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SYNOPSIS 
 
Point-scale and remotely sensed large-scale soil moisture measurements do not 

provide data at the scale required for most environmental applications. Techniques 

are therefore needed for predicting soil moisture distributions from point-scale 

measurements and disaggregating large-area measurements.  

This thesis discusses methodologies for soil moisture scaling in open non-forested 

area.  These include:  bucket-type water balance modelling, identification of 

representative monitoring sites, wetness characterization with a new topographic 

wetness index, and the use of wetness indices computed from land surface 

temperature and vegetation indices 

A bucket-type water balance model was used to predict soil moisture with 

intermittent measurements. These models have limited usefulness for hillslope-

scale although direct insertion of measurements into the model can reduce some 

prediction errors.  

Temporal stability analysis of a network of measuring stations demonstrated that 

locations can be identified that are representative of the mean moisture content. It 

was found that 12-15 months are required to identify representative sites. Sandy 

soils are associated with higher temporal stability and clayey soil show less 

temporal stability.  

A Soil-adjusted Topographic Wetness Index (STWI) was developed from limited 

soil moisture measurements to derive hillslope scale soil moisture distributions 

from topographic position and soil properties.  

Point-scale measurements and remotely sensed land surface temperature (LST)  

and vegetation index (VI) data were used in developing methods for generating 

soil moisture patterns. The first approach used relationships between land surface 

temperature and soil moisture content. The second approach investigated the 

relationship between a Regionally Normalised Temperature Index (RNTI) and a 

Normalised Water Deficit Index (NWDI).  The third, and most promising, 

approach used LST and VI values to develop a Vegetation-Temperature Condition 

Index (VTCI) to characterise the surface wetness conditions.  
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Large-scale AMSR-E soil moisture measurements were evaluated with two 

approaches.  The first approach was based on many point scale soil moisture 

measurements collected during three intensive field campaigns. The second 

approach examined the temporal evolution of AMSR-E measurements against 

pixel-scale root-zone soil moisture measurements. Both approaches indicated that 

AMSR-E data can satisfactorily mimic ground-based soil moisture content. 

Finally, a new methodology has been presented for disaggregating large-scale 

AMSR-E soil moisture values into fields with 1.1km pixels.  This method used 

the VTCI index to describe actual soil moisture variations within AMSR-E pixels.  
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v - vertical polarization 

υ  transmissivity 

υ0  transmittance near the Earth’s surface 

Wc cm3 cm-3 vegetation water content 

WCvol cm3 cm-3 volumetric water content 

α m up slope area per unit contour length 

α  soil moisture sensitivity term in βαθσ += v
o  

α  coefficient used in vegetation roughness estimate 

β  local slope of the ground surface 

β  constant parameter in βαθσ += v
o  

Г  reflectivity of the surface 

Г(l)  transmissivity of the canopy at l (vertical or 
horizontal polarization) 

γ Pa oC-1 psychometric constant  

∆ Pa oC-1 slope of the saturated vapour pressure-temperature 
relation  

j*,δ   mean relative difference at the jth site 

ε farad m-1 complex dielectric constant, ε = ε’ + i ε” 

ε’ farad m-1 real part of dielectric constant ε 

ε” farad m-1 imaginary part of dielectric constant ε 

ε  surface spectral emissivity 

εo  spectral emissivity near the Earth’s surface 

ε11  emissivities in the 10.8 μm bands 

ε12  emissivities in the 12 μm bands 

εr farad m-1 relative dielectric constant, εr = εr’ + i εr” 

εr’ farad m-1 real part of relative dielectric constant 

εr” farad m-1 imaginary part of relative dielectric constant 
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θ cm3 cm-3 measured water content 

θ degrees incidence angle of the sensor 

θ* - normalized water content 

θ*  baseline value of θ 

θ* cm3 cm-3 soil water storage capacity 

θ0-1 cm3 cm-3 0-1 cm soil water content 

θAMSR-Ej cm3 cm-3 soil water content in the jth AMSR-E pixel 

θmax cm3 cm-3 maximum soil water content  

θmin cm3 cm-3 residual soil water content  

θRNTIi cm3 cm-3 soil moisture content computed for a given high-
resolution pixel of RNTI 

θv cm3 cm-3 volumetric soil water content 

θVTCIi cm3 cm-3 soil moisture content computed from a given high-
resolution pixel of VTCI 

λ μm, mm, cm, m wavelength 

λE Wm-2 latent heat flux 

μ Hz frequency  

ξ  microwave polarization ratio 

ξ*  baseline value of ξ 

ξ10.7  microwave polarization ratio at 10.7 GHz channel 

ξ18.7  microwave polarization ratio at 18.7 GHz channel 

ρ kg m-3 density of air 

ρBlue  blue reflectance 

ρb g cm-3 soil bulk density 

ρs g cm-3 soil particle density 

ρNIR  NIR reflectance   

ρRed  red reflectance 

σo dB backscatter coefficient or radar cross section 

τ  opacity 

φ v v-1 porosity 

ω  single scattering albedo 
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CCCHHHAAAPPPTTTEEERRR   OOONNNEEE   

1. INTRODUCTION  
 

This thesis studies the development and field application of soil moisture scaling 

techniques. The thesis develops methodologies for: (a) upscaling point-scale soil 

moisture measurements to 1.1 km scale and (b) downscaling of low resolution 

passive microwave soil moisture observations to 1.1 km scale, for deriving spatial 

patterns. This chapter presents an introduction to the soil moisture scaling and the 

development of the thesis. The importance of having soil moisture information at 

different scales is outlined and some recent efforts to confront the problems of 

scale issues in soil moisture for hydrological applications are discussed. Next, the 

framework within which this research is undertaken is developed, with a summary 

of the research motivations and objectives. Lastly, the structural organisation of 

this thesis is detailed with a brief description of each Chapter. 
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1.1 RATIONALE 

The primary objective of the present study is to develop methodologies for using 

the measured soil moisture data at various scales for the prediction of moisture 

contents at other scales by adopting appropriate scaling techniques. Two extremes 

of soil moisture measurements are considered viz. small scale or point-scale in-

situ measurements and remotely sensed soil moisture measurements of the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) at the 25km 

scale. One important question is how to relate these two extreme moisture content 

measurements in a meaningful way, i.e. how to scale up the point-scale 

measurements and how to disaggregate the large-area measurements. It is 

anticipated that these methodologies should be general, in such a way that they do 

not require a substantial number of point scale measurements or land surface 

biophysical properties for calibration purposes, and that they can be used with 

remotely sensed land surface observations such as the land surface (skin) 

temperature. 

The transfer of information across scales is known as scaling. Upscaling (or 

aggregation) involves using small scale (or point) measurements and estimating 

spatial averages at a larger scale. Downscaling (or disaggregation) involves 

estimating small scale (or point) values from larger scale average measurements. 

Interpolation describes the process of taking spatially distributed point (or small-

scale) measurements and determining how soil moisture status varies between 

those points.  In order to transfer information accurately, it is important to 

understand the functional dependence of fine scale processes and their non-linear 

spatial and temporal variation with respect to functional changes. Soil moisture 

scaling deals with the transformation of measured or estimated soil moisture 

information because, often soil moisture information required for hydrological 

models is different from the measured or estimated scales. Essentially, scaling 

consists of measuring and comparing objects in some meaningful way. Therefore, 

clear understanding of fundamental scaling principles is very important in any 

study that uses theory or models developed at one particular scale to assess 
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conditions or processes at other scales. This is particularly important for 

hydrological studies. The procedures used to measure spatial and temporal 

variability of environmental parameters such as soil moisture, rainfall, 

evaporation or other model input parameters may not necessarily be appropriate 

or optimal for the scale of model used. As such, in order to have better model 

outputs, it may require changing the scale of original data or scaling the inputs 

suitable for match with the modelling scale, for example to match with the 1.1 km 

scale of some satellite radiometers.  Often this is complex and the use of simple 

averages does not necessarily give better results. For example, due to the highly 

variable nature of soil moisture and the technical difficulty of measuring soil 

moisture, point-scale soil moisture measurements are often the only available soil 

moisture inputs. Therefore, depending on the complexity or the scale of the 

model, these available soil moisture fields need to be scaled up or scaled down. 

Thus clear understanding of fundamental scaling principles as well as technically 

sound scaling methods are needed. 

The definition of scaling is complex. Singh (1995) defines spatial scale as the size 

of a grid cell or subcatchment area within which the hydrologic response can be 

treated as homogeneous. If the selected scale is too small, it is dominated by local 

physical features. On the other hand, if it is too large, it ignores significant 

hydrologic heterogeneity caused by spatial variability. This definition however, is 

incomplete and focuses only at the model application level. Because of the 

complexity of providing a proper definition of scaling, Blöschl and Sivapalan 

(1995) have proposed a conceptual framework to define the scale and the required 

transformation of information in modelling real environmental processes. 

According to Blöschl and Sivapalan (1995), the term scale refers to a 

characteristic time or length of a process, observation, or model.  This definition is 

better than the previous definition by Singh (1995) since it includes both spatial 

and temporal aspects of processes, data or measurements and model outputs. 

Therefore, it helps to analyse and understand the scale issues in a more holistic 

manner.  

Scale can be used either as a qualitative term (e.g. a small-scale or large-scale 

process) or as quantitative measure in space dimensions. The spatial dimension, 

represented as co-ordinates in x, y, z directions, varies temporally along a time 
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domain. Thus, scaling is a change in either spatial or temporal scale and has a 

certain direction and magnitude. The direction of scale change is described as up-

scaling and down-scaling. To change the scale from one level to another, it 

requires methods such as interpolation and extrapolation or aggregation and 

disaggregation. Aggregation may be viewed as weighted summation of sub-grid 

processes. Determination of the weighting function is the most important feature 

in aggregation. Whether this is to be done by lumping many small-scale features 

into a much smaller number of categories, or whether some statistical technique 

should be used is an unresolved question. Disaggregation of large scale data down 

to the regional or plot scale would require histories of each parameter for each 

region or plot. These methods may be based entirely on simple statistical 

techniques, geo-statistical techniques, process-based techniques or a combination 

of these techniques. Selection of an appropriate method however, is very difficult 

due to the complex nature of soil moisture distribution patterns. 

Soil moisture is correlated in space and time due to a variety of processes. A clear 

understanding of soil moisture correlations for a range of scales is difficult mainly 

due to lack of data and the technological limitations of collecting soil moisture at 

variable scales. Spatial and temporal variability of soil moisture is ubiquitous 

(Western et al., 2002). As many soil moisture–dependent processes are nonlinear, 

this variability leads to significant scale effects. The current knowledge of soil 

moisture scaling is mostly limited to small catchments (<200 ha) and there is a 

gap in understanding for intermediate scales due to a lack of data (Western et al., 

2002).  Therefore, more studies are needed in large catchments to better 

understand soil moisture scaling behaviour.  

1.2 IMPORTANCE OF SOIL MOISTURE AND 
SCALING 
Soil moisture is one of the most important environmental variables in land surface 

climatology, hydrology, and ecology. Although soil moisture represents a small 

proportion (only 0.15%) of the liquid freshwater on Earth (Dingman, 1994), it is 

an important sink in the hydrologic cycle. It plays a significant role in temporally 

and spatially distributed environmental processes such as surface and subsurface 

runoff, evapotranspiration, infiltration capacity and climate among others. For 
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example, soil water exerts a strong control on the rates of evaporation and 

transpiration, resulting in a major impact on the partitioning of incoming solar 

radiation which, in turn, provides an important feedback between the land surface 

and the atmosphere (Avissar, 1995).   Hence, it influences climate and weather 

(Entekhabi, 1995). Also, it is important in determining the rainfall-runoff response 

of catchments, particularly where saturation excess runoff processes are dominant 

(Dunne et al., 1975). Further, soil moisture is important for maintaining crop and 

vegetation health and hence ecological patterns (Rodriguez-Iturbe, 2000) and 

agricultural production. Therefore its monitoring on a routine basis would allow 

precise irrigation planning and mapping of drought severity. Many other benefits 

are associated with the proper knowledge of soil moisture and these include; 

• Better estimates of evapotranspiration from vegetated surfaces (Entekhabi 

et al., 1993; Grayson et al., 1997) 

• Determining the energy balance at the soil surface (Grayson et al., 1997; 

Schmugge, 1998) 

• Improved weather predictions (Engman, 1992; Su et al., 1995) 

• Improved flood forecasting  (Entekhabi et al., 1993;  Su et al., 1995) 

• Saving on irrigation water (Jackson, T. J. et al., 1981b; Jackson, R. D. et 

al., 1988). 

• Co-determine plant biomass responses to CO2 enrichment (Acock and 

Allen, 1985; Gifford, 1992; Field et al., 1995) 

• Increased crop yields through maintaining optimum moisture levels 

(Jackson, T. J. et al., 1981b) 

• Early drought prediction (Engman, 1990; Wang et al., 2001; Sandholt et 

al., 2002) 

• Improved bushfire warning systems (McVicar et al., 2002; Sandholt et al., 

2002) 

• Improved erosion prediction (Walker, 1999; Moore et al., 1988 as cited by 

Western et al., 1998a) 
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Therefore, information of surface and sub-surface soil moisture over a range of 

time and space scales is obviously of benefit for hydrology, meteorology and 

agronomy related studies. Furthermore, moisture content in the soil is one of the 

few directly observable variables in the hydrological cycle. However, such soil 

moisture information is usually not available at the appropriate time-space scales. 

1.3 SOIL MOISTURE VARIABILITY 
Soils in their natural state exhibit considerable spatial and temporal variability of 

moisture content due to heterogeneity of soil properties, topography, land cover, 

evapotranspiration, precipitation, etc. This variability is more dominant in the 

surface layers than in the subsurface layers. Furthermore, it is due to inherent 

physical properties and is the effect of many processes acting on a range of scales. 

Among the inherent physical properties, factors such as soil type, soil depth, 

topography and vegetation play an important role in soil moisture distribution 

(Qiu et al., 2001). Soil heterogeneity affects the distribution of soil moisture 

through variation in texture, organic matter content, porosity, structure and macro-

porosity (Mohanty and Skaggs, 2001). The variability in soil hydraulic properties 

and soil water retention characteristics greatly influences the vertical and lateral 

transmission properties. Further, variations in soil particle and pore sizes may 

cause significant soil moisture variations even over very small distances. The 

influence of soil colour caused by moisture on albedo may also influence the rate 

of evaporative drying.  

Topography plays a dominant role in the spatial structure of soil moisture both 

during and after rainfall. Results from hillslope scale studies indicate that 

significant variability in soil moisture content exists along the length of transects 

(Famiglietti et al., 1998; Kim and Barros, 2002a). This variability decreases with 

decreasing transect-mean moisture content as the hillslope dries down following 

rain events. Studying the spatial organization of soil moisture in a small 

catchment, Grayson et al. (1997) have found that the moisture variation is related 

to the processes controlling the spatial pattern. Accordingly, spatial organization 

is strongest when there is lateral flow occurring (at high soil moisture content) or 

when the soil moisture is influenced significantly by up-slope processes (also 

known as non-local control). Little organization is present when the soil moisture 
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is locally controlled (at low soil moisture content) and the main fluxes of water 

are vertical. Further, detailed event simulations indicate that spatial organization 

has a significant effect on the rainfall-runoff behaviour (Grayson et al., 2002).  

Therefore, during inter-storm periods, topographic and soil attributes operate 

jointly to redistribute soil water. Under wet conditions, variability in surface 

moisture content is strongly influenced by porosity and hydraulic conductivity, 

and under dry conditions, correlations of soil moisture are strongest to soil 

properties such as residual moisture content and vegetation properties such as root 

density.  Thus, during inter-storm periods, the dominant influence on soil moisture 

variability gradually changes from soil heterogeneity to joint control by 

topographic, soil and vegetation properties. This may lead to temporal stability in 

the spatial pattern of soil water distribution at the transect scale (Gómez-Plaza et 

al., 2000). Studies confirm that at the point scale spatial patterns of soil moisture 

are determined by topographical position, as high locations, or steep areas, are 

usually the driest points, whereas locations in valley zones tend to be the wettest 

points despite the presence of vegetation. 

Vegetation is another critical consideration for understanding the soil moisture 

regimes as it affects infiltration, runoff, and evapotranspiration. Further, the 

seasonal demands of soil water by plants alter the redistribution pattern of soil 

moisture. The key vegetation characteristics that influence soil moisture are 

vegetation type, density and uniformity (Reynolds, 1970).  The influence of 

vegetation on soil moisture is more dynamic (Gómez-Plaza et al., 2000) as 

compared to the role of soil and topographic factors. The variability of soil 

moisture is lowest with full canopy cover and highest with partial coverage 

(Mohanty and Skaggs, 2001). Hawley et al. (1983) have suggested that the 

presence of vegetation tends to diminish the soil moisture variations caused by 

topography. On the other hand, vertical and lateral redistribution of soil moisture 

over scales from centimetres to tens or hundreds of meters together with spatial 

variation in evaporation and precipitation (Western et al., 1998b) cause variation 

in soil moisture distribution. 

Knowledge of the above-mentioned causes for the variation of soil moisture is 

very important in describing the hydrological processes.  Variations in soil 

moisture produce significant changes in the surface energy balance, vegetation 
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productivity, and shape and volume of the observed hydrograph (Blöschl and 

Sivapalan, 1995). Therefore, knowledge of the characteristics of this variability is 

important for modelling purposes. However, the accurate assessment of this 

variability is difficult because field methods are complex and expensive. In 

addition, local scale variations in soil properties, terrain, and vegetation cover 

make selection of representative field sites difficult if not impossible (Engman 

and Chauhan, 1995; Wood, 1997). Consequently, its measurement is a difficult 

task, particularly for large spatial extents and time periods. Therefore, the best 

choice to estimate grid scale soil moisture is the combined use of ground based 

measurements, remote sensing observations and proper scaling techniques.  

 

1.4 SCALE ISSUES AND MODELLING PROBLEMS 
IN HYDROLOGY  
According to Gupta et al. (1986) the mathematical relationships describing a 

physical phenomenon are scale dependent. This is particularly important for 

hydrological studies. The procedures used to measure spatial and temporal 

variability of environmental parameters such as soil moisture, rainfall, 

evaporation or other model input parameters, and to predict processes which are 

represented by models may not necessarily be appropriate or optimal for the scale 

of interest. It is also possible that model parameters may change according to the 

level of disaggregation. Because of these reasons, a model developed at one scale 

may not be applicable at another scale. Therefore, if model results are blindly 

applied without considering how they might be affected by the scales used in 

model development and data collection, it can introduce significant problems in 

the final outputs. 

Scaling may happen whenever a measurement technique is used to quantify the 

behaviour of a natural process at a particular scale of interest. Another type of 

scaling involves the development of process-based models using the observed 

data. Modelling includes the development, testing, evaluation, validation and 

application of a model consisting of mathematical assumptions and logical 

relationships to describe natural processes (Steyaert, 1993). Here, the aim of 

scaling procedure is to represent natural process patterns and their variance 
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through models and then forecast or assess events. Consequently, the pattern 

produced by model results has to be evaluated in terms of natural patterns. The 

evaluation of models is essentially a scaling procedure in reverse. Through a 

continuous evaluation of the model approach, inappropriate assumptions and 

errors can be eliminated. 

 

1.5 OBJECTIVES AND SCOPE  
This thesis studies upscaling and downscaling techniques to improve the estimates 

of spatial and temporal distributions of soil moisture fields at three levels: 

hillslope scale, subcatchment scale and catchment scale (~6540 km2).  Knowledge 

of the variation of soil moisture is very important in describing the hydrological 

processes.  The accurate assessment of this variability is however, difficult 

because field methods are complex and expensive and not representing large 

areas. Also, local scale variations in soil properties, terrain, and vegetation cover 

make selection of representative field sites difficult. Therefore, the best choice to 

estimate spatial patterns of soil moisture is the combined use of ground based 

measurements, remote sensing observations and proper scaling techniques. 

The purpose of this study is to develop methodologies to upscale point 

measurements of soil moisture data into representative averages over larger spatial 

scales (e.g. 1.1 km satellite pixel scale) and to downscale area averaged soil 

moisture estimates over a large coverage into range of sub grid scales (1.1 km 

scale) to meaningfully represent the actual spatial distribution. The study mainly 

focuses on open, non-forested catchments.  Further, hydrological modelling 

techniques such as simple bucket type water balance modelling and identification 

of catchment average soil moisture monitoring (CASMM) sites are assessed for 

predicting the temporal and spatial variability in catchment soil moisture status. 

This is done in order to establish functional relationships that can be used to 

estimate the soil moisture distribution at a range of scales. 

This study is part of a larger project addressing Scaling and Assimilation of Soil 

Moisture And Streanflow (SASMAS) in a subhumid catchment. Being a dominant 

landscape pattern on the Australian continent it is therefore important to study the 
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areal distribution of soil water contents in subhumid (and semiarid) catchments 

over a range of scales. This research focuses on the spatial and temporal 

variability of soil moisture status in a large catchment in the Upper Hunter region 

in New South Wales. This thesis’ contribution to the SASMAS project is to study 

the spatial variability in soil moisture by developing techniques for upscaling, 

downscaling and interpolation of soil moisture measurements. For each of these 

scaling processes a range of tools have been developed and tested with the results 

obtained in a field experimental program which extends over several years, thus 

addressing seasonal differences and temporal variability in soil moisture status.  

Furthermore, passive microwave technology is an emerging trend of remote 

sensing application to measure near-surface soil moisture in routine basis. This 

technique, however, is not yet widely accepted by the scientific community due to 

insufficient evidence of the validity of data. Thus, studies are needed to validate 

remotely measured soil moisture such as from AMSR-E. 

The specific objectives of the research are as follows: 

• To develop interpolation tools which are based on relationships between 

in-situ soil moisture measurements and remotely sensed thermal and 

visible imagery from different remote sensing platforms.  These 

relationships will then be used for upscaling and interpolating soil 

moisture observations obtained with a network of permanent monitoring 

sites.  

• To test terrain based hydrological modelling concepts for predicting the 

spatial variability in soil moisture status at local (hill slope) scale. 

• To evaluate simple bucket type water balance modelling for predicting soil 

moisture  

• To explore the potential of the temporal stability theory (see Grayson and 

Western, 1998) as an upscaling methodology and a solution to the problem 

of validating satellite based soil moisture estimation.   

• To validate passive microwave remotely sensed large area AMSR-E soil 

moisture estimates with several intensive field campaigns based on many 

point-scale soil moisture and vegetation observations. 
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• To develop a methodology to validate AMSR-E measurements with 

ground-based permanent monitoring stations. 

• To develop methodologies to disaggregate large-area soil moisture 

estimates obtained with passive microwave observations. 

• To validate the above scaling methodologies and interpolation tools with 

in-situ soil moisture measurements.  

1.6 OUTLINE OF APPROACH  
The study starts by first analysing climatic conditions in the study region and soil 

moisture behaviour for different land use regimes. Then, relationships between 

field measured soil moisture and various other parameters such as: (a) indices 

derived from topographic data, (b) remotely sensed land surface temperature, (c) 

wetness indices derived from remotely sensed data, and (d) soil physical 

properties are studied. These analyses results in the development of simple 

physically based soil moisture scaling models at hill slope scale, sub catchment 

scale and large catchment scale. The hill slope scale upscaling model is tested on 

a 168 ha small catchment. The catchment scale model is used to upscale a limited 

number of point scale soil moisture observations on to a subcatchment of about 

1200 - 6540 km2. The third (large catchment) model is aiming at downscaling of 

25 km scale passive microwave soil moisture observations into 1 km scale soil 

moisture estimates. These upscaling and downscaling models are then evaluated 

with field measured soil moisture measurements. Finally the models are used on 

the SASMAS data set and various applications of the upscaled and downscaled 

soil moisture estimates are discussed. 

 

1.7 ORGANISATION OF THESIS  
This thesis consists of nine chapters. Chapter 2 gives a literature review of soil 

moisture measurement techniques and scaling methodologies. It concludes with 

researchable issues and knowledge gaps in soil moisture scaling procedures.   
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Chapter 3 presents the field research program in the Goulburn River experimental 

catchment. It also describes the calibration of field instruments. Analysing the 

field data collected during the study period, climatic and hydrological 

characteristics of the catchment are also presented.    

From the insight gained in Chapter 3, a simple one-dimensional bucket type water 

balance modelling is applied in Chapter 4 to study the hillslope-scale hydrological 

behaviour. Chapter 4 also investigates the control of topography and soil 

characteristics upon soil moisture distribution at the hillslope scale. 

Chapter 5 describes an attempt to extend the soil moisture scaling relationships to 

an entire catchment. This chapter studies the prediction of catchment average soil 

moisture from the catchment average soil moisture measurement (CASMM) sites.  

Chapter 6 studies the prediction of soil moisture from combined use of ground 

based measurements and remotely sensed land surface temperature and vegetation 

observations.  

Chapter 7 presents results of field validation of AMSR-E soil moisture 

observations. 

With the availability of routinely measured large area soil moisture measurements 

(25km x 25 km) the scientific community needs methodologies to disaggregate 

these large area soil moisture measurements for wider practical applications. 

Therefore, a soil moisture disaggregation method is developed in Chapter 8.  

Chapter 9 presents the conclusions of this research. It also discusses future 

directions for predicting catchment scale soil moisture distribution patterns from 

ground-based point scale measurements and near-surface or skin soil moisture 

measurements from satellite-based passive microwave sensors.  
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CCCHHHAAAPPPTTTEEERRR   TTTWWWOOO   

2. LITERATURE REVIEW – MEASUREMENT, 
ESTIMATION AND SCALING OF SOIL 
MOISTURE  
 

This chapter deals with soil moisture measurement and estimation techniques. The 

theoretical basis of soil moisture measurement techniques is discussed and some 

common in-situ methods and remote sensing techniques are presented. The 

chapter also includes approaches for soil moisture estimation. Next, the 

importance of soil moisture scaling is outlined and a review is presented of some 

recent efforts to address the problems of soil moisture scaling for hydrological 

applications.  
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2.1 INTRODUCTION 
Information on the temporal and spatial distribution of soil moisture is central to 

many hydrological and climatic models as soil moisture provides the most direct 

link to water balance equation. It is widely accepted that reliable, robust and 

automated methods for the measurement of soil moisture content will be 

extremely useful, if not essential. Soil moisture however, unlike other 

environment variables such as rainfall, solar radiation, wind velocity and air 

temperature, varies over a very narrow range within a day particularly during non-

rainy days.  Furthermore, minimum and maximum field capacities of soils vary 

from approximately 0.6 mm to 4.5 mm in 1cm depth of soil for coarse sands and 

clay soils respectively. Small variations of soil moisture within these lower and 

upper boundaries therefore are difficult to measure and require very accurate 

techniques.   

There are three common ways to describe the wetness of soil: gravimetric soil 

water content (SWC), volumetric soil water content and soil water potential 

(SWP).  Gravimetric SWC refers to how much water is in the soil on a weight 

basis, for example 0.20 g water per 1 g of oven dried soil. Volumetric SWC refers 

to how much water is in the soil on a volume basis, for example 0.20 cm3 water 

per 1 cm3 of soil. This is the most useful way to express SWC because it allows 

comparing the water contents of different soils. Volumetric measurements are 

convenient for measuring how wet the soil is, but they give no indication how 

strongly the water is attached to the soil particles. When the soil is wet, the water 

is not so strongly attached to the soil particles and hence is more readily available 

to plants. However, as the soil becomes drier, the water is held more strongly and 

more energy is needed to extract it. The soil water potential is a measure of how 

strongly water is attached to the soil particles and is expressed in kilopascals (kPa) 

or in millibars (mbar). Potential is also known as soil water suction. 

It is possible to use all three methods for the same purpose but which description 

is used depends on how the information will be used. For example, an irrigator 

would prefer to know the volumetric SWC as it gives an idea of water deficit in 

the soil on a volumetric basis and hence, it is easier to compute the diversion 

requirement. On the other hand, plant physiologists may prefer using SWP as it 
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gives an indication of how easily roots can absorb soil water. Similarly, a 

hydrological modeller may require soil moisture information in the form of a grid 

pattern across the whole catchment of interest. For some applications, it may need 

continuous soil moisture information over a certain period. To meet these diverse 

requirements, a range of measuring techniques is available. The knowledge of 

moisture measurement techniques is important for a better insight into the scaling 

properties of the soil moisture fields.    

Many field procedures have been employed to measure soil moisture in-situ as 

well as remotely. Each procedure has advantages and disadvantages stemming 

from the complexity of the instrumentation, difficulty of instrument calibration, 

and the cost of the data acquisition and analysis. Therefore, the selection of a 

procedure should be based on how the soil moisture information is to be used.  

2.2 GROUND BASED TECHNIQUES FOR 
MEASURING SOIL MOISTURE  
In a broad sense, all current in-situ techniques can be categorised into three 

groups: direct methods, indirect methods, and suction methods. Direct methods 

measure the water content directly, whereas in indirect methods SWC is 

determined by measuring another strongly related property. The suction methods, 

a kind of indirect approach, measure the soil water potential.  A brief account of 

these techniques is provided in the following sections. 

2.2.1 THE DIRECT METHOD 

Of the scientific methods, the oldest and still most widely used method is the 

thermo-gravimetric method. It is the only direct way to measure SWC. 

Measurement of gravimetric SWC is straightforward. A soil sample is collected, 

weighed, dried in an oven (at 105oC – 110oC) for 16-24 hours or more (until it 

reached to a constant weight) and then weighed again (AS 1289.2.1.1-2005). The 

weight difference between before and after drying the soil is the water content of 

the soil sample, which is usually expressed as a percentage of the dry soil mass. If 

the bulk density value is known, multiplying the mass based moisture content 

value by bulk density gives the volumetric moisture content. This approach 

requires careful sample collection and handling to minimize water loss between 



Chapter 2–Literature review   Page 2-4 
 

the time a sample is collected and processed. Replicated samples should be taken 

to reduce the inherent sampling variability that results from small volumes of soil. 

Apart from being the most reliable method, it has the advantage of simplicity in 

equipment requirement, an easy calculation procedure, and it is not dependent on 

salinity and soil type. These factors balance the obvious drawback of destructive 

and tedious sampling, the time required and the inapplicability to automatic 

control. One problem with the gravimetric SWC measurement is that the densities 

of different soils vary so that a unit weight of different soils may occupy different 

volumes. Therefore, it limits the practical value of the gravimetric measurements.  

However, gravimetry is the only direct way to measure the water content in the 

soil. All other techniques rely on indirect methods that measure other properties of 

the soil that vary with water content. The calibration of all other methods, 

therefore, relies on gravimetric method. 

2.2.2 INDIRECT METHODS 

Most physical properties such as electrical conductivity, water potential, and 

water vapour in soils vary systematically with changes in water content. Many of 

these properties have been used for indirect estimation of soil water content. In an 

ideal situation, any property selected for such use should depend uniquely on 

water content but this rarely happens. A range of techniques such as based on 

nuclear techniques, electrical properties of porous media, and the relative 

humidity of the immediate atmosphere can be used for water content 

determination. Among the indirect methods, two approaches are widely used. One 

approach adopts nuclear methods and the other uses the electrical conductivity 

property in porous media.  

In the past, the neutron scattering technique was the most accurate method widely 

used for in-situ SWC measurement. This method estimates the amount of water in 

a volume of soil by measuring the amount of hydrogen present by using a neutron 

probe. A neutron probe consists of a source of fast or high energy neutrons and a 

detector, both housed in a unit which is lowered into an access tube installed in 

the soil. Fast neutrons, emitted radially from the radioactive source and passing 

through the access tube into the surrounding soil, gradually lose their energy 

though collisions with other atomic nuclei. Hydrogen molecules in the soil are 
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particularly effective in slowing the fast neutrons since they are of near equal 

mass. The result is a cloud of slow, thermalized neutrons, some of which diffuse 

back to the detector. This cloud is normally spherical in shape and the size and 

density depends mainly upon soil type and soil water content. The sphere of 

influence varies from 10 cm in wet soil to 25 cm or more in dry soil. Thermalized 

neutrons which pass through the detector create a small electrical impulse and 

these pulses are amplified and counted. The number of slow neutrons counted in a 

specified interval of time is linearly related to the SWC. A higher count indicates 

higher SWC and vice versa. The main advantages of this technique are that SWC 

can be determined with depth, that the method is temperature independent, and 

can accommodate automatic reading at the same site. However, this technique 

requires constant re-calibration which is often a difficult task. In addition, the 

technique is not suitable for measuring near-surface SWC. The method involves 

safety concerns due to potential health risks from exposure to radioactive 

materials and therefore, limitations on legal use exist in most locations (Zegelin, 

1996). 

Among the many electrical properties, measuring the dielectric constant or 

relative permittivity or specific inductive capacity of soil and relating it to the soil 

water content has become virtually a new standard technique. The dielectric 

technique estimates the soil moisture content by measuring the dielectric constant 

(Ka) in the soil.  Soil is a composite mixture of air, mineral and organic particles, 

and water. Air, mineral particles and water have dielectric constants of 1, 2-4, and 

80 respectively at frequencies between 30 MHz and 1 GHz.  Because of the great 

difference in dielectric constant between water and other constitutes in the soil, 

relatively small changes in the quantity of free water in the soil have large effects 

on the electromagnetic properties of the soil water media. Ka is inversely related 

to the propagation velocity, i.e., a faster propagation velocity indicates a lower 

dielectric constant and thus a lower soil water content. Or, as soil water content 

increases, the propagation velocity decreases, and dielectric constant increases.  

Two approaches have been developed for measuring the dielectric constant of the 

soil water media. These are categorized as time domain reflectometry and 

frequency domain reflectometry. 
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The speed with which an electromagnetic pulse of energy travels down a parallel 

transmission line depends on Ka of the material in contact with and surrounding 

the waveguide. Time Domain Reflectometry (TDR) instruments measure this 

wave transit time along the waveguide using sophisticated electronic circuits. The 

‘apparent’ dielectric constant, Ka, of the air-soil-water complex can then be 

related by the formula: 

2

⎟
⎠
⎞

⎜
⎝
⎛=

L
tcKa          [-] (2.1) 

where L is the length of the waveguides (in cm), t is the transit time (in 

nanoseconds) or time required for pulse to travel along a whole length of the 

waveguide in one direction, and c is the speed of light (in cm.nsec-1). If the soil is 

completely dry, Ka will be 2 to 4. If the 25% of the volume of the soil is water, Ka 

will be approximately 11-12 (Soil Moisture Equipment Corporation, 1996). Based 

on a relationship between Ka and actual soil moisture, it is possible to measure in-

situ soil moisture content very conveniently.  

Most TDR instruments measure directly the wave guide signal reflection time. 

Some cheaper instruments, however measure frequency of state changes. For 

example, waveguides of the CS616 water content reflectometers (manufactured 

by Campbell Scientific Inc.) are connected to a bistable multivibrator. The signal 

return from the waveguides causes the bistable multivibrator to change states 

between two discrete values. Hence, the output of the sensor is a frequency that 

reflects the number of states changes per second. 

Once properly calibrated and installed, the TDR technique is highly accurate and 

measurements may be made near the surface, an important advantage compared to 

the neutron probe. Other advantages include: (i) Ka depends primarily on the 

VWC of soil, hence facilitates measurement of VWC;  (ii) Ka is largely 

independent of the soil type and relatively unaffected by low to moderate soil 

salinity and therefore may be use in a range of soil types; and (iii) portability of 

the techniques. The main disadvantages of the system include: (i) its poor 

performance in high saline soils and soils with high clay contents; (ii) sensitivity 

to the air gaps along the probes; and (iii) the relatively small zone of influence, up 

to 2 cm from the probe. 
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Frequency Domain Reflectometry (FDR) approaches are also known as the radio 

frequency (RF) capacitance technique. This technique measures the capacitance of 

the soil using a pair of electrodes. The soil acts as the dielectric medium 

completing a capacitance circuit, which is part of a feedback loop of a high 

frequency transistor oscillator. As high frequency radio waves (about 150 Mhz) 

are pulsed through the capacitance circuitry, a natural resonant frequency is 

established which is dependent on the soil capacitance. The soil capacitance is 

related to the dielectric constant by the geometry of the electric field established 

around the electrodes. The strengths of this technique include: (i) it is rapid and 

easy to use; (ii) higher sensitivity to small changes of soil moisture, particularly in 

dry soils; and (iii) it allows automatic logging. However, the relatively small zone 

of influence, its sensitivity to the soil layer immediately adjacent to the probe, and 

the sensitivity to air gaps surrounding the probe are weaknesses of this technique. 

2.2.3 SUCTION METHODS 

Soil water suction, soil water tension, or soil water potential are all concepts 

describing the energy status of soil water. Movement of water occurs within the 

soil profile, between the soil and plant roots, and between soil and atmosphere. 

The rate of water movement is dependent on the energy gradient such as 

expressed by a gradient in soil water potential. The fundamental forces acting on 

soil water are gravitational, matric, and osmotic. Similar to all matter, water 

molecules in the soil have a potential energy by virtue of their position in the 

gravitational force field. The matrix arrangement of soil solid particles results in 

capillary and electrostatic forces and determines the soil water matric potential. 

The magnitude of those forces depends on the texture and the physical and 

chemical properties of the soil particles. Soil water is a solution of soluble salts, 

organic solutes, and some suspended colloids. The polar nature of the water 

molecules results in interaction with other electrostatic poles present in the 

solution as free ions. This component of the energy status is the osmotic potential. 

Most methods for measuring soil water potential are sensitive only to the matric 

potential.  

There is a unique relationship between water content and water potential for each 

soil type. Such a relationship is known as the soil water characteristic curve (or 
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water release curve). For a given water potential, the finer the soil texture the 

more water is held in the soil.  Fine texture soils have a broader pore size 

distribution and larger particle surface area; hence water molecules strongly 

adhere to the soil particles due to electrostatics forces. In contrast, coarse texture 

soils like sand comprise mostly large pores which empty of water when a 

relatively small force is applied. Methods for measuring soil water potential 

include tensiometry, thermocouple psychrometry, electrical conduction methods 

and heat dissipation methods.  

2.2.4 REMARKS – IN-SITU TECHNIQUES 

 Several well-established methodologies are available to measure soil moisture on 

the ground. Successful implementation of any of the methods however, requires 

careful attention to the installation, operation, field calibration, and maintenance 

requirements.  

The ability to measure soil moisture in-situ is important in all water resources 

disciplines. In-situ techniques are capable of providing accurate soil moisture 

content at any time and are therefore the best way of studying the temporal 

evolution of soil moisture patterns. Furthermore, in-situ techniques are the only 

way of assessing moisture status at deeper soil layers.  The very small volume 

represented by in-situ measurement is however, an unavoidable obstacle. For this 

reason, use of measured soil moisture data for modelling applications from plot to 

catchment scale requires some type of scaling in order to obtain an average soil 

moisture value for the area concerned.  Obtaining an average soil moisture value 

over an area is often difficult due to the spatial in-homogeneity of a soil system, 

both horizontally and vertically. The number of measurements needed to obtain a 

representative soil moisture value is difficult to determine, as is the optimal 

location of the measurements. In addition, these measurements are in general 

expensive and tedious to collect.  
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2.3 REMOTE SENSING FOR MEASUREMENT OF 
LAND SURFACE PARAMETERS   
An alternative to ground based measurement networks are remote sensing 

techniques based on air-borne or space-borne sensors. One of the advantages of 

remote sensing techniques is the ability of obtaining a true spatial average soil 

moisture value over a large area. It is impracticable if not impossible to obtain 

such a spatial average soil moisture value from in-situ techniques. In-depth study 

of remote sensing techniques and their applications to infer soil moisture content 

is therefore indispensable for any study leading to soil moisture scaling. 

The term remote sensing refers to methods that employ electromagnetic energy, 

such as light, heat and radio waves, as a means of detecting and measuring target 

characteristics (Sabin, 1997). The development and deployment of various sensors 

has provided an orbital vantage point for acquiring images of the earth.  The large 

numbers of satellites in orbit around planet Earth act as platforms for a range of 

remote sensing instruments, which provide valuable information for atmospheric, 

oceanic and land surface studies. 

One of the major advantages of satellites is their ability to acquire information at 

regional and global scales as opposed to the point scale estimation of conventional 

ground-based data collection techniques. In addition, the use of satellite 

measurements appears to be very attractive since they can give uniform estimates 

(i.e., with the same sensor and measurement characteristics). Remote sensing 

therefore offers the best practical method for determining land surface processes 

at various scales. Another advantage of the remotely sensed imagery is that some 

imagery such as from NOAA and MODIS may be downloaded almost on real-

time basis from internet sites (for e.g. http://www.ga.gov.au/acres/) at no cost.   

Remote sensing instruments use various windows of the electromagnetic spectrum 

to record the reflectance properties of the land surfaces. Figure 2.1 shows the 

electromagnetic spectrum, which is divided on the basis of wavelength into 

regions listed in Table 2-1. While the most popular remote sensing instruments 

such as Multi-Spectral Scanner (MSS), Advanced Very High Resolution 

Radiometer (AVHRR), Thematic Mapper (TM) and MODerate resolution 

Imaging Spectroradiometer (MODIS) use visible and infrared (IR) regions, 
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radiometers such as Synthetic Aperture Radar (SAR), Advanced Microwave 

Sounding Unit (AMSU), Advanced Microwave Scanning Radiometer for Earth 

Observing System (AMSR-E) use microwave regions of the spectrum.  

 

 

 

 

Figure 2.1: Electromagnetic spectrum (from Sabins, 1997). 
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Table 2-1: Electromagnetic spectral regions 

Region Wavelength Remarks 

Gamma-ray region < 0.03 nm Incoming radiation completely absorbed by 
the upper atmosphere and not available for 
remote sensing. 

X-ray region 0.03 to 30 nm Completely absorbed by the atmosphere. 
Not employed in remote sensing. 

Ultraviolet region 0.03 to 0.4 μm Incoming wavelengths less than 0.3 μm 
completely absorbed by ozone in the upper 
atmosphere. 

Photographic UV 
band  

0.3 to 0.4 μm Transmitted through the atmosphere. 
Detectable with film and photo detectors, 
but atmospheric scattering is severe. 

Visible region 0.4 to 0.7 μm Imaged with film and photo detectors. 
Includes reflected energy peak of earth at 
0.5 μm. 

Infrared region 0.7 to 100 μm Interaction with matter varies with 
wavelength. Atmospheric transmission 
windows are separated by absorption bands. 

Reflected IR band 0.7 to 3.0 μm Reflected solar radiation that contains no 
information about thermal properties of 
materials. The interval from 0.7 to 0.9 p-m 
is detectable with film and is called the 
photographic IR band. 

Thermal IR band 3 to 5 μm, 8 to 14  
μm 

Principal atmospheric windows in the 
thermal region. Emitted radiation from the 
earth and atmosphere is prevalent.  Images 
at these wavelengths are acquired by 
optical-mechanical scanners and special 
vidicon systems but not by film. 

Microwave region 0.1 to 100 cm Longer wavelengths that can penetrate 
clouds, fog, and rain. Images may be 
acquired in the active or passive mode. 

Radar 0.1 to 100 cm Active form of microwave remote sensing. 
Radar images are acquired at various 
wavelength bands. 

Radio > 100 cm Longest-wavelength portion of electro-
magnetic spectrum. 

(source:  F. F. Sabins (1997), Remote sensing- Principles and Interpretation) 

2.3.1 GLOBAL INTEREST IN MAPPING LAND SURFACE 
SOIL MOISTURE 

Recent advances in remote sensing have shown that soil moisture can be 

measured by a variety of techniques. Different parts of the electromagnetic 

spectrum facilitate remote observation of soil moisture on a routine basis with 

aircraft or satellite based sensor platforms. As shown in Table 2-2, each of these 

techniques has several advantages as well as some disadvantages. Among the 



Chapter 2–Literature review   Page 2-12 
 

various techniques, especially microwave remote sensing (active and passive) 

provides the opportunity to collect truly quantitative near-surface soil moisture 

information moisture under a variety of topographic and vegetation cover 

conditions (Engman, 1990). Like many in-situ measuring techniques, the 

microwave technique exploits the strong relationship between the moisture 

content and the dielectric constant of the soil. Technological and methodological 

progress in the past two decades has resulted in dedicated soil moisture missions 

such as NASA’s Hydrosphere State mission (HYDROS) and European Space 

Agency’s (ESA) Soil Moisture and Ocean Salinity Mission (SMOS). These 

missions are expected to provide a flow of high quality coarse resolution soil 

moisture data covering the entire globe.   

Table 2-2: Some advantages and disadvantages of remote measurement of soil moisture 
using different parts of the electromagnetic spectrum. 

 

Spectrum Advantages Disadvantages 
Visible • Simple to operate  

• Applicable at a range of 
spatial and temporal scales 

• Cloud free conditions 
required 

• Strong empirical character 
Thermal 
infrared 

• Provides an integrated soil 
moisture value for the root 
zone 

• Deals with temperature 
which is linked to 
complicated surface energy 
balance processes  

• Applicable at a range of 
spatial and temporal scale 

• Cost effective technique 

• Cloud free conditions 
required 

• Depth of the root zone is 
variable across an image 

Active 
microwave  

• All weather conditions 
technique 

• Good physical basis 
• Can change the polarisation 

• Moisture estimates affected 
by surface roughness 

• Aircraft based measurements 
have a penetration depth 
limited to a few decimetres 

• Satellite based measurements 
are expensive 

Passive 
microwave 

• All weather conditions 
technique 

• Good physical basis 
• Daily basis images are 

currently available 

• Soil moisture only retrievable 
from the top layer and for 
sparse vegetation 

• Large pixel size from 
satellites 

• Aircraft acquisitions are 
expensive 
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In the past, the major factor preventing wide spread use of remotely sensed soil 

moisture data in hydrology was the lack of data sets and optimal satellite systems. 

As such, studies have been restricted to data from short duration aircraft 

campaigns, or analysis of the SMMR and SSM/I passive microwave satellites. At 

present, daily soil moisture observation data such as from AMSR-E is readily and 

freely available. The availability of remotely sensed soil moisture data provides an 

opportunity to study the soil moisture status at catchment and regional scale. In 

fact, remote sensing technology has introduced a new type of spatially averaged 

soil moisture information which is not obtainable from in-situ techniques. 

2.3.2 INSTRUMENTS FOR REMOTE OBSERVATION OF 
LAND SURFACE PARAMETERS 

A wide range of radiometers are currently operational in space which may be used 

to derive the information on land surface moisture characteristics. In a broad 

sense, radiometers which may be used to derive soil moisture information are 

categorised into two types based on the part of the electromagnetic spectrum used 

by them; (a) visible and thermal radiometers and (b) microwave radiometers. A 

brief review of the most widely used radiometers under each type is presented in 

the following sections. 

2.3.2.1 Radiometers for visible and thermal remote sensing 

2.3.2.1.1 Advanced Very High Resolution Radiometer (AVHRR) 

One of the most widely used remote sensing instruments is the Advanced Very 

High Resolution Radiometer (AVHRR) on board the NOAA satellites. The 

National Oceanic and Atmospheric Administration (NOAA) in the United State 

operates a series of polar orbiting satellites that circle the Earth in nearly sun-

synchronous orbits.  NOAA is currently operating four satellites; NOAA-15 (or 

NOAA-K, May 1998), NOAA-16 (or NOAA-L, September 2000), NOAA-17 (or 

NOAA-M June 2002), and NOAA-18 (or NOAA-N, May 2005). While NOAA-

17 is the prime morning satellite, both NOAA-15 and NOAA-18 are prime 

afternoon satellites. At present, NOAA-16 has been reclassified as standby, and is 



Chapter 2–Literature review   Page 2-14 
 

transmitting a low-gain signal.  The AVHRR records one visible band, two 

reflected IR bands, and three thermal IR bands, which are listed in Table 3.2. 

Band 4 and 5 together span the same spectral range as TM band 6.  The average 

AVHRR field of view is of ± 55o from nadir, which enables the system to view 

almost any point of the Earth’s surface twice a day (on ascending and descending 

orbits). It must be noted however, that each point will be viewed at different 

viewing angles on subsequent days, with the viewing conditions being 

approximately repeated only every 9 days.  The major advantage of the NOAA-

AVHRR is the accessibility to near real-time images through the World Wide 

Web such as from the Geoscience Australia Internet site (http://www.ga.gov.au/ 

acres/noaa). 

Table 2-3: Characteristics of the NOAA-AVHRR 

 
  
Orbit Near polar, sun synchronous 
Repeat rate ~10 hours 
Spectral bands 5 
Channels  

Visible-1 0.58 to 0.68 μm 
Visible-2 0.725 to 1.10 μm 
IR-3 3.55 to 3.93 μm 
IR-4 10.3 to 11.3 μm 
IR-5 11.5 to 12.5 μm 

Swath width 2399 km 
Instantaneous field of view (IFOV) 1.3 x 1.3 mrad 
Spatial resolution  1100 m (nadir) 

  
(Source: NOAA KLM User’s guide available at http://www2.ncdc.noaa.gov/docs/klm/html/c3 

/sec3-1.htm) 

2.3.2.1.2 MODerate resolution Imaging Spectroradiometer 
(MODIS) 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has 

been designed to provide improved monitoring for land, ocean, and atmospheric 

research (Justice et al., 1998).  The MODIS sensor is gaining much attention due 

to its multi-spectral capabilities with high spatial and temporal characteristics (see 

Table 2-4).  The first MODIS instrument was launched in July 1998 on the 

morning platform (AM1) of the Earth Observing System (EOS), the Terra 

satellite. It follows a polar, sun-synchronous, 705 kilometre orbit with a morning 
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equatorial crossing time.   The second MODIS sensor is on board the Aqua 

satellite launched in May 2002. Aqua follows its orbital path with an afternoon 

equatorial crossing and is hence known as EOS PM1. The afternoon overpass of 

Aqua-MODIS gives more drier conditions than in the morning overpass due to 

evaporation from the land surface and is therefore, more suitable for soil moisture 

related studies. 

These two MODIS instruments view the entire earth’s surface at least twice a day 

and acquire data in 36 spectral bands. These provide high radiometric sensitivity 

(12-bit quantisation) ranging in wavelength from 0.4 μm to 14.4 μm. The first two 

bands are imaged at a nominal 250 m resolution at nadir, the next five bands at 

500 m resolution and the remaining 29 bands at 1000 m resolution. MODIS 

acquisitions across Australia over the last seven days are available from the 

Geoscience Australia Internet site (http://www.ga.gov.au/acres/modis).  

MODIS products such as land surface reflectance and temperature, vegetation 

indices, fire products, and snow products are available for free downloading from 

the EOS data gateway (http://nsidc.org/~imswww/pub /imswelcome/index.html). 
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Table 2-4: MODIS Sensor Characteristics 

 

Primary Use Band Bandwidth¹ Spectral 
Radiance² 

Required 
SNR³ 

1 620 - 670 21.8 128 Land/Cloud/Aerosols 
Boundaries 2 841 - 876 24.7 201 

3 459 - 479 35.3 243 
4 545 - 565 29.0 228 
5 1230 - 1250 5.4 74 
6 1628 - 1652 7.3 275 

Land/Cloud/Aerosols 
Properties 

7 2105 - 2155 1.0 110 
8 405 - 420 44.9 880 
9 438 - 448 41.9 838 
10 483 - 493 32.1 802 
11 526 - 536 27.9 754 
12 546 - 556 21.0 750 
13 662 - 672 9.5 910 
14 673 - 683 8.7 1087 
15 743 - 753 10.2 586 

Ocean Colour 
Phytoplankton 

Biogeochemistry 

16 862 - 877 6.2 516 
17 890 - 920 10.0 167 
18 931 - 941 3.6 57 

Atmospheric 
Water Vapour 

19 915 - 965 15.0 250 
20 3.660 - 3.840 0.45 (300K) 0.05 
21 3.929 - 3.989 2.38 (335K) 2.00 
22 3.929 - 3.989 0.67 (300K) 0.07 

Surface/Cloud 
Temperature 

23 4.020 - 4.080 0.79 (300K) 0.07 
24 4.433 - 4.498 0.17 (250K) 0.25 Atmospheric 

Temperature 25 4.482 - 4.549 0.59 (275K) 0.25 
26 1.360 - 1.390 6.00 150(SNR) 
27 6.535 - 6.895 1.16 (240K) 0.25 

Cirrus Clouds 
Water Vapour 

28 7.175 - 7.475 2.18 (250K) 0.25 
Cloud Properties 29 8.400 - 8.700 9.58 (300K) 0.05 

Ozone 30 9.580 - 9.880 3.69 (250K) 0.25 
31 10.780 - 11.280 9.55 (300K) 0.05 Surface/Cloud 

Temperature 32 11.770 - 12.270 8.94 (300K) 0.05 
33 13.185 - 13.485 4.52 (260K) 0.25 
34 13.485 - 13.785 3.76 (250K) 0.25 
35 13.785 - 14.085 3.11 (240K) 0.25 

Cloud Top 
Altitude 

36 14.085 - 14.385 2.08 (220K) 0.35 
1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 
2 Spectral Radiance values are (Wm-².µm.sr) 
3 SNR = Signal-to-Noise Ratio 
4 NE(delta)T = Noise-equivalent temperature difference 
IFOV of Bands 1-2 is 250m, Bands 3-7 is 500m and Bands 8-36 is 1.1 km 

 
Source: http://www.ga.gov.au/acres/prod_ser/modisdata.htm (2003). 
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2.3.2.1.3 Other radiometers 

There are number of other space borne radiometers currently available for varying 

temporal and ground resolution. The sensitivity of these radiometers also varies 

from radiometer to radiometer. For example, one of the widely used radiometers 

is LANDSAT 7 ETM+ which has 30m by 30m ground resolution cells similar to 

Thematic Mapper (TM) sensor with additional two bands, a panchromatic band 

with 15 m resolution and a higher resolution thermal band of 60 m. The sensitivity 

of visible and reflected IR of LANDSAT 7 ETM is between 0.45 µm to 2.35 µm. 

The nominal temporal resolution of LANDSAT data is 15 days.  

Another radiometer, the Along Track Scanning Radiometer (ASTR) has the same 

space resolution as MODIS and AVHRR but with a 3-day repeat cycle. It also has 

7 spectral bands. Other radiometers cover wide spectral regions with high spatial, 

spectral and radiometric resolution. For example, the Advanced Spaceborne 

Thermal Emission and Reflection radiometer (ASTER) has 14 bands from the 

visible to the thermal infrared. In the visible and near-infrared regions it has three 

bands with a spatial resolution of 15 m.  The shortwave infrared region has 6 

bands with a spatial resolution of 30 m, and the thermal infrared region has 5 

bands with a spatial resolution of 90 m.  

It is evident that a range of data is available from visible and thermal radiometers. 

The use of such data however is determined by many factors including the spatial 

resolution and cost involved with obtaining the data. Deriving soil moisture from 

visible and thermal remote sensing data is always complex and requires indirect 

approaches. Such approaches are based first on deriving land surface temperatures 

and vegetation indices and then on relating soil moisture to these computed 

parameters.  

2.3.2.2 Radiometers for microwave remote sensing  

Although numerous radiometers (e.g. SMMR, SSM/I, TMI, AMSU etc.) and 

scatterometers  (e.g. Active Microwave Instrument in European remote sensing 

satellites) are in existence and have been used for measurement of passive and 

active microwave radiation, only the Advanced Microwave Scanning Radiometer 

for soil moisture measurement is discussed below. 
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2.3.2.2.1 Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E) 

The Advanced Microwave Scanning Radiometer - Earth Observing System 

(AMSR-E) is a passive microwave radiometer, launched aboard NASA's Aqua 

Satellite (Figure 2.2) on 4 May 2002. It is a 12-channel conically scanning 

radiometer measuring vertically and horizontally polarized radiation at the 

microwave frequencies of 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz (Kawanishi et 

al., 2003; Parkinson, 2003). Detailed AMSR-E performance characteristics are 

shown in Table 2-5.  A modified version of AMSR was launched in December 

2002 aboard the Advanced Earth Observing Satellite-II (ADEOS-II). The 

instrument is designed and provided to NASA by the National Space 

Development Agency of Japan (NASDA). Further information about the AMSR-

E can be found in Kawanishi et al. (2003). 

 

 
 

(a)      (b) 

Figure 2.2: (a) Aqua platform and AMSR-E position (source: National Snow and Ice Data 
Centre (NSIDC) web site at http://nsidc.org) and (b) overview of AMSR-E (source: 
Kawanishi et al., 2003). 
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Table 2-5: AMSR-E Instrument characteristics 

 
Centre frequencies (GHz) 6.92 10.56 18.7 23.8 36.5 89.0 
Bandwidth (MHz) 350 100 200 400 1000 3000 
Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1 
IFOV (km) 76 x 

44 
49 x 
28 

28 x 
16 

31 x 
18 

14 x 8 6 x 4 

Sample spacing (km) 10 x 
10 

10 x 
10 

10 x 
10 

10 x 
10 

10 x 
10 

5 x 5 

Integration time (ms) 2.6 2.6 2.6 2.6 2.6 1.3 
Mean-beam efficiency (%) 95.3 95.0 96.3 96.4 95.3 96.0 
Beamwidth (deg) 2.2 1.4 0.8 0.9 0.4 0.18 
Antenna diameter (m) 1.6 
Scan period (s) 1.5 
Antenna offset angle (deg) 47.4 
Earth-incidence angle 
(deg) 

54.8 

Orbit altitude (km) 705 
Swath width (km) 1445 
Orbit type Sun-synchronous, 98.2o inclination, 1:30 pm 

equator crossing 
Orbit period (min) 98.8 
Sub-spacecraft velocity 
(km s-1) 

6.76 

 (Source: Kawanishi et al., 2003) 
 
 
It is important to understand the physics behind the microwave remote sensing 

because it is the only remote sensing technique that is capable of providing the 

quantitative measure of soil moisture. The validation of microwave soil moisture 

data therefore needs in-depth understanding of deriving soil moisture from 

measured brightness temperatures. In this thesis, details of microwave techniques 

for soil moisture estimation are discussed in Chapter 7.  

2.3.3 SATELLITE DERIVED LAND SURFACE 
TEMPERATURE 

Undoubtedly, the most useful land surface variable that can be derived from 

thermal remote sensing is the land surface temperature (LST). Land surface 

temperatures play an important role in land-surface processes. They are of 

fundamental importance to the net radiation budget at the Earth’s surface and to 

monitoring the state of crops.  Except for solar irradiance components, most of the 

energy fluxes at the surface/atmosphere interface can only be parameterised 
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through the use of LST (Kerr et al., 2004).  It can play either a direct role (e.g. 

when estimating long-wave fluxes) or an indirect role as when estimating latent 

and sensible heat fluxes. Furthermore, many other modelling applications such as 

in hydrology, geology, vegetation monitoring, and global circulation models rely 

on the knowledge of land surface temperature. Remotely sensed LST have been 

used in number of applications including moisture availability to vegetation 

(Bastiaanssen et al., 1997; McVicar and Jupp, 1999; Moran et al., 1994; Wan et 

al., 2004). Other LST applications include modelling of regional scale 

evapotranspiration (McCabe and Wood, 2006) and land surface turbulent flux 

prediction (Diak and Stewart, 1989).  

Soil temperature has a strong relationship with the soil moisture content.  For 

example, dry soil shows greater day-night temperature fluctuations than wet soil 

under similar environmental conditions. Similarly, during mid-day, while dry 

areas appear as ‘hot spots’, wet areas appear as ‘cool spots’ due to the greater 

specific heat of water molecules. The availability of spatially averaged LST over 

large areas derived from remotely sensed data and the strong relationship between 

LST and soil moisture content provide an ideal opportunity to use remotely sensed 

LST data for soil moisture scaling studies. This can be done by using remotely 

sensed LST as a surrogate variable to derive spatial soil moisture patterns. 

However, due to the narrow range of temperature variations and soil moisture 

content, accurate estimation of LST is very important. 

When inferring LST from remotely sensed data, the first problem to be solved is 

the translation of observed radiance into surface brightness temperature. After 

calibration and conversion of radiance into temperature, using an inverse Plank’s 

law, it is necessary to account for the atmospheric contribution. Next the surface 

brightness temperature must be transformed into surface temperature, taking into 

account emissivity and directional effects. Actually, the problem is more 

complicated because atmospheric, emissivity and directional effects are coupled 

and these modulating factors cannot be approached independently (Kerr et al., 

2004). 

A practical way for accurately estimating spectral emissivity is from multiple 

thermal channels. Fortunately, several sensors have multiple thermal infrared 

bands that allow LST and emissivity to be estimated simultaneously, such as 
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found in MODIS and in ASTER. The MODIS has multiple thermal bands in the 

3.5–4.2 µm and the 8–13.5 µm ranges, and the ASTER has five thermal bands in 

the 8–12 µm range. 

 

2.3.3.1 Theoretical basis for land surface temperature 
estimation 

In clear sky situations, the outgoing infrared spectral radiance ( ),( μλI ) can be 

represented as follows (see Wan, 1999; Sikorski and Kealy, 2002): 
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where υ is the transmissivity, ε(λ,μ) is the surface spectral emissivity, B(λ,Ts) is 

the radiance emitted by a blackbody at surface temperature Ts, Ia (λ,μ) is the 

thermal path radiance, and  Is(λ,μ,μo,ϕo) is the path radiance resulting from 

scattering of solar radiation. Id(λ,μ,μo,ϕo) is the solar radiance and Ir(λ,μ,μo,ϕo) the 

solar diffuse radiation and atmospheric thermal radiation reflected by the surface. 

λ is the wavelength. μ is the cosine of the satellite zenith angle and μo is the 

cosine of the solar zenith angle. ϕo is the azimuth angle.  

Equation 2.2 can be used in the 3–14 μm wavelength range. To compute the 

values of all terms on the right side, it requires complete calculations of the 

atmospheric radiative transfer. As cited by Sikorski and Kealy (2002) similar 

equations have been used in many atmospheric radiation models including the 

Low Resolution Transmittance Model (LOWTRAN) by Kneizys et al. (1988), the 

Moderate Resolution Atmospheric Radiance and Transmittance Model 

(MODTRAN) by Berk et al. (1987), and the Moderate Spectral Atmospheric 

Radiance and Transmittance (MOSART)  by Cornette et al. (1994). 

Equation 2.2 also indicates that it is necessary to take into account the 

atmospheric effects and it is advantageous therefore to make measurements in a 

spectral region where the atmospheric contribution is as small as possible. In most 

cases, the satellite-borne sensors are designed to work in atmospheric windows of 

the thermal region. According to Sikorski and Kealy (2002), the components Id, Is, 

and Ir are negligible for Long Wave Infra Red (LWIR) bands. Thus, only the first 
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two terms on the right side of the above equation 2.2 are important. The first term 

represents the surface contribution term, and it is the grey-body radiance emitted 

by the earth’s surface. The second term is the atmospheric contribution term, and 

is the vertically integrated effect of emission from every atmospheric layer 

modulated by the transmittance of the air above that emitting layer. 
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where υ0 is the transmittance between the surface and the observing platform.  

In order to infer the surface information, we must choose window channels with 

small atmospheric contributions. As shown in Figure 2.3 the wavelength between 

3.5–4.2 μm, 8–9 μm, and 10–13 μm are typical atmospheric windows, with less 

atmospheric absorption. For a perfect window, the total atmospheric transmittance 

υ0 (λ,μ) should be 1.0, and the transmittance weighting function should be 0. But 

as we see from Figure 2.3, the transmittances at these windows are not unity.  This 

is mainly the result of the water vapor absorption and carbon dioxide absorption at 

wavelengths longer than 12 microns.  

 

Figure 2.3: Atmospheric absorption patterns of various wavelengths (source: Sabins, 1997) 

 

One of the major concerns in the development of LST algorithms is the 

considerable spectral variation in emissivities for different land surface types.  

Observation of emissivity spectra shows that in general, emissivity spectra with 

high values exhibit little variation of emissivities, while those with lower values 

exhibit a greater variation of emissivities, such as grass (Sikorski and Kealy, 
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2002).  Considering brightness temperature in the window channels, it is possible 

to derive a true surface temperature based on Split window approach.  

Assuming constant surface emissivity, these brightness temperatures approximate 

the true temperature and allow certain approximations to be performed. To show 

the fact that the true surface temperature may be represented as a linear 

combination of the two brightness bands, an expression is developed for the 

radiance errors introduced by the atmosphere (ΔI). 
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According to the Planck function we find: 
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According to Sikorski and Kealy (2002), for an optically thin gas the following 

approximations can be made: 

dlkIkdd λλν −=−= )}{exp(                                                          (2.6) 

where kλ is the absorption coefficient and l is the optical path-length. 

Assuming that the Planck function is adequately represented by a first order 

Taylor series expansion in each channel window: 
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where Tp is some arbitrary temperature close to but not equal to Ts. Substituting 

Equations 2.5, 2.6 and 2.7 into Equation 2.4, can obtain: 

∫ −=−
ν

λλ
1

)( dlTTkTT pss                                                   (2.8) 

where Tλ is the brightness temperature in the window band and Ts is the true 

temperature. Therefore, Equation 2.8 tells that the difference between the true and 
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brightness temperature is that integral times the absorption coefficient (kλ) for that 

band.  

Therefore, if we select two spectral bands, we obtain two linear equations with 

different kλ values to be solved simultaneously. For example, if we consider the 

two channels as λ=1 and λ=2, then we get: 
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showing that Ts may be expressed as a linear combination of T1 and T2.  Because 

k1 and k2 are largely unknown or difficult to calculate, in some applications, as 

over the oceans, they are obtained as coefficients in regression analyses involving 

satellite estimates of T1 and T2 and surface measurements of Ts.  The Equation 2.9 

is similar to the Sea Surface Temperature (SST) equation derived from the split 

window algorithm, but can only be used for one land type, assuming the band 

emissivity does not vary within this land type. Sikorski and Kealy (2002) showed 

that for a particular land type the linear split window algorithm used in SST 

retrieval can be adopted for LST.   

2.3.3.2 Brief review of existing algorithms 

 
Many algorithms have been proposed and implemented for the retrieval of LST 

and emissivity from thermal infrared data. These methods include the two-

temperature method (Watson, 1992), the temperature emissivity separation 

method (Kealy and Hook, 1993), the day/night method (Wan and Dozier, 1996), 

and the land cover regression method (Sikorski and Kealy, 2002).  In particular, 

much research has focused on methods that use two thermal channels of the 

AVHRR sensor (Price, 1984; Wan and Dozier, 1989; Kerr et al., 2004).  

Currently, most existing LST algorithms are variants based on Becker and Li’s 

(1990) split window technique (SWT) expressed by:   
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where  ε = (ε11 + ε12)/2 and Δε = ε11 - ε12.  ε11 and ε12 are the emissivities in the 

10.8 μm and 12 μm bands respectively. T11 and T12 are the brightness 

temperatures at 10.8 μm and 12 μm bands respectively. A1, A2, A3, B1, B2 and 

B3 are regression constants.  

The SWT method relies on number of assumptions such as: 

1) the surface is Lambertian 

2) the surface temperature is close to the temperature of the lower layers of 

the atmosphere 

3) the surface temperature remains below 305 K 

4) absorption in the atmosphere is very small 

5) the surface emissivity is close to unity and its spatially distribution is  

uniform 

6) the emissivities of  ε 11 and ε 12  (i.e. in the 10.8 μm and 12 μm bands 

respectively) are almost identical and ε 11 > ε 12 

The SWT method has been used successfully for sea surface temperature 

retrievals. However, the temperature derivation over land is more difficult than 

over the ocean because some of the required conditions are not usually met over 

land surfaces. For example, the high spatial and temporal variability of surface 

emissivity over land and the atmospheric water vapour (which absorbs thermal 

energy) significantly affect the thermal radiance reaching the sensor, thus making 

the LST computation error prone. The fundamental part of most split-window 

algorithms is based on the assumption that LST is linearly related to the 

brightness temperatures of two thermal channels (Liang, 2001). With the 

assumption that surface emissivities for these two channels are known, the split-

window method can eliminate atmospheric effects for LST estimation. Other 

studies have revealed that when the atmosphere is moist, the traditional split-

window algorithm cannot remove the atmospheric effects completely. Many 

efforts (e.g., Sobrino et al., 1994) therefore have been made to incorporate the 

column water vapour content of the atmosphere into split-window formulae. 
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2.3.3.3 Difficulties in determining the land surface 
temperature 

The accuracy of satellite LST measurement is limited mainly by the complexity of 

land surface types, the atmospheric correction, and sensor performance. It is clear 

from the above discussion, that the effects of LST and emissivity on thermal 

radiance are so closely coupled that their separation from thermal radiance 

measurements alone is quite difficult. In order to retrieve the LST physically from 

the satellite derived data, it is required to know the atmospheric profile for each 

pixel, and also the surface emissivity for each band. Because the surface 

emissivity for each band is different, the number of unknowns is always larger 

than the number of equations. Without any additional information, it is impossible 

to recover both LST and emissivity exactly. Most LST-emissivity separation 

studies use one additional empirical equation so that measurements plus this 

additional equation can be solved for one unknown. For example, the Alpha-

derived emissivity (ADE) method makes use of the relation between the weighted 

logarithm values of spectral emissivity and the variance of spectral emissivities 

(see Kealy and Hook (1993) for details). The reference channel method assumes 

that the value of the emissivity for one of the image channels is constant and 

known a priori, reducing the number of unknowns to the number of equations 

(Liang, 2000). 

The comparisons among different LST/emissivity separation algorithms have 

been well discussed by Gillespie et al. (1998) and Li et al. (1999). The published 

satellite multi-channel LST algorithms permit global LST retrievals up to 3 K 

measurement accuracy (Becker and Li, 1990; Dozier and Wan, 1994; Li and 

Becker, 1993; Wan, 1999). Therefore, satellite derived LST may be used for 

scientific applications with a degree of confidence.  

A major limitation of LST retrieval is that it can only be done under clear sky 

conditions. Furthermore, it is difficult to obtain true skin LST values over the full 

range of land surface types. Typically, LST varies significantly on a sub-pixel 

scale, and over short timescales, so that the satellite retrieved LST necessarily 

represents a snap-shot pixel-averaged measurement at a point in time. Due to 

these difficulties, application of LST for soil moisture determination has been 

limited to few attempts. The availability of MODIS LST products however has 
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paved the way to use LST data for broader applications including soil wetness 

studies. 

2.3.3.4 MODIS land surface temperature products 

The MODIS Land Surface Temperature and Emissivity (LST/E) product from 

Aqua-MODIS (e.g. MYD11A1 products) and Terra-MODIS (e.g. MOD11A1 

products) provide per-pixel temperature and emissivity values on a daily basis. 

Temperatures are extracted in Kelvin (K) with a view-angle dependent algorithm 

applied to direct observations. MODIS LST algorithm claims yielding 1 K 

accuracy for materials with known emissivities (Wan, 1999). The view angle 

information is included in each LST/E product. Emissivities are estimates which 

are derived from applying algorithm output to database information. The LST/E 

algorithms use MODIS data as input, including geolocation, radiance, cloud 

masking, atmospheric temperature, water vapour, snow, and land cover.  The 

theoretical basis of MODIS LST is discussed in detail by Wan (1999). Both Aqua-

MODIS and Terra-MODIS LST/E products are provided daily as a gridded level-

3 product in the sinusoidal projection. 

The availability of daily LST as a MODIS product is very useful for soil moisture 

scaling studies for at least two main reasons. First, the LST inversion algorithm 

used by MODIS has been well documented and the methodology is available for 

review.  Second, the data is freely accessible through the internet.   

2.3.4 SATELLITE DERIVED LAND SURFACE VEGETATION 
INDICES 

The status of vegetation gives important information on soil moisture condition 

and vegetation indices (VIs) may be used to describe the vegetation health.  

Vegetation indices are dimensionless, radiometric measures that serve as 

indicators of the relative abundance and activity of green vegetation. Remotely 

sensed spectral vegetation indices are widely used and have been of benefit for 

numerous disciplines interested in the assessment of vegetation biomass, water 

use, plant stress, plant health, crop production, and identification of biome types. 

VIs are also useful in estimating emissivities from space (Van de Griend and 

Owe, 1994b; Valor and Caselles, 1996). In order to use these vegetation indices 
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successfully, one needs to understand the input variables used to form the indices. 

Furthermore, understanding of the manner in which the external environmental 

factors and the architectural aspects of the vegetation canopy influence and alter 

the computed index values is also required.  The main thrust of the vegetation 

index (VI) is its ability to respond to subtle changes in plant health status for 

variable view, illumination and atmospheric conditions. 

VIs can be calculated from sensor voltage outputs, radiance values, reflectance 

values and satellite digital numbers. Each method therefore, will yield a different 

VI value for the same surface conditions. Similarly, a VI calculated from data 

obtained over the same target, but with different instruments, may not be the same 

because of differences in the detector and filter characteristics of the instruments. 

Despite the fact that VIs were developed to extract only plant signals, other 

parameters such as the soil background, moisture conditions, solar zenith angle, 

and the atmosphere alter the index values in complex ways. Hence, any study 

concerned with the soil moisture status needs to carefully analyse and interpret the 

signatures of vegetation indices to better understand the moisture distribution 

pattern. Examination of spatial distribution and temporal trends of the vegetation 

indices over longer periods (such as the two years of the current study period) is 

useful and provides significant insight into regional scale vegetation water stresses 

across a catchment. 

 

2.3.4.1 Theoretical basis for vegetation indices 

The theoretical basis for the VI lies with the red (wavelength = 0.60-0.70 µm) and 

NIR or reflected IR (wavelength = 1.35-2.10 µm) contrast of the vegetation 

spectral reflectance signatures. When light strikes the vegetation surface, part is 

reflected, part is transmitted and the remainder is absorbed. The relative amounts 

of reflected, transmitted and absorbed light are a function of the surface and vary 

with the wavelength of the light. For example, most of the light in the NIR 

wavelengths is transmitted and reflected, with little absorbed. In contrast, light in 

the visible wave lengths (e.g. red) is predominantly absorbed, with some reflected 

and little transmitted. The decrease of red reflectance due to increase of live, green 

vegetation within a pixel is due to the absorption by chlorophyll.  The majority of 
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light striking the soil however is either reflected or absorbed, with minute changes 

with wavelength.  

The amount of radiation reflected from a vegetation surface is determined by the 

amount and composition of solar irradiance that strikes the vegetation, and the 

reflectance properties of the vegetation surface. Solar irradiance varies with time 

and atmospheric conditions. A simple measure of reflected light is therefore not 

sufficient to characterize the surface in a repeatable manner. For this reason, data 

from two or more spectral bands are often used to form a vegetation index. VI can 

be calculated by ratioing, differencing, ratioing differences and sums, and by 

forming linear combinations of spectral band data. These techniques are intended 

to enhance the vegetation signal, while minimizing solar irradiance and soil 

background effects.  Details of selected VIs are described in the Section 2.3.4.2 

 

2.3.4.2 Review of existing indices 

There are two general classes of vegetation indices: ratios and linear 

combinations. A Ratio VI may be the simple ratio of any two spectral bands, or 

the ratio of sums, differences or products of any numbers of bands. Some of these 

ratio vegetation indices are described in this section. Linear combinations, on the 

other hand, are sets of n linear equations calculated using data from n spectral 

bands. Details of these linear combinations may be found in Jackson and Huete 

(1991). 

The Ratio Vegetation Index (RVI) is formed by dividing the NIR (1.35-2.10 µm) 

radiance by the Red (0.60-0.70 µm) radiance as shown below. 

d

NIRRVI
Reρ

ρ
=  (2.11) 

where ρNIR is NIR reflectance and ρRed is Red reflectance 

To obtain an insight into the range of RVI values, for example, a healthy wheat 

crop has a RVI value of about 12.9 whereas dry bare soil has a value of 1.21 and 

bare wet soil has a value of 1.33 (Jackson and Huete, 1991).   For dense green 

vegetation, the amount of red light reflected from the canopy is very small. As can 
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be seen in equation 2.11, as the red band reflectance approaches zero, the ratio 

increases to infinity. Therefore, RVI may be useful if red reflectance light is 

measured with sufficient precision.  However, RVI is not a very good index when 

the vegetation cover is sparse due to low dynamic range of the NIR/Red ratio. 

This low sensitivity over sparse vegetation could be enhanced by ratioing the 

difference between the NIR and the red band to the sum of the two bands.  

The Normalized Difference Vegetation Index (NDVI) is the difference between 

near-infrared and red reflectance values normalized over the sum of the two 

(Eidenshink and Faundeen, 1994). In equation form the NDVI is given by, 

 

dNIR

dNIRNDVI
Re

Re

ρρ
ρρ

+
−

=   (2.12) 

 
The upper bound of the NDVI is one, while the lower bound is usually close to 

zero. Depending on the sensor characteristics and the units of the input variables 

(such as radiance, digital numbers, etc) the lower bound value may be slightly 

positive or slightly negative.   

When considering the RVI and NDVI indices, Perry and Lautenschlager (1984) 

showed that one index can be readily transformed into the other. From the 

mathematical point of view, these two indices are functionally equivalent and 

contain the same information. Thus dividing both the numerator and the 

denominator of equation 2.12 by ‘Red’, we have  

 
1
1

+
−

=
RVI
RVINDVI  (2.13) 

 
Equation 2.13 helps with better interpretation and visualization of the indices. It is 

evident that the NDVI is more sensitive to sparse vegetation densities than is the 

RVI, but is less sensitive at higher vegetation densities. Conversely, RVI is quite 

sensitive to the vegetation changes during the time of peak growth.  Therefore, the 

use of same information (i.e. Red and NIR reflectance) through equation 2.13 

assists in better interpretation of the index. 
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The strength of the NDVI is in its ratioing concept, which reduces the 

multiplicative noise present in multiple bands. The NDVI is sufficiently stable to 

permit meaningful comparisons of seasonal and inter-annual changes in 

vegetation growth and activity. It is a good measure of landscape patterns of green 

biomass and can be used to estimate landscape patterns of primary productivity 

(Sellers et al., 1992). It can also be used to predict crop yields, crop phenology 

(Lee et al., 2000), and to evaluate leaf area index.  NDVI has been shown to be a 

good predictor of evaporation (ET) over grassland (Kondoh and Higuchi, 2001) 

and a good estimator of vegetation water stresses (Sandholt et al., 2002). 

However, NDVI exhibits scaling problems, and saturated signals over high 

biomass conditions, and it is very sensitive to canopy background variations, with 

NDVI values particularly high with darker canopy backgrounds. Some of these 

problems have been addressed by developing indices such as the soil adjusted 

vegetation index and the enhanced vegetation index. 

 
The Soil Adjusted Vegetation Index (SAVI) involves the incorporation of a soil 

background coefficient, L, in order to remove the dependency of the NDVI on the 

brightness of the material underlying a vegetated canopy as follows; 

( )L
L

SAVI
dNIR

dNIR +
++

−
= 1

Re

Re

ρρ
ρρ

 (2.14) 

  
The ‘L’ adjustment term is based upon differential Red and NIR transmission 

through a canopy (Beer’s law).  The value of ‘L’ is assumed to be 0.5 for a wide 

variety of leaf area index values (Huete, 1988). Later, instead of using a constant 

L factor, Qi et al. (1994) proposed a Modified Soil Adjusted Vegetation Index 

(MSAVI) with a variable L in order to increase the vegetation sensitivity.  

The Enhanced Vegetation Index (EVI) (Liu and Huete, 1995) was developed to 

optimize the vegetation signal with improved sensitivity in high biomass regions 

and improved vegetation monitoring through de-coupling of the canopy 

background signal and a reduction in atmosphere influences. EVI is one of the 

vegetation products available from MODIS and is defined as:   
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LCC
GEVI
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ρρρ

ρρ

2Re1

Re  (2.15) 

  
where: ρBlue is Blue (0.44-0.50 µm) reflectance, ρRed is Red (0.60-0.70 µm) 

reflectance, C1 is the correction coefficient for atmospheric resistance in Red 

channel, C2 is the correction coefficient for atmospheric resistance in Blue 

channel,  L is canopy background brightness correction factor, and G is gain 

factor. The C1 and C2 coefficients reflect the "atmospheric resistance" concept 

which is based on the wavelength dependency of aerosol effects, utilizing the 

more atmosphere-sensitive blue band to correct the red band for aerosol 

influences. The atmospheric resistance coefficient values adopted in the MODIS 

EVI algorithm are C1=6 and C2=7.5 (found to best minimize aerosol influences). 

Other terms in above equation are L=1 (works best for global applications) and G 

= 2.5.  The removal of the background soil effect in EVI is similar to that of 

SAVI. Therefore, EVI may be considered as an improved version of the NDVI. 

 
 

2.3.4.3 MODIS vegetation indices 

The MODIS vegetation indices (VIs) provide consistent, spatial and temporal 

comparisons of global vegetation conditions. The level 3 gridded vegetation 

indices are standard products available to the science community. The level 3, 

spatial and temporal gridded vegetation index products are composites of daily 

bidirectional reflectances. The gridded VIs are 16- and 30-day spatial and 

temporal, re-sampled products designed to provide cloud-free, atmospherically 

corrected, and nadir-adjusted vegetation maps at nominal resolutions of 250 m, 1 

km, and 28 km. 

Standard MODIS products include two vegetation indices; a) the standard NDVI, 

which is to continue the traditional NOAA-AVHRR derived NDVI, and b) the 

EVI with improved sensitivity to differences in vegetation from sparse to dense 

vegetation conditions. Gridded VI products are also in the Sinusoidal projection. 

As with MODIS LST products, the availability of MODIS vegetation indices is 

potentially very useful for soil moisture scaling studies.  
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2.3.5 SATELLITE DERIVED LAND SURFACE WETNESS 
INDICES 

Over the last few decades, substantial research has been dedicated to the use of 

remotely sensed observations for evaluating soil moisture conditions at the 

surface, firstly by using visible and thermal infrared imagery and secondly by 

using active and passive microwave imagery (as discussed in Chapter 7). Studies, 

which employ solar reflectance measurements (e.g. Weidong et al., 2002) thermal 

infrared wavelengths (see for example Carlson et al., 1981; Carlson et al., 1995; 

Czajkowski et al., 2002; Li and Lyons, 2002), and microwave radiation (Engman 

and Chauhan, 1995; Ragab, 1995; Schmugge, 1998; Njoku and Li, 1999), have all 

shown some potential for estimating soil moisture content. Except for microwave 

based approaches, the other methods rely broadly on deriving soil moisture 

contents using land surface temperatures and/or vegetation conditions which are 

known to relate with soil moisture. Remotely observed land surface parameters 

such as LST and vegetation indices are computed from surface reflectance 

properties.   Soil reflectance is influenced by organic matter, soil texture, surface 

roughness, angle of incidence, plant cover and colour, which limits the utility of 

such measurements for actual soil moisture content determination. Therefore, 

many attempts have been made to developing wetness indices rather than 

measuring actual soil moisture contents.   

Based on thermal infrared observations, investigators have explored combinations 

of surface temperatures (Ts) and Spectral Vegetation Index measurements as a 

means to account for the variable influence of vegetation cover in soil moisture 

assessments (Smith and Choudhury, 1991; Carlson et al., 1994; Moran et al., 

1994; Gillies et al., 1997; Goetz, 1997; McVicar and Jupp, 1999; Wang et al., 

2001; Goward et al., 2002, Sandholt et al., 2002). In most cases, there is a strong 

negative correlation exhibited in NDVI-Ts plots, which has been found to exist 

across a variety of vegetation types and sensors. A number of explanations for the 

negative correlation between NDVI and Ts have been given, including that it is 

related to the amount of energy partitioned into latent heat (Goward et al., 2002) 

and that it is driven by variations in transpiration due to differences in canopy 
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structures (Nemani and Running, 1989), surface resistance (Goward and Hope, 

1989) and soil moisture (Gillies and Carlson, 1995).  

Ts and NDVI in combination can provide information on vegetation and moisture 

conditions at the surface. Several studies focus on the slope of the Ts/NDVI curve 

for vegetation/soil moisture estimation (Nemani and Running, 1989; Smith and 

Choudhury, 1991; Friedl and Davis, 1994). The Ts/NDVI slope is related to the 

evapotranspiration rate of the surface, and has also been used to estimate air 

temperature (Prihodko and Goward, 1997; Boegh et al., 1998) and areal averaged 

soil moisture conditions (Goetz, 1997; Goward et al., 2002).  A scatter plot of 

remotely sensed LST and a VI often results in a triangular shape (Price, 1990; 

Carlson et al., 1994) or a trapezoidal shape (Moran et al., 1994).  The location of 

a pixel in the Ts-NDVI space is influenced by a range of factors and many 

attempts have been made to furnish interpretations. While some of these attempts 

had a theoretical basis (Moran et al., 1994), others relied on simulations based on 

Soil-Vegetation-Atmosphere Transfer models (Gillies et al., 1997). Also, while 

some interpretations were based on in-situ measurements (Friedl and Davis, 1994) 

others were based on analysis of remotely sensed data. Consideration of the Ts-

NDVI space helps the development of more meaningful indices for soil moisture 

status such as the Temperature-Vegetation Index (TVX; Prihodko and Goward, 

1997), Temperature-Vegetation Dryness Index (TVDI; Sandholt et al., 2002), 

Water Deficit Index (WDI) and Vegetation Temperature Condition Index (VTCI). 

Chen et al. (2002) proposed the use of Diurnal Surface Temperature Variation 

(DSTV) together with NDVI to develop a NDVI-DSTV index which could also 

be used to estimate the soil moisture.  

All these wetness indices may be computed at a range of scales with images from 

various platforms. Following is an introduction to the underlying physics of 

wetness indices and an overview of the wetness indices selected for the present 

study. 

 

2.3.5.1 Theoretical basis for land surface wetness indices 

The most widely established method for detecting vegetation water stress 

remotely is through the measurement of surface temperature of the vegetation.  
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The correlation between surface temperature and water stress is based on the 

assumption that as a crop transpires evaporative cooling cools the leaves below 

that of air temperature.  As the crop becomes water stressed, transpiration will 

decrease, and the leaf temperature will increase.  Other factors need to be 

accounted for in order to get a good measure of actual stress levels, but leaf 

temperature is one of the most important and it is easily measured with remote 

observations. Wetness indices therefore, aim at combining water status of the 

plants and ambient meteorological conditions and will yield a measure of plant 

water stress. Furthermore, one has to keep in mind that such wetness indices 

reflect the soil moisture status across the entire root zone depth rather than a 

particular soil layer. 

It is easy to understand the underlying physics of the wetness indices by analysing 

the derivation of a known index. For instance, one method used to apply crop 

surface temperature data to irrigated agriculture is the Crop Water Stress Index 

(CWSI) (Jackson et al., 1988): 

  CWSI = (dT - dTl) / (dTu - dTl)       (2.16) 

where, dT is the measured difference between crop canopy and air temperature, 

dTu is the upper limit of canopy minus air temperature (for a non-transpiring 

crop), and dTl is the lower limit of canopy minus air temperature (for a well-

watered crop).  

A CWSI of 0 indicates no water stress, and a value of 1 represents maximum 

water stress. There are several methods to determine the upper (dTu) and lower 

(dTl) limits in the equation 2.16.  One method developed by Idso et al. (1981) 

accounts for changes in the upper and lower limits due to variation in Vapour 

Pressure Deficit (VPD), which is calculated as the difference between saturation 

vapour pressure and actual vapour pressure. The lower limit in the CWSI will 

change as a function of vapour pressure because at lower VPDs, moisture is 

removed from the crop at a lower rate, so that the magnitude of cooling is 

decreased.  Idso (1982) demonstrated that the lower limit of the CWSI is a linear 

function of VPD for a number of crops and locations. Using the intercepts and 

slopes between VPD and dTl (or dTu) plots for a particular crop type, dTl and dTu 

may be computed for a variety of crops as follows:  



Chapter 2–Literature review   Page 2-36 
 

dTl = Intercept + Slope (VPD)  (2.17) 

dTu = Intercept + Slope  [VPsat(Ta) - VPsat(Ta + Intercept)]  (2.18)  

where VP and VPD have units of Pascal, VPsat(Ta) is the saturation vapour 

pressure at air temperature, and VPsat(Ta+Intercept) is the saturation vapour 

pressure at air temperature plus the Intercept value for the crop of interest. 

Thus, with a measure of air humidity (e.g. relative humidity, wet bulb 

temperature), air temperature, and canopy temperature, it is possible to determine 

the CWSI empirically. However, the CWSI is very sensitive to measurement error 

at low VPDs and should be applied with caution under such conditions. This 

empirical approach however has received some criticism concerning its inability 

to account for temperature changes due to radiation and wind speed changes. 

Therefore, in order to account for differences in radiation and wind speed, a 

theoretical method was proposed. 

The CWSI may be explained by rearranging terms of the surface energy balance.  

Jackson et al. (1986 and 1988) developed an equation to predict the canopy minus 

air temperature difference (Tc - Ta):  

Tc - Ta = X1 X2 - X3      (2.19) 

     where; 

X1 = ra (Rn - G) / (Cv)      (2.20)  

X2 = [γ (1+rc/ra)] / [∆ + γ (1 + rc/ra)]     (2.21) 

X3 = VPD / [∆ + γ (1 + rc/ra)]     (2.22) 

Tc is the crop foliage temperature (oC), Ta the air temperature (oC), ra the 

aerodynamic resistance (s m-1), Rn the net radiation heat flux density (Wm-2), G 

the soil heat flux density (Wm-2), Cv the volumetric heat capacity of air (JoC-1m-3),  

rc the canopy resistance (s m-1) to vapour transport, γ the psychometric constant 

(Pa oC-1), and ∆ is the slope of the saturated vapour pressure-temperature relation 

(Pa oC-1).      

Equation 2.20 was used to obtain the upper and lower bounds for the CWSI.  In 

the case of the upper limit (non-transpiring crop), the canopy resistance will 

approach infinity, so equation 2.20 reduces to  
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dTu = ra (Rn - G) / (Cv)    (2.23) 

In the case of a non-stressed crop, rc is assumed to be essentially 0:  

dTl = [ra (Rn - G) / (Cv)]  [γ / (∆ + γ)] - [VPD /(∆ + γ)]     (2.24) 

Equations 2.23 and 2.24 can be used to determine the CWSI as given in equation 

2.16.  When measurements of soil heat flux are not available, under conditions of 

complete canopy closure, 10 percent of net radiation is assumed to be transferred 

to the soil or (Rn - G) = 0.9Rn. 

The Tc-Ta approach in equation 2.19 is an attempt to use the Penman-Monteith 

equation with remotely sensed data and basic meteorological data. The use of the 

above equations to compute extreme foliage temperatures and comparison of 

those computed values with measured actual foliage temperatures makes it 

possible to estimate the ratio of actual (ETa) to potential ET (ETo) and infer plant 

water stress. 
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Moran et al. (1994) further developed this approach to develop a concept know as 

Vegetation Index / Temperature (VIT) trapezoid. They found a trapezoidal shape 

for the scatter plot of LST and vegetation index. By interpreting the LST 

(composite of both the soil and plant temperatures) and spectral vegetation index 

space, they determined the field water deficit condition for crops with partial 

cover. This method is explained in section 2.3.5.2.2.  

The details of CWSI reveal the strong physical principles behind the wetness 

indices. Thus, computation of wetness indices using spatial data should provide a 

reasonable assessment of soil wetness condition in a given region at a certain 

time. Such information is important to understand the relative soil wetness 

conditions at each pixel. Understanding of relative wetness conditions provides an 

acceptable way of scaling measured soil moisture. Particularly, when 

disaggregating areal average soil moisture values, wetness indices computed at 

higher resolution may be used as covariates.    
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2.3.5.2 Review of existing indices 

2.3.5.2.1 Thermal inertia approach 

Methods for inferring near-surface soil moisture content from soil surface 

temperatures derived from thermal infra-red data have shown some success, as 

soil moisture influences the thermal properties of the soil.  The amplitude of the 

day-night temperature difference has been found to have a good correlation with 

soil moisture content in the 0 - 2 cm and the 0 - 4 cm layers of the soil (Schmugge 

et al., 1980).  

Soil surface temperature is primarily dependent on the thermal inertia of the soil, 

which is a measure of the soil’s resistance to temperature changes. Many studies 

have demonstrated the use of thermal inertia to retrieve surface moisture from 

remote measurements of surface temperature and numerous ancillary 

measurements combined within an appropriate model (Price, 1980; Van de Griend 

et al., 1985; Carlson, 1986; Flores and Carlson, 1987; Norman et al., 1995; 

Czajkowski et al., 2002). For example, the analytical approach of Price (1980) 

requires satellite based data such as surface albedo, surface emissivity and routine 

meteorological observations such as air temperature, vapour pressure, wind speed 

etc.  Because the thermal-inertia models are based on thermal properties, they are 

expected to work best on bare soils where heat conduction dominates (Norman et 

al., 1995).  Thermal-inertia moisture-availability methods have been applied to 

vegetated surfaces by several investigators including Carlson (1986).  Norman et 

al. (1995) viewed the thermal inertia as an empirical parameter because vegetation 

tends to decouple the atmosphere from the soil substrate.     

However, present understanding of the thermal-inertia moisture-availability 

methods is limited for vegetated surfaces, particularly in how it is affected by 

different vegetation types, densities etc. An error analysis by Carlson (1986) 

suggested an error of about ±20% in thermal inertia and estimated moisture 

availability from these types of models. For this reason the thermal inertia 

approach appears less promising for use in scaling applications.  
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2.3.5.2.2 Water Deficit Index 

Moran et al. (1996) further developed the concept of CWSI for application to 

partially-vegetated surfaces by incorporating measurements of surface reflectance 

in addition to surface temperature. By computing the maximum and minimum soil 

temperatures associated with minimum and maximum evaporation rates, 

respectively and plotting these four temperatures against a spectral vegetation 

index (e.g. SAVI), they formed a trapezoidal shape.  They noted that all possible 

values of surface temperature for both full-cover and partially vegetated surfaces 

at a particular time are enclosed within the trapezoid as shown in Figure 2.4. The 

X-axis shows the difference between surface (Ts) and air temperature (Ta) and Y-

axis shows the percentage of vegetation cover (approximated by a VI). Whilst the 

top side of the trapezoid represents full vegetation cover, top left and right vertices 

represent well-watered and non-transpiring conditions respectively. The lower 

side of the trapezoid represents bare soil conditions. The lower left and right 

vertices reflect wet soils and dry soils respectively. Thus the trapezoid 

encompasses all possible situations under field conditions. With the measurement 

of surface composite temperature (Ts) at point C in the Figure 2.4, they showed 

that it was possible to equate the ratio of actual to potential evaporation with the 

ratio of distances CB and AB. Moran et al. (1996) defined this ratio as the Water 

Deficit Index (WDI).  

To justify the approach, they used certain assumptions to describe the trapezoidal 

shape scatter diagram. They assumed that measurements of vegetation cover are 

linearly related to VI. Also they considered that Ts-Ta as a linear function of 

vegetation cover, the canopy (Tc) - air temperature difference (Tc-Ta) and the soil 

(To) – air temperature (To-Ta) difference. This assumption helps defining the left 

and right boundaries of the trapezoid. Further, they assumed that for a given net 

radiation Rn, VPD and ra the variations in Tc-Ta and To-Ta are linearly correlated 

with variations in evapotranspiration (ET).  
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Figure 2.4: Illustration of the water deficit index trapezoid.   

 

The main strengths of this approach appear to be its strong physical basis and its 

ability to map water deficit characteristics in heterogeneous landscapes. Therefore, 

this concept is potentially suitable for local and regional scale applications. 

However, the need for additional ground based measurements to define the four 

vertices of the trapezoid may have some implications for its practical use. 

2.3.5.2.3 Vegetation Temperature Condition Index 

Based on the triangular space of LST and VI, Wang et al. (2001) has proposed the 

Vegetation Temperature Condition Index (VTCI). It is defined as: 

minmax

max

NDVIiNDVIi

NDVIiNDVIi

LSTLST
LSTLSTVTCI

−
−

=  (2.26) 

  

where: LSTNDVI i max- LSTNDVIi = A, and LSTNDVI i max- LSTNDVI i min = B in Figure 

2.5. LSTNDVI i max  and LSTNDVI i min are the maximum and minimum LSTs of pixels 

which have the same NDVIi values respectively. LSTNDVIi denotes LST of a 

chosen pixel whose NDVI value is NDVIi.  

The significance of VTCI is its relationship with the LST changes of pixels with a 

specific NDVI value. According to Wan et al. (2004) it can be physically 

explained as the ratio of temperature variations among the pixels. Thus, the 

numerator of equation 2.26 gives the difference between the maximum LST and 
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the LST of one pixel. Similarly, the denominator of the equation 2.26 gives the 

difference between maximum and minimum LSTs across all pixels. 

 

Figure 2.5: Schematic representation of the computation of Vegetation Temperature 
Condition Index. 

 

The LSTmax line in Figure 2.5 is the ‘warm edge’ of the triangular space of LST-

VI combinations. Physically it is characterized by dry conditions with little soil 

moisture available to plants (i.e. plants are under stress). On the other hand, 

LSTmin can be regarded as the ‘cold edge’ where there is no limitation of water for 

plant growth (Gillies et al., 1997; Wang et al., 2004). The values of VTIC range 

from 0 to 1; lower values indicate less soil moisture and, higher values indicate 

high soil moisture values.  

The main thrust of the VTCI is two-fold. First, it involves a simple computational 

procedure and it does not depend on any ancillary data. Second, it has a strong 

physical background. The difficulty faced in the computations of other moisture 

indices such as the defining of the four vertices of the WDI trapezoid is not 

relevant to the VTCI approach. Land surface moisture indicators such as VTCI are 

therefore potentially very useful for soil moisture scaling applications and can 

readily be computed from remotely sensed images.  

2.3.5.2.4 Vegetation Temperature Dryness Index 

Sandholt et al. (2002) have proposed the Temperature Vegetation Dryness Index 

(TVDI). They defined TVDI as: 
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min

min

S

SS

TbNDVIa
TT

TVDI
−+

−
=   (2.27) 

where TSmin is the minimum LST in the triangle, defining the wet edge, TS is the 

observed LST at the given pixel, NDVI is the observed NDVI at the given pixel, 

and a and b are parameters defining the dry edge modelled as a linear fit to data 

(TSmax = a + bNDVI) as shown in Figure 2.6. TSmax denotes the maximum LST for 

a given NDVI. The parameters a and b are derived from pixels from an area large 

enough to represent the entire range of surface soil moisture contents from wet to 

dry as well as  the entire range of surface vegetation conditions from bare to fully 

vegetated surfaces. 

 

 
Figure 2.6: Schematic representation of the TVDI. For a given pixel, TVDI is estimated as 
the proportion between A and B as given in Equation 2.27 (from Sandholt et al., 2002). 

 
The main advantage of the TVDI method is the independency of ancillary data, 

similar to the VTCI method. This method, however, requires a large number of 

remotely sensed observations to define the boundaries accurately. Application of 

this method is therefore, more time consuming and requires more data processing.  
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2.3.6 REMARKS – REMOTE SENSING TECHNIQUES FOR 
SOIL MOISTURE MEASUREMENTS 

From the above discussion, it is clear that remote sensing techniques may be 

applied to gain information on soil moisture conditions. While visual and thermal 

techniques are useful in collecting information on wetness characteristics of land 

surface, microwave based techniques provide quantitative measurement of soil 

moisture. It is therefore important to consider both measured near surface 

moisture (i.e. 0-1 cm from microwave sensors) and the computed wetness indices 

(from visual and thermal remote sensing) for catchment scale soil moisture 

studies. However, one has to keep in mind the differences of moisture 

representation. While microwave measurements provide true quantitative 

measures of moisture at 0-1 cm top soil layer, wetness indices provide an 

indication of moisture over the entire depth of the root zone. 

Microwave techniques however are associated with two major concerns. First, the 

measurement represents very large areas (for e.g. AMSR-E 6.9GHz channel has 

Instantaneous Field Of View (IFOV) of 76 km x 44 km) and the scale is not 

suitable for catchment scale hydrological applications. In order to use these 

measurements for catchment scale studies it is required to disaggregate the pixel 

level measurements. Second, the microwave-based soil moisture measurements 

are limited to the 0-1 cm near surface soil layer. The moisture content of top 0-1 

cm soil layer, however, does not always accurately represent the soil moisture 

status at the deeper layers, for example, for the 0-30 cm layer (or root-zone depth), 

which is more important to hydrologists as well as to farmers. For this reason, 

visual and thermal techniques seem very useful, as they are capable of 

representing the soil moisture content at deeper layers through vegetation indices.  

Vegetation indices are useful in obtaining information on soil moisture status 

because non-water stressed crops usually show a higher vegetation index value 

than water stressed crops. Particularly for large land areas with a few dominant 

crops such as in natural pasture lands, vegetation indices may be considered as 

reflecting the soil moisture status of a uniform root zone depth. Vegetation indices 

also reflect the historical rainfall distribution and therefore indicate recent soil 

moisture status. For a given situation however, vegetation index alone may not 

sufficiently explain the soil wetness condition. When combined with LST, 
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vegetation indices provide a much better assessment of soil wetness than when 

used on its own. Therefore, indices such as VTCI, WDI and TVDI are very useful 

in describing the land surface wetness conditions.  

Wetness indices are aimed at combining water status of the plants and ambient 

meteorological conditions and yield a measure of plant water stress which 

represents soil moisture availability. Wetness indices therefore reflect the soil 

moisture status across the entire root zone depth rather than for a particular soil 

layer. Thus, computation of wetness indices using spatial data should provide a 

reasonable assessment of soil wetness conditions in a given region. Such 

information is important to understand the soil wetness conditions at each pixel.  

The main advantages of wetness indices computed from visual remote sensing are 

the higher resolution and ease of computation (e.g. VTCI). High-resolution 

relative wetness conditions provide an opportunity to use the indices as surrogate 

variables for scaling of measured soil moisture. For example, when disaggregating 

areal average soil moisture values, wetness indices computed at higher resolution 

may be used as covariates. 

It can therefore be concluded that integration of wetness indices and microwave 

measurements may potentially provide the best solution towards estimation of 

areal average soil moisture contents at various scales. 

 

2.4 SOIL MOISTURE ESTIMATION TECHNIQUES 
From previous sections, it is clear there are no methods to measure soil moisture 

directly on the required time and space scales for hydrological studies.  Point 

measurements of soil moisture yield information on the temporal variation of 

moisture content in the soil profile at a specific point. However, accurate 

estimation of the spatial variation in soil moisture profiles from these point 

measurements is difficult.  In contrast, remote sensing observations provide 

information on the spatial distribution of soil moisture at a range of scales. 

Nevertheless, they do not provide timely information on the temporal variations of 

the moisture content or direct information on soil moisture content beyond the top 

few centimetres of the soil profile.  Therefore, soil moisture is often inferred from 
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hydrological models which have sufficiently sophisticated land-surface 

parameterizations. 

A wide variety of hydrological models for predicting soil moisture have been used 

over the past decades, ranging from simple conceptual models to complex systems 

of partial differential equations that require sophisticated numerical algorithms 

and powerful computers. There are essentially three different approaches that can 

be used: lumped models, semi-distributed models and distributed models. Lumped 

models do not represent spatial variability and are therefore less useful in soil 

moisture predicting studies.  Distributed models represent the spatial variability of 

soil moisture using a moisture distribution function.   This distribution function 

can be derived from the catchment topography, as in the case of the TOPMODEL 

(Beven and Kirkby, 1979) or it can be a theoretical distribution function as in the 

case of the Variable Infiltration Capacity (VIC) model (Wood et al., 1992).  When 

the distribution function is based on the catchment topography, theoretically, it is 

possible to map simulated soil moisture across the catchment to produce a 

catchment scale soil moisture distribution pattern. According to Western and 

Grayson (2001), there has not been any detailed testing of soil moisture patterns 

actually simulated by models such as TOPMODEL. However, a number of 

studies have compared various terrain index patterns with soil moisture patterns 

based on the TOPMODEL approach (Western et al., 1999; Sulebak et al., 2000; 

Pellenq et al., 2003). Models with distribution functions that are not related to the 

topography do not allow mapping the computed soil moisture patterns. However, 

the statistical distribution functions used in these models can be compared to the 

equivalent distributions derived from measurements (Western et al., 1999).  The 

common feature of distributed models is that they can incorporate the spatial 

distribution of various inputs and boundary conditions, such as topography, 

vegetation, land use, soil characteristics, rainfall, and evaporation, and produce 

spatially detailed outputs such as soil moisture fields. One of the major problems 

of using distributed modelling is parameter identification, owing to a mismatch 

between model complexity and the scale of data which is available to 

parameterize, initialize, and calibrate models, and to uncertainty and error in both 

models and observation data. 
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The ability to accurately describe large-scale variations in soil moisture is 

severely restricted by process uncertainty in model physics and the limited 

availability of appropriate soil moisture data. Hence, to improve the model 

predictions of soil moisture status in both spatial and temporal scales, data 

assimilation approaches are being used (Reichle et al., 2001b; Walker et al., 

2001a).  Data assimilation is the incorporation of observations into a numerical 

model with the view of providing the model with the best estimate of the current 

status of the modelled system. Two major types of data assimilation techniques, 

intermittent initialising of model process and continuous dynamic assimilation, 

are currently used.  It is expected that the use of data assimilation techniques 

should give better estimates of the soil moisture status than which can be achieved 

from either the numerical modelling approaches or observations alone. Methods 

for soil moisture data assimilation include direct insertion, Kalman filter (Walker 

et al., 2001a), extended and ensemble Kalman filters (Reichle et al., 2002) and 

optimum interpolation. Many studies have used data assimilation techniques to 

estimate soil moisture, particularly to address the profile soil moisture estimation 

(Walker, 1999; Walker et al., 2001a; Li and Islam, 2002).  The combined use of 

hydrological modelling and sequential assimilation of intermittent soil moisture 

measurements appears to be a most promising approach to solve the problem of 

soil moisture estimation. Another extension to data assimilation are the 

downscaling techniques.  It has been shown that a data assimilation technique 

such as the four-dimensional variational approach is a promising methodology to 

downscale passive microwave measurements for sub-pixel soil moisture 

estimation (Reichle et al, 2001a).    

Hydrological models can provide timely information on the spatial soil moisture 

distribution without the necessity of field visits. However, the error associated 

with their estimates is a critical disadvantage. Thus, Walker (1999) suggested that 

integration of modelling and measurements would provide the best solution 

towards estimation of soil moisture content. 
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2.5 PROBLEMS WITH CURRENT MEASUREMENT / 
ESTIMATION TECHNIQUES  
Current ground based soil water measuring techniques such as TDR, neutron 

scattering, or thermo-gravimetric methods can provide very accurate information 

of SWC with depth over time. However, the measurement volume is a fraction of 

a square meter. Many point scale observations are therefore needed to ‘upscale’ to 

hillslope or regional scales and to derive true moisture patterns across a 

catchment.  Up-scaling of point scale soil moisture measurements is always 

difficult and requires a well-articulated model to capture the spatial variability of 

soil properties and topographic parameters. 

On the other hand, soil moisture estimation using passive microwave remote 

sensing data is limited by several factors, with one of the most important being the 

large footprint of microwave radiometers. Hence, low-resolution soil moisture 

estimates from passive microwave data need to be disaggregated to produce a 

representative sub-pixel pattern of soil moisture. Disaggregation of large-area soil 

moisture estimates also requires an appropriate model. Currently, there is no such 

acceptable model available and more research is required to implement such an 

approach in various agro-ecological regions.  Furthermore, the poor vertical 

representation (e.g. 0-1 cm) of top soil layer in soil moisture estimation from 

microwave data is another major problem. Often, the derivation of profile 

moisture patterns from the near surface estimates must rely on hydrological 

models. This is always difficult and often, derived profile soil moisture values 

may not represent the true pattern due to mismatch between modelling scale and 

the input data scales.    

Most soil water models have been developed to describe one-dimensional soil 

water dynamics at a point, and are often applied to experimental plots, over time. 

Application of these models to larger areas requires that they be extended or 

extrapolated, which has been described as ‘upscaling’ by Blöschl and Sivapalan 

(1995). Upscaling soil water models will never be straightforward, due to large 

spatial variability of relevant soil properties observed in nature. The combined 

effect of high spatial variability and small-area representation of actual 

measurements (i.e. smaller measurement support) affects model input values, such 

as soil texture or depth, as well as model outputs such as soil water content 
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(SWC). As a result, model outputs are known only with considerable uncertainty. 

Seyfried (1998) believes that the model uncertainty is due to more attention being 

directed toward determining how processes should be represented in soil water 

models than to how the spatial variability and distribution of those processes 

should be represented, although both are critical. Uncertainty in parameter values 

is transmitted throughout the model to the final output. Hence, uncertainty in 

SWC limits model calibration and verification accuracy. Finally, the quality of 

soil water model output is compromised by these two uncertainties.  Poor model 

output may be partly due to lack of information concerning the effect of scale on 

spatial variability of soil moisture. 

 

2.6 SOIL MOISTURE SCALING 
According to Blöschl and Sivapalan (1995), scale refers to a characteristic time or 

length of a process, observation, or model. When large-scale hydrological models 

are used to make predictions at small-scale, or vice versa, unacceptable results 

may be found due to scale differences. Thus scale issues in hydrology stem from 

the fact that the mathematical relationships describing a physical phenomenon are 

scale dependent (Gupta et al., 1986). Similarly, use of point scale measurement of 

state variables such as soil moisture in hydrologic models introduces a serious 

error component into the final output.   

Two extreme choices of soil moisture measurements are available, i.e. accurate in-

situ point-scale continuous measurements and large area-average discrete 

measurements. Many catchment scale hydrological applications however, require 

some in-between scale (e.g. 1 km2) of soil moisture content preferably over the 

entire root zone depth of the dominant plant type. Often, this preferred scale of 

soil moisture is either not available or not measurable. Such information therefore 

has to be generated from the collected field data. The most appropriate method of 

extracting such preferred scale soil moisture data is by adopting a suitable scaling 

technique.  The availability of areal average estimates of soil moisture together 

with point scale observations has therefore opened up new science questions such 
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as how to relate soil moisture observations obtained at different scales, and how to 

disaggregate large-area observations. 

2.6.1 WHY SOIL MOISTURE SCALING? 

Soil moisture scaling has been the focus of numerous investigations since the 

early 90s. There has been increased interest in modeling and measuring SWC 

across the landscape for a variety of applications. Because SWC has a major 

impact on hydrologic processes such as infiltration, groundwater recharge, and 

overland flow, there is great interest in catchment–scale SWC estimates (Wood, 

1995).  Most of these applications involve modeling and measurement of SWC at 

varying spatial scales. Because the interactions between soil, vegetation and 

atmosphere vary both spatially and temporally, the scale at which the soil 

moisture information is collected may not be necessarily immediately usable for 

hydrological models. Often, it may require disaggregation of the moisture 

information down to sub pixel levels or aggregate point observations to derive 

large scales average moisture values.  Thus, similar to other environmental 

variables, measured soil moisture data often require some scaling. Before 

implementing any scaling technique however, it is important to understand how 

scaling affects our initial measurements and the final results. 

Hydrological processes occur at a wide range of scales and span about eight 

orders of magnitude in space and time (Klemes, 1983). For example, precipitation 

occurs at scales ranging from 1 m (cumulus convection) to 1000 km (frontal 

systems). Many hydrologic processes have similar length scales as precipitation 

but have delayed time scales. The time scale increases from infiltration excess to 

saturation excess to subsurface flow to groundwater controlled flows. From a 

hydrological perspective at least six causes of scale problems may be identified 

(Buggman 1997; Schulze, 2000; Wallender and Grismer, 2002). These are 

described below.  

(1) Spatial heterogeneity in surface/subsurface processes 

Natural and human-affected landscapes exhibit considerable heterogeneity (or 

patchiness). This heterogeneity is due to a range of processes and the rates at 

which they occur. These include the spatial and/or temporal variability of: 
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• topography (altitude, aspect, slope, position in the landscape etc) 

• soils (infiltration rate, water holding capacity, dependent inter alia on 

geology , topographic position etc) 

• rainfall and irrigation (frequency of occurrence and seasonal pattern, 

persistence of wet or dry days, duration, intensity, average amount,  etc) 

• evaporation (dependent on atmospheric factors such as solar radiation, 

water vapour deficit, wind etc) 

• land use (affects factors such as leaf area index,  canopy interception of 

rainfall, canopy height, structure and root distribution, the degree of 

imperviousness, effects of tillage practices, drainage etc). 

(2) Surface responses are non-linear at different scales 

Clear distinctions in responses may be found between hillslope processes (both on 

and below the surface) and channel processes. Some processes occur in an 

episodic manner (e.g. rainfall), others in a cyclic way (e.g. evaporation, wetting 

and drying of soil), still others in an ephemeral way (e.g. lateral flows) or in a 

continuous way (e.g. groundwater movement). Furthermore, it may be observed 

that certain responses are rapid (e.g. surface runoff), others are at the time scales 

of days (e.g. lateral flows) or months (e.g. groundwater movement). As a result of 

these different rates of process responses, the system shows a high degree of non-

linearity.  When a natural system is affected by land use changes or construction 

of new reservoirs / irrigation canals, the extent of this non-linearity increases. 

(3) Processes may require threshold scales to occur 

Processes such as surface runoff generation involve two distinct processes. Each 

of these two processes has a different threshold in order to occur. For example, 

overland flow on high ground is a process which occurs at a point in the landscape 

when rainfall intensity exceeds the infiltration capacity of the soil (i.e. Hortonian 

flow). Saturated overland flow, alternatively, is an areal process which requires a 

minimum upslope area over which lateral flows can accumulate and move down-

slope to saturate the area around the channel, with any rain then falling on the 

variably-sized saturated zone being converted to overland flow.  
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Similar to the surface flow generation process, subsurface flow consists of two 

components (i.e. interflow and base flow) as well as two distinct thresholds. In 

this case, the threshold for interflow (i.e. subsurface lateral flow down a hillslope) 

to occur will depend, inter alia, on soil horizonation, and different hydraulic 

conductivities along a hillslope toposequence (e.g. the crest, scarp, mid-slope, or 

foot-slope). The slope shape (e.g. concave, convex, or uniform) also influences 

this. On the other hand, the threshold for base flow is determined by aquifer 

properties, the amount of recharge to groundwater, and whether or not the 

groundwater level is “connected” or “disconnected” to the channel. 

(4) Dominant processes of concern may change with scale 

In small catchments, hillslope processes are influenced by slope, soil and/or land 

use properties. The shape of the hydrograph of these small catchments is 

determined by these factors together with the occurrences and characteristics of 

localised small-scale storm events. Often, the hydrograph shape of large 

catchments is determined largely by hydraulic characteristics of channels and 

reservoirs. In addition, occurrences and properties of large-scale regional rains of 

frontal and cyclonic origin also affect the shape. 

(5) Development of emerging properties 

New properties may emerge due to mutual interaction of small-scale properties 

among themselves. The edge effects between landscape patches are due to this. 

These show different properties at a large scale compared to the small scale. For 

example, the enhancement of evaporation at the edge of a well-irrigated field 

surrounded by a dry environment is an emerging property. Similarly, in a large 

irrigated area, evaporation would be suppressed by a vapour blanket of air with a 

reduced vapour pressure deficit. This is due to the development of so called ‘oasis 

effect’ or the emergence of a new situation. 

(6) Disturbance regimes 

Scaling problems immediately arise as a consequence of disturbance regimes 

being superimposed over a natural system, for example by the construction of 

dams or contour bunds, draining of fields, drastic changes in land use etc. 
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Apart from these hydrological concerns, scaling problems also appear due to the 

scale chosen for the measurements and the technique used (i.e. in-situ or remote 

techniques). For example, use of satellite data for the characterisation of land 

surface parameters is associated with at least two fundamental concerns. First, 

land surface parameters exhibit important spatial and temporal variability at scales 

smaller than the scale of measurement (Hu and Islam, 1997; Hu et al., 1997). 

Several studies have provided substantial information on the spatial variability of 

vegetation, soil moisture and other terrain attributes at scales smaller than 100m. 

Second, large-scale models that use remotely sensed land parameters or ground 

based observations do not require them at the same spatial resolution at which 

sensors are required to operate. In such a situation, an aggregation methodology is 

needed to ensure the incorporation of spatial heterogeneity. In addition, 

interpreting soil moisture patterns obtained from microwave images may be 

complicated due to poorly defined penetration depth which can vary across the 

pixel. Therefore, with both remote sensing and field monitoring, difficulties arise 

because the scale at which the data are collected is different from their intended 

usage (Western and Blöschl, 1999). 

 

2.6.2 SPATIAL VARIABILITY 

In a broad sense, spatial variability may be categorized into two types: 

deterministic and stochastic (Seyfried and Wilcox, 1995). Deterministic 

variability has also been called systematic (Wilding and Drees, 1983) or 

organizational (Blöschl and Sivapalan, 1995). It implies that spatial variability is 

known and may be related to geographical position or expressed in the form of a 

mathematical relationship, such as the elevation along hillslope.  

In contrast, stochastic variability conveys the existence of random variability.  

Stochastic variability may be further subdivided into two categories based on 

spatially dependency: spatially dependent and spatially independent. Spatial 

dependency is quantifiable and generally uses variogram techniques to estimate 

the dependency. Accordingly, it indicates that samples spatially closer to one 

another are more similar than those further apart. Spatially independent variability 
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may include small-scale variability and other ‘unexplained’ variability. It is 

possible to relate these parameters in a form of equation: 

)(")(')()( qqqmqZ εε ++=    (2.28) 

where q is the position in x, y or z dimensions, Z(q) is the parameter value (e.g., 

SWC), m(q) is the deterministic component, ε’(q) is the spatially dependent 

component, and ε”(q) is the spatially independent component (Burrough, 1993). 

Despite the fact that the spatial variability of soil properties increases with scale 

(Beckett and Webster, 1971; Wilding and Drees, 1983) neither the amount of 

increase nor how it is partitioned among the three terms in above equation (Eq. 

2.27) has been widely reported in the literature. In general, it is expected that 

ε”(x) will increase with scale. This may be due to increased number of 

interactions or unexplained processes (Wilding and Drees, 1983). It has been 

proposed that, at some scale, this term is dominant, and spatial variability may be 

viewed as strictly random. Wood et al. (1990) defined this scale as representative 

elementary area (REA). At this scale, spatial data (data tied to specific geographic 

locations) is not required, and spatial variability may be portrayed by statistical 

parameters such as the mean and standard deviation (Seyfried, 1998).   

The magnitude of ε’(x) is also expected to increase with scale. This however, will 

be highly dependent on the description of m(x) and the sample spacing (Russo and 

Jury, 1987). In addition, considerable change may appear in the deterministic 

component with scale and location (Seyfried and Wilcox, 1995). In general, when 

this component is comparatively large, spatial data is required, and distributed 

modelling approaches are more appropriate. 

2.6.3 THEORY OF SCALING  

Clear understanding of fundamental scaling principles is very important in any 

study that uses theory or models developed at one particular scale to assess 

conditions or processes at other scales. These scale issues stem from the fact that 

the mathematical relationships describing a physical phenomenon are scale 

dependent (Gupta et al., 1986). This is particularly important for hydrological 

studies. The methods used to measure spatially and temporally variable 

environmental properties such as soil moisture, to obtain model input parameters, 
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and to predict the processes represented by models may not necessarily be 

appropriate for the scale of interest. Therefore, if model results are used blindly, 

without any consideration of how they might be affected by the scales used in 

model development and data collection, it can introduce significant problems in 

the final outputs.  For example, when large-scale models are used to make small-

scale predictions, or vice versa, problems may arise. Furthermore, model 

parameters may change as the degree of watershed disaggregation changes, and 

thus are scale-dependent.  

The transfer of information across scales is known as scaling. Scaling and its 

effects on hydrological modelling are linked to the land surface heterogeneity. 

This heterogeneity is small at small scales and large at large scales. The greater 

the degree of heterogeneity, the smaller the scale would have to be to represent 

such variability. Hydrologic models use parameters to represent entire watersheds, 

whereas data on watershed characteristics is collected only at a limited number of 

field locations (Singh, 1995). This field data is difficult to transform into a 

collective representation of the entire watershed. This leads to the question of 

what scale enables the best hydrologic simulation. As the spatial scale of model 

application increases from a small area to a large area, the hydrologic response 

becomes less sensitive to the spatial variability of the inputs. 

The term ‘scale’ has been used differently in cartography, hydrology and soil 

science.  Singh (1995) defines scale as the size of a grid cell or subcatchment 

within which the hydrologic response can be treated as homogeneous. If this scale 

is too small, it will be dominated by local physical features, if it is too large, it will 

ignore significant hydrologic heterogeneity caused by spatial variability. This 

definition is incomplete and focuses only at the model application level. 

Blöschl and Sivapalan (1995) have proposed a conceptual framework to define 

scale and the required transformation of information in modelling real 

environmental process patterns. According to Blöschl and Sivapalan (1995), the 

term scale refers to a characteristic time or length of a process, observation, or 

model.  Hence, scale can be used either as a qualitative term (e.g. a small-scale 

process) or as quantitative measure in space dimensions. The spatial dimension, 

represented as co-ordinates in x, y, z directions, varies temporally along a time 

domain. Therefore, scaling is a change in either spatial or temporal scale and has a 
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certain direction and magnitude. Up and down scaling describes the direction of 

scale change. The scale change requires methods such as interpolation and 

extrapolation or aggregation and disaggregation.  To describe actual properties 

transformed in a change in scale, it is needed to uniquely specify the space 

dimension of a measurement or model application. In order to do this, a scale 

triplet concept is introduced. (Figure 2.7) The space triplet in a time domain is 

limited to its spacing (e.g. distance and/or time step between single samples), 

extent (overall coverage and duration of sampling) and support (integration 

volume or area and also time increment of each sample). When measurements are 

taken to produce the space triplets of data that represent a true pattern of a natural 

process, scaling appears automatically and inherently as an issue (Figure 2.8). 

 

Figure 2.7: Scale triplet concept: (a) Spatial (or temporal) extent; (b) spacing (or resolution); 
and (c) integration volume (or time constant). The figure is taken from Blöschl and 
Sivapalan (1995).  
 

It is important to further understand the types of scales and their characteristics as 

well as the interactions between the types of scales. Concepts described below are 

taken primarily from Blöschl and Sivapalan (1995) and from Schulze (2000).  
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Figure 2.8: Occurrences of scaling in measuring and modelling. Transfer of information is 
indicated as arrow (→) and biases in model prediction happen during the transformations. 
The figure is adapted from Blöschl and Sivapalan (1995). 

 

Process scales may be defined as the scales at which natural phenomena occur. 

These scales are not fixed, but vary with the process. Assessment of a given 

process for a particular scale of interest requires an understanding of land surface 

processes and their spatial and temporal dimensions. For example hydrological 

processes occur at a wide range of scales. Space scale and time scale relationships 

of these hydrological processes are shown in Figure 2.9, which is adapted from 

Blöschl and Sivapalan (1995). Processes at the lower left of the Figure 2.9 show 

short characteristics space and time scales. Because of the short space and time 

characteristics features, the processes at this part of the figure lead to patterns that 

are very patchy. On the other hand, slower and large scale processes (top right of 

the figure) shows spatially more coherent patterns which vary slowly. In order to 

analyse the situation with soil moisture processes, the original figure proposed by 

Blöschl and Sivapalan (1995) has been slightly modified by adding a space-time 

relationship of soil moisture by Skøien et al. (2003). Accordingly, as far as time is 

concerned, soil moisture is close to stationary with characteristic scales of the 

order of 2 weeks. In space however, soil moisture shows non-stationary behaviour 

and ‘patchy’ patterns. Skøien et al. (2003) noted that soil moisture characteristics 

in space were close to fractal over the extent sampled, about 1 km in their study.     
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Figure 2.9: Schematic representation of relationships between spatial and temporal scales of 
hydrological processes (from Blöschl and Sivapalan, 1995) shown together with soil moisture 
(Skøien et al., 2003). 

 
Data or observation scale is that scale at which one has chosen to collect 

samples or observations and to study phenomena. Observation scales are 

determined by constraints such as: (1) logistics; (2) technology; and (3) 

perception. Usually, observation or measurement scale is quite inflexible in a 

given circumstance. The most suitable way of using scaling methods to analyse, 

understand and predict natural processes has its basis first in accurate and precise 

measurements. In reality, scaling happens inherently whenever a measurement 

technique is used to observe the behaviour of a natural process at a particular scale 

of interest. A well-designed measurement program therefore considers the scale 

triplet of spacing, extent and support at the very inception of the measurement 

program. This helps accurate representation of the dynamics of the natural process 

in space and time based on the intended use of the data. Measurement instruments 

are designed to record some characteristic of an object to certain accuracy and a 

Soil moisture
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precision. One has to realise that any measurement method is by its nature 

inexact. 

It is possible to describe the relationship between process and observation scales 

using a diagram such as Figure 2.10 proposed by Blöschl and Sivapalan (1995). In 

this figure curved lines represent actual processes, circles represent the 

observation resolution, and squares represent the observation area (or 

observational grain) of the samples. The curve (a) represents situations when 

observational resolution is less than the process scale. This situation may present 

when too frequent observations are made and thus representing ‘noise’ rather than 

‘signal’. The result therefore, is an underestimation of variance. The curve (b) 

shows the situation of making too many observations or adoption of smaller 

observational resolution than the process scale. The true processes are therefore, 

not identified as they are shown as trends in the data. In addition, variance of the 

process may be underestimated. The last curve (c) shows the situation of the 

observational grain or coarseness exceeding the process scale. If the squares are 

visualised as AMSR-E soil moisture estimates, the actual soil moisture processes 

(e.g. redistribution) occurring within the pixel have been excessively smoothed 

and the information has been largely aggregated. One does not, for example, 

know the distribution of wet areas and dry areas within the pixel. 

 

Figure 2.10: Observation (shows as small circle) vs. process (represents as a wavy line) scale 
relationships: (a) Greater observation resolution than the process scale; (b) smaller 
observation resolution than the process scale; and (c) larger observational grain than the 
process scale (from Blöschl and Sivapalan (1995). 



Chapter 2–Literature review   Page 2-59 
 

 Prediction or modelling scale: As discussed above, scaling occurs automatically 

at the initial measurement or data collection stage. Then a further scaling step 

occurs in modelling. The space triplet of predictions is based on model input 

consisting of already scaled measured data as well as data modified by model 

functions at the chosen scale. Hence, the predictions inherit a multiple 

transformation when representing a natural process. As a result, although the true 

pattern of a natural process at the true process scale has a true variance, both 

measured data and predictions have different process scales and variances. The 

ratios of measurement to process scales and model to process scales are important 

because they provide an indication of the degree of impact of the scale effect 

(Blöschl and Sivapalan, 1995). This scaling theory appears very logical and 

therefore, fundamental ideas of this theory guide the steps required to successfully 

address scaling issues in soil moisture. 

Due to strong dependence, each scaling step affects the apparent representation of 

a true process in space and time. Most in-situ measurement techniques are 

typically designed to record soil moisture at the smallest possible spatial and 

temporal increments, in accordance with the objectives of the measurement 

program. Decisions taken in designing a measurement program, such as whether 

to collect spatial data to the nearest 1 mm, 1cm, 1m or 1000m and to temporal 

scales of 1 second, 1 minute, 1 day or 1 month, are based on the availability of 

measurement techniques at each level, economic capacity, and the expected 

details required meeting the research objectives.  

Processes occur in natural landscapes which usually consist of spatially 

heterogeneous areas with structure, function, and temporal changes that are also 

scale-dependent (Turner, 1989). Because of this reason, the observed processes 

are the outcome of a combined effect of processes and controls at a range of 

scales. These complex geographical phenomena may be simplified into distinct 

aerial units by adopting regionalization procedures (Bernert et al., 1997). Similar 

to discretization, regionalization procedures include inherent scale decisions, 

which in turn impact later stages of the analysis. Therefore all discretization 

techniques used in measuring natural properties and all regionalization decisions 

should be formulated and implemented properly. This ensures supply of 

information in an optimum way for the specific scale of interest. 
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2.6.4 REVIEW OF SELECTED IDEAS ON SOIL MOISTURE 
SCALING  

The importance of soil moisture for hydrological applications and the availability 

of affordable measuring methodologies have triggered many field studies and 

provided soil moisture data sets at various scales. This has paved the way to 

address new science questions and to introduce new procedures for analysis of 

soil moisture data. A number of soil moisture studies have been conducted across 

the globe using actual field data as well as synthetic data. Some selected studies 

are presented in following sections.  

2.6.4.1 Representative Elementary Area concept  

Statistical self-similarity as well as the threshold scale at which a statistical 

representation can be considered an adequate replacement for the actual pattern of 

variability may be used to understand the scale issues. Wood et al., (1988, 1990) 

proposed the 'representative elementary area' (REA) concept. They defined REA 

as: “the critical scale at which implicit continuum assumptions can be used 

without explicit knowledge of the actual patterns of topographic, soil, or rainfall 

fields. It is sufficient to represent these fields by their statistical characterization”. 

Thus, REA is the scale at which the variance in some characteristic response 

variable between areas of a given scale stabilises with increasing scale. The REA 

concept assumes that the aggregation of those sub-REA responses will be a linear 

integration, even though the responses themselves may be nonlinear. At an early 

stage, modelling studies reported that the REA threshold level of about 1 km 

represented a ‘fixed type’ scale. However, working on a scaling of surface soil 

moisture in the 525 km2 catchment in Oklahoma, Wood (1995) reported a REA 

threshold level of 5-10 km with multiscaling behaviour. Many argued that there is 

no a priori reason why a fixed REA scale should exist (Blöschl et al., 1995; 

Beven, 1995). In fact, process considerations suggest that REA may be expected 

to vary between storms with the correlation length scale of the inputs. This 

concept suggests that an area can be represented by the statistical distribution 

properties of the responses within it rather than detailed consideration of every 

individual point in space. The REA concept seems interesting for applications in 

hydrological modelling. However, there are no clear guidelines on which models 
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are appropriate for use at the REA scale. This thesis therefore does not study the 

REA concept further. 

2.6.4.2 Application of temporal stability 

It would be an advantage to find a way to predict large scale soil moisture 

averages from only a few sensors located at representative sites. The question is 

how to find such representative sites. The representativeness of a soil moisture 

monitoring site may be established by analysing the temporal stability 

characteristics of measured data (Vachaud et al., 1985; Grayson and Western, 

1998; Cosh et al., 2003). The primary method for determining the temporal 

stability of a soil moisture field is the mean relative difference plot. This plot 

represents the ability of a particular soil moisture sensor location to estimate the 

average over the catchment. Based on the approach by Grayson and Western 

(1998) and Cosh et al. (2003) the mean relative difference is defined as: 

∑
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=j*,δ  mean relative difference at the jth site 

Sij = ith sample of n samples at the jth site within the study region 
,*iS  = computed average among all sites for a given date and time, i 

 

Grayson and Western (1998) argued that if temporal stability could be established 

in a catchment, a small number of permanent soil moisture monitoring sites could 

be used to predict catchment averages in a reliable way. Temporal stability can be 

used to assess how well any point in a population represents the average. For 

example, this technique may be used to investigate the idea that a soil moisture 

field maintains its spatial pattern over time. For a specific site, the value of soil 

moisture for a day is compared to the average of all sites (without that site) to 

compute the relative difference. Then a mean relative difference for that site is 

determined. This variable gives a direct measure of how a particular site compares 

to the average of a larger region, whether it is consistently greater or less than the 

mean and how variable is that relationship. Good sites are characterised by zero 
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mean relative difference and small standard deviations. Therefore, the best sites 

and the worst sites may be identified to represent the catchment behaviour.  

This approach helps to estimate the catchment average moisture content with 

good accuracy using a single point, if one can determine this point a priori. In 

addition, if they exist, identification of such individual locations facilitates 

validating large footprint satellite estimates of soil moisture.  

It is also important to assess the spatial stability of the soil moisture fields. This 

may be described with the Spearman rank coefficient. Spearman's Rank 

Correlation is a technique to test the direction and strength of the relationship 

between two variables. It shows whether any on set of numbers is related to 

another set of numbers. For measured soil moisture fields, this coefficient may be 

used to calculate the correlation of site ranking from one day to the next. 

Therefore it is possible to assess the spatial stability of the soil moisture 

distribution over the entire catchment or study area. Cosh et al. (2003) have 

applied the Spearman rank coefficient (ri) to assess the spatial stability of 

measured soil moisture at any location (see Sij in equation 2.29) as follows. 
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where, 
Rij = rank of the soil moisture Sij at location i on day j 
Rij’ = rank of the same location i for day j’ 
n   = total number of days 

 
Negative values of computed Spearman rank coefficient indicate negative 

correlation, and positive values indicate positive correlation. 

The idea of temporal stability is very useful in identifying a representative soil 

moisture site from a monitoring network within a catchment or at a subcatchment 

level. The main advantage of this concept is the confidence of using soil moisture 

measurement from a single site in a catchment for catchment scale applications 

such as water balance studies.  Also, this concept may be used in long-term field 

studies to minimize the site maintenance cost by continuing the measurement only 

at the representative sites.  However, the recently developed temporal stability 

concept requires further studies with long-term data sets.  



Chapter 2–Literature review   Page 2-63 
 

This thesis is based on a soil moisture data collected from a network of 

monitoring stations and therefore provides an opportunity to study the 

applicability of temporal stability characteristics. The Chapter 5 of the thesis will 

investigate the application of temporal stability concept for various 

subcatchments.  In addition, Section 7.7.3 will investigate the applicability of this 

concept for the validation of satellite-based AMSR-E soil moisture measurements.  

 

2.6.4.3 Statistical and geo-spatial applications 

Geostatistics is a set of techniques for the analysis of spatial data (Atkinson and 

Lewis, 2000). Many studies have attempted to develop soil moisture scaling 

methods using simple geostatistical methods with varying success (Bardossy and 

Lehmann, 1998; Western et al., 1998a; Western et al., 1998b; Anctl et al., 2002). 

In general standard geostatistical techniques such as regularization and variogram 

analysis have studied by those researchers and have confirmed that these 

techniques are indeed applicable for organized soil moisture fields. Variograms 

help to characterise spatial variance as a function of the separation (lag) of the 

data points. The sills in the variogram, if they exist indicate that the process is 

stationary. In addition, correlation length measures spatial continuity of the 

variable of interest. Nevertheless, such methods based on multi-normal random 

fields cannot be used to bridge the scales over which the measurements are made 

and if used, may lead to systematic biases (Western et al., 1998a; Blöschl et al., 

1995). The implications of a particular choice of interpolation method for soil 

moisture have been studied by Bardossy and Lehmann (1998). Their use of 

techniques like co-kriging and external drift kriging shows that with sparse data 

the interpolated patterns vary enormously depending on which method is used. 

Central to geostatistical techniques is the assumption that the variable under 

consideration is a spatially correlated random variable. In the case of soil moisture 

however, this is not necessarily a valid assumption. Many studies have revealed 

that soil moisture is spatially organized (Western et al., 1998a; Blöschl and 

Grayson, 2001). For example, soil moisture is often organized topographically 

and this can be seen as wet areas in valley bottoms and near the streams.  
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Therefore, geostatistical techniques may not always provide the ideal solution. 

However, at present, these are the best techniques available for the purpose. 

In an another study, Sulebak et al. (2000) investigated the relationship between 

measured soil moisture and the primary and secondary topographical parameters 

within two small drainage basins. Two different models were established, with the 

primary topographic parameters slope, aspect, and profile curvature as regression 

variables yielding the best results.  However, the study did not include the 

potentially dominant attributes such as soil texture, distribution of vegetation type 

and elevation, which generally influence the soil moisture distribution, 

particularly for non-homogeneous land cover and soil texture regions and/or 

regions with large elevation differences.  Moreover, the soil moisture distribution 

model was not related back to average soil moisture content for the area of 

interest, meaning that the relationship would not hold for other soil moisture 

conditions. 

It appears that the geostatistical techniques are promising for soil moisture scaling 

applications. Implementation and evaluation of these techniques however, require 

large amount of spatially-distributed soil moisture data which is far beyond the 

scope of the field monitoring program of this thesis. 

2.6.4.4 Process-based scaling concepts 

Many scaling studies have been performed using data from three-dimensional 

water and energy models. Fully distributed, lumped and semi distributed models 

have been tested for a wide range of conditions. Among the simplest methods the 

Variable Infiltration Capacity (VIC) model (Wood et al., 1992; Kalma et al., 

1995) and TOPMODEL (Beven and Kirkby, 1979) approach are widely used. The 

VIC model is very simple because it only provides a statistical explanation of the 

subscale soil moisture variability. The VIC model in its original form is based on 

saturation excess and is less suitable for applications where overland or Hortonian 

flow dominates over the saturation excess condition. However, there are 

extensions to the original model which take care of this issue (Liang et al., 2003).  

Conversely, the TOPMODEL concept uses saturation excess flow conditions and 

offers the possibility of interpreting the variability of soil moisture in terms of the 

topography. Pellenq et al. (2003) studied the application of TOPMODEL concepts 
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for the disaggregation of soil moisture. By considering the topography and soil 

depth, they noted that topography alone could not explain the variability in near-

surface soil moisture. This was particularly true for the lower reaches of their 

small study catchment. However, inclusion of soil depth information such as 

storage capacity improved the retrieval of local moisture patterns. It may be also 

useful to study the applicability of important modelling parameters such as the 

wetness index in the TOPMODEL rather than the complete model for soil 

moisture scaling applications.  Chapter 4 of this thesis will therefore investigate 

the application of wetness indices for soil moisture scaling.  

2.6.4.5 Spatial organizations and patterns 

Studies of spatial distributions of soil moisture have reported organization of 

moisture field to form patterns (Western et al., 1998a; D’Odorico et al., 2000; 

Grayson and Blöschl, 2000). These patterns are not permanent and the 

characteristics of a pattern may change over time. Also, these patterns have a 

special meaning and attempts have been made to characterise them in terms of 

continuity and connectivity features. According to Western et al. (1998a) 

“continuity relates to the smoothness of a spatial pattern while connectivity 

relates to interconnected paths through the spatial pattern”.   For instance, soil 

moisture study in the Tarrawarra catchment (10.5 ha) in south-eastern Australia 

has revealed occurrence of both continuity and connectivity during wet periods 

but only continuity during dry periods (Western et al., 1998a). According to 

Grayson and Blöschl (2000), during wet periods (winter in this example) surface 

and subsurface lateral flows occurs, particularly in gullies, which produces a 

topographically organised pattern highlighting the continuity and connectivity 

feature. In dry periods (summer in this example), however, there is a minimum of 

lateral redistribution and fluxes are essentially in a vertical plane, which produces 

a pattern that is not related to topography. As a result, the connectivity feature 

disappears and a random moisture pattern is present. This is very important 

observation where one can use this approach to evaluate the field 

representativeness of upscaled or disaggregated soil moisture estimates. In the 

absence of area average measured soil moisture data to validate the scaled soil 

moisture estimates, interpretation of soil moisture patterns based on continuity or 
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randomness properties provides an indirect way of validating the results. Analysis 

and interpretation of soil moisture patterns are therefore essential ingredients in 

soil moisture scaling.     

It is worth further analysing the continuity and the connectivity properties to 

better understand the soil moisture patterns in a catchment. In general, 

geostatistics tools such as semivariogram analysis are used to describe the 

continuity feature. Traditional semivariogram approaches however do not capture 

the connectivity property because it is a structural feature. Approaches such as 

indicator geostatistics may be applied to characterise connectivity (Western et al., 

1998a).  The term connectivity indicates the extent to which connected features 

such as mosaics or arbitrary bands having similar values are present in a spatial 

soil moisture patterns (Western et al., 2001). Understanding of continuity and 

connectivity features of soil moisture fields are important for soil moisture scaling 

studies. It is clear that simple statistical techniques are not adequate for describing 

continuity and connectivity features of soil moisture fields. 

Another important characteristic of soil moisture spatial patterns is that they span 

a wide range of space and time scales (Grayson and Blöschl, 2000). According to 

Grayson and Blöschl (2000) different types of patterns are encountered at 

different temporal and spatial scales and these are associated with different 

processes. 

Furthermore, soil moisture patterns may take either unimodal or bimodal 

distributions whenever the system is forced by important interannual fluctuations 

in the rainfall regime (D’Odorico et al., 2000). The presence of two modes is the 

signature of a dynamic switching between two preferential states, characterized by 

either wet or dry average soil moisture conditions. The dry mode seems to 

correspond to soil moisture status close to the permanent wilting point of some 

vegetation species. Proper scaling studies thus need to consider the probability 

distributions of moisture fields. This is useful observation for validating predicted 

soil moisture patterns in a given catchment. 
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2.6.5 OUTSTANDING ISSUES TO BE ADDRESSED  

Soil moisture scaling approaches such as REA, temporal stability, geostatistical 

methods, and process-based methods have not been tested over a wide range of 

soil moisture, soil texture, and land cover conditions. Because the interactions 

between soil, vegetation and atmosphere vary both spatially and temporally, the 

scale at which the soil moisture information is collected may not be directly 

converted to a different scale.  Thus, it is important to understand the performance 

of these scaling approaches in various catchments with a range of soil moisture, 

soil texture, and land cover conditions. 

In addition, none of the scaling methods presented in Section 2.6.4 include the 

near-surface average soil moisture measurements from very large footprints such 

as those from the 25km passive microwave AMSR-E footprints. Passive 

microwave data from AMSR-E hold great promise for estimating soil water 

content for two reasons: the strong physical basis and the high temporal 

resolution. This type of large area averaged soil moisture estimates may be used in 

catchment scale lumped models or models run at a coarse resolution, but may not 

be suitable for distributed or semi-distributed models. Often, distributed 

hydrologic models require sub-grid scale average soil moisture estimates. As the 

passive AMSR-E is the most recent addition to the earth observation system, 

neither sub-grid scale surface moisture data nor acceptable downscaling methods 

exist. Therefore, methods need to be developed for downscaling these large-scale 

measurements to the appropriate scale. This may be possible with the wetness 

indices such as VTCI derived from space-borne sensors NOAA or MODIS.  

Chapter 8 will therefore investigate the disaggregation of AMSR-E with wetness 

indices. 

There, are at least two other fundamental problems associated with soil moisture 

scaling. First, there is the issue of inadequate field measurements. This is 

particularly true for the point-scale ground-based soil moisture data and leads to 

attempts to develop an upscaled soil moisture product from a limited number of 

field measurements in large catchments. Because of the higher cost involved with 

field data collection, the number of sites will often be determined by available 

funds and not by the actual number of sites actually required.  Second, there is the 

lack of data at appropriate scale to check the validity of scaled moisture estimates. 
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For example, when evaluating the results of up-scaled small area measurements of 

0-30cm soil moisture to 10m or 100m or 1km scale, based on current soil 

moisture measurement technology there is no physical method with which one 

can measure the area-average soil moisture of 0-30cm depth over 10m or 100m or 

1km area. Thus in this situation we need better ways to assess spatial soil moisture 

predictions. Perhaps by establishing multiple scaling relationships from point 

scale to hillslope scale, sub catchment and catchment level, one may obtain new 

insight into the assessment of soil moisture predictions. Studies are therefore 

needed to explore the multi-scale behaviour of soil moisture in a catchment. 

There are many unanswered questions related to upscaling and downscaling. 

Some of these questions are listed below: 

• When is a simple linear model sufficiently accurate for upscaling? 

• Are soil moisture fields obtained from point scale measurements 

transferable to large scales? When is this possible and how should it be 

done? 

• How do averages vary with scale? 

• How does soil moisture variability change with scale? 

• How can observations made at two scales be reconciled? 

• How does one validate large area soil moisture measurements with point 

data? 

• How many sites are required to characterise area average soil moisture? 

• Can we use the soil moisture from a catchment average soil moisture 

measurement site with confidence to represent soil moisture at different 

scales? 

• What length of records is required to identify a catchment average soil 

moisture measurement (CASMM) site? 

This thesis will attempt to address these questions. 
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2.7 CONCLUDING REMARKS 
Measurement of soil moisture seems very simple, yet, at the same time soil 

moisture measurements are not easy to obtain at the required temporal and spatial 

scales and their interpretation is subject to spatial and temporal variability. For 

this reason, soil moisture measurement often needs to undergo some form of 

scaling to match the data with the intended modelling application. Thus, 

relationships are required to develop between soil moisture indicators with respect 

to different spatial and temporal scales, to extrapolate data to larger scales, and to 

disaggregate large-area measurements.  

It is clear that none of the existing soil moisture measuring/estimation techniques 

is ideal for catchment scale modelling applications. Further, there is no standard 

method for either upscaling point measurements of soil moisture or downscaling 

spatially averaged or lumped observations of soil moisture. Moreover, most of the 

studies mentioned in Section 2.6.4 have been conducted in small catchments of < 

1km2 with very few studies for areas over 1km2, and no studies for very large 

catchments (e.g. >1000 km2). Therefore, there are significant problems in relating 

a limited number of point scale soil moisture measurements across a large 

catchment. Similarly, problems exist in the transferring of remotely sensed large-

area soil moisture measurements from the scale of the footprint to a smaller scale.  

New techniques are therefore required for disaggregation of large-area soil 

moisture measurements.  

The absence of a well established field procedure to measure soil moisture in a 

large area is another major concern. Because of this, it is difficult to validate the 

upscaled or downscaled moisture estimates. In case of passive microwave 

measurements, airborne data collected at various scales may be used to validate 

the satellite derived large area measurements such as those from AMSR-E. In the 

absence of in-situ data at the required scale, it may be possible to explain the soil 

moisture patterns across the catchment with reference to land surface 

characteristics such as terrain, soil type and land use.  

Scaling methods need to be developed to produce soil moisture grids of about 

5x5m2 resolution for detailed hillslope-scale studies and of about 1km2 pixels for 

catchment-scale studies. These methods should cover a range of soil moisture, soil 
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texture, and land cover conditions in order to better understand the soil moisture 

scaling behaviour under natural conditions. Furthermore, such studies should 

include the recently introduced large-area soil moisture estimates such as the 

recent 25km passive microwave AMSR-E data. Supplanting current ground based 

soil moisture measurements techniques with passive microwave radiometry in 

future will require improved understanding of soil moisture scaling methods.     

In summary, our understanding of scaling methods is not yet adequate to establish 

standard methods for aggregation/disaggregation of soil moisture estimates over 

large catchments. Hence, there is a need for further study of the scaling methods 

between soil moisture estimates at various scales. This thesis addresses soil 

moisture scaling methods at the larger catchment scale (about 6540 km2). This 

thesis attempts to develop techniques to upscale ground-based point-scale soil 

moisture measurements up to 1 km2 scale. This thesis also studies the prediction 

of catchment average soil moisture from CASMM sites. This study further 

explores the application of terrain based concepts for soil moisture scaling at hill 

slopes. Finally, it also focuses on developing new methods to disaggregate large 

area soil moisture measurements.  

Soil moisture scaling essentially leads to generation of new soil moisture patterns. 

Development, assessment and interpretation of these new soil moisture patterns 

require new methodologies and new insights. This thesis therefore attempts to 

interpret catchment scale soil moisture patterns in Chapters 4, 6, and 8.   
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CCCHHHAAAPPPTTTEEERRR   TTTHHHRRREEEEEE   

3. EXPERIMENTAL PROGRAM IN THE GOULBURN 
RIVER CATCHMENT  
 

This chapter presents an overview of the experimental program in the Goulburn 

River Catchment. It summarises the key variables that were measured between 

January 2003 and December 2004. The collection of an adequate data set for 

characterising the soil moisture behaviour at each site for applications of scaling 

studies was the primary motivation behind this field investigation. Additionally, 

ground based soil moisture data were collected for the AMSR-E soil moisture 

validation study described in Chapter 7 and the disaggregation study of large area 

soil moisture measurements discussed in Chapter 8.   
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3.1 INTRODUCTION 
Despite the importance of soil moisture, it is not a variable routinely measured in 

climate stations.  Measurement of soil moisture is more expensive than the 

measurement of environmental variables such as rainfall or air temperature and 

soil moisture measuring sensors often require site specific calibrations. 

Furthermore, field measured soil moisture is not a variable which can be readily 

applied over a large area as is done with rainfall or air temperature. Because of 

these reasons, soil moisture is not considered as a priority measurement at many 

climate stations.  

Recent advances in soil moisture measuring technology and in understanding the 

importance of soil moisture in water resources management and water 

conservation and for modelling studies have led to introduce a new trend: many 

farmers and researchers are now concerned with obtaining soil moisture 

information on a routine basis.  

There have been several studies across the globe on the spatial and temporal 

variability of soil moisture. However, soil moisture studies in Australia are very 

limited. Australia is a dry continent and a considerable proportion of the 

population benefits directly or indirectly from agricultural or farm based activities. 

The scientific value and the diversity of the flora and fauna in Australia are 

unique.  In this context, adequate scientific knowledge on spatial and temporal 

soil moisture behaviour is indispensable. However, the knowledge of soil 

moisture behaviour across Australia is very limited and most published studies 

have been confined to small catchments (for e.g. Tarrawarra – 10.5 ha, 

Nerrigundah – about 10 ha). Furthermore, most of the reported studies were 

conducted over a limited period and long-term soil moisture trends are therefore 

difficult to predict.  Hence, to fill this gap in knowledge of soil moisture 

behaviour in Australia, a number of well-planned and dedicated soil moisture 

studies are required. 
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3.2 RESEARCH PROGRAM ON SCALING AND 
ASSIMILATION OF SOIL MOISTURE AND STREAM 
FLOW  
The Scaling and Assimilation of Soil Moisture And Streamflow (SASMAS) 

project in south eastern Australia is a research program dedicated to develop new 

methodologies for meaningful estimation of spatial distribution and temporal 

variations of soil moisture content through a combination of modelling, field 

observations and data assimilation (see Rüdiger et al., 2003).  The program has 

been supported by the Australian Research Council (Discovery Project DP 

0209724). NASA assisted in the establishment of half of the monitoring sites by 

providing data loggers and sensors. 

The SASMAS project area is located in the Goulburn River Catchment (GRC) in 

South-East Australia. There are several factors that influenced the selection of 

GRC as the study region, with the most important reasons being its distance from 

the ocean and its vegetation cover. A field site too close to the ocean or other large 

water bodies would experience a mixed pixel response within the satellite 

footprint. This is particularly important for remotely sensed passive microwave 

data such as data from the Advanced Microwave Scanning Radiometer for Earth 

observing system (AMSR-E) due to its large instantaneous field of view (~70 

km). Water surfaces and saturated air masses near the water bodies have 

significantly different radio-brightness responses to that of soil. As a result, 

affected pixels generally indicate much higher soil moisture levels than exist in 

reality. The GRC is more than 100km away from the coast, and is not affected by 

coastal influences. Furthermore, there are no large water bodies within the 

catchment. Secondly, the relative large area of predominantly low to moderate 

vegetation cover in the northern half of the catchment makes it ideal for soil 

moisture studies based on remote sensing techniques and the validation of AMSR-

E footprints. Finally, the locations of the majority of monitoring sites of the GRC 

are less than about 200 km from the University of Newcastle. The selection of 

GRC is therefore, a good compromise for a long-term soil moisture related study. 

The GRC has been instrumented since September 2002 and monitoring will 

continue at least till late 2007. The catchment monitoring includes surface and 

root zone soil moisture, soil temperature, rainfall, and standard meteorological 
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information including temperature, humidity and radiation, and streamflow 

measurements. 

 

3.3 LOCATION OF STUDY AREA AND 
HYDROLOGIC IMPORTANCE 
The GRC is located in south-eastern Australia. The Goulburn River is one of the 

main tributaries of the Hunter River which reaches the sea at Newcastle (see 

Figure 3.1).  The Goulburn catchment is important as it takes in over 30% of the 

Hunter River catchment and contributes 23% of the Hunter river flow (HVRF, 

2005). The 6,540 square kilometres of the catchment extend from 31° 46’S to 

32°51’S and 149°40’E to 150°36’E, with elevations ranging from 106m in the 

floodplains to 1257m in the northern and southern mountain ranges.  

 

Figure 3.1:  Map of the Goulburn River Catchment of the Hunter River. 
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Located within a subhumid area, GRC is vulnerable to frequent and prolonged 

droughts. To gain an insight into the severity and the duration of past droughts for 

the study area, Table 3-1 shows drought declarations for the Merriwa area by the 

Rural Lands Protection Board (RLPB) from 1952 to 1994. The catchment has also 

been seriously affected by the severe drought that prevailed in the region from 

2002 to mid 2003. Table 3-1 gives an indication of the critical importance of soil 

moisture information to the farming community and for regional planning 

purposes. Therefore, a comprehensive study of soil moisture behaviour within the 

GRC is essential for better understanding of droughts in the region.  

Table 3-1:  Drought declarations for Merriwa area by the Rural Lands Protection Board 
from 1952 to 1994. 

 Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1952-56                         
1957      1 1 1  1 1 1 
1958 1            
1959-64             
1965  1 1 1 1 1 1 1 1 1 1 1 
1966 1 1 1 1 1 1 1 1 1 1   
1967-69             
1970       1 1 1 1 1  
1971      1 1      
1972        1 1 1 1 1 
1973-74             
1975 1 1 1 1 1 1 1 1     
1976-79             
1980   1 1 1 1 1 1 1 1 1 1 
1981 1 1 1 1 1 1 1 1 1 1 1  
1982         1 1 1 1 
1983 1 1 1 1 1        
1984             
1985    1 1 1       
1986     1 1 1 1 1 1   
1987-90             
1991    1 1 1       
1992 1       1 1 1 1  
1993     1 1 1      
1994      1 1 1 1 1   
Occurrences 9 6 8 10 10 12 13 14 10 11 8 6 
No of years 42 42 42 42 42 42 42 42 42 42 41 41 
As a %  21% 14% 19% 24% 24% 29% 31% 33% 24% 26% 20% 15% 

Source: http://www.agric.nsw.gov.au/reader/drought-climate 

Note: Light grey areas indicate that only part of the area was drought declared 
for that period. 
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3.3.1 THE GOULBURN RIVER CATCHMENT 

The GRC has two distinct parts. Whilst the northern part of the catchment has 

rolling topography and is mainly cleared for cropping and grazing purposes, the 

southern part of the catchment is largely covered by woodlands and forests. As 

seen in Figure 3.1, the Goulburn River runs in an easterly direction while its 

tributaries are aligned in a north- south direction. Thus, the catchment is 

dominated by easterly and westerly aspects as seen in Figure 3.2. The main 

tributaries in the northern part include Halls Creek, and Merriwa, Krui, Bow and 

Munmurra Rivers, whereas tributaries in the southern area include Widden Brook, 

Baerami Creek, and Wollar and Bylong Rivers. 

 

Figure 3.2:  Aspect map for the Goulburn River Catchment (legend – degrees measured in 
clockwise direction from north). 

 

3.3.2 CLIMATE 

The general climate within the region can be described as subhumid with 

significant variation in the annual rainfall throughout the catchment. While the 

average annual rainfall in most of the catchment is approximately 700mm, it 

varies from 500mm to 1100mm depending on altitude. Major rainfall events 
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generally occur in October and November with an average precipitation of 50mm, 

while the monthly average precipitation in July is 40mm. As indicated in Table 

3-1, temporal variability of rainfall is generally high in GRC. The average annual 

Class A pan evaporation for the study region is about 1800mm. The minimum 

monthly pan evaporation is reached in July with an average of 75mm and the 

maximum can be observed in January reaching 250mm. Monthly mean maximum 

temperatures reach approximately 30°C in summer and 14°C in winter, with 

minimum values of 16°C and 2°C, respectively. Except for elevated areas, frost is 

unlikely to occur during daytime in winter, but night-time minimum temperatures 

in winter are frequently less than 0°C. 

 

3.3.3 TOPOGRAPHY, LANDFORMS AND SOIL 
PROPERTIES 

The geology of the Goulburn River Catchment comprises two main types: the 

northern half which is predominantly Tertiary basalt and the southern half which 

is dominated by rocks of the Triassic age laid down as sediments in lagoons and 

consisting of sandstone, conglomerate and shale. The region’s land forms show a 

close relationship to geology and climatic history.  Four main types of country can 

be identified: the northern boundary of the Liverpool Ranges, Merriwa Plateau, 

the Central Goulburn Valley, and the sandstone country in the southern half of the 

catchment (Story et al., 1963). The Liverpool Ranges are characterized by a 

rugged and basaltic landscape. The area rises over 1200m above sea level, and 

localized plateaus exist despite the characteristic rugged topography. The Merriwa 

Plateau is located between the Liverpool Ranges and the Central Goulburn Valley, 

comprising rolling country and hill country on basaltic topography (see Figure 

3.3). Its elevation ranges between 450m to the north and 300m to the south. The 

hilly parts with savannah woodland on rather shallow cracking clays constitute the 

Ant Hill land system and the undulating parts in the more open valleys with 

eucalypt tree savannah and deep cracking clays forms the Bow land system. The 

Central Goulburn Valley is located between the Merriwa Plateau and the 

sandstone country as a belt about 30 km wide with irregular plateaux and ridges. 

The Greenhills and Roscommon land systems occur in this region.  The southern 
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part of the catchment consists of rugged mountains on Triassic sandstone. The 

dominant land system in the sandstone country is the Lee’s Pinch land system 

with rugged ridges and deep cliff-walled valleys. The distribution of soils within 

the GRC is shown in Figure 3.4. 

A detailed soil landscape map for the catchment can be found at http://www. 

dlwc.nsw. gov.au/care/soil/ssu/pubstat/hunter_central_rivers_index.htm.  

 

Figure 3.3:  Main geological regions of the Goulburn River Catchment.   
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Figure 3.4:  Distribution of soils within the Goulburn River Catchment. 

 

3.3.4 VEGETATION AND LAND-USE 

The natural vegetation of the area includes open grasslands, woodlands and 

eucalypt forests. Much of the original vegetation in the northern part of the 

Goulburn catchment has been cleared, the extent of which has largely been 

influenced by topography and soil type (Figure 3.5). At the northern boundary 

where the terrain is rugged (i.e. the Liverpool Range), accessibility is limited and 

the area has thus remained highly vegetated. In parts of the Merriwa Plateau, 
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clearing has been more extensive due to the rolling to hilly terrain ensuring greater 

accessibility. Grazing and cropping activities dominate cleared areas, due to the 

high fertility of basaltic soils. This part of the catchment is an appropriate region 

for remote sensing studies. For example, remote sensing of near-surface soil 

moisture based on passive microwave radiation requires less vegetation cover as 

vegetation can attenuate the emitted microwave signal from the land surface. The 

substantial less vegetation cover on the Merriwa Plateau is therefore creating an 

ideal situation for soil moisture monitoring with remote sensing approaches. The 

sandstone derived soils to the far south are largely uncleared as they are less 

fertile and productive. Because of the denser vegetation, the southern part of the 

GRC is not suitable for soil moisture remote sensing studies.  
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Figure 3.5:  Land use pattern of the Goulburn River Catchment. 

 
The Goulburn river catchment is also important for the conservation of native 

vegetation species. The catchment includes two national parks: the Goulburn 

River National Park and the Wollemi National Park. At present the Hunter 

Catchment Management Trust is undertaking the Hunter Remnant Vegetation 

Project, which aims to map remnants, identify potential corridors and encourage 

proper management of remnant native vegetation. Knowledge of soil moisture 

behaviour in the Goulburn catchment is therefore very useful for the current 

attempts of conserving the native vegetation. 
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Important land-uses in the catchment include: beef cattle, dairy, vineyards, wheat, 

sheep, thoroughbred horses, forestry, lucernes, coal mining, quarrying, recreation, 

conservation and rural-residential land use (HCMT, 2003). Most of these land 

uses may benefit from good knowledge of soil moisture behaviour within the 

catchment. 

Due to the highly erosive nature of the common soil types in the region, the 

Goulburn Catchment experiences continuing erosion problems. For example, the 

cracking clays in northern half are exhibiting widespread signs of tunnel erosion. 

Extensive sheet, rill and gully erosion is also evident on undulating land and is 

widespread on agricultural lands. Stream bank erosion occurs along the Goulburn 

River and its tributaries. The Integrated Catchment Management Plan for the 

Hunter Catchment (HCMT, 2003) has identified many soil conservation priority 

areas, particularly within the northern half of the catchment. Furthermore, soil 

structural decline is recognised as a significant issue in the region by the 

Department of Environment and Conservation, NSW, but its extent is 

undetermined (http://www.epa.nsw.gov.au/soe/97/ch2/9_1.htm). Detailed 

knowledge of soil moisture behaviour will also benefit the adoption and 

implementation of appropriate soil conservation measures. 

 

3.4 FIELD INSTRUMENTATION  

3.4.1 LOCATION AND LAYOUT OF MONITORING SITES 

A total of 26 soil moisture and soil temperature monitoring sites (Figure 3.6) were 

chosen on the basis of i) spatial representativeness, ii) the spatial distribution 

across the experimental catchment, and iii) accessibility. The representativeness 

objective was addressed by choosing mid-slope locations with typical vegetation, 

soil, and aspect, so that they represent catchment average soil moisture locations. 

The spatial distribution was chosen to give a concentration of measurements in the 

open cropping and grazing land in the north for application to remote sensing 

measurements, while achieving a good distribution for model verification within 

the chosen focus catchments and the broader Goulburn River catchment. Two 

focus catchments were created by establishing 7 soil moisture monitoring sites in 
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each of the major subcatchments (6 sites in the Krui River catchment in addition 

to the Stanley micro-catchment (with 7 sites) and 7 sites in the Merriwa Creek 

catchment), with a further 6 sites installed in the remaining Goulburn River 

catchment (Figure 3.6). The intensively monitored Stanley micro-catchment was 

chosen to study hillslope-scale soil moisture distributions and sites were located 

along two hillslopes (Figure 3.7). Moreover, the higher density of soil moisture 

monitoring sites in the Krui and Merriwa catchments allows for study of the 

spatial organisation of soil moisture throughout the northern part of the catchment 

and supports work undertaken in the validation and scaling of satellite 

measurements. 

 

 

Figure 3.6:  Location of soil moisture and stream flow monitoring sites in the Goulburn 
River Catchment. Main sub-catchments within the GRC are also shown in the figure. 
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(a)  

 

(b) 

Error! Objects cannot be created from editing field codes. 

Figure 3.7:  (a) Areal view of Stanley micro-catchment and (b) location of monitoring sites. 

 

Geographic locations and the physical characteristics of the selected monitoring 

sites are summarised in Table 3-2. The monitoring sites represent at least six 

tributaries of the Goulburn River Catchment. Most are in pasture and represent 

near-natural conditions without any disturbances to the soil moisture patterns due 

to irrigation.   

 

Table 3-2:  Geographic locations, topography, land use and soils of the selected monitoring 
sites. 

 

Code Property 
name 

Sub-
catchment 

Longitude
(East) 

Latitude 
(South) Topography Land use Soils 

K1 Illogan Krui 150.0700 -32.1486 Flat Cropping RBC 

K2 Roscommon Krui 150.1461 -32.1606 Flat Grazing RBS
/SS 

K3 Pembroke Krui 150.1381 -32.0394 Flat Cropping BBC 

K4 Pembroke Krui 150.1800 -31.9817 Flat/gently 
slope Grazing BBC 
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K5 Burnbrae Krui 150.1336 -31.9331 Flat Grazing BBC
K6 Spring Hill Krui 150.2061 -31.8644 Hilly Grazing BBC
S1 Stanley Krui 150.1244 -32.0922 Flat Grazing BBC
S2 Stanley Krui 150.1369 -32.0958 Flat Grazing BBC
S3 Stanley Krui 150.1394 -32.0956 Hilly Grazing RBC
S4 Stanley Krui 150.1425 -32.0950 Hilly Grazing RBC
S5 Stanley Krui 150.1339 -32.0964 Flat Grazing BBC
S6 Stanley Krui 150.1344 -32.0986 Hilly Grazing RBC
S7 Stanley Krui 150.1353 -32.1003 Hilly Grazing RBC
M1 Maram Park Merriwa 150.3114 -32.2417 Hilly Grazing SS 

M2 Cullingral Merriwa 150.3336 -32.1578 Flat/gently 
slope Grazing SS 

M3 Merriwa 
Park Merriwa 150.4198 -32.1124 Gently 

rolling Grazing BBC

M4 Kilwirrin Merriwa 150.3964 -32.0419 Hilly Grazing BBC

M5 Midlothian Merriwa 150.3511 -32.0222 Flat/gently 
slope Grazing BBC

M6 Dales Merriwa 150.4317 -31.9469 Gently 
rolling Grazing BBC

M7 The Echo Merriwa 150.4672 -31.8586 Hilly Grazing BBC

G1 Blue Wren 
Park Goulburn 150.4894 -32.3828 Flat/gently 

slope Grazing  

G2 Widden Stud Widden 150.3592 -32.5258 Flat Stud  
G3 Talooby Bylong 150.0875 -32.5600 Hilly Grazing BBC
G4 Cumbo Wollar 149.8822 -32.4061 Flat Grazing SS 
G5 Glenmoor Goulburn 149.7372 -32.3092 Flat Grazing SS 

G6 Nagolli Munmurra 150.0106 -32.0203 Gently 
rolling Grazing BBC

BBC - Black basaltic clay, RBC - Red basaltic clay, SS – Sandy soil 

 

The GRC has been permanently instrumented since September 2002 for soil 

moisture, soil temperature, soil heat flux, and a range of climate variables. Setting 

up of all monitoring sites and the installation of sensors were done in two 

dedicated field campaigns. A typical soil moisture monitoring site consists of 

three CS616 reflectometers, T107 temperature sensor, CR510 data logger and 

power supply system (solar panel and a battery). CS616 sensors were installed 30 

cm apart and about 75 cm from the logger mast as shown in Figure 3.8. While the 

installation of surface sensors did not require special attention, the installation of 

deeper sensors required special care. When installing the CS616 sensors at 30-

60cm and 60-90cm depths, the soil was carefully removed layer by layer with an 

auger and placed in distinct heaps on the ground. After installation of the sensors, 

the soil was returned to the access hole in a reverse order to ensure minimum 

disturbance (see Figure 3.9). To avoid possible damage to the CS616 sensors 

during installation a guide probe was used to make two narrow holes to facilitate 
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sensor insertion.  A soil temperature sensor was installed at the mid point of the 

top CS616 sensor, i.e. at 15 cm from the surface.   

Setting up the climate stations was more complex because it involved more soil 

temperature measurements and a range of other sensors for measuring radiation, 

humidity, air temperature, pressure and wind. Figure 3.10 illustrates the steps 

involved in setting up a climate station. A comprehensive summary of 

instrumentation at each monitoring site is given in Table 3-3. 

 

 

Schematic of a Soil Moisture Site
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Figure 3.8:  Diagrammatic illustration of a typical soil moisture measurement site with three 
CS616 Reflectometers (lower left image) and one T107 temperature sensor (upper right 
image). 
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Figure 3.9:  Installation of CS616 sensors at 30-60cm and 60-90cm depths.  
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Figure 3.10:  Different stages of setting up the climate station at K6 (Spring Hill): A) 
foundation for the mast and augering access holes for sensors, B) installation of ground 
sensors, C) connecting sensors to the data logger, D) fencing, and E) complete climate 
station. 

 

(A) 

(B) 

(C) 

(D) 

(E) 
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Table 3-3:  Characteristics of the instrumentation at monitoring sites 

 

Code 
Soil depth 

(cm) 
Date 

Established CS616 T107 Other sensors 

K1 >100 01/10/2002 3 1  
K2 >100 30/09/2002 3 1  
K3 >100 27/09/2002 3 1  
K4 >100 26/09/2002 3 1 RF-A 
K5 >100 27/09/2002 3 1  

K6 >100 26/09/2002 3 3 RF-A,  
Climate station-2 

      
S1 >100 23/09/2002 3 1 RF-N 

S2 >100 24/09/2002 3 8 RF-A and RF-N, 
Climate station-1 

S3 75 25/09/2002 2 1 RF-N 
S4 40 25/09/2002 1 1  
S5 >100 25/09/2002 3 1 RF-N 
S6 70 23/10/2002 2 1 RF-N 
S7 40 28/01/2003 1 1  

      
M1 67 03/10/2002 2 1 RF-A 
M2 >100 01/10/2002 3 1  
M3 75 03/10/2002 2 1  
M4 45 01/10/2002 1 1 RF-A 
M5 70 03/10/2002 2 1  
M6 78 22/07/2003 2 1  
M7 >100 01/10/2002 3 1 RF-A 

      
G1 >100 04/10/2002 3 1  
G2 >100 04/10/2002 3 1 RF-A 
G3 >100 02/10/2002 3 1  
G4 70 02/10/2002 2 1  
G5 >100 02/10/2002 3 1 RF-A 
G6 52 30/09/2002 1 1  

Note: RF-A = Automatic Rainfall recorder, RF-N = Non-recording or collecting rain gauge 

3.4.2 WATER CONTENT REFLECTOMETERS AND DATA 
LOGGERS 

Continuous measurement of soil moisture was based on the Campbell Scientific 

Inc. (CSI, 2002) CS616 Water Content Reflectometers (WCR). The WCR is 

designed to measure volumetric water content of a porous medium such as soil. It 

is an improved version of CS615 WCR introduced in 1996. The water content 

information is derived from the probe’s ability to measure the dielectric constant 

of the medium being measured. The probe consists of two 30 cm long stainless 
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steel rods of 32 mm diameter with a spacing of 32mm.  These two rods or wave 

guides are connected to a head piece which is the housing of the measurement 

electronic components. High-speed electronic components inside the probe head 

are configured as a bistable multivibrator. The output of the multivibrator is 

connected to the steel rods which act as a wave guide. The signal return from the 

guides causes the bistable multivibrator to change states between two discrete 

values. The output of the sensor is a frequency that reflects the number of states 

changes per second. For this reason CS616 is not a ‘true Time Domain 

Reflectometry (TDR)’ instrument because TDR equipment directly measures the 

wave guide signal reflection time and uses ultra high speed electronic circuit to 

make measurements in nanoseconds.  The travel time of the signal along the probe 

rods depends on the dielectric permittivity of the material surrounding the rods. 

The dielectric permittivity depends on the water content of the medium. 

Therefore, the oscillation frequency of the multivibrator is determined by the 

water content of the medium being measured.  As with all TDR sensors, a wetter 

soil will cause a longer signal return time, and will cause the CS616 circuit to 

vibrate at a lower frequency. The probe output is a period measurement which 

ranges from about 14 microseconds when the rods are in air to about 42 

microseconds (µs) when the rods are completely immersed in normal tap water 

(Campbell Scientific Inc, 2002). Once installed the CS616 requires no 

maintenance. However, the CS616 has the disadvantage of being affected by 

salinity in soils of salinity >2 dS m-1. In addition, high clay content, high quartz 

content and high organic matter content all affect the probe readings. Therefore, 

custom re-calibration is required for such soils. In addition, the CS616 is sensitive 

to temperature and hence requires a temperature correction. A detailed sensor 

calibration was therefore undertaken for each site using both laboratory and field 

measurements (see Section 3.8.1). 

Each of the monitoring sites has up to three vertically inserted WCRs over depths 

of 0-300mm, 300-600mm and 600-900mm, respectively (Figure 3.8). The number 

of soil moisture sensors installed was determined by the depth of the top soil 

layer. These sensors ensured a continuous observation of the soil moisture profile, 

with sensors read every minute and the average values logged once every 20 

minutes. The WCRs have been connected to the single-ended analogue input 



Chapter 3 - Experimental program Page 3-21 

channel on a Campbell Scientific Inc (CSI) CR510 data logger for continuous 

monitoring.  Six types of logger programs have been used and a sample logger 

program is shown in Annex-I (a). PC208W software from CSI was used for 

programming the data logger and for downloading of the data to a laptop 

computer. Table 3-4 shows the logger programs used at each site together with the 

logger capacities at each site. As seen in Table 3-4, loggers at the climate stations 

were just sufficient to store data for 6 weeks period. All routine site visits were 

therefore planned to occur at 6 weeks intervals. 

Table 3-4:  Data logging properties at monitoring sites 

 

Site code Data logger Logger 
program 

Scanning 
rate 

(Seconds) 

Logger 
capacity 
(weeks) 

K1 CR510 MC_3S 60 15.4 
K2 CR510 MC_3S 60 15.4 
K3 CR510 MC_3S 60 15.4 
K4 CR510 MC_3S_RF 60 13.7 
K5 CR510 MC_3S 60 15.4 
K6 CR10 WEATHER 60 6.6 

       
S1 CR510 MC_3S 60 15.4 

S2 CR510 
CR10 

MC_3S 
SC_WETHR 

60 
60 

15.4 
6.2 

S3 CR510 MC_2S 60 17.7 
S4 CR510 MC_1S 60 20.6 
S5 CR510 MC_3S 60 15.4 
S6 CR510 MC_2S 60 17.7 
S7 CR510 MC_1S 60 20.6 

       
M1 CR510 MC_2S_RF 60 15.9 
M2 CR510 MC_3S 60 15.4 
M3 CR510 MC_2S 60 17.7 
M4 CR510 MC_1S_RF 60 18.4 
M5 CR510 MC_2S 60 17.7 
M6 CR510 MC_2S 60 17.7 
M7 CR510 MC_3S_RF 60 13.7 

       
G1 CR510 MC_3S 60 15.4 
G2 CR510 MC_3S_RF 60 13.7 
G3 CR510 MC_3S 60 15.4 
G4 CR510 MC_2S 60 17.7 
G5 CR510 MC_3S_RF 60 13.7 
G6 CR510 MC_1S 60 20.6 



Chapter 3 - Experimental program Page 3-22 

3.4.3 OTHER SOIL MOISTURE MEASUREMENTS 

Two types of additional soil moisture measurements were made at all field sites 

on a six-weekly basis during routine data downloading visits. These additional 

soil moisture measurements were collected between June 2003 and August 2004. 

First, five 0-6 cm soil moisture measurements were made using a ThetaProbe soil 

moisture sensor ML-2 around the permanent site to assess local differences in 

surface moisture status. The ThetaProbe is a portable instrument designed to 

measure volumetric soil water content using a simplified standing wave 

measurement technique. The ThetaProbe consists of an input/output cable, probe 

body and a sensing head. The cable provides connection for a power supply and to 

a data logger such as the Moisture Meter type HH2 used in this study. The probe 

body contains an oscillator, a specially designed internal transmission line and 

measuring circuitry within a waterproof housing. The sensing head has an array of 

four rods (each 6 cm long), the outer three of which, connected to instrument 

ground, form an electrical shield around the central, signal rod. This behaves as an 

additional section of transmission line having an impedance that depends on the 

dielectric constant of the soil into which it is inserted. If this impedance differs 

from that of the internal transmission line, then a proportion of the signal is 

reflected back from the junction between the probe array and the transmission 

line. The output signal is 0 – 1 V DC for a range of soil dielectric constants from 1 

to 32, that is for a range of 0 to approximately 0.5 cm3cm-3 volumetric soil water 

content for a generalised mineral soil (i.e. bulk density between 1.25 – 1.5 g.cm-3 

and organic carbon < 7%). The main advantages of the ThetaProbe include: a 

portable device, fast measurement time of 1-5 seconds, and direct measurement of 

VWC in standard soil types. (More information on ThetaProbe can be found at 

http://www.delta-t.co.uk). 

Second, soil moisture measurements were made closer to CS616 sensors 

(approximately 1 m away) using vertically inserted connecter TDR probes (see 

Figure 3.11). The connector TDR probes gave an average soil moisture 

measurement over depths of 0-30, 0-60 and 0-90 cm (depending on the number of 

SC616 sensors installed at the site). The TDR system used for these manual TDR 

measurements was the Soil Moisture Equipment Corporation TRASE instrument 

(Soil Moisture Equipment Corporation, 1996). Standard TRASE calibration was 
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used to determine the volumetric moisture content. The main objective of TDR 

readings was to check the water contents measured with the CS616 sensors. 

 

 

Figure 3.11:  Measurement of soil moisture with TRASE instrument at site M1.  

 

3.4.4 SOIL TEMPERATURE MEASUREMENTS 

Continuous measurement of soil temperature was based on the Campbell 

Scientific Model 107 Temperature Probe (T107) (http://www.campbellsci.com 

/107-l). The T107 probe uses a thermistor to measure temperature and it is 

designed for measuring air, soil or water temperatures between -35oC and 50oC. 

At each soil moisture monitoring site a T107 has been installed vertically with its 

midpoint at 15cm below the soil surface, providing a continuous record of soil 

temperature at the midpoint of the 0-30cm top soil layer.  

At the climate station sites, more temperature sensors have been used in order to 

better understand the soil temperature profile. For instance, at Stanley-S2 and 

Spring Hill (K6) a total of 8 and 3 temperature sensors have been installed, 

respectively. The main objective of measuring temperature profiles at deeper 

layers was to develop a methodology to infer soil temperatures at 45cm and 75cm 
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from temperature measurement at 15cm depth. Such data are needed in order to 

apply a temperature correction to the CS616 readings for 30-60cm and 60-90cm 

depths. 

In addition, 0-1 cm soil temperature and air temperature measurements were made 

at all field sites with a portable temperature probe on a six-weekly basis during 

routine data downloading visits. These additional temperature measurements were 

collected between June 2003 and August 2004.  

3.4.5 WEATHER STATIONS 

The automatic weather stations were sited with regard to existing infrastructure 

and expected spatial variability, resulting in one station in the Stanley catchment 

(at S2) and a second station in an elevated position at the northern end of the Krui 

catchment (Spring Hill – K6). In this way automatic weather stations were located 

in both the upper and lower reaches of the Krui focus catchment and in the centre 

of the Stanley micro-catchment. Both weather stations consisted of Campbell 

Scientific automatic weather stations. The Stanley weather station monitored 

relative humidity and air temperature; soil temperatures at 2.5, 5, 10, 15, 30, 45, 

60 and 75 cm depths using T107 sensors; soil heat flux at 5 cm depth using a soil 

heat flux plate; atmospheric pressure; rainfall; wind speed; net radiation; total 

incoming radiation using a pyranometer; in-coming and out-going short-wave and 

long-wave radiation using a 4-channel radiometer and soil moisture content at 

depths 0-30, 30-60 and 60-90 cm using CS616 WCR. The Spring Hill weather 

station monitored relative humidity and air temperature; soil temperatures at 15, 

45 and 75 cm depths; rainfall; wind speed and soil moisture content at depths 0-

30, 30-60 and 60-90 cm. A summary of the instrument configuration at these 

weather stations is presented in Table 3.5. Apart from precipitation, all 

measurements were made at 1-minute intervals, and the average was logged every 

twenty minutes. Rainfall was recorded for each tip of the 0.2 mm tipping bucket. 

A sample data logger programme as used at S2 is given in Annex -I (b). 
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Table 3-5:  Configuration of sensors at the climate stations 

 

Sensor No of 
units Sensor height, depth etc 

Stanley (S2)   
CS 616 Reflectometers 3 0-30, 30-60 and 60-90 cm depths 
107  Temperature probe 8 2.5,5,10,15,30, 45, 60 & 75 cm depths 
HMP35C -  Temperature and 
relative humidity 1 200 cm above ground 

Young Wind Sentry set 1 300 cm above ground 
L1200X -Pyranometer 
(spectral range 400 to 1100 
nm) 

1 
289 cm above ground 

Q 7.1 - Net Radiometer  1 98 cm above ground 
Tipping bucket rain gauge 1 Funnel top at 50 cm above ground 
CS105 -Barometric pressure 1 200 cm above ground 
HFT3 - Soil Heat Flux plates  2 Both at 5 cm below ground surface 
Kipp CNR-1 Radiometer 
(spectral range 0.3 to 50 μm) 

1 110 cm above ground 

Spring Hill (K6)   
CS 616 Reflectometers 3 0-30, 30-60 and 60-90 cm depths 
T107 temperature probe 3 15, 45 and 75 cm depths 
HMP35C -  Temperature and 
relative humidity 1 200 mm above ground 

Anemometer 1 300 mm above ground 
Tipping bucket rain gauge 1 Funnel top at 50 cm above ground 
   
 

3.4.6 RAINFALL MEASUREMENTS 

Rainfall measurements at climate stations S2 and K6 commenced in late 2002. 

Towards the end of 2003, another 6 rain gauges were installed at selected soil 

moisture monitoring sites (see Table 3-3). Rainfall is measured at these sites on a 

continuing basis using Hydrological Services model TB3 tipping bucket rain 

gauges. This device has a receiver of 200 mm diameter to collect rainfall and 

facilitates the recording at 0.2 mm accuracy. As for the climate stations, rainfall 

was recorded for each tip of the 0.2 mm tipping bucket. In addition, five collecting 

rain gauges were distributed throughout the Stanley micro-catchment to check on 

the spatial variability of rainfall. These collecting rain gauges were located at S2 

(weather station), S1, S3, S5 and S6. The gauges were read during routine data 

downloading visits at approximately 6 weeks intervals. 
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The Bureau of Meteorology (BoM) collects rainfall data from a number of sites 

within and surrounding the GRC as shown in Figure 3.11 and in Table 3-6. Daily 

rainfall data were obtained for 52 BoM rainfall monitoring sites (of which 18 sites 

are within the GRC) for the years 2003-2004. The primary objective of collecting 

these rainfall data was to use the data with SASMAS rainfall data in generating 

monthly rainfall distribution maps as the rainfall patterns are essential in 

interpreting soil moisture distributions within the GRC.   

 

 

Figure 3.12:  Distribution of rainfall measurement sites within and surrounding the 
Goulburn River Catchment. (The number indicates the BoM location code) 
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Table 3-6:  Summary of rainfall measurement sites by the SASMAS and Bureau of 
Meteorology (BoM) within and in the vicinity of the Goulburn River Catchment. 

 

           Number of rain gauges 
Sub catchment SASMAS BOM 

Krui 3 3 
Merriwa 3 3 
Wollar 1 2 
Widden 1 - 
Bow - 3 
Bylong - 3 
Goulburn - 1 
Hall - 1 
Munmurra - 2 

No. of rain gauges within GRC 8 18 
No. of rain gauges outside GRC - 34 
   
Total number of rain gauges 8 52 

 

3.4.7 STREAMFLOW MEASUREMENTS 

Streamflow measurement is another important component of the SASMAS 

monitoring network.  The SASMAS streamflow measurement network was based 

on a miniature flow measurement and logging device called the Levelogger. Five 

such devices have been installed in the Krui and Merriwa focus catchments. The 

selection of measurement sites was done on the basis of the upper, mid and lower 

reaches along the river to facilitate runoff modelling for smaller modelling units. 

It was also expected that access would be provided to the streamflow data being 

collected at three other locations within the Goulburn catchment by the 

Department of Infrastructure, Planning and Natural Resources (DIPNR).  Further, 

with the aim of getting better insight into the streamflow behaviour at first-order 

stream level, a Parshall flume (throat width = 455 mm) and an automatic water 

level pressure sensor have been installed at the Stanley micro-catchment.   
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3.5 SOIL CHARACTERISATION AT MONITORING 
SITES 

3.5.1 SOIL PARTICLE SIZE DISTRIBUTION 

The soil consists of an assembly of soil particles of various shapes and sizes. The 

objective of a particle size analysis is to group these particles into separate ranges 

of sizes. Particle size analysis data are required for correct identification of soil 

texture and hence estimation of soil hydraulic properties such as soil water 

holding capacity, soil water tension etc. 

The particle size analysis of all monitoring sites except at S3 and S4 was 

performed by collecting soil samples from the top 0-30 cm layer. It was assumed 

that the soil properties at S3 and S4 sites are comparable with site S7 and 

therefore no soil samples were collected from these two sites. The sub-sample 

used for the particle size analysis was derived from three soil cores collected 

within 3m from the CS616 WCRs at each site. The particle size analysis was then 

performed following AS 1289 3.6.1 and AS 1289 3.6.3 test procedures. 

Soil texture was determined from the relative proportions of clay, silt and sand 

using the soil texture triangle. A summary of the results are given in Table 3-7. It 

is clear from the results that the monitoring sites south of the Goulburn River (i.e. 

G1, G4 and G5) are predominantly on sandy soils with the exception of G2 and 

G3 where G2 has silty soil and G3 is primarily a clay soil. As discussed in section 

3.3.3 and in Figure 3.4, the catchment north of the Goulburn River area comprises 

predominantly clay soils. It is also evident from the Table 3-7 that many sites 

within Krui (including Stanley catchment) and Merriwa catchments are on clayey 

soils. For example, sites S1, S2, S5, S6, K3, K4, K5 and K6 in Krui sub-

catchment and M3, M5, M6 and M7 have a clay content of more than 30%.  The 

two southern sites in the Merriwa catchment, M1 and M2, are located in a 

sandstone country with sandy soils.  M4 is located within the transition zone and 

has loam soil. 
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Table 3-7:  Results of the particle size soil analysis for monitoring sites 

 

Site Catchment Clay % Silt % Sand % Soil texture 
G1 Goulburn-south 8 15 77 Sandy loam 
G2 “ 21 56 23 Silt loam 
G3 “ 64 25 11 Clay 
G4 “ 11 13 76 Sandy loam 
G5 “ 9 17 74 Sandy loam 
G6 Goulburn-north 33 35 32 Clay loam 
K1 Krui 23 51 26 Silt loam 
K2 “ 6.5 8.5 85 Loamy sand 
K3 “ 71 23 6 Clay 
K4 “ 54 36 10 Clay 
K5 “ 62 26 12 Clay 
K6 “ 35 44 21 Clay loam 
M1 Merriwa 6.5 21.5 72 Sandy loam 
M2 “ 0 6 94 Sand 
M3 “ 36 43 21 Clay loam 
M4 “ 25 49.5 25.5 Loam 
M5 “ 69 21 10 Clay 
M6 “ 51 17.5 31.5 Clay 
M7 “ 35 40 25 Clay loam 
S1 Krui 54 40 6 Clay 
S2 “ 39 35 26 Clay loam 
S3 “ n/a n/a n/a  
S4 “ n/a n/a n/a  
S5 “ 46 42 12 Silty clay 
S6 “ 41 28 31 Clay 
S7 “ 16 52 32 Silt loam 

(Note: S3 and S4 sites are comparable with site S7) 

3.5.2 SOIL BULK DENSITY AND POROSITY 

Soil bulk density (ρb), similar to all other density measurements, is an expression 

of the mass to volume relationship. Measurement of soil bulk density involves the 

determination of the mass (oven dried, at 105 oC) and the volume of a given 

amount of soil material. Soil bulk density is computed using the total soil volume 

and it is best measured with an undisturbed sample. Soils that are loose, porous, or 

well-aggregated will have lower bulk densities than soils that are compacted or 

non-aggregated. Sandy soils have less total pore space than clayey soils, so 

generally they have higher bulk densities. Bulk densities of sandy soils vary 

between 1.2 to 1.8 g cm-3. Fine-textured soils, such as clays, silty clays, or clay 
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loams, have bulk densities between 1.0 and 1.6 g cm-3. Bulk density is an indirect 

measure of pore space and is affected primarily by texture and structure. 

Soil particle density (ρs), on the other hand, is a measure of the mass per unit 

volume of the soil solids only. Texture and structure do not affect particle density. 

Organic matter however, readily influences particle density. In general, soils high 

in organic matter have lower particle densities. Soil particle density generally 

increases with soil depth because of the concurrent decrease in organic matter.  

The particle density of most mineral soils is in the range of 2.60 to 2.75 g cm-3.  

Porosity (φ) or total pore space of soil is a measure of water holding capacity of a 

soil. Thus, measurement of bulk densities is important in soil moisture studies. 

Soil porosity can be computed with bulk density and particle density using the 

following relationship. 

  
s

b

ρ
ρϕ −=1  (3-1) 

 

Bulk densities of all sites were estimated from the soil cores (approximately 30cm 

long and 15 cm in diameter) collected at each site for the purpose of calibrating 

the CS616 WCRs. The soil porosities were then computed by assuming a particle 

density of 2.65 g cm-3.  A summary of the results are given in Table 3-8. 



Chapter 3 - Experimental program Page 3-31 

 

Table 3-8:  Measured bulk densities and computed porosities for monitoring sites. 

 

Site Bulk density (ρb), 
g cm-3 

Porosity 
(φ), % 

G1 1.8276 31 
G2 1.1783 56 
G3 1.2194 54 
G4 1.9168 28 
G5 1.6896 36 
G6 1.2429 53 
K1 1.1503 57 
K2 1.6772 37 
K3 1.2829 52 
K4 1.1307 57 
K5 1.2632 52 
K6 1.2403 53 
M1 1.6772 37 
M2 1.7030 36 
M3 1.2686 52 
M4 1.3146 50 
M5 1.3283 50 
M6 1.2126 54 
M7 1.1843 55 
S1 1.1907 55 
S2 1.2593 52 
S3 1.2350 53 
S4 1.4512 45 
S6 1.3460 49 

 

As shown in Table 3-8 the computed bulk densities vary from 1.1307 (at K4) to 

1.9168 (at G4) g cm-3. However, due to possible inaccuracies of actual soil 

volume used in the calculation, some error may be associated with these computed 

bulk densities. 

3.5.3 SOIL SALINITY 

In the context of the present study, information on soil salinity was required to 

assess the suitability of CS616 WCRs for each monitoring site and to determine 

the calibration parameters. Salinity measures include electrical conductivity of a 



Chapter 3 - Experimental program Page 3-32 

solution or a soil and water mixture. When measuring, soil samples can be 

measured by the ‘1:5 w/v method’ - one part by weight (g) air dried soil to five 

parts by volume (ml) distilled water, which is agitated and then allowed to settle, 

after which the solution is measured for electrical conductivity (EC 1:5). The 

electrical conductivity of a saturated soil extract (ECe) however is the most useful 

and reliable measure of salinity for comparing between soil types. 

Soil salinity of all sites was estimated from the same 0-30 cm soil cores collected 

at each site for the purpose of calibrating the CS616 WCRs. A summary of the 

measured salinity levels is given in Table 3-9. 

 

Table 3-9:  Measured salinity levels (dS m-1) for the monitoring sites. 

 

Site Salinity Site Salinity 
G1 0.026 M1 0.030 
G2 0.081 M2 0.065 
G3 0.095 M3 0.092 
G4 0.024 M4 0.062 
G5 0.040 M5 0.129 
G6 0.077 M6 0.064 
K1 n/a M7 0.109 
K2 0.022 S1 0.071 
K3 0.119 S2 0.062 
K4 0.095 S3 0.092 
K5 0.104 S4 0.171 
K6 0.592 S6 n/a 

 

It was found that the measured salinity levels did not exceed the maximum 

salinity level of 2 dS m-1. Therefore, salinity was not an issue in using CS616s for 

accurate estimation of water contents at all monitoring sites. 
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3.6 ENVIRONMENTAL MONITORING RESULTS 

3.6.1 PRECIPITATION 

Precipitation is the most important variable in terms of recharging the surface soil 

moisture levels, and it plays a critical role in soil moisture studies. However, there 

is much uncertainty associated with measuring this variable across a large 

catchment. As can be seen in Figure 3.12 the distribution of rain gauges is not 

uniform across the GRC. Approximately 26 rain gauges (8 SASMAS + 18 BoM) 

were identified within the GRC (Table 3-6). It is clear that these rain gauges are 

concentrated in the northern half and the south-western part of the GRC. G2 is the 

only rain gauge located within the south-eastern quarter of the catchment. Because 

of this heterogeneity in the distribution of rain gauges within the GRC, it was 

necessary to take into account all available rain gauges in the vicinity of GRC to 

better understand the rainfall distribution patterns. Therefore, rainfall 

measurements from another 34 locations surrounding the GRC were also 

considered in the analysis (see Annex –II for details). 

The use of rainfall measurements from various sources and from various origins 

requires detailed analysis of their accuracies for scientific applications. All rainfall 

measurements during this research are considered reliable. There were periods 

however with missing rain data due to data logging problems. Furthermore, 

considerable rainfall variation was found to exist across the catchment. In order to 

ascertain the consistency of data, rainfall trends among the measurement locations 

needed to be compared. S2 (Stanley climate station) is considered the most 

reliable and the accurate rainfall measurement, all SASMAS rainfall data and 

selected BoM rainfall data were analysed for their temporal evolution pattern 

against the temporal evolution pattern of S2. The double mass curves were 

generated for the periods of continuous data in 2004 for all SASMAS sites (Figure 

3.13) and for selected BoM rainfall sites within GRC for 2003 and 2004 (Figure 

3.14).  The double mass curves clearly demonstrate that there were considerable 

systematic differences between all rain gauges.  For example, site K6 and M7 (in 

Figure 3.13) have much higher rainfall than other sites. A similar pattern exists at 

the BoM site 61002 (Figure 3.14). All these sites are located towards the northern 

boundary of the catchment (i.e. Liverpool Ranges) (see Figure 3.12) and they 
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illustrate that this part of the catchment receives much higher rainfall than other 

parts of the catchment. Other locations however, receive less rain and the rainfall 

pattern is closer to that of S2. Rainfall data therefore confirm that there is a 

significant spatial variation of rainfall within the catchment. The catchment scale 

rainfall distribution needs to be assessed in order to interpret the catchment scale 

soil moisture distributions. Double mass curve analysis does not provide the 

spatial variations of rainfall across the catchment. More detailed rainfall analysis 

is required to understand the rainfall distribution within the catchment.    

Based on daily rainfall measurements at 52 sites, monthly rainfall distribution 

maps were developed to help the interpretation of soil moisture distributions 

across the GRC. First all daily rainfall values were combined into monthly values. 

These monthly rainfall totals were then introduced into the ArcView (ESRI, 

1996a) based Geographic Information System (GIS). Using the Spatial Analyst 

(ESRI, 1996b) component of the ArcView, monthly rainfall surfaces were 

developed with the Inverse Distance Weighted (IDW) interpolation technique. 

The output value for each location was determined with 12 neighbourhood values. 

Use of IDW interpolation assumes that the variable being mapped decreases in 

influence with distance from its sampled location. It was assumed that a similar 

condition would apply to rainfall observations.  The derived monthly rainfall 

distributions for 2003 and 2004 in the GRC are shown in Figure 3.15 and Figure 

3.16 respectively.  The distribution of total rainfall in 2003 and 2004 is given in 

Figure 3.17. 
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Figure 3.13:  Comparison between cumulative rainfall at S2 and the cumulative rainfall of 
six other SASMAS sites within GRC during 2004. 
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Figure 3.14:  Comparison between cumulative rainfall at S2 and the cumulative rainfall of 
six BOM sites within GRC during 2003-2004. 
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According to Figure 3.15 and Figure 3.16, rainfall in GRC in 2003 and 2004 

mainly occurred in mid to late spring and during summer months. Rainfall during 

2003 was not normal due to the prolonged drought which continued from 2002. 

About five months during the year 2003 (January, March, May, July and 

September), the northern half of the catchment received less than 25mm of rain. 

The main wet month during 2003 was February. In 2004, April and June months 

were relatively dry (rainfall was < 25 mm) May, July and August were slightly 

wetter (rainfall between 25-50 mm).  December was the wettest month in 2004.  

Distribution of total annual rainfall across the catchment showed contrasting 

differences between 2003 and 2004 (Figure 3.17). In 2003, more rainfall occurred 

in the southern part of the catchment (> 670 mm) and the northern part of the 

catchment received rainfall of 550-670 mm. The annual average rainfall over the 

catchment was 634 mm in 2003. In contrast, whilst more rainfall (> 750 mm) was 

experienced towards the northern part of the catchment during 2004, the majority 

of the catchment gained less rainfall (<670 mm) (Figure 3.17 (b)). The annual 

average rainfall over the catchment was about 700 mm in 2004.  It is also evident 

that a steep rainfall gradient is evident in the northern part of the GRC in 2004. As 

seen in Figure 3.17 (b), the northern most area (about 20 km wide strip) of the 

catchment has a significant variation in total rainfall. Some rainfall gradient is also 

visible in 2003 (Figure 3.17 (a)). 

The spatial distributions in the rainfall pattern within GRC provide background to 

understanding the observed soil moisture distributions in the catchment. As seen 

in Figure 3.15 and Figure 3.16, monthly rainfall distributions during 2003 and 

2004 were significantly different from month to month. Monthly rainfall patterns 

therefore should reflect the possible soil moisture distributions during each month 

across the catchment.  
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Figure 3.15:  Derived monthly rainfall distributions in the Goulburn River Catchment in 
2003. 
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Figure 3.16:  Derived monthly rainfall distributions in the Goulburn River Catchment in 
2004. 
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(a) 

 
(b) 

 

Figure 3.17:  Inferred total annual rainfall distribution in the Goulburn River Catchment: 
(a) 2003, (b) 2004. 
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Additionally, the four collecting rain gauges at Stanley catchment provided an 

opportunity to assess the rainfall variability at the micro-catchment (~170 ha) 

scale. Table 3.10 shows the rainfall measurements made during field visits. This 

comparison shows that there were negligible differences between the collecting 

rain gauges at S2, S5 and S6. The gauge at S1 however, showed approximately 5 

percent lower values than the other rain gauges. The collecting rain gauge data 

were recorded approximately once every six weeks. Due to this long recording 

interval, one needs to account for the loss of rainfall collected in the gauges due to 

evaporation, particularly during summer months. However, since all four 

collecting rain gauges are affected in a similar manner such evaporation loss may 

be ignored and it may be concluded that negligible spatial variation of rainfall 

occurred across the Stanley micro-catchment.  

 

Table 3-10:  Comparison of collecting rain gauge data (mm) measured between May 2003 
and August 2004 at Stanley. 

 

Date measured S1 S2 S5 S6 
8/05/2003 83.6 87.2 86.4 87.3
11/06/2003 14.6 14.5 16.0 15.0
23/07/2003 31.6 34.2 36.4 35.0
5/09/2003 105.2 104.3 103.8 96.8
16/10/2003 49.0 53.6 52.0 58.0
28/11/2003 69.6 84.3 86.8 79.0
22/01/2004 n/a n/a n/a n/a
11/03/2004 92.0 91.2 88.2 95.8
22/04/2004 23.5 31.2 31.6 36.2
2/06/2004 44.6 45.6 43.4 45.0
16/07/2004 21.4 22.4 21.2 21.4
28/08/2004 40.7 39.9 37.2 37.8

Total 575.8 608.4 603.0 607.3
 

3.6.2 RADIATION 

Measurement of total down-welling solar (short-wave) radiation (K↓) and the net 

all-wave radiation flux (Q*) were undertaken at the Stanley climate station (S2).  

The instrument used to measure the total down-welling short-wave radiation in 

this field experiment is the CM3 pyranometer part of the Kipp & Zonen CNR-1 
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Radiometer (see Instruction manual available at www.kippzonen.com). The CM3 

pyranometer consists of a thermopile sensor which generates an electric signal 

proportional to the radiation level. The CM3 pyranometer is sensitive to the 

spectral range between 0.3 – 2.8 µm. Net all-wave radiation was measured using a 

Radiation and Energy Balance Systems (REBS) model Q7-1 radiometer. Similar 

to CM3, REBS Q7-1 also uses a thermopile sensor for radiation measurement. Its 

spectral sensitivity is 0.25 – 60 µm.  

The temporal variation of incoming solar radiation is given in Figure 3.18 and  

Figure 3.19. The gaps in the plots are due to missing data.  The trends in the 

radiation offer a clear estimation of radiation fluxes during each day. In general, 

daily totals of down-welling solar radiation (K↓) during summer months (25-35 

MJm-2D-1) were significantly higher than those during the winter months (5-15 

MJm-2D-1). Similarly, the 24-hour net radiation all-wave fluxes (Q*) during 

summer months (15-20 MJm-2D-1) were much higher than the net radiation fluxes 

during winter months (3-6 MJm-2D-1).   

The purpose of the radiation measurement was two-fold. First, radiation data are 

required to evaluate the available energy at the land surface. Second, radiation 

data are needed to compute the potential evapotranspiration (ETo) fluxes based on 

Penman-Monteith approach. ETo is needed in the estimation of the actual 

evapotranspiration (ETa) component of the water balance equation and this will be 

presented in Section 3.6.5. Closing the water balance equation with the measured 

components such as rainfall, runoff and ETa leaves one missing component, i.e. 

soil moisture changes. Thus, daily variations of soil moisture content may be 

estimated from balancing the water fluxes on a daily basis and this will be 

presented in Section 4.2.1.  This is important because it provides a methodology 

to evaluate the measured and estimated soil moisture contents and thus a way of 

checking the validity of CS616 calibration equations which is discussed in Section 

3.8.2. 

Daily radiation also helps to characterize the climatic conditions during the 

AMSR-E validation study discussed in Chapter 7. 
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Figure 3.18:  Total down-welling solar (short-wave) radiation (K↓) and net all-wave 
radiation (Q*) (in MJm-2D-1) as measured with Pyranometer and REBS Q7-1 Net 
Radiometer respectively, at the S2 climate station during 2003. 
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Figure 3.19:  Total down-welling solar (short-wave) radiation (K↓) and net all-wave 
radiation (Q*) (in MJm-2D-1) as measured with Pyranometer and REBS Q7-1 Net 
Radiometer respectively, at the S2 climate station during 2004. 
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The installation of a 4-channel CNR-1 radiometer on Julian day 118 in 2004 

allowed analysis of radiation data in another dimension. The down-welling (K↓) 

and up-welling (K↑) short-wave radiation components are important for many 

remote sensing studies such as for the validation of remotely observed land 

surface albedo (reflection coefficient) values. The temporal variation of up- and 

down-welling short-wave radiation and the computed albedo values for the same 

period are shown in Figure 3.20 and Figure 3.21 respectively.  It can be concluded 

that the field measured albedo values for the land surface conditions at Stanley are 

in the 0.12 – 0.16 range with lowest values during winter months. The surface soil 

moisture is somewhat higher in winter months due to lower evaporative demand 

prevailing during winter. The albedo values are therefore lower during the winter 

season. 

 

Figure 3.20:  In-coming and out-going short wave radiation (Wm-2) as measured from the 
CNR-1 radiometer at the S2 climate station from day 118 to 365 during year 2004.    
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Figure 3.21:  Computed albedo values for the land surface at the S2 climate station from day 
118 to 365 during year 2004.    
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Go = soil heat flux at the land surface 

H = sensible heat flux  

λE = latent heat flux  
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component H is responsible for heating of air (generating a thermal gradient in the 

air) and the component λE is associated with evaporating water (creating a 

humidity gradient in the air). The component Go heats (or cools) the soil surface. 

Usually the first two components on the right hand side are the most important 

ones and the third, soil heat flux is measured to close the equation. The 

partitioning between Go, H and λE is forced by the transpiration process through 

stomata, evaporation from bare soil and open water surfaces.  

Theoretically, the soil heat flux can be derived from temperature depth profiles. In 

practice it is difficult to do this as simplifications such as the assumption of 

uniform soil physical properties with depth makes flux estimation with this 

technique inherently uncertain. In this field experiment, Campbell Scientific Inc. 

HFT-3 soil heat flux plates were installed at climate station S2 and connected to 

the data logger. The HFT-3 sensor consists of a thin plate containing a thermopile 

which measures the temperature differences between the top and bottom surfaces 

from which a measure of the soil heat flux can be derived. 

There are some concerns associated with installation of, and measurements with, 

heat flux plates. The flux plates need to be inserted into the soil surface layer, but 

the presence of plates very close to the surface can obstruct water vapour transport 

through the soil layer above the plate. This may occur in moist soils that are 

rapidly drying and may introduce errors in the heat flux measurements. 

Conversely, installation at depth gives a larger column of soil above which the 

vapour transport issue is minimized, but at the same time introduces a time lag 

into the soil heat flux measurements. The problem with measurements using soil 

heat flux plates may be minimised by measuring the temperature in the middle of 

the soil layer considered. In this experiment, soil heat flux plates were installed at 

the depth of about 5 cm from the surface. Soil heat flux sensors offer a local view 

of the soil heat flux at the level at which they are installed. Figure 3.22 details the 

course of the soil heat flux over 2004.  
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Figure 3.22:  Temporal pattern of daily soil heat flux (W m-2) values based on data logged at 
20-minute intervals measured during 2004 at S2 climate station.   
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in gradual increase in soil temperature. In contrast, during winter months, the day-

time soil heat flux intensities were less than 30 Wm-2 and this heat flux was 

approximately 7.5 % of the net all-wave radiation fluxes received during day-time 

(400 Wm-2).   The night-time soil heat losses from the soil (approximately 20 

Wm-2) were much higher (66 %) compared to day-time flux intensities. This 

situation results in gradual cooling of soil.    

Field measured soil heat fluxes were used in the ETo calculation outlined in 

Section 3.6.5. 

3.6.4 AIR TEMPERATURE, HUMIDITY, AIR PRESSURE, AND 
WIND VELOCITY  

Measurements of daily air temperature, humidity, air pressure and wind together 

with radiation are important for estimation of the potential evapotranspiration. 

Figure 3.23 and Figure 3.24 tracks the variation in daily temperature during 2003 

and 2004 at the Stanley climate station (S2) and at the Spring Hills climate station 

(K6). The evolution of daily mean temperature shows a regular progression from 

month to month with a slightly asymmetric curve. In general, temperatures 

observed in K6 were slightly lower and more stable than the temperatures at S2. 

Minimum values at both stations were in July and maxima in January/February. 

Mean daily temperatures (computed from all temperature measurements collected 

in 20 minutes intervals during 24 hour period) in the three summer months, 

December, January, and February, exceed 25oC for both stations, and in the three 

winter months are less than 11oC. The trends in air temperature give an insight 

into the drying characteristics of the near surface soil layer and should be 

considered during the validation of remotely sensed near-surface soil moisture 

measurements as discussed further in Chapter 6. Measured air temperatures at 

both stations were used to compute ETo as outlined in Section 3.6.5. 
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(a) 

 
(b) 

 

Figure 3.23:  Measured daily minimum and maximum temperatures and computed average 
air temperature during a) 2003 and b) 2004 at Stanley-S2 (Note: gaps in the data due to data 
logger problems). 
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(a) 

 

(b) 

 

Figure 3.24:  Measured daily minimum and maximum temperatures and computed average 
air temperature during a) 2003 and b) 2004 at Spring Hill (K6) (Note: gaps in the data due to 
data logger problems). 
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summer months. Accordingly, the lower humidity values during summer months 

resulted in faster drying of the surface soil layers than during winter months. 

(a)  

 

(b) 

 

Figure 3.25:  Measured daily average relative humidity during: a) 2003, and b) 2004 at 
Stanley S2. 
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(a) 

 

(b) 

 

Figure 3.26:  Measured daily average relative humidity during: a) 2003, and b) 2004 at 
Spring Hill (K6). 
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a) 

 

b) 

 

Figure 3.27:  Measured daily average wind speed during: a) 2003, and b) 2004 at Stanley S2. 
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 (a) 

 

(b) 

 

Figure 3.28:  Measured daily average wind speed during: a) 2003, and b) 2004 at Spring Hill 
(K6). 
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(a) 

 

(b) 

 

Figure 3.29:  Measured daily average atmospheric pressure during: a) 2003, and b) 2004 at 
Stanley S2. 
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3.6.5 POTENTIAL EVAPOTRANSPIRATION 

Actual evapotranspiration (ETa) is an important input for the water balance study 

presented in Section 4.2.  ETa is one of the components of the water balance 

equation (see Section 2.4). When measured quantities such as rainfall and runoff 

and estimated quantities such as ETa are used to close the water balance equation, 

the remaining component of soil moisture changes can be computed. ETa 

however, is difficult to estimate directly and it is often derived from the potential 

evapotranspiration (ETo). Potential evapotranspiration (ETo), which is the actual 

plant water consumption at the given field situation when the soil is not under 

moisture stress, can be estimated using ETo models.  

Measurement of air temperature, humidity, wind, soil heat fluxes and radiation at 

the S2 offered an opportunity to estimate the ETo based on the Penman-Monteith 

method as presented in the FAO reference evapotranspiration computation 

procedure (Allen et al., 1998). At K6, the measured environmental variables (air 

temperature, humidity and wind velocity) were used with the radiation, soil heat 

flux and atmospheric pressure (after correcting pressure for elevation variations) 

at S2 to determine the ETo because both stations are at nearly the same latitude.    

Therefore, there is no significant difference of incident solar radiation between 

these two stations. Figure 3.30 and Figure 3.31 show the trends of computed ETo 

at S2 and K6 respectively.  The trends in ETo offer clear identification of low 

evaporation days during the winter months (< 2.5 mm d-1) and high evaporation 

days (>9 mm d-1) during the summer months. 
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a) 

 

b) 

 

Figure 3.30:  Daily ETo at Stanley-S2 computed with the Penman-Monteith method: a) 2003, 
and b) 2004. 
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Figure 3.31:  Daily ETo at Spring Hill (K6) computed with the Penman-Monteith method: a) 
2003, and b) 2004. 

 

The comparison of computed ETo at S2 and K6 helps to understand the potential 

ET (ETo) at both stations as shown in Figure 3.32.  It is clear that the ETo values 

at both S2 and K6 compared well.  While the total average ETo at S2 was 1804 

mm, ETo at K6 was found to be slightly higher at 1854 mm. This may be partly 

attributed to the more favourable drying conditions (e.g. higher wind velocities) at 

K6. ETo at K6 however does not represent the average ETo throughout the GRC 

due its location. K6 is located at 741m above sea level whereas most of the 
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catchment is positioned between 400-500m above mean sea level. For this reason, 

ETo computed at S2 was considered as the ETo for the GRC. The computed ETo 

values will be used in Section 4.2 to estimate the actual ET values and close the 

water balance equation to predict soil moisture from a single layer bucket model. 

   

 

Figure 3.32:  Comparison of daily ETo between K6 and S2. 
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Figure 3.33:  Near-surface soil temperature and air temperature measured during field visits 
between June 2003 and April 2004. 

 

3.7.1 TEMPERATURE CORRECTION FOR CS616 

The CS616 sensor is sensitive to the temperature of the medium being used. The 

original calibration of CS616 was done under constant temperature of 20oC and 

therefore, CSI provides the following equation to correct the readings for 

temperature effects: 

  Rc(Ts) = Ruc+(20-Ts)*(0.526-0.052*Ruc + 0.00136*Ruc
2) (3-3) 

 
where Rc = corrected readings, Ruc = uncorrected readings, Ts = soil temperature 

However, some authors do not agree with the CSI recommended equation for the 

temperature correction and have been proposed new equations. Stenger et al. 

(2005) found that CSI temperature correction results in higher corrected VWCs 

when the measurement temperature is below the reference temperature of 20oC 

and the uncorrected VWC is < 40%. On the other hand, it results in a lower 

corrected VWC if the uncorrected VWC is >40%. Western and Seyfried (2005) 

also identified the inaccuracies of the CSI temperature correction and have 

recommended a new equation. However, all these studies used CS615 WCRs, (the 

previous version of the CS616) and their findings may not be entirely valid for 

CS616s. Therefore, the CSI recommended temperature correction has been used 

in the current study. 

y = 0.918x + 1.8683
R2 = 0.7061
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3.7.2 SOIL TEMPERATURE PROFILE ESTIMATION FROM 
MEASURED SOIL TEMPERATURE AT 15CM DEPTH 

Soil temperature follows a diurnal cycle as well as an annual cycle. Both cycles 

are closely linked to air temperature and solar radiation. The amplitude of these 

cycles is generally greater for surface layers than for the deeper soil layers. For 

example, Figure 3.34 shows the measured temperature profiles at different times 

during a selected early summer day. It is clear that the temperature measured at 

15cm depth does not represent the temperature at deeper depths such as 45cm or 

75cm which are important for the present study. Soil temperatures at the mid-

points of CS616 WCR at 30-60 cm and 60-90 cm depths are required for the 

temperature correction of the sensor readings (see Section 3.7.1).  Temperatures at 

these depths however, may be derived from the measured temperature at 15cm 

depth due to propagation of heat from surface layers to subsurface layers and vice-

versa. It is also evident from Figure 3.34 that the range of temperature variations 

at deeper layers is much narrower than the range of temperature variations at the 

surface. This suggests that the computation of daily average temperature values is 

sufficient for soil temperatures at 45cm and 75cm depths.   

 

Figure 3.34:  Measured soil temperature profiles at 10, 14, 17, 20 and 23 hrs on the first day 
(d0) and 2 and 6 hrs on the following day (d1) at S2 on day 316/317 in 2002. 
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Measurement of soil profile temperatures at Spring Hill (K6) and Stanley S2 

provided an opportunity for establishing a methodology to derive soil 

temperatures at 45cm and 75 cm depths based on the measured temperature at 

15cm depth. Daily soil temperature measurements at Spring Hill (K6) at 15, 45 

and 75cm depths have been used to establish regression relationships between soil 

temperatures at 15cm and soil temperatures at 45 and 75 cm depths. 

Derived soil temperatures at 45cm depth and 75 cm depth at K6 were: 

1) Tsoil at 45 cm depth is derived from (R2 = 0.913, correlation coefficient = 

0.956): 

T45 = 3.8199 + 0.776 * T15 (3-4) 

2) Tsoil at 75 cm depth is derived from (R2 = 0.818, correlation coefficient = 0.904 

and 95% confidence interval for intercept and T15 slope is 6.094-6.179 and 0.640-

0.646 respectively): 

T75 =6 .1366 + 0.643* T15 (3-5) 

 
Similarly, at Stanley S2, daily soil temperature at 15, 45 and 75cm depths have 

used to establish regression relationships between soil temperatures at 15cm and 

soil temperatures at 45 and 75 cm depths. 

The derived soil temperatures at 45cm depth and 75 cm depth at S2: 

1)  Tsoil at 45 cm depth is derived from (R2 = 0.906,): 

T45 = 0.954 + 0.973 * T15  (3-6) 

 
2) Tsoil at 75 cm depth is derived from (R2 = 0.864 and 95% confidence interval 

for intercept and T15 slope is 5.981-6.071 and 0.649-0.654 respectively)): 

T75 =6.026 + 0.652* T15 (3-7) 

 
Equation 3.6 was derived from a limited data set obtained between day 299 and 

318 during 2002. The temperature sensor at 45cm depth became inoperative after 

this period and it was therefore impossible to collect a sufficient data set to 

establish a reliable relationship between soil temperatures at 15cm and 45cm 
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depths. This is clearly evident from Figure 3.35 which shows a comparison of 

derived soil temperatures at 45cm and 75cm depths. Computed temperatures at 

45cm depth from equation 3.6 (i.e. S2-equation) show very high temperature 

values compared to computed temperatures at 45cm depth from equation 3.4 (i.e. 

K6-equation).  At 75cm depth however both equations 3.5 (K6) and 3.7 (S2) 

predicted very similar temperatures. Therefore, it was decided to use only the 

equation 3.4 and 3.5 for predicting soil temperatures at 45cm and 75cm depths, 

respectively. The predicted soil temperatures at 45 cm and 75 cm depths were 

then used for the temperature correction of 616 readings in calculating water 

contents in the 30-60 cm and 60-90 cm soil depths for the water balance study 

discussed in Section 4.2. 
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Figure 3.35:  Comparison of derived soil temperatures at 45cm and 75 cm depths. 

 

3.8 SOIL MOISTURE 

3.8.1 CALIBRATION OF CS616 WCR 

Despite the fact that volumetric water content measurements form both TDR and 

WCR are based on soil dielectric properties, the two instruments use different 

measurement frequencies (Chandler et al., 2004). While TDR instruments use up 

to about 1 GHz of effective measurement frequencies (Or and Wraith, 1999) the 

WCRs use generally between 15 and 45 MHz (Seyfried and Murdock, 2001). As a 

result, WCRs are more sensitive to variations in soil solution concentration or 
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composition and variation in clay content and type, because these affect electrical 

conductivity and therefore, have a greater effect on soil dielectric properties at low 

measurement frequencies than at high frequencies (Seyfried and Murdock, 2004). 

Therefore, VWC calibration of a WCR will tend to be more sensitive to soil type 

than for TDR (Chandler et al., 2004).  This suggests that site specific calibration 

may be required for WCR.  Several attempts have already been published 

(Seyfried and Murdock, 2001; Chandler et al., 2004; Seyfried and Murdock, 

2004; and Stenger et al., 2005). 

Calibration relates the output signal frequency to the volumetric water content. 

Two types of calibration equations are possible; one in the linear form and other 

in the quadratic form and the latter is recommended. The product literature 

provides standard calibration equations in linear and quadratic forms for loamy 

fine sand. CSI claims an accuracy of about ± 2.5% volumetric water content using 

standard calibration with low EC (≤0.5 dS m-1) and bulk density ≤1.55 g.cm-3 in 

measurement range 0% to 50% VWC. It also provides two additional equations 

for sandy clay loam soils. 

The CSI calibration equations are as follows: 

1. Standard equation for loamy find sand:  

WCvol = - 0.0663 - 0.0063* R + 0.0007* R2  (3-8) 

2. For sandy clay loam: (BD=1.6 g.cm-3, EC 0.4 dS m-1) 

WCvol = 0.0950 - 0.0211* R + 0.0010* R2 (3-9) 

3. For sandy clay loam: (BD=1.6 g.cm-3, EC 0.75 dS m-1) 

WCvol = - 0.0180 - 0.0070* R + 0.0006* R2 (3-10) 

 
where WCvol is the volumetric water content and R is the period measurement in 

microsecond. 

SASMAS soil moisture monitoring sites were located in a range of soil types with 

different physical and chemical properties (see Table 3-7, Table 3-8 and Table 

3-9). The soil characteristics of most of these sites did not closely representing the 

standard soil types used for the sensor calibration by CSI. Therefore, in order to 

estimate the soil water content accurately and to obtain the maximum benefit of 

the sensor’s high accuracy and precision, site specific calibrations were required. 
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The best method of calibrating CS616 is the laboratory based procedure where 

one can measure the actual weight of the soil water content using an accurate 

weighing device. Furthermore, the laboratory method facilitates conducting the 

calibration procedure under controlled environmental conditions including 

maintaining constant temperature. This is very important as the CS616 readings 

are sensitive to the temperature of the medium being measured. The University of 

Melbourne (UM) had such facilities and site specific calibrations of CS616 for 

each soil moisture monitoring site were carried out in the UM laboratory.  

A total of 28 soil samples were collected for use in CS616 calibration at UM. 

These samples represented all SASMAS sites except S5 and S7. Three samples 

each were collected from G1 and G3 to represent 0-30, 30-60 and 60-90 cm 

depths. All other 22 soil samples were for the top 30 cm layer of the other 

SASMAS sites.  When collecting soil samples, a cylindrical shape sample of 

diameter of approximately 22 cm and length of 30 cm was removed using a post-

hole auger. However, collecting a clean cylindrical shape sample was often found 

to be difficult due to the stony nature of soil.  

Twenty-three calibration equations, all in quadratic form, have been established at 

UM to produce volumetric water content (VWC) from CS616 measurements.  

(For the details of calibration procedures see Rüdiger et al., in review).  A 

summary of the UM-calibration parameters is given in Table 3-11.  

Before applying these calibration parameters to compute actual soil moisture 

content at each site, an evaluation study was conducted with the maximum and 

minimum field-measured CS616 readings which were assumed to represent the 

minimum and maximum soil moisture levels encountered over the two years of 

measurements.  Using the UM calibration parameters minimum and maximum 

SWCs were computed for all sites (see Table 3-12).  The soil water characteristics 

of 14 study sites in the Goulburn River Catchment have been previously studied 

(King, 2004). The results of that study provided a basis for evaluating the 

computed SWC from the UM calibrations.  The minimum water content measured 

with the Tempe cell was based on air-dried soils (suction of about 1 bar) and the 

maximum water content was based on saturated soils (suction of about 0 bar). 

These boundaries of measured water contents can therefore be considered as 

reliable data to compare with the water contents derived from CS616 using the 
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UM calibrations.  Table 3-12 shows the comparison of minimum and maximum 

water contents computed from the UM calibrations and measured from the Tempe 

cell.  As seen in the table, anomalous low and high values in minimum and 

maximum values were observed at a number of sites. For example, computed 

maximum water contents of some sites (e.g. K5) were unacceptably high (0.67 

cm3 cm-3), whilst other sites gave extremely low values (e.g. the minimum SWC 

at G5 was 0.002 cm3 cm-3).  Although it is known that the CS616 WCR is not 

very sensitive to extremely low water contents, such very low or very high SWC 

are unlikely under natural conditions.  Based on water-saturated and air-dried 

samples, significant uncertainties arose about the reliability and appropriateness of 

the UM calibrations.  

 

Table 3-11:  UM-calibration parameters for SASMAS sites. All calibration equations are in 
the form of: VWC = a + b * (Reading) + c * (Reading)2  where  Reading is in microseconds. 

 
  Calibration Parameters – UM 

Site a b c 
G1 -0.39282 0.02069 0.00017 
G2 -0.03994 -0.00537 0.00053 
G3 0.00451 -0.00559 0.00038 
G4 -0.54648 0.03493 -0.00010 
G5 -0.21474 0.00124 0.00072 
G6 0.29300 -0.03306 0.00094 
K1 -0.12655 0.00813 0.00022 
K2 0.57058 -0.06531 0.00191 
K3 0.15826 -0.02060 0.00067 
K4 4.72563 -0.30352 0.00499 
K5 0.50111 -0.05386 0.00144 
K6 0.31587 -0.03062 0.00075 
M1 -0.32325 0.01338 0.00040 
M2 -0.20074 0.00166 0.00069 
M3 -0.01498 -0.00778 0.00051 
M4 0.38908 -0.04108 0.00107 
M5 0.05510 -0.01031 0.00046 
M6 0.28649 -0.03067 0.00087 
M7 -0.13166 0.00543 0.00017 
S1 -0.06826 -0.00148 0.00034 
S2 -0.02509 -0.00606 0.00047 
S3  n/a  
S4 0.09427 -0.01629 0.00069 
S5  n/a  
S6 -0.01380 -0.00649 0.00047 
S7    n/a   
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Table 3-12:  Recorded minimum and maximum CS616 readings, corresponding VWCs 
computed with the UM calibration parameters (without using temperature correction) and 
Tempe cell based measured minimum and maximum VWC values (When the computed 
value differ by more than 0.02 cm3 cm-3 of the measured (or expected) value, it is shown in 
bold letters). 

 

Site 
CS616 readings 
(microseconds) 

Computed VWC 
(cm3.cm-3) 

Measured VWC  
(cm3.cm-3) 

 min max min max min max 
G1 18.63 27.61 0.052 0.308 0.07 0.40 
G2 21.57 30.87 0.091 0.299 0.07 0.34 
G3 30.4 41.2 0.186 0.419 0.30 0.53 
G4 17.55 26.76 0.036 0.317 0.06 0.34 
G5 16.53 26.55 0.002 0.326 0.05 0.31 
G6 27.3 40.16 0.091 0.481 0.20 0.56 
K1 26.58 34.66 0.245 0.420 0.15 0.45 
K2 18.74 26.87 0.017 0.195   
K3 28.89 41.67 0.122 0.463   
K4 28.02 40.03 0.139 0.572   
K5 25.91 40.32 0.072 0.670   
K6 27.46 37.72 0.041 0.228 0.12 0.40 
M1 17.96 25.84 0.046 0.290 0.06 0.34 
M2 16.84 23.42 0.023 0.217 0.10 0.34 
M3 23.83 39.41 0.089 0.471 0.11 0.41 
M4 26.59 40.48 0.053 0.479   
M5 20.54 41.46 0.037 0.418   
M6 23.98 40.99 0.051 0.491   
M7 28.54 40.33 0.162 0.364 0.23 0.36 
S1 28.97 38.84 0.174 0.387 0.16 0.53 
S2 29.59 39.47 0.207 0.468 0.27 0.59 
S3 29.21 38.32 n/a    
S4 26.17 37.51 0.141 0.454   
S5 24.8 38.54 n/a    
S6 30.25 54.32 0.220 1.020   
S7 24.44 36.58 n/a    

 
 

To reject the UM calibration results solely on the basis of the minimum and 

maximum SWC values obtained from the Tempe cell measurements by King 

(2004), is not acceptable. This is because the Tempe cell measurements provided 

only indicative SWC values for air dry and saturation conditions. Thus, it was 

decided to use TDR measurements to adjust the UM calibrations.  This was 

possible since 0-30 cm SWCs were collected with a portable TRASE TDR 

instrument during data down loading visits (see Section 3.4.3).  TDR data sets 
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have been obtained on 5 occasions at all site have been used for correcting the 

UM calibration equations. 

When adjusting calibration parameters, CS616 readings were extracted for the 

dates when TDR measured values were available at each site. After applying a 

temperature correction for the CS616 readings, SWC values were computed for 

these selected days with the UM-calibration parameters. Measured soil water 

contents from the TDR were then compared with these computed SWC values. If 

the computed SWC values were within ±0.0025 of the TDR measured SWC, then 

those values were considered as the correct SWC values for the corresponding 

CS616 readings. In cases where computed SWC values deviated more than 

0.0025 from the TDR readings, the TDR measured values were considered as the 

actual SWC values for those CS616 readings.  Finally, second-order polynomial 

type regression equations were developed using CS616 readings against these 

water contents. It was assumed that this approach sufficiently adjusted the UM 

calibration parameters. These new calibration parameters are shown in Table 3-13 

and significant differences can be seen compared to the standard calibration 

parameters of CSI.   Reader may refer Annex – III for detailed information.     
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Table 3-13:  New-calibration parameters for soil moisture sites and associated R2 values. All 
calibration equations are in the form of: VMC = a + b * (Reading) + c * (Reading)2 where  
Reading is in microseconds. 

 

Site a b c R2 S 
G1 0.2237 -0.0418 0.0018 0.8586 0.0303 
G2 0.0344 -0.0138 0.0008 0.8809 0.0347 
G3 0.1896 -0.0241 0.0008 0.9256 0.0453 
G4 1.0001 -0.1278 0.0041 0.8489 0.0655 
G5 0.7427 -0.1045 0.0037 0.8719 0.0295 
G6 -0.0996 0.0009 0.0003 0.7509 0.1037 
K1 -0.1589 0.0047 0.0004 0.8142 0.0760 
K2 0.2453 -0.0372 0.0014 0.5536 0.0446 
K3 -0.0014 -0.0071 0.0005 0.6425 0.0926 
K4 -0.0536 -0.0007 0.0004 0.3512 0.1454 
K5 0.1956 -0.0278 0.001 0.8660 0.0320 
K6 0.0375 -0.0078 0.0004 0.5747 0.0634 
M1 -0.1874 0.0066 0.0004 0.8469 0.0227 
M2 0.9892 -0.1359 0.0047 0.9689 0.0057 
M3 -0.0123 -0.0062 0.0005 0.9783 0.0262 
M4 0.1823 -0.0229 0.0007 0.9647 0.0271 
M5 0.1676 -0.0221 0.0007 0.9110 0.0517 
M6 -0.1424 0.0051 0.0003 0.7591 0.0744 
M7 -0.0329 -0.0043 0.0004 0.7135 0.1084 
S1 0.4997 -0.0565 0.0016 0.7724 0.0503 
S2 0.3460 -0.041 0.0012 0.9251 0.0246 
S3 0.2252 -0.0295 0.001 0.9713 0.0311 
S4 0.0676 -0.0145 0.0007 0.9957 0.0114 
S5 0.1806 -0.0255 0.0009 0.9521 0.0168 
S6 -0.0043 -0.0053 0.0004 0.9078 0.0659 
S7 0.1955 -0.0265 0.0009 0.9063 0.0533 

(Note: S = Estimated standard deviation about the regression line) 

 

3.8.2 TEMPORAL PATTERNS OF SOIL MOISTURE 

Computed soil moisture for S5 is shown as an example for year 2003 (Figure 

3.36(a) and 2004 Figure 3.36(b). From Figure 3.36 it is clear that the new 

calibration parameters produce a reasonable range in view of extreme SWC values 

for silty clay type soil at S5. Also, computed SWCs respond well to the amount 

and frequency of rainfall.  Therefore, it was assumed that the SWC computations 

based on the adjusted calibration parameters would produce correct SWC values 

for the present study.  
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Figure 3.36:  Field measured soil moisture at S5 and rainfall for (a) 2003 and (b) 2004. 

 

However, when considering the approach used for calibrating the CS616 sensors, 

it would be better to use a relative moisture index than the actual computed 

amounts for comparing the soil moisture pattern among all monitoring sites. For 

this reason, all computed SWCs were divided by the maximum SWC value at 

each site. These standardized SWC index values for 2003 and 2004 for all sites 

are shown in Figure 3.37 for the Stanley, Krui, Merriwa and Goulburn catchments 

respectively. 
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Figure 3.37:  Standardized soil water contents for 2003 and 2004: (a) Stanley, (b) Krui, (c) 
Merriwa, and (d) Goulburn catchment. 
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Fluctuations of SWCs at all sites were due to rain as no site was under irrigation. 

It is obvious from Figure 3.37 that all sites responded well to rain events.  

Cropping sites such as K1 often showed higher SWC values due to farm activities 

(see Figure 3.37 (b)).   The following broad observations can be made from Figure 

3.37.  First, during higher rainfall events, most sites showed saturated water 

contents. Second, during extended dry events most sites showed similar SWC 

values. Third, behaviour of SWCs during drying cycles varies from one cycle to 

another as well as from site to site. This may be due to variations of climatic 

conditions, soil physical properties at each site, land use characteristics etc.  It can 

therefore be concluded that use of a relative moisture index is useful for 

comparing the soil moisture patterns at monitoring sites. 

For scaling applications, it is often necessary to consider the actual SWC values 

rather than a relative moisture index. Therefore, all other chapters of this thesis 

use the actual SWC values computed with adjusted calibration parameters. 

Furthermore, based on the measurements, it was found that less variation exists 

for deeper soil moisture contents such as at 30-60 and 60-90cm depths. Also, due 

to shallow depths at some monitoring sites and in order to use data from all sites 

in a consistent manner, it was decided to consider only 0-30cm data for the 

analyses presented in subsequent chapters.  

 

3.9 CHAPTER SUMMARY 
This chapter has presented an overview of the experimental program in the 

Goulburn River Catchment and has summarised the key variables measured 

between January 2003 and December 2004. The chapter has also provided an 

overview of the weather conditions throughout 2003 and 2004 in the study 

catchment. Finally, it has addressed the calibration of the CS616 WCR and has 

presented measured SWCs.  
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CCCHHHAAAPPPTTTEEERRR   FFFOOOUUURRR   

4. FROM POINT OBSERVATIONS TO 
HILLSLOPES  
 

The hillslope is the basic hydrological unit in a catchment. Soil moisture scaling 

methods at the hillslope scale therefore need to be studied.  The purpose of this 

chapter is firstly, to examine local-scale soil moisture behaviour during the study 

period. Such an examination requires the application of a simple water balance 

approach and demands accurate field data coverage if theory and observation are 

to be matched. Secondly, the chapter investigates the control of topography and 

soil characteristics upon soil moisture distribution at the hillslope scale. From a 

scaling point of view, the first part of the chapter deals with the interpolation of 

point scale soil moisture measurements collected over 0-30 cm to 0-90 cm depths 

in the temporal domain. The second part, in contrast, explores the up-scaling of 0-

30 cm point-scale soil moisture measurements to the scale of the hillslope 

catchment. 
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4.1 INTRODUCTION 
Hillslopes are the most convenient hydrological unit used to understand the 

complex hydrological processes in a catchment. Any catchment can be subdivided 

into a number of hillslopes with manageable sizes. By doing so, it allows one to 

study the complex hydrological processes in a catchment, at least at the scale of 

hillslope level, in some detail and to develop soil moisture scaling methods at that 

scale. 

The role of surface topography in controlling hillslope runoff processes has 

received much attention in recent decades.  Topography plays a dominant role in 

the spatial structure of soil moisture both during and after rainfall. Results from 

hillslope scale studies indicate significant variability in soil moisture content 

along transects (Famiglietti et al., 1998; Kim and Barros, 2002b). This variability 

decreases with decreasing transect-mean moisture content as the hillslope dries 

down following rain events. Studying the spatial organization of soil moisture in a 

small catchment, Grayson et al. (1997) found that the moisture variation is related 

to the processes controlling the spatial pattern of soil moisture contents. 

Accordingly, spatial organization is strongest when there is lateral flow occurring 

(i.e. at high soil moisture content) or when the soil moisture is influenced 

significantly by up-slope processes (also known as non-local control). Little 

organization is present when the soil moisture is locally controlled (i.e. at low soil 

moisture content) and the main fluxes of water are vertical. Further, detailed event 

simulations indicate that spatial organization has a significant effect on the 

rainfall-runoff behaviour (Grayson et al., 2002).  Therefore, during inter-storm 

periods, the topographic and soil factors operate jointly to redistribute soil water. 

Under wet conditions, variability in surface moisture content is most strongly 

influenced by porosity and hydraulic conductivity, and under dry conditions, 

correlations are strongest to soil properties such as the residual moisture content 

and vegetation properties such as root density and wilting point.  Thus, during 

inter-storm periods, the dominant influence on soil moisture variability gradually 

changes from soil heterogeneity to joint control by topographic, soil and 

vegetation properties. This may lead to temporal stability in the spatial pattern of 

soil water distribution at the transect scale (Gómez-Plaza et al., 2000). The above 

studies confirm that at the local scale spatial patterns of soil moisture are 
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determined by topographical position, as high locations, or steep areas, are usually 

the driest points, whereas those sited in valley zones tend to be the wettest points 

despite the presence of vegetation. It can therefore be concluded that relative 

position within a catchment must be considered in any soil moisture scaling 

application. 

Soil in field conditions exhibits strong spatial variability of moisture content. This 

variability is more dominant in the surface layers than in the subsurface layers. 

Furthermore, it is due to inherent physical properties and is the effect of many 

processes acting on a range of scales.  Factors such as soil type, soil depth, 

topography and vegetation play an important role in soil moisture distribution 

(Qiu et al., 2001). Soil heterogeneity affects the distribution of soil moisture 

through variation in texture, organic matter content, porosity, structure and macro-

porosity (Mohanty and Skaggs, 2001). The variability in soil hydraulic properties 

and soil water retention characteristics greatly influences the vertical and lateral 

transmission properties. Further, variations in soil particle and pore sizes may 

cause significant soil moisture variations even over very small distances. The 

influence of soil colour on albedo may influence the rate of evaporative drying.  

Thus, the soil characteristics in a given location within a catchment are important 

to consider for any soil moisture scaling application. 

This chapter has multiple objectives. First, field measured soil moisture values are 

needed to evaluate for possible errors due to sensor calibration issues.  Simple 

hydrological models such as the single layer bucket model are also useful for 

identifying systematic measurement errors due to poor calibration parameters of 

the sensors as well as any random errors. Application of bucket type water 

balance models also provides a methodology for the scaling of soil moisture in the 

temporal domain. Second objective of this chapter therefore is to investigate the 

prediction of soil moisture content with intermittent field observations and 

addresses interpolation of soil moisture in temporal domain. Finally, the chapter 

studies the application of topographic data and soil specific properties for soil 

moisture scaling at the hillslope scale. This section introduces a new method of 

deriving hillslope scale 0-30cm soil moisture distributions from limited field 

measurements.  
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4.2 HILLSLOPE SCALE WATER BALANCE  
Hydrological relationships can sometimes be described by simple bucket models 

which use upper and lower limits to soil water storage.  These models can be 

applied at a point but they are often used to represent soil moisture storage 

averaged over an entire catchment. In these models a bucket represents the soil 

water storage of the root-zone or any other specified depth. This concept is easy to 

understand with a schematic diagram as shown in Figure 4.1 which illustrates a 

single layer bucket model for soil water balance. The bucket fills with rainfall and 

empties due to evapotranspiration and deep drainage. The simplest form of bucket 

model assumes mass balance in a one direction, usually in a vertical plane, and 

assumes that all excess water leaves the bucket as deep-drainage.  The complete 

three-dimensional water balance can be represented over a fixed time interval as: 

QETPS −−=Δ  (4-1) 

DDSSROSROQ ++=  (4-2) 

where ∆S represents the change in moisture stored in the bucket, P the rainfall 

input to the bucket, ET loss of water due to evapotranspiration from the bucket 

and Q the outflow from the bucket comprising surface runoff (SRO), subsurface 

runoff (SSRO), and deep drainage (DD) (see Figure 4.1).   

Field capacity 
(FC)

Permanent 
wilting point 

(PWP)

Rainfall (P)
Evapotranspiration 

(ET)

Soil water storage 
(S)

Subsurface runoff 
(SSRO)

Surface runoff (SRO)

Deep drainage (DD)
 

Figure 4.1:  Schematic representation of the single layer bucket model. 

 
The model calculates the difference between rainfall and evapotranspiration on a 

daily basis. For a given day, if there is rain excess, it is added to the available soil-
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water storage. If the available soil-water storage becomes full, i.e. when rainfall 

exceeds the total loss due to evapotranspiration, then the bucket overflows causing 

deep-drainage and/or runoff which are simply considered as loss. If the 

evapotranspiration requirement cannot be satisfied by the daily rainfall, then it is 

taken from the soil-water storage.  The only input data required by the Equation 

4.1 are daily rainfall, daily actual evapotranspiration (ETa), the available storage 

capacity of the bucket (or the soil layer considered), and the soil water deficit at 

the start of the period being studied. Using a simple spreadsheet program, one can 

compute the day-to-day changes of soil moisture content within the bucket. For 

accurate water balance computations, the above model can be improved by adding 

more buckets or soil layers with different soil physical properties.  This water 

balance model is valid at all scales considered in hydrological modelling and only 

through the parameterization of individual terms does the water balance become a 

‘distributed’ or ‘lumped’ model (Wood, 1995). In the case of a ‘distributed’ 

model, the spatial variability of all individual terms in the above equation is 

considered separately. In a ‘lumped’ model, the catchment is considered as 

spatially homogeneous with regard to inputs and soil parameters. 

The single-layer bucket-type water balance model requires measurements of 

rainfall and estimates of ETa and the water storage capacity of different soil types. 

Rainfall data are usually available for many regions from a variety of sources. 

Measurements of soil water content at field capacity (FC) and permanent wilting 

point (PWP) provide information on the capacity of the bucket. The total losses 

due to deep-drainage and/or runoff from the bucket therefore can be computed if 

the other components of the Equation 4.1 are known. The most difficult 

component is the accurate estimation of ETa.   As reported by Lewis and Walker 

(2002), ETa is proportional to the potential evapotranspiration (ETo). Accordingly, 

ETa can be computed from the ETo using a proportionality coefficient called the 

‘actual evapotranspiration coefficient’ (AETCo). As cited by Walker and Zhang 

(2002), Cook and Walker (1990) and Kennett-Smith et al. (1994) have reported 

that the magnitude of AETCo depends on the amount of water stored in the soil 

and a soil parameter (SP). This can be represented in an exponential relationship 

as: 
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where FMS is the amount of water storage as a fraction of the maximum available 

soil-water storage and can be represented as: 

PWPFC
AWFMS
−

=  (4-4) 

where AW is the available water, FC is the soil water content at field capacity and 

PWP is the soil water content at permanent wilting point. The field capacity or the 

upper level of soil water storage is defined as the water content at which internal 

drainage ceases. The PWP or the lower limit can be measured following a long 

dry period when plants suffer serious water stress. 

The AETCo therefore, ranges from a value of 1 at field capacity to 0 at wilting 

point. The soil parameter in the equation 4.2 (SP) determines how the AETCo 

changes with changes in the amount of stored water between these two end points. 

Thus, correct determination of SP is also important for ETa computations. Water 

balance modelling over a long period offers a good opportunity to objectively 

determine the SP for a given soil type. The value of SP can be estimated with an 

objective function of minimizing the difference between the total inputs and total 

outputs in the water balance modelling over a long period such as one or two 

years.   

The main advantage of the simple bucket models is that it can provide timely 

information on the soil moisture content within a bucket without the necessity of 

field visits. This approach therefore can be used to assess the reliability of field 

measured soil moisture data if doubts exist about the measurement approaches or 

the sensor calibration procedures. However, one has to keep in the mind the 

underlying assumptions of simple water balance approaches. The error associated 

with estimates of individual components in the water balance is a critical 

disadvantage for an accurate comparison of measured and predicted soil water 

contents. However, this is not a serious issue for water balance modelling because 

the assimilation of measurements may provide the best approach towards estimation 

of soil moisture content over a longer period. 
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4.2.1 APPLICATION OF WATER BALANCE MODEL TO THE 
STANLEY HILLSLOPE CATCHMENT 

The study domain for the water balance modelling is the small 170 ha ‘Stanley’ 

catchment in the Krui River catchment (Figure 4.2). The locations of soil moisture 

monitoring sites and elevation of the catchment are shown in Figure 4.3. As seen 

in Figures 4.2 and 4.3 the catchment consists of two peaks, hence two hill slopes.  

Figure 4.4 shows the local topography of the six monitoring sites used for the 

present study. Note that site S6 is not considered for analysis due to unreliable and 

incomplete data. As seen in Figure 4.4, sites S1 and S7 are located along a gentle 

slope, and S2 and S3 are located along a moderate slope. In contrast, site S4 is 

located in a steep area, especially along the West-East direction.  Sites S1, S2, S3 

and S5 have over 90 cm deep soil layers. Sites S4 and S7 however, located in 

shallow area and the soil depths are less than 40 cm.  For convenience, this 

catchment is called hereinafter the Stanley hillslope catchment (SHC). During the 

two-year study period, the measured stream flow at the lowest part of the 

catchment was found to be negligible. Thus, for the period 2003 to 2004, from a 

hydrological point of view, this hillslope catchment can be considered as a closed 

catchment.   

 

Figure 4.2 :  Aerial view of Stanley hillslope catchment. Blue line shows the main drainage 
system. Top of the figure is pointing North. 
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Topography of Stanley catchment

Soil moisture monitoring sites

Meters above mean sea level

S1S1

S5S5

S4S4
S3S3S2S2

S6S6

S7S7

 

Figure 4.3:  Locations of soil moisture monitoring sites within Stanley catchment. 
Background colours represent elevations in the catchment taken from a 5m digital elevation 
model. While S7 and S4 sites are located in the highest points, S1 is located in the valley 
bottom. 

 

354.0

356.5

359.0

361.5

364.0

-100 -50 0 50 100

Distance (m)

El
ev

at
io

n 
(m

)

N-S
W-E

408.0

410.5

413.0

415.5

418.0

-100 -50 0 50 100

Distance (m)

E
le

va
tio

n 
(m

)

N-S
W-E

438.0

440.5

443.0

445.5

448.0

-100 -50 0 50 100

Distance (m)

E
le

va
tio

n 
(m

)

N-S
W-E

a) S1

f) S7d) S4 e) S5

c) S3b) S2

483.00

485.50

488.00

490.50

493.00

-100 -50 0 50 100

Distance (m)

E
le

va
tio

n 
(m

)

N-S
W-E

393.00

395.50

398.00

400.50

403.00

-100 -50 0 50 100

Distance (m)

E
le

va
tio

n 
(m

)

N-S
W-E

455.00

457.50

460.00

462.50

465.00

-100 -50 0 50 100

Distance (m)

E
le

va
tio

n 
(m

)

N-S
W-E

 
Figure 4.4:  Local elevation (m) along North-South and West-East direction at: a) S1, b) S2, 
c) S3, d) S4, e) S5, and f) S7. (Note: North and West directions are shown as (-) distances (in 
metres) from the origin ‘0’ at each monitoring site) 
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4.2.1.1 Derivation of water balance components 

a. Rainfall estimation 

As discussed in Section 3.4.6 rainfall within the Stanley hillslope catchment was 

monitored with a tipping bucket rain gauge located at S2 and five other collecting 

rain gauges. The collecting rain gauges were located at S2 (weather station), S1, 

S3, S5 and S6 and were read during routine data downloading visits at 

approximately 6 weeks intervals. As discussed in Section 3.6.1 the spatial 

variation of rainfall within the catchment was found to be very small (see Table 3-

10). Therefore, the daily rainfall measured at S2 was considered as the rainfall 

input for the bucket models used for the catchment. 

b. Evapotranspiration 

Daily ETo values have been computed with the Penman-Monteith method (see 

Section 3.6.5). Daily ETa values have been estimated from Equations 4.2 and 4.3. 

The following assumptions were made in the ETa computation. 

• The measured maximum soil moisture content during the two-year study 

period was taken as the moisture content at FC. 

• Measured minimum soil moisture content during the two-year study 

period was taken as the moisture content at PWP. 

• The values of SP were estimated with an objective function for 

minimizing the difference between the total inputs (e.g. P) and total 

outputs (e.g. ET, DD, SRO, etc.) in the water balance modelling over a 

sixteen-month period.  The value of SP for all study sites except S5 was 

found to be 2. In the case of S5, the value of the derived SP was 3.  

c. Starting day of the water balance modelling 

In the present study, the first observed day with maximum soil moisture content 

was selected as the starting day of the water balance modelling. This assured 

starting the soil-water accounting with a full-bucket condition.  Accordingly, day 

236 in 2003 was used as the first day of the water balance modelling and daily 

computations have been carried out up to 31 December 2004. Day 236 is the last 
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day of a three-day rainfall event and soil moisture levels reached a maximum 

level.  

4.2.1.2 Results of the water balance modelling 

The simple bucket model has been applied to the six soil moisture monitoring 

sites in the Stanley hillslope catchment for the period August 2003 - December 

2004. All the simulations initially assume that Q = SRO + SSR + DD is 

negligible. Daily estimated and measured soil moisture values together with the 

observed rainfall amounts are shown in Figure 4.5 and in Figure 4.6 for study sites 

S1, S2, S3 and S4, S5, S7 respectively. It is clear from the figures that in general, 

the predicted moisture follows the same trajectory as the measured soil moisture 

in all six cases. This is clearly evident for all 0-90 cm deep sites (i.e. S1, S2, S3 

and S5) particularly between day 236 in 2003 and day 100 in 2004.  For the 0-

30cm depth at S4, the predicted soil moisture pattern appears to be similar to the 

measured pattern over a slightly longer period up to day 141 in 2004. Again, after 

day 270 in 2004 all these sites show near-identical patterns of measured and 

predicted soil moisture. The predicted moisture patterns for 0-30 cm at site S7 

appear slightly underestimated for the same period but follow the general pattern 

of the measured values. The highest deviations between measured and predicted 

moisture values can be seen for the period day 140 - day 270 in 2004. Sites S1, S2 

and S3 (see Figure 4.5) show some moderate to high deviations for this period. 

For the same period, while the deviations found for the 0-30 cm sites of S4 and S7 

were considerable, the 0-90 cm S5 site showed almost no deviations (see Figure 

4.6).     

In general, it appears that the difference between the predicted values and the 

measured values takes a negative value, indicating some water inputs other than 

the rainfall (i.e. run-on sites). This indicates that the Q term must be included in 

the water balance study. Results presented in Figure 4.5 and Figure 4.6 are based 

on ignoring the Q term. Therefore, if some runoff water is considered (i.e. a 

positive Q term) in the water balance as for run-on sites, the difference between 

the predicted and measured values would have been even lower. As no surface 

runoff was detected at the flume suggesting that runoff occurred only within the 

catchment. Run-off water not necessarily comes as the surface runoff from 
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upslope area. For example, S1 is receiving water from the neighbouring area, 

particularly from a depression located in the down-slope along the North-South 

direction (Figure 4.4 (c)). As this depression acts as a water collecting pond, it 

saturates the soil in nearby areas. This type of water input is therefore important to 

consider.  
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Figure 4.5:  Daily rainfall (mm), measured soil moisture (mm), and predicted soil moisture 
contents from a simple bucket type water balance model for: (a) 0-90 cm at S1, (b) 0-90 cm at 
S2, and (c) 0-90 cm at S3. 
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Figure 4.6:  Daily rainfall (mm), measured soil moisture (mm), and predicted soil moisture 
contents from a simple bucket type water balance model for: (a) 0-30 cm at S4, (b) 0-90 cm at 
S5, and (c) 0-30 cm at S7. 

 

On the other hand, a positive difference between the predicted values and the 

measured values indicates that water outputs need to be considered (i.e. run-off 

sites).  As seen in Figure 4.5 (c), during certain periods a site may behave as a 

run-off site and during some other period it behaves as a run-on site. In a long-

term, due to cancellation of these under- and over-estimations, predicted soil 

moisture value will be close to measured value (see day 2003-250 and day 2004-
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365 in Figure 4.5).   It appears that consideration of Q term is important in the 

sites considered for the present water balance modelling.  Accurate measurement 

of the Q term under field conditions is very complicated and other approaches 

such as to mechanistic models therefore need to be considered.  

 

4.2.1.3 Assimilation of field measured soil moisture in 
water balance modelling 

Generally, because of assumptions such as Q = 0, the errors associated with 

simple bucket type water balance models are considerable. It is impossible to 

represent the complex interactions of soil-plant-water system in a simple bucket 

type modelling approach. Thus, it is obvious that the predicted soil moisture 

values can deviate from the measured moisture values. Furthermore, such 

deviations can take very large values over a longer time scales as observed in 

Figure 4.5 and 4.6. One way of overcoming this problem is the assimilation of 

measured moisture values into the water balance model at regular or irregular 

intervals. For example, the direct insertion of measured moisture values into the 

model can bring the predicted trajectory back to the actual trajectory.   

The assimilation of measured soil moisture values into the model has also been 

studied during the soil water accounting study.  Two scenarios of regular updating 

at two-week and one-week intervals have been considered.  As expected, the 

assimilation of measured moisture values into the water balance model 

significantly reduces the difference between the predicted and the measured soil 

moisture contents. For example, Figure 4.7 shows predicted - measured soil 

moisture values for a 0-90 cm soil depth at S1 (a) without assimilation of 

measured data (b), with assimilation of measured data at two-week intervals and 

(c) with assimilation of measured data at weekly intervals.  It is clear that the 

assimilation of measured soil moisture data on a regular basis and at closer 

intervals reduces the prediction errors significantly. Sum of squared error (SSE) 

values computed on a monthly basis also help to gain a quantitative measure of 

the improvement in the model predictions. As summarized in Table 4-1, the 

assimilation of measured soil moisture values into the simple bucket model with a 
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0-90 cm soil depth can reduce the model prediction errors by 77% and 88% for 

the two-week and one-week intervals, respectively. 
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Figure 4.7:  Distribution of the difference between predicted and measured soil moisture 
values for 0-90cm at S1: a) without assimilation of measured data, b) with assimilation of 
measured data at two-week intervals, and c) with assimilation of measured data at weekly 
intervals. 
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Table 4-1:  Monthly sum of squared error (SSE) values between predicted and measured 
moisture values without assimilation and with assimilation measured soil moisture for 0-90 
cm soil layer at S1. 

Year Month Without 
assimilation 

Assimilated 
at two-week 

intervals 

Assimilated 
at weekly 
intervals 

2003 Aug-24 590.4 590.4 11.7 
  Sep 82.2 812.6 110.1 
  Oct 466.0 700.5 754.8 
  Nov 25.5 0.8 0.8 
  Dec 26.4 113.5 113.5 

2004 Jan 400.0 8.2 8.2 
  Feb 5.2 10.2 16.3 
  Mar 203.2 188.3 56.0 
  Apr 1044.2 236.7 0.6 
  May 3483.9 2.1 2.1 
  Jun 2423.0 29.8 29.8 
  Jul 2521.2 166.0 166.0 
  Aug 2151.6 0.7 27.4 
  Sep 1291.8 390.3 361.7 
  Oct 396.5 189.4 95.9 
  Nov 24.5 1.4 1.4 
  Dec 267.4 38.3 38.3 
 Total 15403.1 3479.4 1794.7 

 % reduction of SSE - 77% 88% 
 

Assimilation of measured moisture data into the bucket model also helps to 

remove the large prediction errors such as observed in 0-30 cm soil layer at S7.  

As seen in Figure 4.8 and in Table 4-2, the assimilation of measured moisture 

values helps to reduce the prediction errors by 85% and 93% for the two-week 

interval and one-week interval assimilation cases, respectively.  

Similar to the two examples presented (i.e. S1 and S7), as expected, water balance 

model runs at all other sites show significant improvement in the predicted 

moisture contents when measured soil moisture data are assimilated into the 

model on a regular basis.   



Chapter 4–From point observations to hillslopes  Page 4-16 
 

(a)

(b)

(c)

Stanley – S7

-80

-60

-40

-20

0

20

40

60

236 266 296 326 356 21 51 81 111 141 171 201 231 261 291 321 351

Julian day (2003-2004)

P
re

d.
 - 

m
ea

s.
 (m

m
)

-80

-60

-40

-20

0

20

40

60

236 266 296 326 356 21 51 81 111 141 171 201 231 261 291 321 351

Julian day (2003-2004)

P
re

d.
 - 

m
ea

s.
 (m

m
)

-80

-60

-40

-20

0

20

40

60

236 266 296 326 356 21 51 81 111 141 171 201 231 261 291 321 351

Julian day (2003-2004)

P
re

d.
 - 

m
ea

s.
 (m

m
)

 

Figure 4.8:  Distribution of difference between predicted and measured soil moisture values 
for 0-30 cm at S7: a) without assimilation of measured data, b) with assimilation of measured 
data at two-week intervals, and c) with assimilation of measured data at weekly intervals. 
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Table 4-2:  Monthly sum of squared error (SSE) values between predicted and measured 
moisture values without assimilation and with assimilation of measured soil moisture for 0-
30 cm soil layer at S7. 

Year Month Without 
assimilation 

Assimilated 
at two-week 

intervals 

Assimilated 
at weekly 
intervals 

2003 Aug-24 561.1 561.1 6.6 
  Sep 0.6 12.6 0.7 
  Oct 38.7 19.9 9.5 
  Nov 1843.2 27.5 27.5 
  Dec 35.3 7.9 7.9 

2004 Jan 14.5 0.3 0.3 
  Feb 95.1 232.7 1.0 
  Mar 59.1 9.5 0.1 
  Apr 163.8 107.2 102.9 
  May 214.6 2.0 2.0 
  Jun 4383.7 46.6 46.6 
  Jul 5312.3 291.1 291.1 
  Aug 201.4 337.5 30.5 
  Sep 118.8 155.5 165.3 
  Oct 1.1 5.2 1.7 
  Nov 8.1 0.6 0.6 
  Dec 476.5 222.3 222.3 
 Total 13527.9 2039.5 916.6 

 % reduction of SSE - 85% 93% 
 

4.2.1.4 Discussion of water balance approach 

Evaluation of site specific calibration parameters is important for soil moisture 

measurements with CS616 sensors. Simple bucket type water balance models 

provide convenient way of evaluating the calibration parameters of moisture 

sensors. The application of single layer bucket models for balancing the inputs 

and outputs of water in the Stanley catchment confirmed that the soil moisture 

data collected during the study period are realistic. The predicted soil moisture 

values were found to be comparable with the measured soil moisture contents.  

Hence, the calibration parameters are acceptable and the soil moisture data 

collected during the study period could be used for other applications with some 

confidence.   
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Simple bucket type water balance models can be used to predict soil moisture 

values for virtually any soil depth considered for the bucket. In the present study, 

this modelling technique has been employed for the prediction of soil moisture 

values over 0-30cm and over 0-90cm depths. The obtained results are encouraging 

but mask significant assumptions regarding the existence of run-off, run-on and 

deep-drainage. The results confirm that the use of a single moisture measurement 

at the beginning of modelling period is not sufficient for accurate predictions of 

subsequent moisture contents over longer periods. Note that the buckets used in 

these simulations do not consider any water inputs from neighbouring “buckets”. 

Particularly, at the hillslope scale, sites in steep areas (e.g. S3 and S4) are likely to 

receive water from the upslope area. Because of this reason, moisture predictions 

will show underestimates if run-on exceeds run-off. One way of overcoming this 

error is the assimilation of measured moisture contents whilst ignoring the Q term. 

This study confirms that assimilation of measured data can reduce the prediction 

errors in simple bucket type modelling. Attempt is made to evaluate the predicted 

moisture values based on regular two-week and one-week assimilation options. It 

is clear that assimilation of measured soil moisture data into the model is 

important for minimizing the propagation of modelling errors over longer time 

periods.  

Ignoring rainfall distributions within the catchment can also introduce errors in the 

predicted moisture values. In this study, rainfall distribution within the Stanley 

hillslope catchment is assumed to be uniform. This is because for the small size of 

the catchment (170 ha) and because of similar rainfall amounts collected in the 

collecting rain gauges. These collecting rain gauges however, were located at S2 

(weather station), S1, S3, S5 and S6 and none were sited close to the catchment 

boundary (i.e. S4 or S7).  The very high moisture contents observed during day 

141 to 260 in 2004 at S7 appear to be due to rainfall as it is unlikely that this site 

receives drainage water from nearby areas due to its higher absolute elevation and 

flat surrounding area (see Figure 4.4(f)). Therefore, even in a smaller hillslope 

catchment, rainfall anomalies can introduce serious errors in the model 

predictions. Accurate rainfall measurements are important in water balance 

modelling.  
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The quality of the soil moisture predictions from bucket type water balance 

modelling is clearly determined by the input data used. In this study, rainfall 

measurements were collected within the catchment using an automatic rain-gauge. 

All meteorological data required for the computation of ETo from Penman-

Monteith method were measured in the climate station located at S2 (see Section 

3.6.5). The bucket size (i.e. the storage capacity) at each location was determined 

from the actual soil moisture observations. Thus, the availability of all this data 

provides an ideal situation for the model application whilst ignoring lateral water 

movement. 

4.2.1.5 Conclusions  

Single layer bucket models provide convenient way of evaluating site specific 

calibration parameters of the CS616 soil moisture sensors. Application of these 

models in the Stanley catchment confirmed that the soil moisture data collected 

during the study period are realistic. The calibration parameters of the sensors are 

acceptable. 

Simple one-dimensional water balance approaches such as the single layer bucket 

model have limited usefulness for hillslope-scale hydrological studies because 

they ignore the Q term. They provide estimates of soil moisture content over time 

by considering only rainfall inputs, evapotranspiration outputs and parameters 

such as soil water holding capacity. Such soil moisture contents estimates can be 

used in assessing the field measured soil moisture contents obtained from a range 

of techniques. However, they ignore position in the land-scape and the three 

components of the Q term in Eq. 4.2  

Soil moisture measurements collected at irregular intervals may assist in 

generating soil moisture trajectories over extended periods. With measurements of 

rainfall and estimates of ETa and soil water storage capacity, one can use a water 

accounting system based on a simple bucket type water balance model to generate 

soil moisture trends over longer time periods. This would provide a methodology 

for the scaling of soil moisture in the temporal domain.  However, ETa value 

remains a significant unknown. 
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4.3 TERRAIN BASED HYDROLOGICAL 
MODELLING CONCEPTS FOR REGIONALISATION 
OF POINT-SCALE OBSERVATIONS 
Accurate patterns of root-zone soil moisture data are important in hillslope scale 

studies. However, such root-zone soil moisture patterns are usually not available 

at the required time-space scale because, except for selected small catchments, 

point-scale root-zone soil moisture data are usually only available for a few 

locations within a hillslope catchment. This lack of data prevents the generation of 

accurate root-zone moisture patterns in a hillslope catchment and important 

concepts such as the organization of soil moisture fields can not be studied 

properly. A possible alternative may be provided through generation of root-zone 

moisture patterns from a limited number of point scale measurements. In this 

regard, terrain-based modelling concepts appear to be useful. 

A wide variety of hydrological models have been used for predicting soil moisture 

in recent decades, ranging from simple conceptual models to complex systems 

that require sophisticated numerical algorithms and powerful computers. Three 

different types can be identified: lumped models, semi-distributed models and 

distributed models.  Distributed and semi-distributed models represent the spatial 

variability of soil moisture using a distribution function. Often, this distribution 

function can be derived from the catchment topography, as in the case of the 

TOPMODEL (Beven and Kirkby, 1979). Sometimes, a theoretical distribution 

function may be used, as in the case of lumped model such as the Variable 

Infiltration Capacity (VIC) model (Wood et al., 1992).  For soil moisture pattern 

studies, it is useful to consider distribution functions which are based on 

catchment topography because it is then possible to map simulated soil moisture 

back into the catchment to produce a predicted moisture pattern. Distributed 

models can incorporate the spatial distribution of various inputs and boundary 

conditions, such as topography, vegetation, land use, soil characteristics, rainfall, 

and evaporation, and produce spatially detailed outputs such as soil moisture 

fields. However, the application of distributed and semi-distributed models is 

often difficult. Owing to the mismatch between model complexity and the scale of 

data used to parameterize, initialize, and calibrate models, many problems can 
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arise in the implementation.  Hence, more simplified approaches are needed to 

develop which can help to map the soil moisture distributions in any catchment. 

The following sections therefore investigate the development of a simplified 

approach for soil moisture distribution in a hillslope catchment. 

4.3.1 DEVELOPMENT OF SOIL-ADJUSTED TOPOGRAPHIC 
WETNESS INDEX (STWI) 

As discussed in Section 1.3, topography plays a dominant role in the spatial 

pattern of soil moisture contents. Topographic information derived from digital 

elevation models (DEMs) is widely used as a covariate for parameter distributions 

in hydrological catchment modelling. This is because topography has a major 

impact on the hydrological processes in a catchment. Also, the availability of 

digital DEM data facilitates such applications. For example, Beven and Kirkby 

(1979) introduced a terrain based moisture index, known as the topographic 

wetness index (TWI) in their TOPMODEL approach. The TWI in a given location 

is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β
α

tan
lnTWI                         (4-5) 

where α is the area draining past a particular point from upslope per unit contour 

(m) and tan β is the local slope of the ground surface.  The TOPMODEL 

framework assumes: 

• Quasi-steady state condition 

• The local hydraulic gradient is equal to local slope of the ground surface 

• Uniform recharge across the catchment 

• Lateral transmissivity is laterally homogeneous over the catchment  

The main advantage of the TWI is its ability to represent topographical 

heterogeneity in a simple way and it can therefore, be applied conveniently in 

distribution functions. Many applications of the TOPMODEL concept can be 

found in the TOPMODEL web site on one of the Lancaster University Server 

Sites at http://www.es.lancs.ac.uk/es/Freeware/ Freeware.html.  
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A number of studies have compared various terrain index patterns with soil 

moisture patterns based on the TOPMODEL approach (Rodhe and Seibert, 1999; 

Western et al., 1999; Sulebak et al., 2000; Pellenq et al., 2003). As cited by 

Rodhe and Seibert, (1999) a weak correlation between distributed field 

measurements of soil moisture or ground-water levels and TWI has been reported 

by Burt and Butcher, 1985; Iorgulescu and Jordan, 1994; Moore and Thompson, 

1996; and Seibert et al., 1997. One of the reasons for the relatively poor 

relationships with measured data is the inability of TWI to properly describe the 

actual soil saturation capacity. Pellenq et al. (2003) applied the TOPMODEL 

concepts for the disaggregation of soil moisture and reported that topography is 

not sufficient to explain the variability in soil moisture. They also found that the 

consideration of soil depth information improved the retrieval of local moisture 

patterns. This confirms that adding a soil specific parameter such as saturated 

conductivity or soil depth to the TWI can lead to improved model predictions. 

This information is often not available and it was the case with the current study 

as well. Hence, other soil related information may be considered.    

Assuming (1) that topography is the dominant source of heterogeneity in the soil- 

water system of a hillslope catchment, and (2) that the amount of soil saturation is 

the dominant source of heterogeneity in soil water storage capacity, a relation can 

be established for a given location in a catchment to describe the moisture content. 

For a given location, soil water storage capacity (θ*) can be computed as: 

FC
PWPFCcapacitystoragewaterSoil −

== *θ                 [-] (4-6) 

The product of TWI and θ* can a give soil-adjusted topographic wetness index 

(STWI): 

**θTWISTWI =                      [m2/m/m/m]  (4-7) 

STWI represents an intrinsic characteristic describing any given location in a 

catchment. The STWI of a given location varies with the water holding capacity 

of the soil in that location and the propensity of the geographic positioning of that 

location to receive water from the upslope contributing area. As described below 

the relationship between the temporarily variable soil saturation ratio on a given 

day and the location-specific STWI provides a methodology to derive hillslope 
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scale soil moisture distributions from a limited number of measurements.  Here, 

soil saturation ratio is defined as: 

FC
PWPAWCRatioSaturationSoil i

i
−

=                [-] (4-8) 

where AWCi is the actual soil water content on the ith day. 
 

4.3.2  DEVELOPMENT OF DIGITAL ELEVATION MODEL 
FOR STANLEY CATCHMENT  

The implementation of the STWI approach requires accurate TWI values from a 

high resolution DEM. The creation of an accurate DEM requires as a minimum, 

contour or spot height data. In the present study spot height data have been 

collected across the catchment as the suitable contour map for the catchment was 

not available. To collect spot heights, a differential geographic positioning system 

(GPS) manufactured by Trimble was employed as shown in Figure 4.9. About 

16,000 spot heights were collected from the catchment during this topographic 

survey.  These spot heights were then used with the ArcView Spatial Analyst 

(ESRI, 1996b) software to create a DEM with 5m grid spacing. The computation 

of TWI from the DEM was based on the Terrain Analysis Arc-script program 

module by Schmidt (2002).  Figure 4.10 shows the computed topographic wetness 

indices for the catchment. 
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(a) (b)

(d)(c)

 

Figure 4.9:  Differential GPS survey in the Stanley Catchment. (a) setting-up the Trimble 
Differential GPS base station at S5, (b) collecting elevation data with GPS receiver mounted 
on a rod, (c) backpack GPS receiver, and (d) use of all terrain vehicle for collecting elevation 
data.  
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Topographic Wetness Index

Stanley catchment

 

Figure 4.10:  Computed topographic wetness index (TWI) for the Stanley hillslope 
catchment. 

 

4.3.3 RELATION BETWEEN SOIL-ADJUSTED 
TOPOGRAPHIC WETNESS INDEX AND SATURATION 
RATIO 

Accurate determination of maximum storage (saturation) capacity is important for 

the estimation of STWI values.  Upper and lower soil water storage limits for 

different soil types may be obtained from published data sets. For the present 

study, these limits were estimated from the measured maximum and minimum 

soil moisture content data.   

In general, a negative relationship exists between STWI and soil saturation ratio. 

For example, Figure 4.11 shows a negative linear relationship between STWI and 

saturation on day 136 in 2003.  Considering the top 0-30 cm soil layer, the linear 

relationships between the degree of soil saturation and the STWI based on the six 

measuring sites have been studied for 2003-2004 and presented in Figure 4.12.    
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Figure 4.11:  Relationship between STWI [m2/m/m/m] and soil saturation ratio [-] on day 136 
in 2003. 

 
Part (a) of Figure 4.12 shows a time plot of R2 values and slopes for the linear 

relationships between the soil saturation ratio and the STWI. As seen in the figure, 

in general, the Stanley catchment shows a negative correlation between saturation 

ratio and STWI.  The R2 values however vary with time.  In order to interpret the 

variations in R2 values, catchment-scale average saturation ratio and rainfall 

values are presented in part (b) of Figure 4.12. As can be seen in part (a) and part 

(b), higher R2 values are present on days with moderate soil water contents. Rainy 

days or days with high saturation ratio are generally characterized by lower R2 

values. However, the period between day 155 and 245 in 2004 did not follow this 

general pattern. As discussed in Section 4.2.1.4, the lower R2 values during this 

period may be due to greater temporal variation of rainfall.   

Theoretically, the relationship between saturation ratio and STWI should vary 

with the available soil moisture levels. As reported by Grayson and Blöschl 

(2000), surface and subsurface lateral flows occur during wet periods, particularly 

in gullies, which can produce topographically organised wetness patterns. For this 

reason one can expect higher correlation between the saturation ratio and STWI 

during wet periods. During dry periods, in contrast, there is a minimum of lateral 

redistribution and fluxes are essentially in the vertical dimension. Therefore, soil 

moisture patterns during very dry periods are not necessarily related to catchment 

topography but to the soil moisture storage capacity. Similarly, immediately after 
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rainfall events, root-zone moisture in a catchment may take higher values 

irrespective of the topographic position. This situation may lead to a lower 

correlation between saturation ratio and STWI. 
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Figure 4.12:  (a) Slope, intercept and R2 values for the established linear relationships 
between STWI and saturation ratio during study period. (b) Average saturation ratio and 
rainfall pattern for the same period. 

 
It appears that the relationship between soil saturation ratio and STWI is generally 

strong during periods with intermediate wetness and shows a poor relationship 

during prolonged wet periods or when two-day rainfall exceeds 30 mm. 

Therefore, linear regression between saturation ratio and STWI may provide a 

methodology to understand the distribution of moisture along a hillslope 

particularly when moisture conditions are between very wet conditions (close to 

field capacity) and very dry condition (close to wilting point). 
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4.4 APPLICATION OF SOIL-ADJUSTED 
TOPOGRAPHIC WETNESS INDEX FOR 
GENERATING HILLSLOPE MOISTURE PATTERNS 
The STWI-based model developed in the previous section has been applied to 

generate hillslope-scale maps of 0-30 cm soil moisture content using the field 

measured point-scale moisture contents.  The following sections describe the data 

used for the model. 

4.4.1 DESCRIPTION OF CATCHMENT PARAMETERS USED  

Apart from the TWI computed from a DEM (see Section 4.3.2), computation of 

STWI requires soil water storage capacity (see Eq. 4.5). Soil water storage 

capacity is a property which depends on the soil texture. Thus, it can be assumed 

that the hillslope scale soil water storage capacity pattern can be represented by 

the soil distribution map. Based on the property-scale soil landscape map prepared 

by the NSW Department of Sustainable Natural Resources, soil distribution 

within the hillslope is shown in Figure 4.13.  The two soil types in the catchment 

are (i) clay to clay-loam soils and (ii) silty-loam soils. 

Clay and clay-loam soils

Silty-loam soils

Soil moisture monitoring sites

 

Figure 4.13:  Soil distribution in the Stanley hillslope catchment. (Redrawn based on the Soil 
Landscapes Map (2003) by Resource Information Unit, NSW Department of Sustainable 
Natural Resources). 

 
The next two soil-based parameters required for the model are the minimum and 

maximum soil moisture values over 0-30 cm depth for these two soil types. The 

two-year period of soil moisture measurements provides reasonably good 

estimates of these two extreme moisture values for the catchment. Table 4-3 
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shows the field-measured minimum and maximum soil moisture values for each 

soil type observed during the two-year study period. The computed relative soil 

water storage capacity (θ*) for each soil type is also shown in the table. As 

expected, clay and clay-loam soils have a higher θ* value (i.e. 0.83) than silty-

loam soils (i.e. 0.74).  

 
Table 4-3:  Characteristics of the soil water storage capacities of the catchment soil types. 

Soil type Average 
min. SWC

Average 
max. SWC θ* 

Clay, clay loam and 
silty clay soils 0.11 0.62 0.83 
(S1, S2 and S5)    
    
Silty loam soils 0.14 0.55 0.74 
(S3, S4 and S7)    

 

4.4.2 SELECTION OF DATES 

Selection of dates is important in any soil moisture related study, particularly for 

soil moisture scaling studies. The main objective of the present study is to 

generate soil moisture patterns over the entire hillslope catchment at the scale of 

the 5m DEM for all wetness conditions. In the absence of soil moisture maps for 

catchment to evaluate the predicted patterns, the approach taken here has been to 

generate soil moisture maps representing several dominant environmental 

episodes. Next these predictions are reviewed critically and interpreted 

qualitatively. Four case study periods were selected to represent different seasons 

with periods of different lengths. For each case study period, three days based on 

the first, last and the middle day of each period was considered as shown in Table 

4-4. Thus, altogether 12 days were chosen for the model application. In fact, these 

dates were selected mainly to accommodate a range of soil wetness conditions 

based on field measured data as shown in Table 4-5. 
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Table 4-4:  Case studies and selected dates. 

Case 
study Period  (Julian day) Season 

Total 
number 
of days 

Days selected 

       
1 107 - 167 (2003) Autumn 61 107 136 167 
       
2 236 - 273 (2003) Winter 38 236 250 273 
       
3 350 (2003) - 14 (2004) Summer 30 350 364 14 
       
4 215 - 272 (2004) Winter 58 215 243 272 

 

 

Table 4-5:  Minimum, maximum and mean values of actual soil moisture content (cm3.cm-3) 
for the top 0-30 cm at the six monitoring sites in the catchment on the selected dates (shown 
by year-day number).   

Case 
Study  Day-1 Day-2 Day-3 

1 Day 2003-107 2003-136 2003-167 
 Min. SWC 0.421 0.211 0.172 
 Max. SWC 0.507 0.324 0.346 
 Mean SWC 0.452 0.276 0.258 
     

2 Day 2003-236 2003-250 2003-273 
 Min. SWC 0.496 0.220 0.131 
 Max. SWC 0.637 0.446 0.309 
 Mean SWC 0.555 0.381 0.215 
     

3 Day 2003-350 2003-364 2004-014 
 Min. SWC 0.177 0.075 0.065 
 Max. SWC 0.370 0.216 0.214 
 Mean SWC 0.259 0.156 0.142 
     
4 Day 2004-215 2004-243 2004-272 
 Min. SWC 0.184 0.183 0.076 
 Max. SWC 0.497 0.343 0.293 
 Mean SWC 0.342 0.254 0.178 
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4.4.3 RESULTS 

The regression models developed between STWI and measured actual soil 

saturation ratio for the selected dates are summarized in Table 4-6. It is evident 

that, in general, a negative relationship exists between the STWI and measured 

soil saturation ratio. 

Table 4-6:  Properties of the linear regression equations developed for the case study dates. 

Day Intercept Slope R2 t-statistics 
Intercept 

t-statistics 
Slope 

2003-107 0.963523 -0.034000 0.0207 5.26 -1.02
2003-136 0.814864 -0.062741 0.9820 35.19 -14.90
2003-167 0.833746 -0.072500 0.5633 4.75 -2.27

      
2003-236 0.796076 0.028897 0.1569 4.32 0.86
2003-250 0.851111 -0.037870 0.1258 3.10 -0.76
2003-273 0.739780 -0.068890 0.6204 4.99 -2.56

      
2003-350 0.647394 -0.035220 0.0384 1.34 -0.40
2003-364 0.706732 -0.080220 0.6644 4.51 -2.81
2004-014 0.729509 -0.089070 0.8483 7.04 -4.73

      
2004-215 1.113931 -0.095090 0.1732 1.95 -0.92
2004-243 0.881117 -0.081840 0.7082 6.10 -3.12
2004-272 0.902670 -0.109920 0.7575 5.28 -3.53

 

The generated spatial patterns of the 0-30 cm soil water contents values (in 

cm3.cm-3) are presented in Figures 4.14 to 4.17 for different case studies. In 

general, it can be seen that more “organization” exists when (i) R2 values are high 

and (ii) absolute slope values are greatest. 
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Day-2003136

Day-2003167

<0.05 >0.550.350.250.15 0.45 v/v

Mean SWC = 0.45 cm3.cm-3

Mean SWC = 0.28 cm3.cm-3

Mean SWC = 0.26 cm3.cm-3

 

Figure 4.14:  Predicted 0-30cm near-surface soil water patterns in the Stanley catchment for 
the three days (2003-107, 2003-136 and 2003-167) selected in case study-1. 

 

Day-2003236

Day-2003250

Day-2003273

<0.05 >0.550.350.250.15 0.45 v/v

Mean SWC = 0.56 cm3.cm-3

Mean SWC = 0.38 cm3.cm-3

Mean SWC = 0.22 cm3.cm-3

 

Figure 4.15:  Predicted 0-30cm near-surface soil water patterns in the Stanley catchment for 
the three days (2003-236, 2003-250 and 2003-273) selected in case study-2. 
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Mean SWC = 0.16 cm3.cm-3

Mean SWC = 0.14 cm3.cm-3

 

Figure 4.16:  Predicted 0-30cm near-surface soil water patterns in the Stanley catchment for 
the three days (2003-350, 2003-364 and 2004-014) selected in case study-3. 
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Figure 4.17:  Predicted 0-30cm near-surface soil water patterns in the Stanley catchment for 
the three days (2004-215, 2004-243 and 2004-272) selected in case study-4. 
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4.4.4 DISCUSSION 

In the absence of suitable field measurements for validation of the predictions, 

meaningful explanations of the spatial patterns of predicted soil water contents 

must consider environmental conditions and catchment properties. In this context, 

it is important to consider antecedent rainfall, catchment scale characteristics, and 

quantitative evaluation of predicted values. 

4.4.4.1 Evaluation of predicted patterns based on response 
to antecedent rainfall  

As noted in Figures 4.14 to 4.17, soil moisture patterns in the catchment for any 

case study day is related to environmental conditions and particularly to the recent 

rainfall.  This is evident from the historical rainfall pattern as shown in Table 4-7. 

The predicted patterns of soil moisture appear to be closely related with the recent 

rainfall pattern.  For example, on day 2003236 during winter, due to high rainfall 

of 31 mm during past three days, the predicted SWC pattern showed very wet 

conditions. In contrast, during the summer months, smaller rainfall amounts may 

not be sufficient to increase the soil wetness. As a result, the catchment may 

continue to exhibit dry condition. This was the case with day 2004014 when 

rainfall of 5.8 mm during the previous three days did not result in increasing the 

surface wetness. Therefore, predicted SWC values appear to reflect recent rainfall 

conditions. 
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Table 4-7:  Rainfall history for the selected case study days. 

  Rainfall (mm) during past - 
Case study Day 3 days 7 days 14 days 30 days 

1 2003-107 0.2 46.4 61.8 77.1
 2003-136 1.6 1.6 3.2 14.0
 2003-167 0.0 4.2 6.6 16.4
      
2 2003-236 31.0 32.1 53.4 56.4
 2003-250 0.0 0.0 0.0 53.4
 2003-273 0.0 0.0 0.2 9.5
      
3 2003-350 0.0 20.4 33.9 87.7
 2003-364 0.0 0.0 1.6 35.5
 2004-014 5.8 8.4 10.6 12.2
      
4 2004-215 0.2 1.6 20.4 25.8
 2004-243 12.8 12.8 29.4 32.2
 2004-272 0.0 0.0 0.0 33.8

 

4.4.4.2 Evaluation of spatial patterns based on the 
catchment-scale dominant physical controls  

The spatial distribution of predicted soil moisture content must be discussed in 

relation to variations of soil properties, topography, and land use type. Soil 

physical properties and topography control spatial variations of soil moisture 

content. According to Chang and Islam (2003), for certain situations, topographic 

control over soil moisture will dictate the distribution of soil moisture while in 

other cases soil physical properties will be the main factor that controls variations 

of soil moisture.  Thus, predicted patterns may reflect some relation to soil 

properties and/or topography. 

Part of the spatial variations of soil moisture may be attributed to the soil type. 

The present hillslope catchment consists mainly of two soil types: clay to clay 

loam and silty loam soils. Based on field measurements it was found that the 

storage capacity of clay to clay loam soil (0.11 - 0.62 cm3.cm-3) is higher than that 

of silt loam soils (0.14 - 0.55 cm3.cm-3). In a situation where soil water content 

gets close to field capacity levels, it is the soil type which determines the spatial 

pattern of water content. For example, soil water contents during day 1 in case 
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study-1 (Day-2003107 in Figure 4.14 ) and day 2 in case study-2 (Day 2003-250 

in Figure 4.15) show situations where water contents are close to field capacity 

levels (0.46 and 0.38 cm3.cm-3, respectively). The predicted soil water patterns 

during these two cases demonstrate the influence of soil type on near-field 

capacity moisture conditions. Moreover, such variations may disappear with 

saturated conditions such as observed in Day-2003236 (see Figure 4.15). Thus, 

predicted 0-30cm moisture patterns reflect the soil water presents according to soil 

physical properties. 

Spatial variations of soil moisture may also be attributed to the position in the 

landscape. Wet patches appear to occur in lower slope areas whereas dry patches 

are normally located on hill tops. As seen on Day-2003136 and Day-2003167 (see 

Figure 4.14), on Day-2003273 (see Figure 4.15) and on all three days in case 

study-4 (see Figure 4.17) it is apparent that wetter areas are present in the lower 

part of the hillslope. Because the lower parts of hillslope can behave as soil-water 

converging zones. For example, S3 is located in such an area and from the water 

balance study it was found that the site is continuously receiving some sub-surface 

water (see Figure 4.5 (c)). In contrast, a higher position leads to rapid down slope 

drainage during precipitation events. Consequently, soil moisture content is lower 

on hilltops than in valley bottoms. This situation can be observed in the predicted 

patterns; for example, on Day-2003250 and Day-2003273 (Figure 4.15) and for all 

case study days in Figure 4.17. Similarly, aspect influences solar irradiation and 

evaporation, therefore, a lower soil moisture content in 0-30 cm may in part be 

attributed to higher evapotranspiration on north- and west-facing slopes.  This 

effect is apparent in the south-eastern parts of the SHC particularly on Day-

2003364 and Day-2004014 (see Figure 4.16) and on Day-2004272 (see Figure 

4.17) where dry patches are apparent. Topographically controlled soil moisture 

patterns (i.e. random or organized) have been reported by many previous studies 

(Moore et al., 1988; Famiglietti et al., 1998; Western et al., 1999). Therefore, 

predicted soil water patterns appear to reflect topographic effects on soil moisture 

distribution in this hillslope catchment. 

Land use also influences the spatial distribution of soil moisture.  This hillslope 

catchment is used for grazing and the dominant vegetation includes annual and 

perennial pasture varieties, small shrubs and sparsely distributed eucalyptus trees.  
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Annuals and low shrubs have generally shallow root systems (typically < 50cm) 

and will therefore extract more soil water from the near-surface soil layer. Due to 

near-uniform vegetation patterns, such water extraction should lead to near-

uniform moisture patterns particularly in flat areas with similar soil properties. 

Predicted soil water patterns on all case study days reflect this phenomenon and 

large continuous patches of similar water contents can be found in the flat part of 

the catchment. Thus, predicted soil water patterns appear to reflect the natural 

vegetation status of a hillslope catchment.  

We may therefore conclude that the predicted soil water distributions appear to 

reflect variations in soil type, position in the landscape and vegetation type. 

 

4.4.4.3 Quantitative evaluation of predicted patterns  

To evaluate the robustness of the upscaling methodology, it is necessary to 

compare the results with relevant field observations. The only available field 

measurements are limited point-scale 0-30 cm soil moisture measurements at the 

permanent monitoring sites. However, it is also possible to generate some 

information from the predicted patterns and evaluate those with the other 

published results.  

First, average measured moisture values (based on the 6 sites) and catchment-

scale averages from the predicted moisture values are compared. Figure 4.18 

shows the measured and predicted soil water contents during all case study days.  

It is clear that the predicted average SWC values are nearly identical to the 

measured average SWC values. 

Statistical properties of the predicted 0-30cm soil water content have been 

calculated for all case study days and are presented in Table 4-8.  It can be seen 

that the range and mean values of the predicted soil moisture values are 

comparable with measured values (see Table 4-5 and Table 4-8). 
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Figure 4.18:  Comparison of measured (from 6 sites) and predicted (considering entire 
catchment) average 0-30 cm near-surface soil water contents (cm3.cm-3). 

Table 4-8:  Statistical properties of the predicted 0-30 cm soil water content values during 
case study days. 

Case study   Day-1 Day-2 Day-3 
1 Day 2003-107 2003-136 2003-167 

 Min. SWC 0.382 0.161 0.120 
 Max. SWC 0.507 0.339 0.324 
 Mean SWC 0.458 0.275 0.253 
 Standard deviation 0.037 0.052 0.060 
     

2 Day 2003-236 2003-250 2003-273 
 Minimum SWC 0.496 0.303 0.081 
 Maximum SWC 0.652 0.427 0.276 
 Mean SWC 0.567 0.379 0.210 
 Standard deviation 0.046 0.037 0.057 
     

3 Day 2003-350 2003-364 2004-014 
 Minimum SWC 0.203 0.000 0.001 
 Maximum SWC 0.308 0.225 0.217 
 Mean SWC 0.267 0.153 0.137 
 Standard deviation 0.031 0.065 0.063 
     
4 Day 2004-215 2004-243 2004-272 
 Minimum SWC 0.170 0.098 0.001 
 Maximum SWC 0.438 0.329 0.270 
 Mean SWC 0.345 0.251 0.170 
  Standard deviation 0.078 0.067 0.078 
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The relationship between the variance of the predicted 0-30 cm soil water contents 

and mean soil moisture also provides some indication of the reliability of the 

predicted distribution patterns as shown in Figure 4.19. It can be seen in the figure 

that the variance of predicted soil moisture content decreases with increasing 

mean soil moisture content.  Famiglietti et al. (1999) reported similar observations 

during their Southern Great Plains hydrology experiment.  However, other studies 

have suggested that the variance of soil moisture increases with increasing mean 

soil moisture (Robinson and Dean, 1993; Famiglietti et al., 1998). Charpentier 

and Groffman, (1992) observed no systematic relationships but their findings are 

based on large-area remotely sensed observations and therefore, may not readily 

be compared with the predicted soil water contents of 5m grid cells generated in 

the present study. Moreover, some of these studies were based on 0-5 cm near-

surface soil moisture values (e.g. Famiglietti et al., 1998).  It is concluded that in 

the case of Stanley catchment, there is a negative correlation between the variance 

of predicted soil moisture in top 0-30 cm and mean values. 
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 Figure 4.19:  Relation between the variance (in cm3.cm-3) of predicted 0-30cm SWC and 
mean soil moisture. 

 
The field observations discussed above show quantitative agreement of predicted 

soil moisture in the hillslope catchment with respect to the mean and variance of 

the predicted moisture values.  It can therefore argue that the predicted soil water 

contents for the hillslope appear to be realistic. 
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4.4.4.4 Evaluation based on frequency distributions of 
predicted 0-30 cm soil moisture patterns 

The statistical distribution of predicted moisture content values also provides 

some insight into whether the predicted moisture patterns are satisfactory.  

Because some researchers have reported that surface soil moisture content values 

are normally distributed (e.g. Francis et al., 1986, Nyberg, 1996).  Figures 4.20 

and 4.21 show frequency distributions of the predicted soil water content values.  

As seen, during most days, the predicted SWC values are normally distributed. 

Under very wet conditions however, the SWC values produce a bimodal 

distribution (e.g. day 1 in the case study 1 and 2).  Under saturated conditions, it is 

soil texture through θ* that determines the SWC and the two dominant soil types 

in the catchment may well lead to a bimodal distribution under saturated 

conditions. 
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Figure 4.20:  Frequency distributions of predicted soil water contents during case study-1 
and case study-2.  (Note the difference in horizontal scale) 
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Figure 4.21:  Frequency distributions of predicted soil water contents during case study-3 
and case study-4.  (Note the difference in horizontal scale) 

 

4.4.4.5 Validation of predicted patterns 

The outcome of the qualitative and quantitative validation of the SWC values 

predictions for the hillslope catchment as reported in the previous sections have 

been summarized in Table 4-9 and 4-10.   
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Table 4-9: A summary of key issues considered in evaluating the predicted 0-30 cm soil 
water contents during case study-1 and case study-2. 

Evaluation parameter Case study-1 Case study-2 
Day => 107 136 167 236 250 273 

Predicted wetness Wet Mod. Mod. Wet Wet Mod. 
       
Rainfall       
Is predicted pattern 
representing antecedent 
rainfall? 

Yes Yes Yes Yes Yes Yes 

       
Spatial organization       
Is there any pattern 
present? 
 

Yes Yes Yes No Yes Yes 

Does this pattern appear 
to be related to 
topography?  
 

No Yes Yes No Yes Yes 

Is this pattern related to 
soil type?  
 

Yes No No No Yes No 

Are these predicted 
values normally 
distributed? 

No Yes Yes No No Yes/No 

       
Hillslope scale SWC        
Does the predicted 
average match with the 
measured average? 
 

Yes Yes Yes Yes Yes Yes 

Does the predicted 
range match with the 
measured range? 

Yes Yes Yes Yes Yes Yes 
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Table 4-10:  A summary of key issues considered in evaluating the predicted 0-30 cm soil 
water contents during case study-3 and case study-4. 

Evaluation parameter Case study-3 Case study-4 
Day => 350 364 014 215 243 272 

Predicted wetness Mod. Dry Dry Wet Mod. Dry. 
       
Rainfall       
Is predicted pattern 
representing antecedent 
rainfall? 

Yes Yes Yes Yes Yes Yes 

       
Spatial organization       
Is there any pattern 
present? 
 

Yes Yes Yes Yes Yes Yes 

Does this pattern appear 
to be related to 
topography? 
 

Yes Yes Yes Yes Yes Yes 

Is this pattern related to 
soil type?  
 

Yes No No No No No 

Are these predicted 
values normally 
distributed? 

Yes No No Yes Yes No 

       
Hillslope scale SWC        
Does the predicted 
average match with the 
measured average? 
 

Yes Yes Yes Yes Yes Yes 

Does the predicted 
range match with the 
measured range? 

Yes Yes Yes Yes Yes Yes 

 

Several points may be drawn from this study:  

(1) During very wet days as on day 2003 - 236 with average SWC of 0.567 

cm3.cm-3 soil moisture values do not show any pattern with respect to soil type or 

topography. 

(2) During wet days as on day 2003 - 107 with average SWC of 0.458 cm3.cm-3  

the soil moisture distribution may show some pattern which is broadly based on 
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soil type. In this situation, the frequency distribution of soil moisture values may 

not show a normally distributed pattern.   

(3) During some wet days (as on day 2003 - 250) with average SWC of 0.379 

cm3.cm-3 soil moisture distribution may show a pattern which has some 

relationship with both soil type and the topography.   

(4) For moderately wet conditions (i.e.  average SWC between 0.25 - 0.35 

cm3.cm-3 as on days 2004-243 or 2004-215) SWC values in the catchment may be 

distributed normally.  Under these conditions, topography appears to play a 

dominant role. 

(4) Under dry conditions (i.e. average SWC between 0.14 - 0.17 cm3.cm-3 as on 

days 2003-364 or 2004-014) the topography appears to play a dominant role but 

catchment scale SWC values may not be distributed normally.  

The predicted soil moisture therefore exhibits organized characteristics under 

some, but not all circumstances. The degree of organization depends on the 

catchment’s current wetness state. Similar observations have been reported by 

other researchers (Grayson et al., 1997; Western et al, 1999).  It can therefore be 

concluded that the STWI-based approach offers a suitable tool for upscaling 

point-scale 0-30 cm measurement across a hillslope catchment such as the SHC.  

4.4.5 CONCLUSIONS  

A Soil-adjusted Topographic Wetness Index (STWI) has been developed for 

upscaling point-scale 0-30 cm soil moisture measurements to derive hillslope 

scale soil moisture distributions.  The Soil-adjusted Topographic Wetness Index 

appears to be an important, physically-based characteristic of a given location in 

the catchment. This is perhaps the first attempt to combine the effect of 

topography and soil properties in deriving soil moisture patterns from point-scale 

field measurements. 

The proposed approach assumes that the STWI at a given location varies with the 

capacity of the soil in that location to hold moisture and the propensity of the 

geographic position of that location to receive water from the upslope contributing 

area. By considering the top 0-30 cm soil layer and assuming a linear relationship 

between the amount of soil saturation and the STWI, this approach provides a 
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methodology to understand the distribution of moisture along a hillslope 

particularly when the moisture condition is between field capacity and wilting 

point.  The soil saturation ratio and STWI generally display a strong relationship 

during partially wet or partially dry periods but show a poor relationship during 

prolonged wet or prolonged dry periods. The relationship between the temporarily 

variable soil saturation ratio on a given day and a location-specific intrinsic 

property such as STWI provides a methodology for obtaining hillslope scale soil 

moisture distributions from a limited number of measurements.  

The results shown here have focussed on the driest days, wettest days and days 

with intermediate moisture contents during the two-year study period. The present 

study has demonstrated that a limited number of point-scale 0-30 cm field 

measured soil moisture values can be used to generate high resolution (5m grid 

cells in this study) soil moisture patterns in a hillslope catchment. Such generated 

patterns, appear to reflect the natural soil moisture pattern in a hillslope catchment 

reasonably well.  Further detailed studies will be required using more extensive 

data sets obtained with high-resolution ground based observations and/or airborne 

microwave measurements.  The methodology will also need to be evaluated on a 

range of different catchments in other environments. Also, it will be useful to 

further investigate the TWI with recharge, saturated conductivity and soil depth 

information for such soil moisture scaling studies. 

 

4.5 CHAPTER SUMMARY 
The application of single layer bucket models for balancing the inputs and outputs 

of water at six locations within the Stanley hillslope catchment confirms that the 

ignoring of the Q term causes significant errors in soil moisture predictions. 

Therefore, inclusion of Q term is crucial in soil moisture prediction studies.   

Soil moisture measurement collected at irregular intervals will minimize the 

difference between predictions and measurements and may be used to generate 

soil moisture trajectories over extended periods. Adopting simple bucket type 

water balance models, soil moisture patterns can be generated over longer time 

periods. Hence, simple water balance approaches are an option for interpolating 



Chapter 4–From point observations to hillslopes  Page 4-46 
 

soil moisture measurements in the temporal domain.  Applications of single layer 

bucket models need to be done with some caution. Because of the lateral surface 

and subsurface flows which are dominant in the hillslope scale during certain 

periods, it is important to include such water inputs into the model.  This 

observation provides the link with the second part of this chapter. 

The application of single layer bucket models for balancing the inputs and outputs 

of water in the Stanley hillslope catchment confirmed that the soil moisture data 

collected during the study period are realistic. The predicted soil moisture values 

were found to be comparable with the measured soil moisture contents.  Hence, 

soil moisture data collected during the study period could be used for other 

applications with some confidence. 

A Soil-adjusted Topographic Wetness Index (STWI) has been developed and 

applied for upscaling point-scale 0-30 cm soil moisture measurements to derive 

hillslope scale soil moisture distribution patterns. The STWI is a physically-based 

intrinsic index which can be used to characterise the soil wetness in a given 

location based on the topographic position and soil properties.  

Linear relationships have been established between the STWI and the soil 

saturation ratio derived from measured data and these have been then applied for a 

hillslope catchment to derive spatial patterns of soil moisture. This study 

demonstrates that a location-specific intrinsic property such as STWI provides a 

tool to derive hillslope scale soil moisture distributions from a limited number of 

measurements, especially for inter-mediate wetness conditions. 
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CCCHHHAAAPPPTTTEEERRR   FFFIIIVVVEEE   

5. ESTIMATION OF CATCHMENT AVERAGE 
SOIL WATER CONTENTS FROM POINT-
SCALE ROOT-ZONE SOIL MOISTURE 
MEASUREMENTS  
This chapter examines the prediction of catchment average soil water content 

(SWC) from the Catchment Average Soil Moisture Measurement (CASMM) sites. 

This approach is based on studying the temporal stability characteristics of soil 

moisture across a range of scales. This work aims to gain insight into the temporal 

behaviour of soil moisture at each site and to identify which stations are 

representative of the mean soil moisture values across the study area at a range of 

scales.  
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5.1 INTRODUCTION 
 
Knowledge of soil moisture processes and their spatial distribution provides 

essential information for hydrologic and climatic models. Therefore, soil moisture 

observations at a range of scales may be valuable in assisting the improved 

formulation and parameterisation of soil moisture impacts on land surface 

processes such as runoff, vegetation growth and soil carbon dynamics. 

Furthermore, heterogeneity in soil moisture is undoubtedly a major factor for 

hydrological modelling. Point-scale soil moisture observations made at chosen 

locations therefore, may not necessarily describe the average soil moisture content 

at some larger spatial scale. As such, dependable methodologies are required to 

derive spatially averaged soil moisture estimates from point scale observations.  

Upscaling (or aggregation) is a mathematical procedure whereby parameters are 

derived from data collected at smaller spatial scales. Different approaches have 

been applied to the problem of upscaling soil moisture content: these include 

simple spatial averaging, a variety of interpolation techniques, fractal geometry, 

and the use of proxy variables. Spatial averaging is the most basic and simple 

approach. The use of simple averages based on soil moisture measurements from 

few locations however does not always guarantee good results. On the other hand, 

a range of interpolation techniques may be applied to derive average moisture 

content or surface patterns from point scale measurements. For example, linear 

interpolation is an option to derive spatial patterns from point observations.  This 

approach however, rarely provides dependable wetness patterns. Soil moisture is 

highly variable in space as well as in time. Furthermore, soil moisture fields are 

not completely random variables due to their association with known geographic 

locations. A better approach therefore would be the use of geo-statistical 

techniques such as inverse distance weighting (IDW) or kriging for soil moisture 

fields. Many researchers have studied the spatial distribution of soil moisture 

content, using geostatistical methods based on remotely sensed and field-

measured data (Thattai and Islam, 2000; Glenn and Carr, 2003). Several studies 

have however reported little spatial correlation of SWC and geostatistical 

parameters (Mohanty et al., 2000).  Furthermore, all of these statistical 

interpolation approaches hinge on the assumption of the variable under 
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consideration being a Gaussian spatially correlated random variable. For soil 

moisture fields however, this is not necessarily a valid assumption (Western and 

Blöschl, 1998a).  Statistical interpolation techniques therefore seem not to be the 

best way to follow in deriving spatial distributions of soil water contents over 

large catchments. Fractals are based upon the idea that a spatial pattern observed 

at one scale is repeated at other scales. Using this approach, several authors have 

derived scale-dependent expressions for SWC (Le Toan et al., 1998; Kim and 

Barros, 2002b). Soil moisture data collected during the present study are not ideal 

for geostatistical or fractal based applications. In the present study only twenty-six 

soil moisture monitoring sites have been monitored in a 6540 km2 catchment. 

Alternative methods are therefore needed to derive catchment average 

(representative) moisture contents from a limited number of ground-measured 

point scale observations.   

This chapter explores the temporal stability characteristics of soil moisture across 

a range of scales. This work analyses the temporal stability of soil moisture and 

identifies representative mean soil moisture measuring stations for each sub-

catchment. 

5.2 METHODOLOGY 
When a catchment is regularly monitored for soil moisture content, locations can 

often be identified where the soil is consistently wetter or drier than the average 

across the surveyed area. The existence of such sites is important for soil 

management. Similarly, some locations can be identified where the soil moisture 

is close to the average across the entire catchment. Identification of these 

characteristic sites is potentially useful for field validation of area-average soil 

moisture measurements from passive microwave sensors. Furthermore, it is also 

important to identify sites for coarse scale characterization and hydrological 

model simulation, e.g., establishing field level or catchment-scale antecedent 

moisture conditions for runoff simulations. This phenomenon has been called the 

time stability, the temporal stability, or the temporal persistence in spatial patterns 

of soil water contents. Grayson and Western (1998) showed that this phenomenon 

can be applied for locating catchment average soil moisture monitoring 

(CASMM) sites. Analysis of temporal stability characteristics has been shown to 



Chapter 5 - Estimation of catchment average soil water content              Page 5-4   
 

                                                      

be very useful in estimating catchment average soil moisture. As cited by 

Martinez-Fernandez and Ceballos (2005), Vachaud et al. (1985) introduced the 

concept of temporal stability as the time-invariant association between spatial 

locations and classical statistical parametric values of a given soil property. 

Temporal stability analyses of soil moisture therefore provide a method that 

would reduce the number of monitoring sites required for characterising the 

behaviour of the soil moisture content across a study domain. Indirectly, such 

analyses provide a meaningful way of applying point scale soil moisture 

measurements to explain catchment-scale average content, thus providing an up-

scaling methodology.   

To identify a CASMM site, it is first necessary to perform an analysis of temporal 

stability. As reported by many researchers (Vachaud et al., 1985; Grayson and 

Western, 1998; Gómez-Plaza et al., 2000; Mohanty and Skaggs, 2001; Martinez-

Fernandez and Ceballos, 2003, 2005; Starr, 2005; Cosh et al., 2006; Starks et al., 

2006) it may be inferred from analysing which sites are representative of wet 

conditions and which are representative of dry ones and which site represents the 

average moisture content of the whole catchment. Grayson and Western (1998) 

considered that representative stations are those sites where the mean relative 

difference (mrd) approached zero. The mean relative difference is defined as: 

∑
=

−
=

n

i i

iji
j S

SS
n 1 ,*

,*,
*,

1δ  (5-1) 

where,  
=j*,δ  mean relative difference at the jth site 

Sij   = ith sample of n samples at the jth site within the study region 
,*iS  = computed average among all sites for a given date and time, i 

 

Later, Van Pelt and Wierenga (2001) introduced the standard deviation of 5% as 

the criterion. Such a 5% standard deviation criterion may however not be valid for 

a large catchment as the study site of Van Pelt and Wierenga was very small (1 

ha), with high temporal stability.  

A CASMM site therefore, would be the one that is closest to the zero relative 

difference value and that, additionally, has a low standard deviation value. It is 
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difficult to set general reference values, of both relative difference and standard 

deviation to choose the representative station in a given network of stations. The 

group of sites above the zero relative difference value would systematically 

overestimate the mean soil moisture value and those below zero would 

underestimate it. Grayson and Western (1998) noted that time-stable sites having 

a non-zero mean relative difference could be used to represent catchment average 

soil moisture content provided that the offsets between the mean value and the 

non- zero time-stable sites were known. Comegna and Basile (1994) have found 

that temporal stability analyses are not suitable for smaller catchments with 

homogeneous soils. 

The objectives of this work are: (a) to demonstrate the temporal persistence in soil 

water contents measured at each site; (b) to upscale water contents from point 

measurements to the subcatchment and to catchment scale; (c) to identify 

representative locations for monitoring total soil water content; and (d) to estimate 

the length of time for soil moisture monitoring sufficient to characterize temporal 

persistence in water content. 

5.3 RESULTS AND DISCUSSION 

5.3.1 APPLICATION TO THE WHOLE GOULBURN RIVER 
CATCHMENT 

Figure 5-1 shows the results of temporal stability of SWC for the whole Goulburn 

River catchment and the complete two-year study period.  For easy understanding 

of the results, the data on relative differences in each case were ordered from 

smaller to greater, indicating the standard deviations by error bars above and 

below the points. With this type of approach, it is possible to identify the points 

that systematically overestimate or underestimate the mean soil moisture value. 

Figure 5-1 shows the results for the mean data on 0-30 cm soil moisture from the 

25 stations for 2003, for 2004 and for the period 2003-2004. It can be seen that, 

there is symmetry with respect to the zero value of relative difference among sites. 

Approximately 12-13 sites are either above (i.e. wet sites) or below (i.e. dry sites) 

the mean value. It is also found that the temporal stability is lower (greater 

standard deviation) at the stations characterising the wet sectors.  
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Figure 5-1:  Plots of relative differences for 0-30cm SWC for whole study area for: a) 2003, 
b) 2004, and c) whole period 2003-2004. Vertical bars correspond to associated time 
standard deviation. 

 

Following Grayson and Western (1998), CASMM sites were identified. At the 

Goulburn River catchment scale, the station fulfilling the two conditions of mean 

relative value close to zero and smallest standard deviation (SD = 0.097, in 2004 

and SD = 0.186 in 2003-2004) is S1 (Figure 5-1a and Figure 5-1b).  Likewise, 
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M2, K2 and G5 are representative of dry conditions, and K1, K3 and M7 are 

representative of wet conditions. The wet sites K1, K3 and M7 however, show 

some degree of uncertainty because they are very unstable (as reflected in the high 

standard deviation). While the observed range of variations in the mean relative 

difference between nearly ±0.75 is high when compared with some published 

results (Grayson and Western, 1998; Van Pelt and Wierenga, 2001), it is closer or 

similar to Mediterranean conditions (Gómez-Plaza et al., 2000) and arid 

conditions in Spain (Martinez-Fernandez and Ceballos, 2003). The higher 

variations may be due to the large size of the study region and hence its diversity 

from the point of view of soil types, landscape positions, land use types, and 

vegetation patterns. 

The lower limit of (-0.50) is always maintained indicating the presence of a 

physical threshold with respect to water storage and pointing to the high temporal 

stability of the sites located in drier areas. The upper limit varies, sometimes 

surpassing 0.75 (K1) due to the strong seasonality of agricultural soils.  As result 

of diverse cropping patterns and farm activities, agricultural soils behave 

differently compared to natural landscapes. 

It is also possible to identify temporally stable sites whose characteristics 

represent dry and wet extremes for the catchment, considering only the minimum 

standard deviation criterion. At the Goulburn River Catchment scale, while S3 is 

the best candidate fulfilling this condition for a wet site (SD= 0.15, in 2004 and 

SD=0.18 in 2003-2004), M1 can be considered to represent a dry site (SD= 0.11, 

in 2004 and SD=0.10 in 2003-2004). It is important to note that the average 

moisture content of these two sites is approximately equal to the moisture content 

at S1. Temporally stable sites having very high and very low soil moisture content 

are therefore important to consider for catchment studies because they can provide 

an insight into the range of moisture content in the catchment. Additionally, these 

two sites can be used to estimate the catchment average moisture condition. 

Furthermore, as these sites are temporally stable, the offset between the higher 

and lower moisture contents is a constant irrespective of the day of year. For this 

reason, Starks et al. (2006) have considered two sites, one for representing dry site 

and other for wet conditions, for their temporal stability analysis. 
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Figure 5-1a and Figure 5-1b show the results for 2003 and 2004 respectively.  In 

general, the sites maintain their position irrespective of the observed period. The 

groupings of sites characterizing dry and wet locations are nearly identical. 

Whereas only one site (M3) moved from the dry to the wet side, two sites (S5 and 

M6) moved from the wet to the dry side, during 2003 to 2004. Interestingly, all 

sites on the dry side consist of sandy type soils (with >70% sand fraction) as 

shown in the Table 3.7 in Chapter 3, reflecting the inability of the soils to retain 

water. This explains why the soil moisture content of these sites is never high and 

why their temporal stability is comparatively high. In contrast, apart from K1, 

wet-end sites consist of either clay or clay loam type soils and hence are capable 

of holding more water at various tensions. Accordingly, the soil moisture content 

of these sites is usually high and exhibits less temporal stability. 

5.3.2 APPLICATION TO THE KRUI SUBCATCHMENT  

Figure 5-2 shows the data on the relative differences for the Krui catchment for 

the period 2003(a), 2004(b) and 2003-2004(c). The data are ordered from lowest 

to highest as in whole Goulburn River catchment analysis.  

At the Krui catchment scale, two stations can be identified which fulfil the two 

conditions of mean relative value close to zero and smallest standard deviation. 

The first is the K6 (mean of 0.0035 and SD of 0.178, in 2004 and mean of -0.099 

and SD of 0.192 in 2003-2004) and the second site is the K4 (mean of 0.067 and 

SD of 0.102, in 2004 and mean of 0.065 and SD of 0.113 in 2003-2004). Here, 

two methods can be applied for the determination of catchment average moisture 

content. First, we consider both sites for catchment average moisture estimates. 

Considering the stability of sites, alternatively, K4 can be selected as the 

candidate for Krui catchment.  The marked temporal instability of K6 may be 

attributed to its location, as this site is situated on a top of a hill and near a very 

steep cliff.    
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Figure 5-2:  Plots of relative differences for 0-30cm SWC for Krui catchment for: a) 2003, b) 
2004, and c) whole period 2003-2004. Vertical bars correspond to associated time standard 
deviation. 

 

As far as the dry and wet ends are concerned, the driest site is K2 and K1 remains 

the wettest site. The observed range of variations in the mean relative difference 

was limited to between ±0.5 and this may be due to the smaller catchment size. 

Moreover, the groupings of sites characterizing dry and wet locations are nearly 

identical throughout the study period. All wet sites maintain their order during 
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both 2003 and 2004. However, a slight change of order of dry sites was noted 

between K5 and K6 where K6 became a less dry site from 2003 to 2004. 

 

5.3.3 APPLICATION TO THE MERRIWA 
SUBCATCHMENT 

Figure 5-3 shows the data on the relative differences corresponding to Merriwa 

catchment for the period 2003(a), 2004(b) and 2003-2004(c). The data are ordered 

from lowest to highest as in previous analyses.  

At the Merriwa catchment scale, two stations can be identified which fulfill the 

two conditions of mean relative value close to zero and smallest standard 

deviation. The first is the M4 (mean of 0.007 and SD of 0.113, in 2004 and mean 

of 0.085 and SD of 0.293 in 2003-2004) and the second site is the M6 (mean of 

0.0004 and SD of 0.365, in 2004 and mean of 0.092 and SD of 0.342 in 2003-

2004). As far as M4 is concerned, it can be considered to represent the entire 

Merriwa catchment due its lower standard deviations. Although M6 is better in 

giving a mean relative value close to zero (at least in 2004) due to consistent 

temporal instability, it is not an ideal site compared to M4. According to the 

owner of the property, M4 is located in a transition zone, where part of the 

property generally receives higher rainfall while the other part receives less 

rainfall. This partly explains the higher range of soil moisture variability at M6.  

The lack of a suitable site during 2003 must be emphasized. None of the sites was 

ideal as a CASMM site during 2003. 

As far as the dry and wet ends are concerned, the driest sites are M2 and M1, both 

with predominantly sandy soils. The wettest site is M7, a clay loam site in a 

higher rainfall area. As for the Krui catchment, the observed range of variations in 

the mean relative difference was limited to between ±0.5 (except for M7) and this 

might be the result of the smaller catchment size. Furthermore, the groupings of 

sites characterizing dry and wet locations follow a nearly similar pattern 

throughout the study period as in the Krui catchment. Interestingly, both wet and 

dry sites change their order from 2003 to 2004. The most significant change 

occurred in M5, which moved from the driest position to close to zero level. M5 is 

on a clay type soil (69 % clay) and this might be due to the deep cracks observed 
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around the soil moisture sensors during early 2003. These cracks caused poor 

contact between the sensor and soil and therefore the CS616 sensor reported 

under-estimated moisture contents. Later, with the healing of cracks around the 

sensor, which improved the contacts between sensor and soil, it commenced 

reporting the actual moisture contents. As a result, M5 shows that it recovered 

from dry state and slowly moved up towards to the wet side. 
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Figure 5-3:  Plots of relative differences for 0-30cm SWC for Merriwa catchment for: a) 
2003, b) 2004, and c) whole period 2003-2004. Vertical bars correspond to associated time 
standard deviation. 
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5.3.4 APPLICATION TO THE SOUTHERN-GOULBURN 
RIVER SUBCATCHMENT 

It is also of practical importance, to locate a CASMM site from a limited number 

of sites spread across a large catchment. The six sites spread across the Southern- 

Goulburn River catchment in a east-west direction provide an opportunity to study 

this.  Figure 5-4 shows the data on the relative differences corresponding to 

Southern Goulburn sites for the period 2003(a), 2004(b) and 2003-2004(c). The 

data are ordered from lowest to highest as in previous analyses. 

At the Southern-Goulburn River scale, with six sites, it is difficult to identify a 

suitable CASMM site. None of the sites fulfils the two conditions of mean relative 

value close to zero and smallest standard deviation. The most obvious approach is 

to monitor two sites; that is monitoring of both G5 (from the dry side) and G3 

(from the wet side) and considering the average. 
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Figure 5-4:  Plots of relative differences for 0-30cm SWC for Southern Goulburn catchment 
for: a) 2003, b) 2004, and c) whole period 2003-2004. Vertical bars correspond to associated 
time standard deviation. 
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5.3.5 APPLICATION TO THE STANLEY 
SUBCATCHMENT 

Applications of temporal stability analyses for small catchments such as Stanley 

catchment are also important if a reasonable number of sampling sites is available. 

Seven sites have been monitored in Stanley since early 2003. One site (S6) 

however, showed intermittently unusually high readings and for this reason, S6 

was not considered suitable for inclusion in the temporal stability analysis.  

a)

2003

S7 S5 S4 S1
S2

S3

-1.00

-0.50

0.00

0.50

1.00

1.50

R
el

at
iv

e 
di

ffe
re

nc
e 

 

b)

2004

S5

S7
S1

S2 S4

S3

-1.00

-0.50

0.00

0.50

1.00

1.50

Re
la

tiv
e 

di
ffe

re
nc

e 

 

c)

2003-2004

S5
S7 S1

S4 S2

S3

-1.00

-0.50

0.00

0.50

1.00

1.50

Re
la

tiv
e 

di
ffe

re
nc

e 

 

Figure 5-5:  Plots of relative differences for 0-30cm SWC for Stanley subcatchment for: a) 
2003, b) 2004, and c) whole period 2003-2004. Vertical bars correspond to associated time 
standard deviation. 

 
Figure 5-5 shows the results for the mean data on soil moisture from the six sites 

for 2003, 2004 and for the period 2003-2004. As can be seen in the figure, there is 
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symmetry with respect to the zero value of relative difference among sites. 

Generally, three sites are either above (i.e. wet sites) or below (i.e. dry sites) the 

mean value. Except for S7, it can be seen that the temporal stability is higher for 

all sites, i.e. a smaller standard deviation exists for all sites.   

At the smaller 167 ha catchment scale, station S1 fulfils the two conditions of 

mean relative value close to zero and smallest standard deviation (mean of -0.08 

and SD of 0.09, in 2004 and mean of -0.06 and SD of 0.102 in 2003-2004; see 

Figure 5-5b and Figure 5-5c). Surprisingly, at the Goulburn River catchment 

scale, S1 is also the most suitable CASMM site. This is an interesting finding and 

proves an important property of CASMM sites. With this study, it is evident that 

once identified properly, under normal circumstances, moisture measurements at 

CASMM sites may be used across a catchment at many scales.   

It is also clear from Figure 5-5 that, S5 and S7 are representative of dry 

conditions, and S3 is representative of wet conditions. Whereas S1 is located in a 

valley bottom, S3 is located in a steep transition zone. Therefore, as seen in Figure 

5-5, S1 shows very stable conditions compared to S3. The observed range of 

variations in the mean relative difference is between nearly ±0.35 and this is even 

narrower than that of the Krui and Merriwa catchments.  The narrow range of 

variations may be due to the smaller study site which is less diverse from the point 

of view of soil types, land use types, and vegetation patterns. 

 

5.3.6 MINIMUM SAMPLING TIME REQUIRED TO IDENTIFY A 
REPRESENTATIVE SITE 

For practical applications, it is useful to know how much monitoring time is 

required to determine which site is representative of the mean soil moisture 

content of a given catchment.  Often soil moisture monitoring programs are 

established with networks of sites that are quite dense initially.  Maintaining a 

dense network of soil moisture sites however is very expensive and tedious.  

Hence, it would be worth considering the possibilities of reducing effort and cost 

by continuing monitoring at fewer sites. 

In order to determine the minimum sampling period, it is necessary to study the 

evolution of the mean relative difference (mrd) and the standard deviation (SD) of 
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the relative difference throughout the study period. Theoretically, after a 

minimum sampling period, both mrd and SD of the relative difference should not 

vary with time and remain at a constant level. It is easier to understand such 

results when results are plotted against time. In these plots, mrd stays closer and 

parallel to the time-axis after reaching a minimum sampling period, thus 

indicating no more significant changes with time. The SD of the relative 

difference however, may take a different trajectory and usually stabilizes at some 

distance away from the horizontal time-axis depending on the sample size and the 

range of moisture contents in the catchment. The SD appears to run near-parallel 

to the time-axis after reaching a minimum sampling period, similar to the mrd 

plot. A catchment shows a wide range of moisture contents at any given moment. 

Thus, the SD of the relative difference will rarely be close to zero but it may be 

stabilize with time.  Figure 5-6 shows the results of the analysis for Stanley, Krui, 

Merriwa and whole Goulburn River catchments.  As seen in Figure 5-6a, for the 

smaller catchment such as in Stanley, stabilization of both SD and mrd occurs at 

around 360 days or 12 months. In larger catchments such as Krui (Figure 5-6b) 

and Merriwa (Figure 5-6c) stabilization of both SD and mrd occurs at around 450 

days or 15 months. A similar pattern is found for the entire Goulburn Catchment 

(Figure 5-6d).  It can therefore be inferred that after reaching the stable point, the 

temporal behaviour of all stations remained stable. However, as seen in Figure 

5-6a, significant changes of moisture contents at one site may introduce some 

uncertainty about the above conclusion particularly in a situation with smaller 

sample size.  As shown in the figure, two SD values are plotted in the Stanley 

catchment to represent the situation with all six sites and the situation without S5. 

The significant change of soil moisture values at S5 from 2003 to 2004 (see 

Figure 5-5) causes instability of SD of the relative difference of mean moisture 

contents in two-year period and this is evident from the upward trend of SD plot 

when all six sites are considered. Without S5 however, SD plot gave the expected 

result. Thus, care has to be taken in interpreting results when smaller numbers of 

sites are considered. 
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Figure 5-6:  Mean relative difference (mrd) and the standard deviation (SD) of the relative 
difference calculated for all observations during 2003-2004: a) Stanley, b) Krui, c) Merriwa, 
and d) whole Goulburn catchment. 
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From this analysis, it can be concluded that the minimum time required for 

determining the CASMM site is approximately 12-15 months. This result agrees 

with a similar period observed by other researchers (Martinez-Fernandez and 

Ceballos, 2003).  It is important to note that this minimum sampling period 

coincides with a complete seasonal cycle. According to Martinez-Fernandez and 

Ceballos (2003), at the beginning of the seasonal cycle, the representativeness of 

the site perseveres because the temporal pattern is repeated.  This is clearly 

occurring as an annual cycle in a smaller catchment such as Stanley. However, 

rainfall variations and delays in the onset of seasons may modify the annual cycle. 

These effects are generally more prominent in large catchments due to wide range 

of variations and therefore a slightly longer period (of 15 months) is required.   

The minimum period of one year for determining the representative mean soil 

moisture site as proposed by Martinez-Fernandez and Ceballos (2003) is not valid 

for the Goulburn River catchment. This is because their work was carried out in 

smaller catchments (1285 km2 and 0.62 km2) and because the present study was 

conducted in elongated catchments with similar areas (e.g. Krui and Merriwa, 

approximately 631 km2 and 871 km2 respectively) and in a larger catchment (6800 

km2). Furthermore, as shown in Figures 3.15 and 3.16, there is also considerable 

spatial and temporal variation of rainfall across the region.  Therefore, at least in 

subhumid catchments in Australia, a 15-month period will be needed in order to 

determine representative mean soil moisture sites. 

 

5.4 CONCLUSIONS  
 

This study describes the characterization of temporal stability of soil moisture for 

a network of measurement sites, adopting the methodology described by Vachaud 

et al. (1995).  It is demonstrated that catchment average soil moisture monitoring 

(CASMM) sites may be identified at different levels of the catchment. It is 

suggested that the selection of catchment average soil moisture monitoring sites 

within each subcatchment simplifies the accurate representation of spatially 

averaged soil moisture contents for hydrological modelling. 
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This study shows that it is possible to select a station that is representative of the 

mean moisture content of the soil in a given catchment from a pre-established 

network of measuring stations. The study was carried out at three very different 

scales (1.67 km2, about 1000-1500 km2 and about 6540 km2) with a similar 

methodology.  

The results indicate that temporal stability persists across the entire study period 

(about 23 months). The stations preserve their characteristics regardless of the 

time, even under extreme conditions of soil moisture content. Moreover, the 

results show that temporal stability is more pronounced during dry periods. It is 

also found that a clear correlation exist between mean soil moisture contents and 

variance for the whole measurement range considered. In general, locations 

representative of dry conditions are more stable, and locations representative of 

wet conditions are less stable. The temporal stability is generally lower during the 

transition periods between dry and wet moisture conditions.  

According to Starks et al. (2006) contributing factors that can affect temporal 

stability include soil texture, topographic features such as slope and aspect, 

vegetation, and precipitation pattern. Considering the effect of spatially variable 

precipitation on temporal stability, Starks et al. (2006) showed the difficulty of 

determining the actual effect of variations of precipitation. They argued that soil 

factors contributed more to temporal stability than did spatially variable 

precipitation. The present study has led to similar observations. While the ‘dry’ 

temporally stable sites are located in sand or loamy sand (e.g. M1, which drain 

more quickly than clay soils), the ‘wet’ temporally stable sites are found in clay 

type soil (e.g. S3, which holds water for a longer period). Hence, for future soil 

moisture studies, Starks et al. recommended characterization of soils in the 

catchment before selecting the soil moisture measurement sites.  

Knowledge of this temporal pattern of soil moisture is important for the design 

and implementation of field sampling campaigns. It is evident that when the soil is 

dry, homogeneity is greater. During the transition periods however, soil moisture 

content varies across the catchment and increases the uncertainty of the temporal 

pattern. Therefore, when estimating soil moisture for large areas such as for 

modelling applications or validation of satellite-based moisture contents, it would 
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be appropriate for sampling to be performed under circumstances that will 

guarantee the least variability. 

The study shows that in order to be able to select a representative site, it would 

suffice to maintain the measuring station network over approximately 12-15 

months. While for smaller catchments (< 200 ha) a period of 12 month is 

sufficient, for larger catchments (>1000 km2) with distinct annual rainfall 

variations, at least 15 months are required.  From that time onwards, monitoring 

(the mean) soil moisture content could be carried out at a single site or a small 

number of selected sites.  

According to these results, two types of sampling procedures can be proposed for 

future soil water content monitoring programs in Australian catchments. First, in 

case of permanent monitoring programs, identification of time-stable locations 

that are representative of the soil moisture status of the catchment is important. 

This is useful in order to reduce the number of sampling sites maintained on a 

permanent basis. Second, in case of non-permanent monitoring programs 

emphasis should be given to the sampling frequency compared to the number of 

sampling sites. For this purpose, a two-step approach can be adopted to identify 

suitable locations and to increase the sampling frequency. The objective of the 

first step is to identify the time-stable locations that are representative of the soil 

moisture status of the catchment. Then, in a second step, the number of sampling 

points can be reduced and resources can be allocated to increase the sampling 

frequency. This approach helps to collect more representative soil moisture fields 

of higher temporal resolution for modelling applications.  

It is equally important to consider temporally stable sites whose moisture contents 

are always under- or over-estimates of the catchment average moisture content. 

This is because, apart from providing mean moisture content of the catchment, 

such sites are useful in determining ranges of moisture content within the 

catchment.  

In some situations, area average soil moisture is needed to validate the soil 

moisture products from remote sensing with large footprints such as from AMSR-

E. In such instances, suitable dates can be selected based on the mean relative 

difference of soil moisture computed from all the monitoring sites within the 
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chosen catchment or ideally from all monitoring sites within the selected pixel. 

This would assist in reducing the level of uncertainly in the measured soil 

moisture contents if the selected dates are of low mean relative difference. 
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CCCHHHAAAPPPTTTEEERRR   SSSIIIXXX   

6. DERIVING SPATIAL PATTERNS OF ROOT-
ZONE SOIL MOISTURE FROM POINT-SCALE 
MEASUREMENTS  
This chapter studies the prediction of SWC from remotely sensed land surface 

temperature and vegetation observations. This work aims to develop empirical 

relationships to predict soil water content from a limited number of point scale 

soil moisture measurements, remotely sensed information and soil physical 

characteristics. The published literature provides no clear guidance on deriving 

surface soil water distributions from combined use of in-situ 0-30 cm soil 

moisture measurements and remotely sensed information. The main objective of 

this chapter is to develop new methodologies to regionalize the in-situ point-scale 

soil moisture measurements based on remotely sensed land surface temperature 

and vegetation observations. Thus, the ultimate goal of this study is to infer the 

catchment scale soil moisture distribution pattern from a limited number of soil 

moisture measurements. The methodologies proposed here establish the 

foundation for using remotely sensed surface temperature and vegetation indices 

as surrogate variables to derive spatial patterns of soil moisture distributions.  
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6.1 INTRODUCTION 
 
The magnitude of a state variable such as soil moisture content of the upper soil 

layers at a given location and at any given time is a reflection of the prevailing 

water and energy balances at the time of measurement (Gomez-Plaza et al., 2000). 

Furthermore, any such soil moisture value is the result of recent hydrological 

processes that have occurred at that location. From a hydrological modelling 

perspective, the soil moisture status of a catchment is an important factor. In 

applications of traditional Hortonian infiltration models, it is often assumed that 

the moisture content is uniform across the catchment. Yet, it is generally accepted 

that the variability of soil moisture at point and field scales is considerable, even 

for near-uniform soil (Sivapalan and Wood, 1986; Famiglietti et al., 1998). 

Furthermore, even in small catchments soil moisture may exhibit considerable 

spatial heterogeneity (Sivapalan and Jeevaraj, 1992; Grayson et al., 1997). Such 

spatial variability of the near-surface soil moisture content is mainly determined 

by variations in soil characteristics, topography, water routing processes and 

evapotranspiration (Merz and Plate, 1997). Thus, estimation of catchment scale 

soil moisture content from point scale observations will remain a difficult task.  

Soil moisture content is traditionally measured with ground-based techniques. As 

discussed in Chapter 2 ground-based techniques often relate to a small land area. 

Furthermore, ground based measurement techniques are usually expensive and 

costs limit the number of measurement sites in the catchment. In addition, some 

unavoidable restrictions are present in selecting sites for measurements. For 

example, due to difficulties in accessing the sites, not every selected site will be 

included in a measurement program. The limited number of point scale 

measurements therefore may not always provide accurate information on the 

spatial pattern of the soil moisture distribution. On the other hand, currently 

available passive microwave techniques are also not very appropriate for study of 

the catchment scale moisture distribution due to their coarse resolution and to the 

relatively shallow layer of soil considered. Theoretical calculations have shown 

that the maximum depth measured with microwave technology is approximately 

one tenth of the wavelength of the microwave band used or 10-15 mm. In-situ 

point scale measurements are therefore needed to understand the soil moisture 
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content at deeper layers as well as the spatial distribution of land surface soil 

moisture. The main problem addressed here is to up-scale limited point-scale 

measurements and to derive the surface wetness patterns. 

It is obvious that a limited number of point scale measurements do not provide 

detailed information on the spatial pattern of the soil moisture distribution. 

Furthermore, soil moisture measurements from sparse networks do not contain 

sufficient information to study concepts such as preferred states in spatial soil 

moisture patterns. Remotely sensed observations, on the other hand, provide 

information on the spatial distribution of soil moisture.  Thus, combined use of 

point-scale soil moisture measurements and remotely sensed observations may be 

useful in deriving catchment-scale surface wetness patterns.   

In many catchment scale studies, it is common to measure soil moisture in a 

number of locations. To get the maximum benefit from a network of monitoring 

sites, it is required to infer a soil moisture distribution across the catchment from 

these point scale measurements. The derivation of a catchment scale soil moisture 

distribution from limited numbers of monitoring sites is a complex process. The 

most convenient approach is to select a variable as predictor which meets at least 

two basic requirements. First, the selected variable must have a strong relationship 

with soil water content. This ensures the development of suitable empirical 

equation. Second, the selected variable should be able to be measured accurately 

and conveniently. Often, remotely sensed data such as land surface temperature 

and vegetation indices meet this condition.  

Vegetation health and land surface temperature are two key indicators of soil 

water near the land surface. Vegetation health may be conveniently expressed in 

terms of vegetation indices. The status of the surface vegetation is required for 

modeling vegetation productivity, land surface climates (Sellers et al., 1997), and 

global carbon budgets and in agricultural resource management, whilst land 

surface temperature variations are required in study of the surface energy balance 

components. Both of these parameters are related to the soil moisture. In order to 

quantitatively and accurately characterize the regional dynamics of soil moisture, 

to differentiate short-term and long-term trends, as well as to distinguish regional 

from point-scale phenomena, these two parameters must be observed periodically 

and regionally with high accuracy. Satellite remote sensing is the most effective 
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means of collecting such regional data on a regular basis. Remotely sensed land 

surface temperature (LST) data are now available on a daily basis. Computed 

vegetation indices (VIs) are also available for a range of spatial and temporal 

scales.  

Many researchers (e.g. Price, 1980; Carlson et al., 1994, 1995; Moran et al., 1996; 

Wang et al., 2001; Wan et al., 2004) have studied the relationship between soil 

moisture and remotely sensed LST and VI.  The knowledge gathered so far 

however, is not adequate to use LST-VI relationships to predict soil water content 

in a given catchment with confidence, due to the complex nature of the behaviour 

of soil moisture and the range of dominant variations in climatic, geographical and 

geological conditions in different catchments. As reported by Capehart and 

Carlson (1997), soil moisture derived from land surface temperature cannot easily 

be used in calculating the column-average soil water content as required for 

hydrological modelling applications. For this reason, further studies are needed of 

the links between LST-VI relationships and field measured 0-30cm soil moisture 

contents. The objectives of such studies must be three-fold: First, it is necessary to 

explore the possibility of establishing dependable relationships between LST-VI 

and 0-30 cm (root-zone) soil moisture. Second, it is necessary to explore the use 

of such relationships to derive spatial moisture patterns using LST and VI as 

surrogate variables. Finally, the use of LST and VI relationships must be extended 

to use in the disaggregation of large area soil moisture measurements. 

The present study explores new methods of deriving soil moisture distributions 

which are based on a limited number of in-situ soil moisture measurements and 

remote sensing observations, with the ultimate aim of utilising daily LST and 16-

day vegetation index products from the MODIS sensors.  First, various 

approaches are presented to predict soil moisture from combined use of in-situ 

measurements, LST and other information like air temperature and soil types. 

Next, this study focuses on predicting soil moisture based on a catchment average 

soil moisture measurement and remotely sensed wetness indices. Both approaches 

are developed as independent methods to upscale the measured soil moisture from 

a given network of monitoring sites and depend on the use of remotely sensed 

data from the MODIS sensor. This study therefore begins with an evaluation of 

MODIS products, mainly the LST and vegetation indices.   
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Additionally, the knowledge gained in this study also offers insight into the 

selection of an appropriate covariate for disaggregation of large area soil moisture 

measurements.   

6.2 DATA SETS AND PRE-PROCESSING 
The following data sets have been used in the analysis. 

a. Daily measured 0-30 cm (root-zone) soil moisture from 25 sites 

(out of 26 sites) as described in Chapter 3.   

b. Daily soil temperature measurements (at 15 cm from the surface) 

from the soil moisture monitoring sites. 

c. Climatic variables observed in S2 and K6 climate stations.  

d. Aqua-MODIS Vegetation Indices (VI) 16-day L3 Global products 

(i.e. MYD13A2): The data version used in this study was V003. 

The Goulburn catchment is within the tile number h30v12 and all 

images for 2003 and 2004 were downloaded from the EOS data 

gateway. 

e. Aqua-MODIS Land Surface Temperature (LST) and Emissivity 

Daily L3 Global product (i.e. MYD11A1): MYD11A1 products 

provide per-pixel temperature and emissivity values. The data 

version used in this study was V003.  Similar to the VI products, 

the tile number h30v12 contains the LST for entire Goulburn 

catchment. All available daily data for the year 2004 were 

downloaded from the EOS Centre. In case of 2003 daily LST data 

however, only selected images were downloaded at weekly 

intervals. 

Data sets (a) to (c) have been taken directly from the field measurements. The 0-

30 cm soil moisture is from the field calibrated CS 616 sensors as described in 

Chapter 3.  Data sets (d) and (e) require pre-processing for two reasons: first, to 

reduce the file size and to extract data only from the area covered by the Goulburn 

river catchment and second, to re-project the map layers into a standard 

geographic latitude and longitude coordinate system to match with the other map 
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layers of the area. A rectangular area spread between the upper left coordinate of 

149.64oE, 31.75oS and the lower right coordinate of 150.71oE, 32.87oS has been 

used to extract the raster layers. This area gave 114 (lines) x 109 (columns) data 

points in a 0.0099 degree (about 1100 m) pixel.  Both the data extraction and the 

re-projection have been carried out using MODIS Re-projection Tool (see the 

website at http://nsidc.org/PROJECTS/HDFEOS/MS2GT/ for more details). 

ERDAS Imagine spatial analysis software has been used in the next step of 

processing where the pixel level data were extracted from the locations of the 

ground-based soil moisture monitoring sites.  For this purpose, a data extraction 

model was developed with the spatial modeller program of ERDAS Imagine.   

Resolution of the MODIS-based LST and VI data used for the present study is 

1.1x1.1 km2. Despite the availability of high resolution (250x250 m2) MODIS VI 

data, the MODIS LST data are not available in 250x250 m2 resolution.  In order to 

match with the resolution of the available LST data, both LST and VI data have 

been downloaded in 1.1x1.1 km2 format. 

The LST and VI data downloaded for the year 2004 were mainly used for the 

establishment of relationships with measured soil water content (SWC). It was 

also noted that due to cloud contamination not all downloaded LST images were 

suitable for the analysis. For example, as shown in Table 5-1 only 20 images had 

less than 5% of cloud cover. Images with over 5% of cloud cover were chosen 

visually and images were carefully selected based on the position of the clouds to 

ensure a minimum effect on the studied sub-catchments.  Consequently, 124 LST 

images (out of 360) were considered suitable for the subsequent analysis. In case 

of 2003 data, MODIS LST images were selected on weekly basis and 58 images 

were downloaded as shown in Table 6-2.  Due to cloud contamination however, 

only 28 images were found usable.   
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Table 6-1:  Cloud cover percentages of the LST images selected from year 2004 for the 
analysis.  

% Cloud cover No of selected Images 
0 - 5 % 20 
5 - 10% 67 
10 - 15% 25 
15 - 20% 4 
20 - 25% 2 
Over 25% 6 

Total no. of images 124 
 
Table 6-2:  Description of 2003 MODIS LST images downloaded. Images selected for the 
analyses are shown in bold characters.    

Day Clouds LST (K)  Day Clouds LST (K) 
# % min max  # % min max 

7 64% 286.5 332.0  210 2% 277.7 295.1 
14 31% 287.6 331.8  217 47% 281.9 300.8 
21 26% 295.8 339.8  224 59% 286.1 297.8 
28 76% 297.6 318.9  231 16% 276.7 299.0 
35 51% 281.7 325.0  238 80% 276.4 296.2 
42 15% 291.9 326.5  245 9% 279.1 302.9 
49 98% 293.7 301.9  252 50% 281.2 305.2 
56 58% 290.4 307.3  259 98% 278.7 294.9 
63 100%    266 100%   
70 77% 279.8 306.3  273 48% 274.4 302.9 
77 6% 288.1 320.8  280 52% 281.1 297.4 
84 23% 282.5 317.3  287 47% 280.6 303.1 
91 23% 284.3 316.6  301 99% 287.2 296.5 
98 51% 281.2 317.3  308 0% 287.8 317.7 

105 0% 287.3 302.7  309 13% 291.9 325.0 
112 18% 283.3 306.2  310 98% 289.4 301.2 
119 58% 281.8 305.8  311 99% 293.0 304.9 
126 76% 280.9 297.2  312 80% 288.2 303.7 
133 44% 282.1 301.0  313 10% 282.9 323.5 
140 53% 273.2 299.0  314 68% 287.2 318.4 
147 89% 280.8 293.4  315 34% 280.9 319.8 
154 77% 278.8 297.4  322 6% 287.8 320.4 
161 70% 276.8 294.1  329 43% 280.9 312.8 
168 1% 283.2 295.9  336 99% 289.2 306.0 
175 98% 274.5 283.4  343 8% 287.7 324.6 
182 91% 275.2 288.8  350 57% 288.6 318.6 
189 100%    357 1% 296.2 329.8 
196 0% 284.0 298.5  364 7% 295.7 330.7 
203 90% 276.6 296.4        
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6.2.1 DISTRIBUTION OF LAND SURFACE TEMPERATURES 
IN THE GOULBURN CATCHMENT  

Surrogate variables that can be measured accurately on a routine basis could 

potentially provide a useful method for deriving spatial distributions of soil water 

contents over large catchments. Soil temperature is one promising variable due to 

a range of supporting factors. First, it shows very strong correlation with soil 

moisture content. For instance, when dry soil is exposed to solar radiation, soil 

temperature increases due to the absorption of radiation. The temperature of a wet 

soil does not increase as much with solar radiation, due to the higher specific heat 

of water. Therefore, in a given region and under the same atmospheric conditions, 

soil temperatures of wet areas are less than those of dry areas. Second, as 

discussed in section 2.3.3 current remote sensing techniques for LST 

measurements are well developed and reasonably accurate estimates may be 

obtained (e.g. 1oK accuracy from MODIS LST products). Third, remotely sensed 

LST measurements may be computed for a range of spatial scales (e.g. 30m in 

Landsat TM, 90m in ASTER, 1km in MODIS and ATSR, 1.1km in NOAA 

AVHRR). Several current satellites also provide higher temporal resolution. For 

example, two MODIS sensors (in Aqua and Terra satellites) give four overpasses 

(two day-time and two nighttime) per day. Finally, a reliable daily LST product is 

freely available for the MODIS sensor.  Therefore, it may be assumed that 

remotely sensed LST measurements provide the best readily available and 

spatially distributed surrogate variable for soil moisture interpolation. 
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6.2.1.1  Comparison of LST products from MODIS and 
NOAA sensors 

LST can be computed from a variety of sensor data. Many LST retrieval 

algorithms have been developed for NOAA data and some of these methods have 

been extended to other sensors such as MODIS as discussed in Chapter 2. In order 

to assess the suitability of MODIS LST products, an analysis was performed with 

LST computed from NOAA-16 image with site-specific climatic data. 

Characteristics of the NOAA image and the climatic features at the time of image 

acquisition are shown in Table 6-3 and the estimated LST based on the Split 

Window Technique (SWT) as discussed in Section 2.3.3.2 using Eq. 2-10 over the 

catchment is shown in Figure 6.1(a). The emissivity values which are required to 

compute the SWT coefficients were derived from the ‘vegetation cover’ approach 

as described by Valor and Caselles (1996).  

Table 6-3:  Characteristics of the NOAA Image and associated climatic features (at S2) at the 
time of image acquisition. 

Satellite name NOAA-16 
Orbit number 18605 
Acquisition start 02 May 2004 at 14:44:15 EST 
Acquisition end 02 May 2004 at 14:58:18 EST 
Overpass direction Ascending 
Sun zenith angle 57.79o 
Air Temperature 15.52oC 
Soil Temperature @ 2.5 cm depth 15.51oC 
In/out Short-wave radiation 450.1/84.5 Wm-2 
In/out Long-wave radiation 143.1/16.6 Wm-2 
Relative humidity 33% 
Atmospheric pressure 97.4 kPa 
Soil heat flux 13.8 Wm-2 
 

Figure 6.1(b) also shows the MODIS daytime LST estimates (acquired about 

14:30 hrs on 2 May 2004), but due to presence of clouds, a number of missing 

pixels are apparent. Despite the fact of different image capturing times, it appears 

that the two images show many similar patterns.  It can be argued that LST 

computed from two separate radiometers can provide similar results.  For this 

study, as the MODIS LST products are readily available, all other analyses were 

continued with MODIS LST products.  
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Figure 6.1: (a) Daytime land surface temperatures (in oC) for Goulburn River Catchment 
computed from NOAA image captured on 2 May, 2004 at 14:50 and (b) MODIS daytime 
LST product on the same day at 14:30. (Note: missing data pixels in part (b) are shown as 
black). 

 

6.2.2 QUALITY OF MODIS LST DATASETS 

Figure 6.2 shows MODIS LST estimates (in K) for the Goulburn River Catchment 

during 2004 for a) a cloud free winter day (day 123), b) a clear summer day (day 

320), and c) the difference between the both days. Figure 6.2 shows cooler land 

surface temperatures in dense vegetation areas particularly in the southern half of 

the catchment and along the northern boundary. The hot spots in the northern half 

of the catchment are either agricultural areas or sparsely vegetated zones.  The 

cool spots are related to wet soil conditions.   

31 

0 

(a) (b) 
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Figure 6.2:  Daytime MODIS LST estimates (in K) for Goulburn catchment during 2004:  a) 
a cloud free winter day (day 183), b) a clear summer day (day 320), and c) the difference 
between summer (day 320) and winter (day 183) temperatures. 

 
The greater difference between summer and winter LST estimates provides an 

indication of bare soil or sparse vegetation conditions. As seen in Figure 6.2c the 

upper half of the catchment shows temperature difference of over 20 K between 

the two seasons. This is due to comparatively sparse vegetation in the area as 

observed during field visits. Therefore, these observations indicate in a qualitative 

way that MODIS LST data provide realistic estimates of land surface 

temperatures.  

In order to obtain a better insight into the suitability of MODIS LST data over the 

Goulburn catchment, a comparison has been made with ground-based measured 

near-surface soil temperature data as shown in Figure 6.3. It is evident that 

MODIS LST measurements are comparable with ground-based measured soil 

temperature measurements. As seen in Figure 6.3a, daytime (between 1.30 – 3.00 
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pm in Aqua MODIS) LST measurements show slightly higher values than the 

actual soil temperature measured at 15 cm below the surface. Under normal 

climatic conditions, daytime heat fluxes are in the downward direction and 

therefore, land surface temperatures are generally higher than the subsurface 

temperature. During the night however, the soil heat flux direction changes in the 

absence of solar radiation. This situation is characterised by lower surface 

temperature and higher subsurface temperature as shown in Figure 6.3b. The slope 

of this regression coefficients between MODIS LST and field measured soil 

temperatures are 0.567 and 0.884 for daytime and nighttime respectively. In 

addition, as discussed in section 2.3.3.2, more stable nighttime conditions 

improved the performance of the LST retrieval algorithm as evidenced by the 

higher R2 value for the nighttime observations (0.81) against the daytime 

observations (0.77). Furthermore, as seen in Figure 6.3c the temporal patterns of 

MODIS LSTs are comparable with the temporal patterns of measured soil 

temperature. When considering the scales of measurement of the MODIS LST at 

1 km2 and the soil temperatures at point scale and the obtained regression 

coefficients, it can be argued that remotely sensed LST observations such as from 

the MODIS sensor are useful substitutes for the in-situ soil temperature 

measurements.  
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a) 
Comparison of MODIS daytime LST with ground measured soil 

temperature at 15 cm depth at G1, during 2004 
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Comparison of MODIS nighttime LST with ground measured soil 
temperature at 15 cm depth at G1, during 2004
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Figure 6.3:  Comparison of MODIS LST (X-axis) and ground measured soil temperature at 
15 cm depth (Y-axis): a) daytime MODIS observations and daily maximum soil temperature; 
b) night-time MODIS observations and daily minimum soil temperature; c) temporal 
patterns of MODIS daytime and nighttime LST and daily maximum soil temperature at G1 
during 2004. 
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6.2.3 DISTRIBUTION OF VEGETATION INDICES IN THE 
GOULBURN CATCHMENT 

The temporal changes of vegetation indices may reveal insight into vegetation 

health and water availability during the period concerned. NDVI is the most 

popular vegetation index but it does not consider the canopy background effect. 

Consideration of the canopy background correction in the computation of 

vegetation index is relevant to the Goulburn River catchment due to its sparse 

vegetation nature. Because the northern half of the catchment consists of darker, 

basalt derived soils in contrast to the southern half which is dominant with light-

coloured sandstone-derived soils, this suggests the need of removing the soil 

background effect from the vegetation indices. Both NDVI and EVI are therefore 

considered.  

The temporal dynamics of MODIS derived NDVI and EVI at four selected 

locations in the Goulburn catchment over the two-year study period are shown in 

Figure 6.4 and summarized in Table 6-4.  It is clear from the data that the NDVI 

values are consistently higher than the EVI values. This is due to the effect of 

background soil in sparse vegetation conditions. While the temporal changes of 

vegetation indices at G5 are at a minimum due to low water availability of sandy 

loam soil (Figure 6.4a), M7 exhibits 52% change of EVI and 42% change of 

NDVI over the same period (Figure 6.4d). This is due to wetter conditions at M7 

and the greater water holding capacity of the clay loam soils. The progress of 

cropping patterns is obvious from the temporal pattern of the vegetation indices 

shown in Figure 6.4b and Figure 6.4c. The response is due to different crop types 

and management practices such as grazing. Figure 6.4 also helps to understand the 

evolution of seasonal patterns of vegetation. The seasonal rainfall pattern during 

2003 was not normal due to the long drought in the 2002-2003 period. This is 

reflected by the sharp increase in vegetation indices during the early part of 2003 

and sharp decrease in vegetation indices towards the latter part as in G3 or as a 

plateau seen in M7  (Figure 6.4d). In 2004, a bimodal distribution of vegetation 

index values in response to the seasons is evident at many sites such as G3, K1 

and M7. Peak vegetation periods in 2004 occur in early to mid autumn and in mid 

spring. 
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Figure 6.4:  Vegetation index values over two-year period at four selected locations in the 
Goulburn river catchment. a) G5 – native grass in sandy soil, b) G3- crops in black cracking 
clay soil, c) K1- crops in red clay soil, and d) M7- native pasture in black clay loam soil. 
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Table 6-4:  Temporal variations of vegetation indices during 2003-2004 at four selected 
locations in the Goulburn River Catchment. 

 
 Site  EVI    NDVI  

Site Properties Min Max Avg.  Min Max Avg. 

G5 Native grass, sandy 
loam soil 0.172 0.331 0.256 

 
0.321 0.611 0.482 

G3 Cropping area, 
black clay soil 0.193 0.633 0.396 

 
0.222 0.825 0.600 

K1 Cropping area, red 
silt loam soil 0.115 0.522 0.278 

 
0.265 0.799 0.477 

M7 Native grass,  black 
clay loam soil 0.273 0.574 0.416 

 
0.479 0.831 0.675 

 

The spatial patterns of the vegetation indices (VI) help to understand the relative 

distributions of healthy vegetation and possible water stressed areas. Figure 6.5 

shows the spatial and temporal evolution of NDVI distributions across the 

Goulburn catchment during 2004. It can be seen, that there is a level of 

consistency in spatial structure evident throughout the region. Particularly along 

the northern border and in the southern part of the catchment healthy vegetation is 

present throughout the year. This may be due to adequate soil moisture in these 

regions. The vegetation in the northern half of the catchment shows a greater 

seasonal behaviour. In general, it is not dense and reaches its maximum values 

around days 45-81 (i.e. mid-February to mid-March). The maximum NDVI values 

thus indicate favourable conditions for plant growth such as adequate soil 

moisture. This is obvious when comparing these values with the monthly rainfall 

distribution pattern (see Figure 3.16 in Chapter 3)  

The spatial distribution and temporal behaviour of EVI across the Goulburn 

catchment during 2004 is shown in Figure 6.6. The EVI distribution (Figure 6.6) 

across the catchment shows considerable similarity to that of NDVI distribution 

(Figure 6.5). However, when compared, the magnitude of EVI values is less than 

the NDVI values. Elimination of the background soil signature from the EVI 

computation procedure results in low EVI values. Despite the fact that EVI is a 

better indicator than the NDVI, it is important to also consider the NDVI due to its 

wider use. In addition, the considerable differences between NDVI and EVI 

provide valuable information on the nature of land surface temperature signatures 

derived from remote sensing. Very low values of EVI, especially for the northern 
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half of the catchment, suggest that bare soils are dominant in LST signatures. This 

is advantageous as the LST can be correlated with soil moisture and LST 

distributions may be used to establish soil moisture scaling relationships in the 

study catchment. For this reason, the northern half of the catchment appears 

suitable for studying the downscaling of large area soil moisture estimates with 

LST based approaches.  
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MODIS-NDVI During 2004

Day 017 Day 049 Day 081

Day 113 Day 145 Day 177

Day 209 Day 273Day 241

Day 353Day 337Day 305

Low High
 

Figure 6.5:  Spatial distribution and temporal behaviour of NDVI as computed from MODIS 
images for the Goulburn river catchment during 2004. 
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MODIS-EVI During 2004

Day 017 Day 049 Day 081

Day 113 Day 145 Day 177

Day 209 Day 273Day 241

Day 353Day 337Day 305

Low High
 

Figure 6.6:  Spatial distribution and temporal behaviour of EVI computed from MODIS 
images at Goulburn catchment during 2004.  
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6.2.3.1 Vegetation indices and soil water contents 

Vegetation indices can be used as a surrogate variable for deriving spatial soil 

moisture distributions because vegetation health is a good indicator of soil 

moisture status. In general, higher vegetation index (VI) values are associated 

with favourable growing conditions that usually result from unrestricted supply of 

soil water for plant growth. In contrast, a low VI value during the growing season 

indicates soil water restrictions for healthy plant growth.  Thus, VI provides some 

information on the SWC. The information derived from VI however, is not 

sufficient to adequately predict the SWC. For example, when the measured SWCs 

are plotted against the Enhanced Vegetation Index (EVI), positive trends can be 

seen only in some catchments (see Figure 6.7 and Table 6-5).  The use of VI as 

the only variable for predicting SWC is therefore inappropriate.   

EVI and SWC 
during 2004
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Figure 6.7:  Relationships between fortnightly EVI and fortnightly-averaged 0-30 cm SWCs 
(cm3cm-3) during 2004 in study catchments. 

 

Table 6-5:  Results of the simple linear correlation analyses between fortnightly-EVI in 2004 
and average SWC during the same period in different sub catchments. 

Catchment  n Intercept Regression 
coefficient 

correlation 
coefficient (ra) 

S. Goulburn  121 0.21 0.4466 0.542** 
Krui  132 0.28 -0.0144 -0.017ns 
Merriwa  154 0.22 0.3697 0.496** 
Stanley  132 0.22 0.2163 0.538** 
Goulburn  539 0.23 0.2208 0.282** 

n = sample size, ra = ** significant at 1% level, ra = * significant at 5% level, and 
ra = ns non significant 
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Any weak linear relationship between SWC and vegetation index has limited 

practical value due to the complex nature of the relationship between the 

vegetation status and the soil water content. Physiological changes in the 

vegetation due to seasonal effects can have a significant impact on the VI. A range 

of vegetation types within a 1-km pixel and their variable responses due to soil 

water availability make it difficult to interpret changes in the vegetation index as 

caused by changes in SWC at the scale of most satellite footprints.  For this 

reason, vegetation indices can provide qualitative information rather than result in 

a quantitative measure of soil water content.  

The combined use of LST and vegetation indices is expected to perform better in 

establishing relationships with SWC. Section 2.3.5 has summarized the 

application of LST and vegetation indices for deriving wetness indices. It is 

expected that wetness indices derived in part from satellite-based vegetation 

indices are capable of providing a better quantitative measure than vegetation 

indices alone. They are thus potentially suitable for a range of practical 

applications including soil moisture scaling studies as discussed in Section 2.3.5.  

The present study, therefore will consider the use of wetness indices for predicting 

soil water contents. 

 

6.3 DERIVING SOIL WATER DISTRIBUTIONS 
FROM LST, AIR TEMPERATURE AND SOIL 
CHARACTERISTICS 
Scaling relationships provide a means to relate soil water content of different soil 

types or spatial locations using simple conversion factors called scaling factors. It 

is a useful technique for describing the spatial variability of soil water content. 

According to Williams and Ahuja (2003), there are two basic ways to derive 

scaling factors: dimensional analysis and empirical methods. Dimensional 

analysis is based on the existence of physical similarity in the system. The 

empirical methods are based on regression analysis. Miller and Miller (1956), as 

cited by Williams and Ahuja (2003) were the first to present physically based 

scaling factors for soil hydraulic properties that were based on the assumption of a 

geometric similarity existing among different soil types.  The empirical methods 
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are quite popular among researchers and many studies have been found relating 

soil water content to topographic parameters (Sulebak et al. 2000, Svetlitchnyi et 

al., 2003), wetness indices and remotely measured land surface parameters 

(Jackson et al., 1981a; Moran et al., 1996; McVicar and Jupp, 2002; Scott et al., 

2003). This study focuses on regression based empirical scaling models to scale 

the field measured surface (0-30 cm) soil water content across a catchment using 

remotely sensed LST and vegetation data, and other information such as air 

temperature and soil type. 

6.3.1 ENERGY BALANCE CONSIDERATIONS FOR SOIL 
MOISTURE PREDICTIONS 

The exchange processes occurring at the land surface are very important for the 

redistribution of moisture and heat in soil and atmosphere. The land surface 

connects the moisture and heat balances of the soil and atmosphere. The energy 

balance for land surface can be written as: 

 EHGRn λ++=  (6-1) 

where Rn is the net radiation (Wm-2), G is the soil heat flux at the land surface 

(Wm-2), H is the sensible heat flux (Wm-2) from the land surface to the air, and λE 

is the latent heat flux to the air (Wm-2).  

The soil wetness conditions are to a great extent controlled by hydrological 

processes such as rainfall, evaporation, transpiration, infiltration, capillary rise, 

percolation and drainage. The land surface hydrology affects the near-surface 

moisture conditions and therefore controls the partitioning between G, H and λE. 

It is generally assumed that under conditions of complete canopy closure, 

approximately 10 percent of net radiation is transferred to the soil or (Rn - G) = 

0.9Rn. Soil wetness is therefore manifested in the surface energy balance by the 

relative magnitudes of H and λE. Furthermore, the sum of H and λE will depend 

on Rn. Thus, if a soil is dry, H will be large and λE will be small, and the contrary 

holds true for wet soils. With this assumption, it can be argued that the estimation 

of H and λE (i.e. the Bowen ratio approach) should provide a method of 

estimating near-surface moisture conditions. 
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Both H and λE depend on land surface temperature. For example, H can be 

expressed as (Jackson et al. 1981a): 

 aasp rTTcH /)( −= ρ  (6-2) 

where ρ is the density of air (kg m-3), cp the heat capacity of air (J kg-1 oC-1), Ts the 

canopy temperature or land surface temperature (oC), Ta the air temperature (oC), 

and ra the aerodynamic resistance (s m-1). As ρ, cp and (to a lesser extent) ra are 

approximately constants, it is apparent that the value of H is determined by the 

difference between the land surface temperature and the air temperature (for 

average wind speed conditions). 

Moreover, the latent heat flux, λE is the product of the evaporative flux, E (kg s-1 

m-2), and the latent heat of evaporation, λ (2.44 x 106 J kg-1 at 25oC). The value of 

λ is also temperature dependent (Evett, 2002):  

 )99995.0(10370.2501.2 23 =×−= − rTλ  (6-3) 

where T is in oC. Because of the strong connection between the soil moisture and 

temperature, measurement of land surface temperature gives an indirect way of 

estimating soil wetness status. Many researchers have therefore attempted to use 

the land surface temperature for soil moisture estimation (Jackson et al. 1981a; 

Choudhury and Golus, 1988; Smith and Choudhury, 1991; Carlson et al., 1994, 

1995; Moran et al., 1996; Bastiaanssen et al., 1997; Gillies et al., 1997; Goetz, 

1997; McVicar and Jupp, 2000; Wang et al., 2001; Goward et al., 2002; Li and 

Islam, 2002; Sandholt et al., 2002; Luquet et al., 2004; Wan et al., 2004).  In 

some of these studies, spatial variability of surface soil moisture is implied by the 

large range in surface radiant temperature present in the satellite imagery.  

Jackson et al. (1977) as quoted by McVicar and Jupp (2000) developed an 

empirical model to estimate daily actual evapotranspiration (ETa_DAY) by: 

 )(_ asDAYDAYa TTBARnET −−=−   (6-4) 

where RnDAY is daily net radiation (W m-2), Ts is surface temperature (K), Ta is air 

temperature (K) and A and B are empirical coefficients which are consistent over 

areas with similar land cover structures. 
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Later, Jackson et al. (1981a) combined the Penman – Monteith equation with a 

one-dimensional energy balance equation to derive an expression for land surface-

air temperature.  
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where Cv the volumetric heat capacity of air (J oC-1 m-3), rc the canopy resistance 

(s m-1) to vapour transport, γ the psychrometric constant (Pa oC-1), and ∆ is the 

slope of the saturated vapour pressure-temperature relation (Pa oC-1).  The above 

relationship has been used to develop indices such as Crop Water Stress Index 

(CSWI, Jackson et al., 1981a) and Water Deficit Index (Moran et al., 1996; more 

discussion is given in Section 2.3.5.1) to characterize the land surface wetness 

conditions using the difference between remotely-sensed measurements of land 

surface temperatures and air temperatures (Ts-Ta). 

The Ts–Ta method can be regarded as yielding a specific time-of-day measure of 

the land surface wetness condition. It is a good indicator characterizing the land 

surface moisture status during warmer months (e.g. in summer). In theory, higher 

Ts –Ta values are associated over dry surfaces and lower values indicate wet 

conditions. The estimated Ts–Ta values over an area therefore should provide a 

useful covariate for approximately describing field spatial variability of soil 

moisture conditions. The main strength of the Ts –Ta approach is its strong 

physical nature. However, it is difficult to compare Ts –Ta measurements with soil 

water contents over longer time scales. 

Apart from a one-time LST measurement, consideration of two LST 

measurements such as one during daytime and the other during nighttime can also 

provide some indication of soil moisture status. Diurnal cycles in the surface 

temperature are strongly dependent on the thermal and physical properties of the 

top several centimetres of the soil. Many factors including albedo, dust opacity, 

and atmospheric pressure have an effect on surface temperature but thermal inertia 

is a key property in controlling these diurnal temperature oscillations. Thermal 
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inertia (I) is defined as a combination of thermal diffusivity (k), density (ρ), and 

specific heat capacity (c): 

 kpcI ≡  (6-6) 

Thermal diffusivity governs the rate of temperature change within a material; it is 

a measure of a substance's ability to transfer heat in and out of that portion that 

received solar heating during the day and cools at night. For a substance like soil, 

k is strongly dependent on the soil water content.  

Thermal inertia represents the ability of the subsurface to conduct and store heat 

energy away from the surface during the day and to return that heat energy to the 

surface through the night. In addition, it is a measure of the heat transfer rate 

across a boundary between two materials. e.g., air/soil. Because materials with 

high thermal inertia possess a strong inertial resistance to temperature fluctuations 

at a surface boundary, they show less temperature variation per heating/cooling 

cycle than those with lower thermal inertia. For soils, higher SWC means stronger 

inertial resistance to temperature fluctuations due to high specific heat of water. 

Therefore, the drier the soil, the greater the amplitudes of the diurnal temperature 

variations. 

6.3.2 LST BASED MODELS FOR SOIL MOISTURE 
PREDICTION 

6.3.2.1 Preliminary study  

Based on the theory described in Section 6.3.1 and the availability of required 

datasets, it is possible to identify at least 5 LST based empirical models to predict 

soil water content (henceforth known as SWC-based models): 

a) Daytime LST (Ts) 

b) Daytime LST - Tair  (Ts–Ta) 

c) Nighttime LST (Ts-night) 

d) Nighttime LST - Tair (Ts-night–Ta) 

e) Daytime – Nighttime LST (∆-LST) 
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In order to evaluate these models, it was decided to use 20 of the sites for 

developing the models and the other 5 sites for testing the predicted water 

contents. Accordingly, the 5 validation sites were selected randomly from the 

catchment. First, four sites were selected randomly in a way to represent one from 

each subcatchment. Then, the fifth site was selected considering all remaining 

sites. Adopting this technique, sites G1, K2, M5 and S2 were chosen in the first 

round and the G3 was selected in the second round. These five sites were used to 

evaluate the soil moisture predictions from the empirical equations which were 

developed with the other 20 sites. Twelve days were selected approximately on 30 

days interval throughout 2004 for developing the empirical models.  All empirical 

models were based on linear regression techniques. 

6.3.2.2 Results and discussion - preliminary study 

The five models developed for the selected 12 days are summarized in Table 6-6. 

It is evident that, in general both during daytime and nighttime, a negative 

relationship exists between LST and SWC. The diurnal temperature variation 

(∆LST) also shows a negative correlation with SWC. The higher R2 values (in 5 

days out of 12 days) with Daytime LST based models indicate that Daytime LST 

works somewhat better in these models than does nighttime LST or ∆LST. 

Furthermore, Ts–Ta appears to produce better regression models than considering 

daytime LST only. This observation confirms findings by other researchers (e.g. 

Jackson et al., 1981a; Moran et al., 1996). The poor performance of the nighttime 

LST models may partly due to the redistribution of soil water during nighttime. 

The use of diurnal temperature ranges (∆LST) appears better than using nighttime 

LST. However, except for Ts–Ta, none of these methods is convincing and they 

are not suitable for predicting catchments scale soil moisture patterns. 
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Table 6-6:  Results of the linear regression analyses between LST (X-axis oC: Daytime LST, 
Daytime LST-Tair, Nighttime LST, Nighttime LST-Tair and ∆-LST) and measured soil water 
contents (Y-axis) during 2004 (n = number of data points). 

DOY n slope Intercept R2  n slope Intercept R2 
  Daytime LST   Daytime LST - Tair 

38 14 -0.010 0.614 0.374  14 -0.011 0.282 0.433
58 20 0.000 0.303 0.000  20 0.000 0.310 0.000
86 18 -0.008 0.496 0.082  18 -0.008 0.234 0.059
87 20 -0.010 0.487 0.106  20 -0.011 0.234 0.096

115 20 -0.015 0.600 0.085  20 -0.023 0.390 0.110
151 20 -0.012 0.503 0.026  20 -0.019 0.364 0.051
210 20 -0.024 0.683 0.124  20 -0.030 0.394 0.154
224 20 -0.012 0.535 0.051  20 -0.013 0.376 0.049
262 20 -0.023 0.912 0.166  20 -0.024 0.436 0.161
297 18 -0.009 0.491 0.176  18 -0.010 0.237 0.172
317 19 -0.014 0.667 0.178  19 -0.017 0.353 0.287
321 20 -0.005 0.419 0.087  20 -0.005 0.269 0.076

          
  Nighttime LST   Nighttime LST - Tair 

38 9 -0.005 0.272 0.020  9 -0.005 0.153 0.020
58 20 -0.084 1.339 0.349  20 -0.033 0.256 0.133
86 20 0.009 0.085 0.012  20 -0.015 0.143 0.044
87 18 -0.038 0.633 0.112  18 -0.038 0.074 0.112

115 20 -0.015 0.251 0.015  20 -0.017 0.091 0.019
151 20 -0.023 0.279 0.048  20 -0.022 0.160 0.033
210 20 -0.055 0.401 0.073  20 -0.046 0.193 0.061
224 0 - - -  0 - - - 
262 19 -0.033 0.402 0.134  19 -0.027 0.162 0.145
297 16 0.016 0.007 0.046  16 0.002 0.193 0.001
317 20 0.007 0.124 0.008  20 -0.013 0.160 0.017
321 20 -0.027 0.505 0.057  20 -0.026 0.121 0.050

          
  ∆-LST      

38 9 -0.006 0.354 0.207      
58 20 0.006 0.186 0.024      
86 18 -0.005 0.324 0.054      
87 18 0.007 0.027 0.034      

115 20 -0.010 0.400 0.045      
151 20 0.000 0.284 0.000      
210 20 -0.021 0.619 0.078      
224 0 - - -      
262 19 -0.005 0.391 0.016      
297 16 -0.007 0.340 0.106      
317 19 -0.011 0.442 0.175      
321 20 -0.005 0.333 0.067           
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In addition, longer time periods were also considered in developing regression 

models to predict SWC from MODIS LST measurements. These analyses were 

performed only using daytime LST, nighttime LST and ∆LST on a weekly, 

monthly and seasonal basis. Models were developed for the all subcatchments as 

well as for the entire Goulburn River catchment. The regression models obtained 

with these longer time periods were not realistic, suggesting that LST based 

models are not suitable for longer time periods because changes in weather 

conditions during longer periods can confound any unique relationship between 

LST and SWC. 

The relationships between any of the five LST-derived covariates and SWC 

clearly depend on atmospheric conditions and will vary with seasons.  For 

example, as shown in Figure 6.8, Ts –Ta shows wider range of values during 

summer than during winter for nearly the same range of soil water content 

throughout 2004. Furthermore, the computed Ts –Ta values during summer days 

tend to be larger than the values computed for winter days. This suggests that it is 

often possible to have large variations of Ts –Ta values for the same soil water 

content. Thus, improved relationships are needed for deriving soil wetness 

patterns form land surface temperature measurements.  
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Figure 6.8:  Temporal patterns of soil water contents (0-30cm) and Ts-Ta during 2004. 
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Land surface temperatures will also depend on other factors such as ground cover 

and soil types. Satellite-based LST measurement gives a mixed signature and 

reflects the combined temperature of soil and vegetation in sparsely vegetated 

areas. The contribution of vegetation may therefore be significant for any satellite-

based LST-SWC schemes as discussed in Section 2.3.5. Similarly, soil types may 

also affect LST due to their physical properties such as colour and water holding 

capacity. As shown in Figure 6.9 the observed ranges of SWC vary with soil type. 

Therefore, the effect of soil type on LST based SWC prediction models may need 

to be considered. One way of introducing the soil factors into the LST based SWC 

prediction models is to use normalized SWC values in their development. Section 

6.3.3 therefore investigates the use of normalized forms of LST and SWC into the 

soil water prediction models. Later, in Section 6.4, these analyses are extended to 

the combined use of LST and vegetation information.  

 

 
Figure 6.9:  Observed ranges of SWC in various soil types during 2004. 
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where the two bounding temperatures, LSTmin and LSTmax, are derived from the 

LST measurements over the entire region and LSTi is the measured temperature in 

a given pixel. The RNTI can be regarded as a special version of the Ts –Ta 

approach and can be applied without using the measured air temperature. For 

example, as seen in Figure 6.10, RNTI holds strong linear relationship with Ts–Ta. 

Interestingly, the range of variations of RNTI throughout the year seems more or 

less the same, irrespective of the season. Generally, RNTI varies from 0.4 to 0.9 

during all 12 selected days which were chosen with approximately 30-day 

intervals. The range of Ts –Ta variations on the other hand, is not consistent and is 

usually narrower during winter (e.g. day-165, day-197) and wider during summer 

(e.g. day-035, day-353). It is clear that RNTI appears more stable to seasonal 

variations than does Ts –Ta. 
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Figure 6.10:  Relationships between RNTI and Daytime LST – Tair (Ts-Ta) during 2004. 

 
RNTI has some advantages compared to Ts–Ta. Due to the linear relationships 

between Ts–Ta and RNTI, it can be argued from Eq. 6.7 that RNTI also provides 

information on soil water status with a strong physical basis. As reported by 

Jackson et al., (1981a, 1986, 1988), Ts–Ta can be explained by the components 

used in the surface energy balance and due to the linear relationship between Ts–

Ta and RNTI, the RNTI can also be described with the same energy balance 

components.  The main advantage of the RNTI is that its values are consistent 

throughout a year. In case of Ts–Ta, it is not possible to obtain such consistent 

values. Furthermore, the computation of RNTI does not require air temperature 

measurements within a catchment and can be computed from the satellite 

observations alone.  
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6.3.3.1 Empirical models between soil water content and 
RNTI  

The physical basis of RNTI and its convenient computation are attractive for soil 

moisture scaling studies and for predicting soil moisture distributions over 

catchments.  Note that the correlation between soil moisture content and RNTI 

should be negative because soil water content also gives a negative correlation 

with Ts–Ta. 

For example, Figure 6.11  shows a typical soil moisture pattern and computed 

RNTI during 2004 at site G6.  This figure is based on 121 RNTI observations 

made during 2004 and it confirms that increases of RNTI due to decreases of 

SWC are consistent throughout the year. Figure 6.11 also provides insight into the 

range of RNTI variations and the range of SWC throughout a typical year. At G6, 

while SWC varies from 0.48 to 0.11 cm3cm-3 the RNTI varies from 0.34 to 1.   
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Figure 6.11:  Temporal patterns of RNTI and measured SWC at site G6 during 2004. 

 
The computed RNTI values were used to develop linear regression models to 

predict SWC for the same dates as used for Table 6-6 (henceforth known as 

RNTI-SWC). The summary results are presented in Table 6-7. As expected, 

despite relatively low R2 values, a strong negative relationship was found between 

RNTI and SWC except for day-58 (Note that the other regression models 

developed with daytime LST also showed a poor relationship for this particular 
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day).  Examination of the RNTI-SWC relationships indicates that stronger slopes 

can be obtained with similar R2 values than with Ts–Ta.  

Table 6-7:  Results of the linear regression analyses between RNTI (X-axis) and measured 
soil water contents (Y-axis) during 2004 (n = number of data points). 

DOY n slope Intercept R2 t statistics 
slope 

t statistics 
- intercept 

38 13 -0.313 0.384 0.374 -2.56 4.22
58 19 0.006 0.308 0.000 0.03 1.96
86 18 -0.245 0.330 0.082 -1.20 2.84
87 20 -0.242 0.319 0.106 -1.42 3.19

115 20 -0.298 0.410 0.085 0.11 0.75
151 20 -0.169 0.402 0.026 0.25 1.32
210 20 -0.333 0.572 0.124 -1.59 4.11
224 20 -0.193 0.444 0.051 -0.98 3.18
262 20 -0.412 0.541 0.166 -1.89 3.63
297 18 -0.225 0.360 0.176 -1.85 3.91
317 19 -0.295 0.416 0.178 -1.27 2.94
321 20 -0.194 0.329 0.087 -0.95 2.42

 

The regression models of Table 6-7 were also used to compute the SWC at the 5 

test sites using the RNTI values. These computed SWCs were then compared with 

measured SWC as shown in Figure 6.12.  It is evident that, RNTI based models 

show better results than Ts–Ta.  However, careful analysis of Figure 6.12 reveals, 

that the predicted water contents are biased, particularly for soil types. For 

example, sites G3 and S2 show predicted water contents that are less than the 

measured values. In contrast, at two other sites, K2 and M5 water contents are 

slightly over-estimated. Surprisingly, under-estimated SWC values were found in 

clay type soils with naturally wet sites (see sites G3 and S2 in Figure 6.9), and 

over-estimated SWC values were found in loam sandy/clay type soils in naturally 

dry sites (see sites K2 and M5 in Figure 6.9). This indicates that the soil’s 

capacity to hold water may be an important component in SWC prediction 

models. Satellite based LST measurement provides a mixed signature of SWC. 

Apart from the information of SWC in the near-surface soil layer, it also provides 

indirect information on water availability in the root zone by measuring plant 

surface temperatures. The separation of these two quantities is not yet possible 

with current knowledge. Regression models relating 0-30cm SWC to LST will 
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therefore provide imperfect results. One way of overcoming this difficulty is to 

use normalized water contents in the regression equations. 

 

 
 

 
Figure 6.12:  Measured 0-30 cm SWC plotted against computed SWC based on RNTI based 
models at validation sites. 

 

6.3.4 NORMALIZED WATER DEFICIT INDEX (NWDI) 

Volumetric soil water content (θ) can be expressed in normalized form (θ*) in 

terms of the soil water content at saturation, θmax, and a residual soil water content, 

θmin as  

 
minmax

min*

θθ
θθθ
−
−

=  (6-8) 

where the θmin is often taken to be zero (Capehart and Carlson, 1997).  Thus 

equation 6-8 becomes: 

 
max

*

θ
θθ =  (6-9) 

 

Note that the water availability index θ* can also be related to evaporative 

fraction, Λ (Scott et al., 2003). According to Ahmad and Bastiaanssen (2003), the 

value of Λ under non-advective conditions ranges usually between 0 and 1, where 

maximum evapotranspiration is represented by zero. The value of θ* varies 
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between 0 (oven dry) to 1 (complete saturation) and is a standard measure that can 

be applied to a wide range of soils (Scott et al., 2003).  

Describing soil water deficit as the difference between actual and saturation 

values (i.e. θmax-θ), equation (6-9) can be rearranged to give a Normalized Water 

Deficit Index (NWDI) for a given location. 

 
i

i

j
i

jNWDI
max

max

θ
θθ −

=  (6-10) 

where θmaxi  is the maximum soil water content observed at site i and θ j
i is the 

observed soil water content for site i on jth day. In the above equation, dividing 

θmax-θ by θmax gives a normalized form which helps to eliminate variations of 

SWC due to properties associated with soil type. As discussed in Section 5.3, 

some sites in the study catchment always show wetter conditions (e.g. in clay 

soils) than other sites such as those in sandy soils. Furthermore, as seen in Table 

6-8, the field measured range of maximum SWC varies from 0.24 – 0.64 cm3cm-3. 

Hence, the highest maximum SWC value is almost three times the lowest 

maximum SWC value. These SWC anomalies therefore need to be removed from 

the prediction models. Such anomalies due to soil physical properties can be 

eliminated using equation 6-10. The equation 6-10 can be applied to a wide range 

of soils. It should be noted that equation 6-9 describes the moisture deficit of the 

entire measurement depth considered (i.e. 0-30 cm in this study). 
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Table 6-8:  Maximum soil water content observed for each site during 2003-2004. 

Site Max SWC 
(cm3.cm-3)  Site Max SWC 

(cm3.cm-3) 
G1 0.49  M1 0.25 
G2 0.36  M2 0.33 
G3 0.53  M3 0.47 
G4 0.56  M4 0.48 
G5 0.31  M5 0.44 
G6 0.49  M6 0.50 
K1 0.49  M7 0.51 
K2 0.24  S1 0.63 
K3 0.59  S2 0.59 
K4 0.47  S3 0.62 
K5 0.57  S4 0.53 
K6 0.38  S5 0.64 

   S7 0.50 
 

6.3.4.1 Empirical models between NWDI and RNTI  

Figure 6.13  shows a typical NWDI pattern and computed RNTI during 2004 at 

G6.  This figure is based on 325 NWDI observations made during 2004 and it 

confirms that increases of RNTI due to increases of NWDI are consistent 

throughout the whole period. Figure 6.13 also provides insight into the range of 

NWDI variations throughout a typical year. At G6, NWDI varies from 0.02 to 

0.77 and RNTI varies from 0.34 to 1.  Thus, the change of NWDI due to a unit 

change of RNTI gives higher value than the change in SWC due to a unit change 

of RNTI. This is advantageous for deriving surface wetness patterns from LST 

measurements, as differences between the RNTI in neighbouring pixels may take 

smaller values.  
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Figure 6.13:  Temporal patterns of RNTI and NWDI at G6 during 2004. 

 
Next NWDI and LST relationships were obtained for the dates also used in Table 

6-6 and Table 6-7. The computed NWDI values replaced the SWCs and a new set 

of regression equations (henceforth known as NWDI based models) were 

developed with all LST based data types used in the previous sections. The 

summary results are presented in Table 6-9. 

It is evident that the introduction of the NWDI leads to significant improvement in 

models particularly those developed with daytime LST measurements. 

Importantly, it is also evident that these improvements are consistent throughout 

all the dates considered. For example on day 321, the Daytime model developed 

with NWDI (slope = 0.022, R2 = 0.303) showed approximately four-times 

improvement in the regression coefficient and R2 values than the model developed 

with SWCs (regression coefficient = -0.005, R2 = 0.087). A similar improvement 

can be seen with the Daytime LST–Tair on the same day.  Thus it may be 

concluded that the introduction of NWDI can potentially better explain the 

variations of daytime LST measurements in LST-based regression models for soil 

water prediction. Thus, introduction of a soil related parameter such as saturated 

water content will improve the model predictions. 
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Table 6-9:  Results of the linear regression analyses between LST (oC in X-axis; Daytime 
LST, Daytime LST-Tair, Nighttime LST, Nighttime LST-Tair, ∆-LST, and RNTI) and the 
Normalized Water Deficit Index (NWDI, in Y-axis) during 2004 (n = number of data points). 

DOY n slope Intercept R2  n slope Intercept R2 
  Daytime LST   Daytime LST - Tair 

38 14 0.020 -0.285 0.393  14 0.021 0.430 0.401 
58 20 0.016 -0.180 0.045  20 0.011 0.257 0.016 
86 18 0.021 -0.148 0.113  18 0.016 0.514 0.056 
87 20 0.029 -0.282 0.214  20 0.031 0.473 0.173 

115 20 0.048 -0.732 0.224  20 0.063 0.045 0.211 
151 20 0.048 -0.462 0.136  20 0.064 0.145 0.184 
210 20 0.045 -0.336 0.152  20 0.047 0.214 0.132 
224 20 0.036 -0.325 0.131  20 0.032 0.193 0.083 
262 20 0.070 -1.549 0.393  20 0.070 -0.050 0.338 
297 18 0.027 -0.277 0.298  18 0.029 0.464 0.274 
317 19 0.052 -1.155 0.488  19 0.052 0.119 0.394 
321 20 0.022 -0.339 0.303  20 0.022 0.258 0.270 

  Nighttime LST   Nighttime LST - Tair 
38 9 -0.002 0.680 0.001  9 -0.002 0.621 0.001 
58 20 0.066 -0.446 0.071  20 0.061 0.463 0.153 
86 20 -0.043 1.104 0.066  20 0.044 0.739 0.093 
87 18 0.003 0.631 0.000  18 0.003 0.671 0.000 

115 20 -0.023 0.746 0.009  20 -0.015 0.559 0.004 
151 20 -0.030 0.413 0.026  20 -0.039 0.197 0.036 
210 20 0.052 0.233 0.024  20 0.018 0.342 0.004 
224 0 - - -  0 - - - 
262 19 0.028 0.351 0.026  19 0.053 0.663 0.156 
297 16 -0.058 1.265 0.110  16 -0.011 0.567 0.004 
317 20 -0.033 0.938 0.035  20 0.038 0.699 0.033 
321 20 0.021 0.363 0.008  20 0.013 0.646 0.003 

  ∆-LST   RNTI 
38 9 0.013 0.253 0.234  14 0.661 0.199 0.393 
58 20 0.007 0.199 0.013  20 0.381 0.124 0.045 
86 18 0.016 0.217 0.104  18 0.604 0.262 0.113 
87 18 -0.002 0.701 0.001  20 0.712 0.215 0.214 

115 20 0.040 -0.315 0.203  20 0.958 -0.119 0.224 
151 20 0.025 -0.042 0.093  20 0.673 -0.060 0.136 
210 20 0.045 -0.299 0.132  20 0.620 -0.130 0.152 
224 0 - - -  20 0.580 -0.051 0.131 
262 19 0.030 -0.272 0.140  20 1.272 -0.405 0.393 
297 16 0.028 -0.002 0.306  18 0.655 0.102 0.298 
317 19 0.041 -0.303 0.456  19 1.088 -0.233 0.488 
321 20 0.022 -0.070 0.294   20 0.773 0.022 0.303 
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Neither regression coefficient nor R2 have increased with the nighttime LST 

values. This was found for all dates considered. Nighttime LST measurements are 

therefore not appropriate for considering soil moisture predictions. The combined 

use of nighttime and daytime LST in ∆LST however, appears to perform better 

with NWDI than using nighttime LST alone. Thus, ∆LST gives also better results 

with NWDI than with SWC. The relationships obtained from ∆LST and NWDI 

are slightly poorer than the RNTI-based or Daytime LST-based models. Hence, 

similar to nighttime LST based models, the ∆LST based models should not be 

considered for further analysis. Because soil moisture can re-distribute during 

nighttime, the use of both nighttime and daytime information may potentially 

dampen the range of soil moisture values in the catchment. This effect might be 

more significant in wet to partially wet catchments than in very dry catchments.  

The best relationships however, were found between RNTI and NWDI for all  

days considered. Comparison of the RNTI-NWDI relationships with the other 

models reveals that stronger regression coefficients can be obtained with the 

RNTI-NWDI models while maintaining high R2 values. Using these RNTI-NWDI 

models to predict catchment scale SWC distribution, more detailed spatial patterns 

can be obtained. It is also important to note that the both predictors and predicted 

variables used in the RNTI-NWDI models are dimensionless variables. This is 

advantageous because such models may potentially be applied across a wide range 

of scales. Hence, for soil moisture scaling studies, models such as the RNTI-

NWDI methods are potentially useful. 

The regression models developed with RNTI were also used to compute SWC 

values for the 5 validation sites. When applying these models, NWDI values were 

computed and these indices were then converted into SWC using Eq. 6.10 and the 

θmax from Table 6-8. These computed SWCs were then compared with measured 

SWC as shown in Figure 6.14.  It is evident that, the RNTI-NWDI models can be 

applied to predict SWC with a higher degree of confidence than any other models 

presented previously. Underestimation associated with wet areas (e.g. clayey soils 

at G3 and S2) and overestimation associated with dry areas (e.g. sandy soils at K2 

and M5) in Figure 6.12 has been reduced with the RNTI-NWDI model. Except for 

four computed SWCs of G3, all the other computed SWCs in test sites are closer 



Chapter 6 - Deriving spatial patterns of root-zone soil moisture               Page 6-40 
 

  

to the measured values. These findings indicate that the ‘soil effect’ has been 

removed from the regression models by considering a dryness index approach. 

 

 
Figure 6.14:  Measured 0-30 cm SWC Vs computed SWC based on RNTI-NWDI models in 
testing sites. 

 
Finally, it is important to note that these RNTI-NWDI models were developed 

with point scale, in-situ soil moisture measurements representing 0-30 cm depth 

and remotely sensed LST measurements with 1.1 km2 pixels. Considering the vast 

scale difference between these two variables, the SWC values predicted from the 

RNTI-NWDI models are very encouraging. Hence, this implies that deriving 

catchment scale soil moisture pattern from a limited number of in-situ soil 

moisture data is feasible with RNTI-NWDI models.  

6.3.5 APPLICATION OF LST-BASED MODELS FOR SOIL 
MOISTURE PREDICTIONS 

The LST based models discussed in the previous sections provide insight into the 

appropriateness of satellite-based LST measurements for catchment scale SWC 

predictions. To better assess model performance, error analyses were carried out. 

Complete results for all five evaluation sites are given in Annex-IV, whilst results 

for site K2 are given in Figure 6.15 as an example.  For these error analyses, all 

LST based models discussed in the previous sections have been considered 

including the use of SWC (see Figure 6.15(a)) and NWDI (see Figure 6.15 (b)) in 

these models. Similar results have been obtained for the other four test sites used 

in the study. From the error analyses, it is concluded that: 
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a) Use of non-normalized 0-30 cm SWC values (i.e. SWC-based models) 

introduces serious errors in the predictions.  

b) Use of NWDI in all models significantly improves the model performance. 

c) Reasonably good SWC predictions may be obtained when a scaled 

variable is used for the independent variable (i.e. RNTI) and a normalized 

SWC is used for the dependent variable. 

The RNTI-NWDI model uses normalized variables for the independent variable 

as well as for the predicted variable. The use of scaled variables helps to remove 

some potential scale problems associated with the prediction of SWCs from 

similar type of models. Furthermore, the use of RNTI assures a wide range of 

RNTI values across the catchment on a given day. Because of its strong physical 

basis, these RNTI values are useful in describing the surface wetness pattern in 

the catchment. Similarly, the use of NWDI helps to remove the ‘soil effect’ to a 

considerable extent. The use of indices for both the predictors and predicted 

variable in regression models therefore provides a useful approach to deriving soil 

water contents from the combined use of in-situ SWC data at a limited number of 

sites and remotely measured LST.  

These results indicate that RNTI-NWDI type models based on a limited number 

of in-situ soil moisture data and remotely sensed LST data can be used for 

deriving the catchment scale moisture patterns.  Knowledge of catchment-scale 

spatial patterns of θmax is however required for deriving accurate moisture 

distributions.  

For soil moisture prediction studies, one way of investigating the sources of errors 

in the predictions is to examine the temporal behaviour of model errors. As noted 

earlier, LST based models may be sensitive to seasonal weather patterns. As seen 

in Figure 6.15 model prediction errors show some degree of sensitivity to time of 

year. In general, while a higher error range is associated with autumn (day 115) 

and spring (e.g. days 224, 262), prediction errors for winter (day 210) and summer 

(e.g. day 58, 321) seasons occur within a lower range.  In autumn and spring 

seasons, ambient temperatures are gradually decreasing or increasing, respectively 

and this may be the reason for higher error levels. In contrast, during winter and 
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summer, more stable temperatures are maintained throughout the season and 

better predictions of SWC based on LST may be obtained. 
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Figure 6.15:  Frequency distribution of errors in the soil moisture predictions at K2 for 2004 
with the various LST based models: a) using SWC, b) using NWDI. 
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6.4 DERIVING SOIL WATER DISTRIBUTIONS 
FROM LST AND VEGETATION INDICES 
Previous section has confirmed that use of LST data alone may lead to inaccurate 

predictions of soil moisture contents. Consideration of vegetation is one of 

including the root-zone moisture contents into the prediction models.  Recent 

analyses of multispectral (thermal and visible bands) measurements made from 

aircraft and satellite platforms (Moran et al., 1994; Carlson et al., 1995; Moran et 

al., 1996; Bastiaanssen et al., 1997; Gillies et al., 1997; McVicar and Jupp, 2000; 

Wang et al., 2001; Goward et al., 2002; Wan et al., 2004) show considerable 

variation in both surface radiant temperature and vegetation cover, which in 

combination can be used to predict surface wetness conditions. Yet, owing to the 

underlying concepts of remote sensing and modelling techniques, soil moisture 

content derived from surface radiant temperature is very different from field 

measured or modelled water contents (Capehart and Carlson, 1997). The focus of 

this section is to compare ground based soil moisture measurements and remotely 

sensed wetness indices. Examination of the spatial and temporal characteristics of 

measured and computed wetness indices may offer insight into the suitability of a 

wetness index for: a) the disaggregation of large area measurements and, b) the 

selection of an appropriate covariate for the interpolation of point scale 

measurements. 

The actual selection of a wetness index requires some discussion. As described in 

section 2.3.5, wetness indices may be computed from LST information or 

combined use of LST and VI with a varying degree of complexity. Whereas some 

indices such as water deficit index (WDI, Moran et al., 1996) require additional 

ground based measurements to compute the wetness characteristics, other indices 

such as vegetation temperature condition index (VTCI, Wang et al., 2001) or 

vegetation temperature dryness index (VTDI, Sandholt et al., 2002) may be 

computed entirely from satellite-based observations. Because of the simplicity of 

the computational procedure and its strong physical background, the VTCI has 

been selected for further study. VTCI is defined as: 
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Computation of VTCI is shown in Figure 6.16  indicating that (LSTmax)NDVIi − 

(LST)NDVIi = A, and (LSTmax)NDVIi − (LSTmin)NDVIi = B.  The (LSTmax)NDVIi  and 

(LSTmin)NDVIi are the maximum and minimum LSTs of pixels which have the same 

NDVIi values. (LST)NDVIi denotes LST of a chosen pixel whose NDVI value is 

NDVIi.  Greater VTCI values indicate wet conditions and smaller values indicate 

dry conditions. 

 

Figure 6.16:  Schematic representation of the computation of Vegetation Temperature 
Condition Index (VTCI). 

 
 

6.4.1 FIELD OBSERVATIONS OF VTCI CHARACTERISTICS 

It is important to understand the behaviour of VTCI characteristics during a year 

before applying it in soil moisture scaling studies. It is equally important to 

understand how to interpret the VTCI scatter plots properly. Thus, VTCI 

characteristics across Goulburn River catchment were studied based on 124 

MODIS LST images and 23 images of 16-day MODIS vegetation products for 

2004 as shown in Table 6-10. MODIS LST images downloaded at weekly 

intervals for 2003 were not used for the detailed study as 28 images out of 58 

images were contaminated with clouds. All 2003 images were therefore used to 

evaluate the derived moisture contents. All image analyses were done using ENVI 
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image processing software. Statistical representations called scatter plots were 

drawn with LST as a function of VI for each selected LST image as shown in 

Figure 6.17 (All scatter plots are given in the Annex-V).   

Table 6-10:  Combinations of NDVI images and LST images used for VTCI analyses. 

NDVI 
day LST image days (2004) NDVI 

day LST image days (2004) 

17 3, 8, 9 209 196, 197, 198, 204 
33 18, 19, 26, 29, 30, 32 225 210, 211, 222, 223, 224 
49 35, 38, 48 241 233, 234, 235, 236, 237, 238  
65 51, 52, 58, 59, 60, 61, 64, 65 257 254, 256, 257 
81 69, 76, 79, 80 273 260, 261, 262, 265, 266, 270, 

271, 272 
97 84, 85, 86, 87, 88, 91, 93 289 278, 279, 280, 282, 283, 284, 

286, 287, 288, 289  
113 99, 101, 104, 106, 109, 110, 

111 
305 290, 297, 299, 300, 302, 304 

129 115, 117, 124, 127, 129 321 308, 317, 318, 319, 320, 321 
145 133, 134, 137, 138, 140 337 331, 332 
161 150, 151, 152, 156, 157, 158, 

161 
353 348, 350, 352, 353 

177 165, 166, 169, 174 1 
(2005)

355,  356, 365 

193 179, 181, 182, 183, 184, 185, 
190 

  

 

The scatter plot in Figure 6.17 shows the full range of soil water content and 

vegetation fraction in the particular image. Pixels sampled over dense vegetation 

appear in the bottom right part of the cluster, where temperature is typically close 

to a mean air temperature (Gillies et al., 1997). It indicates that spatial variations 

in the LST (and therefore the surface energy fluxes) are determined by the 

distribution of surface soil water content, whose signal is modulated by the 

vegetation cover. This conclusion was also reached by Friedl and Davis (1994) 

and Capehart and Carlson (1997).  

Examination of a series of scatter plots between LST and VI shows that the land 

surface when exposed to sunlight dries out very unevenly in space and time, with 

some pixels experiencing rapid drying and others drying out slowly. The uneven 

drying results in points first becoming quickly dispersed over the entire triangle. 

Then over time, the population of pixels shifts towards the upper edge with its 

higher temperatures and lower moisture availability. This upper boundary is 
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therefore known as the ‘warm edge’ and it constitutes a physical lower limit to the 

surface water content (Gillies and Carlson, 1995).  The shifting of the pixel 

population continues until the next precipitation event, after which the pixel 

distribution shifts back towards the lower boundary (i.e. cold edge or base of the 

triangle). According to Gillies et al., (1997), pixels undergo large seasonal cyclic 

variations within the triangle as the surface greens up (e.g. during spring) and then 

dries out during summer. The relative position of a given pixel within the triangle 

with respect to the warm edge and cold edge may provide an indication of wetness 

condition. The warm edge can sometimes be easily recognized by the sharp 

boundary in the data points on the upper side of the triangle. The cold edge is 

usually less well defined than the warm edge. The VTCI approach computes the 

relative position of a given pixel within the triangle. 

 

Figure 6.17:  A scatter plot of MODIS LST on day 127 and NDVI on day 129 for 2004. 
LSTmin is the wet edge and LSTmax is the dry edge used for the computation of VTCI.  VTCI 
at LSTx is computed as A/B. 

 
The computation of VTCI needs determination of the ‘warm or dry edge’ 

(LSTmax) and the ‘cold or wet edge’ (LSTmin).  LSTmax is defined as: 

LSTmax = Co + C1 x NDVI  (6-12) 

LSTmax

Wet edge 

Dry edge 

LSTmin

LSTx 

A

B 

NDVI 



Chapter 6 - Deriving spatial patterns of root-zone soil moisture               Page 6-47 
 

  

where Co is the intercept and C1 is the slope. 

The determination of the cold edge involves identifying the minimum observed 

LST over the area and drawing a line through the minimum LST parallel to the x-

axis, whereas the determination of the warm edge is more challenging.  The dry 

edge parameters may be determined by first, extracting the maximum 

temperatures observed for small intervals of VI in the VI-LST space and then, 

determining the parameters of the sloping side of the upper edge by adopting 

linear regression techniques. However, in practice this is not efficient due to the 

concave shape of the triangles or the oval shape of scatter plots particularly during 

late summer and autumn seasons. Changes of vegetation densities due to the 

complete drying out in summer and the shedding of leaves in autumn cause gaps 

in the basic triangular shape of the VI- LST space. The presence of clouds in the 

selected LST images also contributes to an incomplete triangular shape. The 

triangular shape is clearly visible during the spring season because of the wide 

range of NDVI coverage together with a range of soil moisture contents across the 

catchment. The Goulburn River Catchment is located in a dry region and 

therefore, scatter plots between LST and VI often display a band-like distribution 

as seen in Figure 6.17 rather than a triangular shape. For this reason, it may be 

possible to derive the sloping side of the upper edge adopting linear regression 

techniques. However, in this study dry edges were determined manually. 

For convenience of plotting, it was found that the selection of appropriate scales 

for the axes is important.  Accordingly, the Y-axis scale was set such that the 

minimum observed LST is close to the lowest point in the Y-axis and the 

maximum LST of approximately 30-50o higher than the lowest LST. In addition, a 

maximum VI of about 1.5 to 2.0 was used as the upper limit of the X-axis as 

shown in Figure 6.17. The main reason for selecting a higher VI value was to 

accommodate the extended dry edge meeting the X-axis. This was to ensure easy 

plotting and computation of the slope of the dry edge. Adopting this technique, 

usually a common dry edge was obtained for near-by dates.  It is not uncommon 

to combine several images and superimposed them with respect to a common 

warm edge to identify the triangular shape (Capehart and Carlson, 1997). The 

technique used to identify the dry edge therefore provides the best estimate of the 

upper boundary.  
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Following the above methodology, dry edges of the NDVI-LST scatter plots (i.e. 

LSTmax) have been defined and the temporal evolution of the properties of these 

dry edges is presented in Figure 6.18.  The observed minimum LST values (i.e. 

the wet edges) are also shown in the same figure.  No publications have been 

identified which report on studies of temporal characteristics of the NDVI-LST 

scatter plots.  Figure 6.18 therefore characterises the temporal behaviour of VTCI 

and it can be concluded that: a) the constant (q) of the linear relationship follows 

the same pattern as the minimum temperature, (approximately, constant q = 20oC 

+ minimum LST), b) the lowest q values occur during winter, and the highest q 

values occur during summer, and c) the slope of the dry edge varies but is always 

negative. 
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Figure 6.18:  Properties of the parameters defining the dry edge modeled as a linear fit to 
data as LSTmax = a + b NDVI, where a = constant and b = gradient. Temporal pattern of 
the constant parameter and the minimum temperature during 2004 are also shown in the 
graph. 

 
It is also important to decide which vegetation index (such as NDVI or EVI) 

should be used to compute the VTCI.  Theoretically, any vegetation index may be 

used in the computation. In the current study both NDVI and EVI based VTCI 

values have been computed.  Figure 6.19 shows the comparison of approximately 

2500 VTCI-EVI and VTCI-NDVI values for 2004.  It can be concluded from the 

figure that EVI and NDVI give similar results.  
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Figure 6.19:  Relationship between NDVI-based VTCI and EVI-based VTCI during 2004.  

 

6.4.2 A COMPARATIVE STUDY OF REMOTELY SENSED 
WETNESS INDICES AND FIELD MEASURED SOIL 
MOISTURE 

The satellite-based wetness indices require field validation. Previous studies with 

the VTCI have justified their results using information on drought occurrences 

(Wang et al., 2001) and by analysing historical rainfall patterns (Wan et al., 

2004). No published reports have been found reporting on a comparison of VTCI 

values and field based soil moisture content values on a regional scale.  This has 

been attempted in the current study. Linear regression analyses were conducted 

for all soil moisture monitoring sites between the computed VTCI for all selected 

days and the associated soil moisture contents.  Furthermore, both NDVI and EVI 

have been used when computing VTCI to obtain better insight into the selection 

of a vegetation index for the computation process. In the current study, VTCI 

computed with NDVI is termed VTCI-NDVI and similarly, VTCI computed with 

EVI is termed VTCI-EVI.  Table 6-11  summarises the results of the linear 

regression analyses between (a) VTCI-NDVI and field measured SWC, and (b) 

between VTCI-EVI and SWC for all monitoring sites. 
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As seen in Table 6-11 (a), in general, VTCI-NDVI shows a positive relationship 

with measured SWC. 17 sites out of 22 sites showed a regression coefficient (i.e. 

slopes) greater than 0.10 and at least on 10 occasions the computed regression 

coefficients were more than 0.25. This gives an indication of the strength of 

VTCI-NDVI as a moisture indicator.  However, five sites showed weaker 

relationship with regression coefficients of below 0.10. Particularly, at G2, a 

negative coefficient of -0.08 was reported. This may be attributed to the wrong 

NDVI signature at this site due to large farm buildings on this property (Note: G2 

is located within a commercial horse-breeding centre).  When subcatchment scale 

results are considered, all catchments showed strong positive regression 

coefficients varying from over 0.36 (Merriwa and Stanley Catchments) to 0.11 (in 

Krui). Finally, at the whole Goulburn Catchment scale, a positive regression 

coefficient of 0.26 is observed between VTCI-NDVI and SWC.  

Linear regression analyses between computed VTCI-EVI and measured SWC also 

provide similar results (see Table 6-11 b). Regression coefficients obtained with 

EVI however, showed more positive coefficients, i.e. apart from G2 all sites 

showed a regression coefficient of over 0.10. Many sites showed a regression 

coefficient of more than 0.25 and at some sites, the coefficients were more than 

0.50 (G6, M6 and S7).   The only site reported with a low coefficient was G2 as 

previously mentioned. Interestingly, some sites showed regression coefficients 

which are lower than the VTCI-NDVI. For example, sites such as in M3, M4 and 

M5 show a decrease in the regression coefficient. When subcatchment scale 

results are considered, all catchments showed slightly better positive regression 

coefficients than those obtained from VTCI-NDVI. At the Goulburn Catchment 

scale, a similar positive regression coefficient of 0.28 was found for VTCI-EVI 

and SWC.  

As can be seen from the table, R2 values obtained in the linear regressions for both 

VTCI-NDVI and VTCI-EVI were not very high. This may be attributed to the 

differences in scales between the observed SWCs and the computed values of 

VTCI. The positive correlation between SWC and VTCI is a more important 

observation rather than the R2 value. Thus, the main purpose of the Table 6-11 is 

only to determine the nature of the relationship between SWC and VTCI. It is 
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important to note that these regressions are not used to predict SWCs in the 

catchment as was done with LST-based models. 

Another important outcome of this analysis is the behaviour of site S1 and the 

whole Goulburn catchment. As seen from the Table 6-11, the regression equations 

developed for the site S1 and for the Goulburn catchment show similarity. S1 was 

found to be the representative CASMM site for the entire Goulburn Catchment 

(see Section 5.2.1) and the present finding suggests that the identification of 

CASMM site from point-scale data has some validity and may have practical 

meaning, even at the pixel-level.  

Table 6-11 : (a) Properties of the linear relationships between VTCI-NDVI and field 
measured SWC for all soil moisture monitoring sites. (2004 data) 

  VTCI based on NDVI 95% Confidence Interval 
Site Coefficient Constant R2 Coefficient Constant 
G1 0.0382 0.1292 0.0054 -0.072-0.148 0.098-0.161
G2 -0.0767 0.2851 0.0154 -0.204-0.050 0.234-0.337
G3 0.3302 0.2011 0.2267 0.195-0.465 0.146-0.256
G4 0.3284 0.0007 0.1489 0.173-0.484 -0.058-0.059
G5 0.2291 0.0141 0.2161 0.145-0.313 -0.017-0.045
G6 0.4392 0.1670 0.2103 0.269-0.610 0.115-0.219

      
K1 0.0649 0.3703 0.0456 0.008-0.122 0.352-0.388
K2 0.0653 0.0724 0.0284 -0.006-0.136 0.052-0.093
K3 0.2427 0.2719 0.0841 0.097-0.389 0.229-0.315
K4 0.3308 0.1879 0.1365 0.178-0.484 0.144-0.232
K5 0.1384 0.1207 0.0141 -0.070-0.347 0.033-0.209
K6 0.1196 0.1898 0.0522 0.024-0.215 0.137-0.243

      
M1 0.1264 0.0672 0.0980 0.057-0.196 0.045-0.090
M2 0.0961 0.0542 0.0536 0.019-0.173 0.035-0.073
M3 0.1843 0.1885 0.1088 0.092-0.300 0.165-0.209
M4 0.3049 0.1400 0.1790 0.188-0.430 0.116-0.164
M5 0.3456 0.1034 0.3038 0.250-0.441 0.086-0.121
M6 0.4372 0.0776 0.1364 0.237-0.638 0.016-0.139
M7 0.1867 0.2598 0.0845 0.070-0.303 0.195-0.324

      
S1 0.2592 0.1428 0.1963 0.166-0.368 0.115-0.167
S2 0.3002 0.1656 0.2210 0.188-0.412 0.132-0.199
S7 0.4868 0.1042 0.1963 0.297-0.695 0.050-0.156

Sub catchments     
S. Goulburn 0.2461 0.1148 0.0575 0.159-0.323 0.088-0.147
Krui 0.1073 0.2072 0.0166 0.074-0.138 0.185-0.234
Merriwa 0.3840 0.0840 0.2970 0.349-0.430 0.070-0.096
Stanley 0.3610 0.1274 0.2081 0.285-0.445 0.111-0.155

      
Whole 
catchment 0.2575 0.1346 0.0953 0.219-0.282 0.127-0.148
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Table 6-11: (b) Properties of the linear relationships between VTCI-EVI and SWC for all 
soil moisture monitoring sites. (2004 data). 

  VTCI based on EVI 95% Confidence Interval 
Site Coefficient Constant R2 Coefficient Constant 
G1 0.1940 0.0866 0.1192 0.088-0.302 0.053-0.116 
G2 0.0510 0.2356 0.0059 -0.084-0.186 0.180-0.291 
G3 0.3474 0.1890 0.2705 0.221-0.473 0.136-0.242 
G4 0.3754 0.0173 0.1866 0.231-0.533 -0.079-0.036 
G5 0.2605 -0.0034 0.3199 0.188-0.333 -0.033-0.026 
G6 0.5110 0.1387 0.2899 0.351-0.671 0.087-0.190 

      
K1 0.1099 0.3552 0.1411 0.058-0.162 0.338-0.372 
K2 0.1074 0.0596 0.0774 0.039-0.176 0.039-0.080 
K3 0.3321 0.2434 0.1661 0.196-0.468 0.202-0.285 
K4 0.4693 0.1431 0.2708 0.330-0.606 0.100-0.184 
K5 0.2386 0.0758 0.0445 0.039-0.439 -0.012-0.163 
K6 0.1598 0.1659 0.0866 0.063-0.257 0.111-0.221 

      
M1 0.1511 0.0558 0.1505 0.086-0.217 0.033-0.078 
M2 0.1335 0.0416 0.1287 0.067-0.200 0.023-0.060 
M3 0.1834 0.1825 0.1324 0.098-0.284 0.158-0.204 
M4 0.2981 0.1320 0.2087 0.189-0.407 0.107-0.157 
M5 0.2988 0.1051 0.2870 0.213-0.385 0.088-0.123 
M6 0.5106 0.0447 0.1930 0.320-0.701 -0.018-0.107 
M7 0.1922 0.2599 0.1033 0.085-0.300 0.202-0.318 

      
S1 0.2904 0.1369 0.3405 0.214-0.370 0.117-0.157 
S2 0.3480 0.1483 0.3180 0.247-0.449 0.117-0.179 
S7 0.5654 0.0800 0.3072 0.386-0.726 0.039-0.132 

Sub catchments     
S. Goulburn 0.3027 0.0919 0.0879 0.217-0.377 0.064-0.124 
Krui 0.1546 0.1909 0.0368 0.134-0.186 0.168-0.228 
Merriwa 0.3902 0.0743 0.2836 0.354-0.440 0.059-0.087 
Stanley 0.4071 0.1135 0.3173 0.338-0.472 0.103-0.140 

      
Whole 
catchment 0.2797 0.1237 0.1109 0.240-0.303 0.116-0.138 

 
 
Analysis of the temporal behaviour of VTCI and its response to the different soil 

moisture regimes requires careful analysis of computed VTCI and measured 

SWCs.  Figure 6.20 compares computed VTCI and measured SWC at G4 during 

2004. As seen in the figure, the observed overall tendency for the VTCI was to be 

high immediately after rainy days, to be low before rainy days, and to take 

intermediate values during longer dry periods (e.g. day 61 – 151 in Figure 6.20). 

Furthermore, as seen in Figure 6.20 because of the considerable scatter, the point-

scale observations of surface soil moisture contents are not well defined with 

VTCI probably due to the differences of scale between the data sources. 
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Therefore, it may require other approaches such as use of cumulative data for 

analysis. Cumulative plots help understanding long-term trend patterns. These 

plots illustrate that a certain change in SWC will yield the same pattern of change 

in VTCI irrespective of the actual SWC value. Surprisingly, when cumulative 

values are analysed, as shown in the Figure 6.21, a positive relationship can be 

seen between cumulative VTCI and cumulative SWC.  Furthermore, such 

cumulative plots may be useful to identify wet sites (e.g. K3) and dry sites (e.g. 

G4) and compare them with the CASMM site (S1). It therefore appears that 

cumulative VTCI values provide better indication of soil moisture status than the 

individual VTCI values. 
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Figure 6.20:  Temporal pattern of rainfall, soil moisture and computed VTCI at G4 during 
2004. 
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Figure 6.21:  Cumulative soil water contents and cumulative VTCI at S1, G4 and K3 during 
2004. 

 

Further analysis considering all 22 soil moisture monitoring sites together with 

spatial and temporal distributions of computed VTCI values may also help 

understanding the strengths of a wetness index. Figure 6.22 shows the results of 

measured SWC (Figure 6.22 (a)) and computed VTCI-NDVI (b) and VTCI-EVI 

(c) for the whole Goulburn River catchment based on 22 locations during 2004. 

Considerable scatter can be seen in VTCI values when all 124 days at each station 

are considered. For easy understanding of the results and to show the magnitude 

of spatial variations, mean values ±1SD are given for each day. As can be seen 

there is similarity with respect to the evolution of VTCI-NDVI (Figure 6.22b) and 

VTCI-EVI (Figure 6.22c).  A similar degree of correspondence can be also 

observed with respect to the higher and lower values of SWCs (Figure 6.22a) and 

VTCI (Figure 6.22b and c).  Therefore, temporal patterns of VTCI can explain the 

temporal pattern of soil water contents.  Furthermore, Figure 6.22 is useful in 

explaining the range of variability of a wetness index. The range of variability of 

measured SWCs and computed VTCI throughout the study period is similar.  

 

 



Chapter 6 - Deriving spatial patterns of root-zone soil moisture               Page 6-55 
 

  

 a) 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 31 61 91 121 151 181 211 241 271 301 331 361
Day

S
W

C
 (c

m
3 cm

-3
) 

 
b) 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 31 61 91 121 151 181 211 241 271 301 331 361

Day

V
TC

I-N
D

V
I

 
c) 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 31 61 91 121 151 181 211 241 271 301 331 361

Day

VT
C

I-E
V

I

 

Figure 6.22:  Temporal behaviour and range of variability of: a) field measured SWC, b) 
NDVI-based VTCI, and c) EVI-based VTCI for selected 22 locations in the Goulburn River 
catchment during 2004 (error bars to show ±1 standard deviation). 

 
The relationship between the means of measured SWC and means of computed 

VTCI also shows a positive trend. As shown in Figure 6.23, despite the scatter of 

data points, both VTCI-EVI and VTCI-NDVI show a positive relationship with 
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measured SWC. Furthermore, it can be seen that the VTCI-EVI explains the SWC 

better than the VTCI-NDVI. Wetness indices such as VTCI-EVI and VTCI-NDVI 

therefore provide wetness characteristics of selected locations or provide 

information on the variability of the wetness in a given catchment. From these 

results, it appears that the VTCI is providing meaningful information on surface 

wetness conditions in a given catchment. 
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Figure 6.23:  Relationship between the means of measured SWC and means of computed 
VTCI based on 22 sites. 

 
Wetness indices however provide a relative value of moisture conditions and this 

information needs to be converted into actual water contents. One way of 

converting the wetness index value into actual soil moisture content is the use of 

field measured soil moisture data. It is possible to convert for an individual day 

VTCI values into actual SWC values if soil water content is known for at least at 

one location with some degree of confidence. The ratio of actual moisture content 

over the computed VTCI at any known location on a given day should provide a 

conversion factor to derive SWCs from VTCI. The field-monitoring network of 

the present study provides 22 pixels to be used for this purpose. The most 

appropriate choice however, is to consider the use of soil moisture contents 

measured at a CASMM site.  S1 is the CASMM site for the whole Goulburn River 

catchment (see Section 5.3.1) and for the Stanley subcatchment (see Section 
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5.3.5). In this study therefore, measured soil water contents and computed VTCI 

at S1 have been used to derive the conversion factors. 

One of the major limitations to the ability of land surface schemes to estimate 

runoff is uncertainty in the parameterisation of soil moisture contents over a range 

of modelling scales. One way of dealing with this situation would be to use a 

wetness indicator for soil moisture scaling studies. Indices such as VTCI can be 

used to compute the wetness at a range of satellite or airborne footprints scales. 

These indices can then be used to derive catchment-scale average soil moisture 

contents. Based on the results presented in the Figure 6.22 and Figure 6.23, it can 

be argued that VTCI is capable of describing the variability of surface wetness 

conditions within a large area such as the Goulburn River catchment and may be 

considered as a surrogate variable for soil moisture scaling applications. 

Furthermore, considering the above results, it can be seen that both VTCI-NDVI 

and VTCI-EVI provide similar results but that VTCI-EVI performs slightly better.  

6.4.3 APPLICATIONS OF VTCI-BASED MODELS FOR 
CATCHMENT SCALE SOIL MOISTURE RETRIEVAL 

It is useful to evaluate the conclusions derived from VTCI-based relationships that 

have been developed with 2004 data, with similar data from another year. Thus, 

MODIS LST and vegetation data acquired for year 2003 and the measured soil 

moisture for the same period have been used to evaluate the strengths of VTCI as 

a soil moisture predictor.  As shown in Table 6-2 not all MODIS LST images (58) 

downloaded on weekly basis were suitable for the VTCI computation due to 

higher percentage of clouds. Only 28 LST images could be considered.  Following 

the methodology developed with 2004 data, wet edges and dry edges of the VI-

LST scatter plots were defined. Derived wet edges and the properties of the linear 

equations describing the dry edges are presented in Table 6-12.  Based on the dry 

edge and wet edge, for all selected days, VTCI values were computed for all the 

pixels which contain monitoring sites. The computed VTCI values were then 

converted into ‘predicted SWCs’ using the measured SWC at the CASMM (S1) 

site.  

Figure 6.24 shows the scatter diagrams of measured (in X-axis) and predicted (in 

Y-axis) SWC based on NDVI and EVI VTCI models respectively. This figure is 
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based on the data from all cloud-free pixels over the monitoring sites from 2003 

data set (i.e. from 28 days). The results show a positive regression coefficient of 

0.52 with NDVI and 0.45 with EVI between measured and predicted SWC. 

Considering the longer time scale used in the analyses (i.e. the whole 2003 data 

set), it can be concluded that the results are encouraging.  It is also evident that the 

predicted SWC values provide a wider range of values. However, due to limited 

number of data points used, there is considerable scatter in the data. 

Table 6-12:  Minimum LST and the properties of the linear equations used to estimate the 
maximum LST at each vegetation index level during 2003. 

    Linear equation parameters used to derive LSTmax 
Day # LSTmin NDVI EVI 

 (oC) Constant Gradient Constant Gradient 
14 14.4 71.8 -40.00 71.8 -54.55 
21 22.7 78.1 -37.50 74.3 -40.08 
42 18.8 76.8 -40.00 69.3 -40.08 
77 14.9 61.8 -30.00 61.8 -39.22 
84 9.3 63.1 -28.13 59.3 -34.31 
91 11.1 63.1 -28.13 59.3 -34.31 

105 14.1 41.8 -17.50 41.8 -22.88 
112 10.2 44.3 -18.75 41.8 -22.88 
133 9.0 36.8 -15.00 36.8 -19.61 
168 10.0 31.8 -12.50 31.8 -16.34 
196 10.9 34.3 -13.75 34.3 -17.97 
210 4.6 34.3 -16.25 34.3 -21.24 
217 8.8 39.3 -16.25 39.3 -21.24 
231 3.6 39.3 -18.75 39.3 -24.51 
245 6.0 46.8 -22.50 46.8 -29.41 
252 8.1 46.8 -20.00 46.8 -26.14 
273 1.3 51.8 -27.50 51.8 -35.95 
280 7.9 36.8 -15.00 36.8 -19.61 
287 7.4 41.8 -17.50 41.8 -22.88 
308 14.6 51.8 -20.00 51.8 -26.14 
309 18.7 56.8 -20.00 56.8 -26.14 
313 9.8 61.8 -27.50 61.8 -35.95 
315 7.7 61.8 -27.50 61.8 -35.95 
322 14.6 61.8 -25.00 61.8 -32.68 
329 7.8 51.8 -22.50 51.8 -29.41 
343 14.6 66.8 -27.50 61.8 -32.68 
357 23.0 64.3 -21.25 61.8 -26.14 
364 22.6 64.3 -21.25 61.8 -26.14 
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Figure 6.24:  Measured SWC Vs computed SWC in 2003 based on VTCI model developed 
for the entire Goulburn River catchment computed with: a) NDVI and b) EVI. (Measured 
SWC on X-axis and computed SWC on Y-axis). 

 
To better understand the VTCI model performances, error analyses were done and 

the frequency distribution of errors in predicting SWCs are shown in Figure 6.25 

for NDVI-based and EVI-based VTCI models.  From the error analyses, we can 

conclude that: 

1. Both VTCI models have some potential in predicting the measured 

SWC.  

2. Reasonably good SWC predictions may be obtained when a higher 

error level (e.g. ±0.05 cm3cm-3) is allowed.  
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3. Errors of SWC predictions using VTCI-NDVI and VTCI-EVI show 

near-normal distribution. 

As with the LST based models, VTCI-SWC models may also sensitive to seasonal 

weather patterns. Figure 6.26 shows the temporal response and the magnitude of 

model errors for NDVI-based and EVI-based VTCI respectively. It is evident that 

model prediction errors show some degree of sensitivity to date (as indicated by 

day number), as was the case for LST based models.  
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Figure 6.25:  Frequency distribution of errors in the soil moisture predictions for 2003 from 
VTCI-SWC models based on: a) NDVI and b) EVI. 
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a) VTCI-NDVI

Temporal distributions of errors in the soil moisture 
predictions from the VTCI models
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Figure 6.26:  Temporal distribution of errors in the soil moisture predictions for 2003 from 
VTCI-SWC models based on: a) NDVI and b) EVI. 

 

6.5 EVALUATION OF DERIVED SOIL MOISTURE 
PATTERNS  
Upscaling of point-scale in-situ soil moisture measurements has been investigated 

with the thirteen approaches developed in preceding sections. Eight approaches 

use only remotely sensed LST observations (Daytime LST, Nighttime LST, ΔLST 

and RNTI; each with SWC and NDWI), four approaches use remotely sensed LST 

observations and measured air temperature (Daytime LST and Nighttime LST 

with SWC and NDWI), and the last approach is based on the combined use of 

LST and VI. In the previous sections, all these models have been evaluated with 

the data from point scale measured values and it was found that these models 

predict SWCs with various degrees of accuracy. It is often more useful, especially 
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when dealing with soil moisture, to study the soil moisture patterns across a 

catchment than considering selected locations. Predicted soil moisture patterns 

may be used for interpreting the organization of soil moisture fields within a 

catchment in response to various climatic events. To better understand the 

performance, all these upscaling models have been used to generate surface 

moisture patterns.  

In order to improve the quality of regression equations used in LST based models 

(both SWC-based and NWDI-based models)  new regression equations have been 

developed considering all 25 sites by also including the five sites hitherto used as 

test sites (see Annex-VI for details). A significant improvement of R2 values has 

been noted in all equations suggesting that higher number of in-situ measurements 

is potentially useful in establishing reliable regression equations. These new 

equations were used to predict the SWC for the selected dates. 

Three dates have been selected in 2004 for which spatial patters of SWC have 

been generated. The dates were selected based on their hydrological importance 

and to capture a range of SWCs as shown in Table 6-13 and also in Figure 6.27. 

The first selected date was day 58 (27 February). This chosen time was a few days 

after an unevenly distributed rain event, which brought rain mainly to the northern 

and southern parts of the catchment (Figure 6.27).   

The spatial pattern of SWC after a long dry period is of interest in a sub-humid 

catchment. The second date (day number 115, 24 April) was representative of 

long dry spell conditions as no rain during the previous 7 days and only 3 mm of 

average rainfall fell during the previous 30 days period.  

The third day was selected to represent an intermediate situation without rain in 

the previous week but with reasonable rain during the previous month. Day 262 

(18 September), had no rain during the previous 7 days but 52 mm rainfall in the 

previous 30 day period. During this month, rain mainly occurred in the south 

western part of the catchment (Figure 6.27). 

It can be noted that these three dates also represent three seasons; viz. end of 

summer (day 58), mid-autumn (day 115) and early spring (day 262) respectively. 

The comparison of soil water contents maps generated for these three days with 
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the monthly rainfall patterns may therefore assist in appraising the upscaling 

methods developed in the current study. 

Table 6-13:  Selected dates in 2004 for catchment-scale soil water distribution maps, 
associated rainfall during past 7 days and past 30 days period, and reasons for the selection. 

 
Selected 

day  
Average rainfall (mm) 
during previous 7 / 30 

days 
Comments on selected dates 

58 
(27 Feb) 72 / 109 After an unevenly distributed rain 

event; at the end of summer  
115 

(24 Apr) 0 / 3 After dry period; during mid- autumn 

262 
(18 Sep) 0 / 52 Situation towards the end of a 

recharge period; during early spring 
 

 

 

Figure 6.27:  Rainfall distribution in the study catchment during February, April and 
September 2004 (see Section 3.6 and Figure 3.16 for more details). 

 
Figure 6.28 summarises the results of the application of all the models to the 

Goulburn River catchment on day 58. Similarly, Figure 6.29 and Figure 6.30 

summarize the predicted soil water distributions on day 115 and day 262 

respectively.  These results are based on 0-30cm (root-zone) SWCs. During the 

process of converting the computed NWDI into SWC values, published values for 

maximum soil water content of six major soil types were used. The major soils in 

the Goulburn River catchment are clay, clay loam, loam, sand, sandy clay and 

sandy loam soils and the saturation water content of these soils are 0.385, 0.389, 

0.436, 0.417, 0.321, and 0.412 cm3cm-3 respectively. The conversion of VTCI into 
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SWC also requires reference soil water content values. In this study, measured 

soil water content from the catchment scale CASMM site (e.g. S2) has been used 

to convert VTCI into SWC values. LST based models however, do not require 

any measured SWC from a CASMM site. 

  

Day 
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Daytime   LST Daytime    LST - Tair

Nighttime LST 

<0.05 >0.550.350.250.15 0.45 v/v

∆LST

RNTI Nighttime LST - Tair

Daytime   LST Daytime    LST - Tair

Nighttime LST 

∆LST

RNTI Nighttime LST - Tair

SWC 
based 
models

NWDI 
based 
models

VTCI 
based 
model

  

Figure 6.28:  Spatial patterns of soil water contents (0-30cm) within the Goulburn River 
catchment derived from the various models for days 58 in 2004.  
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Day 
115

Daytime   LST Daytime    LST - Tair

Nighttime LST 
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Figure 6.29:  Spatial patterns of soil water contents (0-30cm) within the Goulburn River 
catchment derived from the various models for days 115 in 2004. 
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Figure 6.30:  Spatial patterns of soil water contents (0-30cm) within the Goulburn River 
catchment derived from the various models for days 262 in 2004. 

 

In order to gain better insight at the subcatchment scale soil water distributions, 

VTCI based SWC maps are also given for the Krui and Merriwa subcatchments 

(Figure 6.31).  During the process of converting the computed VTCI into SWC 

values, measured SWCs of K4 and M4 have been used for the Krui and Merriwa 
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catchments respectively, because these sites have been identified as the CASMM 

sites in the Krui (K4) and Merriwa (M4) subcatchments.  

Day 115 Day 262Day 058

Krui River Krui River 
CatchmentCatchment

<0.05 >0.550.350.250.15 0.45 v/v

Merriwa River Merriwa River 
CatchmentCatchment

 
Figure 6.31:  Spatial patterns of soil water contents (0-30cm) within the Krui and Merriwa 
River catchments derived from the VTCI models for days 58, 115 and 262 in 2004. 

 
At first glance, it is clear that all these models are capable of providing some 

information on SWC variation across the catchments. More careful investigation 

reveals that the level of detail in the spatial patterns increases in the following 

sequence: 1) SWC-based models 2) NWDI-based models, and 3) VTCI. This 

trend is consistent for all three days selected. Thus, it confirms that the 

consideration of soil and vegetation information is vital for detailed predictions 

from LST based models.  

It appears from Figure 6.28-6.31 that the surface water content patterns across a 

catchment can be generated from a combined use of a limited number of ground-
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based soil moisture measurements and remotely observed LST and VI. 

Unfortunately, no field measured SWC values at the pixel scale of 1.1 km2 are 

available for critical comparison with the predicted values. The results obtained 

with these models however can be explained with three approaches: comparison 

with the environmental observations (i.e. observed rainfall), with the range and 

average of predicted values, and with the details in the derived patterns. 

First, the derived SWC maps may be compared with the rainfall distribution maps. 

SWC patterns on day 58 can be compared with the rainfall distributions during 

February 2004 (see Figure 6.27). During this month, more rain occurred across the 

northern and the southern parts of the catchment and this is clearly reflected in the 

wetter areas in the VTCI-based map on day 58. All LST (only) based models are 

poor in describing the driest and wettest parts of the catchment, particularly on 

day 58 and the patterns cannot be compared with the distribution of rainfall. In 

case of NWDI and daytime LST based models however, these wet areas are 

visible but not as prominent as with the VTCI. 

Similarly, due to absence of a major rain event during April, the VTCI-based 

SWC pattern map on day 115 shows a drier catchment than those obtained with 

the daytime LST based models. The SWC map derived with the VTCI model on 

day 262 shows a pattern similar to the rainfall distribution in September (see the 

September map in Figure 6.27). The rainfall map shows that the northern half of 

the Goulburn catchment received less rain than the other parts. As seen in the 

VTCI map on day 262, the derived SWC clearly indicates this difference. In case 

of NWDI (or SWC) and daytime LST based models however, soil moisture 

variations due to this rainfall pattern is unclear. 

The LST models used in this study do not consider the effect of vegetation on soil 

moisture predictions. This implies that LST alone is not sufficient for predicting 

soil moisture and that vegetation information must be considered. Furthermore, 

including vegetation information gives more information on the moisture status in 

the soil profile than at the surface layer alone. Soil moisture prediction models are 

more useful if the models are capable of considering deeper layers than the 

surface layer. The VTCI model considers both LST and vegetation for predicting 

the root-zone soil moisture content and a wide range of moisture patterns could 

therefore be obtained. 
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Second, the actual SWCs predicted at the Goulburn River catchment scale also 

help to evaluate the performance of the thirteen models developed in the current 

study.  Table 6-14 summarises for each of the three days the results of computed 

average SWCs for the Goulburn River catchment based on these models. As a 

reference, the average SWC based on the field measurements at the 25 sites and 

the SWC at the CASMM site (S1 in case of Goulburn River Catchment) are also 

given in the table. It is shown that, the average SWCs derived with the VTCI-

based method and calculated from the field measured SWC are comparable. The 

catchment-scale SWC values derived from the VTCI method are similar to the 

measured water content at CASMM site S1. Furthermore, during some occasions 

such as on day 58, a similar standard deviation may obtained for the measured 

(0.102) and predicted (0.114) SWCs. It is also found that approximately, over 86 

% of the computed SWC values from VTCI method were within 0.18 cm3cm-3 

(SWC observed at the temporally stable driest site, M1) and 0.41 cm3cm-3 (SWC 

observed at the temporally stable wettest site, S3) on day 262. The other methods 

however, produce either low (day 58 and 262) or higher (day 115) water contents. 

According to this study, the VTCI approach is capable of predicting the catchment 

average soil water content within ±0.03 cm3 cm-3 accuracy. 

 

 

 



Chapter 6 - Deriving spatial patterns of root-zone soil moisture               Page 6-70 
 

  

Table 6-14:  Comparison of statistics among predicted soil water contents from the all 
models and the field measured soil water contents. 

Day Model type  Avg. Min. Max. SD. 
58 LST and SWC Daytime LST 0.315 0.284 0.352 0.010 
  Daytime LST-Ta 0.325 0.285 0.374 0.013 
  Nighttime LST 0.217 0.003 0.569 0.097 
  Nighttime LST-Ta 0.265 0.168 0.403 0.038 
  Δ LST 0.304 0.279 0.328 0.008 
  RNTI 0.321 0.293 0.355 0.009 
       
 LST and NWDI Daytime LST 0.289 0.180 0.395 0.039 
  Daytime LST-Ta 0.285 0.183 0.382 0.036 
  Nighttime LST 0.221 0.129 0.417 0.034 
  Nighttime LST-Ta 0.222 0.138 0.308 0.029 
  Δ LST 0.287 0.186 0.425 0.037 
  RNTI 0.284 0.175 0.391 0.039 
       
 VTCI and SWC VTCI 0.289 0.002 0.759 0.114 
       
 Measured SWC All sites 0.306 0.127 0.429 0.102 
  CASMM site (S1) 0.216    
       
115 LST and SWC Daytime LST 0.216 0.089 0.414 0.058 
  Daytime LST-Ta 0.250 0.070 0.528 0.082 
  Nighttime LST 0.117 0.000 0.276 0.059 
  Nighttime LST-Ta 0.153 0.143 0.164 0.004 
  Δ LST 0.209 0.112 0.317 0.042 
  RNTI 0.221 0.096 0.416 0.057 
       
 LST and NWDI Daytime LST 0.210 0.033 0.473 0.082 
  Daytime LST-Ta 0.230 0.013 0.568 0.104 
  Nighttime LST 0.129 0.092 0.158 0.011 
  Nighttime LST-Ta 0.131 0.093 0.160 0.012 
  Δ LST 0.219 0.029 0.560 0.087 
  RNTI 0.205 0.030 0.471 0.083 
       
 VTCI and SWC VTCI 0.181 0.020 0.469 0.052 
       
 Measured SWC All sites 0.149 0.022 0.361 0.092 
  CASMM site (S1) 0.163    
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Table 6.14 continued. 

Day Model type  Avg. Min. Max. SD. 
262 LST and SWC Daytime LST 0.332 0.088 0.606 0.084 
  Daytime LST-Ta 0.333 0.073 0.625 0.090 
  Nighttime LST 0.206 0.009 0.375 0.063 
  Nighttime LST-Ta 0.206 0.038 0.345 0.051 
  Δ LST 0.272 0.210 0.360 0.027 
  RNTI 0.326 0.080 0.602 0.085 
       
 LST and NWDI Daytime LST 0.284 0.030 0.553 0.096 
  Daytime LST-Ta 0.290 0.035 0.559 0.096 
  Nighttime LST 0.479 0.339 0.573 0.039 
  Nighttime LST-Ta 0.579 0.412 0.648 0.048 
  Δ LST 0.256 0.125 0.436 0.066 
  RNTI 0.285 0.030 0.552 0.096 
       
 VTCI and SWC VTCI 0.277 0.010 0.518 0.067 
       
 Measured SWC All sites 0.255 0.063 0.501 0.126 
    CASMM site (S1) 0.235       

  

Finally, the spatial variability of the predicted SWC values also helps is assessing 

the validity of these models.  Western et al. (1998b) documented a seasonal 

evolution of soil water patterns that was related to lateral redistribution of soil 

moisture during wet seasons. Lateral redistribution tends to increase spatial 

variability. Wet periods with runoff events are therefore expected to show higher 

spatial variability of SWC than dry periods (Famiglietti et al., 1998; Western et 

al., 1998b).  The soil moisture patterns derived from this study imply that a wide 

range of surface soil moisture variability may be obtained for 0-30cm depths 

across a catchment particularly for day 58 or 262. The broadest range of SWC 

patterns are derived from the daytime LST based models and from the VTCI 

model, whereas the smallest range of SWC patterns was obtained from the 

nighttime LST based models. The daytime LST is also an important component in 

VTCI approach. It appears that the daytime LST is the most important variable 

which helps distributing soil water contents across a catchment. 

The spatial patterns derived from the daytime LST, daytime LST – Tair, ∆LST and 

RNTI in NWDI-based models are also capable of giving some information more 
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than with SWC-based models on the soil water distribution across the catchment. 

Details obtained with these models are encouraging, particularly with the daytime 

LST – Tair or with the RNTI. It can be therefore assume that the use of LST – Tair 

or RNTI with NWDI can provide a reasonable basis to derive catchment scale soil 

moisture patterns. 

On the larger scale of the 1.1 km2 pixels in the current study, the redistribution of 

soil moisture during wet events and the associated higher variability across a 

range of catchments can be best described with the SWC maps for day 58 derived 

with the VTCI method for Goulburn (Figure 6.28), Krui and Merriwa (Figure 

6.31) river catchments. Kachanoski and De Jong (1998) have also reported greater 

spatial variability in recharge periods than in drying periods.  Comparison of the 

VTCI based SWC maps obtained for days 58 or 262 with day 115 demonstrate 

this. The three SWC maps derived with the VTCI method provide representations 

of SWC across the study catchment. Hence, the prediction of catchment scale soil 

water patterns with the VTCI based models appears realistic. 

In contrast, the surface water content values derived from the nighttime LST 

model show less detail compared to other models. For example, on day 58 the 

Goulburn catchment shows near uniform SWC patterns which are poorly related 

to the observed rainfall pattern. Often the range of values predicted with nighttime 

LST model is limited. As a result, some wet areas are appearing as dry areas and 

likewise, drier areas are appearing as wetter areas. Due to the narrow range of 

predicted SWCs, it can be seen that the details obtained from the nighttime LST 

model are limited. Thus, it appears that predicted soil moisture patterns from 

nighttime LST models are not realistic. The use of nighttime LST in combination 

with daytime LST (as in ∆LST models) however, shows mixed results particularly 

in day 58 and 262 (both are wet days).  

Because many hydrological, biological, ecological and atmospheric processes are 

nonlinearly related to the surface soil moisture, knowledge of statistical 

distribution of soil moisture within a catchment would greatly increase the utility 

of up-scaled soil moisture products. Many authors have reported that surface soil 

moisture content values distribute normally within their study areas (Francis et al., 

1986; Nyberg 1996).  Figure 6.32 summarises the results of frequency distribution 

analyses of derived SWCs from the five selected models (four models with the 
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NWDI approach, i.e. Daytime LST, Daytime LST-Tair, ∆-LST, and RNTI, and the 

fifth model with the VTCI approach). It is clear from the figure that the VTCI-

based model is the only model producing SWCs, which are distributed normally 

on all three days. Other models occasionally produce SWCs which are normally 

distributed (as in day 58 and 262 with RNTI) but may also can produce bi-modal 

distributions (e.g. in day 115, daytime LST, daytime LST-Tair, or ∆LST models).  

The distribution pattern of computed SWCs also confirms the VTCI model as a 

potentially useful upscaling method for soil moisture measurements. 
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Figure 6.32:  Summary of frequency distributions of soil moisture contents within the 
Goulburn River catchment obtained from the application of NWDI and daytime LST based 
models (i.e. Daytime LST, Daytime LST-Tair, ∆-LST, and RNTI) and the VTCI model for 
three dates selected (note: computed SWC (cm3cm-3) in X-axis and number of pixels in Y-
axis). 

 
Several aspects are clear from this study: (1) models based on linear correlation 

between SWC and measured daytime or nighttime LST are not able to reproduce 
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the wide range of soil water contents usually present in a catchment; (2) models 

based on linear correlation between NWDI and daytime based LST are suitable 

for deriving catchment scale SWC patterns; (3) the nighttime LST is unsuitable 

for predicting soil water content; (4) the VTCI approach gives a range of SWC 

values which is closer to the range of measured values; and (5) models based on 

the NWDI and measured daytime LST must be further developed on a daily basis.   

The methods presented in this study attempted to derive spatial patterns of root-

zone soil moisture content from the combined used of ground-based soil moisture 

measurements and remotely sensed LST and VI.  Table 6-15 summarises the 

salient features, advantages, disadvantages and practical significance of the LST-

based and VTCI-based models studied in this chapter. According to this study, the 

most plausible method to derive spatial patterns of soil water distribution is the 

VTCI-based approach which uses field measured soil moisture at a CASMM site.  
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Table 6-15:  Comparison of the use of LST-based models and VTCI-based models for soil 
water content predictions. 

 LST-SWC  
models 

LST-NWDI 
models 

LST + VI model  
(e.g. VTCI) 

Key features • Predictions are based 
on empirical 
equations 

• Considers current 
LST 

• Predictions may 
require air 
temperatures (in case 
of Ts-Ta models)  

 

• Predictions are based 
on empirical 
equations 

• Considers current 
LST 

• Require θmax for each 
soil type  

 

• Predictions are not 
based on empirical 
equations 

• Considers current LST 
and vegetation status 

• Predictions require 
SWC from a CASMM 
site. 

Advantages • Easy to establish 
 

• Easy to establish 
• Detailed patterns 

can be obtained 
• Predictions reflect 

SWC from deeper 
layer 

• Less seasonal 
effect 

• Detailed patterns 
reflect near-true SWC 
situation 

• Predictions reflect 
SWC at deeper layers 

• No seasonal effect  

Dis-
advantages 

• Models may not 
provide details 

• Predictions consider 
only LST 

• Predictions reflect 
SWC at surface layer 
than the deeper 
layers   

• Seasonal effects may 
hinder predictions 

 

• Require accurate 
soil map of the 
catchment 

• Required to compute 
the VTCI index for 
every application 

• Required to consider 
larger catchment for 
accurate determination 
of boundary 
conditions 

Practical 
significance 

• Application of a 
simple regression 
equation with 
measured  LST 
provides a surface 
SWC distribution 

• Good SWC pattern 
across any 
catchment is 
possible with 
daytime LST 

• Realistic SWC pattern 
across any catchment 
is possible 

 

6.6 IMPLICATIONS FOR FUTURE WORK 
In drier sub-humid environments, subsurface water redistribution is restricted to a 

limited number of short periods during a year. Most of the time, moisture 

transport is dominated by vertical fluxes, often with no connection between 

adjacent areas. Soil moisture may also controlled by factors such as vegetation, 

local topography and aspect of the hillslope. As a result, in sub-humid areas, the 

temporal and spatial patterns of soil moisture are difficult to predict.  Furthermore, 
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sub-humid environments are subject to dramatic and sudden changes in soil 

moisture contents. The soil moisture content in such areas plays a fundamental 

role in the hydrological response, and prediction of catchment-scale moisture 

content from point-scale measurements is therefore an important issue.  These 

catchment-scale predictions can be based on spatial wetness patterns derived from 

satellite observations. 

Knowledge of the variation in spatial distribution of soil moisture rather than just 

average soil moisture content over a catchment may lead to understanding 

significant differences in the hydrological responses of the catchment. The present 

study has developed a number of models that enable the generation of soil 

moisture patterns based on the field measured soil moisture and MODIS derived 

land surface temperature (LST) and vegetation index (VI). The first set of 

methods is based on a relationship between various forms of LST (e.g. daytime, 

nighttime, Δ LST, daytime LST-Ta, nighttime LST-Ta and RNTI – i.e. 6 types) 

and field measured soil moisture measurements. The second set of methods use 

relationships between various forms of LST (as mentioned previously) and a 

normalized soil moisture index (NWDI). Finally, based on the triangular-shape 

scatter diagrams between MODIS derived LST and VI (such as NDVI or EVI) 

over a catchment, an index has been derived to characterise the surface wetness 

conditions (VTCI). This index has been used with measured soil moisture values 

obtained at a catchment average soil moisture monitoring (CASMM) site to 

generate soil moisture patterns across a catchment.  Among the fourteen methods 

studied, the most detailed SWC patterns were obtained from the VTCI and RNTI-

NWDI approaches. 

It appears that a combination of LST and VI is necessary for obtaining a more 

complete picture of the soil water distribution than any of the other methods 

studied in the current thesis. It would therefore be appropriate to re-examine field-

measured data from existing soil moisture networks across many regions and 

investigate the use of the vegetation-temperature condition index described in this 

thesis.  

Furthermore, the methodology developed in this chapter may assist in the 

development of downscaling strategies for large-area measurement of soil 

moisture from AMSR-E because the broad range of variation of wetness 
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characteristics obtained with the VTCI and RNTI-NWDI methods provide an 

useful covariant.  This will be explored further in Chapter 8.  

The current study found that it is possible to derive catchment scale SWC 

distribution maps from a sparse network of soil moisture monitoring sites. Such 

maps are not only useful for scaling studies and hydrological model applications 

but also for practical applications such as for achieving optimum usage of limited 

water resources.   

6.7 CONCLUSIONS 
This study has illustrated that in sub-humid regions of Australia (and similar 

climates elsewhere), soil moisture spatial patterns can be predicted for a given day 

with the combined use of ground-based measurements and remotely sensed land 

surface temperature and vegetation indices.  

This study considered only 1.1x1.1 km2 pixel size for deriving soil moisture 

patterns. It would be appropriate to continue the study with 250mx250m2 pixels as 

the high resolution data are available from the MODIS sensor. 

Future soil moisture scaling studies should consider the use of satellite derived 

wetness indices. It will also be useful to further investigate the implication of soil 

physical information for soil moisture scaling studies.   
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CCCHHHAAAPPPTTTEEERRR   SSSEEEVVVEEENNN   
7 Near-surface soil moisture estimations with 
active and passive microwave sensors: Theoretical 
basis and field validation of AMSR-E  
 
 
This chapter is concerned with near-surface soil moisture estimation with active 

and passive microwave sensors. The chapter presents first, a review of the 

radiative transfer theory and an overview of satellite based microwave 

radiometers. Next, this chapter describes soil moisture validation studies for the 

passive microwave AMSR-E system soil moisture system based on three intensive 

field campaigns. While the comparisons between the AMSR-E products and field 

measurements are not straightforward as the 75km x 43km of Instantaneous Field 

Of View (IFOV) by the 6.925 GHz channel of AMSR-E and the 25 km resolution 

of the soil moisture product significantly exceed the typical plot size used in field 

sampling, the results presented here give an indication of future research 

directions such as use of airborne sensors for validation purposes. Examination of 

temporal trends of AMSR-E derived near-surface moisture and ground-based 

moisture measurements throughout the study period will provide much greater 

range of environmental conditions to improve the present soil moisture 

computation methodology. While the analysis presented is restricted to 1-2 

AMSR-E pixels, the approach presented here establishes the foundations for 

future studies.  
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7.1 INTRODUCTION 
 
The moisture status of the soil is a directly observable hydrologic variable and 

remote sensing techniques may be employed in its measurement. Techniques have 

been developed using the visible, infra-red and microwave windows of the 

electromagnetic spectrum. Measurements in the microwave region can provide 

all-weather quantitative estimates of near-surface soil moisture under low-to-

moderate vegetation cover because the measured soil reflectivity is strongly 

influenced by the soil moisture content. Furthermore, microwave frequencies 

respond to the variations in moisture content due to the polar nature of the water 

molecule.  Indeed, the microwave region permits truly quantitative estimates of 

soil moisture using physically based, radiative transfer models. Furthermore, 

microwave technology is the only remote sensing method that measures a direct 

response to the absolute amount of water in the soil.  

Microwave remote sensing is based on the differences in electromagnetic and 

dielectric properties between dry and wet soils. The water content of a soil 

strongly influences its dielectric properties, the propagation of electromagnetic 

radiation through it and the emission of thermal microwave radiation from the soil 

surface. The dielectric constant is a measure of the propagation characteristics of 

an electromagnetic wave in the medium (Tansey et al., 1999). Because of the 

large difference between the dielectric constant of water (about 80 at frequencies 

<5 GHz) and that of dry soil (about 3.5), the emissivity of soil varies over a wide 

range: from approximately 0.6 (for saturated soils) to greater than 0.9 for dry 

soils.  For a typical Earth surface temperature of 300 K this variation of emissivity 

corresponds to a soil brightness temperature variation of 90 K (Njoku and 

Entekhabi, 1995).  Because this variation in the brightness signal is significantly 

larger than the noise sensitivity threshold of a microwave radiometer 

(approximately less than 1K), microwave techniques hold great promise for soil 

moisture estimation. 

Over the last two decades considerable efforts have been devoted to develop and 

improve active and passive microwave techniques as well as interpretation tools 

(Ulaby et al., 1981; Jackson and Schmugge 1989, 1995; Engman and Chauhan, 

1995; Njoku and Entekhabi, 1995; Sano et al., 1998; Schmugge, 1998; Wigneron 
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et al., 1998, 2003; Biftu and Gan, 1999; Owe et al., 2001; Laymon et al., 1997). 

Microwave remote sensing uses the microwave region of the electromagnetic 

spectrum which consists of wavelengths between 1 mm and 100 cm. This region 

is subdivided into bands as shown in Table 7-1 which are often referred to by 

alphabetic characters. For remote sensing applications however, only wavelengths 

greater than about 5 cm are useful, because the higher the wavelength, the smaller 

the effects of atmosphere and vegetation. In addition, longer wavelengths can 

penetrate deeper into the surface soil layer and are therefore, more sensitive to soil 

moisture (Njoku and Entekhabi, 1995; Jackson et al., 1996).  In general, 

microwave sensors have their maximum sensitivity at lower frequencies (i.e. in 

the L-band and C-band). 

Table 7-1: Microwave band names, wavelengths and frequencies (Ulaby et al., 1981). 

 

Band Name Wavelength (cm) Frequency (GHz) 
Ka 0.75 – 1.10 40.0 – 26.5 
K 1.10 – 1.67 26.5 – 18.0 
Ku 1.67 – 2.40 18.0 – 12.5 
X 2.40 – 3.75 12.5 – 8.0 
C 3.75 – 7.50 8.0 – 4.0 
S 7.50 – 15.0 4.0 – 2.0 
L 15.0 – 30.0 2.0 – 1.0 
P 30.0 – 100.0 1.0 – 0.3 

 

Microwave techniques for measuring soil moisture include both passive and 

active microwave approaches. The main difference between active and passive 

microwave remote sensing is the source of the energy. In active microwave 

systems, otherwise known as radar systems, the electromagnetic signal produced 

by a power source on a remote sensing platform is propagated through space to 

the target on the land surface, from where it is reflected back to space. The sensor, 

which is also mounted on the same platform, receives the reflected signal or 

backscatter. Therefore, active systems depend on their own energy sources and are 

capable of controlling the emitted radiation and hence have indirect control of 

backscattered radiation. 

In contrast, passive microwave remote sensing does not depend on its own energy 

source and depends entirely on the naturally emitted radiation from the earth 

surface. Since all matter at temperatures above absolute zero emits 
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electromagnetic radiation due to the motion of the charged particles of its atoms, 

so does the earth surface. Passive microwave remote sensing measures this 

naturally emitted radiation. Since the naturally emitted radiation signal is very 

weak, very sensitive radiometers need to be used and often reasonable signal 

strength is obtainable only from a substantially large ground area. Therefore, 

passive systems can provide spatial resolutions on the order of tens of kilometres; 

about 10-20 km in the L-band (1.4 GHz) or about 50 km in the C-band (6.9 GHz).  

In comparison with radars, passive systems have a greater sensitivity to soil 

moisture and are less sensitive to surface geometry.  Therefore, simplified 

algorithms can be used to account for soil surface roughness and vegetation 

structure.   

Passive microwave radiometers have been flown on a number of satellites, mainly 

the Electronically Scanning Microwave Radiometer (Nimbus 5, in the 1970s), the 

Scanning Multi-channel Microwave Radiometer (Nimbus 7), the Special Sensor 

Microwave Imagery (in Defence Meteorological Satellite Program), and more 

recently the Advanced Microwave Scanning Radiometer for EOS (AMSR-E, in 

Aqua satellite since 2002). 

 

7.2 ACTIVE MICROWAVE REMOTE SENSING 
 
Active microwave sensors measure the phase and amplitude of backscatter and 

enable a received/transmitted power ratio or backscatter coefficient (also know as 

the radar cross-section σo, measured in dB) to be calculated.  Different surfaces 

have specific σo at different wavelengths. These differences are due to the 

interactions of radiation with scatterers of varying size. The amount of moisture in 

the near-surface layer however, also influences backscatter by affecting the 

amplitude of the backscatter coefficient. The σo is related directly to soil moisture 

and is written in functional form as;  

 ( )v
o Rf θασ ,,=   (7-1) 

where R is a surface roughness term, α is a soil moisture sensitivity term, and θv is 

the volumetric soil water content. Besides the fact that R and α are known to vary 

with wavelength, polarization, and incident angle, no satisfactory theoretical 
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model is currently available for estimating these terms independently (Engman 

and Chauhan, 1995). Therefore, the relationship between measured backscatter 

and soil moisture requires an empirical relationship with field data, even for bare 

soil. Many empirical and semi-empirical models have been proposed to relate the 

σo to surface moisture (Biftu and Gan, 1999; Quesney et al., 2000; Srivastava et 

al., 2003). For example, the most widely used semi-empirical linear model relates 

surface moisture and radar signal as:   

 βαθσ += v
o   (7-2) 

where θv is the volumetric soil water content, and α and β are constants. This 

linear model has been validated using data obtained over many agricultural 

watersheds (Quesney et al., 2000). Due to its empirical nature, the slope α of this 

model is not constant from one watershed to the next, and must be calibrated each 

time. In addition, the roughness effects are neglected in this linear model, thus 

preventing its application to large areas.  

In active microwave remote sensing, the depth to which soil moisture can be 

detected depends on the wavelength of the radar system. Active systems also offer 

possibilities of high spatial resolution (10 m for Synthetic Aperture Radar (SAR) 

systems in ERS and Radarsat satellites). Their measurements however, are very 

sensitive to geometric features of the surface such as soil roughness, vegetation 

structure, row effects due to crop rows or tillage, look angle etc. 

Satellite based scatterometers are active microwave sensors or radars designed to 

measure wind speed and direction over the oceans. For example, ERS 

scatterometers in European Remote Sensing Satellite ERS-1 and ERS-2, Japanese 

Earth Resources Satellite (JERS-1), and the Canadian RADARSAT are operating 

at present. While ERS and RADARSAT are radars operated in C-band, JERS-1 is 

operated in L-band. The SAR systems offer an opportunity to measure soil 

moisture routinely and many such attempts are described in the literature (Ragab, 

1995; Tansey et al., 1999; Srivastava et al., 2003). Although it is believed that an 

L-band system would be optimum for soil moisture, the preliminary results from 

the ERS-1 with C-band demonstrate its capability for soil moisture measurement.  

Tansey et al. (1999) have observed that use of SAR data to determine soil 

moisture in a desert environment is deemed realistic.  However, Merot et al. 
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(1994) has shown that radar data become ambiguous when free water pools are 

present within the observed ground area.  

Present techniques developed for soil moisture retrieval from active microwave 

are well suited for the small scale (≈ 10 ha). Interpretations of radar signals face 

problems at larger scales because of the insufficient information about the 

influence of the topography and vegetation on the return signal.  As a result, the 

research emphasis in soil moisture retrieval from microwave signals has changed 

from active to passive. 

 

7.3 PASSIVE MICROWAVE REMOTE SENSING 
FOR NEAR-SURFACE MOISTURE ESTIMATION 
 
Passive microwave theory has been extensively described by a number of authors 

(Njoku and Kong, 1977; Ulaby et al., 1981, 1986; Van de Griend and Owe, 

1994b; Engman and Chauhan, 1995; Njoku and Entekhabi, 1995; Wigneron et al., 

2003). Furthermore, many studies have successfully demonstrated that passive 

microwave remote sensing has great potential for monitoring soil moisture at 

larger scales (Jackson and O’Neill, 1990; Owe et al., 2001; Van de Griend and 

Owe, 1994a; Njoku, 1999). This section gives a brief overview of the theory 

relevant to the present study.  

Remote sensing approaches using the passive microwave region are based on the 

measurement of the natural thermal emission of the land surface at microwave 

lengths using very sensitive radiometers. This natural thermal emission largely 

depends on the physical temperature and the emissivity of the radiating body. The 

emitted radiation in the microwave region (λ = 1-1000 mm) is extremely low as 

compared with long-wave infrared radiation (λ = 1-100 µm). 

Thermal radiation emitted from the Earth’s surface can be described by Plank’s 

blackbody radiation theory. At microwave wavelengths (λ > 0.3 cm), and for the 

typical Earth surface temperatures (≈ 300 K), the Rayleigh-Jeans approximation 

(when f < 117 GHz) to Plank’s law holds, and the specific intensity of blackbody 

radiation (BI) at temperature T can be written as (Ulaby et al., 1981); 
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 2λ
kTBI =  (7-3) 

where λ is wavelength (m), k is Boltzmann’s constant, and BI has units of Wm-2 

Hz-1 steradian-1.  

The relationship of the brightness temperature of a thermally radiating body to its 

true temperature is given by; 

 Tb(p) ≈ es(p)T (7-4) 

where p refers to either horizontal or vertical polarization, Tb is the observed 

microwave brightness temperature, T is the physical (thermodynamic) temperature 

of the emitting layer, and es is the smooth-surface emissivity (For a blackbody es = 

1).  

According to Kirchhoff’s reciprocity theorem, the emissivity es relates to the 

reflectivity Г of the surface as: 

 es = 1 – Г  (7-5) 

If the assumption is made that the dielectric constant in the soil has smooth 

boundary and that the temperature and surface moisture distributions are uniform, 

the reflectivity, Г, at vertical and horizontal polarization may be derived from the 

Fresnel equation: 
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where ε is the complex dielectric constant (relative permittivity) of the soil-water 

medium, θ is the incidence angle of the sensor (measured from the surface 

normal) and v and h refer to the polarization of the emitted radiation. The 

reflectivities, and therefore the emissivities and brightness temperatures, thus 

depend on the dielectric constant, the incidence angle, and the polarization of the 

radiation. While the absolute magnitude of the soil emissivity is somewhat lower 

at horizontal polarization, the sensitivity to changes in surface moisture is 

significantly greater than at vertical polarization for both clay and sandy soils 



Chapter 7 - Near-surface soil moisture estimations               Page 7-8 

(Figure 7-1). The variable sensitivity of horizontal and vertical polarization gives 

an opportunity to relate this difference to the soil moisture content.  The 

polarization difference (PD; Jackson, 1997) and polarization ratio (Njoku, 1999) 

are also a function of the moisture content of the soil and increase with soil 

moisture. One advantage of PD and polarization ratio is that both are less sensitive 

to temperature than the individual vertical or horizontal signals.  

 

 
Figure 7-1:  Emissivity dependency on soil moisture for a smooth soil at 6 and 10 GHz, 
Vertical (V) and Horizontal (H) polarization, and for sand (s) and clay (c) soils (From Njoku, 
1999). 

 

7.3.1 MICROWAVE DIELECTRIC PROPERTIES OF SOIL 
 
The dielectric properties are measured by the dielectric constant (ε), which is a 

complex number representing the response of a material to an applied 

electromagnetic wave (Schmugge, 1998; Tansey et al., 1999). It consists of both 

real (ε’) and imaginary (ε”) parts by the relationship ε = ε’ + i ε”, and is usually 

measured relative to that of free space in the material (i.e. complex relative 

dielectric constant, εr = ε / εo where εo= 8.85x10-12 farad m-1). While the real 

component determines the propagation characteristics of the electromagnetic 

wave in the material such as its velocity, the complex component determines the 

energy losses or absorption as the electromagnetic wave travels through the 

material (Engman and Chauhan, 1995; Zegelin, 1996).  This energy loss is due to 

vibration and/or rotation of the water molecules (Wütherich, 1997) and is often 

referred to as the dielectric loss factor (Zegelin, 1996).  
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The real part of the relative dielectric constant (εr
’ ) of dry soil particles varies 

from a value of 2 to 5 independent of frequency (Dobson and Ulaby, 1986) and 

the imaginary part (εr”) is  typically less than 0.05 for dry soils (Ulaby et al., 

1996). In contrast, the free water dielectric constant (at 1 GHz, at room 

temperature) is approximately 80 for the real component and 4 for the imaginary 

component (Ulaby et al., 1996). The large difference between the dielectric 

constant of water and the soil solids makes it suitable for the measurement of soil 

water content.  

A number of relationships have been proposed to relate soil moisture content with 

the soil dielectric constant. Topp et al. (1980) showed that the volumetric soil 

moisture content can be derived from the real part of the dielectric constant by 

means of multiple regression approach. The main advantages of their approach 

include that it does not require the determination of any soil parameters nor does it 

require information on the observation frequency or soil temperature. Furthermore, 

Topp et al. (1980) found that for frequencies between 1 MHz and 1 GHz the real 

part of the dielectric constant was almost independent of soil density, soil texture, 

soil salinity and soil temperature between 10oC and 36oC. Nevertheless, the 

validity of this empirical relationship has not been demonstrated for all possible 

soil moisture contents and porosities (Roth et al., 1990). 

Figure 7-2 shows the relationship between dielectric constant and volumetric soil 

moisture content for a variety of soil types at a frequency of 1.4 GHz and a soil 

temperature of 23oC. The dependence on soil type (or 'texture') is due to the 

different percentages of water bound to the particle surfaces in the various soils 

(Njoku and Entekhabi, 1996). Bound water molecules do not freely rotate at 

microwave frequencies, and hence cause a smaller dielectric effect than the free 

water in the pore spaces. This is most evident in clay soils, which have greater 

particle surface areas per unit mass and more affinity for binding water molecules. 

A priori knowledge of the soil textural composition is therefore important to 

interpret the dielectric constant of a soil. 
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Figure 7-2:  Dielectric constant as a function of volumetric soil moisture for five soil types at 
1.4 GHz. Smooth curves were drawn through measured data points (From Ulaby et al., 1986, 
1996).  

  
To overcome the dependence on the relationship between soil type and dielectric 

constant Wang and Schmugge (1980) presented two relationships for dielectric 

constant, depending on whether the soil moisture content is above or below a 

transition soil moisture content. An empirical relationship between the transition 

soil moisture content and the wilting point moisture content, given as a function of 

the sand and clay content, was also introduced. Finally, in order to describe the 

observed dielectric constant of soil-water mixtures at frequencies between 1.4 and 

5 GHz, a simple empirical model was  proposed.  In this model, the dielectric 

constant of a soil-water mixture is computed from the known dielectric constants 

of air, ice, dry soil and water, and the volume fraction of each constituent in the 

mixture.  

The effect of frequency on the soil dielectric constant is also important. At 

frequencies below approximately 5 GHz there is little variability in the real part of 

the dielectric constant and therefore, frequency dependence of the soil emissivity 

in this range is very limited. The imaginary part of the dielectric constant, 
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however, exhibits considerable frequency dependence in this range. This leads to 

frequency-dependent attenuation of radiation through the medium. This can be 

explained by a parameter known as the 'penetration depth' which is discussed in 

Section 7.3.2.  

For frequencies between 1.4 and 18 GHz, Hallikainen et al. (1985) have presented 

empirical relationships with separate polynomial expressions for both the real and 

imaginary parts of the dielectric constant.  These polynomial expressions relate 

the real and imaginary parts of the complex dielectric constant to the volumetric 

soil moisture content and the percentages of sand and clay. The coefficients of 

these expressions depend on the observation frequency. 

Dobson et al. (1985) have presented two dielectric mixing models, viz. a 

theoretical and a semi-empirical model. The theoretical dielectric mixing model 

deals with both the bound water volume fraction and the free water volume 

fraction in the soil-water mixture, in accordance with the pore-size distribution. 

The semi-empirical dielectric mixing model relates the dielectric constant as a 

function of soil temperature, soil moisture content, soil texture, and observation 

frequency, for both the real and imaginary parts.  This model is valid for 

frequencies between 1.4 and 18 GHz. Dobson et al. (1985) have shown that their 

semi-empirical mixing model is capable of matching measured data at frequencies 

above 4 GHz. Apparently, this frequency range is an advantage for applications in 

saline soils because at frequencies higher than 4 GHz, the effects of soil salinity 

may be ignored (Ulaby et al., 1986).  However, at frequencies less than 4 GHz, 

the mixing model does not fully account for the dielectric properties of bound 

water at low soil moisture contents.  

In further work on the semi-empirical dielectric mixing model of Dobson et al. 

(1985), Peplinski et al. (1995) have extended the model to frequencies between 

0.3 and 18 GHz. In this new model, an adjustment has been introduced to correct 

the expression of Dobson et al. (1985) for the real part of the relative dielectric 

constant, at frequencies between 0.3 and 1.3 GHz. Similarly, for the imaginary 

part of the relative dielectric constant, a new equation was introduced for  

frequencies between 0.3 and 1.3 GHz. At present, the most widely used soil-

water-air dielectric mixing model is the model of Peplinski et al. (1995). It 

provides the best compromise between the complexity of the theoretical model 
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and the simplicity of the empirical models (Walker, 1999). This mixing model has 

the widest validity range in terms of observation frequency.  In addition, it 

accounts for the most important factors, including observation frequency, soil 

texture and soil temperature.  

 

7.3.2 PENETRATION DEPTH 
 
The penetration depth is defined as the distance in the medium over which the 

intensity of the propagating radiation decreases by about 63% due to attenuation 

by an exponential factor. The wavelength is an important parameter in 

determining the penetration depth. Figure 7-3 shows the dependence of 

penetration depth on wavelength and moisture content for a sandy soil. 

Accordingly, at 1.5 GHz the penetration depth varies from approximately 10 cm 

to 1 m for soil conditions ranging from saturated to dry. However, at 30 GHz the 

penetration depth is shallower for similar conditions and varies from less than 1 

mm to a little over 1 cm. The penetration depth is important because it gives an 

indication of the thickness of the surface layer within which variations in moisture 

and temperature can significantly affect the emitted radiation. Figure 7-3 confirms 

that longer wavelengths with greater penetration depths sense moisture and 

temperature changes deeper in the soil than shorter wavelengths. Therefore, by 

increasing the wavelength it may be possible to sense a thicker layer of soil.  

However, due to radio frequency interference at wavelengths beyond the L-Band, 

an upper limit on the wavelength exists for practical applications (Jackson, 1993).  

It is also important to note that the penetration depth is dependent on the soil 

moisture content. Figure 7-3 shows that as the soil moisture content increases, the 

penetration depth decreases (Njoku and Kong, 1977; Engman and Chauhan, 

1995). 
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Figure 7-3:  Soil penetration depth of microwave as a function of frequency and moisture 
content (from Njoku and Entekhabi, 1996).Soil penetration depth of microwave as a function 
of frequency and moisture content (from Njoku and Entekhabi, 1996). 

 
The viewing angle of the sensor is also important in estimating the dielectric 

properties of the soil. Figure 7-4 shows the computed dependence of emissivity on 

soil moisture content and viewing angle for a sandy soil. These graphs assist in 

the selection of the optimum viewing angle as well as into the development of 

new inversion models.   
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Figure 7-4:  Computed emissivity as a function of viewing angle for a sandy soil with 
moisture contents of 5% and 30%. The curves are for frequencies of 0.675 GHz and 14 GHz, 
and indicate the different behavior of the vertical (v) and horizontal (h) polarizations (from 
Njoku and Entekhabi, 1996). 

 
 
7.3.3 ROUGHNESS EFFECTS 
 
Surface roughness characteristics have generally been described in terms of the 

root mean square of surface height, roughness correlation length and a correlation 

function. For example, Choudhury et al. (1979) have proposed an empirical 

roughness model described as: 

 ( ) ( ) )cosexp(1 2 uhRe llr −−=  (7-8) 

where er(l)  is the rough surface emissivity, h is an empirical roughness parameter 

(related to the root mean square (rms) height variation of the surface and the 

correlation length), and u is the incidence angle of the observation. Typical values 

for h have been suggested, ranging from 0 for a smooth surface, 0.3 for a disked 

field, to 0.4 for a rough ploughed field. A more complex formulation, which also 

includes a polarization mixing parameter, has subsequently been proposed by 

Wang and Choudhury (1981). However, little work has since been conducted to 

quantify the relative magnitudes of either the roughness parameter or the 

polarization mixing parameter.  



Chapter 7 - Near-surface soil moisture estimations               Page 7-15 

Surface roughness reduces the sensitivity of emissivity to soil moisture variations. 

This is due to an increase in the apparent emissivity of natural land surfaces, 

which is caused by increased scattering from rough surfaces due to the increase in 

surface area of the emitting surfaces (Schmugge, 1998). Therefore, roughness of 

the soil surface reduces the range in measurable emissivity from dry to wet soil 

conditions (Wang, 1983; Van de Griend and Engman, 1985).  

In addition, the path through the atmosphere between the surface and the sensor 

depends on the slope and the elevation of the emitting surface and this effect is 

significant at frequencies >10 GHz .  This is due to the fact that these frequencies 

are affected by atmospheric attenuation (Mätzler and Standley, 2000). Therefore, 

corrections for roughness are necessary to obtain accurate soil moisture estimates.  

Some studies have shown that an accurate knowledge about the correlation length 

is important at lower incident angles, while the rms surface roughness has to be 

accurately known at higher incident angles (Su and Troch, 1996). Njoku and 

Entekhabi (1996) suggest that within certain broad classes of surface types, the 

natural variability of roughness can be small enough to be corrected using simple 

estimates of the roughness parameters. 

It is also assumed that the effect of surface roughness is minimal in most locations 

at satellite scales, except in mountainous terrain or areas with extreme relief.  Van 

de Griend and Owe (1994b) have observed in a field study that a surface 

roughness of 0 value gave the lowest rms errors in satellite-derived soil moisture.  

 

7.3.4 INFLUENCE OF VEGETATION 
 
Vegetation may absorb or scatter the radiation emanating from the soil, but it also 

emits its own radiation. Therefore in areas of sufficiently dense canopy, the 

emitted soil radiation will become masked, and the observed emissivity will be 

due largely to the vegetation. The magnitude of the absorption by the canopy 

depends upon the wavelength and the vegetation water content. At low 

frequencies the effects of scattering at the air-vegetation interface and within the 

volume of the vegetation are small and are often neglected.  
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The most frequently used wavelengths for soil moisture sensing are in the L-Band 

(λ ≈ 21 cm ) and C-Band (λ ≈ 5 cm), but only L-band sensors are able to penetrate 

vegetation of  any significant density. While observations at all frequencies are 

subject to scattering and absorption and require some correction if the data are to 

be used for soil moisture retrieval, shorter wave bands are especially susceptible 

to vegetation influences. 

A range of canopy models have been developed to account for the effects of 

vegetation (Kirdiashev et al., 1979; Mo et al., 1982; Ulaby et al., 1986). The out-

going radiation from the land surface as observed from above the canopy may be 

expressed in terms of the brightness temperature, Tb, and is given as a simple 

radiative transfer equation (Mo et al., 1982); 

 )()()()()()()()( )1()1)(1()1()1( llcllrlclllrslb TeTeTT ΓΓ−−−+Γ−−+Γ= ωω     (7-9) 

where Ts is the soil temperature, Tc is the canopy temperature, ω is the single 

scattering albedo, Γ the transmissivity of the canopy and subscript l denotes 

vertical or horizontal polarization.  

The first term of the equation 7.9 defines the radiation from the soil as attenuated 

by the overlying vegetation. The second term describes the upward radiation 

directly from the vegetation and the third term defines the downward radiation 

from the vegetation, reflected upward by the soil and again attenuated by the 

canopy. These three terms are shown in Figure 7-5.  The derivation of equation 

7.9 assumes a specular soil surface with no reflection at the air-vegetation 

boundary.  This expression has been found to be a good approximation up to ~10 

GHz for a vegetation layer overlying a rough soil surface and has been used in 

theoretical and experimental studies (Wang and Choudhury, 1995; Njoku and Li, 

1999; Njoku et al., 2003).  

The transmissivity (Γ) is defined in terms of the optical depth or vegetation 

opacity (τ) and incidence angle (u) as shown in equation 7.10. 

 
u
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The magnitude of the vegetation opacity depends on vegetation structure, water 

content of the vegetation, and the wave frequency. For frequencies less than 10 
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GHz, vegetation opacity has been shown to be a linear function of vegetation 

water content. Typical values of τ for agricultural crops are generally given are 

less than one (Mo et al., 1982; Jackson and O’Neill, 1990). Several works found 

that τ could be linearly related to the total vegetation water content Wc (kg/m2) 

using the so-called b parameter (Wigneron et al., 1998; Jackson et al., 1999): 

 θτ cos/cbW=  (7-11) 

where, cos θ accounts for the slant path through the vegetation. The b parameter 

depends on canopy structure and microwave frequency and may be calibrated for 

each crop type or for broad categories of vegetation.  The value of b also depends 

on the gravimetric water content of the vegetation.  Temperature also affects the b 

parameter, especially in the C-Band. Also, it has been found that b strongly 

depends on polarization and incidence angle, particularly for vegetation canopies 

with dominant vertical structure found in stem dominated canopies such as those 

of cereal crops (Wigneron et al., 1996). 

 

 
 
Figure 7-5:  Schematic representation of the partitioning of microwave radiation from a 
vegetated land surface in terms of the brightness temperature (From Van de Griend and 
Owe, 1993). 

 

Theoretical calculations by Ulaby et al. (1986) have shown that the sensitivity of 

above-canopy brightness temperature measurements to variations in soil 

emissivity decreases with increasing optical depth or canopy thickness. This is 

due to the attenuation of soil emission by the canopy: the emission from the 
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vegetation canopy tends to saturate the signal with increasing optical depth. This 

subsequently results in a decrease of the sensor sensitivity to variation in soil 

moisture variations below the canopy. 

A transmissivity of 1 corresponds to an optical depth of 0 and indicates bare soil. 

Conversely, a transmissivity of 0 indicates a thick canopy, without any 

penetration of the upwelling soil emission. 

 

7.4 SOIL MOISTURE RETRIEVAL MODELS 
 
Microwave remote sensing techniques for soil moisture measurement are based on 

inversion of radiative transfer models that link geophysical surface variables to the 

observed brightness temperature, Tb. As discussed previously, the primary 

geophysical variables influencing the brightness temperature are the volumetric 

soil moisture θv, the vegetation water content Wc, and the surface temperature Ts. 

Other factors such as surface roughness, vegetation type, and soil texture are also 

important but to a lesser degree. Thus, retrieval of soil moisture must include 

corrections for vegetation and surface temperature effects, uncertainties in other 

variables contribute to the geophysical error. In practice, the following steps are 

involved in extracting soil moisture information; 

1. Calibrating the output (brightness temperature) of the sensor  

2. Correction for atmospheric moisture (particularly for situations with heavy 

cloud cover and rain) 

3. Categorization of the ground elements (land/water, forest/dense 

vegetation, snow/ice, vegetation types, bare soil etc.) 

4. Computation of the surface emissivity (computed by dividing the 

brightness temperature by the physical temperature of the target,  as in 

equation 7.4) 

5. Removing the effect of vegetation or land cover (see equation 7.9 – 7.11) 

6. Accounting for the effect of soil surface roughness characteristics (e.g. as 

in equation 7.8) 
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7. Relating the emissivity measurement to soil dielectric properties (by 

inverting the Fresnel equation to determine an effective dielectric constant 

for the surface layer, see equations 7.6 - 7.7) 

8. Relating the dielectric properties to soil moisture (using dielectric mixing 

model relationships and soil texture properties) 

A number of algorithms of varying complexity have been developed in recent 

years to retrieve soil moisture from brightness temperature measurements at 

microwave frequencies (Jackson, 1993; Wigneron et al., 1993; Njoku, 1999; 

Njoku and Li, 1999; Owe et al., 2001; De Jeu, 2003; Pardé et al., 2003, Wen et 

al., 2003; Drusch et al., 2004; Gao et al., 2004). The computational processes of 

the algorithms of Jackson (1993), Owe et al. (2001), and Wen et al. (2003) are 

shown in  Figure 7-6.  The main features are: 

• The Jackson (1993) algorithm solves the inverted version of 

equation 7.9 and uses additional vegetation information to estimate 

τ. Temperatures of surface and canopy are assumed equal and 

derived empirically from a high frequency channel such as from 

the 37 GHz channel of AMSR-E (de Jeu, 2003). 

• The Owe et al. (2001) algorithm solves equation 7.9 iteratively 

using dual-polarized microwave brightness temperature 

observations for vegetation optical depth and surface emissivity 

simultaneously. De Jeu (2003) also proposed an algorithm that is 

quite similar to the Owe et al. approach. Temperatures are derived 

empirically from a high frequency channel as in the Jackson 

algorithm. The radiative transfer approach does not use ground 

observations of soil moisture, canopy biophysical data, or other 

geophysical data as calibration parameters. This model may be 

applied at any frequency.  

• The Wen et al. (2003) algorithm also solves equation 7.9 

iteratively.  The solved quantities in this case, are surface 

temperature and surface emissivity. 
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Most methods proposed for soil moisture measurement based on microwave 

remote sensing have attempted to relate remotely sensed estimates of soil moisture 

to observed ground data, and then solve for the optical depth as a residual. These 

approaches however are not ideal because of poor ground-based data sets. Also, 

some of these approaches are inadequate because they are not physically based 

and hence do not adequately account for many of the properties that affect the 

microwave emission process (Owe et al., 2001)   Furthermore, it is very difficult 

to obtain accurate spatially representative estimates of surface soil moisture and 

vegetation biophysical properties at satellite scales. In order to overcome this, 

Owe et al. (2002) introduced a methodology, which solves simultaneously for 

surface moisture and vegetation optical depth, without the use of observations of 

surface moisture or biophysical parameters. Their technique only uses the 

horizontal and vertical polarization brightness temperatures at one frequency and 

a surface temperature algorithm based on the vertical polarized 37 GHz signal. 

 
Figure 7-6:  Schematic representation of computational process of soil moisture retrieval 
algorithms: (a) Jackson, (b) Owe et al., and (c) Wen et al. (based on Hurkman et al., 2004). 

 

Despite all these attempts, the application of radiative transfer theory for soil 

moisture retrieval is not entirely straightforward for various reasons. Indeed, most 

of the radiative transfer mechanisms are known but the inverse problem of 

separating brightness temperature observed at satellite altitudes into its component 
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parts is still a complex issue (Owe et al., 2001). A number of obstacles have 

contributed to this and some of these as reported by Owe et al. (2001) are: 

• a large number of factors affect the emission process (e.g. soil physical 

properties, vegetation properties, atmospheric variables) 

• nonlinearity of the emission process 

• heterogeneity of the land surface  

• inherent spatial variability of soil physical properties at satellite scales  

• lack of suitable validation data sets at satellite scales 

 
7.5 THE AMSR-E SOIL MOISTURE PRODUCT 
 
Although numerous radiometers and scatterometers based on active and passive 

microwave radiation are in existence and have been used for measurement of near 

surface soil moisture, it is the Advanced Microwave Scanning Radiometer for 

EOS (AMSR-E) which has opened up a new era in satellite based soil moisture 

measurements. AMSR-E provides improved spatial resolutions over the earlier 

satellite based passive-microwave instruments, and its 6.9 GHz and 10.7 GHz 

channels allow soil moisture measurements that are not obtainable with previous 

radiometers such as SSM/I. AMSR-E C-band (6.9 GHz) and X-band (10.7 GHz) 

channels are strongly related to land surface soil moisture and are used to generate 

global land data products. Soil moisture is the principal retrievable Aqua AMSR-

E land surface parameter.  Surface temperature and vegetation water content are 

also retrieved by the algorithm. 

Processing of AMSR-E data is a complex process and various research centers are 

involved in processing the data to different levels. During the data processing 

cycle, AMSR-E raw data received in the United States through the EOS Data and 

Operation System (EDOS), are transmitted to the NASDA Earth Observation 

Centre in Japan for engineering processing to Level 1A and, are then routed to 

AMSR-E Science Information Processing System (SIPS) in the US. At the SIPS, 

the data are converted into geophysical data products that are sent to the National 

Snow and Ice Data Centre (NSIDC) Distributed Active Archive Centre (DAAC) 

for retrieval and distribution. In level 2A processing, the data are quality checked, 
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co-registered, resolution matched and finally, output as half-orbit data file 

granules. The Level 2A data contain as a subset the original Level 1A data (Njoku 

et al., 2003).  

Soil moisture retrieval from AMSR-E data is taking place at the Global 

Hydrology and Climate Centre (GHCC), a facility under SIPS. The processing 

generates Level 2B and Level 3 soil moisture and ancillary data products as 

shown in Figure 7-7 (a).  The soil moisture retrieval algorithm of AMSR-E is 

discussed in section 7.5.1. Level 2B soil moisture data consists of half-orbit data 

granules.  Level 3 product is derived by compositing the Level 2 parameters daily 

into global maps in Hierarchical Data Format (HDF), separating ascending and 

descending passes so that diurnal effects can be evaluated. Figure 7-7 (b) shows 

the detailed Level 2B processing flow.  Soil moisture is not retrievable when 

significant fractions of snow cover, frozen ground, dense vegetation, precipitation, 

open water, or mountainous terrain occur within the sensor footprint (as 

determined by a classification algorithm and ancillary information). The algorithm 

products cover global land surfaces, excluding snow covered and densely 

vegetated areas. Input 6.9 GHz data, corresponding to a 56 km mean spatial 

resolution, are re-sampled to a global cylindrical 25 km Equal-Area Scalable 

Earth Grid (EASE-Grid) cell spacing.  
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Figure 7-7:  Schematic representation of AMSR-E soil moisture algorithm processing flow. 
(a) Overview, (b) Level 2B processing detail. (From Njoku et al., 2003). 

 

AMSR-E provides a range of land products and Table 7-2 gives a listing of all the 

products.  The derived AMSR-E products include measurements of rainfall, snow, 

sea ice and many other land and ocean geophysical variables. Similar to soil 

moisture, all these products are provided as HDF raster data files and projected in 

25 km EASE grid format. All AMSR-E products including daily Level-3 soil 

moisture data are now available from a few days after launch onwards from the 

NSIDC website at http://nsidc.org/data/amsre. 



Chapter 7 - Near-surface soil moisture estimations               Page 7-24 

 
Table 7-2:  AMSR-E land products (Njoku, 1999) 

 
Product 
Level 

Parameter Estimated 
accuracy 

Spatial 
Resolution

Grid 
Spacing

Temporal 
Resolution 

2 Soil Moisture 0.06 g cm-3 56 km 25 km Half-orbit 
2 Vegetation Water 

Content 
0.15 kg m-2 56 km 25 km Half-orbit 

2 Surface Temperature 2.5 C 56 km 25 km Half-orbit 
3 Soil Moisture 0.06 g cm-3 56 km 25 km daily* 
3 Vegetation Water 

Content 
0.15 kg m-2 56 km 25 km daily* 

3 Surface Temperature 2.5 C 56 km 25 km daily* 
3 Brightness  

Temperatures 
0.3 – 0.6 K 12,56 km 25 km daily* 

   (* - Ascending and descending separate) 
 

AMSR-E holds great promise for estimating soil water content in the top 1cm 

layer of soil with an accuracy of 0.06 g cm-3 for relatively low vegetation cover 

(biomass less than 1.5 kg m-2) (Njoku and Li, 1999; Schmugge et al., 2002). The 

C-band of the AMSR-E (6.9 GHz) has a better sensitivity than the 19.4GHz 

channel of the SSM/I to retrieve soil moisture. Limiting features of the AMSR-E 

measurements are its coarse footprint resolution (~40-60 km), low sensitivity to 

soil moisture under moderate to high vegetation water content, and shallow 

sensing depth (~1 cm in soil). However, the AMSR-E observations provide 

routinely produced and scientifically validated space-borne soil moisture 

measurements and hitherto unavailable information on global surface moisture 

variability.   

The initial AMSR-E data has been found to contain significant radio frequency 

interference (Li et al., 2004) and large calibration bias errors.  In order to modify 

the algorithm for instrument errors and to verify the algorithm performance, 

continuing algorithm improvement and product validation activity on a global 

basis is important. 
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7.5.1 AMSR-E SOIL MOISTURE RETRIEVAL 

METHODOLOGY 
 
Various retrieval approaches have been proposed for AMSR-E soil moisture 

computations.  According to Njoku et al. (2003) these proposed retrieval 

techniques differ mainly in their approaches to the vegetation and surface 

temperature corrections. In general, four types of correction approaches were 

identified by Njoku et al. (2003). 

1. Use of external ancillary data for sequential corrections 

2. Iterative parameter fitting to a multi-channel brightness 

temperature model 

3. Adoption of brightness temperature indices and regression 

techniques 

4. Combination of the above methods 

After assessing these approaches, the AMSR-E science committee selected an 

iterative multi-channel retrieval algorithm for soil moisture computation. The 

algorithm and its implementation are described in Njoku (1999), Njoku and Li 

(1999) and Njoku et al. (2003) and the reader is referred to these papers for more 

details. The AMSR-E approach for retrieving soil moisture is based on inversion 

of the microwave radiative transfer model. The procedure is similar to the 

retrieval techniques presented in section 7.4. The primary rationale for the 

selection of Njoku and Li methodology was to minimize the dependence on 

external ancillary data in the operational algorithm. The salient features of the 

current soil moisture retrieval model include; 

• The algorithm is based on change-detection approach using the 

polarization ratio (ζ) which is defined as, 

  
BhBv

BhBv

TT
TT

+
−

=ζ  (7-12) 

• The brightness temperature polarization ratios effectively 

normalize the surface temperature, leaving a quantity that is 

dependent primarily on soil moisture and vegetation. Use of both 
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vertical and horizontal channels therefore forms a basis for a multi-

channel approach. 

• A combined vegetation-roughness estimate (g) is assumed. 

Vegetation and roughness have similar effects on polarization ratio 

(ζ) and hence are lumped together as a single parameter. This is 

used as a correction for the soil moisture retrieval. 

  )()( 7.1827.101 ζβζββ InIng o ++=   (7-13) 

  )exp()( 2
*

7.107.101
* ggovv αζζααθθ −++=  (7-14) 

 
Where α and β coefficients are calibrated empirically using 

AMSR-E data over a range of vegetation, roughness, and soil 

moisture conditions (desert to forest transects, dry to flood 

temporal variations etc). The quantities θ* and ζ* are baseline 

values of θ and ζ. They are obtained from monthly minimum θ and 

ζ over an annual cycle for bare and dry soils respectively.  

• The ancillary data used in the processing include: 

1. percentage open water within a grid cell 

2. topography mode and range within a grid cell 

3. maximum snow cover and ice extent 

4. soil texture (from global databases) 

• The values of geophysical parameters χ = { θv, Wc, and Ts } are 

adjusted iteratively to minimize the weighted sum of the squared 

differences between observed and computed brightness 

temperatures. 

• Areas of dense vegetation, permanent ice, and snow are masked 

out. Mountains, frozen grounds, and precipitation are not currently 

masked. Hence, data obtained over these areas need careful 

assessment. 
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7.5.2 PROPERTIES OF AMSR-E DATA  
 
AMSR-E data are available as hierarchical data format (HDF) files. Brightness 

temperatures and computed parameters for both ascending and descending paths 

during a day are therefore available in the same file. Geographic referencing of 

AMSR-E data follows the EASE-Grid system developed by the National Snow 

and Ice Data Centre (NSIDC). AMSR-E uses the global, cylindrical, equal-area 

projection, with a nominal grid spacing of approximately 25 x 25 km (true at 

30°N&S). The size of the grid is 1383 columns x 586 rows. A description of the 

EASE-Grid can be found at the NSIDC website at http://nsidc.org/data/ease/. The 

advantage of an equal-area grid is that the re-sampling statistics at each grid point 

are characteristic of the same number of input data points. 

This thesis uses the Version 1 (i.e. B01) gridded Level-3 land surface product 

(AE_Land3) downloaded from NSIDC website. Soil moisture data of daily 

ascending and descending paths from 1 January 2003 to 31 December 2004 were 

used in the current study. Thus, raster data from over 700 HDF files were used.   

 

7.6 AMSR-E SOIL MOISTURE VALIDATION 
STUDIES  
 
AMSR-E provides an opportunity to determine global soil moisture patterns at 

scales suitable for inclusion in land surface models. The AMSR-E soil moisture 

retrieval algorithm is based on many assumptions and theoretical equations and 

therefore, the resulting soil moisture estimates are not necessarily representative 

of the actual soil moisture status in various agro-ecological conditions. Hence, the 

first steps towards the use of AMSR-E soil moisture products for modelling 

studies are algorithm assessment and inter-comparison with field measured near-

surface moisture contents. This is however, not an easy task due to the large 

footprint size of the AMSR-E pixels and the technical difficulty of obtaining near-

surface soil moisture measurements (over the first 1cm of soil) in sufficient 

numbers to describe the large footprint. Traditional validation techniques based on 

the collection of a large number of samples across the footprint can rarely be 

implemented at very large scales and over extended periods.  In addition, most 

existing soil moisture monitoring networks are also not ideal for the validation of 
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such near-surface measurements due to a mismatch of sensing depths and poor 

spatial coverage. Because of these reasons, short-term intensive field campaigns 

across the globe are necessary to investigate the performance of the soil moisture 

retrieval algorithm in various agro-climatic regions. Furthermore, new permanent 

monitoring networks for near-surface soil moisture measurements need to be 

established particularly in areas which are suitable for passive microwave 

observations. This would facilitate the evaluation of the temporal behaviour of 

AMSR-E soil moisture measurements. It would also beneficial to develop new 

analytical techniques so that the soil moisture information from existing 

monitoring networks may be used for AMSR-E validation. Hence, AMSR-E 

validation attempts should be multidimensional in nature and various approaches 

must be implemented in order to improve the current retrieval algorithm. 

The primary objective of AMSR-E soil moisture validation activities is to 

characterize the radiometer signal and in-situ data errors to infer the soil moisture 

retrieval accuracy.  According to Njoku et al. (2003) the scope of validation 

program includes: 

1) Brightness temperature calibration checks throughout the Aqua 

mission. 

2) Comparison between AMSR-E retrievals and data from long-term 

measurement networks over seasonal and annual cycles. 

3) Short-term intensive field campaigns to measure soil moisture and 

other surface and atmospheric variables at the AMSR-E footprint 

scale. 

4) Inter-comparisons with other satellite data 

5) Hydrological modelling and data assimilation activities. This will be 

used to generate spatial soil moisture fields that bridge the gap between 

the field experiment scale and the regional and continental scale. 

A number of AMSR-E soil moisture validation programs such as SMEX02, 

SMEX03, and SMEX04-NAME have been conducted since the launch of the 

Aqua satellite (Njoku et al., 2003; see information online at 

http://nsidc.org/data/amsr_validation). Two field campaigns were also conducted 
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in the central Australian desert (Walker et al., 2003). Four watersheds are being 

monitored within US (Oklahoma, Georgia, Arizona, and Idaho) for comparison 

with long-term in-situ soil moisture measurements (Njoku et al., 2003). Other 

validation sites include the Tibetan Plateau, Mongolia (Kaihotsu et al., 2002; 

Koike et al., 2003), and African deserts and areas in the Sahel (Njoku, 1999). 

These validation efforts are developed around in-situ validation data, primarily 

through long-term point measurements and a limited number of field campaigns 

using airborne radiometers and ground observation data. Wood (2004) attempted 

to validate AMSR-E data based on the SMEX02 data set and reported that studies 

are being conducted through a combination of process-based hydrological 

modelling and the simulation of the AMSR-E measurements. Using the SMEX02 

data set, McCabe et al. (2005a and 2005b) also reported a consistent level of 

agreement of measured moisture contents within a AMSR-E footprint. 

Furthermore, data assimilation studies have also been conducted (Reichle et al., 

2001b; Walker and Houser, 2001) for global validation of AMSR-E products. 

Recently, Jackson et al. (2006) have also reported on a AMSR-E validation study.  

The goal of the Land Data Assimilation System (LDAS) project is to develop a 

near real-time operational land data assimilation system to monitor spatial-

temporal AMSR-E soil moisture and snow observation.  

The results of some of these validation attempts have been published (e.g. Walker 

et al., 2003; McCabe et al., 2005) and some are only available in unpublished 

form (e.g. Koike et al., 2003). One of the objectives of SMEX02 program 

conducted in Iowa, USA in June-July 2002 was to validate brightness 

temperatures and soil moisture products from AMSR-E. During this study an 

aircraft-based NOAA Polarimetric Scanning Radiometer (PSR) was used. The 

PSR has four C and four X sub-band channels and measured brightness 

temperatures from this instrument were compared with the AMSR-E brightness 

measurements.  Good agreement between PSR C-band measured brightness 

temperature and AMSR-E X-band (10.7 GHz) was reported by Jackson et al. 

(2003), Wood (2004) and McCabe et al. (2005).  They also reported AMSR-E has 

reasonable variability after rain events. Another validation study conducted during 

1 July-20 September 2002 in Mongolia also reported a good agreement between 

ground-observed data and AMSR-E estimation (Kaihotsu et al., 2004).  Since 
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large-scale soil moisture measuring techniques are still relatively new, satellite 

predictions of near-surface soil moisture need to be validated across a range of 

land surface and climatic conditions.  More validation trials are needed in order to 

improve the accuracy of soil moisture retrieval methodology.  In the Australian 

context, the accuracy of AMSR-E soil moisture measurements needs to be 

evaluated for a range of important land systems including sub-humid and semi-

arid grasslands. The SASMAS study region provides suitable field conditions for 

such validation studies. As described in Chapter 3 vegetation characteristics and 

landscape properties within the SASMAS study region provide suitable conditions 

for passive microwave remote sensing studies.  Two types of validation studies 

were conducted. The first type of validation study is based on three short-term 

intensive field campaigns and is discussed in sections 7.6.1 and 7.6.2. The second 

validation approach is based on a temporal analysis of soil moisture data from the 

permanent monitoring sites and is discussed in section 7.7.  

 
 
7.6.1 FIELD VALIDATION CAMPAIGNS 
 
For the field validation of AMSR-E footprints, a sampling area of 40 km x 50 km 

was selected in the SASMAS study region (see Figure 7-9) so that the large area 

was within the actual field of view of the sensor, with at least a full 25km × 25km 

soil moisture footprint situated within the sampling area. Due to the large 

footprint size, available resources, travel times and access issues, complete 

coverage was not possible within a single day.  Therefore, the validation area was 

divided into four quarters and one quarter assigned to each of four teams of two 

observers.  Each quarter was further subdivided into nine cells of approximately 

7km x 8km, three of which were sampled per day over the three-day campaign 

period.  Three-day field campaigns were justified on the basis that soil moisture 

content was not expected to vary greatly during the course of a few days as the 

surface soils are generally dry in sub-humid climate.  

The number of overpasses per day was the main criterion in selecting the 

campaign dates. Overpass predictions based on the Overpass predictor at 

http://eobglossary.gsfc.nasa.gov/ MissionControl/overpass.html and the WXtrack-

orbit predictor (Taylor, 2003) were used as a guide to plan the campaign days (see 
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Figure 7-8 and Table 7-3). Campaigns were undertaken on 7-9 November 2003, 

1-3 May 2004 and 7-9 July 2004.  These three campaigns captured seasonal 

variations in soil moisture and vegetation conditions, and coincided with AMSR-

E overpasses so that there was at least 1 overpass each day with preferably 2 

overpasses (am and pm) on the central day. 

 

 

 
Figure 7-8:  Overpass prediction screen of WXtrack orbit predictor for 9 November 2003. 
Blue circle shows the area visible from the Aqua satellite at the overpass time.  
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Table 7-3:  Summary of Aqua overpasses during November 2003, May 2004 and July 2004 
for the Goulburn river subcatchment.  Dates selected for ground sampling have been 
highlighted (Based on the overpass predictor at http://earthobservatory.nasa.gov/Mission 
Control /overpass.html and the WXtrack orbit predictor).  

 

Date 
Time of peak 

elevation (GMT 
+ 10.00) 

Peak spacecraft 
elevation above 

horizon (degrees) 
Day/Night 

Orbit 
Number 

 
06/11/2003 14:20:35 n.a. Day n.a. 
07/11/2003 26:06:45 n.a. Night n.a. 
08/11/2003 14:35:04 

25:15:04 n.a. Day 
Night n.a. 

09/11/2003 15:21:13 
24:20:04 n.a. Day 

Night n.a. 

10/11/2003 14:03:04 n.a. Night n.a. 
     
27/04/2004 25:31:28 52.7 Night 10545 
28/04/2004 13:36:04 59.0 Day 10553 
29/04/2004 14:18:59 

25:19:48 
44.7 
72.4 

Day 
Night 

10568 
10574 

30/04/2004 13:24:24 43.1 Day 10582 
01/05/2004 14:07:27 

25:08:08 
60.8 
83.9 

Day 
Night 

10597 
10603 

02/05/2004     
03/05/2004 13:55:47 

24:56:36 
82.6 
61.9 

Day 
Night 

10626 
10632 

04/05/2004 25:39:31 42.4 Night 10647 
     
04/07/2004 25:25:32 61.8 Night 11536 
05/07/2004 13:30:08 50.4 Day 11543 
06/07/2004 14:13:03 

25:13:52 
52.2 
84.1 

Day 
Night 

11558 
11565 

07/07/2004     
08/07/2004 14:01:23 

25:02:12 
71.3 
72.1 

Day 
Night 

11587 
11594 

09/07/2004     
10/07/2004 13:49:43 

24:50:32 
84.9 
52.7 

Day 
Night 

11616 
11623 

Note:  - Time >24 hrs indicates Date = Date + 1 
- Peak spacecraft elevation and orbit number data are not available for Campaign-1 dates 

 

The first validation campaign aimed at collecting soil moisture measurements at 

325 pre-identified sites across the validation area. From each cell (7km x 8km 

area) about 9 measurements with a 3 x 3 grid pattern and a distance of about 2km 

to 2.5km between adjacent sites were identified as potential sampling sites. At the 

time of planning, when locating sampling sites on the 1:250,000 scale standard 

topographic maps, preference was given to locations closer to the roads or any 
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marked access routes rather than follow a strict grid pattern. While this sampling 

method may have resulted in some bias in the final result, it was the best possible 

practical way of visiting and collecting soil samples from an area where most of 

the land is privately owned. In addition, access time to visit a site far away from 

roads was another concern in view of the limited human resources for field 

sampling. During the campaign each team was provided with a map showing all 

selected sites, a complete list of latitude and longitude coordinates of all the sites, 

and a hand-held GPS unit. Each team was expected to visit as many sites as 

possible within a day covering all three cell areas. To minimize the time required 

searching exact locations, teams were asked to use the predefined sites as a guide 

only. Also, the teams were allowed to move sampling sites if they experienced 

any access problem. When doing so however, they were advised to maintain a 

uniform distribution of sampling sites across a cell.  At the end of the first 

campaign, it was found that a team of two can visit three different areas within a 

20km x 25km area and collect approximately 20 samples per day. Hence the 

maximum number of sites that could be visited within a three-day period was 

about 225 sites. Building on the experience gained during the Campaign 1, 

subsequent campaigns aimed at collecting approximately 200 sites, considering 

the shorter day lengths as these campaigns were conducted in late autumn and in 

mid winter. During Campaigns 2 and 3, samples were collected where possible 

from the same sites visited during the first campaign. 

It was expected that over 200 point measurements and their coverage should 

provide an adequate basis for the validation of the satellite soil moisture product 

and for the development of a procedure for downscaling average moisture 

measurements for large areas (see Chapter 7 for details). Five 0-1 cm soil 

moisture samples were obtained at each site with a steel sampling ring of 82 mm 

diameter and 10 mm in height. The five samples were combined and used to 

obtain volumetric soil moisture contents. In addition, five soil moisture 

observations were also made at each site with a Theta® probe which yielded 

volumetric soil moisture content values integrated over a 0-6 cm layer. Apart from 

soil moisture, other parameters including soil and air temperatures, soil type, and 

surface conditions were also recorded, and vegetation samples were collected for 

determining vegetation water content and dry biomass.  
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In addition, climatic data such as rainfall, solar radiation, and continuous 

observations of air and near-surface soil temperature were obtained from weather 

stations and permanent soil moisture monitoring sites within the validation area. 

 

 

 

Figure 7-9:  Validation footprint, area assigned to each group and daily sampling patterns 
within the Goulburn River catchment, Australia. Background image shows subcatchment 
boundaries and elevation (in meters above mean sea level).  

 

At the time of field campaigns, AMSR-E soil moisture retrieval was carried out 

with a different algorithm. Later, as described in section 7.5.1 a new algorithm 

was introduced and all historical data were reprocessed. This study uses soil 

moisture products from the new algorithm (Manaka, 2005) and all AMSR-E data 

were downloaded on March 2005 from NSIDC.  

The area selected for the validation was entirely within complete AMSR-E EASE-

grid cells. Two pixels were found to be useful in validation analysis. The pixel at 

EASE-grid column number 1269 and row number 449 (c1269, r449) was entirely 
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within the validation area and approximately more than 80 percent of the area of a 

second pixel at c1270, r449 was also within the selected study area. These pixels 

were named Pixels A and B and their locations are shown in the Figure 7-10. 

AMSR-E measured soil moisture values for Pixel-A and B during three campaign 

days for each path are shown in Table 7-4.  As seen in the table, AMSR-E 

measured soil moisture values appear stable during campaign days.  

 

 
 

Figure 7-10:  Field sampling sites, and locations of AMSR-E pixels A & B within the 
Goulburn River Catchment. 
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Table 7-4: AMSR-E soil moisture (cm3 cm-3) at Pixels A and B during three campaigns  

 

  Pixel-A Pixel-B 

Campaign Day Ascending 
path 

Descending 
path Avg. Ascending 

path 
Descending 

path Avg. 

1 1 0.083 0.082 0.083 0.085 0.083 0.084 
 2 n.a. 0.076 0.076 n.a. 0.080 0.080 
 3 0.077 n.a. 0.077 0.082 n.a. 0.082 
 Avg.   0.079   0.083 
        
2 1 0.129 0.113 0.121 0.135 0.113 0.124 
 2 n.a. 0.106 0.106 n.a. 0.114 0.114 
 3 0.118 n.a. 0.118 0.126 n.a. 0.126 
 Avg.   0.115   0.122 
        
3 1 0.115 0.110 0.113 0.111 0.108 0.110 
 2 0.111 n.a. 0.111 0.113 n.a. 0.113 
 3 0.115 0.105 0.110 0.111 0.099 0.105 
 Avg.   0.111   0.109 

 
 
 
7.6.2 SPATIAL DISTRIBUTION OF NEAR-SURFACE SOIL 

MOISTURE OVER VALIDATION FOOTPRINT 

7.6.2.1   Areal distribution of ground-based soil moisture 
observations 

 
Soil moisture samples were taken during the three campaigns at between 180 – 

225 sites. Summary statistics of the measured soil moisture levels for the 0-1 cm 

and 0-6 cm soil layers are given in Table 7-5 and in Figure 7-11 - Figure 7-13. 

During Campaign 1 the measured volumetric soil moisture in the 0-6 cm layer 

(14.1 %) was higher than for the 0-1 cm soil layer (10.9 %). A similar pattern was 

found in Campaign 3 where the 0-1 cm top layer had 12.2 % and 0-6 layer had 

17.2% moisture. However, during the second campaign, the measured soil 

moisture of 18.9% in 0-1 cm was slightly higher than the moisture content of 

16.7% in the 0-6 cm soil layer.  Figure 7-14 shows maps of volumetric soil 

moisture content for the top 1 cm and 6 cm layers for each of the three campaigns. 

The mapping grid cells used in these maps are 1.21 km2 in area and have been 

chosen to enable comparisons with derived moisture distribution patterns obtained 

from MODIS data. Reasonably coherent soil moisture patterns emerge, with 

agreement between the maps for the 0-1 cm and 0-6 cm observation depths. It can 
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also be seen that for all three campaigns the southern half of the study area 

appears to be slightly drier than the northern half. This is partly due to differences 

between the clayey soils in the north and the sandy soils in the south.  However, 

better understanding of the surface wetness patterns also requires comparing the 

results with antecedent rainfall, prevailing climatic conditions and land surface 

conditions. This will be addressed in subsequent sections. 

 

Table 7-5:  Summary statistics of the measured soil moisture contents (in cm3 cm-3) for 0-1 
cm and 0-6 cm soil layers during three field campaigns. 

 
Moisture content (cm3 cm-3) Campaign Soil depth 

(cm) 
Number of 

samples Mean Std dev. Min. Max. 
1 0-1 201 0.109 0.050 0.014 0.301 

(7-9 Nov 2003) 0-6 225 0.141 0.051 0.015 0.286 
       
2 0-1 208 0.189 0.077 0.017 0.443 

(1-3 May 2004) 0-6 211 0.167 0.077 0.010 0.380 
       
3 0-1 181 0.122 0.048 0.014 0.320 

(7-9 Jul 2004) 0-6 179 0.172 0.073 0.014 0.373 
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Figure 7-11:  Time plots of measured soil water contents (0-1 and 0-6 cm; blue symbols), air 
and soil temperatures (red symbols), and average AMSR-E soil moisture estimates (shown as 
a blue continuous line) computed for the two AMSR-E pixels during Campaign-1. 
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Figure 7-12:  Time plots of measured soil water contents (0-1 and 0-6 cm), air and soil 
temperatures, and average AMSR-E soil moisture estimate (shown as a continuous line) 
computed from two AMSR-E pixels during Campaign-2.  
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Figure 7-13:  Time plots of measured soil water contents (0-1 and 0-6 cm), air and soil 
temperatures, and average AMSR-E soil moisture estimate (shown as a continuous line) 
computed from two AMSR-E pixels during Campaign-3. 
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Figure 7-14:  Top 0-1 cm and 0-6 cm volumetric soil water content (cm3 cm-3) distribution 
within the validation area for Campaigns 1, 2 and 3 (mapping grid cells are 1.21 km2 in area 
and sampling locations are indicated as small dots). 

 

As seen in Figure 7-14 the spatial patterns of measured soil water contents in the 

0-1 cm and 0-6 cm layers confirm that during Campaign 1 and Campaign 3, the 

top 0-1 cm layer contains less moisture than 0-6 cm layer. During Campaign 2 

however, the top 0-1cm layer appears to be wetter than the 0-6 cm layer.  

Comparisons of point-scale measurements of the 0-1 cm and 0-6 cm layers during 

the field campaigns are important for determining the consistency of field 

measured data. Figure 7-15 compares the soil moisture measurements of the 0-6 

cm and 0-1 cm depths. As can be seen, there is a positive correlation between 0-6 

cm and 0-1 cm soil moisture measurements. 

 

Campaign1 Campaign 2 Campaign 3 
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Figure 7-15:  Comparison of measured soil moisture contents (cm3 cm-3) in the 0-6 cm and 0-
1 cm layers  (line indicates the linear fit between 0-6cm and 0-1cm data). 

 

One of the major difficulties faced during the field campaigns was the collection 

of accurate soil samples from the top 0-1 cm layer for subsequent laboratory 

determination of soil moisture content.  This was especially the case in dry basalt-

derived soil. Also, the use of the Theta probe for soil moisture measurements in 

dry basalt-derived soils was besets with problems as because the soil was at times 

too hard to insert the probe, and numerous cracks in the soil frequently prevented 

close contact with the Theta probe.  

 

7.6.2.2   Effect of climatic parameters on ground based observations 
(i) Antecedent rainfall 

The surface soil moisture distribution patterns shown above may be compared 

with the antecedent rainfall pattern. As shown in the Table 7-6 (a), rain during 

Campaign 1 was responsible for the wet conditions in the 0-1cm surface layer. 
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This rain mainly occurred in the northern part of the validation footprint and it 

explains the wet portions in the northern area. The highest weekly average rainfall 

of 14.2 mm was reported just before Campaign 2 which occurred in late autumn 

(Table 7-6 (b)). As a result, both the 0-1 cm and 0-6 cm soil layers showed 

relatively wet conditions, as shown in Figure 7-14 and Table 7-6(b). On the other 

hand, as shown in Table 7-6(c), despite the low rainfall before Campaign 3 (total 

rainfall was 0 mm and 21 mm in the previous 7 days and 30 days respectively) 

moderately wet conditions were found in the 0-6 cm soil layer during this mid-

winter campaign. This could be due to the lower evaporative demand prevailing in 

the winter season. In general, there is an evidence of a decreasing rainfall gradient 

from North to South (e.g. from K6 to K4 to S2 and from M7 to M4) in all three 

campaigns (The reader may refer Figures 3.15, 3.16 and 3.17 in Chapter 3 for 

monthly/annual spatial rainfall distribution patterns in the Goulburn catchment). 

Also, during Campaign 2, an increase in rainfall from East (M4) to West (K4) is 

evident (see Table 7-6(b)).   The results indicate that antecedent rainfall appears to 

be a important parameter in explaining the differences in surface wetness 

conditions.  
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Table 7-6(a):  Total rainfall measured at K6 and S2 during the three-day Campaign 1 (days 
311, 312 and 313) and over 7 days and 30 days before Campaign 1. (Refer Chapter 3 for 
location details of these sites). 

Campaign Rainy days Measured rainfall (mm) Average 
# (day of the year) K6 S2    (mm) 
1 275 23.0 22.4    22.7 
 276 0.2 0.0    0.1 
 278 0.0 4.6    2.3 
 279 3.8 4.2    4.0 
 280 0.2 1.4    0.8 
 288 0.4 1.4    0.9 
 289 0.0 1.8    0.9 
 291 0.2 0.0    0.1 
 292 16.2 12.8    14.5 
 293 3.0 1.6    2.3 
 298 0.2 0.0    0.1 
 299 4.4 3.6    4.0 
 304 14.2 5.4    9.8 
 306 1.4 3.4    2.4 

Day 1 311 3.8 1.4    2.6 
Day 2 312 0.0 0.0    0.0 
Day 3 313 0.2 0.6    0.4 

Cumulative rainfall       
-previous 7 days 15.6 8.8 12.2 

 -previous 30 days 71.2 64.6    67.9 
Rain during the campaign 4.0 2.0 3.0 

 
Table 7-6(b): Total rainfall measured at K6, S2, K4, M7 and M4 during the three-day 
Campaign 2 and over 7 days and 30 days before Campaign 2 (days 122, 123 and 124). (Refer 
Chapter 3 for location details of these sites) 

Campaign Rainy days Measured rainfall (mm) Average 
# (day of the year) K6 S2 K4 M7 M4 (mm) 
2 95 6.2 15.6 6.6 0.0 0.0 5.7 
 96 0.2 0.0 0.0 0.0 0.0 0.0 
 100 0.0 0.0 0.0 0.2 0.0 0.0 
 113 0.0 0.0 0.0 0.2 0.0 0.0 
 120 20.0 13.0 15.2 11.4 10.6 14.0 
 121 0.0 0.0 0.2 0.2 0.6 0.2 

Day 1 122 0.8 0.0 0.0 0.2 0.0 0.2 
Day 2 123 0.2 0.0 0.0 0.0 0.0 0.0 
Day 3 124 0.0 0.0 0.0 0.0 0.0 0.0 

Cumulative rainfall  
-previous 7 days 20.0 13.0 15.4 11.6 11.2 14.2 

 -previous 30 days 26.4 28.6 22.0 12.0 11.2 20.0 
Rain during the campaign 1.0 0.0 0.0 0.2 0.0 0.2 
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Table 7-6(c): Total rainfall measured at K6, S2, K4, M7 and M4 during the three-day 
Campaign 3 and over 7 days and 30 days before Campaign 3 (days 189, 190 and 191). (Refer 
Chapter 3 for location details of these sites) 

Campaign Rainy days Measured rainfall (mm) Average
# (day of the year) K6 S2 K4 M7 M4 (mm) 
3 155 9.8 6.8 7.2 8.0 7.6 7.9
 158 0.0 0.0 0.2 0.2 0.0 0.1
 162 11.8 5.6 6.4 14.2 4.2 8.4
 164 0.2 0.2 0.2 0.0 0.0 0.1
 165 0.0 0.0 0.0 0.0 0.2 0.0
 166 0.2 0.0 0.0 0.0 0.0 0.0
 167 0.8 0.0 0.0 0.0 0.0 0.2
 169 0.0 0.0 0.0 0.2 0.0 0.0
 171 8.4 1.8 3.6 4.6 1.6 4.0
 172 0.6 0.0 0.0 0.0 0.0 0.1
 178 0.2 0.2 0.2 0.0 0.0 0.1

Day 1 189 0.6 0.0 0.0 0.0 0.0 0.1
Day 2 190 0.0 0.0 0.0 0.0 0.0 0.0
Day 3 191 0.0 0.0 0.0 0.0 0.0 0.0

Cumulative rainfall   
-previous 7 days 0.0 0.0 0.0 0.0 0.0 0.0

 -previous 30 days 32.0 14.6 17.8 27.2 13.6 21.0
Rain during the campaign 0.6 0.0 0.0 0.0 0.0 0.1

 

 (ii) Solar radiation and surface temperature during the sampling period 

Apart from antecedent rainfall patterns, other climatic parameters such as total 

incoming solar radiation, soil surface temperature and air temperature may also 

assists in explaining some of the temporal variations in the surface wetness 

pattern. These climatic parameters were obtained at climate station (S2) located 

within the validation footprint (see Section 3.4.5 and Table 3.5 for details of the 

S2 climate station).   As shown in Figure 7-16a, during Campaign 1, the weather 

was drier than in other two campaigns and this was characterized by  the higher 

solar radiation value of about 1000 Wm-2 and near-surface (at 7.5 cm) soil 

temperature between 18-26 oC.  During Campaigns 2 and 3, the incoming 

radiation level was lower (less than 800 Wm-2 and 600 Wm-2, respectively) and as 

a result, soil temperatures were also a lower (<16 oC and 10 oC, respectively).  

The range of soil temperature variations during Campaign 1 was higher than 

during the other two campaigns. Soil temperature during the first day of 

Campaign 1 varied from 18.6-20.3 oC.  During the second day, soil temperature 

ranged from 18.0-22.2 oC and by the third day, the range was between 18.6-25.3 
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oC, a very high value compared to the first two days (see Figure 7-16a). The 

increase of soil temperature over the three-day period may be attributed to two 

main causes. First, the significant increase of solar radiation levels from day-1 to 

day-3 causing soil temperature to increase. Second, soil temperature may increase 

due to soil drying.  As in Table 7-5 and in Figure 7-14 the measured near-surface 

soil moisture during Campaign 1 showed dry conditions. Soil temperature 

variation during Campaign 2 and 3 however, occurred within a narrower range 

and this may be due to factors such as shorter day length, lower solar radiation 

levels and higher soil moisture contents.  

Comparison of the level of incoming radiation levels and the surface temperatures 

shows that the climatic conditions during Campaign 1 do not  provide ideal 

conditions for collecting near surface soil moisture readings over an extended 

period to validate AMSR-E moisture data. On the other hand, Campaign 2 and 3 

were associated with climatic conditions which appear suitable for such a purpose. 
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Figure 7-16: Incoming solar radiation and near-surface soil temperature (at 7.5 cm below the 
surface) as measured at climate station S2 during the three days of (a) Campaign 1, (b) 
Campaign 2, and (c) Campaign 3. (D1= day 1, D2 = day 2 and D3 = day 3). 

 

Additionally, Figure 7-16 assists in selecting suitable remote sensing imagery for 

further analysis. The pattern of incoming solar radiation during a day is useful in 
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determining the presence of clouds during the day.  Clouds prevent the use of the 

image in estimating important parameters like land surface temperature and for 

evaluating land surface wetness conditions.   The third day of Campaign 1, the 

second and third days during the Campaign 2, and the second day of Campaign 3 

(Figure 7-16b) appear ideal for evaluating land surface wetness conditions based 

on remotely sensed observations. 

 

 (iii) Effect of relative humidity during the sampling period 

Evaporation will reduce the moisture content of the 0-1 cm near-surface soil layer 

can change during a day. Evaporation depends on the dryness of the atmosphere. 

High relative humidity  in the air will therefore help to minimize drying and the 

subsequent decrease in the soil moisture content of the near-surface layer, which 

is important when collecting soil moisture data over extended periods such as over 

1-3 days.  

Figure 7-17 shows relative humidity at climate station S2 during all three 

validation campaigns.  As seen from the figure a lower humidity conditions (for 

example, less than 50%) were observed during day 3 of Campaign-1(Figure 

7-17a), during whole Campaign-2 (Figure 7-17b) and during day 2 of Campaign-3 

(Figure 7-17c). Therefore, soil moisture measurements made in the 0-1 cm near 

surface layer during these days may less accurately reflect the true soil moisture 

conditions at the time of the AMSR-E overpass. The actual effect of relative 

humidity values on near-surface soil moisture measurements during the 

campaigns is difficult to explain due to the complex nature of the soil evaporation 

process.  
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Figure 7-17: Relative humidity as measured at climate station S2 during (a) Campaign 1, (b) 
Campaign 2, and (c) Campaign 3. (D1= day 1, D2 = day 2 and D3 = day 3) 

 

 

 

 

 

 



Chapter 7 - Near-surface soil moisture estimations               Page 7-50 

(iv)Within-day soil moisture variations  

Ground based observations of the moisture content of the surface layer obtained 

up to three days in each campaign are compared with virtually instantaneous 

satellite based observations.   It is therefore important to assess to what extent  the 

moisture content has changed during each individual day. For this purpose, each 

team was encouraged to take  its last soil moisture measurement for each day at 

the site of its first soil moisture observations of the day. Although, due to time 

limitations, not all the teams were able to collect repeat samples at the end of 

every day. A summary of these repeat measurements is shown in the Table 7-7 

which shows that average diurnal changes in the 0-1 cm and 0-6 cm near-surface 

soil moisture content observations were relatively small and less than 

approximately 4%.  The day-to-day differences were also found to be small. 

The highest range of (3.3 % v/v in 0-1 cm and 4.1 % v/v in 0-6 cm) variations in 

soil moisture observations was found during Campaign 2 and this may be due to 

the favourable drying conditions such as cloud free sky (Figure 7-16b) and lower 

relative humidity (Figure 7-17b) prevailing during campaign 2, and a longer time 

period of 8 hours between the first and the last observation (see Table 7-7). 

Considering an expected accuracy of 0.06 v/v in AMSR-E soil moisture data 

(Njoku and Li, 1999), this observed range of diurnal variations during the 

campaign periods does not appear to have serious effect on the final results.  

Furthermore, consideration of average AMSR-E soil moisture computed from 

ascending and descending paths helps overcoming the effect of surface drying up 

to some extent. Therefore, the use of individual soil moisture measurements 

collected at some time during the three-day campaign for the computation of 

average near-surface soil moisture measurements appears to be acceptable. Since 

no significant rainfall occurred during any of the campaigns, it was possible to use 

all the data collected during each campaigns. 
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Table 7-7:  Difference of the air and soil temperatures and 0-6 cm and 0-1 cm soil moisture 
levels between the first and the last observation of the same site during the campaign. 

 
Average differences between first 

and last observations 
Temperature 

(oC) 
Moisture   

(v/v) 

Campaign No 
of 

sites 

Average time 
between first 

and last 
observations  

(hour : minutes) Air Soil 0-6 cm 0-1 cm 
1 7 10:36 5.4 8.1 -0.4 -2.5 

2 9 8:09 8.2 8.2 -4.1 -3.3 

3 6 7:17 9.3 6.1 1.7 -1.6 

 

7.6.2.3   Estimation of minimum sample size 
An important task in the validation was to determine the minimum number of 

sampling sites reasonably required to obtain a representative areal average soil 

moisture value for such a large area. Figure 7-18 and Figure 7-19 show the effect 

of the number of randomly selected sampling sites on the area average soil 

moisture content over a 40 x 50 km area for the 0-1 and 0-6 cm depths, 

respectively. Graphs show the individual points as compared with the averages 

based on all available sites shown by horizontal lines (i.e. 230 sites during 

Campaign 1, 216 sites during Campaign 2 and 181 sites during Campaign 3). It is 

shown that for the 0-1cm observations the regional average stabilizes at about 100 

sites, whilst for the 0-6 cm observations at least 150 sites are required. The 

stabilization of the computed average from n number of data points is illustrated 

by the convergence between data points and the average value which is 

represented as a horizontal line.   

When field samples were collected after a long dry spell (as in Campaign 3) 

convergence of the graph occurs with a smaller number of sampling sites. This is 

due to the antecedent drying of the surface and the appearance of more uniform 

type moisture distribution across the catchment. A similar situation occurs 

immediately after reasonable precipitation (as in Campaign 2). However, different 

drying rates after a rain event in different parts of the catchment may also lead to 

the emergence of a preferred spatial pattern of moisture contents across the 

catchment. In such situations, convergence of the graph requires a greater number 
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of samples.   Therefore, the number of samples needed for the validation of large 

footprints will depend on recent rainfall and its distribution pattern. In general, if 

the sampling takes place after a long dry period or after a uniformly distributed 

rainfall, a smaller number of sampling sites (about 80-100) may be adequate.  For 

all other situations, at least 100 samples are recommended. 
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Figure 7-18  Spatial variation in field-measured soil moisture for top 1 cm soil layer during 
the three campaigns (see Figure 7.19 for the legend). 
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Figure 7-19:  Spatial variation in field-measured soil moisture for top 6 cm soil layer during 
the three campaigns. 
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7.6.2.4   Vegetation characteristics within the footprint 
 
Vegetation absorbs, emits, and scatters microwave radiation (Njoku and 

Entekhabi, 1996). Therefore, the study of vegetation characteristics is a very 

important component in any research employing microwave-based soil moisture 

measurements. Accordingly, in addition to the soil samples, a total of 192, 56 and 

97 vegetation samples were collected from 50 cm x 50 cm quadrants during 

Campaigns 1, 2 and 3, respectively.  Vegetation samples from trees were collected 

in a form of a cube representing approximately 0.125 m3. The number of samples 

collected from each vegetation type varied from campaign to campaign and details 

are given in  Table 7-8.  In general, the dominant vegetation type in the validation 

area consists of grasses and herbs and the majority of the samples therefore 

represented grass type vegetation. The observed vegetation water content during 

Campaign 1 was about 60% which may due to the previous 30 day rainfall of 68 

mm. (see Table 7-8). Vegetation water content during second and third campaigns 

was 46% and 34% respectively. Because nearly half the number of vegetation 

samples were collected from trees during the second campaign, it is difficult to 

compare the results with other data. The observed average dry biomass values 

during all three campaigns were less than the critical threshold level of 1.5 kg m-2 

for near-surface soil moisture measurements with AMSR-E.  Therefore, the 

chosen validation area meets the basic requirements. Also, based on equation 

7.11, the computed optical depth or opacity (τ) of vegetation in the study area 

ranged from 0.0318 to 0.0593 (assuming b = 0.12, as suggested by Jackson et al. 

(1999) and considering grass as the dominant crop type).  Theoretically, for small 

values of τ (associated with low vegetation density) the observed brightness 

temperature measured from microwave radiometers is close to the soil brightness 

temperature. This allows for accurate estimation of near-surface moisture 

conditions (Jackson et al., 1982; Njoku et al., 2003). 
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Table 7-8:  Measured vegetation water content (kg kg-1), biomass density (kg m-2) and 
vegetation opacity (τ) during field campaigns. 

 Campaign 1 Campaign 2 Campaign 3 
Total no. of samples 189 57 97 

     grass/herbs samples 174 35 88 

     tree samples 3 18 8 

     shrub samples 0 2 0 

     crop samples 12 2 1 

Veg. water content (%, kg kg-1)    

     Average 60.55 45.92 33.66 

     Standard deviation 12.08 13.44 12.86 

Dry biomass (kg m-2)    

     Average 0.2912 0.3763 0.4950 

     Standard deviation 0.2447 0.1764 0.3340 

Vegetation opacity (τ)    

     Average 0.0593 0.0434 0.0318 

     Standard deviation 0.0566 0.0362 0.0282 

 

7.6.2.5   Comparison of AMSR-E and measured ground-based data 
 
Results from the three validation campaigns are shown in Table 7-9 and Table 

7-10 where AMSR-E near-surface soil moisture values are compared with 

footprint averages of the volumetric soil moisture content in the top 1 cm and top 

6 cm. Two AMSR-E pixels (A and B) were used for the comparison. As shown in 

Figure 7-10, pixel A is completely within the validation area. Even though only 

about 80 percent of pixel B falls within the validation area, both pixels A and B 

were used for the analysis. Note therefore, that for each campaign the total 

number of 0-1 cm samples used for comparison with pixel A and pixel B values 

does add up to a number less than the total number of 0-1 cm samples obtained. 

The difference refers to observation sites outside pixel A and pixel B.   

Table 7-9 and Table 7-10 indicate that AMSR-E provide reasonable estimates of 

near-surface soil moisture content when compared with the averages of the point 

observations comprised within each pixel. AMSR-E measurements and field 

measured soil moisture values appear comparable (see Figure 7-20 and Figure 
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7-21). A positive correlation is present between AMSR-E soil moisture and both 

0-1 cm and 0-6 cm field measured values. However, AMSR-E moisture 

measurements did not exceed 13% even at the higher measured soil moisture 

content of over 25%. Furthermore, both AMSR-E pixels A and B show significant 

under-estimates for 0-6 cm moisture contents. However, Figure 7-21, shows that  

Wood (2003) has observed much better relationship between 0-6 cm measured 

soil moisture and AMSR-E near-surface moisture estimates.  

 

Table 7-9:  Comparison of AMSR-E near-surface soil water content and field measured 
moisture contents in 0-1 cm and 0-6 cm layers and vegetation dry biomass, water content 
and opacity (τ) of pixel A. (n = number of AMSR-E images (cf. Table 7-4) or number of  
ground-based observations).  

 

 

Campaign # Soil moisture content (% v/v) Vegetation 

(dates) AMSR-E 0-1 cm 0-6 cm biomass 
(kg ha-1) 

water content 
(%) 

opacity 
(τ) 

1 
(7-9 Nov 

2003) 

8.0 
(n=4) 

11.45 
(n=71) 

15.43 
(n=72)

2718 
(n=68) 

61.48 
(n=68) 

0.060 
(n=68)

2 
(1-3 May 

2004) 

11.7 
(n=4) 

20.53 
(n=63) 

18.95 
(n=63)

4200 
(n=16) 

45.63 
(n=16) 

0.045 
(n=16)

3 
(7-9 Jul 
2004) 

11.1 
(n=5) 

13.94 
(n=49) 

19.86 
(n=49)

5517 
(n=30) 

28.49 
(n=30) 

0.030 
(n=30)
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Table 7-10:  Comparison of AMSR-E near-surface soil water content and field measured 
moisture contents in 0-1 cm and 0-6 cm layers and vegetation dry biomass, water content 
and opacity (τ) of pixel B. (n = number of AMSR-E images or number of ground-based 
observations).  
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Figure 7-20:  Relationship between averages of field-measured soil moisture (0-1 cm) and the 
AMSR-E soil moisture in pixels A and B during Campaign 1, 2 and 3. 

 

Campaign # Soil surface water (% v/v) Vegetation 

(dates) AMSR-E 0-1 cm 0-6 cm biomass 
(kg ha-1) 

water 
content (%) 

opacity 
(τ) 

1 
(7-9 Nov 

2003) 

8.3 
(n=4) 

9.53 
(n=52) 

15.98 
(n=55) 

2916 
(n=51) 

58.27 
(n=51) 

0.052 
(n=51) 

2 
(1-3 May 

2004) 

12.2 
(n=4) 

21.19 
(n=47) 

20.19 
(n=52) 

3397 
(n=17) 

46.81 
(n=17) 

0.048 
(n=17) 

3 
(7-9 Jul 
2004) 

10.8 
(n=5) 

11.94 
(n=38) 

19.94 
(n=38) 

6354 
(n=25) 

36.83 
(n=25) 

0.045 
(n=25) 
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Figure 7-21:  Relationship between AMSR-E soil moisture and field-measured 0-6 cm soil 
moisture during Campaign 1, 2 and 3. Figure also includes 0-6cm soil moisture and AMSR-E 
data from Wood (2003). 

  
The differences between AMSR-E near-surface measurements and the observed 

0-1 and 0-6 cm soil moisture in both Figure 7-20 and Figure 7-21 may be 

attributed to three main factors. First, the field measured data do not provide 

perfect estimates of instantaneous surface moisture contents measured by the 

AMSR-E in terms of the spatial extent and the depth. For example, a limited 

number of  0-1cm depth (collected using 82mm diameter rings) and 0-6 cm depth 

soil moisture measurements (measured with Theta probes where each reading 

represents  a volume of about 50mm diameter and 60 mm depth) collected over a 

period of up to 1-3 days provides an indicative measure rather than an absolute 

measurement of soil moisture content. Often the 0-1 cm layer responds quickly to 

changes in atmospheric conditions and hence may dry or wet much more quickly 

than the 0-6 cm layer.  Second, recent rainfall patterns can have a great impact on 

the data. This is probably more so for 0-6 cm than 0-1cm because the deeper layer 

can store more water and therefore its soil water content will reflect past rainfall 

better than the 0-1 cm layer. Finally, the effect of vegetation is not uniform across 

AMSR-E pixels. Both the amount of biomass  and vegetation water content may 

vary temporally and spatially. Vegetation can extract soil moisture and cause 

variations in soil moisture patterns. Therefore, a perfect match between AMSR-E 
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area values of near-surface soil moisture content and averages of ground-based 

point scale measurements over 0-1 and 0-6 cm may not always be attainable.  

The field-measured average soil moisture content over an large area as computed 

in this study relies on relatively dense in-situ near-surface moisture data collected 

over 3-day periods. Despite this assumption, reasonably good correlations have 

obtained between the microwave observations and the field-measured soil 

moisture. 

 

7.7 ANALYSIS OF TEMPORAL PATTERNS OF 
AMSR-E MEASUREMENTS  
 
Analyses of the temporal evolution of AMSR-E measurements are important for 

at least two reasons. First, such analyses are expected to produce insight into the 

usefulness of AMSR-E soil moisture products for modelling applications. 

Temporal patterns of AMSR-E should generate useful information on sensor 

responses to natural events like precipitation and drying.  Second, these analyses 

may help to establish relationships with ground-based soil moisture measurements 

collected from permanent sites. Often, 0-1cm (or 0-6cm) soil moisture is not 

measured in permanent measurement networks and it is common to measure 0-30 

cm soil moisture as in the present study. In the present study temporal patterns of 

AMSR-E are compared with the SASMAS in-situ point scale measurements 

which have a much longer vertical length scale (i.e. 0-30 cm). However, one of 

the important factors to be considered when comparing AMSR-E soil moisture 

products with 0-30 cm in-situ observational data is the decrease in natural 

variability of the surface characteristics with increasing depth. The actual 

temporal range of average soil moisture over the 25 km scale EASE-grid footprint 

is expected to be less than that of the point scale in-situ measurements.  According 

to Njoku et al. (2003) this is due to the spatial smoothing and less frequent 

temporal sampling (maximum of 2 samples per day) of the AMSR-E 

measurements. Anomalies due to the vertical scale sampling differences between 

AMSR-E (0-1 cm) and in-situ measurements (0-6 or 0-30 cm) also will contribute 

to this.  
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7.7.1 STUDY SITE AND DATA USED 
 
The selection of AMSR-E pixels for the temporal pattern study was based on; a) 

their position within the SASMAS study region, b) the number and distribution of 

permanent soil moisture sites within the pixel, and c) the availability of climate 

data.  A total of 11 different AMSR-E pixels were available at any one time 

within the SASMAS study region as shown in Table 7-11 for temporal analysis 

and comparison with in-situ data. After considering factors such as availability of 

climate stations, the number of soil moisture monitoring sites, and the preference 

for less dense vegetation within the pixel, the EASE-grid cell reference of column 

1269 and row 449 (c1269, r449) was selected for the temporal analysis.  Note that 

the same pixel (Pixel A) was used for the validation study described above so that 

the present comparison over time will help to better understand the spatial 

variations of soil moisture across the pixel.  

 

Table 7-11:  AMSR-E data pixels and permanent soil moisture sites within the pixels and 
suitability of pixels for further analysis. 

  
EASE-grid reference 

(Column, Row) 
SASMAS sites 

within pixel Remarks 

1267,450 G5  
1268,449 G6  
1268,451 G4 Dense vegetation, mountainous 
1269,448 K6 Dense vegetation, mountainous, 

climate station 
1269,449 S1-S7, K3, K4, K5 Climate station, less vegetation, 

more soil moisture monitoring 
sites 

1269,450 K1, K2, M1  
1269,451 G3 Dense vegetation, mountainous 
1270,448 M7 Dense vegetation, mountainous 
1270,449 M3, M4, M5, M6  
1270,450 M2  
1270,451 G1, G2 Dense vegetation, mountainous 

 
 



Chapter 7 - Near-surface soil moisture estimations               Page 7-60 

 
 
7.7.2 TEMPORAL PATTERNS OF THE 6.9 GHZ CHANNEL 
 
The C-band channel of AMSR-E provides the main data input to the soil moisture 

retrieval algorithm. Hence, the temporal behaviour of the data in this channel must 

be first analysed.  Figure 7-22 shows the scatter plots of brightness temperatures 

measured with the 6.9 GHz channel during 2003 and 2004. Both vertical and 

horizontal brightness temperatures measured during the ascending (day-time) path 

(Figure 7-22a) and descending (night-time) path (Figure 7-22b) are shown.  5-day 

moving window averaging was applied to smooth the data and this is shown as 

continuous lines.  The significance of this figure is two-fold. First, confirms that 

vertically polarized signals are greater than the horizontally polarized signals as 

shown in Figure 7-1. The higher signal strength of the vertically polarized signal 

is evident throughout the study period. Second, both vertical and horizontal 

signals vary with time: about 260 – 305 K for day-time observations and about 

260-290 K for night-time observations. Hence variations up to about 30K of 

brightness temperatures occurs under natural conditions.  This gives an idea of the 

sensitivity of AMSR-E’s 6.9 GHz channels under natural conditions.  Daytime 

measurements are consistently higher than the night-time observations. Because it 

is a cloud-contaminated signal, raw brightness temperature values are not a good 

indicator for soil moisture and normalized forms, such as the brightness 

temperature polarization ratio given in the equation 7.12 are preferable.   
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(a) Day time     (b) Night time 

 
 
 
Figure 7-22:  AMSR-E measured dual polarized brightness temperatures of the 6.9 GHz 
channel during 2003-2004. (a) Daytime and (b) Night-time observations. (Note: Y axis units 
are brightness temperature in K). 
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As noted in Section 7.5.1, brightness temperature polarization ratios (ζ) are used 

in soil moisture inversion algorithm when polarized off-nadir measurements are 

available. This is because at large incidence angles (above 35o-40o) there is a large 

difference between the vertically and horizontally polarized brightness 

temperatures, particularly for bare soils. Polarization ratios help to effectively 

normalize the surface temperatures and therefore, the signal is more representative 

of the actual soil moisture and vegetation moisture conditions.  The off-nadir 

AMSR-E observations at constant incidence angle (54.8o) are suitable for study of 

the temporal evolution of the ζ under natural conditions and may be compared 

with rainfall observations and ground-based soil moisture measurements. Figure 

7-23 shows the scatter plots of ζ for daytime and night-time observations as well 

as rainfall observations throughout 2003 and 2004  The data has been smoothed 

with 5-day moving window averaging and  is shown as a continuous line.  Most of 

the peak values coincide with rainfall events, which confirm the sensitivity of ζ to 

precipitation. However, the magnitudes of these peaks can not be compared 

directly with the amount of rainfall due to differences in the measurements (point 

scale rainfall vs. 25km x 25km AMSR-E observations) and due to rainfall 

variations across the pixel. It is also evident from Figure 7-23  that daytime ζ 

values are generally higher than the night-time ζ values. However, day and night 

values are occasionally nearly equal which at times happens during or shortly 

after precipitation events. Figure 7-23 indicates  that soil moisture temporal 

variability is a dominant signal and that AMSR-E data may reflect the temporal 

soil moisture changes reasonably well in areas such as  the Goulburn River 

catchment. 

    



Chapter 7 - Near-surface soil moisture estimations               Page 7-63 

 
 

 

Figure 7-23: Computed polarization ratios (ζ) of the 6.9 GHz channel for daytime and night-
time observations and measured rainfall during 2003-2004. (Note: some missing rainfall data 
during March 2003). 

  

Another observation from Figure 7-23 concerns the pattern of day and night ζ 

values. It is evident that the fluctuations of daytime ζ values are more frequent 

than those of the night-time values. This may due to more stable environmental 

conditions during night time. On the other hand, at night, the soil moisture and 

temperature profiles are more uniform than at mid-day, and the soil-vegetation 
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temperature differences are smaller. Thus night-time AMSR-E soil moisture 

retrievals are expected to have less errors and be more representative of the 

deeper-layer soil moisture than the daytime observations. 

Figure 7-24 displays the temporal variation of computed AMSR-E soil moisture 

estimates and field measured rainfall during 2003-2004. The AMSR-E measured 

near-surface soil moisture values vary from 0.10 – 0.18 g cm-3. As can be seen, 

there is some coincidence between peaks in the soil moisture values and 

precipitation events.  For instance, this pattern is very obvious particularly after 30 

May 2004.  This gives an indication of the sensitivity of the retrieval algorithm. 

 
Figure 7-24: AMSR-E derived near-surface soil moisture estimates for daytime and night-
time overpasses during 2003-2004. Precipitation measured within the pixel is also given for 
easy comparison. (Note: some missing rainfall data during March 2003).   
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To better understand the temporal pattern of the near-surface moisture, it is 

necessary to compare AMSR-E soil moisture with ground-based soil moisture 

content observations. As an example Figure 7-25 compares near-surface AMSR-E 

measurements with average 0-30 cm soil moisture measurements made at station 

S2 between 1 January 2003 and 31 December 2004. In general, the magnitudes of 

these two quantities are not same and AMSR-E moisture values are always less 

than the 0-30 cm moisture contents.  

Interestingly, where as some of the soil moisture increases observed for the 0-

30cm layer are also clearly present in the AMSR-E near-surface observations 

other soil moisture increases are not evident in the AMSR-E data.  This is clearly 

visible around 29 August 2003. This may due to 1) a mismatch of scales (0-30 cm 

and 0-1 cm), 2) rainfall variations within the pixel, and 3) variations in vegetation 

patterns. Apart from the period during August to November 2003, significant 

correlation is observed between the near-surface measurements and average soil 

moisture data in the timing and magnitude of the soil wetting events and in the 

dry-down periods. The distribution of soil moisture within a AMSR-E pixel (for 

e.g. at c1269, r449) may, as expected, vary considerably. This is clear from Figure 

7-26 which shows the moisture measurements from nine sites across the pixel.  

Therefore, instead of comparing soil moisture from one specific monitoring site, it 

would be better to use a representative site for further analysis. In this context, one 

possibility is to consider the temporal stability characteristics (see Chapter 5) of 

the permanent SASMAS monitoring sites within AMSR-E pixels.  Comparison of 

AMSR-E soil moisture and field-measured averaged soil moisture will be discuss 

in the next section. 
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Figure 7-25:  AMSR-E near-surface soil moisture estimates for daytime and night-time 
overpasses together with daily averaged 0-30 cm soil moisture at S2 during 2003-2004. (Note: 
scale differences in y-axes). 
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Figure 7-26:  Temporal and spatial variations of 0-30 cm soil moisture (cm3.cm-3) measured 
during 2003-2004. The figure is based on 9 sites within AMSR-E pixel c1269, r449 and the 
line graph shows the average moisture content (Note: some missing data during January 
2003). 
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7.7.3 TEMPORAL STABILITY ANALYSIS FOR 
IDENTIFICATION OF REPRESENTATIVE 
MONITORING SITES WITHIN AMSR-E PIXELS 

 

The concept of temporal stability characteristics of measured soil moisture values 

as described in Chapter 5 may be used to determine which site best represents the 

average soil moisture condition for a given AMSR-E pixel. In the present study, 

two years of ground-based soil moisture observations have been used to select a 

representative station. Table 7-12 shows the data on the relative differences 

corresponding to soil moisture monitoring sites within selected AMSR-E pixels 

for the period between 1 January 2003 and 31 December 2004. The table shows 

that monitoring sites S4, M4 and M1 are the representative sites for pixels A, B 

and C (new pixel, see Table 7-12 for details) respectively. Site S4 seems a 

reasonable choice as it has been selected from 9 sampling sites. The other sites, 

M4 and M1, however, may not the best locations as their selection was only based 

on three sampling sites. 

Table 7-12:  Results of pixel average soil moisture measurement sites within AMSR-E pixels. 

AMSR-E Pixel 
Total 
no. of 
Days  

Data 
Availability  

(# days) 

Site 
Code 

Pixel avg.  
water 

content  
(cm3.cm-3) 

Mean relative 
difference  

(-) 

            
A (c1269, r449) 712 707 K3 0.261 0.362 

(estimated for    651 K4   0.093 
days with >3   707 K5   -0.245 
data sets)   698 S1   -0.090 
    697 S2   0.063 
    698 S3   0.301 
    698 S4   0.016 
    697 S5   -0.324 

    698 S7   -0.172 
B (c1270, r449) 731 513 M4 0.170 0.074 

(estimated for    513 M5   -0.186 
days with >2   513 M6   0.112 
data sets)           

C (c1269, r450) 731 708 K1 0.192 0.961 
(estimated for    708 K2   -0.527 
days with >2   708 M1   -0.434 

    data sets)           
Note: Values in bold characters best estimate the pixel average soil water content. 
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Figure 7-27 shows a graphical representation of relative differences at the 

monitoring sites within the three AMSR-E pixels. The data are ordered from 

lowest to highest and the standard deviation is represented by error bars above and 

below the points indicating the relative difference.  All sites above the zero 

relative difference values would systematically overestimate the mean soil 

moisture value across the pixels. Similarly, those below zero would underestimate 

the mean moisture levels. It is clear from Figure 7-27 that representative sites only 

exist in pixels A and B.  As far as the nine SASMAS sites within pixel A are 

concerned, it may be seen that the temporal stability is higher at Stanley sites (S1, 

S4 and S2) as indicated by lower standard deviation. All sites characterising the 

wet or dry sectors however show lower temporal stability (greater standard 

deviation).  For pixel C, the available SASMAS sites are quite different from the 

mean soil moisture behaviour at the AMSR-E pixel scale. 

The sites with soil moisture values that are most representative for mean soil 

moisture at the AMSR-E pixel scale would be the one that is closest to the zero 

relative difference value with the lowest standard deviation. For the three AMSR-

E pixels studied, the site meeting these requirements is S4 (Figure 7-27A). S4 is 

within the Stanley micro-catchment and it is located on a plateau in an elevated 

landscape.  To confirm the suitability of S4 as representative for AMSR-E pixel A 

at c1269, r449, a comparison has been made between the mean of the 

measurements at the remaining 8 sites and those at S4. Figure 7-28 shows a 

reasonable fit between the measured and estimated values with a high coefficient 

of determination (R2 = 0.71). 
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Figure 7-27:  Plots of relative differences for ground-based soil moisture monitoring sites 
within AMSR-E pixels A) c1269, r449; B) c1270, r449; and C) c1269, r450. These plots are 
based on the whole study period (1 January 2003 – 31 December 2004). Vertical bars 
correspond to associated standard deviations. 
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Figure 7-28:  Measured soil moisture data of the representative mean soil moisture at 
AMSR-E pixel A (S4) and the mean soil moisture of the remaining 8 sites comparison during 
2003-2004.  

 
A comparison of AMSR-E near-surface soil moisture observations and soil 

moisture measurements at S4 during 2003 and 2004 is shown in Figure 7-29 and 

Figure 7-30 respectively. As noted previously, some of the soil moisture increases 

observed at S4 (at the 0-30cm scale) are clearly present in the AMSR-E near-

surface observations but not all ground measured soil moisture changes are 

evident in the AMSR-E data. It is also important to note that due to the differences 

between AMSR-E soil moisture measurement depth (~1 cm) and the field 

measurement depth (0-30 cm), it is not possible to have a perfect match.  

Nevertheless, this analysis indicates that AMSR-E soil moisture estimates are 

capable of mimicking land surface soil moisture patterns reasonably well. 
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Figure 7-29:  Comparison of average AMSR-E soil moisture measurements and field 
measured average soil water content for 0-30 cm based on (1) all monitoring sites and (2) 
representative site (S4) within the pixel during 2003. (Note: scale differences in y-axis). 
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Figure 7-30:  Comparison of average AMSR-E soil moisture measurements and field 
measured average soil water content for 0-30 cm based on (1) all monitoring sites and (2) 
representative site (S4) within the pixel during 2004. (Note: scale differences in y-axis). 
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7.7.4 TEMPORAL PATTERNS OF THE VEGETATION 
CHARACTERISTICS 

 
Temporal patterns of the vegetation characteristics may also help understanding of 

near-surface soil moisture measurement. Microwave soil moisture inversion 

models use such information to derive model parameters. Figure 7-31 shows the 

temporal distribution of MODIS derived average NDVI values for the AMSR-E 

pixel at the r1269, c449 EASE-grid location. This figure helps in identifying the 

behaviour of vegetation within the selected AMSR-E pixel. Accordingly, the 

winter months and the summer months are characterized by less vegetation and 

smaller spatial variation (e.g. particularly, during May - August and November – 

December, 2004 in Figure 7-31). This more-uniform but less dense vegetation 

pattern creates ideal conditions for testing the soil moisture retrieval algorithm. 

The good performance of the retrieval algorithm is shown by the coincidence of 

the pronounced peaks associated with rainfall events and soil moisture estimation 

in the middle and towards the end of 2004 (see Figure 7-24).  
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Figure 7-31:  Temporal evolution of NDVI variations (as observed at 6 MODIS pixels) within 
the AMSR-E pixel. 
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7.7.5 COMPARISON OF SOIL MOISTURE MEASURED 
OVER 0-30 CM AND OVER 0-1 CM 

 

Comparisons of 0-30 cm soil moisture measurements at S4 and the day-time and 

night-time AMSR-E near-surface moisture values during 2004 are given in Figure 

7-32.  It is shown that daytime AMSR-E values (R2=0.24) are two times better 

correlated with in-situ measurements than night time values (R2=0.10).   The 

lower correlation for night time values may be due to the variations caused by 

redistribution of soil moisture at night in the absence of evaporation. It is also 

possible that dew formation causes rewetting of the surface layer, particularly at 

night time. Therefore, even when the 0-30 cm layer is generally dry, its thin 

surface layer may contain a slightly higher moisture level. This may partly explain 

the low correlation between night-time near-surface soil moisture measurements 

and the moisture contents of the 0-30cm deep layer. Nevertheless, poor 

correlations were observed between average 0-30 cm measurements and AMSR-E 

near-surface values for the whole period from 2003-2004 as shown by correlation 

coefficients for day-time (R2=0.15) and night-time (R2=0.07). This analysis 

however, confirms that 0-30 cm soil moisture measurements at S4 show a positive 

relationship with the AMSR-E data. The results indicate that it is possible to 

establish a site-specific empirical relationship to obtain an area-averaged near-

surface moisture content from 0-30 cm measurements. For example, the daytime 

0-1 cm near-surface soil moisture for the AMSR-E pixel-A may be derived from 

0-30 cm measurements at S4 with the following linear relationship (R2 = 0.24, t 

statistics of the intercept = 23.31, t statistics of the slope = 8.35 and n = 223).  

300410 *01243.00919.0
−

+=− Sθθ  (7-15) 

Figure 7-33 compares the AMSR-E soil moisture with 0-1cm moisture estimates 

based on equation 7.15. It is evident that there is some similarity in temporal 

evolution between the predicted and measured moisture contents. By measuring 

the soil moisture at representative sites it may therefore be possible to derive near-

surface soil moisture estimates over large areas.  
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Figure 7-32:  Correlation between 0-30 cm in-situ soil moisture measurements at S4 and 0-1 
cm AMSR-E soil moisture observations during (a) day time, and (b) night-time in 2004. 
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Figure 7-33:  Comparison of AMSR-E day-time measured 0-1 cm near-surface soil moisture 
and estimated 0-1cm soil moisture content derived from the measured 0-30cm value at a 
representative site (S4) during 2003-2004.   
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7.7.6 COMPARISON OF VEGETATION MOISTURE 

CONTENTS AND FIELD MEASURED SOIL MOISTURE 
 
In addition to near-surface soil moisture measurements AMSR-E also provides 

estimates of vegetation water content.  For instance, Figure 7-34 shows the 

vegetation water contents measured over a two years. Field-measured averaged 

soil moisture contents (0-30 cm) are also shown in the figure. As can be seen, 

night-time vegetation water contents are always higher than the daytime water 

contents. This is likely to be due to the temporal wilting conditions of the leaves 

which are frequently present during mid-day and early afternoon.  During night-

time, with low transpiration rates, cells return to normal conditions, hence leaves 

contain more water.  Passive microwave sensors are sensitive to day and night 

vegetation water content variations between day and night.  Furthermore, as can 

be seen in the Figure 7-34 and Figure 7-35, these vegetation water content 

variations are in step with in-situ soil moisture measurements. For example, 

daytime vegetation water contents show a positive correlation with field measured 

soil moisture contents. These results provide a measure of confidence in the 

vegetation water content values measured by AMSR-E. However, this information 

must be used with some caution because it gives the vegetation water content over 

a 25 km pixel for the entire height of the vegetation cover. Hence it is easier to 

interpret the AMSR-E vegetation water contents for uniform vegetation condition. 

Applications to patchy and mixed types of vegetation however, are complex and 

need careful study of vegetation patterns across the pixel. 
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Figure 7-34:  AMSR-E daytime and nighttime estimates of vegetation water contents and 
field measured soil moisture at S4 during 2003-2004. (Note: Y axis is for both soil moisture 
(cm3 cm-3) and vegetation water content (kg m-2). 
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Figure 7-35:  Correlation between 0-30 cm in-situ soil moisture at S4 during 2004 and 
AMSR-E vegetation moisture content based on (a) day-time, and (b) night-time observations. 

 

7.8 CONCLUDING REMARKS 
 
This chapter has reviewed the application of microwave remote sensing 

techniques for soil moisture measurements and the field validation of passive 

microwave soil moisture measurements based on intensive field campaigns and 

the use of temporal patterns in long-term soil moisture measurements at individual 

sites. 

The results indicate that satellite based near-surface soil moisture measurements 

are feasible and that more reliable measurements may be obtained with more 

accurate site specific variables such as (pixel based) vegetation and soil 

parameters.     
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Passive microwave remote sensing for monitoring soil moisture offers new 

opportunities. First, it enables remote regions with limited field measurements to 

be regularly monitored. Second, it overcomes the difficulty of obtaining accurate 

estimates of large-area soil moisture measurements using point-scale ground-

based techniques because of costs and the likelihood of instrument failures. Area-

average soil moisture measurements are important for scaling studies. This 

simplifies the data scaling requirement of hydrological model applications and 

also assists in validating soil moisture up-scaling relationships.  Validation of 

near-surface measurements is of primary importance to pave the way for better 

model predictions. 

While the comparisons between the AMSR-E products and field measurements 

are not straightforward because the 75km x 43 km IFOV of the 6.9 GHz channel 

and the 25 km resolution of the soil moisture product significantly exceed the 

typical plot size used in field sampling. The results presented here suggest that 

future validation studies should consider the use of airborne sensors. Accurate 

validation is difficult to achieve because the footprint size of the AMSR-E 

observations is about 56 km (i.e. IFOV of  75km x 43 km area), and the available 

soil moisture data are resampled to 25km from the observation,  .  

Ideally, in validation studies, it is important to consider large areas with different 

wetness conditions within one day or several days which are associated with 

different wetness conditions.  The resources available for the study did not support 

study over a large catchment.  Despite this limitation, study described in the thesis 

attempted to capture a number of days with different moisture contents. 

Unfortunately, prolonged drought conditions throughout the study period did not 

support capturing a wider range of moisture contents.  

The results presented here are encouraging for future development of passive 

microwave technology for global soil moisture observations. It is evident from the 

results that AMSR-E soil moisture estimates are reasonably accurate and 

consistent for low vegetation conditions (at vegetation opacity (τ) < 0.06). It 

should be noted that on theoretical grounds the 6.9 Hz channel of AMSR-E is 

expected to yield integrated soil moisture values for the top 0-1 cm.  The observed 

difference between AMSR-E estimates and field measured values may be due to a 
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vegetation effect.  Therefore, further study is needed to compensate for the 

vegetation effect in the soil moisture determination algorithm. 

Any indirect soil moisture measurement approach requires field validation of the 

result.  However, field validation of a large-area soil moisture measurement 

(>1km) is very complicated and represents a cumbersome task. The main 

difficulty is how to relate a single observation value with a number of point scale 

measurements. The easiest approach is to collect a large number of point scale 

observations and to use arithmetic averages. When human resources are used for 

such point observations, there is a limit on the coverage and the number of 

samples. Therefore, sampling campaigns have to be conducted with certain 

assumptions such as the assumption of nearly-constant near-surface moisture over 

extended periods (e.g. up to 1-3 days). The results of the 3-day field experiments 

described here indicate that the use of a three-day period for the collection of 

near-surface soil moisture measurements to evaluate the average near-surface 

moisture measurements of AMSR-E did not appear to affect the final results. 

However, in situations where the surface is relatively wet and rapid drying can 

occur, it is advisable to consider shorter-duration field campaigns.   In addition, 

the accessibility to sites within the footprint may present another major problem, 

because lack of access may prevent field observations from being carried out in a 

uniform manner across the area.  

In order to allocate available resources more efficiently during field surveys, 

future validation campaigns should be planned to cover only the AMSR-E pixels. 

This is possible as AMSR-E soil moisture products are always coupled with fixed 

geographical locations based on the 25 km scale EASE grid representation. This 

allows for a large number of readings to be collected across a pixel within a 

shorter period. 

It is also possible to use the soil moisture data from an existing ground-based 

monitoring network to validate the AMSR-E measurements. Continuous 

observations of soil moisture measurements from permanent networks provide 

information on temporal behaviour of soil moisture. In this context, analysis of 

temporal stability characteristics of ground-based monitoring stations are 

promising. Such an analysis also helps to reduce the number of measuring points 

required for characterising soil moisture trends for a given AMSR-E pixel. In the 
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light of the above, the installation and maintenance of permanent networks of soil 

moisture measurement sites will be highly desirable when validating the soil 

moisture retrieval algorithm of microwave sensors. 

While validation attempts based on point scale observations are obviously useful, 

a better approach is to collect spatially averaged data with an airborne radiometer. 

This may help in computing more representative average soil moisture values 

across large areas. It also results in faster data collection within a shorter window 

period to match with the Aqua overpasses and makes longer campaigns such as 3 

days taken in the present study unnecessary.  This approach also makes it 

unnecessary to assume constant soil moisture conditions over a three-day period.  

Above all, airborne data can be collected at a several altitudes and hence for a 

range of spatial scales provide the best data source for soil moisture scaling 

studies.  

Spatial resolutions of soil moisture from passive microwave radiometers are very 

coarse and usually in the order of tens of km in pixel size. Future microwave soil 

moisture remote sensing missions should attempt to improve the spatial resolution 

to around 10 km.     

Finally, appropriate technique must be developed for in-situ validation of 

microwave measurements and various field campaigns are therefore necessary for 

a range of ecological and climatic regions to build up a knowledge-base.  Until 

they are fully validated, soil moisture data derived from satellite remote sensing 

will be used more in qualitative studies rather than for quantitative applications. 
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CCCHHHAAAPPPTTTEEERRR   EEEIIIGGGHHHTTT   

8. SPATIAL DISAGGREGATION OF LARGE-
AREA NEAR-SURFACE SOIL MOISTURE 
MEASUREMENTS  
The main limitation of near-surface soil moisture observations obtained with 

space-borne passive microwave sensors such as from AMSR-E is their inadequate 

resolution for many applications.  The development of a range of disaggregation 

techniques is therefore important to overcome such limitations due to the 

inadequate spatial resolution.  Disaggregation of large-area soil moisture fields is 

not straightforward and extracting the hidden soil moisture distribution pattern 

behind a single number is an elusive challenge.  This chapter presents a 

methodology to disaggregate near-surface soil moisture estimates from AMSR-E. 

The chapter explores use of land surface temperatures and vegetation indices 

derived from higher resolution sensors to describe the variations of moisture 

within the large footprint of passive microwave soil moisture products. This 

methodology has been developed as an outcome of Chapter 6 where soil moisture 

scaling has been studied based on spatial and temporal data. The new 

methodology provides estimates of the change in soil moisture at the spatial 

resolution of approximately 1.1 km2. It is expected that the methods used in this 

study can contribute to a range of catchment scale soil moisture studies when 

acquiring alternative soil moisture data is costly and time consuming. 

 

 

 

 



Chapter 8–Spatial disaggregation   Page 8-2 
 
 

8.1 INTRODUCTION 
The distribution of soil properties can differ widely across a given catchment. This 

variation, in turn, causes large differences in the way dissimilar soil types store 

and transmit water. Improved information on distribution of soil water content 

across a catchment is needed for modeling surface and subsurface phenomena. 

Hydrological prediction at the meso- and local-scales is dependent upon the 

ability to characterize the spatial variability of soil moisture content. The lack of 

soil moisture data at the required spatial resolution is the greatest hindrance to the 

successful application of local and regional scale hydrological models.  

Soil moisture measurements of AMSR-E hold great promise for monitoring soil 

water content across the globe owing to its strong physical basis. Because of the 

large field of view of the C band radiometer (nearly 76 x 44 km) due to the 

relatively poor passive microwave emission, the AMSR-E soil moisture product 

of 25km resolution is not the optimal tool for mapping soil water content, 

although it is the best currently available method for such a purpose. This type of 

large-area averaged soil moisture estimates may be used in catchment scale 

lumped models or models run at a coarse resolution, but will not be suitable for 

distributed or semi-distributed models when soil moisture estimates are desired at 

much finer scales, for example at 1 km2.  Current and future L-band and C-band 

satellite radiometers also have the problem of coarse spatial resolution, which has 

to be addressed before important applications, such as incorporation of remotely 

sensed soil moisture estimates in precision agricultural applications (Voltz, 1997). 

Because of the spatial nonlinearities of land processes, the use of mean quantities 

causes considerable inaccuracies in the land surface scheme calculations with 

large-area average soil moisture fields. Hence, it is necessary to describe the soil 

moisture fields over catchments in statistical or disaggregated terms.  

Ideally, the main objective of a disaggregation scheme is to produce ‘true’ sub-

pixel patterns of soil moisture from lower-resolution remotely sensed 

observations.  According to Tsegaye et al. (2003) it is difficult to develop and 

validate such a disaggregation scheme because the actual sub-pixel soil moisture 

pattern within a satellite footprint is rarely, if ever, known within acceptable error 
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bounds. Thus, Tsegaye et al. (2003) argue that adequate data for developing 

statistical models do not exist and may never exist for areas larger than field scale.   

As discussed in Chapters 2 and 6, neither sub-grid scale surface moisture data nor 

acceptable downscaling methods exist for AMSR-E data.  An appropriate 

downscaling approach is necessary to avoid the propagation of errors from the 

observation scale to the modelling scale. This may be possible with the combined 

use of higher-resolution air-borne sensors or radar information from other 

microwave radiometers (Narayan and Lakshmi, 2005) or thermal imagers. 

Airborne imagery however, is not readily available and if available, it may incur 

high data acquisition costs.  The most practical approach is therefore to use the 

information from satellite based remote sensing sensors such as MODIS and 

NOAA –AVHRR (Hemakumara, et al., 2004). This thesis studies downscaling 

approaches for the AMSR-E soil moisture product based on other higher-

resolution radiometers in space. This chapter first discusses selected existing 

disaggregation techniques as described in the literature and then proposes two new 

methods to disaggregate AMSR-E soil moisture. Disaggregated soil moisture 

values are then compared with field measured values.  

(In this chapter, the term low-resolution, and 25-km resolution are used 

interchangeably.  Similarly, the term high-resolution and 1.1-km resolution are 

also used interchangeably.) 

 

8.2 DISAGGREGATION TECHNIQUES 
Kim and Barros (2002a) concluded that soil moisture fields exhibit multiscaling 

and multifractal behaviour. They further reported that such multiscaling and 

multifractal behaviour varies with the scales of observations and 

hydrometeorological forcing. Thus, use of simple scaling approaches to derive 

high-resolution soil moisture distributions from AMSR-E data may not always 

provide accurate spatial patterns. Perhaps, by using the scaling characteristics of 

suitable proxy variables such as the soil texture or vegetation water content it may 

be possible to explain patterns in soil moisture content.  
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Disaggregation of large-area soil moisture fields requires appropriate 

disaggregation schemes with a strong physical basis.  Soil moisture 

disaggregation reveals the hidden moisture pattern built into the large-area 

observations.  Aggregation, on the other hand, is the process of deriving a spatial 

average from a large number of small-scale observations. In general, spatial 

aggregation methods are less complicated than the disaggregation methods. 

However, disaggregation is not so simple and extracting the hidden soil moisture 

values from a single number is an elusive challenge. 

A range of methods can employed to downscale large-area measurements to finer 

scale representations. In a broad sense, there are three categories of methods: a) 

statistical approaches, b) data assimilation approaches, and c) methods using 

information from higher-resolution sensors. All these approaches help in 

disaggregating large-area soil moisture fields into finer-scale fields with some 

degree of confidence.  Below the concepts behind these disaggregation 

approaches are briefly discussed.  

8.2.1 STATISTICAL APPROACHES 

Statistical disaggregation techniques have been applied to soil moisture as well as 

to many other different geographical phenomena like haze assessment (Abuzar & 

Al-Ghunaim, 1997).  However, typical interpolation techniques such as linear 

averaging, kriging, polynomial and fractal interpolation may not necessarily 

produce actual patterns of soil moisture distributions at a finer scale from the 

coarse-scale observations. This is because soil moisture patterns at any scale have 

a physical meaning and soil moisture is therefore not distributed purely on a 

random basis.  Many statistical approaches are based on the assumption of random 

data distribution (some exceptions found, e.g. co-kriging).   Thus, transferring soil 

moisture information across scales purely in statistical terms may introduce errors 

in the predictions.  

There are few examples of successful application of statistical approaches to 

preserve the spatial variability of original data in transferring soil moisture across 

scales.  This is mainly due to the fact that large-scale soil moisture measurements 

are relatively new. One promising method has been proposed by Kim and Barros 

(2002a) who showed the use of fractal interpolation method for disaggregating 
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large-area soil moisture measurements. Their disaggregation method is based on a 

mathematical technique called ‘contraction mapping’ and uses ancillary data such 

as soil texture and vegetation water content. Application of their model to 

downscale 10 km soil moisture observations to a 1 km resolution was successful.  

However, their method is complex and it requires additional information such as 

soil texture and vegetation water content which is not always available. 

Tsegaye et al. (2003) have proposed a disaggregation scheme called DisaggNet 

based on an artificial neural network approach for downscaling large-area soil 

moisture measurements from microwave sensors. Their approach consists of 

training (or calibrating) a neural network using surface hydrology-radiative 

transfer model output, and then testing its performance using actual remotely-

sensed data. The main strength of their approach is the ability to simulate the fine-

scale soil moisture in a catchment over extended periods.  They assume that the 

surface hydrology-radiative transfer model used in the scheme accurately 

simulates the spatial patterns of soil moisture and brightness temperature within 

an actual satellite footprint.  They assumed a linear relationship between 

microwave emissivity and soil moisture although this relationship is not perfectly 

linear (see Figure 7.1).  Their approach requires calibration of the disaggregation 

scheme in a selected geographic domain so that the results are not readily 

transferable to other geographic regions. DisaggNet also assumes a linear 

relationship between rainfall and soil moisture which is not appropriate for many 

hydrophobic soils (i.e. soils which are difficult to wet because they repel water) 

found in Australian catchments. 

It is also possible to design statistical disaggregation schemes based on fuzzy set 

algorithms. The discretisation of objects in spatial analyses through data models 

cannot be done with absolute precision and accuracy (Molenaar, 1998). Thus, the 

use of fuzzy set operators for spatial analyses of soil moisture may be 

advantageous. Fuzzy logic is appropriate for spatial analysis when the data used is 

highly subjective. In case of AMSR-E soil moisture, one can argue that 

microwave penetration depth is uniform across a pixel although, as discussed in 

Chapter 7, it is difficult to assume a uniform microwave penetration depth due to 

variable vegetation densities across a large footprint. The disaggregated soil 

moisture from microwave measurements therefore has some degree of 
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uncertainty.  For this reason, use of fuzzy set algorithms for disaggregation of 

AMSR-E soil moisture may be appropriate. 

8.2.2 MODEL BASED APPROACHES – DATA 
ASSIMILATION TECHNIQUES 

Data assimilation techniques using physically-based models provide an 

opportunity to downscale microwave-based large-area soil moisture observations. 

Based on a synthetic experiment, Reichle et al. (2001a) demonstrated that soil 

moisture can be estimated satisfactorily at scales finer than the original resolution 

of the brightness images. Their approach however requires micrometeorological, 

soil texture and land cover inputs at the finer scale, which are often not readily 

available. In addition, their approach focuses more on the downscaling of radio 

brightness measurements than of soil moisture products and is therefore not 

readily applicable for downscaling of soil moisture fields. 

8.2.3 USE OF HIGH RESOLUTION IMAGES 

Disaggregation schemes using higher-resolution radar observations may provide 

the means for interpreting large-area soil moisture observations at much finer 

scale. Narayan and Lakshmi (2005) presented an approach for disaggregation of 

coarser resolution radiometer estimates of soil moisture using higher-resolution 

radar backscatter and vegetation water content measurements. Their algorithm 

provides estimates of the change in soil moisture at the spatial resolution of the 

radar (observations obtained at the same temporal resolution as that of the coarse 

resolution data). They assume that the spatial variability of bare soil properties 

(texture, roughness) that influence radar sensitivity to soil moisture is not 

significant and hence the variability of the radar signal within the radiometer 

footprint is due to soil moisture and canopy vegetation water content variability 

only. This assumption helps to reduce the variables in the retrieval algorithm.  The 

authors argue that if the lower resolution soil moisture estimates of the region for 

a particular time is known, assuming that the spatial variability in soil moisture for 

that time is very low (conditions are very dry or very wet), then the lower 

resolution estimate can be simply re-sampled to a higher resolution. The higher-

resolution change in soil moisture derived from the radar image is then added to 
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the high-resolution soil moisture image obtained from resampling to produce 

higher-resolution soil moisture images.  This approach appears attractive, but 

requires appropriate radar images.  

8.2.4 USING SURFACE WETNESS INDICES  

Chauhan et al. (2003) proposed a process for obtaining high-resolution soil 

moisture data using a synergistic analysis of microwave-optical/IR data. Their 

algorithm combines the traditional accuracy of microwave sensors for soil 

moisture sensing with the capability of optical/IR sensors to determine soil 

moisture estimates at high resolution. This approach computes the soil wetness 

conditions using the NDVI-LST space proposed by Carlson et al. (1994) as 

discussed in Section 2.3.5. In addition to the land surface temperature and NDVI, 

they considered surface albedo in an attempt to strengthen the relationship 

between the soil moisture and measurable land parameters. The estimation of soil 

moisture at 1-km resolution was done using a system of linear equations between 

SSM/I-derived soil moisture and aggregated land surface parameters such as 

NDVI, albedo, and LST.  The authors used this approach to disaggregate SSM/I 

data (frequency ~19.4 GHz, 25-km spatial resolution) with data from AVHRR 

(1.1 km spatial resolution). Their approach was found to be promising because it 

provides a useful methodology for using wetness indices for disaggregation of soil 

moisture measurements.   

8.2.5 PROPOSED DISAGGREGATION STUDY  

Most current schemes for disaggregation of large-area soil moisture fields are not 

adequate or applicable. Some available techniques are too complex for wider 

applications. Several authors (e.g. Kim and Barros, 2002b; Chauhan et al., 2003; 

Tsegaye et al., 2003; Narayan and Lakshmi, 2005) have discussed disaggregation 

of near-surface microwave based soil moisture measurements, but only few 

studies considered use of in-situ measurements for justifying their approaches. 

This study therefore investigates practical methods to disaggregate near-surface 

low-resolution soil water contents from microwave sensors and evaluate the 

methodology using field measured soil moisture data. It is also clear that any soil 

moisture disaggregation method should have a sound physical basis, be simple, 
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and cost-effective and should be able to be applied over a range of geographical 

regions.   

The primary objective of the present disaggregation study is to use information 

derived from high-resolution sensors to disaggregate passive microwave AMSR-E 

near-surface soil water contents. Because of the paucity of fine-scale microwave 

observations, the most viable approach is to use the fine-scale observations of 

visible and NIR bands from other radiometers such as MODIS and NOAA. 

Designing a disaggregation scheme based on non-microwave radiometers requires 

answers to the following questions: 

• Is LST and VI information obtained with high resolution sensors suitable 

and can it be used for predictions?  

• Is the method efficient for the time series of AMSR-E images? 

• What is the regional applicability of the method? 

To generate high spatial resolution soil moisture data from microwave 

measurements, a technique based on optical/IR remote sensing approaches will be 

used. As discussed in Chapter 6, information derived from visible and NIR bands 

provides a good physical basis for explaining land surface wetness characteristics.  

Particularly, the land surface temperature index such as the RNTI and the wetness 

index such as the VTCI are suitable variables for describing the subpixel moisture 

variations. The study of regionalization of point-scale soil moisture measurements 

(discussed in Chapter 6), has indicated that indices such as RNTI and VTCI are 

potentially useful for mapping soil wetness patterns across a catchment.  In this 

chapter, two methods for disaggregating AMSR-E soil moisture are discussed 

which are based on RNTI and VTCI indices. The two approaches are evaluated 

with the point-scale soil moisture measurements collected during three-day 

AMSR-E validation campaigns (see Section 7.6).   

 

8.3 METHODOLOGY 
Satellite data from AMSR-E and Aqua-MODIS over the Goulburn River 

catchment were acquired for the three field campaign periods described in Chapter 
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7. Descriptions of AMSR-E and MODIS are given in Section 2.3.2.2.1 and in 

Section 2.3.2.1.2 respectively. The properties of MODIS land surface temperature 

data used in the present study are shown in Table 8-1.  As seen in the table, only 

four MODIS data sets are suitable for the study: namely Campaign 1 Day 3, 

Campaign 2 Days 1 and 3, and Campaign 3 Day 2.  Despite the fact that only Day 

3 of Campaign 2 is suitable for the study, MODIS data on Day 1 (over 20% of 

clouds) are also considered due to small number of days available. In the case of 

AMSR-E data, daily average soil moisture contents (estimated from ascending 

and descending paths) were used. For some days only one data set (from either the 

ascending or the descending paths) was available and for those days it was 

assumed that the available data represent the average soil moisture contents for 

the day. 

The ground-based soil moisture data used in this study were the volumetric soil 

moisture measurements at 180-225 locations in each field campaign obtained with 

a theta probe (0-6 cm soil moisture) and obtained with gravimetric method (0-1 

cm soil moisture) during all three field campaigns as discussed in sections 7.6.1 

and 7.6.2. During the three-day campaigns, field sampling was done in a diagonal 

pattern (see Figure 7.9) within the validation footprint of approximately 50 km × 

40 km area. This enabled collection of point-scale in-situ soil moisture values 

from 12 different areas (3 areas per team x 4 teams) across AMSR-E pixels for 

each day in the field campaign. Additionally, efforts were made to collect soil 

moisture samples in the same general vicinity during all three campaigns. 
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Table 8-1:  Properties of the LST data sets used in the downscaling study. 

 
Campaign Property Day-1 Day-2 Day-3 

1 Sensor type 
Daytime image 
Overpass time 

MODIS/Aqua 
 not suitable 

- 

MODIS/Aqua 
 not suitable 

- 

MODIS/Aqua 
suitable 
13:36 

 % clouds in the 
image 

  10.5% 

 Min/Max LST 
(K) 

  282.9/323.5 

 Air temp. (oC)*   26.61 
     

2 Sensor type 
Daytime image 
Overpass time 

MODIS/Aqua 
suitable 
13:48 

MODIS/Aqua 
 not suitable 

- 

MODIS/Aqua 
suitable 
13:36 

 % clouds in the 
image 20.7%  0.0% 

 Min/Max LST 
(K) 281.1/301.3  284.5/306.2 

 Air temp. (oC)* 18.96  19.46 
     

3 Sensor type 
Daytime image 
Overpass time 

MODIS/Aqua 
 not suitable 

- 

MODIS/Aqua 
suitable 
13:24 

MODIS/Aqua 
not suitable 

- 
 % clouds in the 

image  1.4%  

 Min/Max LST 
(K)  279.2/296.6  

 Air temp. (oC)*  12.85  
* - Air temperature measured at S2 climate station. 

Soil moisture measurements from four AMSR-E pixels have been used in this 

study. The footprint selected for the field study spreads out over one complete 

AMSR-E pixel (at EASE-grid column no. 1269 and row no. 449), covers about 

75-80% of a second pixel (at column no. 1270 and row no. 449), and includes 40-

50% of two other pixels (at column numbers 1269-1270 in row no. 450). The 

validation footprint therefore provided an opportunity to study the downscaled 

results from up to four AMSR-E pixels. 

RNTI and VTCI indices are calculated for the selected dates from MODIS LST 

and EVI with 1.1 km resolution (see Chapter 6 for details of the computation 

procedure).  The RNTI is a dryness index and it is therefore necessary to consider 

the residual ‘1-RNTI’ values for the spatial disaggregation of large-area soil 

moisture measurements. The VTCI values describe wetness conditions and no 
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conversion was required. The downscaling approach involved calculating a 

weighting factor for each grid cell which is the ratio between the index value for 

that cell and the average of all index values across a given AMSR-E footprint. 

Multiplying the AMSR-E measured soil moisture value with this weighting factor 

yielded high-resolution soil moisture content values across a footprint.  

Accordingly, the soil moisture content computed for a given high-resolution pixel 

of RNTI (i.e. θRNTIi) is given by: 

( )
( )∑

=

−

−

−
×= n

i
i

i
EAMSRRNTI

RNTI
n

RNTI
ji

1
11

1θθ  (8-1) 

where θAMSR-Ej is the volumetric soil water content in the jth AMSR-E pixel, n the 

number of high-resolution pixels within the jth AMSR-E pixel and RNTIi the 

computed RNTI for high-resolution pixel i. This study considers n = 621 (the 25 

km EASE-grid pixel contains 23 rows by 27 columns of 1.1 km pixels). 

Similarly, the soil moisture content computed from a given high-resolution pixel 

of VTCI (i.e. θVTCIi) is given by: 

∑
=

− ×= n

i
i

i
EAMSRVTCI

VTCI
n

VTCI
ji

1

1
θθ  (8-2) 

where VTCIi is the computed VTCI for high-resolution pixel i. 

 

8.4 RESULTS  

8.4.1 COMPARISON OF DISAGGREGATED 
MEASUREMENTS WITH WHOLE DATA SET 

Table 8-2 shows the daily averaged AMSR-E soil water contents used for the 

present study. The spatial distributions of AMSR-E soil water contents and field 

sampling sites during the selected dates are shown in Figure 8.1.    
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Table 8-2:  Average AMSR-E SWC values (computed from daily ascending and descending 
paths, in cm3.cm-3) used for the disaggregation study. The four AMSR-E values used for the 
case studies are located under the column numbers 1269-1270 and row numbers 449-450. 
(Note: bold numbers used for case studies and all other numbers used for the regional maps) 

 
EASE-grid column numbers Campaign Day EASE-grid 

row numbers 1267 1268 1269 1270 1271 
1 3 448 0.071 0.075 0.078 0.081 0.085 
  449 0.071 0.074 0.077 0.082 0.091 
  450 0.076 n.a. 0.085 0.088 0.101 
  451 0.087 n.a. n.a. n.a. 0.121 
  452 0.096 n.a. n.a. 0.139 0.149 
  453 0.102 n.a. n.a. 0.142 0.145 
        

2 1 448 0.113 0.111 0.116 0.115 0.123 
  449 0.120 0.120 0.121 0.124 0.128 
  450 0.132 0.137 0.139 0.140 0.131 
  451 0.142 0.151 0.157 0.163 0.167 
  452 0.144 0.150 0.160 0.186 0.168 
  453 0.145 0.147 0.153 0.163 0.156 
        

2 3 448 0.106 0.104 0.112 0.119 0.129 
  449 0.112 0.115 0.118 0.126 0.129 
  450 0.126 0.129 0.133 0.137 0.131 
  451 0.138 0.144 0.143 0.148 0.159 
  452 0.138 0.143 0.149 0.172 0.167 
  453 0.133 0.139 0.147 0.159 0.150 
        

3 2 448 0.114 0.107 0.098 0.100 0.118 
  449 0.130 0.118 0.111 0.113 0.124 
  450 0.146 0.136 0.122 0.133 0.139 
  451 0.153 0.149 0.137 0.139 0.142 
  452 0.159 0.153 0.152 n.a. 0.145 
    453 0.165 0.158 0.156 n.a. n.a. 



Chapter 8–Spatial disaggregation   Page 8-13 
 
 

Campaign-1 Day 3 Campaign-2 Day 1

Campaign-2 Day 3 Campaign-3 Day 2
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Figure 8.1:  Average AMSR-E measured soil moisture (cm3.cm-3) across the Goulburn River 
catchment during: (a) Campaign 1 Day 3, (b) Campaign 2 Day 1, (c) Campaign 2 Day 3, and 
(d) Campaign 3 Day 2. Circles indicate field sampling locations.  

 

Table 8-2 and in Figure 8.1 show that during the Campaign 1, the near-surface 

SWC within the case study area varied within a narrow range of 0.077 - 0.088 

cm3cm-3.  Campaign 2 was particularly interesting because there were two data 

sets and a rainfall event occurred during the campaign.  On the first day of 

Campaign 2, the SWC of the case study area was between 0.121 - 0.140 cm3cm-3 

and by the third day these SWC values had slightly decreased to 0.118 - 0.137 

cm3cm-3. During Campaign 2 there was a rainfall event of 0.2 mm, which 

occurred on day 2, but only in the northern part of the Goulburn River catchment. 

According to the AMSR-E soil moisture data, the effect of this 0.2 mm rain can 

be seen as an increase in SWC of approximately 0.001 - 0.006 cm3cm-3 in the 

north-eastern part of the catchment. Soil moisture values in the other areas showed 

that the catchment was drying out.  Finally, during Campaign 3 the near-surface 

SWC within the case study area varied from 0.111 - 0.133 cm3cm-3.  Therefore, 

AMSR-E soil moisture values used in the case studies provided mainly two 
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moisture status: a dry condition of 0.08-0.09 cm3cm-3 (during Campaign 1 Day 3) 

and a slightly wetter condition of 0.12-0.14 cm3cm-3 (during other three days). 

The summary statistics for the four disaggregation case studies are shown in Table 

8-3.  Point scale soil moisture values measured over the 0-6 cm and 0-1 cm depths 

were used as indicative moisture contents. Thus, Table 8-3 compares the point 

scale soil moisture measurements (at two depths, 0-6 cm and 0-1 cm) with the 

disaggregated soil moisture data from 1.1 km2 pixels (which are representative of 

the top 1 cm depth).  In general, Table 8-3 indicates that both indices used in the 

disaggregation scheme provide reasonable estimates of moisture values.  The 

average and the range of values of the downscaled moisture contents appear closer 

to the 0-1 cm moisture contents than the 0-6 cm moisture contents as expected. 

Except for Campaign 2 Day 1, the predicted soil moisture values were within +/- 

0.05 cm3.cm-3 of the measured moisture content based on 0-1 cm measurements. 

During Campaign 2 Day 1, the predicted average soil moisture content was more 

than 0.05 cm3.cm-3 off the average 0-1 cm measured value. The higher difference 

between the measured and predicted moisture values may be due to the 

computational errors associated with cloud-contaminated images. The results 

however are encouraging because it is shown that implementation of a simple 

technique based on wetness (or dryness) indices computed at the high-resolution 

satellite footprint scale may be used to disaggregate the low-resolution near-

surface moisture contents with some confidence.  
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Table 8-3:  Summary statistics of measured point-scale soil moisture contents and the 
derived 1.1 km2 scale soil moisture contents.  (Note: N indicates the total number of point-
scale values or total number of pixels used to compute the average moisture value from the 
measured or downscaled soil moisture respectively) 

 
Campaign 

and day  Measured soil moisture 
(cm3.cm-3) 

Downscaled soil moisture 
(cm3.cm-3) 

  0-6 cm 0-1 cm RNTI-based VTCI-based 
1-3 Avg. 0.14 0.08 0.06 0.07 

 Range 0.02-0.28 0.03-0.17 0.01-0.14 0.04-0.13 
 N 76 65 75 75 
      

2-1 Avg. 0.18 0.24 0.12 0.13 
 Range 0.01-0.38 0.07-0.44 0.05-0.34 0.08-0.25 
 N 65 64 65 65 
      

2-3 Avg. 0.17 0.15 0.10 0.11 
 Range 0.01-0.33 0.02-0.26 0.02-0.18 0.01-0.17 
 N 71 71 71 71 
      

3-2 Avg. 0.18 0.13 0.10 0.10 
 Range 0.04-0.31 0.01-0.29 0.03-0.23 0.05-0.19 
 N 62 63 63 63 

 

Since a real comparison between the in-situ soil moisture measurements and 

satellite-derived disaggregated soil moisture data is difficult to make because of 

the difference in scale, estimates of different levels of errors between the 

disaggregated moisture contents and the measured moisture contents may assist in 

assessing the accuracy of predictions. Considering the considerable difference 

between the measurement scale (point scale) and the disaggregated (1.1 km2) 

scale, allowing deviations of up to 0.05 cm3cm-3 appears reasonable. As reported 

by Njoku (1999) the AMSR-E soil moisture measurements are expected to give an 

accuracy of ± 0.06 cm3cm-3.  The present study has therefore considered three 

levels of deviations of ± 0.01, 0.03 and 0.05 cm3cm-3 to assess the disaggregation 

results. 

The error analyses are summarized in Table 8-4 and 8-5 for the RNTI and VTCI 

methods respectively. As seen in Table 8-4, for example, during Campaign 1 Day-

3, approximately 71% (i.e. 46 (n) out of 75 (N) cases) of all RNTI based estimates 

are within ±0.05 cm3cm-3 from the actual 0-1 cm measurements. In contrast, as 
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seen in Table 8-5, VTCI based SWC estimates for the same day show that 

approximately 80% of data pairs (i.e. 52 out of 75 cases) are within ±0.05 cm3cm-3 

from actual 0-6 cm measurements.  Considering 0-1 cm SWC values, the absolute 

values of deviations are ≤0.03 and ≤0.05 cm3cm-3. Thus, high resolution SWC 

values can be obtained at 55% to 80% of the time with the disaggregation 

approach based on VTCI method. With the RNTI approach, the possibility of 

obtaining actual SWC values takes slightly lower values between 46% and 71%.       

Table 8-4:  Comparison of absolute deviations of predicted SWC values based on RNTI 
approach and the measured SWC at 0-6 cm and 0-1 cm. (n = number of data pairs within the 
error level) 

 

Day Deviations from 0-6 cm 
SWC (in cm3.cm-3) 

Deviations from 0-1 cm 
SWC (in cm3.cm-3) 

 ≤0.01 ≤0.03 ≤0.05 ≤0.01 ≤0.03 ≤0.05 
Campaign-1 Day 3 4% 11% 20% 17% 46% 71% 
 (n=3) (n=8) (n=15) (n=11) (n=30) (n=46) 
       
Campaign-2 Day 1 10% 21% 32% 3% 10% 15% 
 (n=6) (n=13) (n=20) (n=2) (n=6) (n=9) 
       
Campaign-2 Day 3 1% 15% 28% 11% 24% 38% 
 (n=1) (n=11) (n=20) (n=8) (n=17) (n=27) 
       
Campaign-3 Day 2 3% 16% 31% 8% 27% 46% 
 (n=2) (n=10) (n=19) (n=5) (n=17) (n=29) 

 

Disaggregated AMSR-E soil moisture data should represent the soil water content 

in the top 0-1 cm soil layer. It was observed in the present study that the 

differences between the predictions and the measurements of SWC over 0-1 cm 

were smaller than the differences between predictions and measurements over 0-6 

cm.  Such good relationships have been observed during Campaign 1 Day 3, 

Campaign 2 Day 3 and Campaign 3 Day 2 (see Table 8-4 and 8-5). 

Approximately, 80%, 39%, and 56% of data pairs of VTCI based estimates were 

within ±0.05 cm3.cm-3 from actual 0-1 cm measurements during Campaign 1 Day 

3, Campaign 2 Day 3 and Campaign 3 Day 2 respectively.  During Campaign 2 

Day 1 however, poor results (i.e. 15%) have been obtained with the VTCI method. 

On the other hand, approximately 71%, 38% and 46% of data pairs of RNTI based 
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estimates were within ±0.05 cm3.cm-3 from actual 0-1 cm measurements during 

Campaign 1 Day 3, Campaign 2 Day 3 and Campaign 3 Day 2 respectively. 

During Campaign 2 Day 1 the RNTI method gave also poor results (i.e. 15%). 

This result indicates that the VTCI method performed better than the RNTI 

method in soil moisture disaggregation schemes. 

Table 8-5:  Comparison of absolute deviations of predicted SWC values based on VTCI 
approach and the measured SWC at 0-6 cm and 0-1 cm. (n = number of data pairs within the 
error level) 

 

Day Deviations from 0-6 cm 
SWC (in cm3.cm-3) 

Deviations from 0-1 cm 
SWC (in cm3.cm-3) 

 ≤0.01 ≤0.03 ≤0.05 ≤0.01 ≤0.03 ≤0.05 
Campaign-1 Day 3 3% 9% 29% 22% 55% 80% 
 (n=2) (n=7) (n=22) (n=14) (n=36) (n=52) 
       
Campaign-2 Day 1 10% 25% 41% 2% 7% 15% 
 (n=6) (n=16) (n=26) (n=1) (n=4) (n=9) 
       
Campaign-2 Day 3 1% 14% 35% 11% 28% 39% 
 (n=1) (n=10) (n=25) (n=8) (n=20) (n=28) 
       
Campaign-3 Day 2 5% 16% 29% 11% 29% 56% 
 (n=3) (n=10) (n=18) (n=7) (n=18) (n=35) 

 

This result however, requires further discussion. The main purpose of a 

disaggregation scheme is to map the spatial pattern of soil moisture rather than 

comparing moisture values for two different scales (i.e.  point measurements and 

1.1 km2 estimates). Thus, it is also important to assess the moisture values at 

individual locations. Disaggregated AMSR-E near-surface soil moisture based on 

VTCI and measured 0-1 cm near-surface soil moisture values are shown in Figure 

8.2.  As seen in the figure, the agreement between the measured and disaggregated 

moisture contents is not convincing for VTCI based approach. Similar results 

were obtained between the computed and in-situ measurements when the RNTI 

approach was used to disaggregate AMSR-E (see Figure 8.3).  
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a) Campaign-1, Day 3 b) Campaign-2, Day 1

c) Campaign-2, Day 3 d) Campaign-3, Day 2
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Figure 8.2:  Comparison between measured point-scale 0-1 cm soil moisture content and the 
1.1 km resolution estimates of soil moisture content based on VTCI for: a) Campaign 1 Day 
3; b) Campaign 2 Day 1; c) Campaign 2 Day 3; and d) Campaign 3 Day 2. 
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a) Campaign-1, Day 3 b) Campaign-2, Day 1

c) Campaign-2, Day 3 d) Campaign-3, Day 2
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Figure 8.3:  Comparison between measured point-scale 0-1 cm soil moisture content and the 
1.1 km resolution estimates of soil moisture content based on RNTI for: a) Campaign 1 Day 
3; b) Campaign 2 Day 1; c) Campaign 2 Day 3; and d) Campaign 3 Day 2. 

 
Comparisons of disaggregated AMSR-E near-surface soil moisture based on 

VTCI and measured 0-6 cm near-surface soil moisture values are shown in Figure 

8.4.  As seen in the figure, the disaggregated moisture values compare poorly with 

the soil moisture in top 0-6 cm layer. Similar results can be seen when measured 

0-6 cm near-surface soil moisture values are compared with the RNTI based 

moisture estimates (see Figure 8.5). 
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a) Campaign-1, Day 3 b) Campaign-2, Day 1

c) Campaign-2, Day 3 d) Campaign-3, Day 2
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Figure 8.4:  Comparison between measured point-scale 0-6 cm soil moisture content and the 
1.1 km resolution estimates of soil moisture content based on VTCI for: a) Campaign 1 Day 
3; b) Campaign 2 Day 1; c) Campaign 2 Day 3; and d) Campaign 3 Day 2. 
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Figure 8.5:  Comparison between measured point-scale 0-6 cm soil moisture content and the 
1.1 km resolution estimates of soil moisture content based on RNTI for: a) Campaign 1 Day 
3; b) Campaign 2 Day 1; c) Campaign 2 Day 3; and d) Campaign 3 Day 2.   

 

These poor relationships between actual measurements and estimated SWC values 

are due to at least three main reasons. First, the vast difference between the scales 

of the data used in this study does not permit an ideal comparison. The original 

field measurements were made at the point scale, and hence it is obvious that one 

can never expect a perfect match between the point-scale measurements and the 

1.1 km2 scale predictions. Second, the presence of clouds in the image may lead to 

serious errors in the computation of indicators. Thus, it is not possible to have a 

strong relationship between the indicator and the actual soil water contents. For 

this reason, it is unlikely that strong relationships may be found between 

measured and estimated SWC values such as found during Campaign 2 Day 1 

(see part (b) in Figures 8.2 to 8.5).   Thirdly, the poor relationships between 

measured and predicted soil moisture may also be due to the use of land surface 

temperature (LST) in the disaggregation scheme. The diurnal course in solar 

radiation causes significant diurnal variations in land surface temperature.  Thus, 
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the use of instantaneous LST data may introduce errors in the comparison, 

especially if the soil moisture observation time differs significantly from the 

AMSR-E overpass time.  

For practical reasons, it is difficult to overcome the problem of the significant 

difference between the scales of field measurements and predicted SWC values.  

To overcome the errors due to diurnal variation in LST, it is appropriate to 

consider a sub-set of the field measurements for comparison.  Field measurements 

collected between 2 hours before and 1 hour after the Aqua-MODIS (and AMSR-

E) overpass time have therefore been selected for further analysis. It was assumed 

that variation in LST during this period has least influence on the soil moisture 

observations made within the period whilst still providing sufficient data for the 

comparison.  A summary of temperature observations during full campaign days 

and during the selected 3 hr periods is given in Table 8-6. It is clear from Table 

8-6 that the shorter sampling period reduces the range of LST values.  

 

Table 8-6:  Average and range of soil temperature (oC) values collected during the entire 
campaign day and during the period between 2 hours before and one hour after the MODIS 
and AMSR-E (on Aqua) overpass time. 

 
 Measured soil temperature (oC) Campaign 

and day  whole day selected 3 hr period  
1-3 Avg. 29.38 33.30 

 Range 17.1-43.0 21.8-42.9 
    

2-1 Avg. 16.42 18.50 
 Range 9.6-21.5 16.4-21.4 
    

2-3 Avg. 14.37 18.56 
 Range 5.5-26.3 10.9-26.3 
    

3-2 Avg. 10.02 12.52 
 Range 1.5-18.0 6.9-18.0 
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8.4.2 COMPARISON OF DISAGGREGATED 
MEASUREMENTS WITH SUB-SET OF DATA 

The summary statistics based on the in-situ measurements collected during 

MODIS and AMSR-E overpass time for the four disaggregation case studies are 

shown in Table 8-7.  In general, similar to the previous analysis (see Table 8-3) 

Table 8-7 indicates that both indices used in the disaggregation scheme provided 

reasonable estimates of moisture values. The average and the range of values of 

the downscaled moisture contents were closer to the 0-1 cm moisture contents 

than to the 0-6 cm moisture contents. The predicted soil moisture values were 

within ± 0.05 cm3cm-3 of the measured moisture content for 0-1 cm during all case 

studies. Particularly, a significant improvement of measured 0-1 cm SWC value 

(from 0.24 to 0.18) during Campaign 2 Day 1 was observed. The obtained average 

and the range of SWC values during MODIS overpass time in Campaign 2 Day 1 

were found to be closer to the measured average and the range of SWC value than 

when considering whole data set. It was also found that consideration of 

measurements collected during the overpass time resulted in a good match 

between measured (0.11 cm3.cm-3) and predicted SWC values (0.11 cm3.cm-3) as 

in Campaign 3 Day 2.  

Consideration of SWC values during MODIS and AMSR-E overpass time is 

useful to explain the effect of sampling time on disaggregation. The effect on 

drying of the near-surface 0-1 cm soil layer can be explained by comparing the 

measured and predicted soil water contents, particularly during Campaign 2. The 

difference between the 0-1 cm measured SWC values on Day 1 and Day 3 during 

Campaign 2 was 0.03 cm3.cm-3. For the same period, the predicted SWC values 

based on the RNTI and VTCI methods showed a water content difference of 0.02 

and 0.04 cm3.cm-3, respectively. It therefore appears that the downscaling methods 

adopted in the present study are capable of providing consistent results and hence 

the disaggregated results may be used for temporal analysis. 
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Table 8-7:  Summary statistics of the measured soil moisture contents  collected between 2 
hrs before and one hour after the MODIS overpass time and the downscaled soil moisture 
contents. 

Campaign 
and day  Measured soil moisture 

(cm3.cm-3) 
Downscaled soil moisture 

(cm3.cm-3) 
  0-6 cm 0-1 cm RNTI-based VTCI-based 

1-3 Avg. 0.14 0.07 0.07 0.08 
 Range 0.05-0.28 0.03-0.12 0.04-0.14 0.06-0.12 
 N 23 17 23 23 
      

2-1 Avg. 0.15 0.18 0.13 0.14 
 Range 0.01-0.35 0.07-0.31 0.07-0.19 0.09-0.17 
 N 18 18 18 18 
      

2-3 Avg. 0.16 0.15 0.11 0.10 
 Range 0.01-0.32 0.05-0.26 0.02-0.16 0.01-0.16 
 N 26 26 26 26 
      

3-2 Avg. 0.16 0.11 0.10 0.11 
 Range 0.04-0.29 0.01-0.24 0.03-0.15 0.05-0.15 
 N 23 24 24 24 

 

Allowing three levels of absolute deviations of ≤0.01, ≤0.03 and ≤0.05 cm3.cm-3 

to assess the disaggregated results, Tables 8-8 and 8-9 summarize the results for 

the RNTI and VTCI methods respectively. As seen in Table 8-8, for example, 

during the Campaign 1 Day 3, approximately 65% (i.e. 11 (n) out of 23 (N) cases) 

of all RNTI based estimates are within ±0.05 cm3.cm-3 from the actual 0-1 cm 

measurements. In fact, this is a reduction (from 71%, see Table 8-4) when 

compared with the whole data set collected during the day.  Apart from this 65% 

value observed for RNTI method during the Campaign 1 Day 3, all other three 

case studies with RNTI showed a significant improvement in the predicted SWC 

values.  Similarly, as seen in Table 8-9, the VTCI based SWC estimates for the 

Campaign 1 Day-3 also shows that approximately 82% of estimates (i.e. 14 out of 

23 cases) are within ±0.05 cm3.cm-3 from the actual 0-1 cm measurements.  A 

similar improvement in VTCI approach is apparent in all four case studies. It is 

interesting to note that the RNTI based technique appears to be as successful as 

the VTCI based technique for downscaling SWC values.  

Thus, use of field data collected closer to the MODIS overpass time strengthens 

the validity of the downscaling approaches used in the study.  
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Table 8-8:  Comparison of absolute deviations of predicted SWC values based on RNTI 
approach and the measured SWC at 0-6 cm and 0-1 cm collected between 2 hrs before and 
one hour after the MODIS overpass time. (n = number of data pairs within the error level) 

 

Day Deviations from 0-6 cm 
SWC (in cm3.cm-3) 

Deviations from 0-1 cm 
SWC (in cm3.cm-3) 

 ≤0.01 ≤0.03 ≤0.05 ≤0.01 ≤0.03 ≤0.05 
Campaign-1 Day 3 13% 13% 30% 6% 41% 65% 
 (n=3) (n=3) (n=7) (n=1) (n=7) (n=11) 
       
Campaign-2 Day 1 6% 17% 17% 0% 17% 22% 
 (n=1) (n=3) (n=3) (n=0) (n=3) (n=4) 
       
Campaign-2 Day 3 0% 15% 35% 12% 31% 50% 
 (n=0) (n=4) (n=9) (n=3) (n=8) (n=13) 
       
Campaign-3 Day 2 4% 13% 35% 8% 33% 58% 
 (n=1) (n=3) (n=8) (n=2) (n=8) (n=14) 

 

Table 8-9:  Comparison of absolute deviations of predicted SWC values based on VTCI 
approach and the measured SWC at 0-6 cm and 0-1 cm collected between 2 hrs before and 
one hour after the MODIS overpass time. (n = number of data pairs within the error level) 

 

Day Deviations from 0-6 cm 
SWC (in cm3.cm-3) 

Deviations from 0-1 cm 
SWC (in cm3.cm-3) 

 ≤0.01 ≤0.03 ≤0.05 ≤0.01 ≤0.03 ≤0.05 
Campaign-1 Day 3 9% 17% 43% 12% 53% 82% 
 (n=2) (n=4) (n=10) (n=2) (n=9) (n=14) 
       
Campaign-2 Day 1 6% 11% 22% 6% 11% 22% 
 (n=1) (n=2) (n=4) (n=1) (n=2) (n=4) 
       
Campaign-2 Day 3 0% 12% 38% 12% 38% 46% 
 (n=0) (n=3) (n=10) (n=3) (n=10) (n=12) 
       
Campaign-3 Day 2 4% 17% 30% 17% 33% 54% 
 (n=1) (n=4) (n=7) (n=4) (n=8) (n=13) 

 

The disaggregated AMSR-E near-surface soil moisture and measured 0-1 cm 

near-surface soil moisture values (collected closer to the MODIS overpass time) 

were also compared as was done for Figures 8.2 and 8.3.   No significant 

improvement of the agreement between the computed values and the in-situ 
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measurements of soil moisture was observed. Similarly, disaggregated AMSR-E 

near-surface soil moisture estimates and measured 0-6 cm near-surface soil 

moisture values during AMSR-E overpass time were also compared.  Similar to 

the Figures 8.4-8.5, the disaggregated moisture values compare poorly with the 

soil moisture content in top 0-6 cm layer. These poor results appear to be mainly 

due to the great difference between the scales of the data used (i.e. field-measured 

point-scale SWC values against predicted 1.1 km2 SWC values). At this point, it 

will be more appropriate to evaluate the predicted soil moisture patterns rather 

than considering SWC predictions at a relatively small number of locations. 

8.4.3 PREDICTED MOISTURE PATTERNS 

It is important to study the moisture patterns derived from the disaggregation 

schemes. Theoretically, soil moisture distribution in a catchment should relate to 

the antecedent rainfall patterns and variations in soil properties, vegetation, 

topography, and subcatchment boundaries. Thus, a moisture pattern in a 

catchment does not occur due to a random phenomenon but follows some level of 

organisation. As reported in Chapter 2 many studies have confirmed the spatial 

organization of soil moisture patterns. 

Figures 8.6 - 8.9 show the predicted spatial variability in soil moisture on the four 

days selected. It is can be seen that there is a definite pattern in spatial variability 

of soil moisture that is related to the catchment properties such as vegetation 

pattern and rainfall (see Figure 8.10) and topography (see Figure 8.11). This 

variability could be the result of antecedent rainfall patterns and variations in soil 

properties, topography and subcatchment boundaries.  
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Figure 8.6:  Disaggregated AMSR-E soil moisture measurements on day 313 in 2003 (i.e. day 
3 in Campaign-1) based on RNTI and VTCI approaches. (Note – white patches are due to 
clouds and no soil moisture is computed) 
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Figure 8.7:  Disaggregated AMSR-E soil moisture measurements on day 122 in 2004 (i.e. day 
1 in Campaign-2) based on RNTI and VTCI approaches. (Note – white patches are due to 
clouds and no soil moisture is computed). 
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Figure 8.8:  Disaggregated AMSR-E soil moisture measurements on day 124 in 2004 (i.e. day 
3 in Campaign-2) based on RNTI and VTCI approaches. 
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Figure 8.9:  Disaggregated AMSR-E soil moisture measurements on day 190 in 2004 (i.e. day 
2 in Campaign-3) based on RNTI and VTCI approaches. (Note – white patches are due to 
clouds and no soil moisture is computed). 
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Figure 8.10:  Enhanced Vegetation Index (EVI) and rainfall pattern in the previous month 
for the three field campaigns. 

 
 

 

Figure 8.11:  Topography of the Goulburn River subcatchment. 
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For the convenience of interpretation and evaluation of the predicted soil moisture 

patterns, the present study considers three main criteria. First, the study considers 

the relation between the vegetation health and soil moisture. It is well-known fact 

that healthy vegetation is associated with higher moisture values.  Thus, use of a 

vegetation index such as Enhanced Vegetation Index (EVI) provides a means to 

assess the predicted soil moisture patterns. Second, antecedent rainfall across a 

catchment during the previous 3-5 days provides valuable information on 

potential SWC pattern in the catchment. Third, catchment topography may also be 

useful in obtaining some information on possible moisture patterns across a 

catchment. For example, valley bottoms are likely to be associated with higher 

moisture contents due to surface runoff which will be stronger following more 

rainfall in the previous 30 days as in the case of Campaign 1.  

During Campaign 1, in general, vegetation across the catchment was more or less 

healthy (i.e. EVI exceed 0.25). The disaggregated moisture patterns across the 

catchment were near-uniform despite a generally lower moisture content. The 

vegetation indices during Campaign 2 showed less vegetation in the south-western 

and in north-central parts of the catchment. This pattern is clearly evident in the 

Figure 8.8 and lower SWC values are associated with these areas.  Similarly, 

during Campaign-3, the north-central part of the catchment had less vegetation 

than the other areas. The disaggregated SWC maps during Campaign-3 (see 

Figure 8.9) showed more drier areas in the north-central part of the catchment.  It 

can be therefore concluded that the disaggregated soil moisture patterns are linked 

to the natural vegetation pattern of the catchment. 

As seen in Figure 8.10, three different rainfall patterns are available for 

interpretation of disaggregated SWC patterns. The highest rainfall was observed 

before Campaign 1. It can be seen from Figure 8.10 that this significant rainfall 

was experienced across the entire catchment.  The disaggregated SWC during 

Campaign 1 (see Figure 8.6) did show a uniform distribution of soil moisture 

across the catchment. Rainfall before the Campaign 2 was very low but distributed 

evenly across the catchment. The disaggregated SWC map on Day 1 showed a 

near-uniform soil moisture pattern.  The predicted SWC patterns for Day 3 

however showed a patchy distribution pattern with some drier areas.  As seen in 

Figure 8.10, the western part of the catchment received slightly higher rainfall 
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than the other areas before the Campaign 3. The disaggregated SWC patterns 

during Campaign 3 showed some scattered wet areas in the western part of the 

catchment. This effect may be due to variations in the rainfall pattern. Hence, it 

may be concluded the disaggregated SWC patterns show broad agreement with 

antecedent rainfall patterns. 

The main river of the catchment, i.e. the Goulburn River runs from west to east 

direction in the central part of the catchment.  Naturally, the lowest elevations are 

found along the river course (see Figure 8.11) and it is obvious that these areas 

may show wetter conditions than the other parts of the catchment.  The 

disaggregated SWC maps of Figures 8.7 to 8.9 indicate some wet patches 

(approximately moisture content of 0.25 cm3.cm-3) closer to the mouth area of the 

Goulburn River  despite the lower moisture contents of the AMSR-E 

measurements (0.14-0.17 cm3.cm-3). It therefore appears that the disaggregated 

soil moisture patterns are linked to such dominant topographic features of the 

catchment.  

Moreover, these disaggregated maps can show some significant patterns in the 

variations of moisture contents of AMSR-E. For instance, one can consider the 

soil moisture patterns within the catchment in Figures 8.7 to 8.9. It was note that 

the AMSR-E pixels within the catchment have different moisture contents. In the 

disaggregated map, a smooth transition from dry to wet condition is apparent. 

This confirms that the disaggregation procedures are capable of producing 

realistic seamless soil moisture distribution maps. 

It is also noted that the disaggregated maps derived with the RNTI approach 

reveal more dry areas than the maps derived with VTCI. This is likely to be due to 

the fact that the RNTI approach only considers thermal behaviour at the land 

surface whereas the VTCI considers the entire root zone depth. The RNTI values 

computed in the present study used data collected from Aqua MODIS which 

senses the catchment between about 1.30-2.30 pm.  Land surface temperatures can 

reach considerably higher values during this time due to surface drying. Thus, the 

high temperature areas can be interpreted as dry areas during the disaggregation 

process. This can also happen with the VTCI, but to a lesser extent, as it considers 

VI which reflects the entire root zone and the LST. 
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A border of approximately half the width of the AMSR-E pixel can be seen in 

disaggregated pattern and particularly in the top part of Figures 8-8 and 8-9. This 

is due to the use of partial AMSR-E pixels in the computation process. The spatial 

coverage of the MODIS data set used in the present study does not coincide with 

the AMSR-E pixels used in their entirety (see Table 8-2).  For example, the 

MODIS data used in the study cover only part of the left column (number 1267) 

and part of the right column (number 1271) of the selected AMSR-E area. 

Similarly, the top (number 448) and the bottom row (number 453) of the AMSR-E 

data are not entirely covered by the MODIS data set.   In order to derive a high-

resolution soil moisture map for the entire catchment, these partially covered 

AMSR-E pixels were included. As a result, the disaggregated moisture patterns of 

the partial AMSR-E pixels did not always match perfectly with the disaggregated 

patterns of neighbouring AMSR-E pixels.  These partial AMSR-E pixels are 

located completely outside the area considered for the present study. The 

estimated moisture patterns derived from these partial AMSR-E pixels have not 

been used for the comparisons. 

The use of cloud contaminated images for the disaggregation can also introduce 

some errors in the predicted soil moisture patterns. For example, as seen in Figure 

8.7 (and to a lesser extent in Figure 8.9) the presence of clouds prevents the 

prediction of soil moisture across the catchment and leaves some gaps. Thus, 

cloud-free images should preferably be used in any disaggregation method that 

employs the LST. 

 

8.5 DISCUSSION 
The disaggregation methods for high-resolution soil moisture determination 

described in this chapter involve the combined use of AMSR-E soil moisture and 

LST and VI from MODIS. This research has evaluated how the RNTI and VTCI 

indices may be used to disaggregate AMSR-E soil moisture data.  The RNTI and 

VTCI indices adopt different approaches to describe soil wetness characteristics. 

While the RNTI based approach incorporates thermal inertia properties to 

determine soil moisture (see Section 6.4.3), the VTCI based approach incorporates 
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the vegetation information in addition to the thermal inertia property as discussed 

in Section 2.3.5.2.3. 

One of the objectives of the present study was to develop a disaggregation 

procedure which is simple, repeatable and does not require much time. As noted 

in Chapter 6, computation of the RNTI and VTCI indices is relatively straight-

forward. The high-resolution LST and VI data from the MODIS sensor are 

reliable and available for the entire globe and can be downloaded free of charge. 

This provides an opportunity to apply high-resolution wetness indices for soil 

moisture disaggregation schemes. Additionally, the use of both MODIS and 

AMSR-E sensors from the Aqua satellite will reduce errors in the approach 

because both sensors observe the land surface simultaneously. 

The techniques described here have their basis in surface energy balance 

considerations. As discussed in Chapter 2 and 6, the scatter diagrams between VI 

and LST such as used in the VTCI method are useful in describing soil wetness 

characteristics. The RNTI approach built upon the relationship between soil 

moisture and thermal inertia properties. The consideration of both VI and LST in 

the VTCI approach however is advantageous for soil moisture determination.  

Thus, it can be assumed that disaggregation schemes based on wetness indices 

have considerable potential and may provide a simple approach for the 

redistribution of soil moisture.  

Catchment-scale high-resolution soil moisture maps created from AMSR-E 

measurements using the RNTI and VTCI methods reflect the soil moisture 

distribution across a catchment in a meaningful way. For instance, predicted soil 

moisture patterns appear to have some relationship with physical characteristics 

such as the vegetation pattern, rainfall distribution, catchment topography and 

location of major water courses. Additionally, they are also capable of mapping 

the transition of moisture contents between the adjoining AMSR-E pixels whose 

moisture values are significantly different. Thus, they provide a method to 

produce seamless soil moisture distribution maps. 

Both disaggregation techniques studied in this thesis are capable of providing soil 

moisture predictions which can easily related with past rainfall distribution, 

vegetation pattern or topography.   
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The comparison between 1.1 km2 scale near-surface soil moisture predictions (a 

type of instantaneous moisture estimates) with point-scale measurements collected 

over a long period always is hampered by concerns over the applicability of such 

a validation approach. The difficulty arises both in the estimation process as well 

as the measurements of in-situ soil moisture content. As discussed in Chapter 2, 

several issues are involved in soil moisture measurements. For example, 

microwave sensors measure soil moisture in the topmost soil layer where 

penetration depth varies from 1/10 to 1/4 of a wavelength. At 9.6 GHz of AMSR-

E, this layer is up to 1 cm deep. As noted in Chapter 7, the penetration of 

microwave signals depends on soil moisture itself. It is this moisture content that 

is considered for the present disaggregation study.  In view of this, it is difficult to 

determine firstly, the correct depth of soil samples and secondly, an accurate 

method which is efficient enough for collecting a large number of in-situ 

measurements to estimate the soil moisture. Soil moisture also changes very 

rapidly in the topmost soil layer as does the land surface temperature. In addition, 

there are practical problems in collecting accurate soil samples for the top 0-1 cm 

of soil. Many soil moisture studies, including the present study, use soil moisture 

measurements collected over 0-6 cm depth with convenient measuring tools such 

as the Theta probe or the Hydra probe.  Furthermore, the spatial distribution of 

soil moisture depends on soil parameters that are not distributed homogeneously 

throughout the catchment. As a result, the average soil moisture computed from 

point measurements within a footprint does not necessarily give an accurate 

representation of the soil moisture across the footprint. In view of these 

uncertainties, no definite conclusion can be drawn from the comparison between 

in-situ point measurements and disaggregated soil moisture predictions from 

AMSR-E data.  However, other approaches such as logical reasoning and 

interpretation of predicted patterns using catchment physical properties were 

found to be useful in the validation process.  

It is also important to note that the distribution of soil moisture in a sub-humid 

environment is based on many variables with complex spatial interrelationships. 

The land surface temperature and vegetation information used in the present study 

however are the only freely available proxy variables for soil moisture 

disaggregation studies. 
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The proposed disaggregation schemes have some limitations. Catchment scale 

information like soil moisture is affected by biophysical and climatic factors as 

well as by technological constraints. For example, the signals from AMSR-E and 

MODIS may not be related to soil characteristics over the same vertical depth. As 

a result, their soil moisture estimates can differ. As described previously, AMSR-

E measures soil moisture in the top 0-1 cm soil layer. On the other hand, wetness 

indices such as VTCI are based on vegetation indices and will reflect the soil 

wetness over the entire depth of the root-zone.  It is therefore possible that the 

estimates of soil moisture using the above two methods are different. But in the 

approach outlined here, the VTCI concept is used to establish relations between 

soil moisture, temperature, and VI (in Chapter 6) and that information is used as a 

covariate to disaggregate soil moisture observations.  This should have a minimal 

effect on the results of the disaggregation process employed here.  

Cloud effects in the MODIS image pose another serious problem because they 

prevent the accurate estimation of LST. Accurate LST measurements are 

important for both indices used in the disaggregation methods. Incomplete 

coverage of LST across the catchment prevents accurate estimation of the 

boundary conditions for the indices. This is particularly true for the VTCI as the 

index values are entirely dependent on the accurate determination of the wet-edge 

and the dry-edge of the triangle used for the computation process. The RNTI on 

the other hand, is less affected by such boundary conditions but the use of the 

smaller number of high-resolution LST pixels in the disaggregation algorithm 

potentially leads to inaccurate predictions. This is also true for the VTCI 

approach. These inaccuracies may therefore lead to some uncertainty in the final 

result.  

Both RNTI and VTCI based techniques appear to be useful for space-borne soil 

moisture estimation from satellite data. Further testing and validation of the 

proposed downscaling models should be conducted for a range of climatic and 

land surface conditions, if possible with use of high resolution soil moisture 

estimated from air-borne microwave radiometers and optical/IR data.  
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8.6 CHAPTER SUMMARY 
This chapter has described two procedures that spatially distribute AMSR-E near-

surface soil moisture measurements using information derived from other higher 

resolution images. The methodology discussed in this study uses thermal and 

visible imagery from MODIS to disaggregate AMSR-E soil moisture 

measurements. The methods are simple because they use surface wetness indices 

such as RNTI and VTCI derived from other radiometers. The use of these tools is 

demonstrated using field experiment data and AMSR-E 25 km scale soil moisture 

measurements which were downscaled into 1.1 km scale soil moisture products. 

The result demonstrates that the downscaling procedure can reveal the fine scale 

spatial distribution of soil moisture within a coarse resolution soil moisture 

observation although the actual validation of the method is difficult.   

This study has demonstrated the ability of using remote sensing and GIS 

knowledge to redistribute AMSR-E soil moisture measurements using LST and 

vegetation indices derived from other sensors. The extraction and use of the 

wetness information from the LST-VI space for disaggregating large-area soil 

moisture values may be justifiable by considering that the LST-VI space 

encompasses the regional range of soil moisture conditions.  In addition, the 

methodology presented in this chapter provides insight into the operational 

production of soil moisture fields from AMSR-E soil moisture products at spatial 

resolutions useful for a range of applications with freely available MODIS 

imagery. 
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CCCHHHAAAPPPTTTEEERRR   NNNIIINNNEEE   

9. DISCUSSION, CONCLUSIONS AND FUTURE 
DIRECTIONS 
The primary objectives of this thesis were to develop methodologies to derive 

average soil moisture contents and distributions over large catchments from point 

scale observations and to disaggregate large-area soil moisture measurements 

from satellite microwave observations. The scaling approaches were to retain 

strong physical basis by using other dominant catchment-specific parameters, 

applicable at a range of scale, and do not require complex calibrations based on 

other ground-based soil moisture measurements. All scaling approaches presented 

in this thesis have been developed, applied, and validated in a field study 

conducted in the Goulburn River Catchment (6540 km2) in New South Wales, 

Australia. This study used soil moisture measurements derived from point scale 0-

30 cm and 0-90 cm observations as well as AMSR-E measurements of the top 0-1 

cm soil layer. 

Reliable estimates of soil moisture content in the top meter of the land surface at 

various spatial and temporal scales are important for a wide range of 

environmental studies. Accurate measurement of soil moisture is a difficult and 

time consuming process. The available techniques for assessing soil moisture 

content provide only two types of measurements. First, the in-situ techniques 

which can be used to measure soil moisture in a given location on a given time.  

Due to a small volume of soil used for the measurements, these techniques yield 

point scale moisture measurements but can also be used to measure the moisture 

throughout a soil profile using a number of sensors. Second, remote sensing 

techniques such as those based on the passive microwave approach can be used 

for soil moisture measurement across large scales. Microwave-based soil moisture 

measurements give soil moisture estimates over a large-area (e.g. 25 km x 25 km 

in the case of AMSR-E) but these measurements represent only the top 0-1 cm 

soil layer.  For many environmental studies, such soil moisture data either at the 

point scale or for very large areas are not adequate.    
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A major problem that exists for hydrological modelling applications is the 

aggregation and disaggregation of soil moisture measurements across a range of 

spatial and/or temporal scales. Such a challenge occurs, for example, when field-

scale behaviour must be determined from measured data collected from a limited 

number of point-scale measurements. The same difficulty arises when plot-scale 

soil moisture distributions have to be determined from large-scale AMSR-E 

measurements.  The problems associated with soil moisture scaling can not be 

resolved by simple consideration of the differences in space or time scale, for 

several reasons.  For example, many moisture dependent processes in hydrology 

are highly nonlinear. Consequently, the averaging of processes determined from a 

limited number of discrete point-scale samples may not reflect the accurate 

behaviour of the larger area. Similarly, obtaining a true estimate of field scale 

moisture content from a very large-area measurement remains as an illusive 

challenge.  Hence, there is a need for developing upscaling and downscaling 

procedures that will allow us to move from one domain of interest to another 

while retaining the true properties of the medium at each scale. 

Knowledge of the variation in spatial distribution of soil moisture rather than just 

average soil moisture content over a catchment may lead to understanding 

significant differences in the hydrological responses of the catchment. Soil 

moisture distributions may be generated from interpolating (or aggregating) point-

scale measurements or disaggregating large-area measurements. The key question 

that must be answered in meaningful aggregation/disaggregation is how the 

problem of soil heterogeneity at different spatial (and temporal) scales affects the 

predictions and measurements.  Two approaches have been considered in this 

thesis: (a) based on terrain characteristics and (b) using information collected from 

high resolution satellite-based sensors. These approaches however, may be 

expected to have some regional dependency as all the methods use site-specific 

characteristics as covariates for changing from one scale to another. 

The conclusions of this thesis are based on studies covering six themes, namely: 

(i) evaluation of measured soil moisture values with single layer bucket models; 

(ii) identification of catchment average soil moisture measurement sites; (iii) 

predicting soil moisture distributions based on point-scale measurements and 

terrain characteristics; (iv) predicting soil moisture distributions based on point-
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scale measurements and remotely-sensed land surface characteristics; (v) field 

validation of AMSR-E soil moisture estimates; and (vi) disaggregation of large-

area soil moisture measurements.  

9.1 APPLICATION OF SINGLE LAYER BUCKET 
MODELS FOR SOIL MOISTURE PREDICTIONS 
Soil moisture contents can be evaluated with simple hydrological models such as 

the single layer bucket model. These single layer bucket models are also useful for 

identifying systematic measurement errors due to poor calibration parameters of 

the sensors as well as any random errors. Simple bucket type models can be used 

to predict soil moisture values for virtually any soil depth considered for the 

bucket. In Chapter 4 this modelling technique has been employed for the 

evaluation of field measured soil moisture values over 0-30cm and over 0-90cm 

depths.  

As discussed in Chapter 4, the application of single layer bucket models for 

balancing the inputs and outputs of water in the hillslope catchment confirmed 

that the soil moisture data collected during the study period are realistic. The 

predicted soil moisture values were found to be comparable with the measured 

soil moisture contents.  Hence, soil moisture data collected during the study 

period could be used for other applications with some confidence.  

The accuracy of the soil moisture data predicted with the bucket type water 

balance model depends on the quality of the input data. In this thesis, rainfall 

measurements were collected within the catchment using an automatic raingauge. 

All meteorological data required for the computation of actual evapotranspiration 

(ETa) from the Penman-Monteith method were measured at the climate station 

located within the study catchment. The bucket size was determined from the 

actual soil moisture observations. Thus, the availability of such data provided an 

ideal basis for the model application whilst ignoring lateral water movement. 

Moreover, the work described in Chapter 4 demonstrated that the soil moisture 

measurements collected at irregular intervals may assist in generating soil 

moisture trajectories over extended periods. With measurements of rainfall and 

estimates of actual evapotranspiration (ETa) and soil water storage capacity, one 

can use a water accounting system based on the simple bucket type water balance 
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model to generate soil moisture trends over longer time periods. This would 

provide a methodology for the scaling of soil moisture in the temporal domain.  

For instance, if intermittent soil moisture measurements are available for a 

catchment, it is possible to derive soil moisture evolution patterns for the 

monitoring locations by using simple bucket models with appropriate model 

parameters.  However, the ETa value remains a significant unknown. 

The results also confirmed that the single layer (one-dimensional) bucket model 

has limited usefulness for hillslope-scale hydrological studies because it ignores 

seepage and percolated water as well as surface and sub-surface runoff/runon 

between adjacent buckets. It provides an estimate of soil moisture content over 

time by considering only rainfall inputs, evapotranspiration outputs and 

parameters such as soil water holding capacity. However, the model ignores the 

position in the landscape and any gain or loss of soil water from adjoining areas.  

The results also showed that the use of a single moisture measurement at the 

beginning of a modelling period was not sufficient for accurate predictions of 

subsequent moisture contents over longer periods. Since water inputs from 

neighbouring buckets were not taken into account, moisture predictions were 

underestimated when run-on exceeded run-off. It has been demonstrated that the 

assimilation of measured root-zone moisture contents alone can alleviate this 

over/under estimation problem.   

Simple bucket models may be of use if the soil moisture predictions are regularly 

updated with measured values.  Chapter 4 shows a comparison of prediction errors 

using direct insertion of measurements into the model at one-week and two-week 

intervals.  It can be concluded from this comparison that the collection of soil 

moisture data even at irregular intervals may be useful for assimilation into bucket 

type models to minimize prediction errors.  

It was also noted that ignoring rainfall distributions within the catchment can 

introduce serious errors in the predicted moisture values. As discussed in Chapter 

4, anomalies of rainfall distribution can occur even in small hillslope catchments 

such as the Stanley catchment (170 ha) used in the present study.  Accurate 

rainfall measurements therefore are important in water balance modelling because 

they provide the main water inputs to the model.   
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It can be concluded that bucket type models provide simple approaches for soil 

moisture estimation at a range of scales provided suitable input data (rainfall, 

evaporation) can be obtained. Repeating the modelling for a larger number of sites 

across different regions would provide the basis for better understand the scaling 

behaviour of soil moisture in temporal domain.  

9.2 IDENTIFICATION OF CATCHMENT AVERAGE 
SOIL MOISTURE MEASUREMENT (CASMM) SITES 
In extensive areas, such as those studied in this thesis, it is of great interest to be 

able to identify which locations are representative of the mean soil moisture 

conditions as well as which locations are regularly drier or wetter sites. This study 

has demonstrated the appropriateness and usefulness of the temporal stability 

characteristics of the measurements which is based on the work of Vachaud et al. 

(1985).   

When a catchment is regularly monitored for soil moisture content, locations can 

often be identified where the soil moisture is close to the average across the entire 

area as well as the soil is consistently wetter or drier than the catchment average. 

This phenomenon has been called the time stability, the temporal stability, or the 

temporal persistence in spatial patterns of soil water contents. The primary 

method for determining the temporal stability of a soil moisture field is the mean 

relative difference plot. This plot represents the ability of a particular soil moisture 

monitoring location to estimate the average over the catchment. 

As pointed out by Starr (2005), temporal stability obviates frequent sampling of 

spatial variability. It also provides methods of finding the catchment average soil 

moisture monitoring (CASMM) sites and the range of moisture content in a given 

catchment. A CASMM site is the one which is closest to having a zero relative 

difference value and which has a low standard deviation value. Additionally, such 

a CASMM site preserves its position in wetness ranking.  Note that it is difficult 

to set general reference values, of both relative difference and standard deviation 

to choose the representative station in a given network of stations. 

The results of Chapter 5 show that it is possible to identify stations that are 

representative of the mean soil moisture content in a given catchment, regardless 

of scale, from a pre-established network of measuring stations. Three different 
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scales (1.67 km2, about 1000-1500 km2 and about 6540 km2) were considered and 

stations could be identified that yield mean moisture content at each scale.  It was 

demonstrated that in order to select a representative site, approximately 12-15 

months of monitoring data is required. Whilst smaller catchments (< 200 ha) 

require only shorter time records (12 months), larger catchments (>1000 km2) 

require at least 15 months period.  This period is necessary in order to capture the 

entire range of moisture conditions that usually associated with a complete 

seasonal cycle.  Beyond such 12-15 month periods, monitoring of soil moisture 

content can be carried out at a smaller number of selected sites. Such findings may 

prove to be important for designing a long-term soil moisture measurement 

network at strategic locations. 

It was observed in Chapter 5 that temporal stability patterns persisted over the 

entire two-year study period. The stations appeared to preserve their position in 

the wetness ranking regardless of the period considered, even under extreme 

conditions of soil moisture content.  As a consequence, consistently “wet sites” 

and consistently “dry sites” in a catchment could be identified. It was also found 

that a strong correlation exists between mean soil moisture contents and the 

variance for the whole measurement range considered.  It is important to identify 

locations with very high and very low soil moisture content because they can 

provide an insight into the range of moisture content in a catchment. Additionally, 

such sites can also be used to estimate the catchment average moisture value. It 

was noted that, in general, the difference between the extreme moisture contents 

was close to constant irrespective of the day of year. 

It was also observed that temporal stability is more pronounced during dry 

periods.  During the transition periods, soil moisture content varies across the 

catchment thus increasing the uncertainty about the temporal pattern. 

Furthermore, soil physical properties such as sand or clay fraction of the soil were 

also found to give an indication of the temporal stability characteristics.  Soils 

with higher sand fraction are associated with greater temporal stability, whereas 

soils with high clay content show less temporal stability. 

Temporal stability characteristics of soil moisture due to the mean variability are 

important for scaling applications. As demonstrated in this study, it is evident that 

moisture measurements at CASMM sites may be used at many scales across a 
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catchment.  Measured moisture content from a CASMM site can be used to 

represent the average moisture content at the hillslope scale (about 167 ha) as well 

as the entire catchment scale (about 6540 km2). It was also found that the 

identification of CASMM site from point-scale data appears to have validity based 

on the wetness indices (e.g. VTCI) computed from MODIS data and may 

therefore have practical meaning at the 1.1 km pixel-level. 

Based on the results from this study, two types of sampling procedures can be 

proposed for future soil water content monitoring programs. First, for existing 

permanent monitoring programs, time-stable locations must be identified that are 

representative of the soil moisture status of the catchment.  This is useful in order 

to reduce the number of sampling sites to be maintained and for optimum 

allocation of limited resources. Second, in the case of non-permanent monitoring 

programs the sampling frequency must be considered as well as the number of 

sampling sites. For this purpose, a two-step approach can be adopted. The first 

step identifies the representative locations of the catchment. Then, in a second 

step, the number of sampling points can be reduced and resources allocated to 

increase the sampling frequency. This approach will help to collect more 

representative soil moisture fields at higher temporal resolution. 

Temporal stability characteristics of soil moisture are also useful in validating 

remotely-sensed moisture measurements such as from AMSR-E (see Chapter 7).  

First, it may be used to identify suitable days for field campaigns. Based on the 

historical patterns of temporal stability, days with less soil moisture variability 

may be selected for field campaigns. The level of uncertainly in the estimations 

could probably be reduced if the temporal stability of soil moisture were 

considered in the field sampling design. Second, soil moisture measurements from 

a pixel-scale CASMM site are useful for evaluating temporal patterns of remotely 

sensed moisture contents. As demonstrated in Chapter 7, a CASMM site can be 

identified from a network of monitoring sites within the AMSR-E pixel.  The 

measured soil moisture contents from such a site can then be used to evaluate the 

temporal pattern of AMSR-E soil moisture measurements. 

It will be useful to study this method in a range of catchments from different geo-

physical environments. Such studies would lead to better understanding of the 

temporal stability characteristics of soil moisture measurements under a range of 
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climatic and geographical regions. Knowledge of temporal stability characteristics 

of soil moisture in different regions would assist in developing standardized 

guidelines for selecting sites for monitoring networks.  Future studies should also 

include assessing the temporal stability characteristics of wetness indices so that 

regions with stable wetness patterns may be identified. This would also assist in 

the identification of possible locations for establishing monitoring sites. Adopting 

this approach, temporally stable sites whose moisture contents are always under- 

or over-estimates of the catchment average can also be identified. Inclusion of 

such sites in the monitoring program is important because they are useful in 

determining the range of moisture content within the catchment. 

 

9.3 PREDICTING SOIL MOISTURE DISTRIBUTIONS 
BASED ON POINT-SCALE MEASUREMENTS AND 
TERRAIN CHARACTERISTICS  
This thesis has investigated how topography and soil characteristics control the 

soil moisture distribution within a hill slope catchment. Chapter 4 has explored 

the upscaling of 0-30 cm point scale soil moisture measurements along a hillslope 

catchment based on topographic parameters.  

A new wetness index called the Soil-adjusted Topographic Wetness Index (STWI) 

has been developed and used for up-scaling point-scale 0-30 cm (i.e. root-zone) 

soil moisture measurements. The traditional topographic wetness index (TWI) 

does only consider topography which is not sufficient to explain the variability in 

soil moisture. Thus, soil water storage capacity has been incorporated into the 

TWI to develop the STWI. The STWI of a given location varies with the capacity 

of the soil in that location to hold moisture and the propensity of that location to 

receive water from the upslope contributing areas. Thus, it describes the soil 

wetness characteristics in a given location in terms of the topographic position as 

well as soil properties in contrast to the traditional wetness index. Because soil 

type can significantly influence the water holding capacity of soil, it must be 

considered in any wetness mapping approaches.   

Considering the 0-30 cm moisture measurements, Chapter 4 has demonstrated that 

the linear relationship between the amount of soil saturation and the STWI can 



Chapter 9–Discussion, conclusions and future direction  Page 9-9 
 

provide a methodology to derive high resolution (5m grid) spatial patterns of 

moisture along a hillslope catchment. It was found that soil saturation ratio and 

STWI have a strong relationship (i.e. with higher R2 values) during partially wet 

or partially dry periods and shows poorer relationships (with lower R2 values) 

during prolonged wet or prolonged dry periods. This can be explained by noting 

that the spatial variation of soil moisture contents is generally higher during 

intermediate moisture contents than during extended dry or extended wet periods. 

For this reason, a methodology to explain the moisture variation during 

intermediate wet situation is more useful than during very wet or very dry periods.  

The relationship between the temporally variable soil saturation ratio on a given 

day and a location-specific intrinsic property such as STWI therefore provides a 

methodology to derive hillslope scale soil moisture distributions from a limited 

number of measurements.  

It can therefore be concluded that the approach based on linking STWI and soil 

saturation may be used for generating high resolution soil moisture patterns in 

hillslope catchments if point-scale measurements and high resolution digital 

elevation data are available. 

Further testing of the STWI approach for deriving wetness patterns should be 

undertaken in a range of different catchments under different wetness conditions 

with many soil types. Also, it will be useful to further investigate the effectiveness 

of soil depth information for such soil moisture scaling studies. 

9.4 PREDICTING SOIL MOISTURE DISTRIBUTIONS 
BASED ON POINT-SCALE MEASUREMENTS AND 
HIGH RESOLUTION SATELLITE OBSERVATIONS  
Three types of models for the generation of soil moisture patterns have been 

implemented in Chapter 6 based on the field measured soil moisture and MODIS 

data. These three types were: (i) LST and measured SWC, (ii) LST and NWDI, 

and (iii) combined use of LST and VI. The first set of methods was based on 

relationships between various forms of LST (e.g. daytime, nighttime, Δ LST, 

daytime LST-Ta, nighttime LST-Ta and regionally normalized temperature index 

(RNTI)) and field measured soil moisture measurements (SWC-based models). 

The second set of methods used relationships between all LST forms used in the 
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first set and a normalized soil moisture index (NWDI-based models).  The third 

type was based on the triangular-shape scatter diagrams as defined in the 

Vegetation-Temperature Condition Index (VTCI) between LST and vegetation 

indices, NDVI and EVI, over the catchment. 

Regarding the first set of models, the regression models obtained with longer time 

periods were not realistic because weather changes over longer periods can mask 

the relationship between LST and SWC. Generally, a negative relationship existed 

between daytime LST and field measured moisture values.. The diurnal 

temperature variation gave a negative trend with SWC as well. It was also noted 

that the Daytime LST worked better in these models than did Nighttime LST or 

∆LST. Comparing the daytime models, Ts–Ta appeared to produce better 

regression models than considering daytime LST only. This observation 

confirmed theoretical approaches taken by other researchers (Jackson et al., 1981; 

Moran et al., 1996). However, except for Ts–Ta, none of these models was 

convincing and they are not suitable for predicting catchments scale soil moisture 

patterns. It was also concluded that the use of non-normalised 0-30 cm SWC 

introduces serious errors in the predictions. 

Land surface temperature is also influenced by other factors such as ground cover 

and soil type.  In order to account for these effects, soil and vegetation factors 

were introduced into the LST-based SWC prediction models with the Regionally 

Normalised Temperature Index (RNTI). It was found that the RNTI holds a strong 

linear relationship with Ts–Ta which is independent of the season. This indicated 

that the RNTI also provided information on soil water status with a strong 

physical basis. The main advantage of the RNTI was the consistency of ranges 

obtained throughout the year. The correlation between soil moisture and RNTI 

was found to be negative. The computation of RNTI is simple and requires only 

satellite observations so that the RNTI is easier to compute than the Ts–Ta. RNTI 

based regression models can be applied to predict SWC. However, careful 

analysis of results revealed that predicted water contents are biased due to the 

residual effects of different soil types. This indicates that the water holding 

capacity of soil should be an important component in SWC prediction models. 

Next, Chapter 6 considered the introduction of normalized soil water contents in 

the regression equations. For this purpose, a Normalized Water Deficit Index 
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(NWDI) was introduced which yielded significant improvement in the models, 

and particularly in those developed with daytime LST measurements. Thus, it was 

concluded that the NWDI more closely follows the variations of daytime LST 

measurements in LST-based regression models. The introduction of a soil related 

parameter such as saturated water content therefore improves the model 

predictions. 

It was noted that RNTI-NWDI models can predict detailed soil moisture patterns.  

Reasonably good SWC predictions could be obtained when scaled variables were 

used for the independent variable as well as for the predicted variable in the 

regression equations. The use of dimensionless variables in the RNTI-NWDI 

model facilitates its use across a wide range of scales. 

Nighttime LST measurements were considered inappropriate for soil moisture 

predictions. Because the soil moisture can be re-distributed during nighttime, the 

use of both nighttime and daytime information may potentially dampen the range 

of soil moisture values in the catchment. This effect may be more significant in 

wet to partially wet catchments than in very dry catchments.   

It was found that a combination of LST and vegetation index (VI) was necessary 

for obtaining a more complete picture of the soil water distribution than was 

achievable by considering LST alone. The third set of models studied soil water 

predictions with LST and VI as combined in the VTCI approach. The catchment-

scale SWCs derived with the VTCI method were similar to the measured water 

content at the CASMM site of the catchment. It was shown that the VTCI 

approach is capable of predicting the catchment average soil water content with an 

accuracy within ±0.03 cm3 cm-3.. Vegetation indices are thus more effective in 

predicting spatial and temporal patterns in soil moisture distribution the relative 

distributions of possible water stressed areas in a catchment and occurrences of 

water stressed periods better than by using LST measurements alone.  This 

confirms that the consideration of soil and vegetation information is vital for 

accurate predictions from LST based models. 

It is also important to note that all models were developed with a limited number 

of point scale in-situ soil moisture measurements for the top 0-30 cm (i.e. the root-

zone) and remotely sensed LST measurements with 1.1 km2 pixels. Considering 
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the vast scale difference between these two variables, these models appear very 

encouraging for soil water content prediction.  Hence, it may be concluded that 

the use of a limited number of in-situ soil moisture data in deriving the catchment 

scale moisture patterns appears feasible, particularly with RNTI-NWDI and 

VTCI-based models. 

It may therefore be concluded that if regression models are to be used for 

extrapolating limited point-scale measurements across a catchment, one should 

use (a) normalized forms of LST and SWC or (b) consider both LST and VI as is 

done in the VTCI approach. 

Future work should test the generality of the VTCI and RNTI approaches across 

different climatic regions and vegetation types. It is recommended that the 

wetness characteristics of sites should be studied before setting up any monitoring 

network in any future studies. This can be done entirely with public domain data 

such as MODIS derived LST and VI data.  This would assist in identifying 

suitable locations for soil moisture monitoring in a large catchment.  It would 

assist in the efficient allocation of limited monitoring devices based on the 

wetness behaviour of selected locations within a catchment. Potentially, this 

would also help to reduce the initial set-up cost, particularly in a large catchment.   

The study reported in Chapter 6 found that it is possible to derive catchment scale 

SWC distribution maps with a sparse network of soil moisture monitoring sites. 

Such maps are not only useful for scaling studies and hydrological model 

applications but also for practical applications such as achieving maximum usage 

from limited water resources.  

The use of a limited number of ground-based measurements in combination with 

remotely sensed observations will provide an economical way of collecting soil 

moisture related information across large catchments. Thus, remote sensing 

methodologies for soil moisture prediction will become an essential component in 

future soil moisture scaling approaches.  
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9.5 FIELD VALIDATION OF AMSR-E SOIL 
MOISTURE ESTIMATES 
Chapter 7 has reported on the validation of AMSR-E soil moisture measurements 

with two approaches. The first approach was based on many point scale soil 

moisture measurements collected during three intensive field campaigns. The 

second approach compared the temporal evolution of AMSR-E soil moisture 

measurements with pixel-scale 0-30 cm moisture measurements collected with the 

ground-based monitoring network.  

First, based on a large number of point scale observations, it was found that 

AMSR-E provides reasonable estimates of near-surface soil moisture content 

when compared with the averages of the point observations comprised within the 

AMSR-E pixel. A positive correlation was found between AMSR-E measured soil 

moisture and both 0-1 cm and 0-6 cm field measured values. However, AMSR-E 

moisture measurements did not exceed 15% (v/v) even at the higher measured soil 

moisture content of over 25% (v/v). The difference between AMSR-E near-

surface measurements and the observed 0-1 and 0-6 cm soil moisture may be 

attributed to four factors. First, the field measured data did not provide perfect 

estimates of instantaneous surface moisture contents as measured by the AMSR-E 

in terms of the spatial extent and the depth.  Second, collection of field 

measurements from the near-surface layer over 3-day period may introduce errors 

due to rapid drying of the surface layer. Third, past rainfall patterns can impact on 

the data. This is probably more so for 0-6 cm than for 0-1cm because the deeper 

layer can store more water and therefore its soil water content will reflect past 

rainfall better than the 0-1 cm layer.  Finally, the effect of vegetation was not 

uniform across AMSR-E pixels. Vegetation may affect soil moisture distribution. 

Therefore, a perfect match between AMSR-E area values of near-surface soil 

moisture content and averages of ground-based point scale measurements over 0-1 

and 0-6 cm may not always be possible. On the other hand, any inaccuracies of 

the soil moisture retrieval algorithm used by AMSR-E may also be contributed to 

this mismatch. 

Microwave sensors measure soil moisture in the topmost soil layer where 

observation depth varies from 1/10 to 1/4 of a wavelength.  At 9.6 GHz of 

AMSR-E, this penetration depth is up to 1 cm deep.  The penetration of 
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microwave signals depends on soil moisture itself.  It is therefore difficult to 

determine firstly, the correct depth of soil samples and secondly, to arrive at an 

accurate method which is sufficiently efficient for collecting a large number of in-

situ measurements.  Soil moisture also changes very rapidly in the topmost soil 

layer as does the land surface temperature.  In addition, there are practical 

problems in collecting accurate soil samples for the top 0-1 cm of soil. Often, 

many soil moisture studies, including the present study, use soil moisture 

measurements collected over 0-6 cm depth with convenient measuring tools such 

as the Theta probe.  Besides, the spatial distribution of soil moisture depends on 

soil parameters that are not distributed homogeneously in the catchment. As a 

result, the average soil moisture computed from point measurements within a 

footprint does not necessarily give an accurate representation of the soil moisture 

across the footprint. 

The 3-day field experiments described in Chapter 7 indicate that the use of a 

three-day period for the collection of near-surface soil moisture measurements to 

evaluate the AMSR-E measurements does not provide ideal conditions for 

validation studies. During field campaigns, the average daily differences between 

first and last observations in 0-1cm layer were found vary between -1.6% (v/v) to 

-3.3% (v/v). In situations where the surface is relatively wet and the climate is 

more favourable for rapid drying and hence rapid changes in wetness, it is 

advisable to consider shorter-duration field campaigns.  This leads to the 

recommendation to conduct field campaigns preferably in the morning between 6 

am and 9 am.  During this time vertical gradients in near-surface soil moisture are 

smallest, resulting in the smallest discrepancies between observations and model 

predictions of near-surface soil moisture. Additionally, this is the time of day 

when near-surface soil moisture is most strongly coupled with the water status of 

the underlying soil.  

The second approach for validating AMSR-E used soil moisture data from the 

permanent ground-based monitoring network. Continuous observations of 0-30 

cm soil moisture made at the permanent network stations provided information on 

temporal patterns of soil moisture. Chapter 7 demonstrates the application of 

temporal stability characteristics of ground-based monitoring stations for 

validating AMSR-E measurements. Results showed that the AMSR-E soil 
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moisture estimates are capable of mimicking temporal trends in land surface soil 

moisture reasonably well.   

Comparisons between of 0-30 cm soil moisture measurements from a temporally 

stable monitoring site within a pixel and the day-time and night-time AMSR-E 

near-surface moisture values indicated that daytime values are better correlated 

with in-situ measurements than night time values.   The lower correlation for night 

time values may be due to the variations caused by redistribution of soil moisture 

at night in the absence of evaporation. It is also possible that dew formation helps 

rewetting the surface layer, particularly at night time. Therefore, even when the 0-

30 cm layer is generally dry, its thin surface layer may contain a slightly higher 

moisture level. This may explain in part the low correlation between night-time 

near-surface soil moisture measurements and the moisture contents of the 0-30cm 

deep layer.  This analysis confirmed that 0-30 cm soil moisture measurements 

from a pixel-scale average soil moisture monitoring site indicate a positive 

relationship with the AMSR-E data. The results showed that it is possible to 

establish a site-specific empirical relationship to obtain area-averaged near-

surface moisture content from 0-30 cm measurements. Such an analysis also helps 

to reduce the number of measuring points required for characterising soil moisture 

trends for a given AMSR-E pixel.  

In the light of the above, it may be concluded that a permanent network of soil 

moisture measurement sites would be highly desirable when validating the soil 

moisture retrieval algorithm of AMSR-E.  However, the 0-30 cm SWC values 

used in this thesis are not necessarily strongly related with AMSR-E near-surface 

measurements.  Future studies therefore need to consider the continuous 

measurement of near-surface SWC values, preferably in the 0-1 cm to 0-6 cm 

depths for use in such an analysis. The Goulburn River catchment network has 

recently been upgraded with these measurements and it is therefore possible to 

implement such analysis in the near future. 

The results suggest that changes to the AMSR-E soil moisture predictions 

algorithm may be needed in order to improve the accuracy of soil moisture 

retrieval.   
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The main problem in validating large-area moisture predictions is the absence of 

ground truth data at the appropriate scale. More studies are therefore needed to 

address this issue, whilst airborne sensors should also be considered for future 

validation studies.  

No adequate techniques are currently available for in-situ validation of soil 

moisture measurements from satellite remote sensing such as from AMSR-E. 

Field campaigns must be carried out for a range of ecological and climatic regions 

in order to build a knowledge-base on validation approaches.  Until they are fully 

validated, soil moisture data derived from satellite remote sensing should be used 

more for qualitative studies rather than for quantitative applications. 

 

9.6 DISAGGREGATION OF LARGE-AREA SOIL 
MOISTURE MEASUREMENTS 
In Chapter 8 two new methodologies have been developed for disaggregating 

large-scale AMSR-E soil moisture values into fields of 1.1 km x 1.1 km soil 

moisture values.  The downscaling approach which was used retained a strong 

physical basis by using information from other satellites, it is applicable at a 

variety of spatial scales, and it does not require any form of calibration based on 

other ground measurements of soil moisture.    

Two indices, RNTI and VTCI were used to disaggregate AMSR-E soil moisture 

data.  The RNTI and VTCI indices adopt different approaches to describe soil 

wetness characteristics. While the RNTI based approach incorporates thermal 

inertia properties to determine soil moisture, the VTCI based approach 

incorporates the vegetation information in addition to the thermal inertia property. 

The two disaggregation techniques studied in this chapter were found to be 

capable of providing soil moisture predictions which can readily be related to the 

dominant physical characteristics such as the vegetation pattern, catchment 

topography and major water courses as well as the distribution of recent rainfall. 

The computation of RNTI and VTCI is relatively straight-forward. The high-

resolution LST and VI data from the MODIS sensor are reliable and available for 

the entire globe and can be downloaded free of charge. Thus, computation of 
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indices such as RNTI and VTCI from MODIS LST and VI data is cost-effective 

and achievable for many regions. 

While the comparison of downscaled moisture patterns and field measured point-

scale values gave plausible results, some differences were also observed.  These 

differences occurred because microwave and visible/near infrared respond to 

different biophysical characteristics and energy sources. Additionally, visible/near 

infrared measurements of vegetation indices are typically reported as composites 

over time (15 days in the present study) because of frequent adverse atmospheric 

effects. Moreover, note that these comparisons were made with data obtained at 

two different scales: the point scale for measured values and the 1.1 km scale for 

downscaled values.  

The disaggregation study reported in Chapter 8 was concerned with the top 0-1 

cm soil layer which has a highly variable soil moisture content. The comparison 

between 1.1x1.1 km2 scale near-surface soil moisture predictions based on 

instantaneous observations with point-scale measurements collected over a long 

period always was hampered by concerns over the applicability of such a 

validation approach. The difficulty arises both in the estimation process as well as 

in the measurements of in-situ soil moisture content.  No definite conclusion 

could therefore be drawn from the comparison between in-situ point 

measurements and disaggregated soil moisture predictions from AMSR-E data.   

Some limitations were identified in the above disaggregation schemes. Catchment 

scale information about soil moisture is affected by biophysical and climatic 

factors as well as by technological constraints. For example, the signals from 

AMSR-E and MODIS are not related to the same soil depth. As a result, their soil 

moisture estimates may differ.  AMSR-E measures soil moisture in the top 0-1 cm 

soil layer. Wetness indices such as VTCI are based on vegetation indices and 

hence reflect soil wetness over the entire depth of the root-zone.  For this reason, 

estimates of soil moisture using the above two methods may differ.  However, the 

VTCI is used as a covariate to disaggregate soil moisture observations and effect 

on the final results are therefore expected to be relatively minor  

This has been concluded that both RNTI and VTCI based techniques appear to be 

useful for the disaggregation of soil moisture estimates obtained with the AMSR-
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E sensor. The research suggests that as long as one can use high resolution 

ancillary data as proxy indicators of surface wetness, the methodology can 

satisfactorily disaggregate soil moisture across spatial scales.  

Further testing and validation of the above downscaling methods will need to be 

conducted for a range of climatic and land surface conditions and, where possible 

with the use of high resolution soil moisture estimated from air-borne microwave 

radiometers and optical/IR data. 

 

9.7 CONCLUDING REMARKS 
Despite the limitations of being able to measure soil moisture data at the proper 

scale, estimates of soil moisture averaged over small areas were compared with 

point-scale in-situ measurements, in order to interpret the results from soil 

moisture scaling studies.  The issue of evaluating areal soil moisture predictions 

with a limited number of point-scale measurements however, will remain a 

serious issue for further discussion.  

The benefits of this thesis include improved understanding of the scaling 

relationships of soil moisture in varied topography and in inherently spatially-

variable soils. New scaling tools have been developed to upscale and downscale 

measured soil moisture from in-situ and passive microwave satellite respectively, 

which in the longer term may benefit both the scientific community and the 

general public.  The scaled soil moisture values may be used in the study of 

hydrological behaviour of catchments at a variety of spatial scales, including plot, 

regional, and catchment scale, and temporally, at both inter-and intra-annual time 

scales.  

Many possibilities exist for improving precision hydrological modelling when a 

parameter with a profound effect on model prediction such as soil moisture is 

found to be available at an appropriate scale. It is hoped that the issues discussed 

in this thesis will stimulate further research into the concepts of soil moisture 

scaling. 
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ANNEX-I 
 

Sample data logger program used to collect SWC, 
soil temperature and rainfall 
 
;Program name : MC_3S_RF 
;{CR10} 
;{CR500} 
;Data logger program for three CS616 + T107 
 
;This program logs 3 CS616s and Temperature sensor and write data to logger 
;at 20 minute time intervals as the average of a reading taken every 
;one minute. 
;A pluviometer is also logged. It is scanned every 1 second so that each tip 
;of the raingauge is logged as it occurs. 
 
;Programmer: Manju Hemakumara 
;Version & Date- Version 3.0 - 25 November 2003 
;Last modification: change Time interval from 10 minutes to 20 minutes 
;Previous modification - 28 March 2003 
 
;LOG FILE- Day, Hour/Min, Battery Voltage, Soil T, period 1-3 
;          Day,Hour/Min,Sec: Rain 
 
;Sensor connections 
 
;T107 
;       Red   - SE1 
;       Black - E1 
;       Purple- AG 
;       Clear - G 
 
;CS 616 
;       Red all   - 12V 
;       Black all - GND 
;       Green 1   - SE2 
;       Green 2   - SE3 
;       Green 3   - SE4 
;       Orange all- C1 
 
;Rain gauge - P1 and G 
 
*Table 1 Program 
  01: 60        Execution Interval (seconds) 
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1:  Batt Voltage (P10) 
 1: 2        Loc [ Battery   ] 
 
2:  Temp (107) (P11) 
 1: 1        Reps 
 2: 1        SE Channel 
 3: 1        Excite all reps w/E1 
 4: 1        Loc [ TSoil     ] 
 5: 1.0      Mult 
 6: 0.0      Offset 
 
3:  Do (P86) 
 1: 41       Set Port 1 High 
 
4:  Period Average (SE) (P27) 
 1: 3        Reps 
 2: 4        200 kHz Max Freq @ 2 V Peak to Peak, Period Output 
 3: 2        SE Channel 
 4: 100      No. of Cycles 
 5: 1        Timeout (units = 0.01 seconds) 
 6: 3        Loc [ period_1  ] 
 7: 1.0      Mult 
 8: 0.0      Offset 
 
5:  Polynomial (P55) 
 1: 3        Reps 
 2: 3        X Loc [ period_1  ] 
 3: 6        F(X) Loc [ VWC_1     ] 
 4: -0.0663  C0 
 5: -0.0063  C1 
 6: 0.0007   C2 
 7: 0.0      C3 
 8: 0.0      C4 
 9: 0.0      C5 
 
6:  Do (P86) 
 1: 51       Set Port 1 Low 
 
;every 20 minute write data to final storage area 
 
7:  If time is (P92) 
 1: 0000     Minutes (Seconds --) into a 
 2: 20       Interval (same units as above) 
 3: 10       Set Output Flag High (Flag 0) 
 
8:  Real Time (P77) 
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 1: 0110     Day,Hour/Minute (midnight = 0000) 
 
9:  Average (P71) 
 1: 1        Reps 
 2: 2        Loc [ Battery   ] 
 
10:  Average (P71) 
 1: 1        Reps 
 2: 1        Loc [ TSoil     ] 
 
11:  Average (P71) 
 1: 3        Reps 
 2: 3        Loc [ period_1  ] 
 
*Table 2 Program 
  02: 1         Execution Interval (seconds) 
 
;Rainfall measurement (mm) 
 
1:  Pulse (P3) 
 1: 1        Reps 
 2: 1        Pulse Input Channel 
 3: 2        Switch Closure, All Counts 
 4: 9        Loc [ Rain      ] 
 5: .2       Mult 
 6: 0.0      Offset 
 
;Check if rainfall has occured 
 
2:  IF (X<=>F) (P89) 
 1: 9        X Loc [ Rain      ] 
 2: 3        >= 
 3: 0.2      F 
 4: 10       Set Output Flag High 
 
3:  Real Time (P77) 
 1: 0111     Day,Hour/Minute,Seconds (midnight = 0000) 
 
4:  Sample (P70) 
 1: 1        Reps 
 2: 9        Loc [ Rain      ] 
 
*Table 3 Subroutines 
 
End Program 
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Sample data logger program used at the Stanley 
climate station  
 
;{CR10} 
; 
;            PROGRAM NAME:  SC_WETHR.CSI 
;========================================================== 
;    This program logs 2 heat flux plates, 8 soil temperature sensors,      
;    relative humidity and air temperature,                                          
;    atmospheric pressure, wind speed, pyranometer and net radiometer      
;    at 20 MINUTES INTERVAL                                                          
;    as the average of a READING TAKEN EVERY 1 MINUTE                                                               
;    A pluviometer is also logged. It is SCANNED EVERY 1 SECOND                 
;    so that each tip of the raingauge is logged as it occurs.                     
;                                                                                      
;    LOG FILE:                                                                    
;    Day,Hour/Min: Flux#1..2, S_Temp#1..8, RH, Air_Temp, Press, Wind , 
;     Net_Rad, Rn  
;    Day,Hour/Min,Sec: Rain                               
;                                                                                    
;    PROGRAMMER:  Manju Hemakumara, University of Newcastle       
;    LAST MODIFIED: 7/08/03                                                          
;==========================================================  
; 
; WIRING: 
; Logger to Multiplexer connections 
;     12V - 12V 
;     G   - GND 
;     C1  - RES 
;     C2  - CLK 
;     1H  - COM H1 (SE CHANNEL 1) 
;     1L  - COM L1 (SE CHANNEL 2) 
;     G   - SHIELD 
;     C5  - COM H2 
;     E1  - COM L2 
;     G   - SHIELD 
; 
; Multiplexer Conections 
;     Sets 1 and 2 - Heat Flux Plates (DIF measurements) 
;                  L1 - White 
;                  H1 - Black 
;                       Clear to AG 
; 
;     Sets 3 to 8 - Soil Temp. Sensors, two per set (SE measurements) 
;                   H1 - Red 1 
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;                   L1 - Red 2 
;                   L2 - Black 1 + 2 
;               SHIELD - Clear 1 + 2 
;                        Purple to AG 
; 
; Logger Conections 
;     RH and Air Temp 
;          3H - Green(RH) 
;          3L - Orange(Temp) 
;          E2 - Yellow(Power control) 
;          E3 - Black(Temp. exitation) 
;          12V - Red 
;          G - Clear 
;          AG - White + Purple 
; 
;     Atmospheric Pressure 
;          4H - Brown 
;          4L - White 
;          12V - Red 
;          G - Black 
;          C8 - Green 
;          G - Clear 
; 
;     Net Radiometer 
;          5H - Red 
;          5L - Black 
;          5L - AG (Jumper) 
;          G - Clear 
; 
;     Pyranometer 
;          6H - Red 
;          6L - Black 
;          AG - White 
;          G  - Clear 
; 
;     Anemometer 
;          P1 - Black 
;          G - White + Clear 
; 
;     Tipping Bucket Raingauge 
;          P2 - Blue 
;          G - Brown 
; 
;     (Note: Pulse counting sensors must be in same execution table) 
 
 
*Table 1 Program  ;READ SENSORS EVERY MINUTE 
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  01: 60.0      Execution Interval (seconds) 
 
; CONFIGURE PORTS 
 
1:  Set Port(s) (P20) 
 1: 7997     C8..C5 = output/nc/nc/output 
 2: 7747     C4..C1 = output/output/10ms/output 
 
;==================================================== 
; MEASUREMENTS FROM SENSORS CONNECTED TO MULTIPLEXER 
;==================================================== 
;ACTIVATE MULTIPLEXER 
 
2:  Do (P86) 
 1: 41       Set Port 1 High 
 
;multiplexer clock -pulse control port 2 
3:  Do (P86) 
 1: 72       Pulse Port 2 
 
;BEGIN SOIL HEAT FLUX MEASUREMENT LOOP 
 
4:  Beginning of Loop (P87) 
 1: 0        Delay 
 2: 2        Loop Count 
 
5:  Do (P86) 
 1: 72       Pulse Port 2 
 
6:  Excitation with Delay (P22) 
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (units = 0.01 sec) 
 3: 1        Delay After Ex (units = 0.01 sec) 
 4: 0        mV Excitation 
 
;SOIL HEAT FLUX MEASUREMENT INSTRUCTION (W/m^2) 
 
7:  Volt (Diff) (P2) 
 1: 1        Reps 
 2: 3        ñ 25 mV Slow Range 
 3: 1        DIFF Channel 
 4: 1     -- Loc [ FLUX_1    ] 
 5: 1        Mult 
 6: 0        Offset 
 
;END OF HEAT FLUX PLATE MEASUREMENT LOOP 
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8:  End (P95) 
 
;BEGIN SOIL TEMPERATURE MEASUREMENT LOOP 
 
9:  Beginning of Loop (P87) 
 1: 0        Delay 
 2: 4        Loop Count 
 
10:  Do (P86) 
 1: 72       Pulse Port 2 
 
11:  Excitation with Delay (P22) 
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (units = 0.01 sec) 
 3: 1        Delay After Ex (units = 0.01 sec) 
 4: 0        mV Excitation 
 
12:  Step Loop Index (P90) 
 1: 2        Step 
 
;SOIL TEMPERATURE MEASUREMENT INSTRUCTION (DEG C) 
 
13:  Temp (107) (P11) 
 1: 2        Reps 
 2: 1        SE Channel 
 3: 1        Excite all reps w/Exchan 1 
 4: 3     -- Loc [ S_TEMP_1  ] 
 5: 1        Mult 
 6: 0        Offset 
 
;END OF SOIL TEMPERATURE MEASUREMENT LOOP 
 
14:  End (P95) 
 
;DEACTIVATE MULTIPLEXER 
 
15:  Do (P86) 
 1: 51       Set Port 1 Low 
;========================================================== 
; END OF MEASUREMENTS FROM SENSORS CONNECTED TO 
MULTIPLEXER 
;========================================================== 
 
;APPLY FLUX PLATE CALIBRATION FACTORS 
16:  Z=X*F (P37) 
 1: 1        X Loc [ FLUX_1    ] 
 2: 44.2     F 
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 3: 1        Z Loc [ FLUX_1    ] 
 
17:  Z=X*F (P37) 
 1: 2        X Loc [ FLUX_2    ] 
 2: 48.7     F 
 3: 2        Z Loc [ FLUX_2    ] 
 
;================================================= 
; MEASUREMENTS FROM DIRECTLY CONNECTED SESSORS 
;================================================= 
 
; RELATIVE HUMIDITY MEASUREMENT INSTRUCTION (%) 
18:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 5        ñ 2500 mV Slow Range 
 3: 5        SE Channel 
 4: 2        Excite all reps w/Exchan 2 
 5: 15       Delay (units 0.01 sec) 
 6: 2500     mV Excitation 
 7: 11       Loc [ RH        ] 
 8: .1       Mult 
 9: 0        Offset 
 
;AIR TEMPERATURE MEASUREMENT INSTRUCTION (DEG C) 
19:  Temp (107) (P11) 
 1: 1        Reps 
 2: 6        SE Channel 
 3: 3        Excite all reps w/Exchan 3 
 4: 12       Loc [ AIR_TEMP  ] 
 5: 1        Mult 
 6: 0        Offset 
 
;ATMOSPHERIC PRESSURE MEASUREMENT INSTRUCTION (kPa) 
;Turn the sensor on 
20:  Do (P86) 
 1: 48       Set Port 8 High 
 
;Delay 1s before taking measurement 
21:  Excitation with Delay (P22) 
 1: 1        Ex Channel 
 2: 0        Delay W/Ex (units = 0.01 sec) 
 3: 100      Delay After Ex (units = 0.01 sec) 
 4: 0        mV Excitation 
 
;Measure in Millibars 
22:  Volt (Diff) (P2) 
 1: 1        Reps 



ANNEX-1____________                                     __________________Page AI-9                  

 2: 25       ñ 2500 mV 60 Hz Rejection Range 
 3: 4        DIFF Channel 
 4: 13       Loc [ PRESS     ] 
 5: .184     Mult 
 6: 600      Offset 
 
;Convert to kPa 
23:  Z=X*F (P37) 
 1: 13       X Loc [ PRESS     ] 
 2: .1       F 
 3: 13       Z Loc [ PRESS     ] 
 
;Turn the sensor off 
24:  Do (P86) 
 1: 58       Set Port 8 Low 
 
;PYRANOMETER - INCOMING RADIATION Wm^2 
25:  Volt (Diff) (P2) 
 1: 1        Reps 
 2: 22       7.5 mV 60 Hz Rejection Range 
 3: 6        DIFF Channel 
 4: 21       Loc [ Rn_Wm2    ] 
 5: 200      Mult 
 6: 0.0      Offset 
 
;set negative values to zero 
 
26:  IF (X<=>F) (P89) 
 1: 21       X Loc [ Rn_Wm2    ] 
 2: 4        < 
 3: 0        F 
 4: 30       Then Do 
 
27:  Z=F (P30) 
 1: 0.0      F 
 2: 00       Exponent of 10 
 3: 21       Z Loc [ Rn_Wm2    ] 
 
28:  End (P95) 
 
;NET RADIOMETER MEASUREMENT INSTRUCTION (W/m^2) 
29:  Volt (Diff) (P2) 
 1: 1        Reps 
 2: 24       ñ 250 mV 60 Hz Rejection Range 
 3: 5        DIFF Channel 
 4: 15       Loc [ NET_RAD   ] 
 5: 1        Mult 
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 6: 0        Offset 
 
;Check if net radiation is positive or negative 
 
30:  If (X<=>F) (P89) 
 1: 15       X Loc [ NET_RAD   ] 
 2: 3        >= 
 3: 0        F 
 4: 30       Then Do 
 
;Apply the positive calibration and wind speed corrections 
31:  Do (P86) 
 1: 1        Call Subroutine 1 
 
32:  Else (P94) 
 
;Apply the negative calibration and wind speed corrections 
33:  Do (P86) 
 1: 2        Call Subroutine 2 
 
34:  End (P95) 
 
;===================================================== 
; END OF MEASUREMENTS FROM DIRECTLY CONNECTED SESSORS 
;===================================================== 
;LOG AVERAGED READINGS OVER 20 MINUTES READING PERIOD 
35:  If time is (P92) 
 1: 0        Minutes (Seconds --) into a 
 2: 20       Interval (same units as above) 
 3: 10       Set Output Flag High 
 
36:  Real Time (P77) 
 1: 0110     Day,Hour/Minute (midnight = 0000) 
 
37:  Average (P71) 
 1: 2        Reps 
 2: 1        Loc [ FLUX_1    ] 
 
38:  Average (P71) 
 1: 8        Reps 
 2: 3        Loc [ S_TEMP_1  ] 
 
39:  Average (P71) 
 1: 1        Reps 
 2: 11       Loc [ RH        ] 
 
40:  Average (P71) 
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 1: 1        Reps 
 2: 12       Loc [ AIR_TEMP  ] 
 
41:  Average (P71) 
 1: 1        Reps 
 2: 13       Loc [ PRESS     ] 
 
42:  Average (P71) 
 1: 1        Reps 
 2: 14       Loc [ WIND      ] 
 
43:  Average (P71) 
 1: 1        Reps 
 2: 15       Loc [ NET_RAD   ] 
 
44:  Average (P71) 
 1: 1        Reps 
 2: 21       Loc [ Rn_Wm2    ] 
 
45:  Serial Out (P96) 
 1: 71       SM192/SM716/CSM1 
 
*Table 2 Program ;LOG THE TIPPING TIME OF PLUVIOMETER 
  02: 1.0       Execution Interval (seconds) 
 
;WIND SPEED MEASUREMENT INSTRUCTION (m/s) 
;Note: All pulse readings must be done in the same table 
 
1:  Pulse (P3) 
 1: 1        Reps 
 2: 1        Pulse Input Channel 
 3: 21       Low Level AC, Output Hz 
 4: 14       Loc [ WIND      ] 
 5: .75      Mult 
 6: .2       Offset 
 
;RAINFALL MEASUREMENT INSTRUCTION (mm) 
 
2:  Pulse (P3) 
 1: 1        Reps 
 2: 2        Pulse Input Channel 
 3: 2        Switch Closure 
 4: 20       Loc [ RAIN      ] 
 5: .2       Mult 
 6: 0        Offset 
 
;LOG RAINFALL 
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;Check if rainfall has occured 
 
3:  If (X<=>F) (P89) 
 1: 20       X Loc [ RAIN      ] 
 2: 3        >= 
 3: 0.2      F 
 4: 10       Set Output Flag High 
 
4:  Real Time (P77) 
 1: 0111     Day,Hour/Minute,Seconds (midnight = 0000) 
 
5:  Sample (P70) 
 1: 1        Reps 
 2: 20       Loc [ RAIN      ] 
 
 
*Table 3 Subroutines 
 
;POSITIVE CALIBRATION AND WIND SPEED CORRECTIONS 
 
1:  Beginning of Subroutine (P85) 
 1: 1        Subroutine 1 
 
;Calculate the wind speed correction factor 
2:  Z=X*F (P37) 
 1: 14       X Loc [ WIND      ] 
 2: .2       F 
 3: 16       Z Loc [ C         ] 
 
3:  Z=X*F (P37) 
 1: 16       X Loc [ C         ] 
 2: .066     F 
 3: 17       Z Loc [ A         ] 
 
4:  Z=X+F (P34) 
 1: 16       X Loc [ C         ] 
 2: .066     F 
 3: 18       Z Loc [ B         ] 
 
5:  Z=X/Y (P38) 
 1: 17       X Loc [ A         ] 
 2: 18       Y Loc [ B         ] 
 3: 19       Z Loc [ Corr_Fact ] 
 
6:  Z=Z+1 (P32) 
 1: 19       Z Loc [ Corr_Fact ] 
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;Apply positive zero wind calibration factor 
7:  Z=X*F (P37) 
 1: 15       X Loc [ NET_RAD   ] 
 2: 9.16     F 
 3: 15       Z Loc [ NET_RAD   ] 
 
;Apply wind speed correction 
8:  Z=X*Y (P36) 
 1: 15       X Loc [ NET_RAD   ] 
 2: 19       Y Loc [ Corr_Fact ] 
 3: 15       Z Loc [ NET_RAD   ] 
 
9:  End (P95) 
 
;NEGATIVE CALIBRATION AND WIND SPEED CORRECTIONS 
 
10:  Beginning of Subroutine (P85) 
 1: 2        Subroutine 2 
 
;Calculate the wind speed correction factor 
11:  Z=X*F (P37) 
 1: 14       X Loc [ WIND      ] 
 2: .00174   F 
 3: 17       Z Loc [ A         ] 
 
12:  Z=X+F (P34) 
 1: 17       X Loc [ A         ] 
 2: .99755   F 
 3: 19       Z Loc [ Corr_Fact ] 
 
;Apply negative zero wind calibration factor 
13:  Z=X*F (P37) 
 1: 15       X Loc [ NET_RAD   ] 
 2: 11.43    F 
 3: 15       Z Loc [ NET_RAD   ] 
 
;Apply wind speed correction 
14:  Z=X*Y (P36) 
 1: 15       X Loc [ NET_RAD   ] 
 2: 19       Y Loc [ Corr_Fact ] 
 3: 15       Z Loc [ NET_RAD   ] 
 
15:  End (P95) 
 
End Program 
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Annex - III 

 
CS 616 Calibrations 
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The regression equation is 
G1-MC = 0.223 - 0.0417 G1-616 + 0.00178 G1-616**2 
 
Predictor        Coef       StDev          T        P 
Constant       0.2230      0.7238       0.31    0.768 
616Ref       -0.04170     0.07817      -0.53    0.613 
Ref**2       0.001781    0.002062       0.86    0.421 
 
S = 0.03034     R-Sq = 85.8%     R-Sq(adj) = 81.0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.033253    0.016627     18.07    0.003 
Residual Error     6    0.005521    0.000920 
Total              8    0.038775 
 
Source       DF      Seq SS 
616Ref        1    0.032567 
Ref**2        1    0.000687 
 
Unusual Observations 
Obs     616Ref         MC         Fit   StDev Fit    Residual    St Resid 
  9       15.0     0.0000     -0.0017      0.0302      0.0017        0.56 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
G2-MC = 0.034 - 0.0138 G2-616 +0.000764 G2-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.0342      0.3146       0.11    0.916 
G2-616       -0.01380     0.02966      -0.47    0.654 
G2-616**    0.0007637   0.0006640       1.15    0.283 
 
S = 0.03467     R-Sq = 88.1%     R-Sq(adj) = 85.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.071079    0.035540     29.57    0.000 
Residual Error     8    0.009615    0.001202 
Total             10    0.080694 
 
Source       DF      Seq SS 
G2-616        1    0.069489 
G2-616**      1    0.001590 
 
Unusual Observations 
Obs     G2-616      G2-MC         Fit   StDev Fit    Residual    St Resid 
 11       15.0     0.0000     -0.0010      0.0346      0.0010        0.60 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
G3-MC = 0.190 - 0.0241 G3-616 +0.000773 G3-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1895      0.2087       0.91    0.406 
G3-616       -0.02409     0.01660      -1.45    0.206 
G3-616**    0.0007728   0.0003090       2.50    0.054 
 
S = 0.04531     R-Sq = 92.6%     R-Sq(adj) = 89.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.127744    0.063872     31.11    0.002 
Residual Error     5    0.010265    0.002053 
Total              7    0.138009 
 
Source       DF      Seq SS 
G3-616        1    0.114902 
G3-616**      1    0.012841 
 
Unusual Observations 
Obs     G3-616      G3-MC         Fit   StDev Fit    Residual    St Resid 
  7       38.4     0.4800      0.4032      0.0291      0.0768        2.21R  
  8       15.0     0.0000      0.0021      0.0452     -0.0021       -0.73 X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
G4-MC = 1.00 - 0.128 G4-616 + 0.00413 G4-616** 
 
Predictor        Coef       StDev          T        P 
Constant       1.0001      0.9862       1.01    0.350 
G4-616       -0.12785     0.09960      -1.28    0.247 
G4-616**     0.004131    0.002467       1.67    0.145 
 
S = 0.06548     R-Sq = 84.9%     R-Sq(adj) = 79.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.144452    0.072226     16.85    0.003 
Residual Error     6    0.025722    0.004287 
Total              8    0.170174 
 
Source       DF      Seq SS 
G4-616        1    0.132432 
G4-616**      1    0.012020 
 
Unusual Observations 
Obs     G4-616      G4-MC         Fit   StDev Fit    Residual    St Resid 
  4       24.5     0.2507      0.3510      0.0442     -0.1003       -2.08R  
  8       24.5     0.4680      0.3510      0.0442      0.1170        2.42R  
 
R denotes an observation with a large standardized residual 
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The regression equation is 
G5-MC = 0.74 - 0.104 G5-616 + 0.00364 G5-616** 
 
Predictor        Coef       StDev          T        P 
Constant        0.740       1.290       0.57    0.606 
G5-616        -0.1043      0.1456      -0.72    0.525 
G5-616**     0.003644    0.004058       0.90    0.435 
 
S = 0.02951     R-Sq = 87.2%     R-Sq(adj) = 78.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2   0.0177631   0.0088816     10.20    0.046 
Residual Error     3   0.0026131   0.0008710 
Total              5   0.0203763 
 
Source       DF      Seq SS 
G5-616        1   0.0170610 
G5-616**      1   0.0007021 
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The regression equation is 
G6-MC = - 0.099 + 0.0009 G6-616 +0.000344 G6-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.0995      0.4238      -0.23    0.822 
G6-616        0.00094     0.03129       0.03    0.977 
G6-616**    0.0003440   0.0005542       0.62    0.558 
 
S = 0.1037      R-Sq = 75.1%     R-Sq(adj) = 66.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     0.19434     0.09717      9.04    0.015 
Residual Error     6     0.06446     0.01074 
Total              8     0.25880 
 
Source       DF      Seq SS 
G6-616        1     0.19020 
G6-616**      1     0.00414 
 
Unusual Observations 
Obs     G6-616      G6-MC         Fit   StDev Fit    Residual    St Resid 
  7       30.9     0.4540      0.2574      0.0475      0.1966        2.13R  
  9       15.0     0.0000     -0.0080      0.1032      0.0080        0.85 X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
K1-MC = - 0.16 + 0.005 K1-616 + 0.00039 K1-616** 
 
Predictor        Coef       StDev          T        P 
Constant       -0.159       1.546      -0.10    0.922 
K1-616         0.0047      0.1507       0.03    0.976 
K1-616**     0.000394    0.003234       0.12    0.908 
 
S = 0.07604     R-Sq = 81.4%     R-Sq(adj) = 74.0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.126657    0.063329     10.95    0.015 
Residual Error     5    0.028909    0.005782 
Total              7    0.155567 
 
Source       DF      Seq SS 
K1-616        1    0.126572 
K1-616**      1    0.000086 
 
Unusual Observations 
Obs     K1-616      K1-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0     0.0000      0.0000      0.0760     -0.0000       -0.07 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
K2-MC = 0.246 - 0.0372 K2-616 + 0.00136 K2-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.2455      0.7721       0.32    0.763 
K2-616       -0.03722     0.08031      -0.46    0.663 
K2-616**     0.001357    0.002068       0.66    0.541 
 
S = 0.04456     R-Sq = 55.4%     R-Sq(adj) = 37.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.012315    0.006158      3.10    0.133 
Residual Error     5    0.009929    0.001986 
Total              7    0.022244 
 
Source       DF      Seq SS 
K2-616        1    0.011460 
K2-616**      1    0.000856 
 
Unusual Observations 
Obs     K2-616      K2-MC         Fit   StDev Fit    Residual    St Resid 
  6       22.0     0.1720      0.0833      0.0202      0.0887        2.23R  
 
R denotes an observation with a large standardized residual 
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The regression equation is 
K3-MC = 0.183 - 0.0243 K3-616 + 0.00081 K3-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1825      0.8648       0.21    0.841 
K3-616       -0.02431     0.07912      -0.31    0.771 
K3-616**     0.000808    0.001548       0.52    0.624 
 
S = 0.09264     R-Sq = 71.9%     R-Sq(adj) = 60.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.109825    0.054912      6.40    0.042 
Residual Error     5    0.042913    0.008583 
Total              7    0.152737 
 
Source       DF      Seq SS 
K3-616        1    0.107486 
K3-616**      1    0.002339 
 
Unusual Observations 
Obs     K3-616      K3-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0     0.0000     -0.0002      0.0926      0.0002        0.58 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
K4-MC = - 0.050 - 0.0006 K4-616 + 0.00032 K4-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.0498      0.9271      -0.05    0.960 
K4-616       -0.00064     0.07963      -0.01    0.994 
K4-616**     0.000316    0.001587       0.20    0.852 
 
S = 0.1454      R-Sq = 45.0%     R-Sq(adj) = 17.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     0.06922     0.03461      1.64    0.302 
Residual Error     4     0.08456     0.02114 
Total              6     0.15378 
 
Source       DF      Seq SS 
K4-616        1     0.06838 
K4-616**      1     0.00084 
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The regression equation is 
K5-MC = 0.306 - 0.0370 K5-616 + 0.00110 K5-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.3055      0.1445       2.11    0.102 
K5-616       -0.03695     0.01135      -3.26    0.031 
K5-616**    0.0011036   0.0002102       5.25    0.006 
 
S = 0.03199     R-Sq = 98.1%     R-Sq(adj) = 97.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     0.21162     0.10581    103.37    0.000 
Residual Error     4     0.00409     0.00102 
Total              6     0.21571 
 
Source       DF      Seq SS 
K5-616        1     0.18340 
K5-616**      1     0.02822 
 
Unusual Observations 
Obs     K5-616      K5-MC         Fit   StDev Fit    Residual    St Resid 
  7       15.0     0.0000     -0.0004      0.0319      0.0004        0.25 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
K6-MC = 0.038 - 0.0078 K6-616 +0.000362 K6-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.0375      0.4215       0.09    0.932 
K6-616       -0.00784     0.03732      -0.21    0.840 
K6-616**    0.0003617   0.0007498       0.48    0.647 
 
S = 0.06337     R-Sq = 57.5%     R-Sq(adj) = 43.3% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.032562    0.016281      4.05    0.077 
Residual Error     6    0.024095    0.004016 
Total              8    0.056657 
 
Source       DF      Seq SS 
K6-616        1    0.031627 
K6-616**      1    0.000935 
 
Unusual Observations 
Obs     K6-616      K6-MC         Fit   StDev Fit    Residual    St Resid 
  9       15.0     0.0000      0.0013      0.0633     -0.0013       -0.72 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
M1-MC = - 0.187 + 0.0066 M1-616 + 0.00041 M1-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.1874      0.5197      -0.36    0.731 
M1-616        0.00660     0.05624       0.12    0.910 
M1-616**     0.000411    0.001510       0.27    0.795 
 
S = 0.02268     R-Sq = 84.7%     R-Sq(adj) = 79.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2   0.0170703   0.0085351     16.60    0.004 
Residual Error     6   0.0030854   0.0005142 
Total              8   0.0201557 
 
Source       DF      Seq SS 
M1-616        1   0.0170321 
M1-616**      1   0.0000381 
 
Unusual Observations 
Obs     M1-616      M1-MC         Fit   StDev Fit    Residual    St Resid 
  7       18.4    0.11400     0.07294     0.01116     0.04106        2.08R  
 
R denotes an observation with a large standardized residual 
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The regression equation is 
M2-MC = 0.989 - 0.136 M2-616 + 0.00466 M2-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.9892      0.4820       2.05    0.095 
M2-616       -0.13587     0.05747      -2.36    0.064 
M2-616**     0.004662    0.001703       2.74    0.041 
 
S = 0.005708    R-Sq = 96.9%     R-Sq(adj) = 95.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2   0.0050703   0.0025352     77.82    0.000 
Residual Error     5   0.0001629   0.0000326 
Total              7   0.0052332 
 
Source       DF      Seq SS 
M2-616        1   0.0048263 
M2-616**      1   0.0002440 
 
Unusual Observations 
Obs     M2-616      M2-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0    0.00000     0.00011     0.00570    -0.00011       -0.37 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
M3-MC = - 0.012 - 0.00620 M3-616 +0.000467 M3-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.0123      0.1192      -0.10    0.924 
M3-616      -0.006204    0.009266      -0.67    0.551 
M3-616**    0.0004670   0.0001756       2.66    0.076 
 
S = 0.02618     R-Sq = 97.8%     R-Sq(adj) = 96.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.092776    0.046388     67.68    0.003 
Residual Error     3    0.002056    0.000685 
Total              5    0.094832 
 
Source       DF      Seq SS 
M3-616        1    0.087927 
M3-616**      1    0.004849 
 
Unusual Observations 
Obs     M3-616      M3-MC         Fit   StDev Fit    Residual    St Resid 
  4       38.0     0.4271      0.4276      0.0262     -0.0005       -1.00 X 
  6       15.0     0.0000     -0.0003      0.0262      0.0003        1.00 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
M4-MC = 0.182 - 0.0229 M4-616 +0.000723 M4-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1823      0.1599       1.14    0.337 
M4-616       -0.02294     0.01378      -1.66    0.195 
M4-616**    0.0007225   0.0002719       2.66    0.077 
 
S = 0.02707     R-Sq = 96.5%     R-Sq(adj) = 94.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.060007    0.030003     40.95    0.007 
Residual Error     3    0.002198    0.000733 
Total              5    0.062204 
 
Source       DF      Seq SS 
M4-616        1    0.054834 
M4-616**      1    0.005173 
 
Unusual Observations 
Obs     M4-616      M4-MC         Fit   StDev Fit    Residual    St Resid 
  6       15.0     0.0000      0.0007      0.0270     -0.0007       -0.72 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
M5-MC = 0.168 - 0.0221 M5-616 +0.000745 M5-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1676      0.2355       0.71    0.508 
M5-616       -0.02208     0.01827      -1.21    0.281 
M5-616**    0.0007451   0.0003391       2.20    0.079 
 
S = 0.05173     R-Sq = 91.1%     R-Sq(adj) = 87.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.136851    0.068426     25.57    0.002 
Residual Error     5    0.013378    0.002676 
Total              7    0.150229 
 
Source       DF      Seq SS 
M5-616        1    0.123934 
M5-616**      1    0.012917 
 
Unusual Observations 
Obs     M5-616      M5-MC         Fit   StDev Fit    Residual    St Resid 
  7       37.5     0.4640      0.3870      0.0359      0.0770        2.07R  
 
R denotes an observation with a large standardized residual 
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The regression equation is 
M6-MC = 0.108 - 0.0162 M6-616 +0.000644 M6-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1079      0.3741       0.29    0.792 
M6-616       -0.01624     0.02906      -0.56    0.615 
M6-616**    0.0006438   0.0005323       1.21    0.313 
 
S = 0.07442     R-Sq = 89.0%     R-Sq(adj) = 81.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.133914    0.066957     12.09    0.037 
Residual Error     3    0.016617    0.005539 
Total              5    0.150531 
 
Source       DF      Seq SS 
M6-616        1    0.125812 
M6-616**      1    0.008102 
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The regression equation is 
M7-MC = - 0.033 - 0.0043 M7-616 +0.000421 M7-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.0329      0.4998      -0.07    0.950 
M7-616       -0.00433     0.03938      -0.11    0.916 
M7-616**    0.0004207   0.0007120       0.59    0.576 
 
S = 0.1084      R-Sq = 71.3%     R-Sq(adj) = 61.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     0.17554     0.08777      7.47    0.024 
Residual Error     6     0.07050     0.01175 
Total              8     0.24605 
 
Source       DF      Seq SS 
M7-616        1     0.17144 
M7-616**      1     0.00410 
 
Unusual Observations 
Obs     M7-616      M7-MC         Fit   StDev Fit    Residual    St Resid 
  9       15.0     0.0000     -0.0031      0.1079      0.0031        0.29 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S1-MC = 0.267 - 0.0334 S1-616 + 0.00104 S1-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.2673      0.3896       0.69    0.523 
S1-616       -0.03342     0.03570      -0.94    0.392 
S1-616**    0.0010423   0.0007441       1.40    0.220 
 
S = 0.05028     R-Sq = 85.4%     R-Sq(adj) = 79.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.073783    0.036892     14.59    0.008 
Residual Error     5    0.012642    0.002528 
Total              7    0.086425 
 
Source       DF      Seq SS 
S1-616        1    0.068822 
S1-616**      1    0.004961 
 
Unusual Observations 
Obs     S1-616      S1-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0     0.0000      0.0005      0.0503     -0.0005       -0.61 X 
 
X denotes an observation whose X value gives it large influence. 
 
 



Annex - III  Page AIII - 21 

Site - S2 

S2

y = 0.0008x2 - 0.0239x + 0.1716
R2 = 0.9749

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

15 20 25 30 35 40

616 readings (micro seconds)

S
W

C 
(c

m
3 .c

m
-3

)

 
The regression equation is 
S2-MC = 0.172 - 0.0239 S2-616 +0.000833 S2-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1716      0.1665       1.03    0.361 
S2-616       -0.02390     0.01482      -1.61    0.182 
S2-616**    0.0008334   0.0002981       2.80    0.049 
 
S = 0.02462     R-Sq = 97.5%     R-Sq(adj) = 96.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.094052    0.047026     77.59    0.001 
Residual Error     4    0.002424    0.000606 
Total              6    0.096476 
 
Source       DF      Seq SS 
S2-616        1    0.089316 
S2-616**      1    0.004736 
 
Unusual Observations 
Obs     S2-616      S2-MC         Fit   StDev Fit    Residual    St Resid 
  7       15.0    0.00000     0.00056     0.02461    -0.00056       -1.09 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S3-MC = 0.186 - 0.0255 S3-616 +0.000879 S3-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1862      0.1789       1.04    0.357 
S3-616       -0.02551     0.01532      -1.67    0.171 
S3-616**    0.0008789   0.0003009       2.92    0.043 
 
S = 0.03113     R-Sq = 96.9%     R-Sq(adj) = 95.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.122550    0.061275     63.22    0.001 
Residual Error     4    0.003877    0.000969 
Total              6    0.126427 
 
Source       DF      Seq SS 
S3-616        1    0.114282 
S3-616**      1    0.008268 
 
Unusual Observations 
Obs     S3-616      S3-MC         Fit   StDev Fit    Residual    St Resid 
  7       15.0     0.0000      0.0013      0.0311     -0.0013       -1.31 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S4-MC = 0.068 - 0.0145 S4-616 +0.000665 S4-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.0676      0.1096       0.62    0.600 
S4-616       -0.01450     0.01030      -1.41    0.294 
S4-616**    0.0006652   0.0002193       3.03    0.094 
 
S = 0.01137     R-Sq = 99.6%     R-Sq(adj) = 99.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.059390    0.029695    229.87    0.004 
Residual Error     2    0.000258    0.000129 
Total              4    0.059649 
 
Source       DF      Seq SS 
S4-616        1    0.058201 
S4-616**      1    0.001189 
 
Unusual Observations 
Obs     S4-616      S4-MC         Fit   StDev Fit    Residual    St Resid 
  5       15.0    0.00000    -0.00024     0.01136     0.00024        0.80 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S5-MC = 0.101 - 0.0172 S5-616 +0.000701 S5-616** 
 
Predictor        Coef       StDev          T        P 
Constant      0.10103     0.08127       1.24    0.269 
S5-616      -0.017214    0.006283      -2.74    0.041 
S5-616**    0.0007005   0.0001187       5.90    0.002 
 
S = 0.01681     R-Sq = 98.9%     R-Sq(adj) = 98.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.121687    0.060843    215.31    0.000 
Residual Error     5    0.001413    0.000283 
Total              7    0.123100 
 
Source       DF      Seq SS 
S5-616        1    0.111845 
S5-616**      1    0.009841 
 
Unusual Observations 
Obs     S5-616      S5-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0    0.00000     0.00043     0.01679    -0.00043       -0.55 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S6-MC = - 0.004 - 0.0053 S6-616 +0.000402 S6-616** 
 
Predictor        Coef       StDev          T        P 
Constant      -0.0043      0.2270      -0.02    0.986 
S6-616       -0.00528     0.01538      -0.34    0.745 
S6-616**    0.0004022   0.0002523       1.59    0.172 
 
S = 0.06590     R-Sq = 90.8%     R-Sq(adj) = 87.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     0.21373     0.10687     24.61    0.003 
Residual Error     5     0.02171     0.00434 
Total              7     0.23545 
 
Source       DF      Seq SS 
S6-616        1     0.20270 
S6-616**      1     0.01104 
 
Unusual Observations 
Obs     S6-616      S6-MC         Fit   StDev Fit    Residual    St Resid 
  8       15.0     0.0000      0.0069      0.0656     -0.0069       -1.06 X 
 
X denotes an observation whose X value gives it large influence. 
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The regression equation is 
S7-MC = 0.196 - 0.0265 S7-616 +0.000914 S7-616** 
 
Predictor        Coef       StDev          T        P 
Constant       0.1955      0.2952       0.66    0.537 
S7-616       -0.02648     0.02431      -1.09    0.326 
S7-616**    0.0009135   0.0004747       1.92    0.112 
 
S = 0.05325     R-Sq = 90.6%     R-Sq(adj) = 86.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2    0.137094    0.068547     24.18    0.003 
Residual Error     5    0.014176    0.002835 
Total              7    0.151269 
 
Source       DF      Seq SS 
S7-616        1    0.126595 
S7-616**      1    0.010499 
 
Unusual Observations 
Obs     S7-616      S7-MC         Fit   StDev Fit    Residual    St Resid 
  6       34.9     0.4790      0.3826      0.0312      0.0964        2.23R  
 
R denotes an observation with a large standardized residual 
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ANNEX-IV 

Frequency distribution of errors in the soil moisture 
predictions: SWC based models 
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Frequency distribution of errors in the soil moisture 
predictions: SWC based models 

a)G1

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

38 58 86 87 115 151 210 224 262 297 317 321

Day

Δ
S

W
C

 (v
/v

)

Daytime LST-Tair
Nighttime LST-Tair
RNTI

b)G3

-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10

38 58 86 87 115 151 210 224 262 297 317 321

Day

Δ
S

W
C

 (v
/v

)

Daytime LST-Tair
Nighttime LST-Tair
RNTI

c)K2

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

38 58 86 87 115 151 210 224 262 297 317 321

Day

Δ
S

W
C

 (v
/v

)

Daytime LST-Tair
Nighttime LST-Tair
RNTI

d)M5

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

38 58 86 87 115 151 210 224 262 297 317 321

Day

Δ
S

W
C

 (v
/v

)

Daytime LST-Tair
Nighttime LST-Tair
RNTI

e)S2

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

38 58 86 87 115 151 210 224 262 297 317 321

Day

Δ
S

W
C

 (v
/v

)

Daytime LST-Tair
Nighttime LST-Tair
RNTI

 



ANNEX-1V____________                                     ________________Page AIV-3                  

Frequency distribution of errors in the soil moisture 
predictions: NWDI based models 
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Frequency distribution of errors in the soil moisture 
predictions: NWDI based models 
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ANNEX-V 
 

LST-VI scatter plots 
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ANNEX-VI 
 

Regression equations used in LST based models  
a) SWC models without test sites. 
 
 
DOY n slope Constant R2 n slope Constant R2

Daytime LST Daytime LST - Tair
38 14 -0.010 0.614 0.374 14 -0.011 0.282 0.433
58 20 0.000 0.303 0.000 20 0.000 0.310 0.000
86 18 -0.008 0.496 0.082 18 -0.008 0.234 0.059
87 20 -0.010 0.487 0.106 20 -0.011 0.234 0.096

115 20 -0.015 0.600 0.085 20 -0.023 0.390 0.110
151 20 -0.012 0.503 0.026 20 -0.019 0.364 0.051
210 20 -0.024 0.683 0.124 20 -0.030 0.394 0.154
224 20 -0.012 0.535 0.051 20 -0.013 0.376 0.049
262 20 -0.023 0.912 0.166 20 -0.024 0.436 0.161
297 18 -0.009 0.491 0.176 18 -0.010 0.237 0.172
317 19 -0.014 0.667 0.178 20 -0.017 0.353 0.287
321 20 -0.005 0.419 0.087 20 -0.005 0.269 0.076

Nighttime LST Nighttime LST - Tair
38 9 -0.005 0.272 0.020 9 -0.005 0.153 0.020
58 20 -0.084 1.339 0.349 20 -0.033 0.256 0.133
86 20 0.009 0.085 0.012 20 -0.015 0.143 0.044
87 18 -0.038 0.633 0.112 18 -0.038 0.074 0.112

115 20 -0.015 0.251 0.015 20 -0.017 0.091 0.019
151 20 -0.023 0.279 0.048 20 -0.022 0.160 0.033
210 20 -0.055 0.401 0.073 20 -0.046 0.193 0.061
224 0 0
262 19 -0.033 0.402 0.134 19 -0.027 0.162 0.145
297 16 0.016 0.007 0.046 16 0.002 0.193 0.001
317 20 0.007 0.124 0.008 20 -0.013 0.160 0.017
321 20 -0.027 0.505 0.057 20 -0.026 0.121 0.050

delta LST RNTI
38 9 -0.006 0.354 0.207 14 -0.313 0.384 0.374
58 20 0.006 0.186 0.024 20 0.006 0.308 0.000
86 18 -0.005 0.324 0.054 18 -0.245 0.330 0.082
87 18 0.007 0.027 0.034 20 -0.242 0.319 0.106

115 20 -0.010 0.400 0.045 20 -0.298 0.410 0.085
151 20 0.000 0.284 0.000 20 -0.169 0.402 0.026
210 20 -0.021 0.619 0.078 20 -0.333 0.572 0.124
224 0 20 -0.193 0.444 0.051
262 19 -0.005 0.391 0.016 20 -0.412 0.541 0.166
297 16 -0.007 0.340 0.106 18 -0.225 0.360 0.176
317 20 -0.011 0.442 0.175 19 -0.295 0.416 0.178
321 20 -0.005 0.333 0.067 20 -0.194 0.329 0.087  
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b) NWDI models without test sites. 
 
DOY n slope Constant R2 n slope Constant R2

Daytime LST Daytime LST - Tair
38 14 0.020 -0.285 0.393 14 0.021 0.430 0.401
58 20 0.016 -0.180 0.045 20 0.011 0.257 0.016
86 18 0.021 -0.148 0.113 18 0.016 0.514 0.056
87 20 0.029 -0.282 0.214 20 0.031 0.473 0.173

115 20 0.048 -0.732 0.224 20 0.063 0.045 0.211
151 20 0.048 -0.462 0.136 20 0.064 0.145 0.184
210 20 0.045 -0.336 0.152 20 0.047 0.214 0.132
224 20 0.036 -0.325 0.131 20 0.032 0.193 0.083
262 20 0.070 -1.549 0.393 20 0.070 -0.050 0.338
297 18 0.027 -0.277 0.298 18 0.029 0.464 0.274
317 19 0.052 -1.155 0.488 20 0.052 0.119 0.394
321 20 0.022 -0.339 0.303 20 0.022 0.258 0.270

Nighttime LST Nighttime LST - Tair
38 9 -0.002 0.680 0.001 9 -0.002 0.621 0.001
58 20 0.066 -0.446 0.071 20 0.061 0.463 0.153
86 20 -0.043 1.104 0.066 20 0.044 0.739 0.093
87 18 0.003 0.631 0.000 18 0.003 0.671 0.000

115 20 -0.023 0.746 0.009 20 -0.015 0.559 0.004
151 20 -0.030 0.413 0.026 20 -0.039 0.197 0.036
210 20 0.052 0.233 0.024 20 0.018 0.342 0.004
224 0 0
262 19 0.028 0.351 0.026 19 0.053 0.663 0.156
297 16 -0.058 1.265 0.110 16 -0.011 0.567 0.004
317 20 -0.033 0.938 0.035 20 0.038 0.699 0.033
321 20 0.021 0.363 0.008 20 0.013 0.646 0.003

delta LST RNTI
38 9 0.013 0.253 0.234 14 0.661 0.199 0.393
58 20 0.007 0.199 0.013 20 0.381 0.124 0.045
86 18 0.016 0.217 0.104 18 0.604 0.262 0.113
87 18 -0.002 0.701 0.001 20 0.712 0.215 0.214

115 20 0.040 -0.315 0.203 20 0.958 -0.119 0.224
151 20 0.025 -0.042 0.093 20 0.673 -0.060 0.136
210 20 0.045 -0.299 0.132 20 0.620 -0.130 0.152
224 0 20 0.580 -0.051 0.131
262 19 0.030 -0.272 0.140 20 1.272 -0.405 0.393
297 16 0.028 -0.002 0.306 18 0.655 0.102 0.298
317 20 0.041 -0.303 0.456 19 1.088 -0.233 0.488
321 20 0.022 -0.070 0.294 20 0.773 0.022 0.303  
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c) SWC models with all sites. 
DOY n slope Constant R2 n slope Constant R2

Daytime LST Daytime LST - Tair
38 16 -0.011 0.688 0.442 16 -0.012 0.300 0.494
58 22 -0.003 0.411 0.005 22 -0.004 0.352 0.007
86 23 -0.009 0.526 0.101 23 -0.009 0.243 0.081
87 24 -0.010 0.498 0.106 24 -0.012 0.239 0.099

115 21 -0.017 0.643 0.101 21 -0.024 0.392 0.120
151 21 -0.019 0.617 0.063 21 -0.026 0.386 0.096
210 25 -0.027 0.715 0.158 25 -0.032 0.394 0.187
224 25 -0.018 0.647 0.122 25 -0.020 0.402 0.124
262 25 -0.030 1.121 0.266 25 -0.032 0.490 0.267
297 23 -0.011 0.556 0.234 23 -0.013 0.242 0.237
317 22 -0.019 0.818 0.242 22 -0.019 0.373 0.224
321 24 -0.010 0.608 0.248 24 -0.010 0.344 0.245

Nighttime LST Nighttime LST - Tair
38 13 -0.005 0.259 0.016 13 -0.005 0.131 0.016
58 23 -0.084 1.333 0.335 23 -0.031 0.255 0.126
86 24 0.011 0.061 0.017 24 -0.010 0.154 0.046
87 22 -0.023 0.456 0.044 22 -0.023 0.114 0.044

115 21 -0.031 0.316 0.064 20 -0.002 0.147 0.001
151 21 -0.036 0.269 0.111 20 -0.028 0.114 0.140
210 25 -0.070 0.411 0.121 24 -0.071 0.091 0.132
224 0 - - - 0 - - -
262 23 -0.035 0.391 0.129 23 -0.029 0.137 0.151
297 19 0.011 0.047 0.021 19 -0.007 0.146 0.009
317 25 0.004 0.164 0.001 25 -0.015 0.146 0.037
321 25 -0.029 0.534 0.044 25 -0.025 0.124 0.029

delta LST RNTI
38 13 -0.009 0.418 0.309 16 -0.366 0.421 0.442
58 23 0.002 0.268 0.003 22 -0.068 0.356 0.005
86 23 -0.006 0.345 0.073 23 -0.267 0.345 0.101
87 22 0.004 0.081 0.012 24 -0.248 0.325 0.106

115 21 -0.009 0.375 0.035 21 -0.334 0.429 0.101
151 21 -0.001 0.281 0.000 21 -0.263 0.460 0.063
210 25 -0.024 0.651 0.099 25 -0.368 0.593 0.158
224 0 - - - 25 -0.296 0.507 0.122
262 23 -0.007 0.421 0.027 25 -0.547 0.629 0.266
297 19 -0.008 0.344 0.116 23 -0.279 0.395 0.234
317 22 -0.014 0.506 0.200 22 -0.385 0.491 0.242
321 24 -0.009 0.470 0.220 24 -0.348 0.446 0.248  
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d) NWDI models with all sites. 
DOY n slope Constant R2 n slope Constant R2

Daytime LST Daytime LST - Tair
38 13 0.020 -0.285 0.393 13 0.021 0.430 0.401
58 22 0.021 -0.398 0.119 22 0.019 0.153 0.076
86 23 0.020 -0.141 0.121 23 0.017 0.504 0.069
87 24 0.028 -0.276 0.209 24 0.031 0.466 0.172

115 20 0.056 -0.929 0.425 20 0.072 -0.002 0.397
151 22 0.064 -0.773 0.215 22 0.081 0.054 0.276
210 24 0.046 -0.344 0.172 24 0.048 0.211 0.155
224 25 0.042 -0.429 0.199 25 0.040 0.168 0.150
262 25 0.078 -1.762 0.484 25 0.078 -0.108 0.442
297 23 0.030 -0.369 0.354 23 0.033 0.462 0.337
317 21 0.059 -1.379 0.565 21 0.054 0.082 0.547
321 25 0.026 -0.510 0.437 25 0.026 0.193 0.414

Nighttime LST Nighttime LST - Tair
38 9 -0.002 0.680 0.001 9 -0.002 0.621 0.001
58 23 0.066 -0.441 0.073 23 0.057 0.454 0.147
86 24 -0.044 1.116 0.071 24 0.034 0.717 0.132
87 22 -0.014 0.835 0.005 22 -0.014 0.622 0.005

115 22 0.009 0.614 0.001 22 0.009 0.697 0.001
151 22 -0.045 0.422 0.081 22 -0.050 0.144 0.092
210 24 0.065 0.225 0.040 24 0.035 0.407 0.013
224 0 - - - 0 - - -
262 23 0.028 0.385 0.024 25 0.002 0.477 0.000
297 19 -0.049 1.191 0.077 19 -0.001 0.631 0.000
317 24 -0.025 0.841 0.016 24 0.046 0.739 0.094
321 25 0.026 0.294 0.009 25 0.020 0.660 0.005

delta LST RNTI
38 9 0.013 0.253 0.234 13 0.661 0.199 0.393
58 23 0.016 -0.018 0.085 23 0.521 0.018 0.119
86 23 0.016 0.211 0.113 23 0.590 0.260 0.121
87 22 0.002 0.623 0.000 24 0.700 0.212 0.209

115 20 0.043 -0.342 0.307 20 1.122 -0.211 0.425
151 22 0.038 -0.291 0.197 22 0.899 -0.235 0.215
210 24 0.048 -0.328 0.151 24 0.625 -0.136 0.172
224 0 - - - 25 0.682 -0.108 0.199
262 23 0.033 -0.321 0.166 25 1.409 -0.494 0.484
297 19 0.029 -0.010 0.321 23 0.735 0.056 0.354
317 21 0.045 -0.422 0.493 21 1.217 -0.348 0.565
321 25 0.025 -0.176 0.419  25 0.916 -0.083 0.437  




