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Abstract 

Farming in small-scale, resource-poor farming systems is majorly dependent 

on the traditional knowledge of farmers, with non-judicial, time-consuming and labor-

intensive agricultural practices commonly implemented, leading to low productivity 

and degradation of resources. This creates a strong need across small-scale farming 

systems to provide leap-frog techniques and technologies that would rapidly, 

inexpensively, and preferably asymptomatically detect crop stress and provide 

management decision in near-real-time to enhance productivity, input use efficiency, 

profitability and sustainability of small-scale farming systems. Precision agricultural 

(PA) practices offer great opportunities for improvement in the present context of 

sustainability and climate variability. Moreover, it offers the opportunity for a farmer 

to apply the right input, in the right amount, at the right time, at the right location, and 

in the right manner. However, to collect timely high-resolution data, unmanned aerial 

vehicle (UAV) based sensing and image interpretation are required. These high-

resolution images can give detailed information about the soil and crop condition at 

plant-level, which can be used for farm management purposes. 

The precise remote estimation of crop biophysical parameters like crop leaf 

area index (LAI), especially during the reproductive stage, is a challenge due to the 

canopy closure effect. Additionally, leaf water content (LWC) estimation for early 

growth stages, and distinguishing water and nitrogen stress in plants using remotely 

sensed optical data are unanswered research questions. This thesis has documented 

conceptual and data-driven models to solve these research gaps. Moreover, all the 

biophysical and simulation-based results have been incorporated into one model to 

predict crop stress better. To solve these research questions, a field experiment has 

been carried out on a maize crop in a semi-arid region of central India for two Rabi 

seasons being 2018-19 and 2019-20. The drone-based and ground-truth data of crop 

biophysical and biochemical contents were collected during different crop growth 

stages.  
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Two alternate methods have been developed and compared for estimating the 

LAI of a maize crop. Both methods used drone-based RGB images to estimate the 

canopy height and the green-canopy cover together with a ‘vertical leaf area 

distribution factor’ (VLADF) from allometric relations (using crop height from RBG 

images and days after sowing). The first method used an empirical approach to 

estimate the LAI from training a linear function of the above inputs to Licor canopy 

analyser values of LAI. The method was found to have validation results with an 𝑅2 of 

0.84 and RMSE of 0.36 for the 2018-19 Rabi season data, and 𝑅2 of 0.77 and RMSE of 

0.45 for the 2019-20 Rabi season data, when compared with Licor LAI values. While 

seemingly acceptable, the Licor canopy analyser gives a foliage area index and so the 

accuracy of this model was very low (𝑅2 of 0.56 and RMSE of 1.34) when evaluated 

with true LAI from manual measurements of the leaf area. Consequently, a refinement 

was introduced using only VLADF, green-canopy cover estimates from the RBG 

images, and a field measured top leaf angle. The output derived from this conceptual 

model had an 𝑅2 of ~0.6 and RMSE of 0.73 when compared with the true LAI values. 

Importantly, the LAI from this conceptual model was unaffected by canopy closure 

during the reproductive stage of the crop. The percentage of tasselling in each plot 

during the first week of tasselling was estimated using a 701 nm centred band image 

obtained from drone-based hyperspectral images. The growth rate of the number of 

tassels from its first day of onset indicates the severity of crop stress, thus a good 

indicator to be captured remotely. The image processing methods used to detect and 

count the tassels, gave an accuracy of 96.4%.   

The APSIM crop simulation model was used to obtain reference crop LAI and 

crop height under optimal and actual farm management conditions. The optimal 

condition results were used as a reference for healthy crop parameters. The estimated 

temporal crop LAI and crop height were compared against the respective simulated 

references. These comparisons, along with the tasselling percentage information, 

were used in a model to get the health status of the crop. The temporal healthiness 

maps were created, and the healthiness factor correlation with the crop yield was 

obtained. The maximum 𝑅2 of 0.67, 0.61, and 0.45 was obtained during the dough 
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stage, tasselling stage, and early vegetative stage of the crop, respectively. The 

healthiness maps were able to indicate the stress area, but it cannot give the reason 

behind that stress.  

This research also developed a new model for estimating LWC based on newly 

identified, pure-pixel, water sensitive indices from high spatial resolution 

hyperspectral data. The spectroradiometer data were used to explore the wavelengths 

sensitive to vibrational overtone frequencies of O-H bonds of water molecules present 

in leaves. The identified wavelengths were used to create normalized indices. These 

indices' minimum and maximum values were used to create synthetic data for 

training a gradient boost machine (GBM) model. The model was used to make high 

spatial resolution maps of LWC using drone-based hyperspectral data. The early 

growth stage maps of LWC were able to distinguish between water-stressed and well-

irrigated plots with an 𝑅2 of 0.93 and RMSE of 1.6 % (g/g). The leaf nitrogen content 

(LNC) model was also developed by identifying new indices and understanding its 

sensitivity towards the EM spectra behaviour in the red-edge region. The LNC model 

gave a maximum 𝑅2 of 0.64 for water-stressed areas but a maximum 𝑅2 of 0.26 was 

obtained for higher LWC areas. The LNC and LWC model results were overlapped on 

the healthiness map created using biophysical properties to understand the crop 

water and nitrogen stress in the crop.  
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Chapter 1 

Introduction 
 

 

Drone-based sensors provide data at very high spatial resolution which can be 
used to create plant level management decisions. This evolving technology is 

predicted to be an integral part of future farming.  

  “We have neglected the truth that a good farmer is a craftsman of the highest 
order, a kind of artist.” - Wendell Berry.   
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1. Introduction 

In this research work, conceptual and data-driven models have been 

developed to estimate crop biophysical (Leaf area index, canopy height, tasseling 

percentage) and ultimately biochemical (leaf water and nitrogen content) 

properties of the crop, using only UAV based high-resolution RGB and 

hyperspectral (VIS and NIR) reflectance data. The study was focused on the 

analysis of growth-stage based behaviour of crop biophysical and biochemical 

properties in conjunction with the input resources supplied on the farm. 

Collection and analysis of hand-held spectroradiometer and drone-mounted 

hyperspectral imager based leaf-level hyperspectral reflectance spectra along 

with CHNS analysis of destructive leaf samples make this research data novel. New 

indices for leaf-water and leaf-nitrogen content were developed and tested for 

pure pixel hyperspectral images. The developed models were implemented to 

obtain the spatial and temporal distribution of water and nitrogen stress in the 

farm. This research work suggested that the stress areas can be identified using 

estimated crop biophysical properties and further identified as water or nitrogen 

stress areas using biochemical estimation models.       

1.1 Background and problem statement 

Water and nitrogen are the two most important input parameters for any 

grain crop production (Olson et al., 1964; Terman et al., 1969; Spratt and  Gasser, 

1970), as these factors control plant growth (Welch, 1979; Sinclair et al., 1986; 

Gonzalez-Dugo et al., 2010). Optimised water and nitrogen use as farm input can 

minimise the yield gap (Welch, 1979; Sinclair et al., 1986; Mueller et al., 2012). 

Water also helps nutrients to travel to various parts of the plant. It has been 

observed that even when the soil's supply of nutrients to a plant is adequate, the 

plant can still show nutrition deficiency if there is water scarcity (Keller, 2005). 

Moreover, being an energetic macronutrient, nitrogen needs to be maintained 

above a certain level in plants (Blumenthal et al., 2008; Lemaire and Gastal, 2018; 

Gupta, 2020) because it is required to produce chlorophyll, proteins, nucleic acids, 
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and amino acids in plants (Muñoz-Huerta et al., 2013). Thus, nitrogen is essential 

for a crop to maintain healthy growth, and its critical value represents the 

minimum concentration in the plant for maximising growth. However, excess 

amount of nitrogen in the farm leads to water pollution (Broadbent and 

Rauschkolb, 1977) as the irrigated water gets wasted through runoff and leaching 

(Elrashidi et al., 2005; Knox et al., 2012). Thus, for optimal management of a farm, 

it is crucial to estimate the spatial distribution of crop water and nitrogen content 

in the context of the crop growth stage (Samoy et al., 2008).  

Various vegetation indices are available for estimating crop biophysical 

and biochemical properties, but they usually show a saturation effect, especially 

NDVI (Huete et al., 2002; Freitas et al., 2005; Wu et al., 2008). Moreover, most of 

the indices are derived from satellite data in which the percentage of mixed pixels 

remain very high. Accordingly, there is a need to explore new/modified vegetation 

indices, which may work better on drone-based data where most of the pixels are 

pure (as the spatial resolution is around 1 cm), and atmospheric effect on the data 

is least. There is also a need to improve the sensitivity of these indices' by 

incorporating prior information and combining various indices. Generally, the 

bands sensitive to leaf nitrogen is affected by water molecules around plant 

protein (nitrogen is present in the plants in the form of proteins). The three-

dimensional structure of plant proteins is supported by water molecules, also 

known as protein hydration (Franks , 1988; Chaplin, 2006), meaning that crop 

water and/or nitrogen stress cannot be distinguished easily. This opens an 

opportunity to identify the indices which are more sensitive to leaf-nitrogen than 

leaf-water content.  

Apart from indices, another method to extract crop biophysical and 

biochemical properties from reflectance spectra is through the inversion of 

canopy models like PROSAIL (Jacquemoud, 2009). PROSAIL is a powerful 

simulation model to understand the reflectance properties of vegetation with 

change in leaf-level and canopy-level properties. However, for accurate estimation 

of critical properties like leaf water content, the PROSAIL inversion model 
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requires transmittance data along with reflectance data (Jacquemoud et al., 1996; 

Baret and Fourty, 1997), otherwise it results in a poor estimation (Colombo et al., 

2008). Unfortunately, transmittance data cannot be acquired using 

airborne/satellite sensors. Moreover, the models do not allow the extraction of 

leaf nitrogen content. Researchers are therefore trying to use a combined N-

PROSPECT and SAILH model to obtain leaf nitrogen, but so far have not been able 

to achieve a coefficient of determination better than 0.48 (Li et al., 2018). The 

radiative transfer model also assumes that the leaf surface roughness parameter, 

the refractive index of leaf material, and the specific absorption coefficient of leaf 

absorbers remains the same for all leaf species. However, even for one species, 

these values change with change in the crop's growth stage. Moreover, the 

spectrum data that PROSAIL needs to simulate the canopy model for extracting 

leaf constituents is from 400-2500nm (Duan et al., 2014). The spectrum range 

selection is critical as the model assumes that the specific absorption coefficient 

of each leaf constituent is wavelength-dependent (Jacquemoud et al., 2008). This 

assumption allows the model to make changes in spectra at only those 

wavelengths at which the absorption coefficient of a particular leaf constituent 

changes. For example, a change in leaf water content will not affect the simulated 

leaf spectra in the range of 400-900 nm. However, due to the change in leaf water 

content, other leaf properties also change, making a significant change in leaf 

spectra even between the 400-900 nm wavelength region (Peñuelas et al., 1994). 

These changes can be used to generate proxy indices to estimate those leaf 

constituents in which absorption happens after the 1000 nm wavelength. 

Photochemical reflectance index (PRI) is a classic example of such index, used as 

a proxy for detecting water stress in the crop (Thenot et al., 2002). Despite these 

limitations, PROSAIL is one of the best vegetation spectra simulation models to 

date for understanding vegetation's reflectance and transmittance properties. 

However, due to its limitations and the type of available data, the use of the 

PROSAIL model is out of scope of this research.  

Other popular crop simulation models like DSSAT, APSIM, WOFOST, and 
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MLCan use local weather, environmental, soil, and crop properties to simulate 

crop photosynthesis and respiration, and connects them to plant growth. These 

models need to be calibrated for local conditions. Moreover, these models are 

point-based and do not provide spatial variability of crop properties in the farm. 

These crop simulation models don’t use hyperspectral information, and thus a 

critical analysis of these are outside the scope of this research. However, the 

APSIM model is used in this research to simulate reference crop biophysical 

properties (LAI and height) based on local weather conditions to compare the 

simulated values against measured/estimated values.  

Most of the existing Leaf water content (LWC) estimation models available 

in hyperspectral sensing are based on mixed-pixel (vegetation and visible 

background in the same pixel) data taken either from satellite or high-altitude 

airborne platforms. These platforms can map huge areas but suffer from coarser 

spatial resolution (mixed-pixel) data that cannot capture the changes happening 

in the weak water-sensitive bands (Kokaly and Clark, 1999), especially when the 

crop is at the early growth stage with little canopy coverage (Cheng et al., 2006), 

due to the higher overtones of the water’s O-H molecule stretching frequencies 

losing sensitivity for broadband and mixed pixel data (Thorpe et al., 2006; 

Thenkabail et al., 2002; Fan et al., 2009; Jones and Sirault, 2014). Moreover, optical 

observations from high altitude platforms are highly affected by atmospheric 

interference (aerosol, water vapour content, and various gases present in the 

atmosphere), which is incredibly challenging to correct due to limitations of 

‘atmospheric correction’ algorithms (Gao et al., 2009; Zheng and Zeng, 2004). 

Accordingly, the small changes in these bands are unable to provide useful 

information on critical vegetation parameters from these sensors (Hadjimitsis et 

al., 2004).  

Interestingly, Kim et al. (2010) used active hyperspectral sensing (whereby 

a consistent light source is used to illuminate the target to eliminate atmospheric 

effects) to identify the plant water stress on young apple trees and found 

narrowband 750 nm wavelength observations useful for LWC estimation. 
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Zygielbaum et al. (2009) used 400-750 nm spectroradiometer data and found that 

520 nm wavelength useful in the retrieval of relative water content from maize. In 

another study, Corti et al. (2017) used the partial least square algorithm to 

estimate water stress in spinach plants using line-scanner camera-based 400-

1000 nm hyperspectral data. However, Corti et al. (2017) could not point out 

specific bands related to water stress but gave ranges of wavelength based on the 

partial least square algorithm. Feilhauer et al. (2015) has used the PROSPECT 

model data along with leaf-level spectroradiometer data (400-2500 nm) of 

various crops to select spectral bands for LWC (gram/cm2) estimation. Using an 

ensemble approach, bands near 750 nm were identified from the 400-1000 nm 

range for LWC estimation. From the 1000-2500 nm range, 1412 nm, 1978 nm, 

2004 nm, and 2401 nm have been identified for LWC estimation. Casas et al. 

(2014) has used satellite, airborne, and field-based hyperspectral data based 

indices to estimate temporal variation in canopy water content. They identified 

that longer SWIR region-based indices gave an improved correlation with canopy 

water content. Ge et al. (2019) has used UAV based hyperspectral imagery to 

estimate soil moisture using machine learning techniques and identified 420, 440, 

460, 700, and 750 nm bands as relatively strong absorption bands. The usefulness 

and reasoning of some of these bands with respect to the vibrational absorption 

frequencies of water molecules are discussed in this thesis.     

In this research, the need for a crop-growth stage based decision support 

system was identified, driven not only by the basic science of the crop but also 

considering on-ground real-time easily collectable data, noting that crop 

biophysical and biochemical properties change as the crop makes the transition 

from one growth-stage to another. The model assimilates information from crop 

growth parameters like canopy height, LAI, simulated soil moisture, and other 

critical indices to spatially classify the crop in different nitrogen and water stress 

categories. The basic outline of the approach used in this research is shown in 

Figure 1.1. The assimilation of such data gives a better estimation of crop stress 

conditions, which can be further used to decide the spatial distribution of 
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irrigation and fertilization treatment that needs to be given on the farm (Note that 

suggesting irrigation and fertiliser amount is not part of the PhD thesis).   

Some of the long term benefits of crop water and nitrogen estimation include:  

 Reduction in groundwater pollution by minimising the nitrate-nitrogen losses 

from agricultural land (Meisinger and Randall, 1991; Viets, 1971). 

 Increase in crop yield due to judicious application of input resources (Moore 

and Tyndale-Biscoe, 1999; Osborne et al., 2002). 

 Reduction in soil pollution, especially soil heavy metal concentration by 

application of the optimal amount of fertilisers (Atafar et al., 2010; Rahman 

and Zhang, 2018; Savci, 2012). 

 Economic benefits to the stakeholders of the farm produce by saving input 

resources and achieving optimal yield (Bell et al., 2008; Bullock and Bullock, 

2000; Henry et al., 1995; Kingwell and Fuchsbichler, 2011). 

 Food safety through reduced risk of health issues to the consumers and 

farmers as a result of optimal use of chemicals in the farm leading to less 

percentage of harmful chemical contents in the food grain (Sharma and 

Singhvi, 2017; Weisenburger, 1993). 

 

Figure 1.1: Outline of the approach. 
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 Food security through optimal use of fertilisers helps in achieving optimal 

yield without damaging soil fertility in the long run (Arvin and Syers, 2013; 

Hossain and Singh, 2000; Jones et al., 2013). 

1.2 Objective, Assumptions, and Scope  

The main objective of this research was to develop models to detect crop 

stress and distinguish the water and nitrogen stress present in the crop, using crop 

biophysical and biochemical properties, estimated using drone-based 400-1000 

nm spectral range data. This required collection and investigation of ground-truth 

and remotely sensed data of a research farm for a complete crop cycle. The 

research gaps are explained in section 2.8. The sub-objectives include:  

 Develop and validate a model to estimate near-to-actual crop height, tasseling 

percentage and LAI. 

 Develop a model to estimate the leaf water content and nitrogen content of 

maize crop using 400-1000 nm hyperspectral data. 

 Fusion of crop biophysical and biochemical model results to distinguish 

between crop water and nitrogen stress. 

The hypothesis behind these questions are as follows:  

 Crop height, LAI, and properties like the number of tassels are sensitive to 

water and nitrogen present in the farm, and due to the stress, these values 

change significantly; 

 Narrowband high spatial (pure pixel) and temporal resolution hyperspectral 

data will have the least effect of canopy background, solar angle, and 

atmospheric effect resulting in better information (less noise due to pure 

pixel) about the crop properties than satellite data; 

 Change in reflectance values due to change in water and nitrogen content of a 

leaf will be driven by the wavelengths where the absorption coefficient of 

water and nitrogen are high and will be affected by the other changes 

happening in the leaf due to change in water and nitrogen content. 
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The methodology followed in this research is shown in Figure 1.2. Drone-

based RGB images were used for the estimation of crop height and Leaf Area Index. 

Drone-based hyperspectral data was used for leaf water and nitrogen content 

estimation, and one hyperspectral band was also used for tassel counting of the 

maize crop. The crop biophysical and biochemical properties and APSIM 

simulated results were then compared and analysed to early-stage and long-term 

stress area identification. 

These objectives have been achieved progressively throughout the PhD 

candidature and have resulted in the following peer-reviewed publications:  

1. Raj, R., Walker, J.P., Pingale, R., Banoth, B.N. and Jagarlapudi, A., 2021. Leaf 

nitrogen content estimation using top-of-canopy airborne hyperspectral data. 

International Journal of Applied Earth Observation and Geoinformation, 104, 

p.102584. https://doi.org/10.1016/j.jag.2021.102584 

2. Raj R., Walker J., Vinod V., Pingale R., Naik B., Jagarlapudi A., 2021. Leaf water 

content estimation using top-of-canopy airborne hyperspectral images. 

International Journal of Applied Earth Observation and Geoinformation. 

https://doi.org/10.1016/j.jag.2021.102393. 

3. Raj, R., Walker, J.P., Pingale, R., Nandan, R., Naik, B. and Jagarlapudi, A., 2021. 

Leaf area index estimation using top-of-canopy airborne RGB images. 

International Journal of Applied Earth Observation and Geoinformation, 96, 

p.102282. https://doi.org/10.1016/j.jag.2020.102282. 

4. Raj R., Kar S., Nandan R., Jagarlapudi A. (2020) Precision Agriculture and 

Unmanned Aerial Vehicles (UAVs). In: Avtar R., Watanabe T. (eds) Unmanned 

Aerial Vehicle: Applications in Agriculture and Environment. Springer, Cham. 

https://doi.org/10.1007/978-3-030-27157-2_2 

5. Raj R., Suradhaniwar S., Nandan R., Jagarlapudi A., Walker J. (2020) Drone-

Based Sensing for Leaf Area Index Estimation of Citrus Canopy. In: Jain K., 

Khoshelham K., Zhu X., Tiwari A. (eds) Proceedings of UASG 2019. UASG 2019. 

Lecture Notes in Civil Engineering, vol 51. Springer, Cham. 

https://doi.org/10.1007/978-3-030-37393-1_9 
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Figure 1.2: Flowchart of overall methodology followed in this thesis. 
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1.3 Organisation of thesis 

The research embodied in this thesis is divided into seven chapters. 

Chapter two gives a detailed literature review on the estimation of various 

biophysical and biochemical properties of the crop using remote sensing data, 

followed by a section on the identified research gaps.  

The third chapter comprises a detailed explanation of the experiment 

design, instruments and data collection methods. Various details of this chapter 

are also linked to the appendix section.     

The fourth chapter is dedicated to the biophysical properties estimation 

(Leaf area Index, canopy height, and tasseling percentage) of maize crop using 

drone-based images. These biophysical properties are good indicators of long 

term water and other stress present in the farm.  

The fifth chapter explains the crop stress estimation process using crop 

biophysical parameters derived in chapter four and APSIM crop simulation model. 

The APSIM simulated optimal condition results were taken and processed against 

the estimated crop biophysical parameters of the crop.  

The sixth chapter talks about the crop biochemical properties (leaf water 

and nitrogen content) estimation using drone-based hyperspectral images. LWC 

is a good indicator of instantaneous water stress, which may lead to long-term 

water stress if not handled using correct irrigation practices. The crop stress map 

generated in chapter five is further classified in water and nitrogen stress areas 

using the models developed in this chapter. 

The seventh chapter presents the conclusion and future work of this 

research. The limitations of this research and potential ways to address those 

limitations are also discussed in this chapter.  
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Chapter 2 

Literature review 

 

 
(a), (b), and (c) shows the symmetric, asymmetric, and bending stretch in water 

molecules. The red colour atom represents the oxygen (O) atom, and the grey 
colour atoms represent hydrogen (H) atoms. The arrows show the direction of 
motion of the atoms. (d), (e), and (f) show the three libration modes of water 

molecules with respect to x, y, and z axes. When a band frequency of 
electromagnetic spectrum matches with the vibrational frequency of these O-H 

bonds, then that particular wavelength energy gets absorbed by the water 
molecule (adapted from Chaplin, 2008 and redrawn by Rahul Raj). 
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2. Literature review 

The Industrial Revolution has pushed agriculture practices towards 

greater energy inputs through big machinery, chemicals and fertilisers. However, 

these practices may lead to low soil fertility, soil erosion, soil salinisation, 

compaction of sub-soils and soil-water pollution, which have negative societal and 

environmental implications (Liaghat and Balasundram, 2010). In order to 

optimise the use of input resources for sustainable farming, plant-level 

management decisions are needed. Implementation of scientific farm 

management requires information about the crop, soil, and its 

environment/climate properties. These crops, soil, and environment properties 

can be estimated/simulated/predicted using various empirical, conceptual, and 

mathematical methods, including the use of radiative transfer or process-based 

models. However, considering the focus of this PhD research on high-spatial-

resolution (plant-level) analysis, the literature review has been narrowed to 

corresponding methods for estimating crop biophysical and biochemical 

properties. It must be noted that process-based and radiative-transfer crop 

models are beneficial but are out of the scope for this study.   

  The high spatial resolution data provided by the drone-based sensors can 

help estimate important crop biophysical and biochemical variables, which can be 

used to make plant-level management decisions. This chapter review both of these 

critical crop variables. This chapter is divided into nine sections — sections 2.1 to 

2.3 talk about drone-based platforms and sensors/instruments for precision 

agriculture. Section 2.4 discusses the available vegetation indices. Section 2.5 

constitutes the methods for estimating crop biophysical properties; section 2.6 

discusses crop biochemical properties and their retrieval using remote sensing 

data; section 2.7 talks about the basis of radiative transfer models; section 2.8 

enlists the research gaps; section 2.9 presents a summary for this chapter.  

Note: Parts of this chapter have been published as: 

 Raj, R., Walker, J.P., Pingale, R., Banoth, B.N. and Jagarlapudi, A., 2021. Leaf 

nitrogen content estimation using top-of-canopy airborne hyperspectral data. 
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International Journal of Applied Earth Observation and Geoinformation, 104, 

p.102584. https://doi.org/10.1016/j.jag.2021.102584 

 Raj R., Walker J., Vinod V., Pingale R., Naik B., Jagarlapudi A., 2021. Leaf water 

content estimation using top-of-canopy airborne hyperspectral images. 

International Journal of Applied Earth Observation and Geoinformation. 

https://doi.org/10.1016/j.jag.2021.102393. 

 Raj, R., Walker, J.P., Pingale, R., Nandan, R., Naik, B. and Jagarlapudi, A., 2021. 

Leaf area index estimation using top-of-canopy airborne RGB images. 

International Journal of Applied Earth Observation and Geoinformation, 96, 

p.102282. https://doi.org/10.1016/j.jag.2020.102282. 

 Raj R., Kar S., Nandan R., Jagarlapudi A. (2020) Precision Agriculture and 

Unmanned Aerial Vehicles (UAVs). In: Avtar R., Watanabe T. (eds) Unmanned 

Aerial Vehicle: Applications in Agriculture and Environment. Springer, Cham. 

https://doi.org/10.1007/978-3-030-27157-2_2 

 Raj R., Suradhaniwar S., Nandan R., Jagarlapudi A., Walker J. (2020) Drone-

Based Sensing for Leaf Area Index Estimation of Citrus Canopy. In: Jain K., 

Khoshelham K., Zhu X., Tiwari A. (eds) Proceedings of UASG 2019. UASG 2019. 

Lecture Notes in Civil Engineering, vol 51. Springer, Cham. 

https://doi.org/10.1007/978-3-030-37393-1_9 

2.1 Precision agriculture 

Precision agriculture (PA) is an innovative and integrated farming 

approach that enables farmers to use evidence-based decision making at the farm 

level to ensure optimal use of resources to minimise such societal and 

environmental implications (Tokekar et al., 2013). PA can use traditional 

knowledge together with spatial information and management-intensive 

technologies. Scientific decision making helps in making the system sustainable, 

productive, and profitable. In 2019, the International Society of Precision 

Agriculture had defined precision agriculture as: "Precision Agriculture is a 
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management strategy that gathers, processes and analyses temporal, spatial and 

individual data and combines it with other information to support management 

decisions according to estimated variability for improved resource use efficiency, 

productivity, quality, profitability and sustainability of agricultural production." 

The technologies frequently used in PA include a Geographic Information System, 

Global Positioning System, remote sensing, computer modelling, variable rate 

technology and advanced information processing for timely crop management 

(Liaghat and Balasundram, 2010). The PA cycle has three components 

i. Data collection: Measurement, monitoring and mapping of within-field 

variability in soil and crop parameters and local weather conditions. 

ii. Data interpretation: Data interpretation using various crop models or 

image interpretation, data assimilation, or machine learning techniques to 

identify spatially variable parameters. 

iii. Application: Data processing of results enables farmers to use the right 

input, in the right amount, at the right time, at the right location, and in the 

right manner. 

Data collection and database generation is an integral part of PA, requiring 

a wise selection of sensors and their deployment in the farm to ensure accuracy 

and precision of on-farm decisions using a decision support system. Sensors can 

be on-ground or airborne to find information such as the crop's health, its growth 

stage, physical and chemical properties of the soil/plant, temporal meteorological 

data, etc. Remote sensing and geospatial techniques are an integral part of the data 

collection and analysis process and can detect in-field variation of crop/soil 

properties. High-resolution satellite imagery is beneficial for studying variations 

in crop and soil conditions. However, problems associated with the availability 

and cost of such imagery at an appropriate spatial and temporal resolution 

suggest that an alternative, such as small unmanned aerial systems (UAS)', is 

needed for operational PA (Zhang and Kovacs, 2012). 
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2.2 Satellite vs drone-based sensing 

Satellite-based remote sensing is one of the traditional methods to acquire 

remotely sensed data. Still, the freely available images can only provide data at a 

resolution of 30 m or lower spatial resolution, which is too coarse for many 

applications. However, some commercial satellites provide sub-meter resolution 

satellite imagery (spatial resolution < 1 m for panchromatic and >1 m for 

multispectral) for a given time and place at a given price, but are typically 

infrequent in time (Liaghat and Balasundram, 2010). While satellite images may 

offer a better option for huge areas, their coarse resolution and infrequent repeat 

significantly limit its application, particularly when considering the cloud's 

impact. Consequently, images taken by low altitude remote sensing platforms 

such as small unmanned aerial vehicles (UAVs) or small crewed aircraft provide 

an alternative. The operation cost is low for UAVs, and they can map areas with 

very high spatial resolution and at the desired temporal repeat (Zhang and Kovacs, 

2012). Moreover, UAVs can fly below the cloud, maximising data availability. 

However, other problems affect drone operation, including windy conditions in 

which the drone can't be flown, higher risk of a crash in case of operator error, 

sudden weather change or loss of power and low battery life, limiting spatial 

coverage. Conversely, commercial satellites generally take seven days to provide 

processed images. Moreover, it is challenging for a small or medium-scale farmer 

to get commercial satellite images as the cost is high and the minimum area that 

can be ordered is in the range of 25 km2 (Anon, 2018). Importantly, drones can be 

flown at any time as per the requirement with minimal operational cost. Another 

advantage of drone data is that canopy images can be taken at various view angles 

to analyse the canopy's architectural structure. The limitations associated with 

satellite data over drone-based high-resolution images are summarised in Table 

2.1. The type of drones which can be used for agricultural applications may 

depend on the size of the farm and type of cameras/sensors which need to be 

used. Battery capacity is also an important parameter which decides flight time of 

a drone. Table 2.2 shows the types of drones and their capability to carry various 
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sensors. 

Drones can be helpful in on-farm decision-making even before sowing 

starts. When the farm soil bed is being prepared for sowing, a UAV-mounted LiDAR 

sensor can be flown to check the farm's flatness. If it is found that the soil bed is 

not flat enough, then based on elevation difference, the farm can be uniformly 

flattened. A uniformly flat field is one of the critical requirements to stop 

unwanted water movement on the farm. After sowing, temporal monitoring of the 

farms can be done using a drone-mounted RGB camera. Images taken from these 

cameras can be used to monitor crop growth (biomass, LAI, height, etc.). The RGB 

images can detect weed location on the farm and can also identify pest-affected 

areas. In some crops like maize, where tasseling happens, these images can be 

used to count the number of tassels which helps in the early estimation of yield. 

During the crop vegetative stage, multispectral and hyperspectral cameras can 

also be used to estimate biophysical and biochemical properties (leaf nutrient, 

water content, etc.) of the crop. Once the location of water-stressed areas, weeds, 

pests, and nutrient distribution is identified, drones can be used to take corrective 

measures. They can spray pesticides, fertilisers, and water at the precise location 

on the farm. Figure 2.1 shows the UAV-based precision agriculture cycle. 

Despite the multiple benefits of the drone platform, some aspects need 

more research. For example, the optical images get impacted if solar radiation 

varies due to change in cloud cover during the drone flight. This effect is more 

important when solar radiance is taken as the reference (e.g. multi or 

hyperspectral data). Accordingly, this kind of data acquisition may need a 

recording of real-time solar radiation during data collection. Moreover, data 

acquisition at a different time of the day may change radiance values for the same 

geographical location. In such cases, BRDF correction of data has to be undertaken 

(Schläpfer  et al., 2020; Cristóbal et al., 2021), similar to its use in satellite data. 

The BRDF effect becomes critical for hyperspectral signatures, where sun angle, 

surface slope, and camera angle values are accounted for in deriving the collected 

hyperspectral signatures.   One big disadvantage of a drone platform is the low 
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flight time. Most commercial drones are not capable of having a flight time of more 

than 45 minutes. However, with evolving power technologies, few drones have 

shown multi-hour flight time capabilities (Cetinsoy, 2015). Gas-electric drones are 

a good example of high flight time drones, which allow the user to scan a large 

area in a single flight. 

With the increase in IoT technologies and improvement in sensor 

properties, drones are destined for routine agricultural application in the future. 

This will certainly raise issues of air traffic, which needs to be addressed at a policy 

level. Many countries, including India, have introduced air traffic guidelines for the 

operation of UAVs. These guidelines need to be followed for a sustainable UAV  

Table 2.1: Limitations of satellite data vs drone-based sensing (Raj et al., 2020). 

Sub-meter  resolution commercial 

satellite image 

Drone-based high-resolution image 

Cloud cover and atmospheric dust 

particles create a bottleneck on image 

acquisition 

Low flight height makes a limited effect 

of cloud cover 

Real-time image acquisition and 

processing are not possible and usually 

takes some days delay 

Images can be obtained and processed 

in a few hours, depending on the size of 

the farm 

Images captured at some fixed time of day 

depending on the frequency of revolution 

of the satellite. 

Images can be captured at the desired 

time of day 

Maximum available Panchromatic 

geometrical resolution is 30 cm, while 

Multispectral resolution would be 1.2 m 

Sub-cm spatial resolution can be 

achieved as per  requirement 

Minimum area map which can be ordered 

is 25 km2 or more. If only natural color 

map required, then 10  km2. 

The map can be generated for a small 

and medium area which would be 

much cheaper than satellite imaging 

Optical images are generally taken from 

zenith 

Images at a different angle can be 

taken, which will help in getting 

architectural information of canopies 
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 Table 2.2: Types of drones and their capability to carry a sensor (Raj et al., 2020). 

Type Weight in kg 

(including payload) 

Types of sensors which can 

be mounted on the drone 

Area coverage 

capacity of the drone 

Nano  Less than  0.25 This has not been used in 

agriculture till now as 

sensors are usually of more 

weight and cannot be lifted 

by nano drones 

NA 

Micro 0.25 < weight < 2  Small RGB, lighter 

multispectral camera, and 

small LiDAR sensor can be 

mounted on this drone  

Can cover up to 4-5 

acre of ground area 

depending on the 

height of flight. Flight 

height is generally 

kept lower than 100 

meters 

Small  2 < weight < 25 High-resolution RGB 

camera, multispectral 

camera, LiDAR sensor, a 

lightweight hyperspectral 

imager, microwave sensor, 

and small thermal imager 

can be mounted on the 

drone 

Can cover up to 10-

20 acre of ground 

area depending on 

the height of flight 

Medium 25 < weight < 150 Bigger high-resolution RGB 

camera, multispectral 

camera, LiDAR sensor, 

medium weight 

hyperspectral imager, 

microwave sensor, and the 

thermal camera can be 

mounted on the drone. It 

can also be used for 

spraying of pesticides 

Can cover up to 100 

acres of ground area 

depending on the 

height of flight. Flight 

height is generally 

higher than 50 

meters 

Large Greater than 150 Bigger and heavyweight 

cameras and sensors can be 

mounted on the drone. It 

can be used for spraying of 

pesticides  

Can cover more than 

100 acres of ground 

area. Flight height is 

generally higher than 

100 meters 
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ecosystem, but governments must be willing to make ongoing amendments to 

these laws as the technology evolves. Another major concern with existing UAV 

operations is the lack of system safety and robustness. There are cases where anti-

social elements hacked drones and used them for destructive purposes. Thus, 

research is also required to make UAV platforms robust and hack-proof. 

For a country like India, where the majority of farmers have small land-

holdings, the current cost of a drone-based system will make this technology 

unaffordable for most. However, if such technology can be implemented at the 

‘gram panchayat’ (village council) level, the operational cost can be divided using 

a pooling method, and the cost per farmer minimised. Moreover, the Indian gram 

panchayat system is a powerful constitutional body, and considering projects like 

the “Svamitva scheme” where the Indian government is mapping all Indian 

villages using a drone-based imaging system, the opportunity of using drones in 

Indian farms for precision agriculture looks hopeful.   

 

Figure 2.1: The UAV based precision agriculture cycle (Raj et al., 2020 ). 
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2.3 Drone-based sensing for precision agriculture 
 

Applied agricultural research is generally related to productivity 

improvement, yield quality enhancement, cost-effective technologies, better crop 

genotypes, and weather-resistant crops. There is much literature available in this 

sector (Raj et al., 2020). However, more than 50 % (~3000) of the papers available 

on the use of drone in agriculture has been published after 2016, with almost 90 

% of the papers published after 2013 (Web of Science, April 2021). This is due to 

the improved efficiency of UAVs and scanning imagers over the last five years, 

together with dissatisfaction with satellite images for making on-farm decisions 

in near-real-time (Matese et al., 2015). Moreover, current satellite data is not able 

to meet the spatial and temporal resolution requirements for making decisions at 

a small farm level. Different vegetation indices and soil properties can be 

calculated using various airborne sensors from remote sensing techniques. For 

example, leaf area index and NDVI are two popular indices used to indicate crop 

health/state, and thermal cameras can estimate crop water stress (Berni et al., 

2009). Canopy reflectance can be used to identify the canopy's various biophysical 

and biochemical properties through either a physical or data-driven model, such 

as a machine learning model evolving quickly, which has shown better results in 

many cases (Tsouros et al., 2019). It is essential to collect reliable farm data 

representing the farm at sufficient spatial and temporal resolution to create and 

validate a trustworthy crop model. Since the spatial resolution of satellite sensors 

is coarse for a small farm, ground-based sensors cannot cover a big area on the 

field; thus, drone-based data collection provides an alternative approach to collect 

data at such temporal and spatial resolution.  

UAVs can carry various sensors, which are useful for studying crop-related 

parameters. Literature shows that drones can be integrated with optical sensors 

like RGB, multispectral, hyperspectral, and thermal cameras, which help identify 

water and other types of stress in the crop (Calderón et al., 2013).  LiDAR sensors 

are used on drones to estimate the canopy's height and structure, which ultimately 

helps in biomass estimation of the crop. Apart from digital data collection, drones 
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have also been applied to aero-biological sampling above agricultural fields for 

early identification of pest attacks on the crop (Schmale et al., 2008). Drones can 

also be used to take corrective measures in farms, like spraying pesticides in 

stressed areas. Table 2.3 shows the different sensors which can be installed on a 

drone to study various characteristics of crops.  

The drone-based data collection process is limited by the availability and 

weight of the sensors which can be put on the drone, e.g. little work has been done 

on drone-based microwave sensing as the sensors' weight is quite heavy, limiting 

its use for data collection. This section discusses various sensors used on the 

drone for precision agriculture applications. These sensors are useful for some 

precision agriculture applications, but RGB and line-scanner hyperspectral 

imagers were used in this research.  

2.3.1 Optical sensors (400–2500 nm) 

Imagers in the visible and IR spectrum are popularly used from a drone 

Table 2.3: Drone-based sensors and their use (Raj et al., 2020). 

Drone-based sensing of precision agriculture 

(Following cameras/sensors/Instruments can be installed on a drone, 

and data can be collected which can further used for estimation of 

various crop parameters) 

1. Optical sensors (400 – 2500 nm) 

a. RGB camera (broadband centred at 450, 550, and 660 nm) 

b. Multispectral camera / Red-edge camera (450, 550, 660, 725, 

and 850 nm) 

c. Hyperspectral imager (narrow bands between 400 – 2500 nm) 

i. Snapshot imager 

ii. Line-scanner imager  

2. Thermal camera (3000 – 12000 nm) 

3. LiDAR sensor 

4. L-band passive microwave sensor 

5. Aero-Biological sampling 

6. Spraying of pesticides through drone 

7. Improving pollination process 
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platform for vegetation mapping. These optical sensors can be used to estimate 

biomass, LAI, identification of various growth stages, and healthiness of a crop. 

Pest identification, farm survey, mapping, etc., are also done using these sensors 

(Tsouros et al., 2019). Below is the list of optical sensors available for drone-based 

sensing. 

RGB camera: A digital RGB camera can be mounted on a UAV, and top-of-

the-canopy or stereo images of the farm can be captured. These images are in 

‘visible bands’ (400–700 nm), collecting reflectance in three broad ranges of 

wavebands: red, green, and blue. The spatial resolution of the image depends on 

camera specifications and the height from which the drone was flown. These 

cameras can collect very high spatial resolution images with good flight planning 

and give pixel resolution up to 1 mm. However, the spatial resolution is decided as 

per the objective of the work. Collecting extremely high spatial resolution data 

might not be a good idea as it will require more space to store and greater time to 

process. These images can be used to make an orthomosaic of the farm, studying 

the architectural properties of plants/trees (RAMI, 2018), detecting the weed 

location or pest-affected areas in the farm, and estimating the LAI of the crop. 

Height estimation of the crop is also possible from drone-based RGB images, 

which help in biomass estimation. These cameras are cheaper than multispectral 

or hyperspectral imagers, easy to operate, lighter in weight, and very popular for 

vegetation studies (Rueda-Ayala et al., 2019; Sritarapipat et al., 2014). 

Multispectral camera/Red-edge camera: Multispectral cameras consist of 

5–12 bands of around 10–50 nm bandwidth in blue, green, red, red-edge, and NIR 

regions of the electromagnetic spectrum (Deng et al., 2018). These cameras are 

generally used to calculate various normalized difference vegetation indices 

(Navia et al., 2016) and can identify highly stressed areas in the farm. These 

cameras are lightweight and can be mounted on micro UAVs. Multispectral 

cameras are the most used cameras in precision agriculture as it is easy to operate 

and give decent information about crop health.  

Hyperspectral imager (400–2500 nm):  
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Snapshot imager: These can acquire complete images in several narrow 

bands from the visible to infrared electromagnetic spectrum region (Ishida et al., 

2018). Bandwidth is generally around 10 nm (broader than line scanner imagers). 

Compared to line scanners, these images are easy to handle, and data is relatively 

easy to process as the imager generates a raster file. However, snapshot imagers 

cannot give ultra-high spectral resolution data and have a low frame rate, limiting 

the areal platform's data collection speed. One of the major issues of snapshot 

imagers is their unreliable band-to-band co-registration due to sensor movement. 

Line scanner imager: These imagers are comparatively complex to operate. 

The camera frame rate decides the speed of the drone. The camera captures a 

narrow row on the ground at a given time (width determined by IFOV and length 

determined by FOV of the imager), and thus flight should be synchronized 

accordingly. The bandwidth of collected data can be as narrow as two nm, and the 

collected data is complex to process as it involves multiple spectral, spatial and 

geometric corrections (Jia et al., 2020).  

2.3.2 Thermal camera (3000–12000 nm) 

Thermal cameras are very useful in determining water stress in the crop. 

It has been seen that the crops with water stress are at a relatively higher 

temperature than the crops that do not have water stress. However, this 

temperature difference is time-dependent (morning, afternoon, or evening) and 

is affected by varying solar radiation. The temperature difference captured by the 

thermal camera can easily distinguish the water-stressed crop during the 

afternoon when the sky is clear and solar radiation is available (Bellvert et al., 

2014). This detection is possible because, due to excessive water loss from 

stomata, leaves close their stomata opening, resulting in increased canopy 

temperature. Calibrating thermal images under unknown surface emissivity 

conditions is one of the challenging processes.  
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2.3.3 LiDAR sensor 

The Light Detection and Ranging (LiDAR) sensor is instrumental in 

measuring canopy height (Xu et al., 2020). The sensor can collect data from up to 

250 m height (depending on the manufacturer) and the accuracy of a few 

millimetres. This LIDAR point cloud data can be processed in dedicated software 

for further analysis (Christiansen et al., 2017). 

2.3.4 L-band passive microwave sensor 

L-band passive microwave data has the capability to measure surface soil 

moisture (top 5 cm). The penetration of the L-band signal into the vegetation 

canopy depends on the vegetation water content. Thus, L-band microwave data is 

also useful in estimating the crop's water content (Konings et al., 2017). The 

heavyweight of the microwave sensor limits its use on a UAV platform. However, 

some research is available where L-band microwave sensors have been installed 

on a UAV, and the collected data is used for soil moisture estimation over various 

soil types (Luo et al., 2019; Acevo-Herrera et al., 2010; and Wu et al., 2019).  

 

2.3.5 Aerobiological sampling 

At the research level, drones have also been used to collect air samples 

from above agricultural farms. An air-sampler is fitted on a drone to collect and 

store air samples and fly above agricultural farms. The air samples are then 

analyzed for the presence of potential agricultural threat agents (pathogens, 

insects, etc.). The analysis of these aerobiological samples helps in the early 

identification of pest attacks on the crop (Schmale et al., 2008). 

2.3.6 Spraying of pesticides 

This is a corrective measure that can be implemented through the drone. 

Drones carry tankers filled with pesticides, and the spraying can be done precisely 

in those areas that are found to be stressed after processing the collected image 
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dataset (Spoorthi et al., 2017; Seo and Umeda, 2021). 

2.3.7 Improving pollination  

Some researchers have used drones for helping plants in the pollination 

process by distributing the pollen to a broader area to increase the probability of 

pollination. Abutalipov et al. (2016) have demonstrated that nano-copters can 

collect and deliver pollen in automatic control mode, while Yang and Miyako 

(2020) have used drones to spray soap bubbles for enhanced pollination.  

2.4 Vegetation indices for agricultural data  

Use of vegetation indices for estimating various crop biophysical and 

biochemical characteristics are one of the popular methods. However, there is 

always a sensitivity issue associated with indices. E.g. LAI or NDVI tends to 

saturate with the increased amount of biomass (Goswami et al., 2015). Indices 

have shown promising results with satellite data with reasonable classification 

accuracy (Wall et al., 2008). However, satellite images are mixed pixel and indices 

based on mixed pixel data may perform differently on pure pixel drone-based data 

(Petrou, 1999).  Table 2.4 tabulates all the important vegetation indices compiled 

through a detailed literature review. 
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Table 2.4: Popular vegetation indices (Raj et al., 2020). 

NDVI (Normalised 
Difference Vegetation 

Index) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 –  𝑅

𝑁𝐼𝑅 +  𝑅
 

Rouse et al., 
1973 

WDRVI (Wide Dynamic 
Range Vegetation Index) 

𝑊𝐷𝑅𝑉𝐼 =
𝑎∗𝑁𝐼𝑅−𝑅

𝑎∗𝑁𝐼𝑅+𝑅
  (0 < a < 1) Gitelson et al., 

2004 

RDVI (Renormalized 
Difference Vegetation 

Index) 

𝑅𝐷𝑉𝐼 =
𝑅800 –  𝑅670

(𝑅800 +  𝑅670)0.5
 

Roujean et al., 
1995 

OSAVI (Optimised Soil 
Adjusted Vegetation 

Index) 

𝑂𝑆𝐴𝑉𝐼 =
(1 + 0.16)(𝑅800 –  𝑅670)

(𝑅800 +  𝑅670 + 0.16)
 

Rondeaux et 
al., 1996 

EVI (Enhanced 
Vegetation Index used for 

LAI estimation) 

𝐸𝑉𝐼 

=  2.5 ∗ (
𝑁𝐼𝑅 –  𝑅

𝑁𝐼𝑅 + (6 ∗ 𝑅)  − (7.5 ∗ 𝐵)  +  1
) 

Justice et al., 
1998 

EVI2 (Modified EVI) (Less 
soil sensitive than NDVI) 

𝐸𝑉𝐼2 =  2.5 ∗
𝑁𝐼𝑅 −  𝑅 

(𝑁𝐼𝑅  +  (2.4 ∗  𝑅) +  1)
 

Jiang et al., 
2008 

NGRDI (Normalized 
Green-Red Difference 

Index) 

NGRDI =
(𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 − 𝑅𝑒𝑑 𝐷𝑁)

(𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 + 𝑅𝑒𝑑 𝐷𝑁)
 

Hunt et al., 
2005 

Red Edge Reflectance 
Index 

𝑅750

𝑅710
 

Zarco-Tejada 
et al., 2001 

DCNI (Double Peak 
Canopy Nitrogen Index) 𝐷𝐶𝑁𝐼 =

𝑅720 − 𝑅700
𝑅700 –  𝑅670

(𝑅720 − 𝑅760 + 0.16)
 

Chen et al., 
2010 

TCARI (Transformed 
Chlorophyll absorption in 

reflectance index) 

𝑇𝐶𝐴𝑅𝐼 

=  3 [
(𝑅700 − 𝑅670)–  0.2(𝑅700 − 𝑅550)

𝑅700
𝑅670

] 

 

Haboudane et 
al., 2002 

Combined TCARI / OSAVI 𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
 

Haboudane et 
al., 2002 

Carotenoid Index 𝑅515

𝑅570
 

Hernández-
Clemente et al., 

2012 
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2.5 Crop biophysical parameters 

The biophysical parameters of a crop are crucial indicators for crop 

growth. These parameters can be seen physically during the growth of the 

plant/canopy. Fractional cover of green vegetation (fCover), Leaf Area Index 

(LAI), crop height, number of flowers/tassels, fraction of Absorbed 

Photosynthetically Active Radiation (fAPAS), and fractional cover of non-

photosynthetic brown vegetation (fNPV) are some biophysical parameters of the 

Table 2.4: Popular vegetation indices (continued). 

PRI (Photochemical 
Reflectance Index) 

𝑃𝑅𝐼 =
𝑅570 –  𝑅539

𝑅570 +  𝑅539
 

Gago et al., 2015 

Normalized PRI 
𝑃𝑅𝐼 𝑛𝑜𝑟𝑚 =

𝑅515 –  𝑅531

𝑅515 +  𝑅531
 

Gago et al., 2015 

Normalized PRI 
 

𝑃𝑅𝐼 𝑛𝑜𝑟𝑚 =
𝑃𝑅𝐼

𝑅𝐷𝑉𝐼 (
𝑅700
𝑅670

)
 

Ihuoma et al., 
2019 

BGI1 
𝐵𝐺𝐼1 =  

𝑅400

𝑅550
 

 

Zarco-Tejada et al., 
2005 

BGI2 
𝐵𝐺𝐼2 =  

𝑅450

𝑅550
 

Zarco-Tejada et al., 
2005 

MSI (Moisture Stress 
Index) 

𝑀𝑆𝐼 =
𝑅1600

𝑅820
 

 

Hunt et al., 1989 

NDWI (Normalized 
Difference Water 

Index) 

𝑁𝐷𝑊𝐼 =
𝑅860 –  𝑅1240

𝑅860 +  𝑅1240
 

 

Gao, 1996 

NDII (Normalized 
Difference Infrared 

Index) 

𝑁𝐷𝐼𝐼 =
𝑅820 –  𝑅1600

𝑅820 +  𝑅1600
 

 

Hardisky et al., 
1983 

MDWI (Maximum 
Difference Water 

Index) 

𝑀𝐷𝑊𝐼 = [
𝑅𝑚𝑎𝑥 –  𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 +  𝑅𝑚𝑖𝑛
] 

𝑓𝑟𝑜𝑚 1500 − 1700 
 

Eitel et al., 2006 

CWSI 
CWSI =

(𝑇𝑐 − 𝑇𝑎)  − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
 

Idso et al., 1981; 
Bellvert et al., 

2014 
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crop. However, change in these biophysical parameters is induced by the 

biochemical properties of the crop. Determination of crop biophysical parameters 

are relatively simpler than the determination of crop biochemical parameters. 

Thus, biophysical parameters are easy and useful indicators that can be used for 

precision agriculture.  

2.5.1 Leaf area index (LAI) 

Leaf Area Index (LAI) is a biophysical property that may reflect the health 

of the crop (Bryson et al., 1997). It largely depends on the crop growth stage, crop 

height, architecture of the leaves and density of the plants (Vose et al., 1994), but 

can also be affected by short-term water stress due to leaf rolling (Chen and Black, 

1992). Importantly, an increase in the LAI represents an increase in the leaf 

stomatal area and thus gaseous exchanges between the crop and the vegetation 

(Patanè, 2011). LAI can be used as an input to simulate the energy balance 

equations to understand the physical processes that occur between plants and the 

atmosphere. Also, inversion of crop models can utilise LAI to calculate ‘light use 

efficiency’ (Bonan, 1993; Drewry et al., 2010; Qu et al., 2016; Running and 

Coughlan, 1988). LAI is also used in crop yield prediction and water balance 

modelling, defined as the total one-sided area of photosynthetic tissue per unit 

ground surface area (Jonckheere et al., 2004).  

The most accurate method to find the LAI of any area is termed the ‘direct 

method’, involving the destructive sampling of leaves, which is very time 

consuming and labour-intensive (Behera et al., 2010; Dufrêne and Bréda, 2010). 

Conversely, indirect methods are approximations and so use terms like foliage 

area index, effective plant area index (Garrigues et al., 2008), vegetation area 

index (Fassnacht et al., 1994), effective leaf area index (Chen and Black, 1991) etc. 

However, the term ‘LAI’ is often used even in the case of indirect measurements, 

even though indirect methods are affected by non-leafy parts of the canopy. 

Fortuitously, it has been shown that the LAI obtained from instruments such as 

the Licor-2000 or Licor-2200C canopy analyzer is correlated with LAI 
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measurements from the direct method (Liu and Pattey 2010; Stroppiana et al. 

2006). However, Bendig et al. (2015) show that it is difficult to estimate the true 

LAI from indirect techniques at the reproductive stage because canopy closure 

results in signal saturation. 

As explained above, the direct method can be based on destructive 

sampling or allometry, point contact and litterfall collection (Chen et al., 1997). In 

destructive sampling, leaves are plucked from the plant, and the physical area of 

leaves are found. For upscaling the process, homogeneity in the structure is 

assumed. The allometry method requires some destructive sampling and also 

involves a large sampling error (Behera et al., 2010). In this process, the 

relationship between leaf area and the dimension of canopy components need to 

be found. These canopy components may be Diameter at Breast Height (DBH) or 

sapwood (for tree canopies). The point contact method is used for short 

vegetation with larger leaves, thus not used for a forest. It is calculated by counting 

the number of contacts a needle makes when penetrated through a canopy. In the 

litter-fall collection method, fallen leaves need to be collected, and thus frequent 

collection is required so that leaf decay can be avoided. This method is useful for 

the deciduous forest but not for a conifer or evergreen forest. The problem with 

all these direct methods is that they are time-consuming and labour intensive 

(Behera et al., 2010; Dufrêne and Bréda, 2010).  

Indirect methods use different optical equipment/sensors to measure 

radiation transmittance to calculate leaf property and LAI. There are some 

commercially available instruments, e.g. Li-Cor LAI-2000/2200C Plant Canopy 

Analyser, CID Digital Plant Canopy Imager, Decagon Sunfleck Ceptometer, Demon, 

TRAC etc. LAI can also be measured from spherical photos. The hemisphere 

photography system includes WinSCANOPY from Regen, Can-Eye, Hemiview. 

Apart from these, remote sensing (aircraft/satellite) images have been used to 

estimate LAI, e.g. MODIS LAI – Sea (uses spectral method) and LiDAR. There are 

two canopy attributes that affect radiation penetration and indirect LAI 

measurement. These attributes are leaf angle distribution and spatial leaf 

distribution. Leaf angular distribution affects radiation transmission through the 



Chapter 2: Literature review                                                                                               Page 32  
 
 

canopy at different angles, and spatial leaf distribution is more critical because it 

affects the amount of radiation transmitting through the canopy. Further, spatial 

leaf distribution can be of three types - Random, Clumped, and Regular 

distribution. Random distribution is generally used to represent crop 

architectural property for grain crops, where 37 % of overlapping should be 

considered for each layer of leaves, and the value of the clumping index should be 

taken as ‘one’. Clumped distribution is used in the case of natural canopies; more 

than 37 % of overlapping is taken for each layer of leaves, and the clumping index 

is considered less than one. Regular distribution is used for a few crops; the 

Clumping index is considered greater than one, and less than 37 % overlapping is 

considered for each layer of leaves (Jonckheere et al., 2004; Sea et al., 2011). 

The modified Beer’s law  

   𝑃(𝜃) = 𝑒
− 

𝐺(𝜃)Ω𝐿

𝑐𝑜𝑠(𝜃)   ,     (2.1) 

can be used to calculate LAI. Here P is the gap fraction, and it is defined as 

the “fraction of sky seen from underneath the canopy”. It is a function of the view 

zenith angle. θ is the zenith angle, Ω is the clumping index and for random canopy 

taken as 1. G(θ) is the projection coefficient, and L is the effective Leaf area index 

(LAI). It should be noted that the gap fraction is not gap size. There can be different 

gap size distributions for the same gap fraction (Sea et al., 2011). 

The use of vegetation indices is one of the popular methods for estimating 

LAI. However, there is always a sensitivity issue associated with indices. E.g. the 

normalized difference vegetation index (NDVI) tends to saturate with increasing 

LAI (Gamon et al., 1995). When the LAI value is increased from approximately 3 

to 4 (depending on the canopy), then NDVI loses its sensitivity towards change in 

LAI and starts saturating. This is because chlorophyll is a highly efficient absorber 

of red radiation. Thus, after some point, adding more chlorophyll to the canopy or 

increasing leafy material in the canopy will not change red reflectance much. 

Several solutions have been developed to overcome this situation. One of the 

simplest solutions is to use the wide dynamic range vegetation index (WDRVI). In 
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this index, a weighting factor ranging from 0 to 1 is used with NIR reflectance (in 

the numerator as well as in denominator) in the formula of NDVI (Gitelson 2004), 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
       &           𝑊𝐷𝑅𝑉𝐼 =

𝑎∗𝑁𝐼𝑅−𝑅

𝑎∗𝑁𝐼𝑅+𝑅
  .               (2.2) 

When the weighting factor approaches 0, the linearity of the WDRVI – LAI 

graph tends to increase, but for sparse canopies, the change in LAI shows less 

sensitivity towards change in index values. Another index that shows better 

sensitivity with LAI uses blue bands. This is called the Enhanced vegetation index 

(EVI) (Jiang et al., 2008) 

   𝐸𝑉𝐼 =  2.5 ∗ (
𝑁𝐼𝑅 – 𝑅

𝑁𝐼𝑅 +(6∗𝑅) −(7.5∗𝐵) + 1
).  (2.3) 

Later, EVI was modified and the blue band removed. The modified version 

of EVI is known as EVI2 (Jiang et al., 2008) 

   𝐸𝑉𝐼2 =  2.5 ∗
𝑁𝐼𝑅 − 𝑅 

(𝑁𝐼𝑅  +  (2.4∗ 𝑅)+ 1)
 .   (2.4) 

  Apart from having a linear relationship with LAI, EVI2 has less soil 

sensitivity compared to NDVI. 

LAI can be combined with other vegetation indices to achieve maximal 

sensitivity. For maize-soybean rotation crop, calculated green LAI (gLAI) for maize 

and soybean ranged from 0 - 6.5 and 0 - 5.5, respectively. For gLAI lower than 2, 

NDVI is most sensitive, while for gLAI greater than 2, Simple Ratio  

   𝑆𝑖𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝐼𝑅

𝑅
 ,    (2.5) 

and Chlorophyll indices  

   𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝐼𝑛𝑑𝑒𝑥 =
𝑁𝐼𝑅

𝐺−1
 ,   (2.6) 

are more sensitive. However, this relationship is crop-specific and may 

change with other crops.  

Nguy-Robertson et al. (2012) found that the best index combination for LAI 
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estimation for maize and soybean has been found to be the combination of NDVI 

and SR. With this combination, the coefficient of variance for maize and soybean 

was less than 20 % and 23 %, respectively. 

2.5.2 Canopy height 

Canopy height is a critical crop biophysical parameter. Information about 

canopy height helps in estimating crop biomass and yield. The most accurate way 

to estimate canopy height is through manual measurements of plant heights from 

various parts of the farm. However, manual measurements are extremely time-

consuming and labour intensive. Thus, it is crucial to estimate the canopy height 

through remote sensing methods.  

One of the efficient ways to estimate the canopy height is by using Lidar 

data (St-Onge et al., 2003; Mielcarek et al., 2018). Lidar stands for ‘Light Detection 

and Ranging’. It is an active sensing technique where the sensor sends a light signal 

and records the time in which the reflected light comes back to the sensor’s 

detector. Lidar sensor data are capable of giving highly accurate height estimation 

as compared to other available remote sensing techniques (Yuan et al., 2018). 

Drone-based RGB or multispectral images can also be used to estimate the canopy 

height based on photogrammetric techniques. Various techniques like ‘shape from 

x’, ‘region growth algorithm’, ‘surface from motion’ etc., are being used for height 

or distance (from sensor) estimation using RGB and lidar images (Kim et al., 2021; 

Jin et al., 2018; Chaudhary et al. 2012). Once the digital elevation model or digital 

surface model is created, then various logical operations can be carried out to find 

the canopy height. One such logical process is  

𝐶𝑎𝑛𝑜𝑝𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 =  𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 –  𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙.        (2.7) 

2.6 Crop biochemical parameters 

Biochemical contents present in the crop are a basic reason for the change 

in crop behaviour. The crop biochemical contents are driven by inputs provided in 

the farm, crop verities, and weather parameters. Leaf water content, leaf nitrogen 

content, leaf chlorophyll content or any nutrient present in the crop constitutes a 
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biochemical property. Moreover, water and nitrogen act as the two main 

contributors to optimise crop yield for grain crops.  

2.6.1 Leaf water content 

Water is one of the most important input parameters for any grain crop 

production, as irrigation management has a major control on plant growth 

(Gonzalez et al., 2010). Accordingly, crop water stress increases the difference 

between attainable and actual yield, minimising the ‘yield gap’ through optimized 

irrigation (Mueller et al., 2012). Water also helps nutrients from the soil to travel 

to various parts of the plant, and so even with adequate nutrients supplied to the 

soil, the crop may show nutrition deficiency if the crop is suffering from water 

stress (Wang and Xing, 2016). Thus, information about the spatio-temporal 

distribution of crop water content for optimal farm management plays a crucial 

role. One way to identify potentially water-stressed areas in the farm is through 

soil moisture mapping. However, remote sensing techniques are currently 

incapable of directly measuring soil moisture across grain crops' effective root 

zone (~30-50 cm). Interestingly, microwave sensors can estimate soil moisture in 

the top 5 cm of soil depth (Shen et al., 2020; Walker et al., 2004;  Etminan et al., 

2020; Finn et al., 2011; Xu et al., 2016).  

There are two different perspectives to plant water stress – instantaneous 

water stress and long-term water stress (Aroca, 2012). The effect of instantaneous 

water stress can lower the LWC and affect the gaseous exchanges between plants 

and their atmosphere. However, long-term water stress significantly affects crop 

biophysical parameters like Leaf Area Index, canopy height, and yield (Ma et al., 

2018; Reddy et al., 2003; Blum, 2011; Pinheiro et al., 2011). If instantaneous water 

stress in the crop is not adequately managed, it creates the basis for long-term 

water stress, leading to a significant crop yield reduction (Hsiao et al., 1976). 

Conversely, the instantaneous water stress gives an early indication of potential 

yield loss (Ma et al., 2018), which can be avoided with correct ongoing irrigation 

management. The LWC during the early crop growth stage needs to be maintained 

above a critical value. For example, if the LWC of maize leaves goes below 82.5% 
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(g/g) during the seedling/jointing stage, the photosynthetic rate may reduce by 

as much as a factor of 3.2 (Ma et al., 2018). Moreover, the reduction in LWC below 

a critical level increases the loss in turgor pressure, further minimising the cell 

division and enhancement, resulting in inhibited leaf expansion and stomatal 

closure, which delays the gaseous exchanges between the plant and the 

atmosphere (Hsiao, 1973; Schulze and Hall, 1982; Blum, 2011; Pinheiro et al., 

2011). Thus, early detection of patches of water-stressed plants by estimating 

LWC can provide opportunities to ameliorate the stress through suitable 

agronomic management for improved crop yield.  

Various sensors have been used for remote estimation of leaf (or 

vegetation) water content, including microwave (Huang et al., 2015; Merlin et al., 

2010; Yilmaz et al., 2008; Hunt et al., 2011), thermal (Merlin et al., 2010; Yilmaz 

et al., 2008), and optical (Gao et al., 2015; Ceccato et al., 2001; Neinavaz et al., 

2017; Clevers et al., 2010). However, microwave data is low spatial resolution 

(Migliaccio and Gambardella, 2005), thermal gets affected by the soil temperature, 

especially when the canopy coverage is low (Kim et al., 2016; Han et al., 2016), 

and short-wave infrared are affected by the atmosphere (Wang, 2007). The water 

absorption wavelengths above 1000 nm range in hyperspectral data (1940 nm, 

1450 nm, and 1190 nm) have been the primary wavelengths for vegetation water 

sensing (Thenkabail and Lyon, 2016). The SWIR zone of EM spectra has stronger 

absorption than water absorption wavelengths of NIR zone EM spectra (400-1000 

nm) (Thenkabail and Lyon, 2016; Carter, 1991). Sensors operating in this range 

are much more expensive and difficult to maintain, mainly due to the required 

cooling mechanism to increase the sensitivity of the InGaAs sensors to the low 

amounts of earth-leaving radiation at those wavelengths. Importantly a secondary 

water absorption band exists between 400-1000 nm at around 970 nm 

(Thenkabail and Lyon, 2016). Moreover, other narrowband wavelengths within 

the 400-1000 nm range also show sensitivity towards water molecules (Büning-

Pfaue, 2003).  

For the estimation of crop water content, accurate retrieval of leaf water is 
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very important. Various techniques are available to retrieve leaf water content – 

spectral indices method, inversion of radiative transfer models, and methods 

based on machine learning techniques like wavelet analysis and genetic algorithm 

(Fang et al., 2017).  Before exploring these techniques, the science of EM 

absorption by water molecules is first discussed.  

The absorption of electromagnetic radiation by water molecules is 

determined by rotational transitions, intermolecular and intramolecular 

vibrational transitions, and electronic transitions of H2O molecules. Rotational 

transition and intermolecular vibrational transitions are responsible for 

absorption in the microwave and far-infrared EM spectrum region (Mohorič et al., 

2020). The electronic transitions create absorption in the ultraviolet region 

(Underwood et al., 2005). Absorption in the visible (VIS), near-infrared (NIR), and 

mid-infrared (MIR) range is due to intramolecular vibrational transitions (Hunter 

et al., 2018). In the VIS and NIR regions, water absorption is majorly due to a 

stretching overtone frequency and combination of vibrational absorption of the 

O-H bands of H2O molecules (Chaplin, 2008).  

Water molecules vibrate in the symmetric stretch, asymmetric stretch, 

bend stretch and three libration modes shown in Figure 2.2 (Chaplin, 2008). Even 

though the VIS and NIR regions show very low water absorption characteristics 

compared to after 1000 nm, the water’s overtone bands have been found to create 

spectral niches for photosynthetic organisms (Stomp et al., 2007). Water 

absorption can be seen at 401 and 449 nm due to the fifth and sixth overtone of 

vibrational symmetric and asymmetric stretches of O-H bands (Pope et al., 1997; 

Stomp et al., 2007). It has also been found that the fifth overtone of the 

intramolecular stretches produces a very small absorption at 514 nm (Yakovenko 

et al., 2002; Sogandares and Fry 1997; Braun and Smirnov, 1993; Stomp et al., 

2007). At 605 nm, a fourth overtone band of symmetric and asymmetric stretches 

have been documented (Yakovenko et al., 2002; Sogandares and Fry 1997; Braun 

and Smirnov, 1993; Stomp et al., 2007). At 660 nm, absorption occurs due to 

combined vibrational symmetric, asymmetric, and bending stretches of O-H 

overtone bonds (Tsubomura et al., 1980; Braun and Smirnov, 1993). At 698 nm, 
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the fourth overtone of the O-H bands' vibrational symmetric and asymmetric 

stretches has created water absorption in the EM spectrum (Braun and Smirnov, 

1993). Spectroscopy has also shown a small absorption peak at 750 nm due to the 

third overtone of vibrational symmetric and asymmetric stretches of O-H bands 

(Tsubomura et al., 1980; Braun and Smirnov, 1993). A water absorption shoulder 

has been observed at around 836-850 nm due to the combined overtone of 

vibrational symmetric, asymmetric, and 

bending stretches of O-H bands (Tsubomura et al., 1980;  Braun and Smirnov, 

1993). At 970 nm, a water absorption band is found due to the second overtone of 

vibrational symmetric and asymmetric stretches of O-H bands (Tsubomura et al., 

1980; Büning-Pfaue, 2003; Stomp et al., 2007). Table 2.5 shows the list of water 

absorption bands found in the literature.  

The use of spectral indices for estimating leaf-water content is the simplest 

 

Figure 2.2: (a), (b), and (c) shows the symmetric, asymmetric, and bending 

stretch in water molecules. The red colour atom represents the Oxygen atom, and 

the grey colour atoms represent hydrogen atoms. The arrows show the direction 

of motion of the atoms. (d), (e), and (f) show the three libration  modes of water 

molecules with respect to x, y, and z axes (adapted from Chaplin, 2008).  
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method. However, spectral indices are often species-dependent, and tend to 

saturate after some level of leaf-water content. This saturation may be because 

individual spectral indices consider only a few numbers of wavebands, and 

information in other wavebands are discarded, which can be used as proxy 

indicators. There are a few indices based on hyperspectral data which can give 

pre-visual indicators of water stress in the crop (Zarco et al., 2012). For example, 

the Photochemical Reflectance Index (PRI) is related to the epoxidation state of 

the xanthophyll cycle pigments and hence photosynthetic efficiency. An increase 

in the xanthophyll cycle means the presence of water stress, so PRI can serve as a 

proxy for water stress detection (Peguero et al., 2008). Steady-state chlorophyll 

fluorescence is sensitive to the stomatal conductance of the leaves. Further, 

stomatal conductance is inversely proportional to water stress (Moya et al., 2004), 

and thus these relations can be used to estimate water stress on the farm. 

Inversion of radiative transfer models such as PROSAIL can also be used to 

estimate leaf water thickness. Input to the inversion model is reflectance 

signatures between 400-2500 nm. However, any part of this wavelength range can 

be used to estimate EWT, but will lead to a decrease in the model's accuracy.     

Various advanced machine learning techniques can also be used to extract 

spectral features of the leaf related to water. e.g. continuous wavelet analysis 

(CWA). Further, techniques like partial least squares (PLS) coupled genetic 

algorithm (GA) can be used to link retrieved spectral features with LWC. These 

techniques are very efficient, but at the same time, very complex and 

computationally intensive with large datasets. 
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Table 2.5: Water absorption bands in the visible, and NIR region of EM 

spectrum. 

EM 

region 

Absorption 

Wavelength 

Reason for absorption Reference 

 

 

 

 

 

 

VIS 

401 nm  

Fifth and sixth overtone of vibrational 

symmetric, and asymmetric stretches 

of O-H bands 

Pope et al., 1997 

449 nm Stomp et al., 

2007; Pope et al., 

1997 

514/520 

nm 

Fifth overtone of vibrational 

symmetric, and asymmetric stretches 

of O-H bands 

 

Yakovenko et al.,  

2002; Sogandares 

and Fry 1997; 

Braun and 

Smirnov, 1993; 

Stomp et al., 2007 

605 nm Fourth overtone  of vibrational 

symmetric, and asymmetric stretches 

of O-H bands 

660 nm Combined overtone of vibrational 

symmetric, asymmetric, and bending 

stretches of O-H bands 

Tsubomura et al., 

1980;   Braun and 

Smirnov, 1993 

698 nm Fourth overtone of vibrational 

symmetric, and asymmetric stretches 

of O-H bands 

 

Braun and 

Smirnov, 1993 

 

 

 

 

IR 

750/760 

nm 

Small absorption peak due to third 

overtone of vibrational symmetric, 

and asymmetric stretches of O-H 

bands 

 

 

 

Tsubomura et al., 

1980;   Braun and 

Smirnov, 1993 

836/850 

nm 

Small absorption shoulder due to 

Combined overtone of vibrational 

symmetric, asymmetric, and bending 

stretches of O-H bands 

970/975 

nm 

Second overtone of vibrational 

symmetric, and asymmetric stretches 

of O-H bands 

Tsubomura et al., 

Pfaue, 2003; 

Stomp et al., 2007 
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2.6.2 Leaf nitrogen content 

Plants can uptake soil nitrogen as nitrate and ammonia and utilise it for 

plant growth (Ohyama, 2010). Thus for agriculture purposes, fertiliser in the form 

of ammonia (NH3) or ammonium nitrate (NH4NO3) is supplied to the farm to 

provide sufficient nitrogen to the soil (Mason, 1977; Craig and Wollum, 1982; 

Gezgin and Bayrakll, 1995; van Grinsven et al., 2015). Moreover, nitrogen is a 

mobile macronutrient in plants that changes its content temporally (Kutman et al., 

2011; Masclaux et al., 2010), tending to move from old leaves to new/fresh leaves 

in order to increase their biomass (Masclaux et al., 2010). Nitrogen is also a critical 

nutrient for biomass creation in grain-producing plants, with plant nitrogen 

concentration decreasing as dry biomass of the canopy increases (Chen et al., 

2010). Interestingly, this trend is similar to the change in leaf water content over 

progressive crop growth stages (as seen in this study). 

Approximately 30-50% of the nitrogen in green leaves is in the form of D-

ribulose 1-5-diphosphate carboxylase (RuBisCO) (Kokaly, 2001), being the key 

photosynthetic enzyme/protein in green leaves (Gutteridge and Gatenby, 1995; 

Andersson and Backlund, 2008). Other functional involvement of nitrogen in 

plants is in the form of different proteins (Schrader, 1984; Howitt and Udvardi, 

2000). Maintaining the nitrogen level in plants above a critical value is very 

important because nitrogen is used to form biomass with the progress in growth 

stages (Leghari et al., 2016). This critical value represents the minimum nitrogen 

concentration to be maintained in the plant so as to maximize crop growth 

(Blumenthal et al., 2008). However, using a high amount of nitrogen in the farm is 

not only expensive but leads to water pollution, as the irrigated water is wasted 

through runoff and leaching (Knox et al., 2012; Elrashidi et al., 2005), meaning 

that optimal use of fertilisers should be applied on the farm.   

Interestingly, water is also a major contributor to the protein's three-

dimensional structure (Franks, 1988), and protein controls the structure of its 

surrounding water, known as the hydration of protein (Franks, 1988). This protein 

hydration is critical, as its biological activity reduces in the absence of hydrating 
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water (Chaplin, 2006). Consequently, the association of water and protein makes 

it difficult to estimate the precise amount of nitrogen in a crop and more so 

remotely.  

The remote estimation of canopy/leaf nitrogen content essentially 

depends on the vibrational properties of the amide bonds of the plant proteins 

(Kokaly, 2001; Damodaran, 2008). Nitrogen shows higher light absorption 

characteristics in ultraviolet bands (Ogawa et al., 1964) and short-wave infrared 

bands (Widlowski et al., 2015). The various stretching, bending, and torsion in the 

different amide bonds present in proteins have shown absorption characteristics 

at wavelengths longer than 3000 nm (Haris and Chapman, 1994). Table 2.6 shows 

the light absorption wavelengths for amide bonds in proteins (Haris and 

Chapman, 1994). Moreover, researchers have also found a few wavelengths in the 

400-2500 nm region (515, 520, 525, 550, 575, 743, 1116, 2173, and 2359 nm) of 

the electromagnetic spectrum correlated to nitrogen content (Thenkabail et al., 

2016). However, apart from 2173 and 2359 nm wavelengths (Kokaly, 2001), none 

of the other bands has known causation (small absorption features) for this 

correlation. 

There is no known nitrogen/protein absorption wavelength available 

between the 400-1000 nm region of the electromagnetic spectrum, which has a 

light absorption sensitivity to the nitrogen content in the leaves. Thus, the only 

logical way that the 400-1000 nm reflectance data can be used for nitrogen 

estimation is through empirical proxy relationships with parameters such as 

greenness (Hansen and Schjoerring, 2003) and chlorophyll of the crop (Curran et 

al., 1992; Haboudane et al., 2002), or some empirical relations between vegetation 

indices and vegetation nitrogen content (Reyniers et al., 2006; Hansen and 

Schjoerring, 2003; Chen et al. 2010).  

Some studies have shown a correlation between red-edge-based indices 

and the nitrogen content of the crop. The double peak canopy nitrogen index 

(DCNI) is an example of a red-edge-based index where 720, 700, and 670 nm 

wavelengths were used (Chen et al. 2010). The DCNI formula, along with other 
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indices, is shown in Table 2.7. Similarly, Yao et al. (2010) used a spectroradiometer 

with 400-2500 nm range to collect canopy level reflectance from a wheat crop. Yao 

et al. (2010) studied various indices, and the involvement of 720, 725, and 736 nm 

wavelengths showed the usefulness of the red-edge region for nitrogen 

estimation. In another study, Feng et al. (2008) also used red-edge region 

wavelengths to estimate wheat crop leaf nitrogen. Feng et al. (2008) 

recommended spectroradiometer-based reflectance signatures to create a red-

edge position index (Cho and Skidmore, 2006) and mND705 (normalised 

difference index at 705 nm) (Sims and Gamon, 2002) indices for leaf nitrogen 

content estimation.   

 

Table 2.6: Infrared wavelength absorption of amide bonds in protein (adapted from 

Harris and Chapman, 1994). 

Wavelength (nm) Chemical bond origin 

3030 N-H stretching 

3225 N-H stretching 

5917-6250 C=O stretching,  C-N stretching, N-H bending 

6349-6757 C-N stretching, N-H bending  

7686-8137 C-N stretching,   C=O stretching, N-H bending, 

O=C-N bending 

13030-16000 O=C-N bending 

12500-15630 N-H bending 

16500-18620 C=O bending 

50000 C-N torsion 
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Stroppiana et al. (2009) experimented with data from a paddy field. They 

observed blue-green reflectance region based index, called the optimal 

normalized difference index (NDIopt), to be more sensitive than the traditional 

normalized difference vegetation index (NDVI) to changes in the plant nitrogen 

concentration while also being less affected by crop biophysical properties. Du et 

al. (2016) estimated nitrogen content in rice leaves using 32-band active 

hyperspectral sensing. The central wavelength of these bands was between 500 

Table 2.7: Indices found to be used for leaf nitrogen content estimation in 

literature.   

Index Formula short form Full form Reference 

(1 + 0.45)(𝑅800
2 + 1)

𝑅670 + 0.45
 

𝑉𝑖𝑜𝑝𝑡 Optimal vegetation index Reyniers et 

al., 2006 

𝑅573 − 𝑅440

𝑅573 + 𝑅440
 

𝑁𝐷𝑉𝐼𝑔−𝑏 Green-blue normalised 

difference vegetation index 

Hansen 

and 

Schjoerring

, 2003 

𝑅720 − 𝑅700
𝑅700 − 𝑅670

𝑅720 − 𝑅670 + 0.03
 

𝐷𝐶𝑁𝐼 Double peak canopy nitrogen 

index 

Chen et al. 

2010 

𝑅450

𝑅550
 

𝐵𝐺𝐼2 Blue Green Index 2 Zarco-

Tejada et 

al., 2005 

𝑀𝐶𝐴𝑅𝐼

𝑀𝑇𝑉𝐼2
 

Combined 

Index 

𝑀𝐶𝐴𝑅𝐼 =  [(𝑅700 − 𝑅670 − 0.2)(𝑅700

− 𝑅550)] (
𝑅700

𝑅670
) 

MTVI2

= 1.5

∗
(1.2 ∗ (𝑅800 − 𝑅550) − 2.5 ∗ (𝑅670 − 𝑅550))

√(2 ∗ 𝑅880 + 1)2 − (6 ∗ 𝑅800 − 5 ∗ 𝑅670

1
2 ) − 0.5

 

Eitel et al., 

2007 

Daughtry 

et al., 

2000 

Haboudane 

et al., 2004 

3

∗ [
(𝑅700 − 𝑅670 − 0.2)

∗ (𝑅700 − 𝑅550)
] (

𝑅700

𝑅670

) 

TCARI Transformed chlorophyll 

absorption in reflectance index 

Haboudane 

et al., 2002 
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to 910 nm, with four wavelengths in the red-edge region. The authors used a total 

of 32 bands for making a machine learning model, with a maximum R2 of 0.75 

obtained. In another study, Fan et al. (2019) used canopy level spectroradiometer-

based spectral signatures from a maize crop to estimate leaf nitrogen content. 

Partial least square regression analysis was carried out on the collected data 

resulting in R2 of 0.77. Similarly, Tan et al. (2018) collected temporal 

spectroradiometer-based hyperspectral reflectance spectra from an experimental 

wheat crop canopy. The study was focused on a statistical analysis of available 

methods of leaf nitrogen estimation, with an index named NREAI found to give the 

highest R2 of 0.97, with chlorophyll used as a proxy indicator for estimating leaf 

nitrogen. Tial et al. (2014) also used spectroradiometer-based canopy (including 

background) reflectance spectra of a rice crop and found the simple ratio of 553 

and 537 nm bands more reliable for leaf nitrogen content estimation under 

various cultivation conditions.    

In a drone-based study, Liu et al. (2017) used spectral signatures (450-950 

nm) of a wheat crop at different growth stages. Field-based spectroradiometer 

readings were also collected simultaneously. A few bands, including from the red-

edge region, were selected using correlation analysis. The Back Propagation (BP) 

neural network and multifactor statistical regression method were implemented 

on the selected bands for the leaf nitrogen content model training and evaluation. 

The model gave an R2 between 0.85 – 0.96 for different growth stages of the crop. 

Similarly, Liang et al. (2018) used ground-based spectroradiometer and aircraft-

based hyperspectral data from an experimental winter wheat farm. However, this 

was mixed-pixel data as the spatial resolution of the aircraft data was 3m. First-

derivative indices at 520 nm and 715 nm were found to produce an R2 of 0.75. The 

authors recommended to use less than 30 nm bandwidth for leaf nitrogen content 

estimation. Tian et al. (2011) created two-band and three-band hyperspectral 

indices for estimating paddy canopy-level leaf nitrogen concentration. The data 

was collected from the ground, airborne (AVIRIS), and spaceborne (Hyperion 

satellite) platforms. The newly identified two-band index - R533/R565, and three-

band index R705/(R717 + R491) resulted in an R2 less than 0.76. The use of the 
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green-colour wavelength region shows that the higher correlation was due to the 

difference in green colour among different nitrogen treatment plots. 

In very few studies, leaf water and nitrogen contents were studied together 

using hyperspectral data. Strachan et al. (2002) used canopy-level 350-1000 nm 

hyperspectral data to demonstrate the maize development under nitrogen and 

water stress conditions. Canonical discriminate analysis was used to classify 

different nitrogen rate canopies. The authors suggested to carry out more 

research to understand the dynamics of nitrogen estimation under various water 

stress conditions. In another study, Feng et al. (2016) developed a water 

resistance nitrogen index (WRNI) and tested it on a winter wheat crop. Canopy 

level reflectance spectra were collected (~400-1000 nm), and plants were 

destructively sampled for estimating leaf water content and leaf nitrogen content. 

WRNI was calculated using the ratio of normalised difference red-edge (Fitzgerald 

et al., 2006) and a floating-position water band index (Strachan et al., 2002). The 

WRNI gave R2 between 0.79-0.85. Corti et al. (2017) conducted a pot experiment 

under different water and nitrogen treatments. Spectroradiometer-based 400-

1000 nm spectral signatures were collected and used to estimate crop biophysical 

and biochemical properties, including leaf water and nitrogen content. All of the 

crop parameters were estimated using various indices. However, no analysis was 

presented to understand the effect of water and nitrogen variables on their 

estimation. 

2.7 Radiative transfer model  

The basis of any canopy model (geometric, turbid, hybrid, computer 

simulation) is either 1. Geometric optics theory, 2. Radiative transfer theory, or 3. 

Average transmittance theory. The popular PROSAIL model is based on radiative 

transfer theory. Geometric optics theory uses optical principles and parallel-ray 

geometry to model a defined shape (cone, sphere, cylinder, ellipsoid, etc.) canopy 

(Li and Alan, 1985). The link between the movement of incident radiation and 

optical properties of vegetation elements and their distribution within the canopy 
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is given by transmittance theory. However, radiative transfer theory works on the 

solution of the integro-differential equation for a specific radiance. The solution 

of this equation leads to canopy reflectance (Goel et al., 1988). The inversion of 

these models results in the estimation of crop biophysical and biochemical 

properties.  

The radiative transfer equation is based on the fact that when the beam of 

radiation travels, it loses energy to absorption, gains energy by emission, and 

redistributes energy by scattering. The radiative transfer (RT) approach is one of 

the popular methods to derive the vegetation reflectance spectra. The engine of 

the radiative transfer theory is integrodifferential equations. The RT equation for 

unpolarised light is 

              
𝜕 𝐼(𝜏; ŝ)

𝜕 𝜏
=  −𝐼(𝜏;  ŝ) + (

1

4𝜋
) ∫ 𝑝( ŝ, ŝ′)𝐼(𝜏;  ŝ)𝑑𝑤′ +  𝜀(ȓ, ŝ)/𝜎𝑝   ,           (2.8) 

Where parameters of the equation are as follows:  

𝐼 Specific intensity (Radiance or Brightness). average power flux 

density within a unit frequency band centred at a given frequency, 

within a unit solid angle (unit: watt/meter/Steradian/Hz at 

position vector r in the direction ŝ in a 3D space).  

𝜎 Sum of scattering and absorption cross-sections of medium 

particle. This means the power absorbed/scattered by the particle 

is 𝜎𝐼. 

𝑑𝑤′ The element of a solid angle. Integration over 𝑤′ is taken to include 

the contributions from all directions ŝ′. 

𝜏 Optical distance defined by ∫ 𝜎𝜌 𝑑𝑠 where 𝜌 is the number of 

particles per unit volume with which the incident radiation 

interact. 

𝑝(ŝ, ŝ′) Phase function represents the probability that the radiance in the 

direction ŝ′ will be scattered into a solid angle about direction ŝ. 

𝜀(ȓ, ŝ) emission from within the canopy in the VIS and NIR regions is 

negligible and hence 𝜀(ȓ, ŝ) = 0. 

The use of specific intensity in this equation is quite useful because it is 

intrinsic to the source and conserved along the ray path. Thus the same value 

should be measured every time. The solution of these equations involve:  

i. Finding the phase functions (specification) of the scattering properties of 
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various canopy elements (not related to the phase of a wave). Its origin is 

from astronomy - 'lunar phases'. Here, the absorption coefficient of the 

canopy is required, which is higher than that for atmospheric particles. In 

PAR, the absorption coefficient is 0.85, while in NIR, it is 0.5-0.15 (Goel et 

al., 1988).   

ii. The solution of the radiative transfer equation for a given boundary 

condition is an iterative process of updating specific intensity (I). The steps 

are as follows: 

a. Put initial guess of  I  in the RHS of equation (2.8) and integrate 

with boundary conditions to get a new I. However, deciding the 

boundary condition is challenging, as the top of the canopy is 

exposed to both direct (specular) radiation and diffuse flux of 

scattered radiation. 

b.     Use new I again, in RHS of equation (2.8) and calculate new I.  

c.     Continue this process until the value of I doesn't fall within the 

desired level of accuracy. 

The reflectance spectra are affected by various parameters like solar 

radiation, canopy architecture, soil characteristics etc. Solar radiation reaching the 

canopy can be divided into two parts: direct radiation (without scattering) and 

diffused radiation (with scattering). Direct flux direction is decided by solar zenith 

angle, while diffuse flux radiation is characterized by angular distribution. When 

the atmosphere is cloudy, then the reflectance contains less information (Goel et 

al., 1988). Many canopy-reflectance (CR) models assume that diffused radiation is 

isotropic and that SKYL (fraction of incident radiation that is diffused) is a given 

parameter (less than 15% in NIR).  However, SKYL depends on atmospheric 

conditions (dust and water vapours). It is also wavelength-dependent in a way 

that it is more sensitive for visible wavelengths and less sensitive in the NIR region 

of the electromagnetic spectrum. Reflectance can be roughly approximated as a 

function of the angle of incidence such that 𝑅 = a𝛼2 +  𝑏𝛼 +  𝑐, where 𝑅 is 

reflectance, α is the angle of incidence, and 𝑎, 𝑏, 𝑐 are wavelength-dependent 
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constants (Goel et al., 1988).  

The movement of incident solar flux inside the canopy (towards the soil 

and then towards the sensor) depends on various factors like scattering and 

absorbing properties of the vegetation elements, the canopy's density, and the 

canopy's orientation. These factors result in various flux types received by the 

sensor. Flux received by the sensor can be three types – i) One-time scattered flux 

(scattered by vegetation); ii) Multiple time scattered fluxes by various vegetation 

elements (not by ground), and iii) Soil reflected flux (with or 

without interacting with the vegetation).  

The vegetation density can be characterized by LAI, while LAD 

is characterized by distribution density function 𝑓(ФL + ΨL). Where ФL is leaf 

inclination and ΨL is leaf azimuthal angle.  Based on these, canopies can be 

described by six types of vegetation: planophile, erectophile, extremophile (forest 

canopies), uniform, and spherical. Maize can be categorized as planophile and 

erectophile canopy.  

BRDF is closely related to LAD. Planophile canopy has the least variability 

in reflectance as a function of the solar and view zenith angle. However, for an 

erectophile type canopy, the reflectance in VIS decreases with an increase in solar 

zenith angle while it increases in NIR (Kimes et al., 1984). For example, BRDF of 

corn in NIR and VIS region changes differently. For corn, the reflectance 

distribution in VIS and NIR is like 'shallow bowl shape', whereas values of 

reflectance increase with view zenith angle for most azimuth angles. NIR region 

backscattering is seen more than VIS region, while BRDF for NIR and VIS in 

backscattering direction are different. For a source at the zenith, the BRDF can be 

approximated by Lambertian surface with mostly diffused radiation in all other 

directions. With the increase in solar zenith angle, it becomes a non-Lambertian 

surface (due to specular reflectance).  

It is observed that BRDF of bare soil is highly Non-Lambertian (with 

respect to vegetation canopies) due to its higher roughness (Eaton et al., 1974). If 

LAI is greater than three, soil BRDF can be considered Lambertian as the 

canopy becomes dense and very little soil is visible. But, if LAI is less, then the 
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effect of soil on reflectance increases (more absorption due to internal scattering) 

and affects more in hotspot direction (due to specular radiation). The research 

community well accepts the radiative transfer models and their inversion process. 

However, the study of these models is out of the scope of this PhD research. The 

details of different RT models have been discussed in Appendix 0.  

2.8 Research gaps 

The synthesis of the literature relevant to the remote estimation of crop 

biophysical and biochemical parameters have revealed the following research 

gaps:  

i. The existing methods for remote estimation of LAI using optical data give 

foliage LAI and need local tuning to get near to true LAI values. Moreover, 

most of the models overestimate the LAI for initial crop growth stages and 

underestimate it as the crop reaches maturity (Yao et al., 2008). This is 

majorly due to the lack of crop-specific architectural information in the 

models (Welles and Norman, 1991). 

ii. There are multiple knowledge gaps in the optical remote sensing area for 

the estimation of leaf water content. Most of the indices and models are 

made for satellite-based mixed pixel data, which may not work well for 

pure pixel data. Moreover, mixed pixel data do not perform well for the 

early growth stage of the crop due to minimum canopy coverage and coarse 

spatial resolution of data. The pure pixel data has not been explored 

intensively for estimating the leaf water content of the crop so that plant-

level decisions can be made. (Jones and Sirault, 2014 ; Cheng et al., 2006, 

Chen et al., 2006; Kokaly and Clark, 1999)  

iii. Very little work is available on remote measurement of leaf nitrogen 

content with respect to the change in leaf water content. Considering the 

association of water molecules with plant protein, the bands or indices for 

estimating leaf nitrogen content from visible to near-infrared region (400-
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1000 nm) are expected to be affected by the water molecules around plant 

proteins. 

iv. The radiative transfer crop model - PROSPECT/PROSAIL is one of the 

popular crop simulation models. However, these models are entirely based 

on independent leaf/canopy constituent absorption properties of 

electromagnetic spectra. This makes the model weak for field-based 

studies. Moreover, the unavailability of transmission spectra in the remote 

sensing technique adds uncertainty to the inversion process of these 

models. (Colombo et al., 2008; Baret and Fourty, 1997; Jacquemoud et al., 

1996) 

v. There is little research available where process-based crop models were 

fed near-real-time drone-based estimation as crop parameter products. 

This kind of research has the potential to produce precise information 

about crop health.  

vi. In the field of remote sensing-based crop research, very few studies were 

found on the understanding of leaf-level water and nitrogen dynamics 

across different crop growth stages. Knowledge of these dynamics will be 

extremely helpful in distinguishing water and nitrogen stress in the plant. 

 

2.9 Chapter summary 

This chapter compiled state-of-the-art literature in optical sensing for 

drone-based precision agriculture. First, an overview of precision agriculture and 

the use of drones in precision agriculture has been discussed. The chapter also 

presented existing popular vegetation indices used to measure crop biophysical 

and biochemical properties and their limitations. An overview of various crop 

biophysical and biochemical properties estimation processes was presented. 

Towards the end of the chapter, radiative transfer models were explained. 

Ultimately research gaps were presented, and the first four were selected for 
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framing objectives. These research objectives were presented in chapter one, with 

the gaps and objectives addressed in chapters three to six.  
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Chapter 3 

Site description and data acquisition 

 

 
An image captured during the hyperspectral camera-mounted drone flight, 

 over the research farm.  

 

 

 

 



Chapter 3: Site description and data acquisition                                                         Page 54  
 

 

 

3. Site description and data acquisition 

Research gaps listed in chapters one and two were addressed by doing 

field experiments from June 2017 to Feb 2020. The data collected till Rabi 

2017-18 seasons were used to understand the crop dynamics and data 

collection process. A semi-controlled pot experiment was also carried out, 

and learnings of this experiment were used for data collection from field-

based experiments. The pot experiment details are given in Appendix 1. The 

field data collected from Rabi 2018-19 seasons were used for the modelling 

purpose in this research. This chapter discussed the details of the field 

experiment and the collected dataset. The collected data were used to create 

and validate biophysical, biochemical, and crop stress estimation models 

explained in chapters four, five, and six.  

3.1 Field experiment: Research farm and data collection  

The research farm used to do data collection for this PhD work was part 

of an Indo-Japan project named “Data sciences based farming support 

system for sustainable crop production under climate change”. The project 

started in June 2017. The Kharif 2017 and Rabi 2017-18 cultivation was 

undertaken in the first stage of the project, while in the second stage, only 

the Rabi seasons of 2018-19 and 2019-20 were used for cultivation. The 

Rabi season was selected to precisely understand the water stress effect on 

the crop, which was not possible during the Kharif season as the frequent 

rainfall events in the Kharif season do not allow the crop to reach heavy 

water stress condition. For this research, the first stage was used to 

understand the crop behaviour, data collection process and set protocols for 

stage-two data collection. During stage two, field stay was done to collect 

farm data on a daily basis. Thus, only stage-two data was used for model 

creation and validation in this research. For data collection during Rabi 

2018-19 and 2019-20 seasons, the field stay was 45 days from the 6-leaf 

stage of the crop to the silking stage, followed by multiple field visits until 
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the maturity stage. The protocol for collecting data from various sensors is 

given in Appendix 2, and details of the field stay are given in Appendix 3.  

3.1.1 Details of the research farm 

The study was conducted for maize crop (Scientific name: Zea mays L.; 

Variety: Cargil 900M (gold)) in the Agro Climate Research Centre farm of 

Professor Jayashankar Telangana State Agricultural University, located at 

Hyderabad, Telangana, India. The study area is a semi-arid region that lies 

between 17°19'27.2"N – 17°19'28.3"N and 78°23'55.4"E – 78°23'56.2"E, as 

shown in Figure 3.1. The details of the research farm are given in Table 3.1. 

The second stage crop was sown during 2018-19 and 2019-20 Rabi seasons. 

The details of the sowing date and various management practices are given 

in Table 3.2. The ground truth and drone-based data collection were 

undertaken frequently during all the growth stages of the crop. The 

experiment was laid out in split-plot design with a combination of three 

irrigation schedules and three fertilisation levels based on a climatological 

approach (Halagalimath et al., 2017). The ratio of irrigation water (IW) and 

cumulative pan evaporation (CPE) was used to decide the day on which 

plots need to be irrigated. Irrigation at IW/CPE ratio of 0.6, 0.8, and 1 was 

selected for plots with three irrigation levels. During each irrigation, 50 mm 

water was supplied to the scheduled plots through pipes directed through a 

water meter. Accordingly, IW was kept constant (50 mm), and daily readings 

from pan evaporimeters (in mm) used to find the IW/CPE ratio and thus the 

timing of irrigation for the different plots. Three levels of nitrogen 

fertilisation (100, 200, and 300 kg nitrogen ha-1) were given to each 

irrigation plot type. This combination of three irrigation and three 

fertilisation levels resulted in nine unique plots, and so with each replicated 

thrice, there was a total of 27 subplots (3 water x 3 nitrogen x 3 

replications), as shown in Figure 3.1 (b). Each plot of size 4.2 m x 4.8 m was 

treated with one of the three different water and nitrogen levels to enable 

the subplots to be at low, medium and high water and fertiliser stress 
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conditions. For each treatment, a plant to plant spacing of 20 cm and row to 

row spacing of 60 cm was adopted, resulting in a plant density of ~8.33 

plants per m2. Nitrogen was applied to all the plots at three different stages – 

sowing, six-leaf stage, and tasseling stage. Figure 3.2 shows the plots 

arrangement diagram in the research farm.  

 

Figure 3.1: (a) Geographical location of the farm, located in a semi-arid zone in 

the southern part of India. (b) Layout of the research farm as seen from the 

drone, which can capture leaf-level high-resolution (around 1 cm2 pixel 

resolution) images. 

Table 3.1: Details of region and field 

Crop variety Maize (Zea mays L.) – Cargil 900m gold (Monsanto) 

Soil type light red sandy-loam soil (soil profile data in Appendix 4) 

Irrigation type Furrow irrigation through bore well 

Location ARI, PJTSAU, Hyderabad, India (First site: 17°19'27.5"N and 

78°23'53.0"E, Second site: 17°19'27.7"N and 78°23'55.6"E) 

Annual rainfall ~ 822 mm 

Annual PET 1700 to 1960 mm 
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Table 3.2: Details of various field experiment treatments 

Treatment Meaning Rabi (Winter) 

2018-2019 

Rabi (Winter) 

2019-2020 

Crop duration 16/10/2018–

20/02/2019 

18/10/2019–

16/02/2020 

N1 Low nitrogen 100 kg/ha 90 kg/ha 

N2 Ideal nitrogen 200 kg/ha 180 kg/ha 

N3 Overdose nitrogen 300 kg/ha 240 kg/ha 

I1 High water stress Irrigation when 

IW/CPE = 0.6 

Irrigation at 60% 

DASM 

I2 Moderate water stress Irrigation when 

IW/CPE = 0.8 

Irrigation at 40% 

DASM 

I3 No water stress Irrigation when 

IW/CPE = 1.2 

Irrigation at 20% 

DASM 

 

  

Figure 3.2: Treatment details given to the plots during (a) Rabi 2018-19, and (b) 

Rabi 2019-20 seasons. A total of three replications are used, and in each 

replication, a total of 9 treatments (subplots) with different water and fertiliser 

were applied.   
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3.1.2 Drone-based data collection 

Drone-based RGB images were captured periodically from a height of      

25 m during 2018-19 and from a height of 40 m during 2019-20 season 

(keeping pixel resolution around 2 cm). An overlap of 70–80 % at the front 

and 50–70 % at the side was maintained in consecutive RGB images 

captured by the drone-mounted camera, as shown in Figure 3.3. This overlap 

ensured the creation of a quality orthomosaic (Raj et al., 2019). In 2018–19 

Rabi season, a ‘Canon IXUS’ camera (Canon IXUS 160, 20 megapixels, 

programmed to capture images continuously at three-second intervals, FoV 

of 55° × 50°) was used. In Rabi 2019–20 season, a ‘Micasense Altum’ camera 

(2064 x 1544 pixel, per band, Blue at 475 nm and 32 nm BW, Green at 560 

nm and 27 nm BW, Red at 668 nm and 14 nm BW) was used because the 

Canon camera was damaged in the last flight of the 2018–19 season.  

 

Figure 3.3: Frontal and side overlaps of images taken by the drone-mounted 

camera moving in a serpentine motion (image is not on scale). The image is 

adapted from  Raj et al., 2019.  
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A drone-based push-broom hyperspectral camera (Bayspec OCI-F-HR 

hyperspectral imager; frame rate 50 fps, FWHM 2.1nm, FOV 20 degree, total 240 

bands) was used to collect top-of-canopy farm images in the 400-1000 nm 

spectral range. The data were captured temporally from a height of 50 metres 

above the ground having around 1 cm spatial resolution. The created 

hyperspectral cube of the farm map is shown in Figure 3.4. The detailed process 

of drone-based data collection is presented in Appendix 5.  

3.1.3 On-ground data collection 

The LAI of each plot was recorded using a Licor 2200-C canopy analyser 

with a 270° view angle cap and three ‘below’ canopy readings per plot on the 

same day of each flight. Three samples of LAI data were collected from a 

 

Figure 3.4: Hyperspectral data cube - a three-dimensional representation of a 

hyperspectral image. Here, X and Y represent the spatial dimension, while the Z 

dimension (denoted by 𝜆) shows the spectral information according to 

wavelength for each pixel in the image. The top layer of the cube is showing an 

RGB map of a section of the farm. The spectral information of a vegetation and 

soil pixel is shown at the right of the plot. 
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rectangular subplot of innermost three rows (pictorial representation of a 

subplot is given in Figure 3.5), and the values averaged and corrected based on 

atmospheric sky condition. Canopy height was measured by taking five samples 

from each sub-plot. The plants were randomly selected from the corners of the 

rectangular block and one from the centre of the block, as shown in Figure 3.5. 

Appendix 2 explains the basis on which the number of samples for LAI and 

height data was decided. Various canopy structural properties such as top leaf 

angle and leaf area were also recorded during different growth stages. Five 

plants (four plants from corners and one plant from the center) from each of the 

nine plots were chosen, and the area of every leaf calculated based on the lengths 

and widths of the leaves, as shown in Figure 3.6. No destructive sampling was 

done to record the lengths and widths of the leaves. The per-plant total leaf area 

of these five plants was averaged and multiplied with the number of plants in the 

respective plots. The total leaf area in a plot was then divided by the plot ground 

area, being 4.2 m  4.8 m. The LAI calculated using this method was considered 

to be the closest possible to the true LAI and termed LAIactual. 

 

Figure 3.5: Picture of a subplot. Every subplot is of size 4.2 m x 4.8 m. Red 

colour box at the center of the subplot indicates a portion from which all the 

non-destructive data was collected. 
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After the collection of drone-based hyperspectral images, a hand-held 

spectroradiometer of make Spectra Vista GER 1500 was used to collect leaf 

spectral signatures from one leaf of each of the 27 subplots. Three 

spectroradiometer readings were acquired from each leaf, and the leaf plucked 

and packed in an airtight pre-weighed zip bag for measuring the LWC. The 

destructive sampling was done only from side rows of the subplots, and the 

inner three rows remained intact throughout the season. One leaf from the 

destructive sampling zone of every sub-plot (preferably second last row) was 

selected, and three spectroradiometer reading were collected from that leaf. 

Then the leaf was plucked out and packed in a zip bag for further lab chemical 

analysis to find water and nitrogen content in the leaf. Most of the data were 

collected from 10:00 AM to 2:00 PM when the sun was near zenith, but canopy 

height was taken even at different times as the maize crop height had no 

relationship with the sun angle. 

The destructive sampling was done at regular intervals throughout the 

lifecycle of the crop. The prime objective of the destructive sampling was to find 

out the precise nitrogen and water content in the leaves over different growth 

stages of the crop so that it can be used as ground-truth information and to tune 

models based on drone-based data. Protocols to collect on-ground data is 

presented in Appendix 2.  

 

Figure 3.6: Calculation of the actual area of a leaf by using the length and width 

of the leaf, measured at different locations. The area is calculated based on the 

geometric formulae shown. 
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3.1.4 Processing of destructive leaf samples 

After collecting the hyperspectral signatures from leaves, the leaves were 

plucked out and packed into respective pre-weighed airtight zip-bag. Later, 

individual leaf-filled zip-bags were again weighed and the subtraction of 

before and after weights of zip-bags were used as the fresh weight of the 

leaves. The leaves were then cut into small pieces, put into a pre-weighted 

aluminium foil vessel, and weighted again. The leaf-filled aluminium foil 

vessel was then put in an oven at 60 degrees Celsius for around 72 hours to 

get completely dry samples. The dried samples in the aluminium foil vessels 

were weighed again, and the dry weight of the leaves obtained. The fresh 

weight and dry weight of the leaf samples were used to obtain the leaf water 

content using  

   𝐿𝑊𝐶 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑟𝑒𝑠ℎ−𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑟𝑦

𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑟𝑒𝑠ℎ
.               (3.1) 

To obtain the nitrogen content in the leaf samples, the dry leaves were 

crushed into small pieces and passed through a fine sieve to get the 

powdered sample. The powdered sample was then fed to a CHNS elemental 

analyser (details in Appendix 6), and from every sample, two replicates were 

analyzed. A total of 271 leaf samples were analyzed through an elemental 

analyzer. The CHNS analyzer must be fed with the homogenised powdered 

sample. The preprocessing of leaf samples are time-consuming and critical 

as the homogenisation of the leaf samples are very important to get reliable 

results with good repeatability. Figure 3.7 shows the step-by-step approach 

used, starting from leaf collection to making its fine powder. Table 3.3 

compiles all the data collected from the field and their respective uses. 
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Figure 3.7: Steps to get ground truth leaf nitrogen and leaf water content data 

from destructively sampled leaf. 
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Table 3.3: Data collected from the field. 

Data Instrument used Pixel size/ Number of 
samples per plot 

Use of the data 

High spatial and 
temporal 
resolution top-
of-canopy RGB 
images 

Hexacopter-
mounted Canon 
IXUS (Rabi 2018-
19 season), and 
Micasense Altum 
(Rabi 2019-20 
season) 

Pixel size < 2 cm Input for remote 
estimation of the 
crop height and 
the green-canopy 
cover fraction 

High spatial and 
temporal 
resolution top-
of-the-canopy 
hyperspectral 
images 

Hexacopter-

mounted Bayspec 

Hyperspectral 

imager (400-1000 

nm) 

Spatial resolution ~ 2 cm 

 

Spectral resolution = 2.4 
nm 

Model training and 
testing 

Foilage LAI Licor Canopy 
analyser Model: 
2200-C 

Three ‘below’ canopy 

readings per plot, and 

frequent readings for 

atmospheric correction 

Training of the LAI 
Model 

True LAI The lengths and 
widths of leaves 
were measured 
using a scale 
(Figure 3.6) 

Five plants per plot for nine 
plots are recorded (one 
time) 

To calculate the 
actual LAI of the 
plot for validation 
of all of the LAI 
models 

Top leaf angle Clinometer mobile 
application 

Leaf angles of top 5–6 

leaves from five plants per 

plot 

Used to create the 
VLADF model 

Canopy height Metre scale An average height of five 

plants per plot is used to 

represent the height of the 

canopy of one plot 

Validation for 
height estimation 
model 

Hyperspectral 
signatures 

Spectroradiometer 

(SVC GER1500) 

(400 - 1000 nm) 

Three signatures per leaf 
sample 

Indices creation 

Leaf water 
content 

60-72 hours in an 
oven at 60°C 

One leaf per plot Ground-truthing 
the estimated leaf 
water 

Leaf nitrogen 
content 

CHNS elemental 
analyser 

3-4 mg of samples 
replicated twice 

Ground-truthing 
the estimated leaf 
nitrogen 

Tassel count Manual counting Each plant in every plot For validation of 
tassel counting 
model 

Yield Weighing Method Middle three rows of the 
plot 

Connecting crop 
stress and 
fertilisation effect 
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3.2 Ground truth data description 

Manually collected crop physical and chemical properties data were used 

as ground truth in this research. To check the impact of different irrigation 

and fertilisation treatments on the crop measured variable (yield, LAI, 

height, leaf water and nitrogen content), one-way analysis of variance 

(ANOVA) test was performed on the data set. The results concluded a 

statistically significant impact of treatments on leaf water content, grain 

yield, LAI, and crop height as shown below.   

Leaf water content: F(2,24) = 9.402, p = 0.001 

Grain yield: F(8, 18) = 21.449, p = 1.05e-7 

LAI: F(8, 18) = 4.555, p = 0.003 

Crop height: F(8,18) = 10.248, p = 2.57e-5 

To check whether the treatments were significantly different, the Tukey 

HSD test was performed. Interestingly, the effect of various treatments on 

the leaf nitrogen content was not statistically significant. However, the trend 

of leaf nitrogen was found such that low fertilisation treatment plants 

showed lesser leaf nitrogen than plants treated with sufficient or high doses 

of fertilisation.   

Results of variables that showed significant differences with the One-way 

ANOVA test followed by post-hoc Tukey HSD Test had been explored. Table 

3.4 shows a statistically significant difference between LWC of I1, I2 and I1, 

I3 irrigation treatment plants. Table 3.5 shows the effect of different 

treatments on grain yield, LAI, and crop height.  

Table 3.4: Tukey HSD test results for irrigation treatment effect on LWC 

Irrigation treatments 
(9 samples) 

Tukey HSD p-value 

I1 and I2 0.009 p<0.01 

I1 and I3 0.001 p<0.01 

I2 and I3 0.664 insignificant 
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Table 3.5: Post-hoc Tukey HSD test results showing statistically sigificant 

difference between biophysical properties of crop due to differnet irrigation and 

fertilisation treatments. 

Tukey HSD p-value 

Treatments 
(3 samples) 

Grain yield LAI  Height  

I1N1 and I1N2 insignificant insignificant insignificant 

I1N1 and I1N3 insignificant insignificant insignificant 

I1N1 and I2N1 insignificant insignificant  p<0.05 

I1N1 and I2N2 insignificant insignificant p<0.01 

I1N1 and I2N3 p<0.05 p<0.05 insignificant 

I1N1 and I3N1 p<0.01 p<0.01 p<0.01 

I1N1 and I3N2 p<0.01 p<0.05 p<0.01 

I1N1 and I3N3 p<0.01 insignificant p<0.01 

I1N2 and I1N3 insignificant insignificant insignificant 

I1N2 and I2N1 insignificant insignificant insignificant 

I1N2 and I2N2 insignificant insignificant p<0.05 

I1N2 and I2N3 insignificant insignificant insignificant 

I1N2 and I3N1 p<0.05 p<0.05 p<0.01 

I1N2 and I3N2 p<0.01 insignificant p<0.01 

I1N2 and I3N3 p<0.01 insignificant p<0.01 

I1N3 and I2N1 insignificant insignificant insignificant 

I1N3 and I2N2 insignificant insignificant insignificant 

I1N3 and I3N1 insignificant insignificant p<0.05 

I1N3 and I3N2 p<0.01 insignificant p<0.05 
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Table 3.5: Post-hoc Tukey HSD test results showing statistically significant 

difference between biophysical properties of crop due to different irrigation and 

fertilisation treatments. (Continued) 

Treatments 
(3 samples) 

Grain yield LAI  Height  

I1N3 and I3N3 p<0.01 insignificant p<0.05 

I2N1 and I2N2 insignificant insignificant insignificant 

I2N1 and I2N3 insignificant insignificant insignificant 

I2N1 and I3N1 p<0.01 insignificant insignificant 

I2N1 and I3N2 p<0.01 insignificant insignificant 

I2N1 and I3N3 p<0.01 insignificant insignificant 

I2N2 and I2N3 insignificant insignificant insignificant 

I2N2 and I3N1 p<0.05 insignificant insignificant 

I2N2 and I3N2 p<0.01 insignificant insignificant 

I2N2 and I3N3 p<0.01 insignificant insignificant 

I2N3 and I3N1  insignificant insignificant insignificant 

I2N3 and I3N2 insignificant insignificant insignificant 

I2N3 and I3N3 p<0.01 insignificant insignificant 

I3N1 and I3N2 insignificant insignificant insignificant 

I3N1 and I3N3 p<0.05 insignificant insignificant 

I3N2 and I3N3 insignificant insignificant insignificant 
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3.2.1 Leaf water content 

One leaf from the top-of-the canopy (which can be seen from the drone) 

of every plot was destructively sampled over a period of time, and its leaf 

water content (LWC), and leaf nitrogen content (LNC) were obtained. It was 

found that LWC depends on water stress present in the plant (due to soil 

moisture stress) and also on the growth stage of the crop. As the growth 

stage increases, the water holding capacity of the leaves decreases. Figure 

3.8 shows temporal LWC distribution in I1, I2, and I3 plants treatments. The 

growth stage timing and irrigation & rainfall events are also indicated in the 

plot. Until 26 days after sowing (DAS), all the plots were treated with the 

same amount of water; thus, there was no observable difference in LWC of 

any treatment until 26 DAS. The growth stages also started early in I3 plots, 

and this difference is visible from the tasseling stage where for I3, and I2 

plots, 50% tasseling event was recorded around 65 DAS while for I1 plots, 

50% tasseling event was recorded around 72 DAS.  

The late tasseling was majorly due to significant water stress present in 

the plots. One of the interesting observations about the LWC percentage in 

different plots is, for I3 plots, the LWC percentage remains higher than I2 

until the tasseling-silking stage and then dropped below the percentage of I1 

plots after the tasseling-silking stage. This trend was even maintained for I2 

plots. It seems that, after the tasseling/silking stage, the water requirement 

in the stem for the formation of cobs was more than in the leaves, thus for all 

water-sufficient plots, the LWC percentage decreased to support the 

maximum cob formation. However, water-stressed plants could not support 

the cob formation process at the right time. The effect of the water stress 

was evident on the height and LAI of the plots. Section 3.2.3 and section 

3.2.4 has discussed the effect of water and nitrogen stress on canopy LAI and 

height.  
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3.2.2 Leaf nitrogen content 

The same leaf which was used to determine the LWC was analysed in the 

CHNS analyzer and the total LNC of the leaves were obtained. Figure 3.9 

shows the temporal LNC in the different treatment plots. The maximum 

value of leaf-nitrogen can be observed at the early stage of the crop, and it 

keeps reducing as the plant grows. The change in leaf nitrogen can be 

correlated with the fertiliser management done on the farm. Maintaining the 

 

Figure 3.8: Temporal LWC of different irrigation treatment plants and their 

growth stages. The primary y-axis shows LWC percentage, and the secondary y-

axis shows irrigation and rainfall values in mm. 
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optimal amount of nitrogen in the leaves/plant is critical as nitrogen is the 

second major yield deciding factor after water (along with pest 

management). If the availability of nitrogen in the plant is low, then the 

kernel formation will be reduced, and less number of doughs will be formed, 

resulting in a low yield. The availability of nitrogen in the plant depends not 

only on fertilizer provided in the soil but also on soil moisture. Even if there 

is enough soil nitrogen available, the plant might not uptake the soil nitrogen 

due to low water availability to transfer the nitrogen from the soil to stem 

and then leaves. Figure 3.9 shows how leaf-nitrogen changes with various 

growth stages of the crop. It can also be observed that if nitrogen treatment 

was kept the same, then water application does make a difference in LNC. It 

can also be seen that for all plots treated with sufficient water (I2 and I3), 

the LNC before the tasseling stage was around 32 mg/g, but for limited 

nitrogen treatment plots, it was around 28 mg/g. This difference in LNC even 

for sufficiently water-treated plots makes a huge yield-gap between I1 and 

I3 plots. 
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Figure 3.9: Temporal LNC of different irrigation and nitrogen treatment plants and 

their growth stages. 
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3.2.3 Leaf area index and canopy height 

The analysis of various treatments on LAI and height is discussed in this 

section. In figure 3.10 and 3.11, LAI and height values of different treatment 

canopies are shown, respectively. Plots treated with low nitrogen but 

different water levels show the highest variability in LAI/height, with the 

highest LAI/height in the I3N1 and lowest LAI/height in the I1N1 case. 

However, this variability reduces when nitrogen is provided in a sufficient 

amount (LAI/height of all the treatments significantly increases when 

compared to I1N1 plots). All water stress plots have low LAI values than I3 

plots. However, plots treated with sufficient water does not show any visible 

change in LAI when nitrogen treatment changes. When low N plots were 

treated with different water treatments (Figure 3.10 / Figure 3.11), then it 

was observed that LAI/height was higher than when there was no water 

stress, and thus it can be concluded that in the case of low N availability, 

water plays an important role in deciding LAI. I.e. more water higher the 

LAI/height. In the condition where water-stressed plots are treated with 

different N levels, data has shown higher LAI/height when high N is given. In 

the case of no water-stressed plots, changing levels of N seems not to affect 

the LAI /height values. 

3.2.4 Crop yield 

Analysis of yield data showed a general trend that the yield increases with 

an increase in input resources with a significantly high yield in the case of 

the I3N3 treatment and the lowest yield in the I1N1 treatment. However, for 

water stress condition, I1N3 seem to perform better than I2N1 and 

comparable to I2N2 treatments. Treatment-wise yield and harvesting index 

is shown in Figure 3.12. From the analysis, it is evident that optimal use of 

nitrogen does make a change in grain yield in the case of limited water 

availability.    
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Figure 3.10: Temporal LAI of different treatment plants and their growth stages. 
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Figure 3.11: Temporal height of different treatment plants and their growth 

stages. 
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3.2.5 Tassel counting 

From ground truth data, it was found that the tasseling stage in I1 plots 

was delayed by 2-8 days when compared to I2 and I3 plots. The delay was 

minimum for I1N3 plots and maximum for I1N1 plots. Here, it should be noted 

that the tasseling stage was considered as the time when 50% of the plants in a 

plot get completely open tassels. However, the appearance of tassels (which 

might not be completely open) in all the plots seems to occur around the same 

time (60 days after sowing for the Rabi 2018 season). The analysis showed that 

the increase in the number of tassels per day was different for water-stressed 

and water-sufficient plots. For I3 and I2, after seven days of the appearance of 

 

Figure 3.12: Stover and grain yield of different treatment plots. The solid line 

within the box shows the median value, and the whiskers represent the top and 

bottom 25 percentile values.    
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the first tassel, the total percentage of tassels changed to 30-45%. However, for 

I1 plots, the total percentage of tassels changed to 10-20%. This different rate of 

change of tassels can play a crucial role in identifying water-stressed plots better 

during the tasseling stage. This rate may also be affected by pests present in the 

farm (e.g. even if the soil moisture is sufficient, but there is a pest in the plot, the 

tassel appearance rate can be less than expected). Figure 3.13 shows the box-

whisker plot of temporal tassel-percentage change in the I1, I2, and I3 plots.   

3.3 Preprocessing of hyperspectral data 

Hyperspectral data from two different instruments were collected from 

the farm. One is based on a hand-held spectroradiometer that gives point 

data, and the second is a drone-based hyperspectral push-broom (line 

scanner) imager that gives a hyperspectral data cube for the whole farm. 

The wavelength range of both hyperspectral sensors was 400-1000 nm.  

 

 

Figure 3.13: Box-whisker plot of tasseling percentage in different water 

treatment plots. The solid line within the box shows the median value, and 

the whiskers represent the top and bottom 25 percentile values.    
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3.3.1 Spectroradiometer data 

The collected spectroradiometer data (SVC GER1500, FOV 1 degree, 381 

bands) had a high-frequency noise associated with it. A Savitsky-Golay filter 

was used to smooth the data by removing high-frequency noise. Figure 3.14 

shows the raw and smooth spectra of a bright sunlit leaf, while Figure 3.15 

shows a snapshot of the spectroradiometer data collection and the raw data 

file, which needs to be converted into reflectance values by dividing target 

radiance with a reference radiance. After removing high-frequency noise 

from the data, the spectrum was coupled with ground truth information 

(water content, nitrogen content and other crop information), as shown in 

Figure 3.7. A total of 272 leaves were analysed and stored in the dataframe, 

which was used for further analysis.    

 

 

Figure 3.14: Raw spectra having high-frequency noise (majorly after 900 nm), 

and its smooth version after applying a Savitsky-Golay filter. 
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3.3.2 Hyperspectral imager data 

The hyperspectral sensor was a line scanner type from Bayspec, requiring 

the raw data to be preprocessed in their cube creator software. The software 

does orthorectification and gives a reflectance hyperspectral cube. However, 

the pixel radiometric values contain high-frequency noise, which needs to be 

corrected using the Savitsky-Golay filter. The hyperspectral data may also 

show some missing lines in some of the stitched tiles. These missing lines 

have been corrected by replacing the missing value with band-wise average 

values of adjacent pixels. One tile with missing lines before and after 

correction is shown in Figure 3.16. The Hyperspectral images were collected 

from a 50 m height. The flight height was determined based on the required 

1.0 cm spatial resolution to ensure pure pixels are obtained in the 

image. Consequently, the perpendicular distance between the drone and the 

ground to achieve this was calculated based on the instantaneous FOV of the 

sensor. Figure 3.17 shows the false colour composite image of the 

farm and a few spectra of the selected area. As the spatial resolution of the 

image is in sub-cm, thus individual leaf level spectra can be extracted.  

Figure 3.15: Left image is a spectroradiometer data collection snapshot, and the 

right-hand side text-image is raw spectroradiometer data and the reflectance 

formula. 
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Figure 3.16: The false color composite image tile (a) showing some missing 

lines in the data and (b) the corrected image where all the missing lines are 

filled with the band-wise neighbor pixel values.  

 

Figure 3.17: False-color composite image of the farm and reflectance spectra of 

some selected locations. Image is taken from 50 m height.  
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3.4 Chapter summary 

This chapter presented the details of the field experiment setup and dataset 

used for this research, including the research farm location, ground truth and 

drone-based data collection, and destructive sampling steps. A graphical and 

statistical representation of the field details and the collected data were 

provided throughout the chapter. This dataset will be used to create models for 

estimating crop biophysical and biochemical properties as discussed in chapters 

four, five, and six. 
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Chapter 4 

Estimation of maize biophysical parameters 
 

 

A 3-dimensional point-cloud mesh of the research farm (07th Jan 2019) created 

using top-of-canopy, drone-based RGB images. The mesh maps are used to 

develop the digital surface model of the farm.    
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4. Estimation of maize biophysical parameters 

Crop biophysical parameters like green canopy cover (GCC), crop height, 

LAI, and tasseling/flowering percentage are good indicators of crop growth. 

Deviation of these crop biophysical parameters from optimal values at any given 

growth stage can be used as an indication of stress present in the canopy. The 

top-of-canopy RGB and hyperspectral images were used to estimate various 

biophysical properties of the maize crop. The dataset was explained in chapter 

three. The airborne RGB images were processed to create an orthomosaic and 

DSM to obtain the GCC and the canopy height, respectively. Moreover, a vertical 

leaf area distribution factor (VLADF) was developed from ground measurements 

of crop architectural properties and fed as input to a new LAI estimation model 

to obtain effective LAI and true LAI separately. Finally, tasseling percentage of 

maize was calculated using one hyperspectral band images. The development of 

these models is discussed herein.  

Note: Part of this chapter has been published as - Raj, R., Walker, J.P., 

Pingale, R., Nandan, R., Naik, B. and Jagarlapudi, A., 2021. Leaf area index 

estimation using top-of-canopy airborne RGB images. International Journal of 

Applied Earth Observation and Geoinformation, 96, p.102282.  

 

4.1 Green canopy cover 

The orthomosaics created by Metashape® were imported into the QGIS® 

software, and every subplot extracted from the respective orthomosaic using a 

subplot shapefile. To estimate the GCC of subplots, the subplot RGB image was 

first converted into an HSV (hue/saturation/value) colour space. This colour 

space image was used for classification based on the colour of the object. In this 

image type, the hue channel was used to decide the colour type; the saturation 

channel represented shades of that colour; the value channel represented the 

brightness of the colour. Using HSV images, the green pixels that represent the 

green-canopy were classified from each subplot as shown in Figure 4.1(a), and 
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the GCC fraction calculated using 

𝐺𝑟𝑒𝑒𝑛 𝑐𝑎𝑛𝑜𝑝𝑦 𝑐𝑜𝑣𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑠𝑢𝑏𝑝𝑙𝑜𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑠𝑢𝑏𝑝𝑙𝑜𝑡
 . (4.1) 

4.2 Canopy height 

The DSM shown in Figure 4.1(b) was used as an input to the height 

estimation model. This DSM was exported from Metashape as a TIFF file and 

imported into the QGIS® software. All the plots were cut out and analysed 

individually in QGIS®. The Otsu method (Otsu, 1979) was then used to separate 

all the pixels that represent the canopy area in individual plots. Figure 4.2 

represents the process of estimating the canopy height from the cropped DSM of 

the individual plot. Figure 4.2a is the DSM of one of the plots (plot number 27) 

for 19 Dec 2018. The average of the lowest five percentile elevation in Fig 4.2a 

was assumed to portray the ground elevation in that plot (Fig 4.2f) using a 

histogram of the DSM (Fig 4.2b). Since two classes were present (canopy and 

ground) in the DSM, two Gaussian curves were present in the histogram. The 

histogram was smoothed using the probability density function (Fig 4.2c) with 

the elevation value at the peak of the canopy gaussian curve assumed as the 

threshold to classify the canopy pixels from ground pixels. An example of the 

classified DSM is shown in Fig 4.2d, with the average canopy elevation found by 

 

Figure 4.1: (a) Image thresholding using the hue, saturation and value (HSV) 

method to calculate the green-canopy cover fraction, as seen from top-of-the-

canopy image; and (b) digital surface model (DSM) of the plot made from 7 Jan 

2019 RGB images. 
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averaging all the pixel values above the T° threshold height (Fig 4.2e), and the 

estimated height of the canopy calculated by subtracting ground elevation from 

canopy elevation (Fig 4.2g). The method was applied to all the plots for all 

orthomosaic over the study period. This method yielded an RMSE of 10 cm for 

the initial growth stages and an RMSE of around 20 cm for the maturity stage. 

The error in estimated canopy height is considered acceptable because the 

ground truth height against which it was compared had a standard deviation of 

~15 cm for the crop at the silking stage. The analysis result of the canopy height 

estimation model is shown in Figure 4.3, and estimated temporal plot height 

maps are shown in Figure 4.4. 

 

Figure 4.2: Framework for estimating canopy height from plot-level digital 

surface model (DSM). Histogram of the plot-level DSM is used to classify the 

canopy and background pixels. The height at which the peak of the canopy class 

is observed is selected as the threshold to separate high canopy pixels. The 

average of these high elevation pixels (considered as top of canopy pixels) is 

then subtracted from the lowest five percentile elevation pixels (considered as 

ground elevation) to obtain the canopy height of the plot. 
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Figure 4.3: (a) Box-whisker plot of measured and estimated canopy heights 

where centre part (box) represents middle 50 percentile of the data set 

(horizontal line in the box represents median value) and whisker represents 

lower and upper quartile of the data and (b) RMSE of the estimated canopy 

height. 

 

Figure 4.4: Average canopy height of plots at (a) early vegetative stage, (b) pre-

tasseling stage, (c) silking stage, and (d) dough stage.  
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4.3 Leaf Area Index (LAI)  

In this research, two alternate methods of LAI estimation have been 

developed and compared for estimating the LAI of a maize crop using top-of-

canopy RGB images collected throughout the growing season using a hexacopter. 

Both an empirical and conceptual model are developed, with inputs of 1) height 

of the canopy; 2) green-canopy cover (GCC), and 3) the VLADF, which connects 

the top leaf area to the bottom part of the canopy leaf area. The empirical model 

was trained on the Licor 2200C canopy analyser data using a linear combination 

of the inputs described above. The conceptual model was developed using only 

VLADF and products derived from drone-based images, without using any 

training data. The framework of the research is shown in Figure 4.5. Following 

section will discuss VLADF and LAI estimation models.  

4.3.1 The VLADF  concept 

The VLADF model developed here uses the crop sowing date and canopy 

height to provide a factor that relates canopy total leaf area to the top-of-canopy 

leaf area visible from the drone-based image. The camera that is mounted on the 

drone can only see the ground-projected leaf area of the top-of-canopy leaves, as 

illustrated in Figure 4.6. The average top leaf angle value can be used to convert 

this projected area into the actual top leaf area using  

 

 𝑇𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑛𝑜𝑝𝑦 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 =
𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 (𝐴)

𝑆𝑖𝑛Ɵ
 .  (4.2) 

The average leaf angle value can be noted from the farm at the time of flying the 

drone (using a clinometer), or taken from the graph in Figure 4.7 (a), created in 

this research from the farm data collected during the Rabi 2018-19 and 2019-20 

seasons. It should be noted that the standard deviation of the average top leaf 

angle at different growth stages was between 7° (for the initial growth stages) 

and 12° (for the later growth stages). The lengths and the widths of the leaves 

along with the leaf angles were calculated to determine the actual leaf area in a 
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plant. This information was used to develop the VLADF and compare the 

estimated LAI with the actual LAI. In developing the VLADF, information about 

the leaf area (collected from the data of the Rabi 2018-19 season) was used to 

relate the top-of-canopy leaf area with the full canopy leaf area. The following 

steps were used to determine the VLADF:  

(i) Divide the vertical profile of the plant into two sections based on the 

height and the age of the plant (Days after Sowing - DAS). The top section depth 

is decided based on the depth that is captured by the drone-based camera. The 

top part of the plant is denoted by T, and the bottom part is denoted by B (Figure 

4.6).  

 

Figure 4.5: Features derived from drone-based red-green-blue (RGB) data 

including canopy height and green-canopy cover (GCC) together with vertical 

leaf area distribution factor (VLADF) values (a lookup-table derived from 2 

years of canopy architectural properties data), are used as input to the LAI 

estimation models. The empirical LAI estimation model was trained with canopy 

analyser data, and results compared with the conceptual LAI estimation results, 

and with manually measured LAI from calculating the area of all the leaves.  
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(ii) Find the total leaf area of part T (𝑎𝑟𝑒𝑎𝑇) and part B (𝑎𝑟𝑒𝑎𝐵). Scale the 

leaf area of part T to ‘one’ and, accordingly, find the factor for the leaf area of part 

B separately for height and DAS-based analysis. The separate calculation of 

VLADF for height, and DAS is vital, because the same DAS plants can have 

different heights. 

(iii) The final value of VLADF is obtained after averaging height and DAS 

based VLADF by using  

                𝑉𝐿𝐴𝐷𝐹ℎ𝑒𝑖𝑔ℎ𝑡 = 1 +
𝑎𝑟𝑒𝑎𝐵

𝑎𝑟𝑒𝑎𝑇
     (4.3) 

               𝑉𝐿𝐴𝐷𝐹𝐷𝐴𝑆 =  1 +
𝑎𝑟𝑒𝑎𝐵

𝑎𝑟𝑒𝑎𝑇
       (4.4) 

       𝑉𝐿𝐴𝐷𝐹 =  
𝑉𝐿𝐴𝐷𝐹ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑉𝐿𝐴𝐷𝐹𝐷𝐴𝑆

2
.    (4.5) 

 

Figure 4.6: Image representing the relationship between the projected top leaf 

area (X) - as approximated by average of top leaves - to the actual top leaf area 

(X/SinƟ). The top part (T) of the canopy is visible from drone-based images, 

however the bottom part (B) of the canopy is not visible in the images. The 

complete leaf area that is based on the top section leaf area is therefore 

calculated by a factor which is obtained from the VLADF. As an example, the 

image to the right is a view of a plot in which the visible leaf area is the projected 

area. 
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The VLADF values used were from a lookup table based on the graph 

shown in Figure 4.7 (b) (created from the data of 2018-19 Rabi season). If the 

DAS is known, it can be directly used in the model; otherwise, techniques such as 

those explained in Sadeh et al. (2019) can be used to estimate the DAS 

information. 

The input of DAS to the VLADF model acts as a proxy indicator of the 

growth stage of the crop. The VLADF model also incorporates the fact that 

canopies in the same growth stage can be of different heights with different 

vertical leaf area distributions. Therefore, the average of the height and the DAS-

 

Figure 4.7: (a) Top-of-canopy average leaf angle based on the days after sowing 

(DAS) and the canopy height; (b) A VLADF graph based on the DAS and the 

canopy height. The graphs are used as lookup table to find the average VLADF 

factor for a canopy which is based on height and age of the crops. The shaded 

area represents variability of the values within 75% confidence limits as 

approximated by ±1.15 ∗ 𝑆𝐷 of the dataset. 
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based factors is taken as the VLADF value to be used. The VLADF model can be 

used for all maize cultivars having similar growing degree day (GDD) 

characteristics. To further improve the model, DAS could be replaced with GDD. 

However, in that case, the farm-level diurnal atmospheric temperature is 

required to calculate the GDD. 

 

4.3.2 Empirical model 

The empirical LAI estimation model developed in this research used the 

estimated canopy height, GCC, and the VLADF as input. These three inputs 

capture all of the physical parameters that can impact the LAI of the canopy. 

However, the contribution of GCC to the model is insignificant when the top-of-

canopy leaf area is saturated due to canopy closure. The contribution of the 

canopy height is also minimal when the canopy reaches its maximum height for 

similar reasons. Accordingly, most of the existing models cannot perform well 

when these two parameters achieve their maximum limit and values do not 

change much with further crop growth. The addition of the VLADF input to LAI 

estimation was hypothesized to improve the performance as VLADF 

incorporates the changes that occur inside the canopy, which cannot be captured 

from the airborne imagery of the top of the canopy. The framework of the LAI 

estimation model has already been shown in Figure 4.5.  

The model was trained to the Licor 2200-C LAI using a linear regression 

on 70 % of the Rabi 2018-19 data (randomly sampled from every growth stage), 

tested on the remaining 30 % of the Rabi 2018-19 data, and validated on the 

data from the Rabi 2019-20 season. The resulting model was 

𝐿𝐴𝐼𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 = 1.15 ∗ 𝐺𝐶𝐶 + 0.74 ∗ 𝐶𝑎𝑛𝑜𝑝𝑦ℎ𝑒𝑖𝑔ℎ𝑡 + 0.78 ∗ 𝑉𝐿𝐴𝐷𝐹 − 1.29,      (4.6) 

where 𝐿𝐴𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the model output, 𝐺𝐶𝐶 is the fraction of the green-canopy 

cover, 𝐶𝑎𝑛𝑜𝑝𝑦ℎ𝑒𝑖𝑔ℎ𝑡 is the estimated canopy height from the DSMs of the farm and 

VLADF is vertical leaf area distribution factor. 
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4.3.3 Conceptual model 

In contrast to the empirical model, the VLADF values were also used to 

independently calculate the LAI using the following conceptual construct 

  𝐿𝐴𝐼𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =  𝑉𝐿𝐴𝐷𝐹 ∗ (𝑇𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑛𝑜𝑝𝑦 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎) =
𝑉𝐿𝐴𝐷𝐹∗ 𝐺𝐶𝐶

𝑠𝑖𝑛(Ɵ)
 ,      (4.7) 

where Ɵ is the average top leaf angle of the crop, which can be taken from 

Figure 4.7 (a) or measurements at the time of flying the drone. Here, VLADF is a 

multiplication factor which relates the top-of-canopy leaf area to total leaf area, 

dependent on DAS and canopy height. The top-of-canopy leaf area in this 

conceptual model is derived from GCC, being the horizontal projection of the leaf 

area as seen from the drone camera (Figure 4.6). The actual top-of-canopy leaf 

area is obtained from the plant geometry by dividing GCC with the sine of the 

average leaf angle. Once the actual leaf area of the top-of-canopy is estimated, it 

is multiplied by the VLADF to obtain the full canopy leaf area. This method was 

tested against the one-time true leaf area index measurements of the nine plots 

(combination of three different levels of irrigation and fertiliser treatments). 

4.3.4 Results and discussion 

The VLADF relationships developed from the Rabi 2018-19 crop 

structural parameters data were evaluated for the Rabi 2019-20 season data, 

using the detailed plant structural parameters recorded from the nine sub-plots 

at 93 DAS of the Rabi 2019-20 season crop. The height of the nine sub-plot 

canopies ranged between 138 cm and 219 cm. Based on the estimated height 

and the DAS of these nine plots, VLADF was calculated using the relationships in 

Figure 4.6. The region between higher and lower limit lines (Figure 4.8) show 

the '(model VLADF)±(1.15*SD)' region for 93 DAS. The multiplier value of ‘1.15’ 

was used to represent a confidence interval of 75 %. Only one value was 

substantially outside the expected range with all other plots within an 

acceptable range. 
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The empirical LAI estimation correlated with the LAI values of the canopy 

analyser with a coefficient of determination (R2) that equals 0.84 and 0.77, and 

an RMSE of 0.36 and 0.45 on the test (30 % of Rabi 2018-19 data) and the 

validation (Rabi 2019-20 data) data, respectively. These RMSE values can be 

considered low because the canopy analyser instrument itself has a standard 

deviation of 0.2 for the same location data (calculated by taking repeated canopy 

analyser readings from the same location). A slight overestimation of the LAI for 

the early growth stage of the crop and an underestimation for the late growth 

stage of the plants was also found (Figure 4.9).  

This deviation from the true values is better than the results of other 

published models, including Delegido et al. (2013), which used the spaceborne 

red-edge index to estimate LAI of multiple crops, including maize, with an R2 of 

0.82 and RMSE of 0.6 when compared with Licor LAI-2000 values. While 

Haboudane et al. (2004) achieved a similar level of accuracy, they used the more 

costly drone-based hyperspectral data to estimate LAI with a modified triangular 

 

Figure 4.8: Evaluation result of the VLADF model for canopies at 93 days after 

sowing with different canopy heights. The model performance was found to be 

within the tolerable limit.  
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vegetation index (MTVI2) and modified chlorophyll absorption ratio index 

(MCARI2) developed from empirical analysis of the PROSPECT and SAILH 

models; an R2 of 0.89 and RMSE of 0.46 was achieved for maize crop for the same 

season data. Moreover, Jay et al. (2017) achieved an R2 of 0.89 and RMSE 0.23 for 

sugar beet crop for LAI estimation till the vegetative stage, using an index based 

approach with UAV-based multispectral data, when considering the same growth 

stage the research presented in this paper for maize crop achieved an R2 of 0.91 

and RMSE 0.29. When using the more complex PROSAIL inversion model for LAI 

estimation, Jay et al. (2017) only achieved an R2 between 0.68 - 0.81 and RMSE 

of 0.39 - 0.72. While the empirical model presented here has shown 

comparatively good results relative to other studies when evaluated with Licor 

canopy analyser data, comparison with the true LAI values showed a coefficient 

of determination of only 0.56 and an RMSE of 1.34 (Figure 4.10(b)).  

In contrast, the conceptual LAI estimation correlated with the true LAI 

from measurements yielded an improved coefficient of determination of 0.59 

with an RMSE of 0.73. These results can be contrasted with the allometric model 

of Colaizzi et al. (2017), which used a calibrated log-normal function by 

considering cumulative growing degree days, canopy height, and plant 

population as model inputs. The inputs were collected through field sensors and 

manual field observations. Using destructive sampling to calculate the true LAI of 

the canopy, an R2 of 0.54 and RMSE 1.14 was achieved for maize crop LAI.  

As shown in Figure 4.10(c) Licor-based LAI values seem reliable only 

until the vegetative stage of the crop, being when the LAI of the canopy is low. 

Once the LAI of the canopy increases above 4, the Licor-based measurements of 

LAI start saturating. Similar observations were noted by Smith et al. (1993) and 

Cutini et al. (1998) where the LAI 2000 canopy analyser consistently 

underestimated canopy LAI. This problem of under-prediction is majorly due to 

the assumption that leaves of the canopy are randomly distributed, which is not 

valid in many cases (Breda, 2003; Gower et al., 1999). However, it should also be 

noted that LAI estimated from Licor-2200C measurements represent the foliage 

area index, which gets affected by stem and other non-green plant elements. In 
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contrast, the conceptual LAI model proposed here considers only leaf area, thus 

more correctly representing the true leaf area index. The temporal LAI map is 

shown in Figure 4.11. 

 

Figure 4.9: Scatterplots representing the results of the empirical LAI model on (a) 

test (30 % of Rabi 2018-19) and (b) validation (100 % of Rabi 2019-20) data. 

 
 

 

Figure 4.10: Comparison of the LAI estimates from the (a) conceptual LAIconceptual 

against manual measurements LAIactual; (b) Empirical LAIempirical against the 

manual measurements LAIactual and; (c) Empirical LAIempirical against the 

conceptual LAIVLADF. 
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4.4 Maize tassel counting  

Tasseling stage is one of the critical growth stages of maize, with the 

number of tassels having a positive relationship to the grain yield (Guei and 

Wassom, 1996). Moreover, water stress in the crop affects the appearance of 

tassels in the plant (NeSmith and Ritchie, 1992). It has been observed that water 

stress in the crop also delays the tasseling stage in maize (Cakir, 2004). The 

information of tasseling percentage at the early tasseling stage can be used to 

identify water stress areas in the farm. Thus, tassel counting is one of the topic of 

intersest in precision agriculture. Kurtulmus et al. (2014) acquired 46 ground-

based hand-held RGB images of corn tassels and used computer vision and 

support vector machines to detect maize tassels, with an achieved 86.8% 

accuracy. Zadjali et al. (2020) acquired high-resolution UAV-based RGB images to 

locate maize tassels using the Faster-R-CNN based deep learning model, where 

they achieved a mean average precision of 91.78% and F1 score of 97.98%, with 

a recall of 98.32%. Liu et al. (2020) also implemented a Faster R-CNN model on 

high-resolution UAV-based RGB images collected from a 15-meter height, with 

different feature extraction techniques in the model and results similar to  

Zadjali et al. (2020). 

 

 

Figure 4.11: Estimated canopy LAI at (a) early vegetative stage, (b) pre-tasseling 

stage, (c) silking stage, and (d) dough stage. Solid line boxes represent 

sufficiently irrigated plots, dashed line boxes for moderately irrigated, and less 

irrigated plots are shown with dotted line boxes.  
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Considering the importance of this biophysical parameter, tassel 

identification and counting were done in this research. The objective was to use 

a simple model which can reach the accuracy to data intensive deep learning 

techniques. Accordingly, a single-band of drone-based hyperspectral data was 

identified, and tassel counting was done using image processing techniques. 

However, various techniques are available in which deep learning techniques like 

YOLO, Resnet, etc. are implemented to count the number of tassels from drone-

based RGB images (Kumar et al., 2019; Liu et al., 2020). The ground-truth data 

for the actual number of tassels in different treatment plots were recorded on a 

daily basis after the appearance of the first tassel in the plot, as explained in 

chapter 3.  

Data exploration of the hyperspectral band images was done, and it is 

found that a narrow wavelength region around 701 nm gives the highest contrast 

between tassel pixels and canopy pixels. In the 701 nm band image, the tassels 

appear bright, and the rest of the canopy appears dark. The maize leaves at the 

tasseling stage have high chlorophyll content, which increases the 

photosynthetic activities resulting in higher absorption around 701 nm 

wavelength (Gitelson et al., 2001; Cinque et al., 2000). However, the maize 

tassels have a higher amount of anthocyanin present in them (Duangpapeng et 

al., 2018). The anthocyanin shows extremely low absorption around the 701 nm 

wavelength resulting in higher reflectance (Gitelson et al., 2001; Gallik, 2012; 

Merzlyak et al., 2012; Duangpapeng et al., 2018). This difference in reflectance 

creates a high contrast between tassel pixels (bright) and all other pixels (dark). 

 

Figure 4.12: Tassel counting estimation model using drone-based hyperspectral 

single band image. 
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This property was used to classify all the bright pixel in the image using the blob 

detection method.  

Figure 4.12 shows the framework of the model used to count the number 

of tassels. The 692 nm band image is divided into 27 parts as per the treatments 

given on the farm. This was done to compare the ground truth information with 

the model output. Every plot image was thresholded based on intensity value, 

and then morphological operations like erosion and dilation of the image pixels 

were done to nullify the effect of small parts of the same tassels and to combine 

all the close proximity bright spots in one big spot (when a tassel opens then it 

makes 5-6 bright spots in the image at in very close proximity. All these bright 

spots transforms into one with erosion and dilation). Contour mapping and 

counting of contours on the dilated image resulted in the counting of the number 

of tassels present in every plot. A sample band image (701 nm) and tassel 

counted image is shown in Figure 4.13.  

 

 

Figure 4.13: Single-band (701 nm) image of the maize canopy (Left) and tassels 

detected by counting contour method (Right). 
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The results were analysed and compared with ground truth data with the actual 

count of tassels at 71 and the detected number of tassels at 73 (Figure 4.13). 

There were a total of eight incidents where two nearby tassels were counted as 

one, eight incorrect tassels detected, and two tassels missed by the algorithm. 

Similar results were obtained for all the plots. Precision, recall, false-positive rate 

(FPR), false-negative rate (FNR), accuracy and F1 score were calculated and 

shown in Table 4.1. Higher accuracy confirmed the good classification accuracy 

of the algorithm. 

4.5 Chapter summary  

This chapter discussed the methods to obtain maize crop biophysical 

properties like green canopy cover (GCC), crop height, leaf area index (effective 

and true), and tasseling percentage. The GCC, canopy height, and LAI was 

obtained using drone-based RGB images, and the results of canopy height and 

LAI validated against ground-based measurements. A new method called the 

vertical leaf area distribution factor (VLADF) was introduced in this chapter and 

used to estimate near-to-true LAI values.   The LAI model has shown better 

performance than other existing models in literature, especially for early growth 

stage crop where other models fail to perform. Tassel counting was also 

undertaken in this chapter using one band of drone-based hyperspectral image 

Table 4.1: Performance measure statistics of tassel counting algorithm. 

Measure Value (percentage) 

Precision 97.7 

Recall (Sensetivity) 89.2 

False Positive Rate (FPR) 00.7 

False Negative Rate (FNR) 10.7 

Accuracy 96.4 

F1 93.2 
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bands. An image processing technique was applied to count the tassels from the 

image and showed high accuracy. These crop biophysical parameters were used 

for crop stress area identification, as explained in chapter five.  
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Chapter 5 

Crop stress estimation using  

biophysical parameters 

 

Field data collection is always labour intensive and time-consuming. A model 

which can remotely estimate the required crop parameters and inform about the 

crop health is need of the hour. This chapter suggests such a technique which 

will allow users to do so. The image shows the author collecting crop LAI using a 

canopy analyser instrument.   
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5. Crop stress estimation using biophysical parameters 

The biophysical properties of a crop are a good indicator of potential crop 

stress conditions. However, these visible properties cannot indicate the non-

visible stress areas e.g. early water or nutrient stress. In this chapter, the 

biophysical properties estimated in chapter four have been used to predict crop 

stress level. Accordingly, canopy height, LAI, and tasselling percentage were used 

to identify areas that are not growing as expected for a healthy crop. First, the 

APSIM model was used to simulate temporal LAI and canopy height under optimal 

management conditions, and thus used as a reference for estimating healthy crop 

parameters. The temporal LAI and canopy height estimated in chapter four were 

then compared with the simulated reference values using a linear and random 

forest model. While these methods can identify stress and non-stressed areas, 

they cannot indicate the reason behind the stress. These stress areas were further 

investigated for water and/or nitrogen stress using the models build in chapter 

six.  

5.1 Selection of APSIM model 

“All models are wrong, but some are useful” is a popular quote by British 

statistician George E. P. Box. Various models are available for simulation of crop 

behaviour and agricultural production, including APSIM, DSSAT, MLCan, and 

WOFOST. These are process-based crop simulation models with some pros and 

cons. For example, the DSSAT height estimation module is insensitive to change in 

weather and management practices and thus needs field-based calibration data 

(Jones et al., 1998). Moreover, the MLCan model does not give crop height as an 

output. Therefore, the APSIM (Agricultural Production Systems sIMulator) model 

was used here to simulate crop growth under actual farm weather and different 

irrigation and fertilisation conditions with similar soil properties. Temporal 

values of crop LAI, canopy height, and soil moisture of all the plots were simulated 

and used as a reference to compare with actual farm data. Figure 5.1 shows the 

application of APSIM to this research. The main objective behind the use of the 
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APSIM model was to get reference/optimal values for crop biophysical 

parameters. The reference values were used to compare the observed parameters 

for further analysis. 

5.2 Selection of seed variety 

The maize seed variety used for farming was ‘Cargil 900m gold’. However, the 

same maize seed variety was not available in APSIM. To select a seed variety from 

 

Figure 5.1: APSIM model input and output data.  

 

Figure 5.2: Growing degree days (GDD) based growth stage occurrence from 

APSIM simulations and observed farm data (triplicate) for the ‘mh12’ seed 

variety. The soil and weather properties were taken as per recorded farm 

conditions.  
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available options, a comparative analysis of growing degree days (GDD), and LAI 

of various varieties with respect to farm observed responses were made. The 

‘mh12’ seed variety was found to give the closest response to the field observed 

data and thus selected for further analysis. Figure 5.2 shows the growth stage 

occurrence with respect to change in GDD for APSIM simulation at the ‘mh12’ 

maize variety. The GDD difference between simulated and observed growth stages 

were less than 100 for tasseling and silking stages. The differences were negligible 

for the emergence and 6-leaf stage. Other data used for APSIM simulation is 

presented in Appendix 7.  

5.3 LAI and canopy height simulation 

The LAI and canopy height of maize were simulated in APSIM for various 

management conditions (as shown in table 3.2 of chapter three), with output 

compared against the observed LAI and height values of respective treatment 

plots. It was found that the APSIM model was insensitive to changes in LAI and 

height during the initial growth stage but gave better results as it moved towards 

the maturity stage. Figure 5.3 shows the simulated and observed canopy LAI 

values, with the simulated initial growth stage LAI being always remained equal 

to optimal condition simulated LAI. However, the simulated height was found to 

be underestimated compared to the observed farm values for all scenarios. Figure 

5.3 and 5.4(a) show the comparison of simulated and observed crop LAI and 

height, respectively. The problem of canopy height underestimation was resolved 

by updating the height values proportional to the rate of change of LAI until the 

canopy closure stage. This was done because there was a high correlation between 

canopy height and LAI. Thus, the rate of change of canopy height was expected to 

follow a similar trend as canopy LAI. The updated canopy height graph is shown 

in Figure 5.4 (b).  

The simulation of optimal values was obtained by maintaining the simulated 

soil moisture above 70% of the field capacity. The APSIM simulated temporal LAI 

and updated canopy height for optimal irrigation and fertilisation conditions have 
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shown the capacity to be used as reference LAI and height values.    

 

Figure 5.3: Simulated and observed temporal LAI of different treatment plots. The 

model seems to be insensitive during the initial growth stage and remains at 

optimal values even for low irrigation and low fertilization treatment plots. 

 

 

Figure 5.4: (a) Simulated and observed temporal canopy height for different 

treatment plots, with the model highly underestimating the canopy height until 

the tasseling/silking (canopy closure) stage. (b) Canopy height output after 

updating the height values proportional to the rate of change of LAI until the 

canopy closure stage. 
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5.4 Crop stress detection 

Crop water and/or nutrient stress results in crop yield reduction. To minimise 

this reduction, identification of stressed areas are important, as crop stress 

directly affects plant growth. Crop biophysical parameters like LAI and height are 

reduced depending on the severity of the stress. This reduction becomes more 

visible when the crop passes the vegetative stage. For crops that are provided 

three times less irrigation than required, the yield was reduced by around three 

times, and observed crop LAI and height were reduced to around 55% and 70% 

of optimal values, respectively. A similar reduction in LAI and height values were 

also seen in the APSIM simulated results for late growth stages, as shown in Figure 

5.3 and Figure 5.4. It is evident that the APSIM simulation result for early crop 

growth stages is not sensitive to management practices. However, the optimal 

condition simulated values can be used as reference. Moreover, the simulated 

results for late growth stages are close to the field observed values, making the 

model results useful. The framework of this study is shown in Figure 5.5. The 

 

Figure 5.5: Framework of crop stress detection model using drone-based crop 

biophysical properties and APSIM-based simulations.   
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APSIM simulated LAI and height results have been used in two different models to 

predict the stress levels of the plot. The first method used a linear approach, while 

the second method used the Random Forest algorithm.  

5.4.1 Linear model 

In the linear approach, three inputs - LAI, height, and tassel percentage 

information, were used to predict the crop stress level using 𝐻𝑒𝑎𝑙tℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥. 

𝐻𝑒𝑎𝑙tℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 should be taken as an indicator to classify the crops based on 

their biophysical parameters (LAI, height, and tasselling percentage). This index 

will be used to highlight the areas having low Healthiness Index indicating high 

chances of the crop being stressed. For any growth stage before tasseling, only LAI 

and height information were used, and for any growth stage after tasselling, 

tasselling percentage information was also added in the model along with LAI and 

height. Two thresholds have been created to decide the stress levels in the crop. If 

the observed (drone-based) LAI and height values are around APSIM simulated 

optimal values, it is considered a healthy crop. However, the plots were considered 

severely stressed if the observed values were equal or less than 0.55 and 0.65 

times of simulated optimal LAI and height, respectively. For tassel percentage-

based predication, 45% tasseling within one week of onset of tassel was 

considered as an optimal condition (healthy crop), with and tasselling percentage 

less than 10%, regarded as severe stress condition. All observations in between 

optimal and stressed levels were linearly scaled. The thresholds are given in Table 

Table 5.1: Stress and healthy plots thresholding criteria for 𝐻𝑒𝑎𝑙tℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 

creation.  

Parameter Healthy condition Severe stress condition 

LAI 
APSIM simulation value 

at optimal management 

condition (𝐴𝑃𝑆𝐼𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙) 

0.55 ∗  𝐴𝑃𝑆𝐼𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

Canopy height 0.65 ∗  𝐴𝑃𝑆𝐼𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

Tasseling percentage 
45% of the total number 

of plants 

10% of the total number of 

plants 
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5.1. Figure 5.6 shows the optimal and stressed levels of the temporal height and 

LAI. The formulae used to predict the healthiness/ stress level using 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 of the plots for the pre-tasseling stage 

   𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥𝑝𝑟𝑒−𝑡𝑎𝑠𝑠𝑒𝑙𝑖𝑛𝑔 =
𝐿𝐴𝐼𝑝𝑟𝑒𝑑+𝐻𝑒𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑

2
,  (5.1) 

and for the post-tasseling stage  

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥𝑝𝑜𝑠𝑡−𝑡𝑎𝑠𝑠𝑒𝑙𝑖𝑛𝑔 =
𝐿𝐴𝐼𝑝𝑟𝑒𝑑+𝐻𝑒𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑+𝑇𝑎𝑠𝑠𝑒𝑙𝑝𝑟𝑒𝑑

3
   (5.2) 

Where, 

 𝐿𝐴𝐼𝑝𝑟𝑒𝑑 = 2 ∗
𝐿𝐴𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐿𝐴𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙
− 1,    (5.3) 

 𝐻𝑒𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑 = 2.5 ∗
𝐻𝑒𝑖𝑔ℎ𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐻𝑒𝑖𝑔ℎ𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙
− 1.5,   (5.4) 

 𝑇𝑎𝑠𝑠𝑒𝑙𝑝𝑟𝑒𝑑 =
𝑇𝑎𝑠𝑠𝑒𝑙𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−10

35
.    (5.5) 

Here, 𝐿𝐴𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝐻𝑒𝑖𝑔ℎ𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, and 𝑇𝑎𝑠𝑠𝑒𝑙𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are the remotely sensed 

values of LAI, height, and tassel percentage of the crop, respectively. 𝐿𝐴𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

and 𝐻𝑒𝑖𝑔ℎ𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 are the optimal values for LAI and height, respectively, for the 

corresponding DAS crop. 

 

Figure 5.6: (a) Simulated optimal canopy LAI and 0.55 times optimal values 

indicating stressed canopy LAI. (b) Simulated optimal values of temporal height 

and 0.65 times of optimal values are indicating stressed canopy height values.  
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The 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 is a value between 0 to 1, where stressed plants are 

indicated by 0, and healthy plants are indicated by 1. The linear model was 

implemented on the drone-based LAI, height, and tasselling percentage farm 

maps. If the observed value was greater than the optimal value or less than the 

severe stress threshold value, then the observed value is made equal to the nearest 

threshold value.   

5.4.2 Random Forest model 

Selection of the random forest (RF) model was made considering its proven 

ability to be less sensitive towards the quality of training samples and overfitting 

(Belgiu et al., 2016). Moreover, the ensemble of decision trees of RF makes this a 

reliable model (Breiman, 2001). Accordingly, in this research, the RF approach, 

two inputs - LAI and crop height - were used to predict the crop stress level. 

Despite using an optimal and threshold approach as the maximum and minimum 

threshold, as for the linear model, the training data of the RF approach used these 

lines as the mean and generated random Gaussian data (5% SD from the mean) 

around each line as shown in Figure 5.7. A moderate stress level was also defined 

in this model by simulating the ASPIM model for I2N2 based treatment details.   

 

 

Figure 5.7: Synthetic data plot for (a) LAI, and (b) canopy height, showing three 

levels of crop healthiness. The reference for these thresholds were taken from 

APSIM simulated results for the I1N1, I2N2 and optimal condition plots.  
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The RF model was trained on the synthetic data, with the hyperparameter values 

tuned to obtain the best-suited values. The created RF model was having 

n_estimators = 1400, random_state = 42, criterion = entropy, and 

min_samples_split=10. The model output ranged from 0 to 1, indicating 0 for 

stressed plots and 1 for healthy plots. These values were named 

𝐻𝑒𝑎𝑙tℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥. This model was then implemented on the drone-based LAI, 

and crop height maps and 𝐻𝑒𝑎𝑙tℎ𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 farm maps were obtained.  

5.4.3 Crop healthiness map 

Crop healthiness maps for different growth stages were made using the RF 

and linear model. Figure 5.8 shows the results of the linear and RF models on 

temporal drone data. The random forest result were found to be more accurate, 

being able to differentiate between I3, I2, and I1 plots more efficiently. As the crop 

moves towards the maturity stage, the model's performance also improves. The 

Dough stage healthiness map makes all I3, I2, and I1 plots distinguishable from 

other stage crops. Quantitative analysis of the models was undertaken by 

correlating the plot-wise average values of the predicted healthiness level 

(between 0-1) with the yield values. Figure 5.9 shows the scatter plot correlation 

values for 6-leaf, tasseling, silking stage, and dough stage. It was found that the RF 

model performed relatively better than the linear model for all growth stages. For 

the early vegetative stage (6-leaf stage), the obtained R2 were 0.42, and 0.45 for 

the linear and RF model, respectively.  For the tasseling stage, R2 for the linear 

model was 0.56, and for the RF model was 0.61. The silking stage performed 

similar to the tasseling stage, with R2 of 0.56, and 0.58 for the linear and RF 

models, respectively. The dough stage gave the best performance with R2 of 0.63, 

and 0.67 for the linear and RF models, respectively. As the healthiness and crop 

yield are positively correlated, the better R2 for the RF model shows its 

comparatively better performance than the linear model. 
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5.5 Summary 

In this chapter, the APSIM crop model was simulated to obtain crop LAI and 

crop height for various management conditions, including optimal conditions. The 

simulated LAI and height values were used as a reference to create two models; 

one linear and the second a machine learning model. The drone-based LAI, height, 

and tasselling percentage maps were then fed into the models to create the 

healthiness index maps of the farm. The machine learning model (random forest) 

gave slightly better performance than the linear model. These healthiness maps 

 

Figure 5.8: Temporal crop stress map of maize farm using random forest model 

(a-d) and linear model (e-h). The maps are in sequence starting from early 

vegetative stage, tasseling stage, silking stage, and dough stage. Solid line boxes 

represent I3 irrigated plots, dashed line boxes represent I2 irrigated plots, and 

dotted line boxes represent I1 irrigated plots.  
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indicate the plots with different stress levels but do not give the reason for the 

stress. Accordingly, these maps were further classified as water and nitrogen 

stress areas using the methods developed in chapter six.  

 

 

Figure 5.9: Scatterplot between plot-wise average healthiness index and crop 

yield for (a) early vegetative, (b) tasseling, (c) silking stage and (d) dough stage.  
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Chapter 6 

Estimation of maize biochemical properties 
 

 

Hyperspectral data cube - a three-dimensional representation of a hyperspectral 

image. Here, X and Y represent the spatial dimension while the Z dimension 

(denoted by λ) shows the spectral information according to wavelength for each 

pixel in the image. The top layer of the cube is showing an RGB map of a section 

of the farm. The spectral information of a vegetation and soil pixel is shown at 

the right of the plot. The absorption at different bands contains information 

about various chemical properties of the scanned material.  
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6 Estimation of maize biochemical parameters 

Note: Most of the contents of this chapter have been published as  

 Raj, R., Walker, J.P., Vinod, V., Pingale, R., Naik, B. and Jagarlapudi, A., 

2021. Leaf water content estimation using top-of-canopy airborne 

hyperspectral data. International Journal of Applied Earth Observation 

and Geoinformation, 102, p.102393. 

 Raj, R., Walker, J.P., Pingale, R., Banoth, B.N. and Jagarlapudi, A., 2021. 

Leaf nitrogen content estimation using top-of-canopy airborne 

hyperspectral data. International Journal of Applied Earth Observation 

and Geoinformation, 104, p.102584. 

6.1 Leaf water content 

A drone-based push-broom hyperspectral (400-1000 nm) imager was used 

to collect temporal data from a research farm. Hand-held spectroradiometer 

data was collected coincident with the flights to provide leaf-level spectral 

signatures (400-1000 nm) from plants grown in plots treated with different 

water and fertiliser doses. These leaves were subsequently plucked, and the 

LWC estimated using the oven drying method. The hand-held spectroradiometer 

and associated LWC data were then used to identify the pure-pixel narrowband 

normalised indices sensitive to LWC. The bands involved in the LWC indices 

were chosen based on their response to different water vibrational absorption 

regions of the electromagnetic spectrum. These indices were then calculated 

using the farm-scale hyperspectral images collected using the drone, and the 

minimum/maximum values of these indices and respective LWC used to 

generate synthetic data for training a gradient boosting machine (GBM) model. 

The GBM model was then evaluated on the actual farm data. The framework of 

this research is shown in Figure 6.1.  
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6.1.1 Index selection   

The number of bands in the spectroradiometer and hyperspectral imager 

data was 381 and 242, respectively. However, most of the bands in narrowband 

hyperspectral data show a high correlation to each other and thus contain 

similar information (Thenkabail and Lyon, 2016). The bands having redundant 

information or not having any relation with LWC should therefore be removed 

from the analysis as they create unnecessary complexity (Thenkabail and Lyon, 

2016). Thus, it is crucial to select only those bands which contain information 

about the LWC. One such approach of dimensionality reduction can be to choose 

only one band from the highly correlated set of bands. However, this band 

correlation method may discard the highly correlated bands having critical 

information about the crop parameter being measured (Kumar et al., 2001). 

Accordingly, Partial Least Square Regression has been used as a popular 

algorithm in chemometrics to reduce dimensionality, but this approach may not 

distinguish bands having little effect on the LWC (Hanrahan and Patil, 2005). 

Moreover, these models remain completely empirical in nature. It, therefore, 

 

Figure 6.1: The framework of the leaf water content (LWC) model development 

and evaluation. 
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becomes imperative to identify important bands for estimation of a specific crop 

property based on the science behind the electromagnetic spectrum's 

reflectance properties.   

 In this research, spectroradiometer data was used for identification of 

bands/indices for estimation of leaf water content. From 381 bands of 

spectroradiometer data ranging from 400-1000 nm, a total of 72390 possible 

unique normalised difference indices were created according to  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑁𝐷𝐼) =  
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑛𝑑 𝑖− 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑛𝑑 𝑗

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑛𝑑 𝑖+ 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑏𝑎𝑛𝑑 𝑗
 , (6.1) 

where i and j are bands ranging from 400 to 1000 nm.  Each of the indices 

was correlated with the actual leaf water content (measured after oven drying 

the leaves). The correlation heatmap is shown in the results section. The highly 

correlated zones of the indices-LWC correlation heatmap were analysed with 

respect to the water-sensitive bands present in the 400-1000 nm wavelength 

region, as discussed in the literature review chapter in Table 2.5. 

Table 6.1 lists all the indices created in this research used for further 

analysis. Based on analysis of the seven newly identified indices, it was found 

that the FOSBNDI-1, FOSBNDI-2, and COSBNDI indices also showed a high 

sensitivity for LWC with drone-based data. However, FSOSBNDI, SAPBNDI, 

SOSBNDI, and WASCOSBNDI did not show any visible sensitivity towards LWC 

with drone-based hyperspectral data and only worked well with 

spectroradiometer data, limiting the use of the later four indices in drone-based 

sensing applications. 
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Table 6.1: Vegetation pure pixel, narrowband indices for estimation of leaf water 

content.   

Index 

Formula 

short from Full form Index 

Range 

Usability 

𝑅660 − 𝑅420

𝑅660 + 𝑅420
 

COSBNDI Combined overtone of 

stretching bands -  

normalised difference 

index 

-0.50 to 0.30 

(Negative 

correlation) 

 

Sp
ec

tr
o

ra
d

io
m

et
er

 a
n

d
 d

ro
n

e 
d

at
a 

 

𝑅529 − 𝑅698

𝑅529 + 𝑅698
 

FOSBNDI-1 Forth overtone of 

stretching bands - 

normalised difference 

index 1 

-0.35 to 0.45 

(Postive 

correlation) 

𝑅529 − 𝑅605

𝑅529 + 𝑅605
 

FOSBNDI-2 Forth overtone of 

stretching bands - 

normalised difference 

index 2 

-0.20 to 0.45 

(Positive 

correlation) 

𝑅475 − 𝑅449

𝑅475 + 𝑅449
 

FSOSBNDI Fifth and sixth overtone of 

stretching bands - 

normalised difference 

index 

-0.20 to 0.45 

(Negative 

correlation) 

 

Sp
ec

tr
o

ra
d

io
m

et
er

 d
at

a 
o

n
ly

 

 

𝑅750 − 𝑅970

𝑅750 + 𝑅970
 

SAPSBNDI Small absorption peak of 

stretching bands - 

normalised difference 

index 

-0.27 to 0.68 

(Positive 

correlation) 

𝑅791 − 𝑅970

𝑅791 + 𝑅970
 

SOSBNDI Second overtone of 

stretching bands - 

normalised difference 

index 

~-0.15 to 

0.65 

(Positive 

correlation) 

𝑅800 − 𝑅847

𝑅800 + 𝑅847
 

WASCOSBNDI Water absorption shoulder  

due to combined overtone 

of stretching bands - 

normalised difference 

index 

~0 to 0.2 

(Positive 

correlation) 
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6.1.2 Model creation   

Based on the three newly identified indices (FOSBNDI-1, FOSBNDI-2 and 

COSBNDI), and the second version of Enhanced Vegetation Index (EVI2), farm 

index-maps were created using the drone-based hyperspectral data. EVI2 was 

selected due to its proven capability of being sensitive to equivalent water 

thickness of the canopy (Cheng et al., 2006; Cheng et al., 2008), and calculated 

according to (Jiang et al., 2008) 

𝐸𝑉𝐼2 = 2.5 (
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+(6∗𝑅)−(7.5∗𝐵)+1
).    (6.2) 

As the images' spatial resolution was 1 cm, most of the vegetation pixels 

were scanned as pure pixels. However, to remove the background pixels (non-

vegetation pixels) from the farm index maps, narrowband NDVI values of all the 

pixels were thresholded at a value of 0.7 and assigned a null value. These pixels 

included mostly non-vegetation pixels and some mixed pixels at the edges of the 

field.  

The maximum and minimum value of each index-map of pure pixels was then 

used to generate synthetic data for model training as follows. Depending on the index 

and LWC relation (whether positively or negatively correlated), extreme index values 

were assigned to the highest and lowest LWC values, respectively. Assuming a linear 

relationship, a straight line was interpolated between the extreme values of the 

indices and LWC, as shown by the dashed line in Figure 6.2. The linear relation was 

chosen as it has no spectral saturation (Tian et al., 2011), and Pasqualotto et al. 

(2018) and Sun et al. (2019) have found that a linear relation with LWC gives a 

better estimation than exponential or polynomial relations. Considering the 

interpolated values as being the mean of an observational distribution for LWC, 

1,000 Gaussian distributed points were generated within 10% of the 

interpolated LWC value. The generated points are shown by the black dots in 

Figure 6.2. Along with this index-LWC synthetic data, crop growth-stage based 

LWC synthetic data was also created. Here a second-order polynomial fit line 
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was selected as it gave a better representation of the temporal LWC, with a 

Gaussian noise generated within 5% of the interpolated LWC values.  

A total of 20,000 sets of points were used from the synthetic data to train the 

GBM model developed to estimate LWC. The GBM was selected as it combines 

the predictions from multiple decision trees to generate a final prediction. The 

GBM performs the sequential improvement of decision trees to convert weak 

learners into strong learners and produce the best metrics for the algorithm to 

fit the data by tuning the hyperparameters (Friedman, 2001). The 

hyperparameters of the GBM regression were tuned, and the optimal values 

selected for the model’s weights. The hyperparameter tuning result is shown in 

 

Figure 6.2: Synthetic Leaf water content (LWC) data for the newly created 

indices and ‘days after sowing’ (DAS) information. The dashed red lines 

represent the interpolated values between the minimum and maximum of the 

index and LWC. The black dots represent Gaussian distributed points. The 

dashed line in the DAS-LWC plot represents a second-order polynomial fit line.  
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Figure 6.3. The model trained on synthetic data was then implemented on the 

index maps obtained from the drone-based hyperspectral data. 

6.1.3 Results and discussion 

The LWC correlation heatmap created using 72390 unique indices as 

explained in equation 6.1 is shown in Figure 6.4. Analysis of the correlation 

heatmap clearly showed that the wavelengths associated with water absorption 

bands created the highest correlation regions. Thus, index selection was made 

based on those indices that gave the highest correlation when coupled with the 

water absorption bands. Figure 6.4 shows the heatmap with marked water 

absorption wavelengths. The indices created using brown/red zone wavelengths 

showed maximum correlation, while the indices created using the violet zone 

showed the least correlation with maize LWC. The identified indices are shown 

in Table 6.1. 

 

Figure 6.3: Hyperparameter tuning graph for the Gradient Boosting Machine 

(GBM) algorithm. The best set of parameters was obtained at learning rate – 

0.405, minimum sample split – 7, and the number of estimators – 400.  
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The GBM model created in this research was evaluated on 

spectroradiometer based index data with an R2 of 0.93 and RMSE of 1.6 % (g/g), 

as shown in Figure 6.5. The GBM model was also evaluated for the 6-leaf stage 

(35 DAS) and late-vegetative stage (56 DAS) farm maps. Figure 6.6 shows the 

colour-coded farm maps for better visualisation of the spatial distribution of 

LWC in the farm. The map visualisation methods explained in Crameri et al. 

 

Figure 6.4: Heatmap of the coefficient of determination between narrowband 

(two nm bandwidth) normalised difference vegetation indices and leaf-water 

content. The highly correlated indices are shown in red colour, and least 

correlation indices are shown in violet colour. The indices created used the 

wavelengths shown on the x and y-axis as per equation 6.1.  
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(2020) have been used to create the color coded LWC maps of the farm. 

Accordingly, the farm-map has been smoothed with a Gaussian filter and 

overlayed with different line-type boxes to indicate the I1, I2, and I3 irrigation 

plots. For the 6-leaf and late-vegetative stage maps, water-stressed plots (I1) 

could easily be identified as having lower LWC. This can be verified from the 

box-whisker plot shown in Figure 6.7, where the 35 and 56 DAS plant’s LWC of 

I1 plot were less than that for the I3 plot plants. However, the visual difference 

between I2 and I3 plots cannot be seen. The box-whisker plots of different 

irrigation treatment plots and ground truth data are shown in Figure 6.7. 

 

 

Figure 6.5: Evaluation of the GBM model trained on the synthetic data against 

spectroradiometer data. The dots of the scatterplot are semi-transparent. 

Relatively darker areas of the scatterplot show overlapping of points in those 

regions. 
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The water absorption indices and LWC model developed in this research can 

be used for early growth stage (from 6-leaf stage to tasselling stage) leaf water 

content estimation of a crop using narrowband pure pixel airborne optical data. 

Indices were developed using hand-held spectroradiometer data taken from 

approximately 10 cm distance from leaves and applied to drone-based data 

obtained from about 50 m distance from the leaves, with three of the seven 

indices found to show the sensitivity needed for LWC estimation of crops treated 

with different irrigation amounts. This highlights the utility of the three indices 

(FOSBNDI-1, FOSBNDI-2, and COSBNDI) in the field of drone-based sensing. 

However, as these indices have been derived from pure vegetation pixel data, 

implementation of these indices on mixed pixel data may drastically reduce the 

sensitivity to LWC. Importantly, with the distance between the leaves and the 

drone-based sensor being only 50 m, the atmospheric effect on the 

hyperspectral data is minimal compared to that on satellite or airborne data. 

 

Figure 6.6: Colour coded leaf water content (LWC) maps of a maize farm. (a) The 

LWC farm map at the 6-leaf stage (35 days after sowing); (b) The LWC farm map 

at late-vegetative stage (56 days after sowing). The LWC difference of 

sufficiently irrigated (solid line boxes with I3 irrigation), moderately irrigated 

(dashed line boxes), and less irrigated (dotted line boxes) plots can be easily 

seen in the farm maps.  
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However, the other four LWC indices identified from the spectroradiometer 

(FSOSBNDI, SAPBNDI, SOSBNDI, and WASCOSBNDI) may still have lost their 

sensitivity when applied to UAV data due to the increased distance between the 

leaf and sensor. Importantly, by training the model to synthetic data, the model 

will have reduced dependence on the collected data, meaning that it should be 

applicable to other fields and seasons with the same maize variety.  

Another interesting observation is that these indices lose sensitivity as the 

bandwidth is increased. The analysis was done on different bandwidth data (2 

nm to 30 nm) by creating multiple index-LWC correlation heatmap. The 

correlation heatmap comparison is given in Figure 6.8. A correlation similar to 

the 2 nm bandwidth indices is observed until 11 nm bandwidth, after which 

 

Figure 6.7: Box-whisker plots of estimated and ground-truth leaf water content 

for the 6-leaf stage and late vegetative stage plants. The 6-leaf stage data were 

collected at 35 days after sowing (DAS) and the late vegetative stage data were 

collected at 56 DAS. I1, I2, and I3 represent the three irrigation levels applied in 

the different plots of the research farm, with I3 representing sufficient irrigation, 

I2 moderate, and I1 water-stressed plots.   
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there is substantially less sensitivity towards LWC. Thus, this research suggests 

that for LWC estimation, sensors should be made by considering the 

wavelengths given in Table 6.1 as central wavelength with less than 11 nm 

bandwidth for each band. Moreover, researchers from different parts of the 

world should use and test these indices/wavelengths on various crops to 

estimate LWC.  

There are multiple studies that have used hyperspectral data to estimate the 

leaf/vegetation water content. However, most of them have acquired data from 

the entire 400-2500 nm range to utilise the primary water absorption bands. 

Moreover, process-based models like PROSPECT/ PROSAIL do not produce any 

change in the 400-900 nm spectra when LWC changes in the crop. Pasqualotto et 

al. (2018) have used airborne 400-2500 nm data to get the canopy water 

 

Figure 6.8 The LWC correlation heatmap of  (a) 2 nm , (b) 8 nm, (C) 11 nm, (d) 

18 nm, (e) 22 nm, and (f) 30 nm bandwidth data.  
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content for multiple crop types (lucerne, corn, potato, sugar beet and onion). 

The authors have used primary water absorption bands to get water absorption 

area and depth water index. Using these indices with an exponential fit, the 

authors achieved an R2 of around 0.75, but the model could not perform well for 

areas having less than 30% of vegetation cover. Herrmann et al. (2020) used an 

11 band drone-based hyperspectral imager to collect temporal data from a 

maize crop. The study identified 570 nm and 620 nm wavelengths as being more 

sensitive to different irrigation crop treatments. The study also estimated 

relative crop water content using a partial least square regression on all 11 

bands (420, 440, 490, 550, 640, 670, 700, 740, 780, 860 and 910 nm) with an R2 

of 0.55. 

In another study, Sun et al., (2019) used spectroradiometer data in the 

range 400-2500 nm to estimate LWC of a winter wheat crop. Various indices 

were tested and an R2 of 0.77 achieved. Cheng et al. (2011) used 350-2500 nm 

spectroscopic data to estimate the LWC of 47 species present in the tropical 

forests of Panama using continuous wavelet analysis. The model had an R2 in the 

range of 0.71-0.75. In contrast, Corti et al., (2017) used 400-1000 nm 

hyperspectral imager data to estimate spinach canopy water content using a 

partial least square regression model and achieved an R2 of 0.87. By comparison, 

the research presented in this paper achieved an R2 of 0.93 and RMSE of 1.6 % 

(g/g) even when applied exclusively to early vegetative stages of the maize crop. 

This shows that the 400-1000 nm sensors' cost-effectiveness and usefulness of 

identified optimal bands make this range equally powerful for pure-pixel data as 

compared to 400-2500 nm data. Moreover, the sensors that capture data in the 

range of 400-2500 nm are costly and give enormous data volumes, which also 

creates storage and analysis issues. 
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6.2 Leaf nitrogen content 

After collection of drone-based and hand-held hyperspectral data, the leaves 

plucked (saem leaf which were used for LWC) and the leaf total nitrogen content 

were obtained using the Dumas method based CHNS instrumental analyser 

(Dhaliwal et al., 2014). The collected data were then used to identify the bands 

and indices more sensitive to change in leaf nitrogen content (LNC) than leaf 

water content (LWC). The maximum and minimum values of indices, growth 

stage  information, were then used to create synthetic linear data to train a 

gradient boosting machine learning  algorithm (GBM). Drone-based 

hyperspectral data were used to evaluate the model, and the results critically 

analysed with respect to LWC information. The framework of this research is 

shown in Figure 6.9. 

 

 

 

Figure 6.9:  The structure of the leaf nitrogen content estimation model used in 

this research. 
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6.2.1 Index selection 

The indices identified in this research were created using the narrow-band, 

pure pixel leaf-level hyperspectral signatures obtained from the 

spectroradiometer data. The 381 bands of the spectroradiometer were used to 

create 72,390 (381C2) unique two-band normalised difference indices as per 

equation 6.1.  The correlation coefficient between each of the 72,390 indices and 

LNC was obtained and presented as a heatmap in Figure 6.10(a). Interestingly, 

highly correlated areas in the index-LNC correlation heatmap were found to be 

the similar as highly correlated areas in the index-LWC correlation heatmap 

created for LWC. This restricted use of the index-LNC correlation heatmap for 

finding nitrogen-sensitive indices independently from information on water 

content as the same indices were also highly sensitive to LWC. To find the 

indices more correlated with LNC than LWC, a correlation difference heatmap 

between the LNC and LWC heatmap was created. The difference heatmap is 

shown in Figure 6.10(b). After comparing the correlation heatmaps and the 

difference heatmap, four indices were selected for further analysis. The 

identified wavelengths for these indices are indicated in Figure 6.10 and listed in 

Table 6.2. Out of these four indices, only the RedEdge1 index showed spatial 

variability on the drone-based image. Thus, the RedEdge1 index along with the 

DCNI index from literature was selected for further analysis. 
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Table 6.2: Pure pixel, narrow-band indices identified in this research for LNC 

estimation.   

Index Formula Short from Range Usability 

𝑅545 − 𝑅422

𝑅545 + 𝑅422
 

𝐺𝐵𝑠𝑙𝑜𝑝𝑒𝐼𝑛𝑑𝑒𝑥 0-0.35  

 

Spectroradiometer 

data only 

 

𝑅826 − 𝑅547

𝑅826 + 𝑅547
 

𝐺𝑟𝑒𝑒𝑛𝑁𝐼𝑅𝐼𝑛𝑑𝑒𝑥 0.2-0.8 

𝑅747 − 𝑅718

𝑅747 + 𝑅718
 

𝑅𝑒𝑑𝐸𝑑𝑔𝑒2𝐼𝑛𝑑𝑒𝑥 0.1-0.5 

𝑅725 − 𝑅711

𝑅725 + 𝑅711
 

𝑅𝑒𝑑𝐸𝑑𝑔𝑒1𝐼𝑛𝑑𝑒𝑥 0.2-0.4 
Spectroradiometer 

and drone data 

 

Figure 6.10: (a) Heatmap of 𝑅2 between narrow-band normalized difference 

indices and leaf nitrogen content. (b) The heat map of LNC-LWC correlation 

coefficient difference 𝑅′ showing only those indices having a superior 

correlation with LNC compared to LWC. Indices in the white part of heatmap 

are correlated more with LWC than LNC.    
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6.2.2 Model creation 

Drone-based hyperspectral band images were used to create farm-

index maps for the newly identified index - RedEdge1 (Table 6.2) and the 

DCNI index (Chen et al., 2010). The spatial resolution of the farm map was 

around 1 cm resulting in most canopy pixels being a pure pixel. The purity of 

the vegetation pixels resulted in higher narrow-band NDVI values of each 

vegetation pixel when compared to NDVI values of background pixels. Pixels 

having an NDVI value less than 0.7 were either non-vegetative or mixed 

pixel at the leaf edges. These lower NDVI pixels were therefore assigned a 

null value in the map. A similar background removal approach was used in 

making LWC maps.  

Synthetic data was created for model training, using the maximum 

and minimum values of individual pure pixel vegetation index maps. As 

RedEdge1 and DCNI were both positively correlated with LNC, the minimum 

and maximum values were assigned to the minimum and maximum ground-

truth LNC, respectively. A straight line was interpolated between the 

extreme values and 1000 random Gaussian distributed points generated 

within 10% of the interpolated value as shown in Figure 6.11. Along with the 

synthetic index data, a decreasing trend of LNC with progressive growth 

stages was modeled using days after sowing (DAS) information. The DAS-

LNC data was created using Gaussian noise around a third-order polynomial 

fit to the median values of ground truth data. Use of synthetic data for model 

training will reduce the model dependence on collected data resulting in 

improved model repeatability. 

A GBM model for LNC estimation was trained on 20,000 sampled 

points from the synthetic data. The GBM model was chosen for its promising 

performance as in LWC model. Moreover, the property of the GBM model to 

convert weak learners to strong learners by performing sequential 

improvement of decision trees (Friedman, 2001) made it a suitable choice 
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for LNC estimation. Optimal hyperparameters of the model were obtained 

using a GridSearchCV algorithm (Zhao et al., 2020). The best parameters 

were obtained with a learning rate of 0.395, minimum sample split of 12, 

and number of estimators of 1,900. The LNC obtained from the GBM model 

was termed as estimated LNC. 

 

6.2.3 Results and discussion 

Various indices identified from the literature have been tested to 

estimate LNC. These indices were created to estimate canopy nitrogen 

content and, to date, mainly tested on canopy-level low spatial resolution 

data. The performance of these indices on pure-pixel narrow-band data was 

poor. Apart from DCNI, no other index available in literature could give an R2 

greater than 0.05. The RedEdge1 index (identified in this research) and 

DCNI (identified from literature) farm index maps were created. Average 

index values for each treatment were used to create scatter plots with 

respective CHNS-based LNC values. As shown in Figure 6.12, it was found 

that the RedEdge1 index and DCNI were correlated to LNC with an R2 of 0.27 

and 0.20, respectively. 

 

Figure 6.11: The synthetic data for RedEdge1, DCNI, and DAS relation with LNC.  
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The GBM model estimated temporal and spatial distribution of crop 

LNC is shown in Figure 6.13. Comparison of these maps with LWC showed 

that, in general, LNC was high in the areas where LWC was also high. 

Although this is true, as LNC and LWC have a high correlation (R2 of 0.7) as 

shown in Figure 6.14, the efficiency of the LNC model could be checked by 

analysing the LNC distribution in the same LWC area. The analysis of water-

stressed and non-water stressed plots was undertaken separately to see the 

effect of different LWC on the LNC model. Moreover, the correlation 

between estimated LNC and CHNS-based LNC was made. The maps were 

analysed for the 6-leaf and pre-tasseling stages, where the water-stressed 

plots gave an R2 of 0.63 and RMSE of 2.74 mg/g, but the plots with higher 

LWC gave an R2 of 0.26 and RMSE of 4.54 mg/g. This shows that the LNC 

model can identify nitrogen stress areas from the water-stressed plots, but 

the model could not perform well for regions where no water stress was 

present. This is a limitation of the model, suggesting that the LNC model 

should only be applied once the LWC model has been used to classify low 

and high LWC areas, as suggested in Raj et al. (2021). The scatter plots 

between estimated LNC and CHNS-based LNC for different conditions are 

shown in Figure 6.15, with the model giving an R2 of 0.33 and RMSE of 5.35 

mg/g when tested on 6-leaf and pre-tasseling stage data with no 

discrimination of water-stressed regions. However, the model accuracy 

increased to an R2 of 0.63 and RMSE of 2.74 mg/g when applied to only the 

water-stressed regions. 
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Figure 6.12: Scatter plot between ground truth LNC and plot-wise averaged 

index value of (a) RedEdge1 and (b) DCNI index. 

 

 

Figure 6.13: Colour-coded farm leaf nitrogen map obtained from the trained 

GBM showing nitrogen content in plant leaves on (a) 6-leaf stage and (b) pre-

tasseling stage.  
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Figure 6.14: Scatter plot between LWC and LNC indicating a strong dependence 

of LNC on LWC.   
 

 

Figure 6.15: (a) Scatter plot between estimated and CHNS-derived LNC values 

for all plots; (b) Water stress classification-based scatter plot for all plots; (c) 

Growth-stage based scatter plot for water-stressed plots only; (d) Growth-stage 

based scatter plot for non-water stressed plots only. 
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The indices used in this research – DCNI and RedEdge1 – were created using 

bands from the red edge region of the electromagnetic spectrum. Chen et al. 

(2010), who introduced the DCNI index, presented a detailed analysis of the 

sensitivity of nitrogen concentration to the relative height changes in the peaks 

of derivative spectra of the leaf spectral signature. In this research, those peaks 

were found in the red-edge zone of the spectra around 700 nm and 720 nm, as 

depicted in Figure 6.16. Importantly, Chen et al. (2010) found that the nitrogen 

concentration in the leaves was highly correlated with the relative height 

changes of those peaks, which can be estimated using the ratio of the average 

heights of the two peaks. However, Chen et al. (2010) did not give any scientific 

reasoning for this high correlation. Chen et al. (2010) also added the 670 nm 

wavelength in the DCNI index to reduce the effects of LAI on the index, which 

may be helpful for mixed pixel data, but not for pure-pixel data. The LNC model 

presented in this research was for pure vegetation pixels, which enabled the 

RedEdge1 index to give better results than DCNI without adding other factors in 

the index to remove the effects of crop biophysical properties. 

The literature-based indices did not show high correlation with leaf nitrogen 

content. This may be because literature-based indices, until now, have been 

mostly validated for canopy level nitrogen content which are influenced by the 

biomass and other biophysical properties of the crop available in each pixel area. 

However, in this research, the indices were tested for pure-pixel leaf level total 

nitrogen content which is independent of any crop biophysical properties. 

One crucial observation made in this research is that the identified indices 

tended to lose sensitivity to LNC estimation as the bandwidth broadened. Figure 

6.17 shows the comparative correlation difference heatmap between LNC and 

LWC created with different bandwidth data. The analysis was undertaken on 

bandwidth correlation difference heatmaps created using a 2 nm to 11 nm 

bandwidth dataset. The indices performed similarly until 5 nm bandwidth data, 

with the correlation reducing drastically as the bandwidth further broadened. 
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Thus, this research suggests that for distinguishing LNC and LWC, data should be 

collected with sensors having the central wavelengths given in Table 6.2 with a 

less than 5 nm bandwidth.     

 

 

 

 

 

 

 

 

Figure 6.16: Orange lines show derivatives of typical leaf reflectance spectra. The 

two peaks can be observed in the second derivative spectra around 700 nm and 

720 nm.  The blue line spectra is the leaf reflectance spectra.  
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The 6-leaf stage and tasselling stage maps were classified based on 

estimated water and nitrogen values. Figure 6.18 shows the plot-level stress 

classification map. The red and blue color plots represent the stress 

classification using biophysical parameters, as explained in chapter five. 

 

Figure 6.17: Comparison of correlation coefficient difference heat map showing 

only those indices which show superior correlation with LNC compared to LWC. 

The bandwidths used to create these leaf nitrogen content heatmaps are as 

follows: (a) 2 nm, (b) 5 nm, (c) 8 nm, (d) 11 nm.  
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Different fillers are given based on the LWC and LNC model output. There are no 

cases where biophysical property based estimation suggests no stress condition, 

but the biochemical models classify it as a stress condition. However, if the 

biophysical property-based model classifies plots as a healthy condition but 

biochemical suggests water, nitrogen, or both type of stress, the plot was 

classified based on the biochemical content model. 

6.3 Chapter summary  

This chapter discussed the methods of LWC and LNC estimation from 

hyperspectral data and developed a LWC model using a new hyperspectral (400-

1000 nm) approach for estimation of LWC at an early crop growth stage. Seven 

indices were created using spectroradiometer data based on the overtone 

frequencies of O-H bonds of water molecules. Three of the seven indices were 

shown to have sensitivity for LWC estimation from drone-based hyperspectral 

data. The model created from these indices estimated LWC at the 6-leaf stage 

and before tasseling stage of the crop growth with an R2 of 0.93 and RMSE of 1.6 

% (g/g). This early growth stage LWC estimation can be used to identify water-

stressed plots, and thus potential yield loss can be avoided. Accordingly, this 

model can be used for estimating spatial and temporal LWC changes across 

farms in near-real-time to take scientific-based decision making on irrigation 

 

Figure 6.18: The combined water and nitrogen stress map for (a) 6-leaf stage 

and (b) pre-tasseling stage of 2018-19 Rabi season.  
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management. In the second part of the chapter, some indices were identified for 

estimating LNC and implemented on the farm hyperspectral data. Due to the 

high dependency of LNC on LWC, a critical analysis of the distribution of LNC in 

the LWC areas was undertaken, demonstrating that the LNC model was capable 

of distinguishing nutrient stress areas where water stress was present. A stress 

classification map was prepared by combining biophysical and biochemical 

estimation model results.  
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Chapter 7 

Conclusions and future scope   

 

There are many ideas about future farming, and in all of them, researchers have 
identified that farming will become autonomous and on-farm plant level 

decisions will be made. This research is a little step towards this concept of 
future farming. This image is adapted from Ham Farms website. 
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7. Conclusions and future scope 

The research presented in this thesis developed a method to make plant-

level farm management decisions using remotely sensed, high-resolution data. 

The research showed how crop biophysical properties could be used to identify 

stress areas in the farm, and using crop water and nitrogen models; the stressed 

areas can be further classified into water and/or nitrogen stress zones. Most of 

the currently available farm data analysis methods estimate the crop stress at 

canopy level with a large pixel size as one point. However, considering the 

futuristic approach to farming, plant level decision making will be needed.  

7.1 Salient features and research outcomes 

The models developed in this research can be used for instantaneous and 

early-stage water and nitrogen stress detection in the crop. Moreover, using the 

biophysical properties of the crop in association with APSIM simulation, long 

term crop stress areas can also be identified. Some of the salient features of this 

research are:  

 The LAI model has introduced the concept of vertical leaf area 

distribution factor (VLADF), using which near-to-true LAI values can be 

calculated using drone-based RGB images. 

 Height estimation model has shown that for flat and sparse canopy, crop 

height can be calculated with use of only DSM data. 

 The build leaf water and nitrogen content estimation models have 

performed with high accuracy even for early growth stages of the crop. 

 The bandwidth of the hyperspectral data for accurate estimation of LWC 

and LNC have been found to be less than 11 nm, and 5nm, respctively. But 

it has been seen that narrower the bandwidth, better the result. 

 The fusion of leaf water and nitrogen content models were able to 

distinguish between the water and nitrogen stress areas precisely in the 

water stress regions. 
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7.2 Conclusions 

The analysis of ground truth data about crop biophysical parameters has 

revealed that these parameters get affected by water stress. Differences in 

canopy height or LAI in water stress and optimally irrigated plots are high. 

However, different nitrogen treatments for the same irrigation levels plots could 

not distinguish between LAI or height values for high and low fertilisation 

treatment plots. The analysis of ground truth data about crop biochemical 

parameters has revealed that the leaf water and leaf nitrogen content both 

reduces as the crop moves towards the maturity stage.  Thus, a single value of 

leaf water or leaf nitrogen content cannot represent the stress level for all the 

growth stages, and therefore a growth stage based estimation parameter models 

are required.  

Using drone-based RGB data, two models for estimation of leaf area index 

from top-of-canopy images were developed and evaluated in this research. The 

first, an empirical model trained and tested on Licor canopy analyser data, was 

found to have higher R2 and lower RMSE values than existing farm-level remote 

sensing-based LAI estimation techniques. But as this model was trained on Licor 

canopy analyser data, it was more representative of foliage area index and thus 

had a poor estimation of the leaf area index derived from manual measurements. 

The second model was based on the conceptual use of a VLADF (vertical leaf 

area distribution factor), estimated through allometric properties of the canopy, 

to relate top-of-canopy leaf area to full canopy leaf area for different growth 

stages and heights of the crop. This enabled the changes within the canopy to be 

captured even during canopy closure (i.e. post tasselling stage). This new model 

can therefore be used for analysing spatial and temporal LAI changes across 

farms in near real-time with an R2 of ~0.6 and RMSE of 0.73 when compared to 

independent manual measurements.  

The APSIM model was simulated to obtain temporal LAI and crop height for 

optimal management conditions. The simulated canopy height was 

underestimated until the crop's tasselling stage but performed fine for the 
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productive stage of the crop. The simulated height till the tasselling stage was 

corrected using the rate of change of simulated LAI values. Two models were 

created using the simulated reference data to estimate the healthiness/stress 

levels in the crop. First, a linear model logic was made and tested on the drone-

based data. As the healthiness of the crop is directly proportional to the yield, 

thus to validate the linear model, the healthiness factor was correlated to crop 

yield and R2 of 0.42, 0.56, and 0.63 were obtained for the early vegetative, 

tasselling, and dough stage, respectively. Second, a random forest model was 

trained on the synthetic data generated using simulated LAI and height values. 

The model is validated similar to the linear model, and R2 of 0.45, 0.61, and 0.67 

were obtained for the early vegetative, tasselling, and dough stage, respectively. 

The random forest model seemed to perform better than the linear model. This 

model can be used for long term stress (water or pest) detection on the farm. 

The 701 nm band of hyperspectral data was used to detect the maize tassels 

using image processing techniques. The model has shown high precision - 97.7, 

and a low false-negative rate - 10.7. The tasselling percentage after one week of 

onset of tassels have also found to be correlated with the water stress in the 

plots. Lower the tasselling percentage from 45% percentage level, higher the 

water stress.   

 The hyperspectral data has been used to develop a new approach for leaf 

water content (LWC) and leaf nitrogen content (LNC) estimation at an early crop 

growth stage. For estimation of LWC, Seven indices were created using 

spectroradiometer data based on the overtone frequencies of O-H bonds of 

water molecules. Three of the seven indices were shown to have a sensitivity for 

LWC estimation from drone-based hyperspectral data. The model created from 

these indices has shown precise estimation of LWC at the 6-leaf stage and before 

tasseling stage of the crop growth with an R2 of 0.93 and RMSE of 1.6 % g/g. This 

early growth stage LWC estimation can be used to identify water-stressed plots, 

and thus potential yield loss can be avoided. Accordingly, this model can be used 

for estimating spatial and temporal LWC changes across farms in near-real-time 
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to undertake decision making on irrigation management.  

For estimation of LNC, four indices were created using spectroradiometer 

data. The selection was made from those areas of indices-LNC correlation 

heatmap, where the correlation for nitrogen was greater than the correlation for 

water. One of the seven indices has shown to have a sensitivity for LNC 

estimation from drone-based hyperspectral data. Two wavelengths in the red-

edge zone has found to be sensitive towards LNC.  The model created using this 

index has shown a maximum R2 of 0.64 and 0.43 on water stress areas for pre-

tasseling and 6-leaf stage crop, respectively. The model has shown a lower R2 of 

0.12 and 0.25 on high LWC plants for pre-tasseling and 6-leaf stage crop, 

respectively. This suggests that LNC model accuracy will be higher in the water-

stressed areas. Thus, before applying the LNC model, the farm needs to be 

classified in water stress and no water stress areas using the LWC model to 

decide the water and nitrogen stress of the crop. The LNC model can distinguish 

nitrogen stress areas within the water-stressed locations. However, the LNC 

model has weakly performed on those areas where LWC was higher.  

7.3 Limitations 

This research has the following limitations: 

1. The VLADF-based true-LAI estimation model created in this research is 

only applicable to maize crops with similar architectural properties. For 

any crop with different architectural properties, only field data need to 

be collected to create another VLADF table. 

2. The APSIM simulation model used in this research was not calibrated for 

local field conditions. Instead, the best-fitting parameters with known 

field data were used to simulate the optimal condition biophysical 

properties. This model would benefit from being calibrated for local field 

conditions in scenarios where reference field values are unknown.   

3. The LWC/LNC indices and models created in this research do not 
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incorporate stress conditions due to pests and diseases. Accordingly, the 

model prediction will not represent such external factors, resulting in 

potential inaccuracies in the estimation of LNC and LWC.  

4. The practical implementation of techniques suggested in this research 

for marginal farmers is a challenge due to its high cost. Moreover, the 

operation of these technologies needs technical expertise. Thus, 

disruptive policy intervention may be required in order to achieve 

widespread implementation.  

7.4 Future scope 

This research opens up multiple dimensions for many other researchers to 

improve the model by introducing/improving the following: 

1. This research has focussed on analysing irrigation and fertilisation 

management. However, there can be other biotic stresses due to pests or 

diseases which may affect crop growth.  There is a need to add the pest/ 

disease estimation model to precisely comment on the reason for crop 

stress.  

2. A new concept of vertical leaf area distribution factor (VLADF) has been 

introduced in this research. However, this model is created using two 

years of ground-truth data about crop structural parameters at a single 

site, thus limited to the maize crop. The architectural information input to 

the VLADF model can be made dynamic by taking input from the point 

cloud created using the overlapping top-of-canopy RGB images. This will 

allow the model to work for various crop species without using a lot of 

ground samples. The VLADF model needs to be tested at different sites 

and for different crop types. 

3. One of the major research gaps (in remote sensing) found during this 

research is that very few studies are available on the dynamics of 

temporal leaf nitrogen content with respect to change in leaf water 
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content. As LWC and LNC are closely related, and this research found that 

the LNC is not easily distinguished for higher LWC areas, the reason for 

these limitations needs to be identified using more controlled 

experiments. 

4. The detection of water absorption bands identified in this research 

indices should be checked for different crops. The study of atmospheric 

effects in different humid conditions on the sensitivity of these indices 

can be a good research question for future studies. 

5. This research focused on the 'leaf-level analysis'. This can be scaled to the 

canopy level, and the results are compared against models like PROSAIL. 

This kind of analysis may help in connecting process-based RT models 

with field-based data analysis. 

6. The height module of the APSIM model gives highly attenuated results. 

This is also the problem with models like DSSAT. The height module of 

these models can be made more sensitive to the implemented 

management practices.   

7. The tassel counting model developed in this research is validated on a 

small farm. This model needs to be tested on a big size farm, preferably a 

farmer’s field.  

8. The models developed in this research can be put together as a decision 

support system and need to be tested on the actual farm condition. The 

biophysical properties like LAI, crop height, and tasseling percentage and 

biochemical properties like leaf water and nitrogen content can be used 

in a spatial decision support system where on a computer/mobile screen, 

farmers/users can see the locations and severity of crop stress and 

suggestions related to management actions can be provided. This will 

enable farmers to make near-real-time farm management decisions. A 

small step has already been taken in this direction and a farm-health 
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visualization platform is under preparation. The initial version of the 

platform can be seen at https://agroinformaticslab.github.io/.  

9. This research is limited to the identification of stressed areas. However, to 

make farm-level management decisions, it has to be estimated that how 

much water or fertiliser needs to be supplied at a particular location in 

the farm. More research needs to be done on creating models for the 

estimation of these farm management actions.   

 

  

https://agroinformaticslab.github.io/
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Appendices 

 
The crop goes through different growth stages throughout its life cycle. During 

every growth stage, the requirements of plants vary depending on the dynamics 
of that growth stage. Thus, plant level analysis needs to consider the crop 

properties at that growth stage.  
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Appendix 0: Vegetation reflectance models 

Solar radiation incident on a canopy is reflected, transmitted and scattered 

in a very complex manner. To study the vegetation properties from remote 

sensing requires measuring this reflected and altered radiation. Moreover, 

various available canopy reflectance models incorporate the physics of light 

interaction with the canopy. The models can be categorized into four categories 

(Goel et al., 1988).  

 Geometrical models: A geometrical shape is prescribed for the canopy 

under the assumption that the canopy is an array of opaque or 

translucent sub-canopies. This is good for sparse canopies where 

multiple scattering can be neglected, and the mutual shadow effect is 

minimal at low zenith angles. 

 Turbid medium models: This model is used for homogenous canopies 

where the canopy is assumed to be a turbid medium with absorbing and 

scattering particles. It is better for denser canopies where vegetation 

elements like leaves, shoots, and branches etc. are smaller in comparison 

to the height of the canopy.   

 Hybrid (mix of geometrical and turbid medium) model: The model is 

used for heterogeneous canopies, where the canopy is divided into sub-

canopies with each sub-canopy treated with a different geometrical 

model (depending on the geometrical shape of sub-canopy) where each 

geometrical model is assumed to be turbid. 

 Computer simulation models: Here, the radiation inside the canopy is 

obtained through computer simulations, and the canopy is assumed to be 

a stochastic collection of vegetation elements. The Monte Carlo procedure 

is used to identify specific areas of various vegetation elements almost on 

a photon-to-photon basis. It allows realistic simulation of radiation in the 

canopy rather than making an assumption about it.   

Before analyzing the canopy reflectance model, it is important to understand 
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the leaf reflectance characteristics, as a major part of the canopy is made up of 

leaves. The study of light interaction with plants and their leaves is very 

important for understanding energy transfer processes between vegetation and 

its atmosphere (Peters et al. 1997). In order to generate a physical leaf model, it 

is important to study the optical properties of leaf-constituents like chlorophyll, 

carotenoid, anthocyanin, water, lignin, cellulose, nitrogen etc. In 1969, a paper 

considered leaves as a transparent plate with a rough plane-parallel surface 

named "plate model" of a leaf (Allen et al., 1969). The experiment was carried 

out on maize leaves but later became an effective model for huge subsets of the 

leaf types. PROSPECT is considered to be an improved version of the generalised 

"plate model". There are many other models of a leaf, e.g. Compact Spherical 

Particle Models (used for needle-shaped leaves), N-Flux model etc. Basically, the 

reflectance and transmission spectrum of a leaf is a function of light-absorbing 

compounds (chlorophylls, carotenoids, anthocyanin, water, cellulose, lignin, 

starch, proteins, etc.) concentration and the internal scattering of light. Thus, 

there are two important factors to model a physically realistic leaf. One is the 

refractive index, and the second is the specific absorption coefficients of leaf 

constituents. There are various leaf models that have been used since the 1960s. 

The plate model is one of the oldest leaf models and is still used for most of the 

flat leaves. The compact Spherical Particle Model of the leaf is useful for needle-

shaped leaves. Apart from this, there are models based on the N-Flux model, 

Radiative transfer equations, Stochastic approach, and the ray-tracing model 

(RAMI, 2018). 

1.1 PROSPECT 

The model PROperties SPECTra (PROSPECT) is an example of a leaf plate 

model and is the classical approach for deriving leaf optical properties spectra 

(reflectance and transmittance) from 400 nm to 2500 nm. The physics behind 

the model assumes that the specific absorption coefficient k of each leaf 

constituent (like water, chlorophyll, dry matter) is wavelength-dependent but 
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independent of vegetation species (Jacquemoud et al., 2008). The first paper on 

PROSPECT was published almost three decades ago (Jacquemoud et al., 1990). 

In the original version of PROSPECT, a total of three inputs were required to run 

the model: mesophyll structure (N), pigment concentration (Ca+b), and water 

content (Cw). Slowly, more leaf biochemical constituents were added, like ‘leaf 

dry matter’. In 2008, a more advanced version of this model, called PROSPECT-5, 

included a total of six inputs (Jacquemoud et al., 2009), being N (Number of 

compact layers specifying the average number of air/cell walls interfaces within 

the mesophyll), chlorophyll (Ca+b), carotenoid (Car), brown pigment (Cbrown), 

equivalent water thickness (Cw) and leaf mass per unit area or dry matter (Cm). 

The input of dry matter (Cm), consists of cellulose, lignin, and protein 

(Nitrogen). It was a deliberate attempt to put all three variables together to get a 

better estimation of input biochemical constituents after inversion of the model 

(retrieving leaf biochemical constituents from leaf spectra 400-2500 nm). This 

was undertaken because the protein content can't be retrieved after inversion of 

the model due to the strong water absorption feature in fresh leaves and because 

cellulose and lignin were poorly identified and quantified in dry leaves as 

separate constituents in that wavelength range (Jacquemoud et al., 2008). 

However, in the shortwave-infrared range, there are specific absorption bands 

present for chemical bonds in cellulose, lignin and proteins, which can be 

measured from remote sensing. Thus protein, cellulose, and lignin were 

introduced as the input variables of PROSPECT, but retrieval of these elements 

from the inversion method could not be achieved (Fourty et al., 1996; Govaerts 

et al., 1996; Fourty and Baret, 1998). 

PROSPECT-5 has improved the performance of PROSPECT by updating 

parameters like angle of incidence of incoming radiation and refractive index. In 

PROSPECT, the angle of incidence of incoming radiation was empirically set to 

60°, which has been found to be an overestimated angle. In the Bidirectional 

Reflectance Distribution Function (BRDF) modelling of leaves (Bousquet et al., 

2005), a physical link has been established between the probability density 
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function of facet orientations (D), surface roughness parameter (σ), and angle 

(α). In this experiment σ = 0.5 was found to be realistic for most of the leaves, 

and accordingly, maximum angle of incident incoming radiation was reduced to 

40°. Consequently, PROSPECT accuracy was improved at high absorption 

wavelengths (Feret et al., 2008). The refractive index of a leaf was calibrated 

through empirical methods by using open source data from LOPEX and ANGERS 

(Feret et al., 2008).  

Further advances with PROSPECT have included the addition of anthocyanin 

as one of the input parameters, known as PROSPECT-D (D stands for Dynamic). 

Anthocyanin is one of the major leaf pigments after chlorophyll and carotenoid. 

The percentage of anthocyanin increases in the leaf as it shifts from juvenile to 

senescent stage. Inversion of PROSPECT-D has shown better retrieval of leaf 

constituents, especially for carotenoid (Feret et al., 2017).  

From a remote sensing perspective, PROSPECT is an important model, as 

inversion allows retrieval of leaf biochemical constituents by using leaf 

reflectance collected through a hyperspectral sensor. However, remote sensing 

can only give reflectance, not transmittance (one of the requirements for 

inversion); thus, poor estimation (R2=0.65) is achieved (Fang et al., 2017). In the 

PROSPECT model, it is assumed that the leaf surface roughness parameter (σ), 

the refractive index of leaf material (n(k)), and the specific absorption 

coefficient of leaf absorbers (kspe(k)) remains the same for all the leaf species. 

However, apart from kspe(k), σ and n(k) will vary from one leaf species to another 

depending on the nature of the leaf surface and the wax type on its surface. Thus, 

there is a need to perform experiments to find leaf surface roughness and 

refractive index parameters of leaf material to calibrate the model for various 

species (Feret et al., 2008). 

There are other models like 'LEAFMOD' and 'LIBERTY' which are also used 

for generating leaf spectra. The Leaf Experimental Absorptivity Feasibility model 

(LEAFMOD) uses a one-dimensional radiative transfer equation in a slab of leaf 

material with homogeneous optical properties. However, the carotenoid leaf 
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pigment is not considered in this model. Moreover, the 'Leaf Incorporating 

Biochemistry Exhibiting Reflectance and Transmittance Yields' (LIBERTY) is a 

compact spherical particle model which is widely used for needle-shaped leaves 

(Jacquemoud et al., 2008).   

1.2 SAIL 

SAIL stands for 'Scattering by Arbitrary Inclined Leaves'. Unlike PROSPECT, 

the canopy model SAIL is used to generate canopy reflectance by considering 

various canopy factors like canopy background, crown clumping, leaf area index, 

leaf angle distribution, sun angle, etc. The first version of SAIL was developed in 

1981, and the first paper was published in 1984, even before PROSPECT. The 

SAIL model is very important from a remote sensing point of view as, from a 

distance sensor (satellite or airborne), only canopy reflectance is measurable, 

which has many effects associated with it. SAIL provides a four-stream optical 

property of the canopy layer at the output. As shown in Figure A0.1, the SAIL 

model segments all the radiation, interacting with the canopy into four parts. 

1. Direct solar incident flux, 

2. Direct observed radiance, 

3. Total diffused downward flux, and 

4. Total diffused upward flux. 

The first version of SAIL had a very simplistic assumption about the canopy 

layer, which was assumed to be horizontal and infinitely extended, having only 

small, and flat leaves which are homogenous in nature (Verhoef et al., 1984). 

SAIL has experienced a total of 6 versions, with the latest version named 4ASIL2. 

Developed in 2003, it also has better realistic assumptions than SAIL. The hot-

spot effect was added in SAIL as a function of the ratio of leaf size to canopy 

height and named SAILH. GeoSAIL or 2M-SAIL was developed to consider 

vertical heterogeneity in canopies. In 2007, 4SAIL2 was developed as a 

numerically robust and speed-optimized version of SAIL, while 4SAIL2 added 

the crown clumping effect. All models are presented in table A0.1. 
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Figure A0.1: Four-stream radiative transfer modelling concept (adapted 

from Verhoef et al., 1984). 

 

 Table A0.1: Various models of SAIL (apated from RAMI, 2018). 

Property / Model SAIL SAILH GeoSAIL SAIL++ 4SAIL 4SAIL2 

Year of 

Development 

1981 1989 1999 2000 2003 2003 

Type Turbid 

medium 

Hybrid Hybrid Hybrid Hybrid Hybrid 

Hotspot effect No Yes Yes Yes Yes Yes 

Number of canopy 

layer 

1 1 2 1 1 2 

Singularity 

removal 

No No No Yes Yes Yes 

Numerical 

precision 

Single Single Single Double Double Single 

Speed optimization No No No Yes yes Yes 

Number of diffuse 

streams 

2 2 2 72 2 2 

Internal flux 

profile supported 

No No No No Yes No 

Thermal 

application 

supported 

No No No No Yes No 

Non-Lambertian 

Soil BRDF 

No No No No No Yes 

Clumping effect No No No No No Yes 
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4SAIL2 is different from the previous versions of SAIL because it 

incorporates the effect of non-Lambertian soil BRDF and clumping effect while 

modelling canopy reflectance. No other SAIL model has these two parameters. In 

order to accommodate the vertical heterogeneity of the canopy, 4SAIL2 segments 

the canopy into two layers, similar to GeoSAIL. However, unlike the 4SAIL model, 

the thermal application is not supported in 4SAIL2, which needs to be provided 

with three types of inputs – structural, spectral, and observational parameters. 

Below are details of these parameters:  

i. Structural parameters: LAI, average leaf slope (a), LIDF bimodality 

parameter (b), hotspot parameter (q), fractional brown leaf area (fB), 

layer dissociation factor (D), soil BRDF parameter (b, c, B0, h), soil 

moisture, and crown coverage.  

ii. Spectral parameters: Output from PROSPECT, fractional diffused sky 

irradiance, and dry soil reflectance. 

iii. Observational parameters: Solar zenith angle, viewing zenith angle, and 

relative azimuth angle.   

The practical application of all models (SAIL or PROSPECT) is observed in 

their inversion, where leaf biophysical and biochemical parameters can be 

estimated from reflectance data. 

In Figure A0.2, 𝑅𝑚  =  𝑅 +  𝛥𝑅, where 𝛥𝑅 is the difference between 

measured and calculated reflectance of canopy/leaf spectra.  Here, C --> R can be 

seen as a direct problem and R --> C will be an inverse problem. The process of 

using actual leaf/canopy reflectance to determine leaf/canopy biochemical or 

biophysical parameters (i.e. Rm --> C) should be considered as a separate 

problem because the simple inverse problem will not consider issues in actually 

measured reflectance. One can use ΔR --> ΔC to do a sensitivity analysis of any 

intervention made in the system. 
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Figure A0.2: Estimation of canopy parameters from reflectance data and direct 

and inverse problem schematic representation (adapted from RAMI, 2018).   
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Appendix 1: Semi-controlled pot Experiment 

A pot experiment was carried out on tomato plants to study the effect of 

water stress on plants and the corresponding hyperspectral signatures. The 

experiment was done in a semi-controlled environment at IITB-Monash 

Research Academy (IITB-Campus, Mumbai, India) during the Kharif season of 

2017. The plants were exposed to two different water treatment levels, and three 

replicas were performed to confirm the results. The experimental setup was 

made in such a way as to allow wind and sunlight on the plants but to restrict the 

natural precipitation. This was done majorly to control the soil moisture of the 

pots. Figure A1.1(a) shows the formal setup for the pot experiment. Figure 

A1.1(b) shows the pots' spatial layout, where the red color circles signify the 

pots with high water stress, while the green color circles represent pots with no 

water stress. To monitor and manage the water stress, each pot's actual soil 

moisture was measured on a diurnal basis from around 5 PM to 6 PM. A pre-

calibrated TDR (IMKO HD2 with a dual-probe setting) based soil moisture probe 

was used to record the soil moisture measurements during the day. The field 

capacity of the soil was calculated using experimentation and found to be at 

30%. The experimental pots were irrigated based on an inherent assumption 

that soil density was consistent amongst the pots, and crop water requirement 

was calculated accordingly. For example, if the measured soil moisture (MSM) in 

a red pot was 13%, then the pot's soil moisture should reach 18% with 

additional irrigation. Similarly, If MSM in a green pot is 22%, then irrigations 

should increase the soil moisture content by at least eight units, i.e., 30%. If the 

soil moisture is found to be more than the intended limit, no irrigation was made 

on that day. In addition, hyperspectral data from a spectroradiometer (Spectra 

Vista GER1500) (400 nm – 1000 nm) were collected bi-weekly to monitor the 

effect of water stress on the plant leaves. It was evident that stressed plants had 

smaller leaves, smaller height, and less leaf area index with respect to healthy 

leaves.  

A total of 180 reflectance spectra samples from low soil moisture plants and 
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178 reflectance spectra samples from optimally-irrigated plants were collected 

over two months of plant growth. Figure A1.2 shows the mean reflectance of 

healthy and stressed plants collected over a two-month duration. Results 

showed that the mean reflectance of healthy plants was higher than that of 

stressed plants. However, around red and blue wavelength regions, the mean 

reflectance values were found to be almost equal. It should also be noted that the 

standard deviation (SD) of stressed plant reflectance was found to be higher 

than the SD of reflectance from healthy plants. Moreover, the SD value for both 

the cases was more than the difference of reflectance between healthy and 

stressed plants, which suggests that the absolute value of reflectance spectra 

should not be used to separate healthy and stressed plants.   

 

 

 

 

 

 

Figure A1.1: (a).  Mesh-house covered with transparent plastic sheet on the roof. 

The plastic sheet is used to stop rainwater from getting inside the pots, and (b) 

layout of the pots in the mesh-house where red color circles represent low soil 

moisture pots and the green color circle represents optimally irrigated location 

pots. 
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Figure A1.2:  Mean reflectance signature and standard deviation of healthy and 

stressed tomato plants 
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Appendix 2: Protocol for collecting data from various 

instruments 

1.1 Spectroradiometer 

 Spectral signatures should be collected between 10:00 AM to 2:00 PM only 

if the atmospheric condition is sunny and the sky is clear. If the sky is 

cloudy then there is high chances of data being noisy.  

 Specular radiation from the leaf should not be measured using the 

spectroradiometer as it contains information only from the top surface of 

the leaf and not from within the leaf. During data collection, the sensor of 

the spectroradiometer should be placed in such a way that it should avoid 

collecting specular radiation. This can be achieved by placing the sensor at 

90° plane from the sun’s specular radiation direction.   

 For each subplot, a separate reference spectra should be taken before the 

collection of leaf reflectance. This will help in reducing the effect of 

atmospheric variability  

 The sampled maize-leaf should be kept parallel to the ground, and the 

spectroradiometer should focus on it from a near perpendicular direction 

such that there should be no shadow on the leaf 

 One well sunlit leaves should be selected from each subplot, and three 

spectral signatures should be collected from that leaf.  

 It should be taken care that the lens of the spectroradiometer is clean all 

the time. No water droplet or dust particle stick to it. Put the sensor-cap 

on the sensor if the spectroradiometer is not in use.   

 The reference reflectance panel should be kept clean and should be 

protected from dust particles in the field. 

 How to decide the number of spectral signatures from one leaf: 

A flat plane leaf was taken, and 15 reflectance signatures from it were 

obtained using spectroradiometer from different parts of the leaf. The 

experiment was done at 1:00 PM under direct sunlight in clear sky 
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condition. There was negligible variation in visible region reflectance 

(actually no deviation from 400 – 750 nm) but in NIR region, a significant 

variation is observed with maximum SD of 0.0219. After statistical 

analysis, it is found that if no of samples is increased, then the SD from 

mean will decrease. In this research three samples were selected as this 

gives SD = 0.011 which means the researcher can be 95% and 99.7% 

confident that average reflectance values are +-7% and +-10% of 

achievable mean respectively. 7% is approximately 0.044 in absolute 

values.   

The spectral signatures have been taken in clear sky condition as shadows 

cause high variability in reflectance values even if data is collected from 

same leaf samples.  

1.2 LAI meter 

 LAI data should be collected between 10:00 AM to 2:00 PM only if the 

atmospheric condition is either sunny or uniform overcast. Cloudy sky 

condition should be avoided but not overruled.  

 If the sky condition is cloudy then, for each subplot, a separate k-file 

should be generated before collecting LAI data. If the sky is clear sunny or 

overcast then, one k-file would be sufficient for one replica of nine 

subplots.  

 Data should be collected from three points inside the canopy (from the 

red colour box in figure 3.4), ~15 cm above the ground and it should be 

taken care that the lens is not directly blocked by any leaf. 

  It should be taken care that, while collecting the data, collector’s own 

shadow should not fall on the fisheye lens of  the LAI meter 

 How to decide the number of below readings per plot for LAI data: 

Intensive LAI data collection was done form 9 plots (all the water and 

nitrogen treatments). From each plot, 1, 3, 5, 8, and 10 below reading 

were collected. Before the acquisition of below readings, the separate 
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above-canopy readings were also collected. After scattering correction, all 

the data is plotted, as shown in figure A2.1. It is observed that the LAI 

value with 10 number of readings closely follows the LAI values with 3 

number of readings. It is also observed that the variability of the LAI 

values is more for the highly uneven (unevenly distributed sparse 

canopy) plots. Still, LAI values obtained from 3 number of below readings 

seems to be a good representation of the canopy LAI (as taken by 10 

number of readings).  

 It needs to be taken care that the leaf should fit completely inside the 

sensor of the nutrition analyzer, and no part of the sensor is left 

uncovered   

 The leaf should be dry and clean 

1.3 Plant height and leaf angle 

 Five random plants were considered for measuring plants height. The 

plants were sampled from the four corners and one from the center of the 

rectangular area shown in figure 3.7.  

   

Figure A2.1: (a) Comparison of LAI values with three samples and ten samples 

for 38 days old crop and (b) comparison of LAI values with one, three, five, 

eight, and ten samples for 70 days old crop. In both cases, it can be seen that 

three samples per plot are sufficient enough to give LAI representation of plots.  
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 The heights were measured from ground to just below the uppermost 

leaf in the vertically upward direction, perpendicular to the ground (no 

slanting). 

 Leaf angle were measured using the mobile application (application: 

Clinometer) from three different vertical heights (bottom, middle and top 

of the canopy) 

 How to decide the number of plant height samples 

To decide how many samples need to be collected from a plot, the 

following steps were done:  

 First, one should see which variable need to be recorded. Here, we 

will take the example of measuring plant height from a plot. Now, one 

should decide the accepted error in height measurement, which can 

be tolerated in the research. E.g. whether 20 cm height difference 

from mean will not affect the research or 40 cm will not affect. This is 

important as many statistical approaches need this logical input from 

the researcher. Here 20 cm is kept as an acceptable deviation. 

 Collect as many samples as possible from a plot. Here total, 20 plant 

heights are taken from one plot, and this is done for all the unique 

treatments.   

 Now start numerical analysis:   

o Make all possible groups of 5 samples, 7 samples, 10 samples, 

13 samples, 15 samples, 18 samples etc. From the 20 heights 

measured. In the case of 5 samples, the total group will be 20C5 , 

i.e. 15504.    

o Take the average of each group and put it into a list. 'Average 

of average' of these group will be equal to the average of 20 

measured samples. Just average each group so that its 

deviation from sample mean can be calculated.  

o Now find SD of this list.  
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o Similarly SD for all the samples like 7, 10, 13 etc. can be found 

out.   

o Now apply Gaussian curve rule, i.e. 95 % of the data lies in +-

1.96*SD range.   

o Now find the confidence Interval: 

𝐶𝐼 =  [𝑆𝑎𝑚𝑝𝑙𝑒𝑚𝑒𝑎𝑛 + −1.96 ∗ 𝑆𝐷,  𝑆𝑎𝑚𝑝𝑙𝑒𝑚𝑒𝑎𝑛 ]   

o Check at what no. of samples (5, 7, 8, 10, 13...) the decided 

variation (acceptable error in height from mean) is satisfying 

with the confidence interval. Means, if the value of 2*1.96*SD  

is greater than the tolerance level, then one needs to increase 

the no of samples. (2*1.96*SD because the value can go either 

left or right to the mean). Here the 20 cm deviation comes 

when the number of samples kept at 5 plants per plot.   

1.4 Nutrition analyzer (used from June 2017 to March 2018) 

 Nutrition analyzer data should be collected from the same leaf from 

which hyperspectral signatures are collected  

 Before collecting the data from the leaf, calibrate the instrument by 

pressing the sensor until ‘beep’ sound is heard. Perform the calibration at 

regular interval 

 While collecting data, the instrument should be kept in shadow. If strong 

sun radiation is there, then the researcher should use his/her own 

shadow to shade the instrument       
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Appendix 3: Details of Field Stay 

 

Crop Cycle Date: 16th Oct 2018 (Sowing) to 14th Feb 2019 (Harvesting) 

Field Stay Date: 11th Nov 2018 to 25th Dec 2018 

Other field visits: 28-30 Oct 2018, 06-08 Jan 2019, 24-25 Jan 2019, 10-12 Feb 

2019 

Six-Leaf Stage Date: 12th Nov 2018  

Tasseling starts: 12th Dec 2018 (50% tasseling: 20th Dec 2018) 

Silking stage: 22 Dec 2018 – 01 Jan 2019 

Dough Stage: 25 Jan 2019 

Maturity: 14 Feb 2019 

…………………………………………………………………………………………………………………..…… 

The objective of Field stay:  

1. To record spectral signatures from a broad range of leaf-N and leaf-water 

content in the plants over its crop cycle and also destructively sample and 

preprocess leaves for CHNS analysis.  

2. To record each variable mentioned in table A3.1 at a high temporal and 

spatial resolution 

(These destructively sampled leaves have been used for CHNS analysis) 

Please refer the tables as per details given below:s 

◦ A3.1: List of all crop and soil parameters collected from the farm 

◦ A3.2: Details of instruments used for data collection 

◦ A3.3: Detailed list of the type of data collected and their codes 

◦ A3.4: Growth stage-based data collection 
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◦ A3.5: Detailed data collection schedule 

 

 

 

 

 

 

 

 

Table A3.1: List of collected crop and soil parameters. 

Sr. No Variable Instrument/method 

1 Leaf Hyperspectral Signature Spectroradiometer 

(GER1500) 

2 Drone-based high resolution canopy hyperspectral 

image 

Hyperspectral imager 

(BaySpec OCI-F-HR) 

3 Leaf C, H and N content CHNS Analyzer (Lab) 

5 Plot-wise soil moisture Soil moisture sensor 

(SensProut, UoT) 

6 Soil nitrogen content CHNS Analyzer 

7 Leaf Temperature IR temperature sensor 

(FieldPiece) 

8 Leaf angle Manually (clinometer) 

/image processing 

9 Plant height Measuring tape 
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Table A3.2: Details of instruments. 

Instrument name Company description 

Spectroradiometer Spectra 

Vista 

Spectral range: 400-1000 nm. It's a handheld 

instrument (captures one pixel at a time with 4-

degree FOV) 

Hyperspectral 

imager 

Bayspec Spectral range: 400-1000 nm, Spatial resolution: 

less than 1 cm (at 40 m flight height), and 

Bandwidth: 2.1 nm 

CHNS Analyzer Thermo 

Finnigan 

It is based on the principle of "Dumas method" 

which involves the complete and instantaneous 

oxidation of the sample by "flash combustion". The 

combustion products are separated by a 

chromatographic column and detected by the 

thermal conductivity detector (T.C.D.), which gives 

an output signal proportional to the concentration 

of the individual components of the mixture. 

LAI meter Licor Uses canopy gap fraction and beers law to calculate 

LAI 

Handheld IR temp.  

sensor** 

Fieldpiece Accuracy: ±1.5°F and a resolution of 0.5°F 

Clinometer Android 

app 

Measures leaf angle (Accuracy +-5°) 

Soil Moist. sensor Sensprout Installed by University of Tokyo 
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Table A3.3: List of data collected and their code. 

Level Type code Data 

Soil Destructive SN Soil sample for nitrogen content of each 

treatment  

Soil Fixed Sensor 

based 

SM Hourly soil moisture of each treatment 

(total 9) 

Leaf Destructive LF Leaf samples for leaf-water, N and C content 

(9*3 = 27 samples) 

Leaf Remotely 

sensed 

HyS Hyperspectral signature 

(Spectroradiometer) 

Leaf Remotely 

sensed 

LT Leaf temperature using IR temperature 

sensor 

Leaf Non-destructive LA Plant top leaves angles (Clinometer) and  

Leaf angle distribution in the vertical profile 

of the plant (image processing)  

Leaf/canopy Remotely 

sensed 

HyI Hyperspectral imaging using drone 

Canopy Non-destructive LAI LAI meter data with 3 samples from each 

plot 

Canopy Non-destructive PH Plant height (each plot 5 samples) 
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Table A3.5 is showing a detailed schedule of data collection. High temporal 

resolution data is collected throughout its crop’s life cycle, but the main focus is 

given until the tasseling stage of the crop as higher the number of tassels, greater 

the yield. In table A3.5, Column name in red colour (SN and LF) shows a 

schedule of destructive sampling. All the destructive sampling are done from 27 

plots with one leaf per plot, and soil will be sampled at a depth of 0-15 and 15-30 

Table A3.4: Maize growth stages and data collection. 

Growth Stage Days after 

sowing 

Data collection (see table 1.5) 

Sowing 0 SN (before fertilizer application), SM 

Germination 6-8 SM 

6-leaf stage 25-30 SN (before fertilizer application), SM, LF, HyS, 

LA, HyI, LAI, PH 

-------------------- 50-64 SM, LF, HyS, LA, HyI, LAI, PH 

Tasseling and 

Silking 

64-85 SN (before fertilizer application), SM, LF, LFC, 

HyS, LT, LA, HyI, LAI, PH 

Milk Stage 85-95 SM, LF, LFC, HyS, LT, LA, HyI, LAI, PH 

Dough Stage 95-105 SM, LF, LFC, HyS, LT, LA, HyI, LAI, PH 

Dent stage 105-115 SM, LF, LFC, HyS, LT, LA, HyI, LAI, PH 

Physiological 

maturity 

115-120 SN (after Harvesting), SM, LF, LFC, HyS, LT, LA, 

HyI, LAI, PH 
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cm depth. HyS (3 signatures from each leaf), LT (three readings each leaf) and LA 

(using clinometer) are collected from the same leaf which is sampled 

destructively. To record LAI, 3 points are taken from each plot. PH is measured 

for five plants from each sub-plot. LA is taken using a clinometer. 5pp or 1pp 

means sampling from 5 plants per plot or one plant per plot, respectively. Soil 

moisture sensors (SM) are installed in 9 plots (I3 x N3) since the date of sowing.  

HyI data are collected in such a way to get leaf-level pixel resolution. 

Total 271 leaves samples (from 27 plots) are collected destructively during the 

crop life cycle. 

 

Table A3.5: Detailed data collection schedule and farm events. 

Date Event Day SN 

(Destructive) 

LF 

(Destructive) 

HyS LT LA HyI LAI PH 

16th 
Oct 

Sowing 0 Y 
(before 
sowing) 

       

  1 - 26         

12th 
Nov 

Six Leaf Stage 28 Y Y Y  Y Y Y  

13th 
Nov 

Irrigation to I3 plots 29  Y Y      

14th 
Nov 

Urea to I3 plots 30        Y 

16th 
Nov 

 32  Y Y     Y  

17th 
Nov 

Irrigation to I2 plots, 
Leaf dry powder 
samples made and 
stored 

33  Y Y      

18th 
Nov 

Urea to I2 plots 34         

20th 
Nov 

 36      Y Y  

21st 
Nov 

 37  Y Y   Y  Y 
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Table A3.5: Detailed data collection schedule and farm events (Continued …) 

Date Event Day SN 

(Destructive) 

LF 

(Destructive) 

HyS LT LA HyI LAI PH 

22nd 
Nov 

 38  Y Y  Y   Y 

23rd 
Nov 

Irrigation to I1 plots 39         

24th 
Nov 

Urea to I1 plots 40         

26th 
Nov 

Leaf dry powder 
samples made and 
stored 

42         

27th 
Nov 

I3 plots are irrigated  43     Y    

28th 
Nov 

 44      Y Y Y 

03rd 
Dec 

 48       Y  

10th 
Dec 

 55       Y IIT
H 

11th 
Dec 

Tassels start coming 56         

12th 
Dec 

Irrigation to I3 57  Y Y   Y   

13th 
Dec 

Tassels are seen in 
many plots. Slow but 
continuous rain 
occurred at 13th night 
to 14th morning. Stress 
from I1 and I2 has 
minimised. 

58  Tassel 
count 
has 
done 

   Y   

14th 
Dec 

Very Cloudy sky, no 
direct sunlight. Stress 
from I1 and I2 has 
minimised. 

59  Tassel 
count 
has 
done 

      

15th 
Dec 

Sunny day. Stress in I1 
and I2 seen.  

60  Tassel 
count 
has 
done 

      

17th 
Dec 

Slow but continuous 
rain occurred at 17th 
night to 18th morning. 
Stress from I1 and I2 
has minimised. 

62  Tassel 
count 
has 
done 

     Y 
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Table A3.5: Deatiled data collection schedule and farm events (Continued …) 

Date Event Day SN 

(Destructive) 

LF 

(Destructive) 

HyS LT LA HyI LAI PH 

18th 
Dec 

Very Cloudy condition 
and little precipitation 
type scene 

63         

19th 
Dec 

 64      Y Y  

20th 
Dec 

50% tasseling 65  Y Y Y     

21th 
Dec 

 66  Y Y      

22nd 
Dec 

 67  Y    Y Y  Y   

24th 
Dec 

 69     Y  Y  

31st 
Dec 

Irrigation to I1 76         

01st 
Jan 

Irrigation to I3 77         

02nd 
Jan 

Soil Sample collection 
from I2 and I3 plots 
(total 8 plots) 

78 Y        

04th 
Jan 

Irrigation to I2 80         

7th Jan  83  Y Y Y  Y Y Y 

8th Jan  84  Y Y      

24th 
Jan 

 100        Y 

25th 
Jan 

 101  Y Y Y  Y Y  
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Appendix 4: Soil profile 
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Appendix 5: Drone-based hyperspectral and RGB data 

collection 

A Hyperspectral Imager of make BaySpec having 240 spectral channel was 

installed on DJI Matrice 600 Hexacopter. The imager was fitted inside a gimbal, 

as shown in figure A5.1(a), and the gimbal is attached to the DJI Matrice 600 

hexacopter drone, as shown in figure A5.1(b). Gimbal is one of the important 

parts of the system as it keeps the imager stable while the drone is flying and 

nullify the vibrations. Images taken without turning on the gimbal are full of 

ortho-distortions, artifacts, missing spatial line and sometimes out of focus. 

Figure A5.2 shows the difference between without gimbal and with gimbal 

stitched images in RGB bands. A5.2(a) and A5.2(b) images show the effect of the 

gimbal on data collection. A5.2(a) orthomosaic is created with images taken 

without a gimbal, and A5.2(b) orthomosaic is created with images taken with the 

help of a gimbal. Geometric distortions are easily seen in the A5.2(a) 

orthomosaic. 

 

   

Figure A5.1: (a) Hyperspectral Imager installed inside a gimbal and (b) the 

complete gimble setup installed on a DJI Matrice 600 hexacopter drone. 
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For stating the hyperspectral camera for data collection, the onboard 

computer of the hyperspectral imager is first connected with mobile/computer 

through VNC viewer and below steps are taken: 

 Open SpecGrabber and make sure that the focus of the imager is at 

infinity as the object and camera will be more than 16-meter distance 

 50 frames of white reference are saved by optimizing gain and limiting 

exposure time within 3.5 ms in the SpecGrabber software of the 

imager in such a way that the maximum intensity observed from 

white reference should be around 235. 

 50 frames of Dark background is also saved. The maximum intensity, 

in this case, should be around 10 

 Raw images can be collected with some delay (e.g. 40 seconds) as the 

drone may take some time to reach the height and orient itself for data 

collection    

 Before flying the drone just make sure that the imager is connected 

with GPS, imager sensor is not covered by its cap or anything, and the 

gimbal is on.  

   

Figure A5.2: (a) Orthomosaic of images taken without gimble. (b) Orthomosaic 

of same area taken with gimble. The geometric distortion in the images can be 

seen when the images were captured without gimble.  
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 The Drone controller is programmed for autopilot mode with UgCS 

ground station software to map the area of interest. The drone is 

programmed three times to collect data from three different heights. 

In this research, data is collected from 25m, 50m, and 75-meter 

height. Figure A5.3 shows a screenshot of the UgCS software when the 

drone is flying at 25-meter height. At 25 m, drone speed is kept at 1 

m/s, at 50 m, drone speed is kept at 2 m/s and at 75 m the drone 

speed is kept at 3 m/s. The frame rate of the imager is fixed at 50 fps. 

 

 

 

 

 

 

 

   

Figure A5.3: UgCS software user interface screenshot when the drone was 

collecting data from 25-meter height. 
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Appendix 6: CHNS Elemental Analyzer (Thermo 

Finnigan, Italy) 

(Source: http://www.rsic.iitb.ac.in/chn.html) 

This instrument is used to measure C, H and N. It is based on the principle of 

the Dumas method , which involves the complete and instantaneous oxidation of 

the sample by "flash combustion". The combustion products are separated by a 

chromatographic column and detected by the thermal conductivity detector 

(T.C.D.), which gives an output signal proportional to the concentration of the 

individual components of the mixture.   

The instrument is calibrated with the analysis of std compounds using the K-

factors calculations. Thus the instrument ensures maximum reliability of the 

results because the combustion gases are not split or diluted but directly carried 

to build in GC system simultaneous determination of CHNS can be done in less 

than 10 minutes. This method finds the greatest utility in finding out 

percentages of C, H, N, S, (O) in organic compounds which are generally 

combustible at 1800o C.   

Reference material used: 

 2.5-Bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT) is used as 

Standard reference material for the leaf and soil samples as leaves contain 

a high amount of carbon.  

 3-4 mg of leaf powder samples were used for the analysis with a total of two 

replications 
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Appendix 7: APSIM model related data and simulation 

results 

The APSIM model was simulated for various conditions and various maize 

variety types. After a comparative study ‘mh12’ was selected for the reference 

pupose as explained in capter five.  

Figure A7.1 shows the weather data used for the simulation of the APSIM 

model. The weather data was recorded by an automatic weather station situated 

near the research farm and managed by the India Meteorological Department 

(IMD). Solar radiation in MJ per sq meter (radn), daily maximum temperature in 

degree Celcius (maxt), daily minimum temperature in degree Celcius (mint), 

rainfall in mm (rain), and evaporation in mm (evap) data were obtained from 

Oct 2018 to Feb 2019.    

 

 

Figure A7.1: The weather data used for simulation of the APSIM model. 
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Figure A7.2 shows the APSIM simulated soil moisture (upto 30 cm of soil 

depth) variations based on soil properties, irrigation application, and 

precipitation events throughout the growing season. Three horizontal lines from 

top to bottom represent the saturation, field capacity, and permanent wilting 

point, respectively. The thick yellow color line between field capacity and 

permanent wilting point shows the level of minimum soil moisture value which 

was required to minimise the effect of soil moisture stress on the crop. Thus, the 

soil moisture was supposed to be in the region between field capacity and thick 

yellow line represented by management allowable deficit (MAD). If the soil 

moisture goes above the field capacity line, then the plot was considered over 

irrigated, and if the soil moisture goes below the thick yellow line, then the crop 

faces soil moisture stress. Soil moisture below permanent wilting point is a 

highly avoidable scenario where crop may dry down before reaching 

physiological maturity. The solid blue line is of I3 irrigated plots,  dashed green 

 

Figure A7.2: Temporal variation of soil moisture in I3, I2, and I1 irrigated plots. 

The region between the yellow line and field capacity shows the management 

allowable deficit (MAD). The soil moisture needs to be maintained in the region 

to make sure plants do not face water stress.  
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line is for I2 irrigated plots, and dotted red line is for I1 irrigated plots. It can be 

seen that the I3 irrigated plots mostly maintain the soil moisture values within 

the management allowable deficit (MAD) region. However, the I1 plots face 

water stress most of the time as its soil moisture goes below the MAD region 

very frequently. For optimal condition simulation of the APSIM model, soil 

moisture was maintained above 70% of the field capacity.  

Figure A7.3 shows the comparison of APSIM and DSSAT simulation results 

for ‘Pionneer3394’ maize variety. The ‘mh12’ verity was not available in DSSAT, 

 

Figure A7.3: Comparison of APSIM and DSSAT simulation results for (a) LAI and 

(b) crop height. Same input data was used to simulate both models. The APSIM 

has found to be giving results closer to observed values.  
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so  Pioneer3394 was chosen for comparison. The APSIM simulated results gave 

near to observed results.  

Figure A7.4 shows the APSIM simulation canopy height and LAI values for 

‘Hycorn53’ maize verity. This variety has performed similar to mh12, but mh12 

gave slightly better results than Hycorn53, when compared to the field observed 

values. 

Figure A7.4: APSIM simulated results of (a) canopy height and (b) LAI for 

‘Hycorn53’ maize verity. 
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