm under this scenario and focuses on an acceptable solution 

within the initial search space. When w ≥ 1, the velocities of the swarm increase 

with time, the swarm diverges, and the particles fail to change direction towards 

regions with potential minima (Engelbrecht, 2005b). Moreover, Engelbrecht 

(2005b) states that c1>c2 is more beneficial when applied to multimodal 

problems as lower values of c1 and c2 yield smooth particle trajectories. The 

windows that best fit the work presented in this chapter were identified from 

existing literature, as discussed above, and parameter w was varied between 0.2 

and 0.5, c1 between 1 and 2, and c2 between 0.8 and 2, in steps of 0.1. From trial 

and error it was found that the best combination of parameters for this problem 

was w=0.4, c1=1.4 and c2=1.3. 

The objective function used by PSO in this work is the root mean square error 

(RMSE). It is necessary to restrict the parameter(s) within the parameter space 

during the optimization process so that it does not attempt to move beyond 

physical values during the application of the algorithm. This restriction is 

achieved through specification of the model parameter range. To further 

constrain the parameter from jumping to either end of the parameter space, an 

extra penalty was added to the RMSE calculated between the true and 

simulated soil moisture. The penalty was such that the parameter to be retrieved 

was given an initial approximate or best-guess value, with a variation of three 

times the standard deviation of that parameter, thereby making the parameter 

space somewhat smaller and directing the optimization algorithm away from 

boundary values. 
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4.3 Sensitivity Studies 

To make the optimization more reliable, meaningful and speedy, the 

complexity of the parameter space has to be reduced. This can be done by 

decreasing the number of soil parameters to be retrieved. It was therefore 

necessary to identify those soil parameters that have the most influence over the 

moisture simulation, through sensitivity studies. This section applies the 

sensitivity index that has been discussed in detail in Chapter 3, to JULES to 

identify the soil parameters most sensitive to soil moisture prediction.  

Figure 4.3 shows the surface and root zone sensitivity indices for each of the 

eight soil parameters used in JULES. A common scale ranging from -1 to 2 has 

been used to facilitate easy comparison, and hence some parameters that are 

more sensitive to soil moisture simulation exceed these ranges. Table 4.1 gives 

an overview of the six soil parameters that have been identified as showing the 

highest impact on soil moisture simulation. 

The sensitivity analysis results in Figure 4.3 show that during the extreme dry 

period at the beginning of the year, the soil moisture prediction model is 

sensitive only to changes in the volumetric fraction of soil moisture at critical 

point while being insensitive to changes in all other parameters. Under the wet 

conditions observed during the months of June to September, the volumetric 

fraction of soil moisture at saturation displays a near-zero trend which is due to 

the fact that at the point of near-saturation, changes to the parameter will not 

affect the soil moisture simulation. For the same period, the volumetric fraction 

of soil moisture at saturation and the matric potential at air entry display 

changes according to the wetness and dryness of the soil as air entry is not 

possible near saturation. These results imply that the significance of these soil 

parameters is dependent on the moisture state, and that their response is 

correlated to the current state. However, the purpose of this sensitivity analysis 

was to identify the soil parameters that most influence the soil moisture 

simulation. Hence, of the eight soil parameters that have an impact on soil 
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moisture, the volumetric fraction of soil moisture at critical point and at 

saturation, as well as the Clapp and Hornberger exponent, show the highest 

sensitivity. The hydraulic conductivity at saturation, the volumetric fraction of 

soil moisture at wilting point and the soil matric suction at air entry, show much 

less, but none-the-less important, sensitivity. In contrast, the dry heat capacity 

and dry thermal conductivity show minimal sensitivity and so are eliminated 

from the list of retrievable parameters. 

 

 

Figure 4.3: The Sensitivity Index (S) plotted against time for each soil parameter. 

 

4.4 Parameter Retrieval 

The schematic of the parameter retrieval process is shown in Figure 4.2, and 

was briefly discussed already in section 4.2. This study proposes the retrieval of 

the root zone soil hydraulic parameters from surface soil moisture observations 

alone, and hence it was necessary to correctly specify the initial states for both 

the surface and root zone. Therefore the observed near-surface soil moisture 
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and soil temperature were used as initial conditions for the surface layer while 

the results corresponding from the spin-up were used for the root zone.  

As the first step of testing the proposed methodology, single parameters were 

retrieved by perturbing parameters one at a time, representing the uncertainty in 

published soil hydraulic parameter data. The inclusion of single-parameter-at-a-

time retrieval was to investigate the complete range of optimization 

possibilities, from a single parameter (one for each soil type) right through to 

all six parameters (for each soil type), thus accounting for complexity of search 

space and parameter cross-correlation identified by Vrugt et al. (2003). Using 

the predicted soil moisture resulting from perturbed parameters, together with 

the surface soil moisture observations time series, the original set of ‘true’ 

parameters throughout the soil column are retrieved. The optimized parameters 

have the prefix ‘retrieved’ throughout the thesis. 

The second step was to jointly retrieve all six parameters, as opposed to 

individually. Three methods were used for this; (i) all six parameters retrieved 

simultaneously, (ii) sequential retrieval of two parameters at one time and, (iii) 

sequential retrieval of three parameters at one time. In the sequential retrieval, 

(ii) and (iii), the combinations were from the most sensitive to the least 

sensitive parameters.  

All four soil type combinations were tested under the five different 

meteorological periods identified. The corresponding RMSE between the soil 

moisture using the true and retrieved parameters were calculated along with the 

Nash-Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970). The 

Nash-Sutcliffe coefficient E can range from -∞ to 1, with a perfect match 

between the modelled simulation and observation resulting in a value of E=1. 

When E=0, the model predictions are as accurate as the mean of the observed 

data, whilst for values of E<0 the observed mean is a better predictor than the 

model.  
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4.5 Results and Discussion 

4.5.1 Retrieval of One Parameter at a Time 

The first objective of the study was to identify the meteorological condition 

under which the selected hydraulic property can best be retrieved. The RMSEs 

calculated under the different meteorological conditions (Table 4.2) and the 

corresponding Nash-Sutcliffe model efficiency coefficients (Table 4.3) were 

compared, together with the 'retrieved' and 'true' parameter values, as 

summarized in Table 4.4. It is immediately clear from Table 4.5 that when 

comparing the retrieval efficiency of the four soil types, that the retrieval was 

not able to adequately optimize the parameters of the clay/sand combination, 

apart from the 12-month long (LT) scenario. Conversely, the highest skill for 

soil parameter retrieval across all meteorologic conditions was for the 

homogeneous column of clay when compared to the other soil types. The 

results are found to be similar for the homogeneous column of sand and the 

silty sand/clay combination.  
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Table 4.2: The Root Mean Square Errors (RMSEs), between soil moisture using 'retrieved' and 'true' soil hydraulic parameters, for 

the surface and root zone for soil type Silty sand/Clay under different meteorological condition  

P
a
ra

m
et

er
 

RMSE (m
3
/m

3
) 

Short wet-up period Short wet period 
Short dry-down 

period 
Short dry period 

Surface 
Root 

Zone 
Surface 

Root 

Zone 
Surface 

Root 

Zone 
Surface 

Root 

Zone 

b 0.0006 0.0004 0.0002 6.60e-05 0.0003 0.0005 8.48e-05 8.66e-05 

Ks 0.0027 0.0055 0.0000 0.0000 0.0045 0.0179 9.04e-05 0.0008 

suc 0.0000 0.0000 3.24e-05 1.43e-05 2.69e-07 5.52e-07 2.58e-05 0.0001 

θs 0.0204 0.0300 0.0156 0.0441 0.0015 0.0210 0.0002 0.0124 

θc 1.65e-05 5.80e-06 2.07e-09 1.15e-10 0.0000 0.0000 0.0000 0.0000 

θw 3.08e-09 1.94e-10 2.07e-09 1.15e-10 1.41e-09 9.84e-11 0.0000 0.0000 
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Table 4.3: The Nash-Sutcliffe model efficiency coefficients (E), for the surface and root zone for soil type Silty sand/Clay under 

different meteorological condition  

P
a
ra

m
et

er
  

Nash-Sutcliffe model efficiency coefficients (E) 

Short wet-up period Short wet period 
Short dry-down 

period 
Short dry period 

Surface 
Root 

Zone 
Surface 

Root 

Zone 
Surface 

Root 

Zone 
Surface 

Root 

Zone 

b 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000 0.9998 

Ks 0.9977 0.9881 1.0000 1.0000 0.9930 0.7775 1.0000 0.9999 

suc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 

θs 0.8642 0.9899 0.9395 0.4663 0.9992 0.7535 0.9999 0.4729 

θc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

θw 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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It is also observed that some parameters are better retrieved under different 

meteorologic conditions for different soil types. For example, the volumetric 

fraction of soil moisture at critical point could be retrieved under all 

meteorological conditions for a homogenous column of clay, which is opposite 

to the mixed soil column comprising of clay/sand, where retrieval was only 

possible during the long term period. For the mixed column of silty loam/clay, 

the retrieval worked well only for the long term and short dry-down periods, 

while all meteorological conditions apart from the short dry period showed 

good results for the homogeneous column of sand.  

When there is a homogeneous column of soil, the parameter space is smaller 

and less complicated, compared to a mixed soil column. Because of this, the 

retrieval of parameters is comparatively better under all the meteorological 

conditions tested. In this case, it is observed that the non-complexity of the 

parameter space plays a more significant role than the inherent soil 

characteristics. Sandy soil is swift to react to changes and during the short-dry 

season, quickly becomes de-coupled between the surface and root zone, thereby 

influencing the retrieval capability of the selected soil hydraulic parameters. For 

the mixed column of clay/sand (where horizon A comprises of a 0.30 m of 

clay), the layer of fine clay on the upper horizon takes a long time to react to 

any changes near the surface, thereby constraining any changes that occur to the 

sandy soil on the lower horizon. Hence, the longer the time-series, the more 

time there is for the top soil to react to changes, and subsequent changes to the 

root zone. Silty loam can have up to 29% clay and therefore takes more time to 

react to changes compared to a sandy soil, but considerably less time compared 

to a clay soil. Hence, soil parameter retrieval could only be achieved with the 

silty loam/clay column during the longest time-series. The drying-down period 

was selected after a very significant rainfall of about 120 mm/day following an 

extremely dry period. This wetting event has contributed to the models 

capability for hydraulic parameter retrieval within the short dry-down period. 
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Table 4.4: The Root Mean Square Errors (RMSEs), between soil moisture using 

'retrieved' and 'true' soil hydraulic parameters, for the surface and root zone and 

the Nash-Sutcliffe model efficiency coefficients (E) for soil type Silty sand/Clay 

and the long term meteorological condition  

P
a

ra
m

et
e
r
 

RMSE (m
3
/m

3
) 

Nash-Sutcliffe model efficiency 

coefficient (E) 

Surface Root Zone Surface Root Zone 

b 0.0004 0.0002 0.9999 0.9999 

Ks 0.0104 0.0034 0.9803 0.9817 

suc 0.0024 0.0017 0.9989 0.9924 

θs 0.0029 0.0019 0.9985 0.9964 

θc 4.00e-05 1.15e-05 1.0000 1.0000 

θw 1.64e-07 3.25e-08 1.0000 1.0000 

 

The volumetric fraction of water at wilting point is not retrieved so readily as 

the other soil parameters. In fact, it was not possible to retrieve this parameter 

for the homogeneous column of sand at all, with retrieval for the other soil 

types only achieved under the long term condition. The Nash-Sutcliffe model 

efficiency parameter for the volumetric fraction of water at wilting point was 

unity in most cases, indicating that the simulation and 'true' observations of soil 

moisture are a perfect match. Since this parameter is mostly important in the 

calculation of leaf photosynthesis, the bare soil assumption of this study is 

likely to have impacted any conclusions in relation to this parameter. 

While the methodology was tested for four soil types encompassing all spectra 

of soil texture, the site of interest mainly consists of silty loam covering a 

deeper layer of clay. In addition, it was noted from Table 4.4 that the 12-month 

period yielded the best results for all soil types across the range of tested 

meteorological conditions. Similarly, Table 4.6 focuses on the ‘true’ and 

‘retrieved’ parameter values for horizons A and B for the silty sand/clay soil 
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type combination shown in Table 4.2 and Table 4.3 under the long term 

scenario. From Table 4.5, it is seen that the Clapp and Hornberger coefficient 

and the volumetric fraction of soil moisture at critical point are retrieved to an 

accuracy of 99.9%, whereas the other parameters, apart from the suction at air 

entry, are within 5% of the 'true' values. The RMSE for the volumetric fraction 

of soil moisture at wilting point is close to zero with a Nash-Sutcliffe of unity, 

indicating a perfect retrieval. However, the bare soil of this study is likely the 

cause of model insensitivity to changes in the parameter (as per the summary in 

Table 4.4). 
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Table 4.5: Matrix of the "retrieval" of individual parameters for each soil type under the different meteorological conditions. 
P

a
ra

m
et

e
r
 

Sand Silty Sand/Clay Clay/Sand 
Clay 

S
W

U
 

S
W

 

S
D

D
 

S
D

 

L
T

 

S
W

U
 

S
W

 

S
D

D
 

S
D

 

L
T

 

S
W

U
 

S
W

 

S
D

D
 

S
D

 

L
T

 

S
W

U
 

S
W

 

S
D

D
 

S
D

 

L
T

 

b 
○ ○ ● ● ● ● ● ● ● ● ○ ○ ○ ○ ● ● ● ● ● 

● 

Ks ● ○ ○ ● ● ○ ● ○ ● ● ● ○ ○ ○ ● ● ● ● ● ● 

suc ● ● ● ● ● ● ● ● ● ○ ○ ○ ● ○ ● ● ● ● ● ● 

θs ● ● ● ● ● ○ ● ● ● ● ○ ○ ○ ● ● ● ● ○ ○ ○ 

θc ● ● ● ○ ● ○ ○ ● ○ ● ○ ○ ○ ○ ● ● ● ● ● ● 

θw ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ● ○ ○ ○ ○ ● 

● – Instances when each of the parameters have been retrieved (a) within 5% of the "true" value, (b) E>0.9 and, (c) RMSE < 0.009 m
3
/m

3
,  

○ – Instances when either (a), (b) or (c) has not been fulfilled. 
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4.5.2 Retrieval of Multiple Parameters at a Time 

Results corresponding to the “simultaneous” retrieval of all six parameters in 

Table 4.6 are based on three different approaches. The first approach retrieves 

the six parameters at once; the second is the sequential retrieval of two 

parameters at a time, while the third approach is the sequential retrieval of three 

parameters at a time. In all three methodologies, the surface and root zone 

hydraulic parameters corresponding to the entire soil profile have been retrieved 

simultaneously. Figure 4.4 shows the soil moisture time series analogous to 

Table 4.6, where the soil moisture was simulated from the 'true' and 'retrieved' 

parameters.  

 

Table 4.6: The 'true' and 'retrieved' values for horizons A (HA) and B (HB), for 

soil type Silty sand/Clay and the long term (12 month) meteorological condition  

P
a
ra

m
et

e
r
 

'true' parameter values 'retrieved' parameter values 

HA HB HA HB 

b 4.65 13.57 4.648 13.571 

Ks 0.0081 0.0011 0.0090 0.0015 

suc 0.153 0.313 0.1700 0.3858 

θs 0.419 0.457 0.4238 0.4597 

θc 0.215 0.384 0.2149 0.3998 

θw 0.095 0.290 0.1000 0.2999 

 

It is observed that Figure 4.4 (c) shows the best match between the surface layer 

soil moisture time series using the 'true' and 'retrieved' parameters, while Figure 

4.4 (a) has the 'best' match for the root zone, when compared to the other 

scenarios. The retrieved parameters of Horizon A (HA) for the first scenario do 
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not match closely with the ‘true’ values, resulting in a relatively high RMSE 

value (almost 50% more) when compared to the second and third approaches. 

The parameters for HA are best retrieved under the third method, having the 

lowest RMSE of 0.015 m
3
/m

3
, with the second approach performing slightly 

less well with a RMSE of 0.023 m
3
/m

3
. This is again due to the fact that the 

parameter space is made comparatively more complex when soil hydraulic 

parameters are being retrieved for two soil horizons. However, for the soil 

hydraulic parameters for Horizon B (HB), the RMSEs are opposite to HA. The 

lowest RMSE of 0.012m
3
/m

3
 corresponds to the first scenario (almost 50% 

higher) while the highest value is given by the sequential retrieval of three 

parameters (about 70% higher). It is also observed that the RMSEs 

corresponding to all three scenarios differ by a maximum value of 0.006 m
3
/m

3
. 

The Clapp and Hornberger coefficient and the soil moisture at saturation have 

consistently been retrieved within an accuracy of 5% of the 'true' values under 

all three scenarios. Hence, it can be stated that these parameters can be retrieved 

from any of the three approaches. The root zone soil moisture is not as dynamic 

as the surface layer and thus, unless the most sensitive parameters alter 

significantly, the changes are not captured. If the true root zone soil moisture is 

available and is used in the soil hydraulic parameter retrieval process, it will 

allow a better match for the retrieved parameters corresponding to the root 

zone. However, this is not typically the case, and since only the top 5 cm 

(surface) soil moisture is observed by satellite remote sensing, this study has 

investigated the alternative method of obtaining the soil hydraulic parameters of 

the root zone using only the surface data. 

 



 

 

C
h
ap

te
r 

4
: 

O
n
e-

D
im

en
si

o
n

al
 T

w
in

-E
x

p
er

im
en

t 

4-24 

 

 

Figure 4.4: The surface (left) and root zone (right) soil moisture for the 12-month 

period using 'true' and 'retrieved' parameters: (a) simultaneous retrieval of all 6 

parameters, (b) sequential retrieval of 2 parameters at a time, and (c) sequential 

retrieval of 3 parameters at a time. 

 

4.6 Chapter Summary 

This chapter has demonstrated, using synthetic data, the feasibility of retrieving 

soil hydraulic parameters from near-surface soil moisture observations, and 

identified the best meteorologic conditions for conducting soil property 

retrieval. The study showed that soil hydraulic parameters were best retrieved 

when using a full 12-month period, with the sequential retrieval of three 

parameters at a time being the most suitable approach when retrieving the six 

parameters per soil horizon, with the most sensitive parameters retrieved first. 

With the methodology established, the next chapter will focus on using field 
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observed soil moisture instead of synthetic data. This will introduce potential 

model and observational errors and biases into the system, and thus the work 

will focus on identifying and overcoming these challenges. 
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Chapter 5  

One-Dimensional Field Application 

This chapter demonstrates the feasibility of utilizing near-surface soil 

moisture measurements to obtain optimal soil hydraulic parameters, using 

in-situ measurements from the OzNet Soil Moisture Monitoring Network. 

The methodology was applied to three sites, Y2, Y5 and Y7, where Y2 and 

Y7 were a silt loam soil and Y5 a loamy sand soil. This chapter discusses 

the soil hydraulic parameter retrieval for the complete soil profile in two 

steps; (i) retrieval using both surface and root zone soil moisture 

observations, to provide a benchmark in the validation process and (ii) using 

only the surface moisture observations, to assess the applicability of the 

methodology. The work presented in this chapter has been submitted to the 

Journal of Hydrology. 

 

5.1 Background  

As discussed in the previous chapters, there is an urgent need of having 

more accurate and detailed soil parameter data than what is currently 

available. This is because soil moisture estimates using soil moisture 

prediction models typically suffer from physical parameterization, based on 

low-resolution and/or erroneous soil property information (Grayson et al., 

2006). For example, De Lannoy and Reichle (2012) addressed the soil 

moisture biases of the GEOS-5 land data assimilation system by revising the 

global soil properties and soil hydraulic parameters that are used in the 

Catchment model through comparison against available in situ soil moisture 

measurements.  

Remotely sensed soil moisture measurements can be used to address this 

soil hydraulic property estimation problem. However, most work to date has 
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focused on utilizing synthetic simulations (Ines and Mohanty, 2008b, 

Montzka et al., 2011), or observations on engineered soils (Burke et al., 

1997b, Burke et al., 1997a, Burke et al., 1998, Camillo et al., 1986, Ines and 

Mohanty, 2008b) (for a more detailed review of these studies refer to 

Chapter 4). Importantly, only a limited number of studies have focused on 

estimating soil hydraulic properties from soils under transient flow or 

naturally occurring boundary conditions. For example, the study by Dane 

and Hruska (1983) determined the hydraulic conductivity and soil water 

characteristic curves of soils undergoing drainage with the initial and 

boundary conditions known. Their methodology was initially tested for an 

engineered soil with known soil hydraulic characteristics, followed by a 

homogeneous clay loam soil. They concluded that the method should be 

applicable to heterogeneous soils, provided that both the boundary 

conditions and the water content profiles are well defined for each layer. 

However, this has not been tested as prior knowledge of both the boundary 

conditions and the water content are rarely available in practice.  

Using a measured time-series of soil water content at three different depths 

under natural boundary conditions, Ritter et al. (2003) estimated effective 

soil hydraulic properties utilizing the inverse parameter estimation method. 

Their study showed that when using laboratory determined soil hydraulic 

properties to simulate the water balance at field scale, inaccurate results 

were produced, and a ‘trial and error’ optimization did not yield objective 

results, leading to a poor fit of measured data. Consequently, they identified 

that efficient parameter estimation can be obtained only when an 

optimization algorithm is combined with the numerical model, 

demonstrating the feasibility of the inverse modelling approach to soil 

hydraulic property estimation of a soil column. Ritter et al. (2003) 

concluded that additional experimental data (drainage conditions, prior 

information of soil parameter data and so on) were needed to identify 

realistic parameters due to the ill-posed problem. An alternative approach, 

using a water injection experiment to derive effective soil parameters at 

field scale, has been tested by Ye et al. (2005) and Yeh et al. (2005). They 
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applied spatial moments to 3-D snapshots of a moisture plume under 

impermanent flow conditions, to estimate the 3-D effective unsaturated 

hydraulic conductivity tensor. The effective hydraulic conductivities 

compared well with laboratory measured unsaturated hydraulic conductivity 

values. Their study also identified that the principal directions of the spatial 

moments varied as the moisture plume evolved through local heterogeneity.  

Despite these studies, all have focused on retrieving the soil hydraulic 

conductivity at saturation, and largely ignored the other soil hydraulic 

parameters. Consequently, the work presented in this chapter focuses on 

retrieving all the important soil hydraulic parameters, as shown in Table 5.1. 

In Chapter 4, a methodology was developed for estimating the soil hydraulic 

properties of a heterogeneous soil column in a synthetic twin-experiment 

framework. According to this methodology, the soil hydraulic parameters 

were derived by calibrating a soil moisture prediction model to soil moisture 

observations, such as those which would be available from satellite 

observations. This study advances that work by applying the methodology 

to a field application with heterogeneous soil column under natural 

conditions. This work also uses the Joint UK Land Environment Simulator 

(JULES) as the soil moisture prediction model (Best et al., 2011, Clark and 

Harris, 2009, Clark et al., 2011), together with the Particle Swarm 

Optimization (PSO) method that is based on the complex collective 

behaviour of individuals in decentralized, self-organizing systems, falling 

within the category of 'swarm intelligence' (Kennedy and Eberhart, 1995).  

 

5.2 Site and Data Description 

The work presented in this chapter focuses on three sites, Y2 (34.6548 S, 

146.1103 E), Y5 (34.7284 S, 146.2932 E) and Y7 (34.8518 S, 146.1153 E). 

These sites are located near Yanco, New South Wales, Australia (as shown 

in Figure 1), and form part of the OzNet soil moisture monitoring sites 

(Smith et al., 2012); http://www.oznet.org.au. The soil of the Yanco region 

is duplex, with horizon A being approximately 0.30 m deep. The dominant 

http://www.oznet.org.au/
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horizon A soil type at each location is loam, sandy loam and loam 

(Australian Bureau of Rural Science), respectively. The soil moisture has 

been measured continuously at depths of 0-0.05 m, 0-0.30 m, 0.30-0.60 m, 

0.60-0.90 m (as shown in Figure 5.2) as the average over 30 minute 

intervals. The precipitation was measured by a tipping bucket rain gauge, 

with the cumulative rainfall recorded every 6 minutes (Smith et al., 2012). 

This work focuses on the period between 2008 and 2010, as 2008 and 2009 

were average years for the catchment (0.08 – 0.38 m
3
/m

3
 at the surface and 

0.18 – 0.25 m
3
/m

3
 over the root zone) while 2010 was an exceedingly wet 

year (0.38 m
3
/m

3
 at the surface and 0.42 m

3
/m

3
 over the root zone). Hence, 

this time period covers the complete spectrum of dry to wet soil moisture 

conditions. The meteorological forcing data required by the JULES soil 

moisture prediction model (long and short wave radiation, wind speed, air 

temperature, humidity and pressure) were obtained from the automatic 

weather station located at the nearby Y3 (34.6208 S, 146.4239 E) station 

(Siriwardena et al., 2003), while precipitation and the specific soil and 

vegetation parameters were obtained from measurements at the focus site 

itself. 
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Figure 5.1: Study site location together with the interpretation of the soil type 

based on the soil texture measurements made at the sites, Yanco area in the 

Murrumbidgee Catchment, Australia. 
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Figure 5.2: The complete soil profile, as simulated by JULES. The 3 horizons, 

A, B1 and B2, are shown with the surface and root zones as defined. The 

thickness of each model layer is as specified. 

 

Table 5.1: Overview of the six soil hydraulic parameters, along with their 

respective notation, descriptive name, and unit where applicable. 

Symbol Parameter name and unit 

b Clapp and Hornberger exponent (-) 

Ks Hydraulic conductivity at saturation (mm/s) 

ψa Soil matric suction at air entry (m) 

θs Volumetric fraction of soil moisture at saturation (m
3
/m

3
) 

θc 
Volumetric fraction of soil moisture at critical point (for a soil 

suction of 3.364 m) (m
3
/m

3
) 

θw 
Volumetric fraction of soil moisture at wilting point (for a soil 

suction of 152.9 m) (m
3
/m

3
) 

 

To obtain initial conditions of soil moisture and soil temperature 

corresponding to all seven model layers throughout the profile, model 
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predictions commenced two years prior to the start of the focus period. The 

soil moisture of the pre-run was initialized at the point of saturation  

(0.55 m
3
/m

3
) for all layers, while soil temperature data were derived from 

in-situ observations. The soil hydraulic parameters were obtained through 

four different sources; (i) experimental observations, (ii) published values 

(Rawls et al., 1982), (iii) calculated pedo-transfer function values from 

Cosby et al. (1984) using site specific particle size distribution data, and  

(iv) model calibration.  

The experimental values were used for validation purposes, derived from a 

combination of field and laboratory measurements. The double-ring (twin-

ring) infiltrometer method (Cook, 2002) was used for measuring the 

hydraulic conductivity at saturation for the surface layer, while the well 

permeameter (McKenzie, 2002) was used to obtain the saturated hydraulic 

conductivity for the subsequent layers. A minimum number of two 

replicates of observations for each horizon were obtained at each site. The 

water level of the outer ring of the double-ring infiltrometer was kept 

constant while the change in water level of the inner ring was recorded 

every one minute. The same procedure was followed when using the well 

permeameter, with measurements at 0.30 m, 0.90 m and 1.50 m depths. The 

equipment was dismantled when steady state flows were obtained. A 

minimum of three replicates of undisturbed soil core samples to a depth of 

1.00 m were collected from all sites. These samples were then used in the 

laboratory to obtain the suction at air entry using the filter paper method 

[ASTM D5298] . Accordingly, about ten samples were extracted from the 

core for each horizon using small metal rings. These were then subjected to 

different moisture conditions so as to acquire at least 8 to 10 data points to 

draw the soil water characteristic curve. The long term record of observed 

soil moisture was used to estimate the residual water content and the 

volumetric water content at saturation. 

The work presented in this chapter uses JULES (Best et al., 2011, Clark and 

Harris, 2009, Clark et al., 2011) to simulate the time-series soil moisture 

profile corresponding to specified soil hydraulic parameters, with the 
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particle swarm optimizer PSO used to ‘retrieve’ the best estimate of 

hydraulic parameters by matching predicted and observed soil moisture. The 

JULES model and the PSO algorithm have been discussed in detail in 

Chapter 3. 

 

5.3 Methodology 

The objective of this study was to retrieve soil hydraulic parameters from 

soil moisture observations, and was approached in two steps. First, the soil 

hydraulic parameters for the complete soil profile were retrieved using both 

surface and root zone soil moisture observations, to provide a benchmark in 

the validation process. Second, only the surface moisture observations were 

used in retrieving the soil parameters for the complete soil profile. In both 

cases the retrieved parameters were validated against the experimentally 

observed parameter values. The predicted root zone soil moisture 

corresponding to observed, retrieved and published soil hydraulic 

parameters was also validated against the observed root zone soil moisture.  

Though literature identifies the soils of Yanco as duplex, this study has 

allowed the soil profile to consist of three distinct horizons with potentially 

different soil properties; horizon A, horizon B1 and horizon B2 (as shown in 

Figure 5.2). This is because distinct differences in the particle size 

distribution were observed throughout the soil profile.  

 

5.3.1 Benchmarking  

Before assessing the proposed surface soil moisture calibration 

methodology for (i) retrieving the soil hydraulic parameters and (ii) more 

accurately predicting the root zone soil moisture, the capability of JULES to 

match the observed soil moisture measurements across the soil profile was 

tested. This not only shows shortcomings of JULES, but obtains a 

‘benchmark’ for both retrieved hydraulic soil parameters and derived soil 
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moisture predictions. Accordingly, PSO was used to retrieve soil parameters 

for the full profile, utilizing corresponding observed soil moisture data. In 

this setting, the simulated soil moisture is compared and soil parameters 

adjusted to best match the observed soil moisture for that particular soil 

layer, thus minimizing the objective function and yielding the ‘best’ values 

for each soil horizon. 

The profile simulated by JULES has 7 layers of 0.025 m, 0.025 m, 0.125 m, 

0.125 m, 0.300 m, 0.300 m and 2.000 m thickness, while field observations 

of soil moisture were for 4 layers of 0-0.05 m, 0-0.30 m, 0.30-0.60 m and 

0.60-0.90 m depth from the soil surface. Consequently, weighted averages 

of the simulated soil moisture were used for comparison against the layer 

thicknesses of the field observations. The soil module of JULES utilizes 

eight parameters. However, based on the findings of Chapter 4, only the six 

soil parameters shown in Table 5.1 were estimated, as the soil moisture 

simulation was found to be most sensitive to changes of those parameters. It 

has also been shown that the most suitable methodology for multi-parameter 

retrieval is a sequential approach, starting with the three most sensitive 

parameters for all soil types, followed by the remaining three soil 

parameters.  

 

5.3.2 Parameter Retrieval with Surface Observations Only 

This study tests the hypothesis that root zone soil hydraulic parameters can 

be retrieved from surface soil moisture observations alone. A flow chart of 

the methodology is presented in Figure 5.3. The surface soil moisture 

simulated by JULES was compared with that observed using in-situ sensors, 

and the six soil hydraulic parameters listed in Table 5.1 retrieved for the 

complete soil profile using PSO, such that the objective function between 

the simulated and observed time-series was a minimum. The retrieved 

parameters were then compared with experimental observations, and the 

predicted root zone soil moisture compared with the observed root zone soil 

moisture. The initial soil moisture prediction model states were again 
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obtained through a 2-year pre-run initialized at the point of saturation for 

each iteration. The objective function of PSO compares the simulated 

surface soil moisture from JULES with the soil moisture observations 

corresponding to the layers, and converging on the soil hydraulic parameters 

that minimize the RMSE between the two time-series. Given that the 

thickness of the observed surface layer is 0.05 m, the weighted average has 

been used for the first two layers in the simulation.  

The corresponding RMSE between the observed and simulated soil 

moisture, using the retrieved parameters, was calculated along with the 

Nash-Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970). The 

Nash-Sutcliffe coefficient E can range from -∞ to 1, with a perfect match 

between the modelled simulation and observation resulting in a value of 

E=1. When E=0, the model predications are no more accurate than simply 

using the mean of the observed data, whilst values of E<0 can be interpreted 

as the observed mean being a better predictor than the model.  

 

Figure 5.3: Schematic of the parameter retrieval process using surface soil 

moisture observations. 
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5.4 Results and Discussion 

The ability of JULES to match the observed soil moisture when using the 

entire profile of soil moisture observations as a constraint was first 

determined. This provided the benchmark for subsequent retrievals when 

only surface soil moisture observations were used. Tables 5.2 and 5.3 

provide a comparison of the published, retrieved and experimentally 

determined soil hydraulic parameters for sites Y2 and Y5 respectively. Of 

the three sites used in this study, results from only these two sites are 

presented as both Y2 and Y7 provided similar results and had similar soil 

properties 

.  
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Table 5.2: Soil hydraulic parameters for horizon A (HA), horizon B1 (HB1) and horizon B2 (HB2) from; (i) experimental observation, (ii) Rawls 

et al., (iii) Cosby et al., (iv) Benchmarking optimization using surface and root zone soil moisture, and (v) optimized for the profile using 

surface soil moisture only. Site Y2 

Parameter  

Observed  Rawls et al. parameters  Cosby et al. parameters  Optimized – Benchmark Optimized – Surface Only 

HA HB1/ HB2 HA HB1/ HB2 HA HB1/ HB2 HA HB1 HB2 HA HB1 HB2 

b 4.780 4.780 5.300 5.300 5.680 7.680 7.711 5.098 2.486 5.036 6.023 6.743 

Ks 0.0017 0.0017 0.0072 0.0072 0.0040 0.0024 0.0029 0.0089 0.0040 0.0055 0.0054 0.0054 

ψa 0.100 0.100 0.786 0.786 0.300 0.387 0.315 0.500 0.499 0.301 0.375 0.384 

θs 0.410 0.400 0.485 0.485 0.446 0.458 0.395 0.437 0.390 0.421 0.350 0.443 

θc 0.370 0.233 0.369 0.369 0.291 0.346 0.348 0.347 0.270 0.350 0.349 0.171 

θw 0.050 0.180 0.179 0.179 0.149 0.210 0.240 0.237 0.145 0.095 0.186 0.170 

 

 

 

 

 



 

 

C
h
ap

te
r 

5
: 

O
n
e-

D
im

en
si

o
n

al
 F

ie
ld

 A
p
p

li
ca

ti
o

n
 

5-13 

 

Table 5.3: Same as for Table 2, but for Site Y5 

Parameter  

Observed  Rawls et al. parameters  Cosby et al. parameters  Optimized – Benchmark Optimized – Surface Only 

HA HB1/ HB2 HA HB1/ HB2 HA HB1/ HB2 HA HB1 HB2 HA HB1 HB2 

b 5.730 4.740 4.900 5.390 4.740 6.890 4.146 8.999 7.063 5.040 6.770 6.782 

Ks 0.0018 0.00002 0.0725 0.0070 0.0104 0.0040 0.0043 0.0020 0.0069 0.0076 0.0061 0.0074 

ψa 0.100 0.100 0.095 0.200 0.109 0.235 0.117 0.171 0.210 0.109 0.109 0.236 

θs 0.400 0.420 0.435 0.451 0.406 0.438 0.413 0.450 0.450 0.450 0.351 0.430 

θc 0.300 0.350 0.210 0.267 0.197 0.298 0.339 0.340 0.113 0.260 0.280 0.348 

θw 0.010 0.180 0.096 0.132 0.088 0.171 0.187 0.149 0.108 0.095 0.172 0.186 

 

 

 

 



 

 

C
h
ap

te
r 

5
: 

O
n
e-

D
im

en
si

o
n

al
 F

ie
ld

 A
p
p

li
ca

ti
o
n
 

5-14 

 

5.4.1 Benchmarking 

When compared with experimentally observed soil parameters (Table 5.2), 

all retrieved benchmarking soil hydraulic parameters for Y2 were higher 

than the observed value, with the exception being the horizon A volumetric 

water content at saturation and critical point. The RMSE between the 

observed and predicted soil moisture (Table 5.4) was 0.049 m
3
/m

3
 and 0.014 

m
3
/m

3
 for the surface and root zone when observed soil hydraulic 

parameters were used. These values were reduced to 0.038 m
3
/m

3
 and 

0.020m
3
/m

3
 when the retrieved soil hydraulic parameters were used. Thus 

the RMSE for the surface decreased by 0.011 m
3
/m

3 
and increased by 0.006 

m
3
/m

3
 for the root zone when optimized soil parameters were used to 

predict the soil moisture, as opposed to the experimentally observed soil 

parameters. The Nash-Sutcliffe efficiency for the surface was 0.684 when 

optimized soil hydraulic parameters were used, compared to 0.521 when 

observed soil hydraulic parameters were used. For the root zone, these 

values were 0.242 and -0.004 respectively. These values suggest that when 

experimentally observed soil hydraulic parameters were used, they provided 

a marginally more accurate root zone soil moisture prediction as compared 

to the optimized parameters. In either case the soil moisture prediction 

model provides little skill as compared to the mean value alone, suggesting 

that the model physics are in need of further improvement. This is 

highlighted further in Figure 5.4, showing that JULES was unable to 

successfully capture the wet period towards the middle of 2009. At the same 

time, it should also be noted that the root zone soil moisture showed very 

little variation from the mean value. The soil moisture prediction with the 

observed soil parameters better captured the dynamics of the root zone, 

whereas the prediction with optimized parameters was unable to dry down 

as much as the field soil moisture. This resulted in the observed soil 

parameters better capturing the dry end but showing limitations in capturing 

the wet up. The scatter plots corresponding to the timeseries of soil moisture 

are depicted on the right-hand side of Figure 5.4. It was seen that the soil 

moisture prediction using the optimized soil parameters was mostly wetter 
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than the observed soil moisture, while the soil moisture prediction from the 

observed soil parameters under-predicted the observed soil moisture. Since 

the root zone was less dynamic, a concentration of points was observed at 

approximately 0.2 m
3
/m

3
, while the rest of the points were distributed 

horizontally. This horizontal distribution of points when the optimized soil 

parameters were used in the predictions was mostly due to the discrepancies 

in soil moisture for the first half of 2008 and 2009. When observed soil 

parameters were used in the soil moisture prediction, the discrepancies were 

spread throughout the year 2009, resulting in a flat distribution of points.  

 

 

Figure 5.4: Observed and predicted soil moisture for Site Y2 (silt loam soil) 

using (i) optimized and (ii) experimentally observed soil hydraulic parameters. 

Retrieved soil hydraulic parameters are from using both surface and root 

zone soil moisture observations to provide a benchmarking scenario. The 

corresponding scatter plots for the surface and root zone are shown on the left 

of the timeseries. 

 

Similar to Y2, it is seen from Table 5.3 that the optimized parameters for Y5 

were higher than those observed experimentally, with the exception being 

the volumetric soil moisture content at saturation and wilting point for 

horizons B1 and B2. The RMSE of the predictions using observed soil 

hydraulic parameters matched the observed surface soil moisture to within 
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0.033 m
3
/m

3
 while the optimization yielded a comparable accuracy of 0.035 

m
3
/m

3
. However, the prediction with the optimized soil hydraulic 

parameters out-performed that with the observed soil hydraulic parameters 

for the root zone by a margin of 0.033 m
3
/m

3
. Similar results to Y2 were 

obtained for E, with the exception that a much larger value was obtained for 

the root zone in this instance, indicating that JULES was better able to 

capture the root zone dynamics of the sandy loam soil at this site as 

compared to the loam soil at Y2. However, Figure 5.5 shows that JULES 

still struggled to capture the dynamics towards the end of 2010, despite 

being a close approximation for the remainder of the time sequence. Unlike 

in Y2 (Figure 5.4), it was observed that the soil moisture predictions from 

both the observed and optimized soil parameters were quite similar, as 

shown from the scatter plot for the surface of Y5. As in the previous site, a 

flat distribution of points for the root zone was observed, mainly due to the 

large discrepancy between the observed and the predicted soil moisture. 
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Table 5.4: The root mean square error (RMSE) and Nash-Sutcliffe correlation coefficient (E), calculated between the observed and predicted 

surface and root zone soil using the observed, profile (benchmark) optimized, surface optimized, Cosby et al. and Rawls et al. soil parameters. 

 

Y2 Y5 

RMSE (m
3
/m

3
) E RMSE (m

3
/m

3
) E 

Surface Root zone Surface Root zone Surface Root zone Surface Root zone 

Observed parameters 0.049 0.014 0.521 0.242 0.033 0.054 0.797 -1.184 

Optimized parameters (Benchmark) 0.038 0.020 0.684 -0.004 0.035 0.021 0.776 0.482 

Optimized parameters(Surface only) 0.037 0.027 0.645 -1.514 0.036 0.042 0.763 -0.398 

Cosby et al.soil parameters 0.053 0.037 0.524 -3.935 0.035 0.044 0.751 -0.476 

Rawls et al.soil parameters 0.038 0.044 0.688 -5.447 0.036 0.071 0.732 -2.153 



 

 

C
h
ap

te
r 

5
: 

O
n
e-

D
im

en
si

o
n

al
 F

ie
ld

 A
p
p

li
ca

ti
o
n
 

5-18 

 

Figure 5.6 shows a comparison of the observed soil moisture for both the 

surface and root zone, against predictions using soil hydraulic parameters 

from (i) the most commonly used published values (Rawls et al., 1982), (ii) 

calculated values using the pedo-transfer functions of Cosby et al. (1984), 

(iii) optimized benchmarking values, and (iv) experimentally observed 

values. Figure 5.6 (a) corresponds to the soil moisture prediction curves 

using the parameter combinations shown in Table 5.2, while Figure 6 (b) is 

for the values in Table 3. From Figure 5.6, it is observed that the predictions 

using the experimental and optimized soil hydraulic parameters best 

captured the moisture dynamics of the surface and root zone for both sites, 

when compared to parameters derived from either the published or pedo-

transfer functions. From Table 5.4, it is observed that the highest RMSE for 

the root zone , 0.044 m
3
/m

3
 and 0.071 m

3
/m

3
 for Y2 and Y5 respectively, 

has been obtained for the soil moisture predictions using the Rawls et al. 

(1982) soil parameters. For the surface soil of Y2, the soil moisture 

predictions from Cosby et al. (1984) had the highest RMSE of 0.053 m
3
/m

3
. 

For both sites, under all four scenarios (except with the observed parameters 

for Y2 and the optimized parameters for Benchmarking of Y5), the root 

zone shows high negative values for E, thereby indicating that the root zone 

soil moisture predictions are worse than the observed mean values. The only 

time that the simulations using parameters from Rawls et al. (1982) and 

Cosby et al. (1984) showed a better match with observed soil moisture is for 

site Y2 during the wet period in 2009. 
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Figure 5.5: Same as Figure 5.4, but for Site Y5 (loamy sand soil). 

 

 

Figure 5.6: Observed and predicted soil moisture for (a) Site Y2 and (b) Site 

Y5 using (i) Rawls et al., (ii) Cosby et al., (iii) optimized (Benchmark) and (iv) 

experimentally observed soil hydraulic parameters. 
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5.4.2 Parameter Retrieval 

This section addresses the main objective of this study, testing the feasibility 

of retrieving soil hydraulic parameters of a duplex soil column using soil 

moisture observations only. When compared with the experimentally 

observed and benchmark soil hydraulic parameters, it is observed that the 

optimized soil hydraulic parameters always lie between the two, sometimes 

closer to one or the other. For example, the surface suction at air entry and 

volumetric water content at the critical point for Y2 are close to the 

benchmarked values, while the same parameters at Y5 showed a closer 

match with the experimentally observed soil hydraulic parameters. As 

expected, Table 5.4 shows that the smallest RMSE for the surface soil 

moisture prediction at Y2 was obtained when optimized with the near-

surface soil moisture alone, while the RMSE for the root zone soil moisture 

was much larger when compared to all the other retrieval scenarios. The 

root zone RMSE is twice as that when predictions are made using observed 

parameters and therefore, E is -1.514, indicating that the observed mean is a 

better predictor than the model. For site Y5, the root zone soil moisture 

predictions corresponding to the observed and optimized parameters using 

surface only observations did not yield positive values for E (only the 

benchmarking scenario had a positive E). Of the two, the surface only 

retrieval worked best with an RMSE of 0.042 m
3
/m

3
 and E = -0.398, as 

opposed to 0.054 m
3
/m

3 
and -1.184. However, the RMSE for the root zone 

between the observed soil moisture and prediction using surface moisture 

only retrieved parameters was twice that obtained through benchmarking.  

It can be seen from Figure 5.7 (a) that the predicted soil moisture using 

observed soil parameters is most able to capture the dynamics of the root 

zone of Y2. Figure 5.7 (b), corresponding to Y5, shows that neither 

predictions are able to match the root zone soil moisture dynamics. From the 

same table (Table 5.4), it is observed that the root zone RMSE 

corresponding to Cosby et al. (1984) and Rawls et al. (1982) for Y2 (0.037 

m
3
/m

3
 and 0.044 m

3
/m

3
) are significantly larger than the RMSE obtained 

when only surface observations are utilized to retrieve soil parameters for 
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the complete soil profile (0.027 m
3
/m

3
). Site Y5 performs in a similar 

manner. The E corresponding to the root zone when using either Cosby et 

al. (1984) or Rawls et al. (1982) is a large negative number when compared 

with either experimental or optimized parameters in the soil moisture 

prediction (e.g. -3.935 and -5.447 as opposed to 0.242 and -0.004/-1.154 for 

Y2). Therefore, when optimized parameters from the surface-only retrieval 

were used, the soil moisture RMSEs for the surface and root zone were 

almost equivalent to the ‘best’ results, which were obtained from 

benchmarking. This degradation is almost zero for the surface (0.001 

m
3
/m

3
), less than 0.02 m

3
/m

3
 for the root zone, and a significant 

improvement over using pedo-transfer functions (approximately 0.02 m
3
/m

3 

for both the surface and root zone) or published values (approximately 0.03 

m
3
/m

3
 for the root zone). It is also observed that the soil moisture 

predictions from optimized parameters using surface-only observations 

performed no worse than if experimental values were used. This is in vivid 

contrast to using either pedo-transfer functions or published values, which 

resulted in degraded model performances.  

Figure 5.8 shows the soil water characteristic curves (SWCC) obtained 

through the laboratory experiments together with the hydraulic conductivity 

curves. These are compared with those derived from the parameter 

combinations shown in Tables 2 and 3, for site Y2 and Y5 respectively. 

While all curves are within the standard deviation of the parameters given in 

Clapp and Hornbeger (1978), the SWCC for the optimized parameters 

corresponding to Y2 sits closer to the SWCC of Cosby et al. (1984) 

parameters than to the observations. 
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Figure 5.7: Observed and predicted soil moisture for (a) Site Y2 and (b) Site 

Y5 from (i) experimentally observed and (ii) optimized soil hydraulic 

parameters, using surface soil moisture observations alone. 

 

However, curves of the optimized parameters match closely with curves 

corresponding to the observed parameters for Y5. It is also observed that the 

published values and pedo-transfer functions encompass the optimized and 

observed parameters, illustrating the large amount of uncertainty in using 

these approaches.  
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Figure 5.8: The suction and hydraulic conductivity for (a) Site Y2 and  

(b) Site Y5, plotted against the volumetric water content of the soil. 

 

5.5 Chapter Summary 

Using soil moisture observations for long-term monitoring sites, this chapter 

has determined the feasibility and assessed the accuracy of obtaining soil 

hydraulic parameters for a complete soil profile of a heterogeneous nature in 

a semi-arid environment under naturally occurring conditions, using near-

surface soil moisture observations only. It was found that the root zone soil 

moisture could be predicted with the Joint UK Land Environment Simulator 
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model to within an accuracy of 0.04 m
3
/m

3
, when the soil hydraulic 

parameters were retrieved with soil moisture observations. This is an 

improvement of ~0.025 m
3
/m

3
 on predictions that used published values or 

pedo-transfer functions. With the methodology tested, and proven, it will be 

applied to an area of 40 km × 40 km, the approximate spatial resolution of a 

SMOS pixel. This work is discussed in the next chapter in detail. 
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Chapter 6  

Spatially Distributed Application 

The previous two chapters have developed a methodology to obtain soil 

hydraulic parameters from near-surface soil moisture observations, using a 

synthetic twin-experiment and a one dimensional field scale study as a 

proof-of-concept. The ‘retrieved’ soil hydraulic parameters were then 

validated against field and laboratory measurements, and the soil moisture 

predictions from these parameters validated with soil moisture observations 

for the root zone. Consequently, this chapter tests the method for a  

40 km × 40 km area, being approximately the size of a SMOS pixel, using a 

1 km resolution downscaled SMOS product called DisPATCh.  

 

6.1 Background 

On a global scale, soil hydraulic parameters are obtained from look-up 

tables that are linked to a coarse resolution soil texture map, like the Food 

and Agricultural Organization (FAO) of the United Nations Soil Map of the 

World (Latham, 1981a). Thus, the soil hydraulic parameters used are 

‘typical’ values for a given soil texture. While these values come with a 

mean and standard deviation, the variation within a single soil texture group 

is larger than that between the different texture groups. On a regional scale, 

the soil texture map may be at a finer resolution than that at global scale, but 

the same look-up tables typically apply. Due to the uncertainty of the soil 

hydraulic parameter data, there is a high probability that the soil moisture 

prediction models will make erroneous soil moisture predictions. Thus, 

there is an urgent need for global soil hydraulic parameter data sets at a high 

spatial resolution and at a higher accuracy than what is currently available.  
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Satellite remote sensing is able to supply time series information of near-

surface soil moisture data with a 2-3 day repeat cycle globally. However, 

given that soil moisture information is now available from several different 

satellites, it is possible to obtain moisture time series observations as often 

as daily, by combining these different products. Hence, there is the potential 

to derive more accurate soil hydraulic parameter datasets over large areas 

from these observations. But most work to date has focused on synthetic 

simulations at local scale (Ines and Mohanty, 2008b, Montzka et al., 2011), 

or observations on engineered soils (Burke et al., 1997b, Burke et al., 1997a, 

Burke et al., 1998, Camillo et al., 1986, Ines and Mohanty, 2008b); for a 

more detailed review of these studies refer to Chapters 2 and 4. There are 

only a few studies that have focused on estimating soil hydraulic properties 

from soils under transient flow or naturally occurring boundary conditions 

(Dane and Hruska, 1983, Ritter et al., 2003); a more detailed review of these 

studies can be found in Chapters 2 and 5.  

In Chapter 4, a methodology was developed for estimating the soil hydraulic 

properties of a heterogeneous soil column within a synthetic twin-

experiment framework. According to this methodology, the soil hydraulic 

parameters were derived by calibrating a soil moisture prediction model to 

surface soil moisture observations, such as those which are available from 

satellite observations. This methodology was then applied to field 

conditions in Chapter 5 and the retrieved soil hydraulic parameters validated 

with field and laboratory experiments.  

The study presented in this chapter advances that work by applying the 

methodology to a 40 km × 40 km test area with heterogeneous soil columns 

under of 1 km to 5 km resolution under natural conditions. The retrieved 

soil hydraulic parameters include; (a) Clapp and Hornberger exponent, (b) 

hydraulic conductivity at saturation, (c) soil matric suction at air entry, (d) 

volumetric fraction of soil moisture at saturation, (e) volumetric fraction of 

soil moisture at the critical point, equivalent to a soil suction of 3.364 m 

and, (f) volumetric fraction of soil moisture at wilting point, assumed to be 

for a soil suction of 152.9 m. As before, this study uses the Joint UK Land 
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Environment Simulator (JULES) as the soil moisture prediction model (Best 

et al., 2011, Clark and Harris, 2009, Clark et al., 2011), together with the 

Particle Swarm Optimization (PSO) method (Kennedy and Eberhart, 1995). 

A detailed discussion of JULES and PSO is found in Chapter 3.  

 

6.2 Site and Data Description  

The work presented in this study focuses on a 40 km × 40 km area, 

encompassing a full SMOS pixel, positioned in such a way that five sites of 

the OzNet Soil Moisture Monitoring Network http://www.oznet.org.au 

(Smith et al., 2012) are collocated within it. Those sites that are: Y2 

(34.6548 S, 146.1103 E), Y3 (34.6208 S, 146.4239 E), Y5 (34.7284 S, 

146.2932 E), Y7 (34.8518 S, 146.1153 E) and Y8 (34.8470 S, 146.4140 E), 

as shown in Figure 6.1, located near Yanco, New South Wales, Australia. 

The soil of the Yanco region is duplex, with horizon A being approximately 

0.30 m deep. The soil moisture has been measured continuously at depths of 

0-0.05 m, 0-0.30 m, 0.30-0.60 m and 0.60-0.90 m as the average over 30 

minute intervals. The precipitation was measured by a tipping bucket rain 

gauge, with the cumulative rainfall recorded every 6 minutes (Smith et al., 

2012). Additionally, experimental data on the soil hydraulic properties of 

sites Y2, Y5 and Y7, derived from field and laboratory measurements, have 

also been utilized. These data have already been discussed in detail in 

Chapter 5. 

In addition to long-term in-situ soil moisture observations, this study utilizes 

a 1 km × 1 km resolution disaggregation of the SMOS soil moisture 

product, as opposed to a single value over its 40 km × 40 km footprint. The 

downscaled soil moisture data is that of Merlin et al. (2011a), which uses 

MODerate resolution Imaging Spectroradiometer (MODIS) data, soil 

dependent parameters, and wind speed data to disaggregate the SMOS 

observations. Their data set uses the Disaggregation based on Physical And 

Theoretical scale Change (DisPATCh) method, which employs high-

resolution soil temperature data together with a semi-empirical soil 

http://www.oznet.org.au/
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evaporative efficiency model and a first-order Taylor series expansion 

around the field-mean soil moisture (Merlin et al., 2012). Chapter 2 has 

already provided a discussion on the various techniques of downscaling 

satellite data, with a focus on DisPATCh in particular, so further description 

is not repeated here.  

During July 2010 and September 2011, three intensive soil moisture 

sampling campaigns were conducted over some selected areas of the 

Murrumbidgee Catchment (SMAPEx-1, SMAPEx-2 and SMAPEx-3). Each 

of these campaigns mapped surface soil moisture at 250 m spacing across 

focus areas of approximately 3 km × 3km in size. The measurements from 

these areas, known as YA7 and YB5 (shown in Figure 6.1), were used in 

this study to compare with and assess the DisPATCh data. Area YA7 and 

YB5 (shown in Figure 6.1), were also used in this study, where YA7 is 

irrigated cropping while YB5 consists of native grass. Further details on 

these campaign data is available from www.smapex.monash.edu.au 

(Panciera et al., 2013). While other sites were also included in these 

campaigns, these two were selected for their coverage by DisPATCh and 

because they were geographically diverse, being located to the north and 

south of the study area.  

To obtain spatially distributed forcing data for the selected area, two data 

sources were utilized. They were the Australian Community Climate and 

Earth-System Simulator (ACCESS BoM, 2010) dataset and the Australian 

Water Availability Project (AWAP Jones et al., 2007) data at 12 km and  

5 km spatial resolutions respectively. The ACCESS data consisted of long 

and short wave radiation, precipitation, air temperature, dew-point 

temperature, and horizontal and vertical components of wind and surface 

pressure at hourly intervals, while precipitation data from AWAP was 

provided on a daily scale. The hourly ACCESS precipitation was scaled to 

match the daily AWAP precipitation according to the methods described in 

Berg et al. (2003). By using weighted averages, all forcing data were 

brought to the AWAP grid with a spatial resolution of 5 km × 5 km.  

http://www.smapex.monash.edu.au/
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Figure 6.1: The Yanco sites of the OzNet Soil Moisture Monitoring Network, 

the two areas (YA7 and YB5) of intensive soil moisture sampling, and an 

example of the disaggregated dataset for a SMOS footprint (DoY 55 – 

February 24, 2010). Also shown is the 1 km grid of DisPATCh and the 5 km 

grid to which it is later aggregated.  The extent of this grid indicates the 

coverage of the model simulations used for estimating the soil parameters. 
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Figure 6.1 shows an example of the disaggregated SMOS data at a  

1 km × 1 km scale, for the study area near Yanco in the Murrumbidgee 

Catchment. These data were available for 2010 and 2011, for both the 

ascending and descending overpasses. However, only the ascending (6am) 

overpass data are used in this study as it is widely accepted that morning 

overpass data better conform to the assumptions of the soil moisture 

retrieval algorithms. This is because the soil temperature profile is closer to 

equilibrium during this time, meaning that the assumption of vegetation and 

near-surface soil temperatures being the same is appropriate. The 

DisPATCh dataset used in this work was created in August 2012, using the 

SMOS level 3 product (Merlin, 2012). 

The DisPATCh data were averaged to 5 km × 5 km resolution before use in 

the spatial application of soil hydraulic parameter retrieval using model 

simulations with the 5 km × 5 km resolution forcing data. Thus, there were a 

total of 64 such 25 km
2
 grid cells covering the 40 km × 40 km area 

corresponding to a single SMOS pixel.  

 

6.3 Methodology 

The objective of this study was to retrieve the soil hydraulic properties of 

the demonstration area at a 5 km × 5 km spatial resolution. To achieve this 

objective, the study was approached in three steps. First, the DisPATCh data 

was evaluated with field observations at 1km and 5km resolution. Second, 

soil hydraulic parameters were retrieved for Y2, Y5 and Y7 using the 1km 

DisPATCh data, with the results compared to those from Chapter 5 where 

direct ground measurements were used. In this step, the derived soil 

hydraulic parameters and predicted root zone soil moisture were validated 

against the field and laboratory measured soil parameters and the observed 

root zone soil moisture, respectively. Finally, the methodology was applied 

to the 40 km × 40 km area to obtain a spatial map of soil hydraulic 

properties at 5 km × 5 km resolution, and evaluated against available spatial 

soil texture maps and associated soil hydraulic parameter estimates. The  
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5 km × 5 km resolution surface soil moisture data has been used in the 

spatial retrieval due to computational constraints in applying the 

methodology at the 1 km × 1 km spatial scale, and the availability of 

meteorologic forcing data at 5 km × 5 km spatial resolution. Consequently, 

the DisPATCh data evaluation was conducted at two different spatial scales. 

Though literature identifies the soils of Yanco as duplex, this study has 

allowed the soil profile to consist of three distinct soil horizons with 

potentially different soil properties; horizon A, horizon B1 and horizon B2, 

as in Chapter 5. This is because three distinct soil layers were observed in 

the field, with differences in the particle size distribution and soil hydraulic 

properties accordingly.  

 

6.3.1 Assessing the DisPATCh Data  

As a first step, the disaggregated 1 km × 1 km resolution soil moisture 

dataset was evaluated with field observations. For this evaluation, the 

intensive near-surface soil moisture measurements corresponding to the 

sites YA7 and YB5 were used. Since the sampling was done every 250 m, 

with three replicates for each point, the average and standard deviations of 

all such points falling within the 1 km × 1 km area was calculated. The 

DisPATCh data corresponding to this area were then extracted for the day 

that the field observations were made. This procedure was applied to both 

sites, and for all days that the disaggregated data were available. The 

averaged soil moisture value over the entire area of YA7 and YB5 for each 

day of observations, and the corresponding standard deviations, were also 

calculated, so as to make an assessment of the product at 5 km × 5 km.  

Additionally, in-situ soil moisture data from Y2, Y5 and Y7, three 

permanent stations of the OzNet monitoring network, were also used for 

evaluation. Of the many stations in the network, extensive field and 

laboratory experiments have been conducted on Y2, Y5 and Y7, as these 

three stations are well distributed within the one SMOS pixel. Also, the 
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methodology proposed in Chapter 4 was tested on these three sites in 

Chapter 5. Consequently, the 1 km × 1 km DisPATCh data corresponding to 

the location of the monitoring sites were extracted and compared with the 

soil moisture observations made at 6am. The purpose of this assessment was 

to investigate the differences between the two data sources and to identify 

any persistent biases. However, it is recognized that point-to-spatial 

comparisons are difficult due to significant spatial variations over short 

spatial scales (Cosh et al., 2004). Consequently, differences between the 

point measurements of in-situ data are expected when comparing against the 

DisPATCh data, but the temporal evolution should be similar.  

 

6.3.2 One-Dimensional Retrieval Using DisPATCh Data 

The three sites (Y2, Y5 and Y7) for which field and laboratory measured 

soil hydraulic parameters are available were chosen to investigate the 

applicability of utilizing the disaggregated soil moisture data, to test the 

hypothesis that root zone soil hydraulic parameters can be retrieved from 

surface soil moisture observations alone. The methodology was tested using 

the three different scenarios summarized in Table 6.1; scenario A - using 

only the summer data with the objective function penalty described in 

Chapter 4, scenario B - using the complete year of data with the penalty, and 

scenario C - using the complete year of data without the penalty. The results 

were contrasted against a fourth scenario; scenario D - using publishd values 

from Rawls et al. (1982). 

It was identified from the synthetic study in Chapter 4 that the use of a year-

long period is the most suitable approach, but Merlin et al. (2012) have 

shown that the correlation between DisPATCh and in-situ soil moisture 

observations is highest (0.7) during the summer period. Thus, this study 

investigated the trade-off between using only the summer soil moisture 

observations as opposed to the year-long record.  
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In scenarios A-C, the JULES simulated surface soil moisture for 6am was 

compared with the disaggregated data, and the six soil hydraulic parameters 

retrieved for the complete soil profile using PSO, such that the objective 

function between the simulated and observed time-series was a minimum. 

The methodology recommended in Chapter 4 for multi-parameter retrieval 

has been followed, being a sequential approach that starts with the three 

most sensitive parameters for all soil types, followed by the remaining three 

soil parameters. The retrieved parameters were then compared with 

experimental observations, and the predicted root zone soil moisture 

compared with the observed root zone soil moisture.  

 

Table 6.1: The different scenarios tested in the one-dimensional retrieval using 

DisPATCh data. 

 

6.3.3 Spatial Retrieval Using DisPATCh Data 

The 1 km × 1 km DisPATCh data were averaged onto a 5 km × 5 km grid 

that was aligned with the 5 km × 5 km grid established for the JULES soil 

moisture prediction model. Apart from the computational and forcing data 

reasons already discussed, the 5 km × 5 km resolution DisPATCh data has 

been used as the downscaling errors are expected to be less at the coarser 

spatial resolution. Consequently, in this step the 6am surface soil moisture 

predictions were compared with the averaged DisPATCh data, and the same 

six parameters retrieved for the complete soil profile using PSO.  

Scenario Description 

A 

Using only the summer data with penalty, where the 

parameters to be retrieved were given a best-guess value with 

a variation of three times the standard deviation of that 

parameter (as explained in Chapter 4) 

B Using the complete year of data with the penalty 

C Using the complete year of data without the penalty 

D Using published values from Rawls et al. (1982) 
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Given that there were no field or laboratory observed soil hydraulic 

parameter data for the complete area, the spatial distribution of each 

parameter was compared with the soil texture distribution map and the 

corresponding soil property estimates of the region. It was also compared 

with an independent soil texture distribution map based on particle size 

distribution analysis data collected across the study area. Moreover, the 

spatial variation in predicted surface and root zone soil moisture estimates 

were also assessed. 

 

6.4 Results and Discussion 

The disaggregated data was first evaluated with field measurements of soil 

moisture. This is because errors in the downscaled soil moisture data will 

propagate into the derived soil properties, and thus a good understanding of 

the soil moisture accuracy is required. The feasibility of using DisPATCh 

data with the proposed methodology was then tested for single soil columns, 

before being applied to the larger demonstration area. 

 

6.4.1 Assessing the DisPATCh Data  

The surface soil moisture measurements from SMAPEx, averaged over 

areas of 1 km × 1 km, are compared with DisPATCh in Figure 6.2. The 

same data averaged over the entire 3 km × 3 km areas of YA7 and YB5 are 

also plotted against the averaged 5 km × 5 km DisPATCh data on the same 

plot. The whiskers show the standard deviation of the observed soil 

moisture at each point. For the 1 km × 1 km, the root mean square errors 

(RMSEs) between DisPATCh and measured soil moisture were calculated 

as 0.09 m
3
/m

3
 and 0.12 m

3
/m

3
 for YA7 and YB5 respectively. For both the 

YA7 and YB5 areas, it can be observed that the majority of the points lie 

above the 1:1 line, implying that there is a dry bias in DisPATCh. This dry 

bias was calculated as 0.05 m
3
/m

3
 for YA7 and 0.02 m

3
/m

3
 for YB5, with an 

unbiased RMSE of 0.07 m
3
/m

3
 and 0.11 m

3
/m

3
, respectively.  
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The SMAPex observations were also averaged over the entire area, 

including four days of observations for YA7 and three for YB5. It was 

found that the overall field observations were wetter than DisPATCh, with a 

dry bias for YA7 of 0.05 m
3
/m

3
 and 0.02 m

3
/m

3
 for YB5. Although there 

were only a few points, the RMSE without bias removal was 0.06 m
3
/m

3
 for 

both YA7 and YB5. So while the there was no improvement in the bias, 

there was a considerable improvement indicated in the RMSE. 

While some field measurements of soil moisture were as high as  

0.35 m
3
/m

3
, these were due to irrigation of crops within the YA7 area. 

However, the YB5 area is mainly pasture for grazing use, with small ponds 

providing water for the animals in the paddocks. Importantly, these high 

values in field measurements are not borne out by SMOS, or the downscaled 

data by DisPATCh, which show much drier overall conditions. This is likely 

because SMOS has a coarse resolution, and assumes that the area of its 

footprint is relatively homogeneous in terms of both the soil and vegetation 

type. While the disaggregated data tries to account for heterogeneity, there 

are clearly limitations when compared with point measurements in areas that 

span the range of extremes.  

DisPATCh data were extracted for the three long-term monitoring sites Y2, 

Y5 and Y7. Figure 6.3 (a) shows the comparison between the point 

observations and corresponding DisPATCh pixel at 1 km × 1 km spatial 

resolution, while Figure 6.3 (b) compares the point observations with 

DisPATCh data averaged over an area of 5 km × 5 km. However, there are 

several factors to be considered when comparing point data with large 

footprints. For example, assumptions about the homogeneous distribution of 

soil, vegetation, roughness and so on in the satellite products are propagated 

to the disaggregated product, and there are difficulties of comparing point 

observations against a spatial average, as already discussed. Moreover, 

Disseldorp et al. (2013) showed that the representativeness of stations plays 

a vital role in making these sorts of comparison, using data from the Yanco 

study area. They conclude that certain sites, for example YA7d, is the 
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representative of the YA7 area, and are therefore better represent the larger 

area.  

Figure 6.2: Top to bottom, the scatter plots between the SMAPex campaign 

data and the disaggregated product for YA7 and YB5 respectively, averaged 

at 1 km
2
 and 25 km

2
. The whiskers represent the standard deviation of the 

measured value. The data are between July 5, 2010 and September 2011, with 

the disaggregated data corresponding to the ascending overpass of SMOS. 
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The comparison with long-term monitoring data in Figure 6.3 shows that 

during the winter season, when in-situ observations are quite wet, most of 

the DisPATCh data shows a dry bias. This is particularly clear for Y2 and 

Y5. Without removing this dry bias, the RMSEs for Y2 were calculated as 

0.12 m
3
/m

3
 at 1 km spatial resolution and 0.10 m

3
/m

3
 at 5 km spatial 

resolution.  

The RMSE remained at 0.10 m
3
/m

3
 for Y5 and 0.11 m

3
/m

3
 for Y7, when 

averaging the 1 km resolution data to 5 km resolution. The dry bias for Y2 

was calculated as 0.05 m
3
/m

3
 for both scales, with an unbiased RMSE of 

0.10 m
3
/m

3
 and 0.09 m

3
/m

3
 respectively. For Y5, the dry bias was  

0.04 m
3
/m

3
 and 0.03 m

3
/m

3
 for the 1 km and 5 km resolutions respectively. 

However, the unbiased RMSE remained unchanged at 0.09 m
3
/m

3
 for both 

scenarios. Unlike Y2 and Y5, DisPATCh was wetter than the field 

measurements for Y7, with a wet bias of 0.06 m
3
/m

3
 at 1 km and 0.04 m

3
/m

3
 

at 5 km resolution. The RMSE calculated for Y2 during the summer was 

0.10 m
3
/m3 and 0.09 m

3
/m

3
, and 0.15 m

3
/m

3
 and 0.11 m

3
/m

3
 for Y7 at 1 km 

and at 5 km, respectively. It remained at 0.09 m
3
/m

3
 for Y5, for both spatial 

resolutions. During winter, where data were available, the RMSE was  

0.16 m
3
/m

3
 for Y5 and 0.08 m

3
/m

3
 for Y7 at the 1 km resolution. It can be 

observed that the RMSE during winter is higher than that during summer. 

For example, while there is a dry winter-time bias, shown in Figure 6.4, the 

correct soil moisture dynamics are maintained during the dry summer 

period. This difference is as much as 0.15 m
3
/m

3
 during some instances. 

Moreover, dry-down events are better captured by DisPATCh as opposed to 

wet-up events.  

The errors are typically reduced at the coarser 5 km resolution. Thus, the 

methodology that was applied and tested in Chapter 5 to retrieve soil 

hydraulic parameters is tested with DisPATCh data at both 1km and 5km 

spatial resolutions. 
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Figure 6.3: Observed soil moisture vs. DisPATCh soil moisture for the long-

term monitoring sites. (a) DisPATCh extracted at 1km spatial resolution and 

(b) DisPATCh averaged to 5km spatial resolution. 

 

6.4.2 One-Dimensional Retrieval Using DisPATCh Data 

Though the disaggregated dataset from DisPATCh at 1 km × 1 km appeared 

to be biased relative to the selected stations, there was better agreement 

against areal comparisons. The dry winter-time bias can again be observed 

from Figure 6.4, whilst maintaining the correct soil moisture dynamics 

during the dry summer period. This difference is as much as 0.15 m
3
/m

3
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during some instances. Moreover, dry-down events are better captured by 

DisPATCh as opposed to wet-up events. Thus, this section investigates the 

potential of using the 1 km resolution DisPATCh dataset for the retrieval of 

soil hydraulic parameters from surface soil moisture observations. 

Table 6.2 contains the RMSEs calculated between the observed and 

predicted soil moisture when using the soil hydraulic parameters as 

retrieved according to scenarios A, B, C, and D (refer to Table 6.1). While 

Chapter 4 showed that the best results were achieved when using a year-

long period, Scenarios A was included as the DisPATCh downscaling 

algorithm was shown to have more accurate soil moisture data during the 

water-limited summer period. Scenario C was included in this work for 

completion, to test the applicability of the methodology if best-guess values 

were unavailable. However, it is seen from Table 6.2 that of the three sites, 

scenario A only out-performed scenario D once, being for Y5. When 

comparing scenario C to scenario D, it is seen that the soil moisture 

predictions of C only outperformed those of D for the near-surface of site 

Y7 and root zone of Y5. Thus, retrieving soil hydraulic parameters with 

scenarios A and C showed negligible improvement in soil moisture 

predictions over those from published soil hydraulic parameters. In contrast, 

the results indicate that Y5 and Y7 both out-performed the soil moisture 

predictions made by published values for both the near-surface and the root 

zone when the full year of DisPATCh data B are used. Scenarios A and B 

outperformed scenario C for both the surface and root zone of Y2, but had 

no improvement over Scenario D. 

Since sites Y2 and Y7 have similar soil properties, and provide similar 

results, only Y2 and Y5 results will be discussed from here on.  

Figure 6.4 (a) shows that soil moisture predictions from parameters 

retrieved with scenarios A and B were best able to capture the dynamics of 

the observed soil moisture, especially for the root zone of Y2. Figure 6.4 (b) 

shows that the near-surface soil moisture dynamics of Y5 are best captured 

when retrievals used scenario A and B. However, there is a significant 

difference in the soil moisture predictions for the root zone, despite the 
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dynamics being well captured. Even though it was shown that DisPATCh 

had a better match with field observations under the water limited summer 

conditions, the above results indicate that best parameter retrieval is still 

achieved when using a complete year of DisPACh data. 

 

Table 6.2: The root mean square error (RMSE) between the field measured 

soil moisture and the predicted, for the surface and root zone when using 

different sources of parameters, as described below. 

Scenario 

RMSE (m
3
/m

3
) 

Surface Root Zone 

Y2 Y5 Y7 Y2 Y5 Y7 

A 0.05 0.03 0.09 0.08 0.08 0.05 

B 0.05 0.03 0.06 0.08 0.08 0.02 

C 0.06 0.05 0.06 0.14 0.06 0.08 

D 0.03 0.03 0.08 0.05 0.10 0.03 

 

Figure 6.5 shows the soil water characteristic curves (SWCC) obtained from 

the different retrieval scenarios, together with the hydraulic conductivity 

curves. All these SWCC curves are also compared with the published 

curves, where it is seen that the retrieved parameters fall within the ranges 

given in Clapp and Hornberger (1978) for the soil texture of this area. For 

site Y2, the parameters retrieved using scenarios A and B (apart from the 

soil hydraulic conductivity a saturation) tend to fall close to each other, as 

opposed to Y5 where they are farther apart.  

Apart from the soil hydraulic conductivity at saturation, the other 

parameters retrieved with scenarios A and B are very close to the 

experimental data for Y2, almost to the point of overlapping. The retrievals 

with scenario C are almost at the lower end of the range given in Clapp and 

Hornberger (1978), but are still close to the curve derived from field 
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Figure 6.4: The field measured and predicted soil moisture from scenarios A – 

D, according to Table 6.1, plotted with DisPATCh data. (a) Y2 and (b) Y7: 

with the top panel corresponding to the surface and the bottom panel to the 

root zone of each plot. 

 

measurements. For site Y5, parameters retrieved from scenario B have a 

closer match with the observed values than from any other tested scenario. 

Unlike Y2, retrievals for Y5 from scenario A does not fall close to field 

observation values of parameters. These results further strengthen the fact 

that the complete year of data yields the best parameter estimates, even 

though the winter time soil moisture from DisPATCh did not agree well 

with field observations. 



 

 

C
h
ap

te
r 

6
: 

S
p
at

ia
ll

y
 D

is
tr

ib
u

te
d

 A
p

p
li

ca
ti

o
n
 

6-18 

 

In Chapter 5, the soil hydraulic parameters for the same sites were retrieved 

using in-situ near-surface soil moisture observations. Soil hydraulic 

parameters retrieved with scenarios A and B compare well to the retrieved 

parameter values from in-situ soil moisture observations, as seen from soil 

water characteristic curves in Chapter 5. 

 

 

 

Figure 6.5: The soil water characteristic curves (SWCC) for each site, showing 

the parameters retrieved under different methodologies. 
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6.4.3 Spatial Retrieval from DisPATCh Data 

While the 1km DisPATCh data showed large RMSEs when compared with 

in-situ measurements, they were comparatively smaller at 5km resolution. 

Moreover, when comparing the retrieved soil hydraulic parameters from 

1km resolution DisPATCh data for the monitoring sites with experimental 

values they were found to be in good agreement, and the derived soil 

moisture predictions for the root zone performed better than the published 

values, and were in agreement with field observations. Therefore, the 

methodology that was tested in Chapter 4 and validated both here and in 

Chapter 5 at the point scale, is now applied to the 40 km × 40 km 

demonstration area at a 5 km × 5 km spatial resolution. Thus, the 

demonstration area comprises an 8 × 8 grid of 64 soil columns, each having 

a surface area of 25km
2
.  

Figure 6.6 (a) shows the published soil type distribution map for the 

demonstration area of the Yanco region in the Murrumbidgee catchment. 

The dominant soil type is loam, with a small pocket of sand on the western 

side. Figure 6.6 (b) is the soil map derived from independent particle size 

distribution analysis of some sites in the focus area. Table 6.3 contains the 

representative hydraulic parameter values that relate to these soil types, as 

given in Clapp and Hornberger (1978), together with the standard deviation 

for each parameter. Of the six parameters that are the focus of this thesis, 

only four (volumetric water content at saturation, Clapp and Hornberger 

exponent, soil matric suction at air entry and soil hydraulic conductivity at 

saturation) parameters have typical values. Therefore, only these parameters 

are discussed in detail here.  

According to the standard deviation for the Clapp and Hornberger exponent, 

this parameter value can be expected to range from 3.52 to 7.26 for a loamy 

soil. The retrieved spatial distribution of this parameter as shown in Figure 

6.7, is within this range. For the pocket of sandy soil, the expected range of 

the same parameter value is 2.27 to 5.83, and again the retrieved soil 

property values fall within this range. However, over the entire 
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demonstration area, there are five pixels (for example: fourth pixel in the 

second row) that have values between 8 and 10 for this parameter, which is 

above the typical value for the soil type. While it difficult to identify any 

particular spatial patterns in the retrieved soil hydraulic properties that might 

subsequently be compared against soil texture data, the fact that retrieved 

soil parameter values are within the range of expected values gives some 

confidence in the results.  

The volumetric water at saturation has been assessed in a similar fashion, 

with an expected range from 0.373 m
3
/m

3
 to 0.529 m

3
/m

3
 for a loamy soil, 

0.342 m
3
/m

3
 to 0.478 m

3
/m

3
 for a loamy sand, and 0.426 m

3
/m

3
 to 0.544 

m
3
/m

3
 for a silt loam. One pixel falling within the range of loamy sand 

(0.350 m
3
/m

3
 – 0.370 m

3
/m

3
) is located above Y5, as seen from Figure 6.7, 

while the rest of the pixels show values over 0.370 m
3
/m

3
. In contrast to the 

spatial variation of parameters derived here, there would be only a single 

value for the hydraulic conductivity at saturation for each soil type for the 

area according to the normal approach soil texture mapping approach.  

Soils are highly heterogeneous and can vary significantly even within a few 

meters. Moreover, soil properties have a wide variation even for a soil of the 

same type. Therefore, it is expected and realistic to have the variation in soil 

hydraulic parameters as shown in Figure 6.7 for the A horizon. Similarly, 

Figures 6.8 and 6.9 show the spatial distribution of soil hydraulic parameters 

for the horizons B1 and B2, which also appear to be reasonable. Certain 

parameters, especially the volumetric water content at saturation, critical 

point and wilting point, vary quite significantly between layers of the same 

soil column. The suction at air entry shows more variation within pixels for 

the surface, but for horizons B1 and B2, the variation within the layer are 

more homogeneous. For the Clapp and Hornberger exponent, the change 

between layers is gradual within a single soil column.  
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Figure 6.6: (a) The 5km grid with the Yanco stations overlaid on the soil type 

distribution over the demonstration area. Source: Bureau of Rural Sciences, 

Australia. (b) Soil texture map from particle size distribution analysis data 

over the study area. 

 

(a) 

(b) 
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Table 6.3: Representative hydraulic parameter values for the typical soil types 

in Figure 6.6. The standard deviation for each parameter is given in the 

parenthesis. (Source: Clapp and Hornberger, 1978) 

Soil 

Texture 

Clapp and 

Hornberger 

exponent 

(-) 

Suction at 

air entry 

(cm) 

Volumetric 

water content 

at saturation 

(m
3
/m

3
) 

Hydraulic 

conductivity at 

saturation 

(mm/s) 

Loam 5.39 (1.87) 
-47.8 

(51.2) 
0.451 (0.078) 0.0069 

Sand 4.05 (1.78) 
-12.1 

(14.3) 
0.395 (0.056) 0.1761 

Loamy 

Sand 
4.38 (1.47) -9.0 (12.4) 0.410 (0.068) 0.1564 

Silt 

Loam 
5.30 (1.96) 

-78.6 
(51.2) 

0.485 (0.059) 0.0072 
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Figure 6.7: The spatial distribution of retrieved parameters for the surface 

(HA – Horizon A), over each 5 km × 5 km pixel over the demonstration area. 
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Figure 6.8: Same as Figure 6.7, but for Horizon B1 (HB1) 
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Figure 6.9: Same as Figure 6.7, but for Horizon B2 (HB2) 
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Figure 6.10: Example of the predicted soil moisture using the retrieved 

parameters (top), published parameters from Rawls et al. (middle), and 

observed near-surface soil moisture from DisPATCh (bottom), for the  

near-surface (left) and root zone (right), for August 14, 2010. 
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Figure 6.10 is an example of the near-surface and root zone soil moisture of 

the demonstration area for a snapshot in time from the 2010 year time series 

simulation. It was observed that the difference between the predicted and 

DisPATCh soil moisture is quite low, as expected. Moreover, it is also 

observed that the soil moisture patterns are less varied when predictions are 

made using published values, given that most of the focus area consists of 

one soil type only. When predictions are made with the retrieved values, 

there is a larger variation in the soil moisture. 

 

6.5 Chapter Summary 

This chapter has demonstrated the proposed methodology for retrieving soil 

hydraulic parameters from near-surface measurements, using SMOS 

observations disaggregated to 1 km resolution for a demonstration area the 

size of a SMOS footprint. It assessed the disaggregated soil moisture 

product against in-situ soil moisture observations, and then tested the 

retrieval methodology using the disaggregated soil moisture data for 

individual soil columns located over the same long-term monitoring sites as 

used in Chapter 5. Finally, the retrieval methodology was applied to the 

entire demonstration area. Spatial maps of each soil hydraulic parameters of 

interest were retrieved at 5 km spatial resolution, and the maps compared 

with soil hydraulic property estimates based on the soil texture maps 

currently available for the area. The results showed that a spatial variability 

of soil hydraulic properties exists, but fall within the limits set out by the 

published values. Despite this apparent variability, the published soil texture 

maps show only a single soil type for this area, meaning that a single set of 

soil hydraulic parameters would normally be used in soil moisture 

prediction models for this region. Thus, the methodology has been 

successfully applied to the demonstration area.  
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Chapter 7  

Conclusions and Future Work  

This thesis has developed and tested a methodology to retrieve soil 

hydraulic parameters for a heterogeneous column of soil, utilizing a 

combination of near-surface soil moisture observations and a soil prediction 

model in conjunction with an optimization algorithm. Using the optimizer, 

the soil hydraulic parameters of the soil prediction model are retrieved such 

that the difference between the model predicted and the observed near-

surface soil moisture is minimum. In this methodology, the results were 

validated using synthetic experiments, in-situ and laboratory measurements 

for single soil columns, and applied to a larger demonstration area. This 

chapter presents the key findings from each study and discusses the overall 

conclusions that are derived, finishing with a discussion of future work.  

 

7.1 Conclusions 

The work presented in this thesis utilizes the Joint UK Land Environment 

Simulator (JULES Best et al., 2011, Clark et al., 2011) as the soil moisture 

prediction model. This model was chosen as it has the soil hydraulic 

properties as direct inputs, has flexibility with the choice of the soil layer 

thickness and the number of layers to be modelled, and allows the user to 

specify soil parameters and initial conditions pertaining to each layer. The 

population based particle swarm optimization (PSO) algorithm was used for 

this study as it is less susceptible to getting trapped in the local minimum 

when compared with most other optimizers (Kennedy and Eberhart, 1995). 

It was identified that the JULES model was not numerically stable when 

using the default configuration, and thus seven layers with a time-step less 

than or equal to 30 minutes was required for the semi-arid region that was 
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the focus of this study, being the Murrumbidgee Catchment in Australia. 

Moreover, it was identified that a 2-year pre-run initialized at saturation was 

the preferred approach to deriving initial conditions for the time of interest.  

The following sections discuss the conclusions drawn from; (i) the proof of 

concept study of the methodology using a one-dimensional synthetic 

experiment, (ii) the field application of the proposed methodology, and (iii) 

the spatially distributed application over a demonstration area.  

 

7.1.1 One-Dimensional Twin-Experiment  

The soil parameters most sensitive to soil moisture simulation using the 

JULES soil moisture prediction model were identified as: (a) the volumetric 

fraction of soil moisture at the ‘critical point’, (b) the volumetric soil 

moisture at saturation, (c) the Clapp and Hornberger exponent, (d) the 

hydraulic conductivity at saturation, (e) the soil matric suction at air entry, 

and (f) the volumetric fraction of soil moisture at wilting point, in this order 

of priority. Through a synthetic twin-experiment, a methodology was 

developed and tested for retrieving these parameters based on surface soil 

moisture “observations”, as would be available from remote sensing, for a 

range of different meteorological conditions; (i) short dry-down, (ii) short 

dry, (iii) short wet-up, (iv) short wet, and (v) 12-month periods, with the 

objective of identifying the most suitable meteorological condition for the 

retrieval. The overall observation was that soil hydraulic parameters were 

best retrieved when using a12-month period of observation, which includes 

several wetting and drying cycles. It was also observed that parameters are 

best retrieved when there is a higher percentage of clay in the soil column as 

opposed to a more sandy soil. 

Different parameter combinations were tested for the simultaneous retrieval 

of two or more parameters, including all 6 parameters at the same time, and 

the 2 or 3 most sensitive parameters consecutively. It was found that 

parameters could not be retrieved with perfection using any of the three 
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methods, despite the perfect input and simulation conditions of this twin 

study. However, some parameters were retrieved more closely than others, 

including the volumetric fraction of water at saturation, and the Clapp and 

Hornberger exponent. Irrespective, the RMSEs between the true soil 

moisture and that predicted when using the retrieved parameters were less 

than 0.02 m
3
/m

3
 for both surface and root zone, further demonstrating the 

small impact of the volumetric fraction of water at wilting point and the soil 

matric suction at air entry to the accuracy of soil moisture prediction using 

JULES. The best approach for retrieving all six soil hydraulic parameters for 

a duplex sand/clay soil type was found to be sequential retrieval of the three 

most sensitive parameters followed by the remaining three less sensitive 

parameters.  

 

7.1.2 One-Dimensional Field Approach  

This field based study showed that the JULES soil moisture prediction 

model was able to evolve the soil moisture to within 0.04 m
3
/m

3
 of observed 

surface and root zone soil moisture, providing the soil hydraulic properties 

were experimentally observed or calibrated using observed soil moisture 

distribution across the profile. Any errors in observed soil moisture and/or 

precipitation forcing were unaccounted, with the error assumed to be solely 

from the model predictive capability (ie. its underlying physics). However, 

it was noted that model predictions were not able to perfectly match the 

field observed soil moisture, even when using experimentally observed or 

calibrated (using the entire soil moisture profile) soil hydraulic parameters, 

and that the Nash Sutcliffe coefficient was typically low for the root zone 

soil moisture prediction.  

When using the surface soil moisture observations alone to retrieve the soil 

hydraulic parameters, the RMSE of surface soil moisture prediction was 

equivalent to that for the benchmarking case, which used the entire soil 

profile as a constraint, while the predicted root zone soil moisture was 

slightly degraded. However, it was observed that the retrieved soil hydraulic 
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parameters from using near-surface soil moisture alone out-performed the 

soil moisture predictions (by approximately 0.02 m
3
/m

3
 for the surface and 

0.03 m
3
/m

3
 for the root zone) using the published values of Rawls et al. 

(1982) and the pedo-transfer functions of Cosby et al. (1984). It is therefore 

concluded that the use of near-surface soil moisture observations to retrieve 

soil hydraulic parameters for a duplex soil column should lead to an 

improvement in soil moisture prediction skill when compared to the current 

approach of using published values.  

 

7.1.3 Spatially Distributed Application 

This spatially distributed application of the above methodology used the 

downscaled SMOS product called DisPATCh. First it was shown that the 

1km near-surface soil moisture data from DisPATCh had an acceptable 

accuracy when compared with field observations of soil moisture, having 

RMSEs varying between 0.09 m
3
/m

3
 to 0.12 m

3
/m

3
. However, DisPATCh 

was at times ~ 15% drier when compared with field measurements.  

Three different approaches were investigated to retrieve soil hydraulic 

parameters from DisPATCh, including (i) using only the summer data with 

an extra penalty (the parameters to be retrieved were given a best-guess 

value with a variation of three times the standard deviation of that 

parameter) added to the objective function, (ii) using the complete year of 

data with the additional penalty, and (iii) using the complete year of data 

without the additional penalty. While the synthetic study showed that use of 

a long period was the preferred approach, a summer period was used here as 

the DisPATCh downscaling algorithm provided more accurate soil moisture 

data during the water-limited summer period. Despite this, the predicted 

root zone soil moisture was closest to field observations when the full  

12-month period was used in the optimization.  

One way of validating the retrieved soil hydraulic properties is by 

comparing the model predicted root zone soil moisture with observed 
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values. Therefore, the 12-month period was used in the optimization process 

when the methodology was applied spatially, rather than focusing on 

specific short-term datasets. The retrieved soil hydraulic parameters were 

validated against the field and laboratory measured values for Y2, Y5 and 

Y7, and found to be comparable. Thus, it was concluded that DisPATCh 

data could be used to obtain optimal soil hydraulic parameters for the 

surface and root zone. 

The retrieval of optimal soil hydraulic parameters for the demonstration area 

was for three horizons, given that three distinct horizons were observed 

during field experiments of Y2, Y5 and Y7. Therefore, spatial maps of 

optimal soil hydraulic parameters for the surface and horizons B1 and B2 

were obtained. Given that the soil texture map is available only for the 

surface, the spatial validation of the surface soil hydraulic parameters was 

done. However, since the existing texture map is of a coarse resolution, 98% 

of the demonstration area consisted of loam sand while the remaining 2% 

was a small pocket of sand at one corner. The spatial map of the soil 

hydraulic properties for the near-surface was mostly within the values given 

for a typical loam and sand soil. There were some instances where the 

retrieved values differed significantly, for example the retrieved hydraulic 

conductivity at saturation over the pocket of sandy soil was significantly 

lower (0.004 – 0.006 mm/s as opposed to the typical value of 0.1761 mm/s) 

than the typical value. However, soils are an extremely heterogeneous 

resource and show contrasting characteristics within a few meters. Thus, 

this section of the thesis has shown the feasibility of utilizing near-surface 

soil moisture observations from satellite remote sensing to retrieve optimal 

soil hydraulic parameters of a complete column of soil, at a scale larger than 

a point. 

 

7.2 Future work 

The applicability of using near-surface soil moisture observations from 

satellites has been demonstrated in this thesis, through one-dimensional and 
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spatially distributed studies utilizing field measurements and disaggregated 

SMOS observations. The following section discusses some future work, to 

augment the work presented in this thesis. 

 

7.2.1 Testing the Parameter Robustness  

In this thesis, the retrieved parameters were obtained using two years of 

downscaled SMOS data, 2010 and 2011. Unless there is a major change in 

land use practice, for example a grazing land turned into irrigated cropping, 

the actual soil hydraulic parameters of an area should not change 

significantly over time, even though the "effective" parameters can change. 

Therefore, no matter what period of the year or which year of observations 

is used in the retrieval process, the derived hydraulic parameters should be 

consistent. Such work will demonstrate the necessary level of robustness to 

the proposed methodology, so that it could be applied at the global scale. 

Thus, it is proposed to use different periods of near-surface soil moisture 

observations to obtain soil hydraulic parameters for the same area. However, 

these datasets must encompass a minimum period of full 12-months for the 

retrieval process to work effectively.  

 

7.2.2 Effect of Finer Resolution Observations 

The work in this thesis used a downscaled soil moisture product at 1km by 

1km, as opposed to using the SMOS footprint at 40km by 40km scale. It 

would be interesting to observe what effects data at the satellite observation 

scale would have on the parameter retrieval, as opposed to using a 

disaggregated dataset. This is because there is a tradeoff between the noise 

in soil moisture data downscaled to finer resolutions and the spatial 

heterogeneity that is lost when upscaling to coarser resolutions. The 

methodology can be more easily applied to the entire globe at the SMOS 

scale. However, hydrological processes take place at much finer resolutions 

than SMOS pixels. Therefore, it is recommended to first compare the results 
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when utilizing near-surface soil moisture observations at different spatial 

resolutions. 

 

7.2.3 Application of Different Modelling Algorithms 

This thesis used the Joint UK Land Environment Simulator as the soil 

moisture prediction model to retrieve soil hydraulic parameters. Different 

models have their own model physics, although the same fundamental 

equations are used. Thus, it is recommended that the methodology be 

applied to different soil moisture prediction models, keeping all forcing and 

other parameter data identical, to test the consistency of the methodology 

when soil moisture predication models with different model physics are 

being used to retrieve soil hydraulic parameters from near-surface soil 

moisture observations. 

The particle swarm optimization algorithm has been used in the work 

presented throughout this thesis. There are many optimization algorithms 

utilized in the scientific community, focusing on different techniques of 

identifying the global minimum. Thus, the impact the choice of the 

optimization algorithm has on the overall work should be studied in detail, 

with the view to increase the speed and yet, retain the skill. 

 

7.2.4 Global Application of the Methodology 

The proposed methodology was tested on a point scale and applied to a an 

area the approximate footprint size of SMOS, 40km by 40km, thereby 

demonstrating its’ feasibility. However, satellites are capable of supplying 

near-surface soil moisture observations on a global scale. Therefore the 

established methodology should be taken to the next level of application, 

that is, global scale. As shown from the work presented in this thesis, there 

are no other constraints, apart from a computational perspective, that is 

stopping the methodology from being applied on the global scale. 
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7.3 Summary of Conclusions and Recommendations 

This thesis has demonstrated that;  

(i) the volumetric water content at critical point (ie. suction of 3.364 m), the 

volumetric water content at saturation, and the Clapp and Hornberger 

exponent parameters were the most important for soil moisture prediction 

using the JULES model,  

(ii) a minimum full 12-month period of near-surface soil moisture 

observation should be used for parameter retrieval,  

(iii) sequentially retrieving the most sensitive parameters first, followed by 

the remaining less sensitive parameters, is the most efficient and effective 

method for multiple parameter retrieval,  

(iv) there was an improvement of ~0.025 m
3
/m

3
 on soil moisture predictions 

over that using published values or pedo-transfer functions, and  

(v) the proposed soil hydraulic parameter retrieval methodology is 

applicable to large area application.  

 

The main recommendations for further work are;  

(i) testing the robustness of the retrieved parameters by checking that 

repeatable values are achieved over different periods,  

(ii) studying the effects and the impacts of using directly measured low 

resolution data, as opposed to using a downscaled product,  

(iii) comparing the proposed methodology using a number of alternate soil 

moisture prediction models and optimization algorithms, where all forcing, 

initial conditions and so on are identical, and  

(iv) applying the methodology globally. 
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