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Abstract 

Remote sensing of near surface soil moisture is of tremendous scientific interest and 

practical value due to its importance for various applications. Over the past four 

decades, a large number of remote sensing approaches have been developed and tested 

to measure soil moisture. Products at low resolution (tens km) are provided routinely 

by several passive microwave missions, while regular soil moisture monitoring at high 

spatial resolution (0.1 ‒ 1 km) is still unresolved. Spaceborne Synthetic Aperture 

Radars (SARs) provide a promising alternative for high spatial resolution soil moisture 

mapping, with operational use now possible due to the number of existing and planned 

SAR missions in the next decade. However, these multiple SAR missions need to be 

combined to reach the science requirements for sampling a variable like soil moisture 

that is characterized by a high temporal variability (2 ‒ 3 days), with the way to combine 

the multiple SAR missions still unresolved. 

Therefore, this research has focused on developing a methodology that can combine 

data from a multi-SAR-mission approach to derive reliable soil moisture (better than 

0.06 m3/m3) with high spatial (tens m) and temporal (2 ‒ 3 days) resolution. The 

method follows the assumption of time-invariant roughness and vegetation for the 

retrieval period, with the first step ensuring the assumption, the second and third steps 

retrieving soil moisture from time series multi-angular and multi-frequency data, 

respectively. This research is mostly based on field data collected from two Soil 

Moisture Active Passive Experiments (SMAPEx-4 and -5) as part of this PhD. 

First, the airborne L-band radar system was calibrated to provide a unique dense L-

band data set for development of the proposed multi-SAR-mission retrieval. The 

calibration based on SMAPEx-4 and -5 showed a radiometric root mean square error 

(RMSE) of better than 0.65 dB, an average channel imbalance of 0.17 dB in amplitude 

and 3.87° in phase. Cross-validation with PALSAR-2 confirmed the calibration 

accuracy of the PLIS data over various land cover types and the potential for SAR 

system cross-calibration. 
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The state-of-the-art numerical and physical scattering models were combined to build 

a series of look up tables (LUTs), covering typical remote sensing radar configurations 

and landcover types. An unsupervised change detection method was subsequently 

proposed to ensure the time-invariant roughness and vegetation changes for the period 

of interest, being a pre-processing procedure of the subsequent soil moisture retrieval. 

Results showed an accurate identification of changed paddocks (> 90%) while 

presenting a low false-alarm rate (< 10%). 

After the detection of changed paddocks, SAR time series observations were separated 

into multiple sub-series for those with roughness and/or VWC changes. To retrieve 

soil moisture from a single SAR mission operating with time-varying imaging modes, 

orbits and radar beams, a time series multi-angular retrieval method was proposed, 

using a genetic algorithm to minimize the difference between LUTs and time series 

multi-angular radar observations with the constraint of a drying down soil moisture. 

Evaluation based on the SMAPEx-5 dataset showed a retrieval RMSE of 0.07 m3/m3 

at the 25-m pixel scale and 0.056 m3/m3 at the paddock scale respectively. The 

effectiveness of the proposed method for irregularly collected data with different 

imaging modes was also confirmed. 

A multi-frequency framework was finally presented as an extension of the above time 

series multi-angular method for joint multi-SAR mission soil moisture retrieval. The 

input multi-frequency data with negligible scattering (low soil contribution) from the 

soil surface was removed before undertaking soil moisture retrieval. Soil moisture 

retrieval was carried out independently for each landcover type using an optimization 

method and forward LUTs. Retrieval from 20 multi-frequency (L-, C- and X-band) 

images collected in 15 days of a three-week period showed an acceptable overall RMSE 

of 0.058 cm3/cm3 at the paddock scale (~0.1 – 0.5 km). The comparison with single 

and dual frequency retrieval suggests that multi-frequency retrieval does not necessarily 

lead to the highest accuracy. However, it leads to significantly enhanced temporal 

resolution with only minimal deterioration in accuracy. 
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 Introduction 

This thesis presents a multi-SAR retrieval framework towards reliable soil moisture 

mapping with high spatial (tens m) and temporal (2 – 3 days) resolution. The principle 

of the proposed method is to enhance the revisit and retrieval stability through the 

combination of multiple SAR missions, with the main novelty being a proper way to 

combine time-varying multi-configurated radar data in soil moisture retrieval. Data 

used for framework development and evaluation were primarily collected from two 

Soil Moisture Active Passive Experiment (SMAPEx) field campaigns in Australia. 

Whilst the work in this research focused on a single site using radar data collected from 

three platforms, the methodology is developed with a global application in mind, 

utilizing the radar data from in-orbit and forthcoming spaceborne radar satellites. 

1.1 Background 

Near-surface soil moisture (top 5 cm) information is important for its partitioning of 

rainfall into runoff through regulation of the infiltration capacity of the soil (Demargne 

et al., 2014), impact on contaminant retention within the catchment, including erosion 

and sedimentation processes, and on dust storm generation through the moisture 

control on soil cohesion (Kurosaki et al., 2011). Additionally, economic, social and 

environmental planning for a water-limited future requires a capacity to monitor soil 

moisture content at a level of spatial and temporal detail that does not currently exist. 

The challenge is to economically monitor this critical environmental variable across 

vast landscapes at an appropriate spatial and temporal resolution; the only way to 

provide such information is from remote sensing. Currently, soil moisture products 

are only routinely available at low resolution (tens km); missions providing these 

products include the European Space Agency's (ESA) Soil Moisture and Ocean Salinity 

(SMOS, Kerr et al., 2001) and National Aeronautics and Space Administration (NASA) 

Soil Moisture Active Passive (SMAP, Entekhabi et al., 2010). Consequently, routine 

soil moisture monitoring at high spatial resolution (0.1 ‒ 1 km) is still unresolved. 
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The Synthetic Aperture Radar (SAR) approach provides a promising alternative for 

global soil moisture mapping at high spatial resolutions (< 1 km), with currently more 

than ten spaceborne SAR missions launched or proposed for launch, most of which 

can collect data at multi-polarization. Moreover, several of these missions are/will 

provide free global coverage routinely (e.g., the ESA Sentinel-1 constellation). This 

situation provides an ideal opportunity to explore the application of radar remote 

sensing to routine high-resolution soil moisture retrieval. 

1.2 Problem and Objective 

Despite the increased availability of SAR data and its more frequent revisit, including 

through satellite constellations, e.g. Sentinel-1 and SAOCOM, the revisit of each 

individual mission (6 – 12 days) is still unable to meet the 2 – 3 day requirement for 

soil moisture mapping (Walker and Houser, 2004). In addition, soil moisture retrieval 

from SAR observations is commonly an ill-posed problem, because of the great 

number of unknowns (Kornelsen and Coulibaly, 2013) e.g., surface roughness and 

vegetation structure. The use of data from multiple SAR missions will enable a denser 

time series of observations, providing a great opportunity to solve the temporal repeat 

problem. However, this also means that SAR data with various observation 

configurations (wavelength, incidence angle, spatial resolution, polarization 

combinations etc.) need combining in an appropriate way. Enhancing the revisit by 

combining multi-SAR-missions can thus also benefit the conversion of an ill-posed 

soil moisture retrieval to a well-posed problem if the multi-polarization, multi-

frequency and varying incidence angle observations from these missions can be 

combined appropriately. However, the way to combine multiple SAR missions with 

time-varying radar configurations in soil moisture retrieval is still unresolved 

(Kornelsen and Coulibaly, 2013). Therefore, this thesis is focused on developing a 

methodology that can combine data from multi-SAR-mission to derive reliable soil 

moisture (better than 0.06 m3/m3) with high spatial (tens m) and temporal (2 – 3 days) 

resolution. 
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1.3 Outline of Approach 

The proposed multi-SAR-mission soil moisture retrieval framework was designed for 

SAR missions operating at the commonly used remote sensing frequency bands of L-, 

C- and X-band. The assumption of time-invariant (over short time periods) roughness 

and vegetation is used for soil moisture retrieval from the combined multi-SAR-

mission time series data, thus removing the major unknowns in soil moisture inversion. 

The approach of this thesis includes four main parts: 

Prior to soil moisture retrieval, airborne L-band data collected from the two Soil 

Moisture Active and Passive Experiments (SMAPEx-4 and -5) were calibrated and 

cross-validated with the Phased Array type L-band Synthetic Aperture Radar 2 

(PALSAR-2). Moreover, state-of-the-art numerical and physical scattering models 

were combined to build a series of Look Up Tables (LUTs), covering typical remote 

sensing radar configurations and landcover types. 

An unsupervised change detection method was subsequently proposed to ensure the 

time-invariant roughness and vegetation changes for the period of interest, being a 

pre-processing procedure of the subsequent soil moisture retrieval. The roughness and 

vegetation changes in L-band data were first investigated to guide the design of the 

method. The optimal feature space was then selected using a feature selection 

algorithm and an LUT-based intensive synthetic data set. The changed paddocks were 

determined in the selected feature space using an unsupervised density-based 

algorithm. 

Time series SAR observations were then separated into multiple sub-series according 

to the presence of roughness and VWC changes provided in the previous step. To 

retrieve soil moisture from a single SAR mission operating with time-varying imaging 

modes, orbits, and radar beams, a time series multi-angular retrieval method was 

proposed. In the method, a genetic algorithm was used to minimize the difference 

between LUTs and time series multi-angular radar observations with a constraint of 

dry down soil moisture. 
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A multi-frequency framework was finally proposed as an extension of the above time 

series multi-angular method for joint multi-SAR mission soil moisture retrieval. The 

input multi-frequency backscattering coefficient (σ0) with negligible scattering (low soil 

relative contribution) from soil surface was removed before soil moisture retrieval. Soil 

moisture retrieval was carried out independently for each landcover type using an 

optimization method and forward LUTs. 

1.4 Thesis organization 

This thesis consists of 9 chapters. Chapter 2 is an extensive review of the literature 

pertaining to the different aspects of the proposed multi-sensor methodology for soil 

moisture retrieval. Chapter 3 is a description of the key data sets used in this study, 

with a particular focus on the radar data and ground sampling collected during 

SMAPEx-5. Aspects of this chapter are included in the following co-authored paper. 

My main role was in soil moisture and roughness samplings during the SMAPEx-5 

field campaign, calibration of the radar observations, classification of landcover maps 

and preprocessing of the roughness measurement. 

 Ye, N., WALKER, J. P., X. WU, JEU, R. D., GAO, Y., JACKSON, T. J., 

JONARD, F., KIM, E., MERLIN, O., PAUWELS, V., RENZULLO, L. J., 

RÜDIGER, C., SABAGHY, S., C., HEBEL, V., YUEH, S. H. & ZHU, L. 

The Soil Moisture Active Passive Experiments: Towards calibration and 

validation of the SMAP mission. Remote Sensing of Environment. In Review. 

Chapter 4 presents the calibration methodology and results for the airborne L-band 

data in the two SMAPEx campaigns, demonstrating the potential of cross-

validation/calibration among SAR systems. The work presented in this chapter has 

been published in the following paper: 

 ZHU, L., WALKER, J. P., YE, N., RÜDIGER, C., HACKER, J., 

PANCIERA, R., TANASE, M. A., WU, X., GRAY, D., STACY, N., GOH, 

A., YARDLEY, H. & MEAD, J. 2018. The Polarimetric L-band Imaging 
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Synthetic aperture radar (PLIS): description, calibration and cross-validation. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 

4513 – 4525. 

Chapter 5 is focused on the development and evaluation of forward LUTs built by a 

combination of current numerical, physical and empirical scattering models. Together 

with the data from Chapter 3 as calibrated in Chapter 4, these LUTs are used in 

Chapters 6-8 for soil moisture retrieval. An investigation of using effective soil 

roughness value in forward modeling has been published in the following paper:  

 ZHU, L., WALKER, J. P., YE, N. & RUDIGER, C. The effect of radar 

configuration on effective correlation length. 2016 International Conference 

on Electromagnetics in Advanced Applications (ICEAA), 820-823. 

Chapter 6 proposes an unsupervised change detection algorithm to ensure the 

assumption of time-invariant roughness and vegetation. This work has been published 

in the following paper: 

 ZHU, L., WALKER, J. P., YE, N. & RÜDIGER, C. 2019. Roughness and 

vegetation change detection: a pre-processing for soil moisture retrieval from 

multi-temporal SAR imagery. Remote Sensing of Environment, 225, 93-106  

Chapter 7 proposes a time series multi-angular retrieval method, which was extended 

to be compatible with time series multi-frequency data in Chapter 8. The work in these 

chapters is in the process of being published as follows: 

 ZHU, L., WALKER, J. P., TSANG, L., HUANG, H., YE, N. & RÜDIGER, 

C. 2019. Soil moisture retrieval from time series multi-angular radar data using 

a dry down constraint. Remote Sensing of Environment. 231, 111237. 

 ZHU, L., WALKER, J. P., TSANG, L., HUANG, H., YE, N. & RÜDIGER, 

C. 2019. A multi-frequency framework for soil moisture retrieval from time 

series radar data. Remote Sensing of Environment. In Review. 
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 ZHU, L., WALKER, J. P., TSANG, L., HUANG, H., YE, N. & RÜDIGER, 

C. 2018. Soil moisture retrieval over agricultural fields from time series multi-

angular L-band radar data. In, 2018 IEEE International Geoscience and Remote 

Sensing Symposium, 6139 – 6142. 

Finally, Chapter 9 presents the conclusions and outlooks based on the work carried 

out. 
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 Literature Review  

This chapter presents the importance of soil moisture measurement and the 

requirements of spatial and temporal resolutions in different fields, followed by a 

review of soil moisture measurement techniques, with a focus on the capability to 

measure soil moisture reliably at an appropriate spatial and temporal resolution. 

Subsequently, radar surface scattering models for soil moisture retrieval are discussed, 

including a review of the models for bare soil and vegetated surfaces. Moreover, the 

range of radar-based soil moisture retrieval methods are discussed, with a focus on the 

multi-temporal and multi-configuration techniques. The knowledge gap in existing soil 

moisture retrieval algorithms identified from this review, and to be addressed by this 

thesis, is then presented together with the proposed approach. 

2.1 Importance of Soil Moisture 

The most common understanding of the term soil moisture is the total amount of 

water between the soil surface and the water table (Seneviratne et al., 2010), also known 

as the unsaturated zone. It can be further separated into surface and root zone soil 

moisture for practical application; the former commonly refers to the water in the top 

approximately 5 cm layer of soil while the latter can extend from depths of around 30 

cm to over two meters. Most modelling studies focus on a shallow zone of less than 

100 cm (e.g., Baldwin et al., 2017, Albergel et al., 2008, Walker et al., 2001). Soil 

moisture is usually defined as the ratio of water to the total soil media in terms of mass 

units (kg/m3), volumetric units (m3/m3), or relative saturation, depending on the way 

it is measured. Sometimes it is expressed as a function of the wilting point and the field 

capacity, both of which are soil and vegetation dependent (Kerr, 2007).  

Despite the small volume of water compared to other components of the hydrologic 

cycle, soil moisture plays a significant role in land-atmosphere interactions (Entekhabi 

et al., 1996, Seneviratne et al., 2010). It controls the partitioning of precipitation into 
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infiltration and runoff; influences the evaporation and evapotranspiration through the 

availability of water and thus the latent and sensible heat flux (Seneviratne et al., 2010); 

and impacts soil micro-organism activities. Therefore, availability of such information 

is critical to achieve state-of-the-art advancements in early warning systems (e.g. flood 

and fire forecasting), weather and climate prediction, climate-sensitive socioeconomic 

activities (e.g. agriculture and water management) and policy planning (e.g. drought 

relief and carbon accounting).  

More specifically, soil moisture can aid in the parameterization and calibration of 

hydrological models, improving the run off simulations, particularly in small 

watersheds (<1000 km2) with highly variable flow (Pauwels et al., 2001, Brocca et al., 

2010, Brocca et al., 2012, Alvarez-Garreton et al., 2014, Chifflard et al., 2018). Multiple 

studies have shown that the determination of soil moisture through remote sensing, 

together with the knowledge of precipitation, land cover, land surface temperature can 

improve the prediction accuracy of flood events (Nied et al., 2013, Massari et al., 2014a, 

Massari et al., 2014b, Wanders et al., 2014, Parinussa et al., 2016, Chifflard et al., 2018). 

Similarly, soil moisture can also benefit early drought prediction through better 

prediction of plant stress, and objective drought monitoring over time and spatial 

scales (Cáceres et al., 2015, Vijaya Kumar et al., 2005). 

The initial soil moisture condition is also a vital input for most weather forecasting 

systems (Seneviratne et al., 2010, Engman, 1992, Koster et al., 2004, Scipal et al., 2008, 

Gutman and Ignatov, 1998, Hunt and Turner, 2017). Numerical studies have shown 

that accurate soil moisture is as important as wind, air temperature and water vapor to 

weather prediction skills (Seneviratne et al., 2010). Changes to soil moisture patterns 

are also expected to be an important indicator of climate change (Seneviratne et al., 

2010). For example, the change of soil moisture spatial pattern in the European 

continent shows a trend of decreasing mean precipitation in mid-latitude and sub-arid 

regions (especially in the Mediterranean region), and an increase in mean precipitation 

in the high latitudes (Seneviratne et al., 2006, Hirschi et al., 2011). 
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Soil moisture stress also has a great impact on the length of the growing season and 

on the seed development and growth phases, thus controlling agricultural productivity 

(Waite et al., 1984, Kramer, 2017, Krishnan et al., 2006). The use of accurate soil 

moisture information in agricultural applications can therefore lead to more accurate 

productivity forecasting (Ines et al., 2013, Cleverly et al., 2016), water conservation 

benefits (Bayer et al., 2013, Volo et al., 2014) and better management of agricultural 

practices such as trafficability in the fields (Stevens et al., 2016, Schulte et al., 2012).  

Despite the great benefit that can be derived from the knowledge of soil moisture, 

providing soil moisture information that meets the requirements of most applications, 

remains many challenging (Engman, 1991, Entin et al., 2000). This is largely due to the 

high variability of soil moisture across temporal and spatial scales and the limitation of 

Table 2-1: Characteristics of soil moisture needs for science and application 

Reference Application Spatial 
resolution (km) 

Revisit 
(days) 

Accuracy 
m3/m3 

Engman (1992) 

Climate studies 10 – 100 1 – 10 - 
Weather Foresting 1 1 - 

Hydrology 0.01 – 1 2 – 3 - 
Agriculture 0.1 – 1 3 – 5 - 

Waite et al. (1984) Precision crop 
management 0.1 – 1 1 – 2 - 

Jackson et al. (1999) Various 
applications 10 2 – 3 0.04 

Hoeben and Troch 
(2000); Calvet and 

Noilhan (2000) 

Soil moisture 
profile estimation - < 3 - 

Walker and Houser 
(2004) Data assimilation 

Less than land 
surface model 

resolution 
1 – 5 0.05  

WMO basic 
requirements 

(http://www.wmo-
sat.info/oscar/requir

ements) 

Agricultural 
meteorology 1 7 0.05 

Hydrology 250 3 0.05 
Global numerical 

weather prediction 100 5 0.08 

http://www.wmo-sat.info/oscar/requirements
http://www.wmo-sat.info/oscar/requirements
http://www.wmo-sat.info/oscar/requirements
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measurements with respect to the high cost of in situ measurement, and the typically 

low spatial or temporal resolution of available remote sensing approaches. A summary 

of soil moisture requirements in various fields is provided in Table 2-1. 

In hydrological and meteorological applications, Hoeben and Troch (2000) suggested 

a daily observation, while Calvet and Noilhan (2000) recommended a 3 day repeat for 

retrieving accurate soil moisture profile. Walker and Houser (2004) found that daily 

near-surface soil moisture observations with a spatial resolution finer than the land 

surface model (e.g., 30 arc-min) achieved the best results in soil moisture and 

evapotranspiration forecasts when used for data assimilation purposes. Moreover, Pan 

and Wood (2010) found that the assimilation performance was most sensitive to the 

spatial resolution of the soil moisture observations, followed by the revisit time and 

retrieval accuracy. Jackson et al. (1999) suggested an accuracy of 0.04 m3/m3 with a 10 

 

Figure 2-1: The capability of techniques for soil moisture measurements, together with 
the spatial and temporal requirements of various applications. 
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km spatial resolution and 2 ‒ 3 sample frequency, which is also the objective of the 

NASA SMAP mission. Agricultural applications require a similar repeat frequency of 

1 – 3 days, but requiring finer spatial resolutions of 0.1 – 1 km (Waite et al., 1984). The 

more recent studies complement the “best guess” estimates of Engman (1992) for a 

range of applications, some of which require a spatial resolution of 10 m. In summary, 

soil moisture with a tens-of-meters spatial resolution and 2 – 3 days repeat is required 

to meet most the needs of most applications. 

2.2 Techniques for Soil Moisture Estimation 

Over the past four decades, researchers have made significant advances in developing 

the algorithms and techniques for monitoring soil moisture, including point-based 

techniques and the remote sensing techniques. A summary of the capabilities of these 

in terms of sensitivity to soil moisture, spatial resolution and temporal repeat is 

presented in Figure 2-1. In the following sections, these techniques are reviewed with 

a focus on the active microwave techniques, current and forthcoming SAR missions, 

and their capability in soil moisture mapping. 

2.2.1 In-situ soil moisture measurement 

The traditional techniques have measured soil moisture in-situ either directly or 

indirectly. The most straightforward method is the thermo-gravimetric measurement, 

with soil moisture being determined from the weight difference of a soil sample before 

and after the oven drying at 105 °C (Robinson, 2009). It is also the standard venue to 

calibrate other indirect approaches. Limited by its destructive nature, repetitive 

observation at the same location is impossible, with other disadvantages including the 

difficulty to remove the effect of organic matter, and the complex and time-consuming 

laboratory processing. 

Rather than directly measuring the amount of water, many commercial sensors have 

been developed to measure other physical variables that depend on the amount of soil 

water, and then relate these variables to the soil moisture either physically or 
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empirically. The most commonly used are dielectric sensors, mainly including the 

capacitance probes (Nadler and Lapid, 1996), time-domain reflectometry probes (Davis 

and Chudobiak, 1975), and frequency domain reflectometry probes (Campbell and 

Anderson, 1998). They exploit the changes in soil relative permittivity (also known as 

dielectric constant) as a function of soil moisture. The large difference between the relative 

permittivity of soil particles and that of water allows a reliable and sensitive approach for 

soil moisture measurements. While these approaches directly respond to the soil 

dielectric properties, which are closely related to soil moisture, other techniques have 

also been developed (Schmugge et al., 1980), such as tensiometric methods, neutron 

methods, acoustic wave methods and gravity measurements. All these techniques can 

be applied to a permanent station for continues observations at various depths, with a 

minimum destruction to the soil at the time of insertion.  

Despite the recently developed Cosmic-ray neutron probes with a 150-250 m radius 

footprint(Montzka et al., 2017), the major disadvantage of in-situ measurements is the 

relatively small zone of influence of these sensors, generally limited to a small adjacent 

area. Hence, a dense network of sensors is required for the spatial distribution of soil 

moisture, which makes it expensive and impractical to deploy and maintain for large areas.  

Moreover, soil type-specific calibration is required to ensure that the volumetric water 

contents at different field sites are accurately interpreted and represented (Kizito et al., 

2008, Rüdiger et al., 2010), especially for heavy clay soils (Schmugge et al., 1980). 

2.2.2 Remote sensing techniques 

An economical alternative for soil moisture monitoring is remote sensing techniques. 

In principle, sensors are installed on a remote sensing platform (e.g., aircraft, satellite 

or balloon etc.) to measure the emitted, reflected and/or scattered electromagnetic 

signal of the soil surface. The measured electromagnetic signals affected by the amount 

of soil water are then related to the soil moisture content through either physical or 

empirical models. Compared with the in-situ approaches, remote sensing techniques 

have the desired capability of providing spatially explicit maps of near-surface soil 

moisture, with up to global coverage. Extensive research has been conducted over the 
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past four decades toward soil moisture retrieval from remote sensing techniques 

(Petropoulos et al., 2015), with the main difference in techniques being the measured 

frequency within the electromagnetic spectrum and the source of  the radiation. 

• Optical, near- and thermal-infrared 

Optical methods exploit the relationship between soil moisture and spectral reflectance 

in the visible/near-infrared bands to empirically determine the soil moisture in the top 

millimeters or so of the soil surface. In general, the absorption of visible bands 

increases as soil moisture is increased, resulting in a decrease of reflectance at these 

bands (Weidong et al., 2002, Gao et al., 2013). However, this tenuous relationship and 

the optimal spectrum bands vary significantly from site to site (Huan-Jun et al., 2009), 

because of the additional dependence of reflectance on organic matter content, 

roughness, texture and observation geometry (Petropoulos et al., 2015). Moreover, the 

optical signal has limited capability to penetrate cloud and vegetation, requiring careful 

correction to eliminate the effect of the atmosphere (Zhao and Li, 2013). These are 

the main reasons for the limited use of visible/near-infrared bands in soil moisture 

retrieval, despite the multitude of optical sensors currently in orbit (Petropoulos et al., 

2015).  

Apart from the visible/near-infrared bands, thermal infrared sensors can also measure 

soil moisture with an enhanced but still insufficient sensitivity to soil moisture. The 

common scheme starts from the estimation of thermal inertia, being a measure of the 

surface resistance to temperature change caused by the ambient temperature (Pratt and 

Ellyett, 1979). The thermal inertia is then related to the soil moisture through the 

thermal conductivity and/or the heat capacity (Petropoulos et al., 2015). The use of 

thermal infrared in soil moisture retrieval has shown promising results over bare soil 

(Leng et al., 2016, Matsushima et al., 2018, Minacapilli et al., 2009) and for sparse 

vegetation areas with the knowledge of ground flux (Maltese et al., 2013a, Maltese et 

al., 2013b), however is still questionable for dense vegetated areas (Petropoulos et al., 

2015). Similar to the visible/near-infrared bands, application of thermal data over large 

areas is still challenging, limited by the short wavelength used. Many studies have also 
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applied a combination of the normalized difference vegetation index (NDVI) from 

optical data and the surface temperature Ts in soil moisture mapping (Patel et al., 2009, 

Rahimzadeh-Bajgiran et al., 2012, Schirmbeck et al., 2017), known as 

temperature/vegetation condition index (TVDI) methods. Recently, optical and 

thermal sensors on unmanned aerial vehicle platforms are being developed for field 

scale irrigation management (Hassan-Esfahani et al., 2014, Nieto et al., 2018). 

Despite the limitation of optical and thermal data, it is of great value as a supplement 

to microwave remote sensing techniques in soil moisture retrieval (e.g. the downscaling 

of passive microwave), because of its high spatial resolution (better than 1 km) and the 

capability to describe the vegetation in detail. 

• Passive microwave 

In contrast, microwave (0.3 to 300 GHz) observations are widely acknowledged as the 

most promising portion of the spectrum (Petropoulos et al., 2015, Karthikeyan et al., 

2017b), with advantages including 1) the high sensitivity to water content in the soil 

media; 2) the negligible influence of the atmosphere; and 3) the independence of 

weather and daylight conditions. The microwave remote sensing can be divided into 

two categories: passive and active methods. Passive sensors (known as radiometers) 

measure the naturally emitted emission from the earth’s surface, expressed as 

brightness temperature. The emissivity of soil generally varies from ~0.6 to ~0.95 for 

a soil moisture value ranging from 0.05 to 0.4 m3/m3, depending on electromagnetic 

wavelength, incidence angle, surface roughness and soil properties (Jackson and Le 

Vine, 1996). Given a surface temperature of 300K, such a variation can introduce a 

variation of 100 K in brightness temperature, which is much larger than the sensitivity 

of typical microwave radiometers (~1 K). 

Most spaceborne radiometers operate at low frequencies (0.4 – 35 GHz), where the 

effect of the atmosphere and vegetation is much lower than that at visible, near-

infrared and thermal bands. However, the field of view is inversely proportional to 

wavelength and antenna size, leads to a much lower spatial resolution constrained by 
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the limited antenna size on a spaceborne platform. Currently, two L-band (~ 1.41 

GHz) passive microwave missions are operationally providing global soil moisture 

products at low resolutions (10 – 40 km). These include of the NASA SMAP and ESA 

SMOS missions. There are also soil moisture records derived from the C-band 

Advanced Microwave Scanning Radiometer for EOS (6.925 GHz) and WindSat (6.8 

GHz) but also suffer from the coarse resolution. Consequently, a number of 

downscaling approaches have been developed for enhancing the spatial resolution, see 

Sabaghy et al. (2018) for a review. However, passive microwave based approaches are 

not yet able to provide spatial soil moisture detail at less than 1 km resolution with an 

appropriate level of accuracy. Notably, the spatial resolution was shown to be more 

critical than the temporal repeat and retrieval accuracy for assimilation into land 

surface models (Pan and Wood, 2010). 

• Active microwave 

For a higher spatial resolution, extensive research has been conducted using active 

(radar) microwave data. Radar is the acronym for RAdio Detection And Ranging, 

which was first used to detect ships and aircraft during the Word War II. The main 

components of a radar system include a transmitter, and an antenna which transmits a 

microwave signal towards the target and receives the backscattered part of the signal. 

While the strength of the backscattered signal is measured to discriminate between 

different targets, the time delay between the transmitted and reflected signals can also 

be used to determine the distance to the target (Ulaby et al., 1982b). There are several 

classifications of radar systems, with some commonly used being: 1) the imaging and 

non-imaging radar, 2) the real and synthetic aperture radar (SAR), 3) the airborne and 

spaceborne radar, and 4) monostatic and bistatic radar. Two kinds of active sensors, 

i.e. scatterometer and SAR, are commonly used for soil moisture retrieval. 

A scatterometer is a sensor used to make precise quantitative measurements of the 

amount of energy backscattered from targets (Ulaby et al., 2014). In general, 

scatterometers are non-imaging sensors which take measurements in one linear 

dimension along the move direction of remote sensing platform. Limited by the beam 
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width on the earth surface, the spatial resolution of a spaceborne scatterometer is fairly 

low (tens km). Spaceborne scatterometers have a long history in global soil moisture 

mapping at a relatively low spatial resolution (50 km), starting from the launch of the 

first European C-band scatterometer on the ERS-1/2 in the 1990s. Its successive 

instruments on MetOp-A/B/C (2006; 2012 and 2018) enables a long-term soil 

moisture record despite a short gap between 2003 and 2006 (Wagner et al., 2015). 

Importantly, the measurements from ground based scatterometers (tower or truck) 

have enabled the initial investigations of various applications in earth observation 

(Ulaby et al., 1982b). 

A SAR is a coherent mostly side-looking radar system which utilizes signal processing 

and the movement of the platform to simulate an extremely large antenna or aperture, 

resulting in a high resolution in azimuth (up to half of the real aperture length). SAR 

can be examined from several different points of views (Ulaby et al., 2014), including 

synthesized antenna aperture; doppler beam sharpening and optical-focusing 

equivalent. Please refer to Cumming and Wong (2005) for more details about the 

formation of SAR images. In view of synthesized antenna aperture (Figure 2-2), the 

 

Figure 2-2: Conceptual figure of the synthesized expanding beamwidth, adapted 
from Ulaby et al. (2014) 
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SAR stores all the radar returned signals (amplitudes and phases) from position A to 

D, with all echoes of the same target being reconstructed as if they were simultaneously 

collected by a huge array antenna (Ulaby et al., 2014). Accordingly, SARs are mostly 

installed on a moving platform (airborne or spaceborne).  

Airborne SAR systems are commonly used as a testing platform for the development, 

implementation, and verification of potential spaceborne SAR applications. Currently 

there are several airborne SAR systems that have been developed by different 

organizations throughout the world (Ouchi, 2013). Some of the most commonly used 

include the AIRborne Synthetic Aperture Radar (AIRSAR), Uninhabited Aerial 

Vehicle SAR (UAVSAR; Rosen et al., 2006) and the Digital Beamforming Synthetic 

Aperture Radar (DBSAR; Rincon et al., 2011) of the NASA; E-SAR and F-SAR of the 

German Aerospace Center; and the Polarimetric and Interferometric Airborne 

Synthetic Aperture Radar L2 (Pi-SAR-L2) of the JAXA (Shimada et al., 2013a). Most 

of these airborne SAR systems can operate in quad-polarization and interferometric 

modes. The significant flexibility of the airborne platforms enables extremely dense 

observations and variable acquisition geometries, e.g. incidence and azimuth angles. 

These characteristics allow for a better understanding of the surface scattering as well 

as the temporal behavior, which are essential for the successful development of 

applications.  

The first civilian spaceborne SAR was on the Oceanographic satellite Seasat, operating 

from June to September 1978. Several shuttle SAR missions were flown before 2000, 

including the L-band SIRA-A/SIR-B, the multi-frequency SIR-C/X-SAR and the 

interferometry Shuttle Radar Topography Mission. In addition, a number of SARs 

have been flown and retired, such as the ERS-1/2, RADARSAT-1, and 

ENVISAT/ASAR, providing valuable data for historical analysis.  

Whilst spaceborne SAR has shown positive results for soil moisture retrieval at high 

spatial resolution (0.1 – 1 km), the revisit of each satellite (> 1 week) is insufficient to 

reach the requirements for soil moisture monitoring, which is characterized by a high 

temporal variability (2 – 3 days). Fortunately, the increasing availability of radar data 
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from new missions enables the possibility for combining the data across these missions 

for an enhanced temporal resolution. In the following sub-section, the current and 

proposed spaceborne SARs are reviewed for the potential soil moisture mapping. 

2.2.3 Present and projected SAR satellite missions 

Currently, more than ten spaceborne SAR missions are in operation, some of which 

are constellations containing 2 – 4 satellites to provide an improved revisit. At least six 

more missions have been scheduled for launch in the next 5 years. An overview of 

these missions is presented in Table 2-2. All these missions operate at the low edge of 

microwave (0.3 – 10 GHz) frequencies, being mostly in the L-, C- and X-bands. The 

validity of this spectrum for soil moisture retrieval has been confirmed in numerous 

studies (Kornelsen and Coulibaly, 2013, Karthikeyan et al., 2017a), although the lower 

frequency / longer wavelength is most desirable for a larger penetration into the soil 

an vegetation layers.  

The nominal revisit of these missions can reach up to several hours if tasked to point 

at a focus area, e.g., two hours for the COSMO-SkyMed constellation (Covello et al., 

2010), providing valuable data for monitoring urgent events. However, routine global 

observation commonly occurs on a much longer period. Currently, only the Sentinel-

1 (Torres et al., 2012), SAOCOM, PALSAR-2 (Kankaku et al., 2014), Biomass mission 

(Le Toan et al., 2011) and NIRSAR (Rosen et al., 2017) can/plan to provide regular 

global observations, with repeats ranging from every 6 – 60 days. It is therefore 

important that a way be found to combine these missions to reach the revisit 

requirement of 2 – 3 days. 

The spatial resolution of most SAR missions ranges from 1 – 100 m depending on the 

imaging mode. Four imaging modes are used in these missions (Figure 2-3). 

• StripMap: A continuous imaging mode with a fixed pointing direction of the 

radar antenna relative to the flight direction. A strip map is an image formed in 
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width, according to the swath of the SAR, following the motion of the platform. 

StripMap is a standard mode of all airborne and spaceborne systems.  

• Spotlight: A mode for obtaining high spatial resolution by steering the radar 

beam to remain over the target of interest as the platform passes by, to achieve 

a longer illumination period (Jakowatz et al., 2012). This greatly improves the 

resolution in azimuth at the expense of coverage (mostly less than 20 km swath 

width). Spotlight is commonly used over focus areas and is a favorite mode for 

military reconnaissance. 

Table 2-2: Present and planed spaceborne SAR missions. 

Instrument/Platform Launch or 
planed date band Spatial 

resolution(m) 
Revisit 
(days) 

COSMO-SkyMed 1– 4  2007 – 2011 X 1 – 100 1 

TerraSAR-X 2007 X 1 – 16 1 – 11 

RADARSAT-2 2007 C 3 – 100 9 – 30 

PALSAR-2/ALOS 2014 L ~1 – 100 14 – 46 

Sentinel-1A/B 2014 and 2016 C 5 – 100 6 – 12 

GaoFen-3 2016 C ~1 – 500  

NovaSAR 1 – 4 2018 S 6 – 30 < 4 

PAZ 2018 X 1 – 15  

ICEYE-X (18 satellites) 2018-2020 X < 10 <1 

SAOCOM-1A/B 2018 – 2019  L 7 – 100 8 – 16 

RADARSAT 
Constellation 1, 2, 3 2019  C ~3 – 10 1 

RISAT-1A/B 2019 – 2021 C < 50  

COSMO-SkyMed 
(2ndGen) 2020 X ~1 – 60 <1 

NISAR 2021 L, S 100 – 50,000 12 – 60 

Biomass P-SAR 2022 P 100 – 200 25 – 45 

Tandem-L 2023 L 3 – 20 8 
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• ScanSAR: A special type of StripMap with the antenna beam periodically 

scanning several sub-swaths to achieve a much wider imaged swath. It also leads 

to a shorter revisit and thus is the optimal mode for global observation. 

• Terrain Observation with Progressive Scan (TopSAR): An improved ScanSAR 

mode used in the Sentinel-1 (Torres et al., 2012, De Zan and Guarnieri, 2006), 

with the main improvement being the capability to collect data with an azimuth-

stationary Impulse Response Function (IRF). In TopSAR, additional rotating of 

the antenna beams in azimuth was applied to achieve the same resolution, 

ambiguity and noise equivalent σ0 along the flight direction (De Zan and 

Guarnieri, 2006), at the expense of more complex signal processing. 

Despite the spatial resolution, imaging modes also tightly relate to the polarization of 

the data collected. In general, ScanSAR collects data with Dual (HH+HV or VH+VV) 

or single polarization because of the limited data downlink, while StripMap and 

Spotlight may record the full scattering matrix. 

In practice, SAR missions have more complex imaging modes with different 

polarizations and spatial resolutions. For example, PALSAR-2 has three different 

StripMap modes, namely, Fine Beam Single, Fine Beam Dual and Polarimetric 

(Rosenqvist et al., 2014). Sentinel-1 has two ScanSAR modes with one used for 

interferometry (Torres et al., 2012). The imaging modes are switched on a scheduled 

basis with special programming for abrupt events, e.g., natural disasters. The transition 

of imaging modes also results into the change of local incidence angle at the same 

location. Moreover, SAR missions collect data in both ascending and descending 

orbits, and even from both sides of the flight direction, introducing changes in local 

incidence angle, azimuth and spatial resolution. 

Consequently, the available data from a single SAR mission or constellation is a time 

series data set with time-varying incidence angle, azimuth, polarization combination 

and spatial resolution. Combining data from multiple SAR missions introduces an 

additional challenge including changes in frequency over time. Soil moisture retrieval 
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from such data is therefore more complex than the retrieval from data with a fixed 

radar configuration, because the retrieval method and forward model should be 

compatible with the range of potential radar configurations. In the following sections, 

scattering models that describe the scattering behavior of a surface at different 

configurations are reviewed, followed by the inversion methods used for soil moisture 

retrieval. 

2.3 Scattering from the Earth’s Surface 

Soil moisture retrieval commonly starts from the development of scattering models 

that can accurately describe the relationships between surface parameters and radar 

observations. In principle, the backscattering coefficient σ0 is a function of incidence 

 
Figure 2-3: Imaging modes of SAR. 
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angle θ, frequency f and polarization pq as well as surface roughness (commonly 

described by the root mean square height HR and surface correlation length LC) and 

soil relative permittivity εs, with additional dependence on the vegetation relative 

permittivity εv and structure for a vegetated area (Ulaby et al., 2014). Despite the 

complex relationship, the εs can be decoupled and thus the soil moisture content can 

be determined with proper treatment (Ulaby et al., 2014). The characterization of 

surface parameters and scattering models are reviewed below. 

2.3.1 Characterization of soil parameters 

The theoretical basis of soil moisture retrieval from SAR is the large contrast between 

the relative permittivity of liquid water (~ 80) and dry soil (2 ‒ 3). For the common 

microwave bands used in remote sensing, i.e. L-, C- and X-band the real part of the 

soil-water mixture’s εs can increase to a value of 20 or greater as the soil moisture 

increases from 0 to 0.4 m3/m3 (Ulaby et al., 1986). The dielectric properties of a soil 

are also influenced by the distribution of soil grain size, temperature and bulk density. 

Several empirical models have been proposed to show the relationships among soil 

moisture, soil properties and relative permittivity at various frequencies (Dobson et al., 

1985b, Hallikainen et al., 1985, Peplinski et al., 1995, Mironov et al., 2009). 

Apart from soil properties, the collected radar signal is heavily dependent on surface 

roughness. When a wave impinges on a smooth soil surface, some of the energy is 

scattered in non-specular directions, with a small amount returning to the radar as 

backscatter. As surface roughness increases, the amount of reflection in the specular 

direction decreases and consequently the surface scattering increases (Ulaby et al., 

1982b). In some cases, e.g., high incidence angles and a relatively smooth surface, the 

σ0 is more sensitive to roughness than soil moisture (Bourgeau-Chavez et al., 2007, 

Fung and Chen, 1992). As a result, accurate characterization of surface roughness is 

the key to successful soil moisture retrieval (Verhoest et al., 2008). However, capturing 

the exact nature of soil surface is almost impossible because of its multi-scale nature 

and great spatial and temporal variations(Ulaby et al., 2014). Rather than physically 

describing the soil surface, two widely used semi-empirical surface scattering models 
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(Oh, 2004, Dubois et al., 1995) use a single one-scale parameter of root mean square 

height (HR) for describing the surface roughness. This simplification was however 

thought to introduce considerable uncertainty (Zribi and Dechambre, 2003). In 

contrast, the Integral Equation Model (IEM) and its further modifications use the HR 

and additionally the correlation length LC and an autocorrelation function (Chen et al., 

2003, Fung et al., 1992, Wu et al., 2001, Chen et al., 2000). Roughness parameterization 

has been widely claimed as the main source of inconsistency between the modelled 

and observed σ0 (Álvarez-Mozos et al., 2006, Panciera et al., 2014a, Baghdadi et al., 

2002b, Joseph et al., 2010, Lievens et al., 2011a, Choker et al., 2017). 

The uncertainty of surface roughness characterization partly comes from the difficult 

to measure the inherent heterogeneity at the filed scale. The ground measured 

roughness may not properly represent the soil surface viewed by the radar. Large 

variation and uncertainty has been found in estimating the roughness parameters for 

the same site, especially in calculating the LC (Lievens et al., 2011a, Davidson et al., 

2003, Mattia et al., 2003, Zribi et al., 1997). An increase in HR and LC was found to 

occur as the length of the measured profile was increased, with the optimal length still 

unsolved (Baghdadi et al., 2000, Callens et al., 2006). Another uncertainty source is the 

description of soil surface as a one-scale stationary random process. For agricultural 

areas, the soil surface is often anisotropic due to ploughed periodical row features 

(Ulaby et al., 2014, Davidson et al., 2000). Whilst multi-scale scattering models have 

shown some positive results over such soil surfaces (Mattia and Le Toan, 1999, Fung, 

1994, Ulaby et al., 1982a), isolating εs for soil moisture retrieval becomes more difficult 

because of the additional multi-scale roughness parameters. 

To solve these problems, some other roughness parameterizations have been 

proposed. For example, Zribi and Dechambre (2003) introduced a roughness 

parameter Zs = HR
2/LC, showing a high correlation coefficient of 0.995 with the σ0 

difference of two acquisitions acquired from different incidence angles. This was 

successfully applied in soil moisture retrieval using empirical relationships (Rahman et 

al., 2007, Rahman et al., 2008, Zribi and Dechambre, 2003). The Zs was further 
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improved by Zribi et al. (2014) through considering the autocorrelation function (ACF) 

shape. In addition, effective roughness parameters of the IEM have been proposed to 

replace the physical parameters, which were widely confirmed to have a better fit 

between the observed and simulated σ0 (Baghdadi et al., 2002c, Baghdadi et al., 2004, 

Baghdadi et al., 2011, Su et al., 1997, Baghdadi et al., 2006b, Panciera et al., 2014a). 

Effective roughness parameters have also been used for surfaces with periodic row 

structure (Champion and Faivre, 1996, Joseph et al., 2010), providing a simple 

alternative for soil moisture retrieval. However, the effective roughness parameters 

depend on radar configuration, with larger effective LC and effective HR observed at 

lower incidence angles over the same location (Lievens et al., 2011a). Moreover, L-

band tends to have larger LC values than at C- and X-band, whereas the C- and X-

bands values are typically similar (Zhu et al., 2016). Accordingly, the use of those 

parameters in forward prediction requires radar-configuration-specific calibration. 

Similarly, effective roughness values directly retrieved from radar data using theoretical 

forward models (Bai et al., 2016), also depend on the input radar measurements and thus 

cannot be used for soil moisture retrieval from other radar data.  

2.3.2 Scattering models for bare soil 

The most simple and straightforward model is the linear relationship between the 

backscatter coefficient in dB and soil moisture content in the top few centimeters 

(Dobson and Ulaby, 1986), with the general formulation being: 

 0
dB A mv Bσ = ⋅ + , Eq. 2-1 

where A and B are empirical parameters representing the sensitivity to soil moisture 

and the effect of vegetation and soil roughness respectively. Many studies have 

successfully applied this relationship or its variant in soil moisture retrieval (Zribi and 

Dechambre, 2003, Zribi et al., 2005b, Quesney et al., 2000, Zribi et al., 2011, Zhang et 

al., 2017, Baghdadi et al., 2007), with different fitted A and B. Despite the simplicity 

and satisfactory results, the parameters need to be calibrated for each site and radar 

configuration (e.g., Baghdadi et al., 2008, Baghdadi et al., 2007) or be estimated by 
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using long time series SAR observations (e.g., Hégarat-Mascle et al., 2002, Moran et 

al., 2000). 

For more general application, several semi-empirical models based on multiple ground 

scatterometer experiments have been developed. Among these, the most commonly 

used are those derived by Oh et al. (1992) and Dubois et al. (1995). The Oh model was 

developed based on a comprehensive investigation of the observed σ0 under different 

configurations. The co- ( 0 0
HH VVσ σ ) and cross-polarized ( 0 0

HV VVσ σ ) ratios are found to 

follow a function of kHR, whose slope increases steep at first and then forms an 

asymptote. The model was improved by considering the surface autocorrelation (Oh 

et al., 1994) and incidence angle (Oh et al., 1994, Oh et al., 2002), and was further 

modified by removing LC (Oh, 2004). The Oh model has been applied to various soil 

conditions with typical radar configurations. Fung and Chen (2004) reported that the 

Oh model accurately estimated σ0 for larger incidence angles (θ > 30°). It was also 

found to fit observations well at various θ (Baghdadi and Zribi, 2006, Choker et al., 

2017). While underestimation in σ0 was reported in several studies (Baghdadi and Zribi, 

2006, Merzouki et al., 2010, Panciera et al., 2014a, Boisvert et al., 1997), some studies 

found a systematical overestimation using various data (Merzouki et al., 2011, 

Gherboudj et al., 2011, Sahebi and Angles, 2010). Consequently, a correction factor 

was suggested in the Oh model for achieving accurate soil moisture retrieval (Merzouki 

et al., 2011, Baghdadi and Zribi, 2006). 

The Dubois model differs from the Oh model in that it directly relates the co-polarized 

σ0 (HH and VV) to the εs, θ and f (Dubois et al., 1995). The validity range of this model 

is kHR < 2.5 and θ > 30°. For the vegetated area, a further constraint of Normalized 

Difference Vegetation Index (NDVI) less than 0.4 is required (Dubois et al., 1995). 

The Dubois model was found to overestimate σ0 by as much as 4 ‒ 6 dB in Merzouki 

et al. (2011), 1.7 dB in HH polarization in Baghdadi and Zribi (2006) and 1.8 dB in co-

polarization in Panciera et al. (2014a). In contrast, Álvarez-Mozos et al. (2007) found 

that the model tended to underestimate σ0 at moist conditions. 
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A number of physically-based models have been proposed to describe the behavior of 

σ0 over bare soil (Elfouhaily and Guérin, 2004). Some representative ones are the small 

perturbation model, the geometric optics model, the small slope approximation model 

and the IEM (Ulaby et al., 1982b). Among these, the IEM (Fung and Chen, 1992) and 

its variants (Hsieh et al., 1997, Wu et al., 2001, Chen et al., 2003, Fung and Chen, 2004) 

have been the most popular ones in soil moisture retrieval because of their wide validity 

range (kHR < 3). Given a εs, the radar configuration and the three roughness 

parameters (HR, LC and ACF), both the co- and cross-polarized σ0 can be simulated by 

the IEM.  

Laboratory experiments have confirmed the effectiveness of the IEM (Hsieh et al., 

1997, Mancini et al., 1999, Macelloni et al., 2000). However, σ0 estimated by IEM can 

have a large bias with that observed from a natural surface (Álvarez-Mozos et al., 2006, 

Panciera et al., 2014a, Baghdadi et al., 2002b, Joseph et al., 2010, Lievens et al., 2011a, 

Choker et al., 2017). As mentioned above, this bias is often suggested to be the result 

of a failure in the roughness parameterization (Baghdadi et al., 2004, Baghdadi et al., 

2011, Baghdadi et al., 2006b, Lievens et al., 2011b). Effective roughness parameters or 

correction factors have therefore been suggested in order to achieve better fitting 

results. Moreover, the IEM has been modified to include a revised Green’s function, 

multiple scattering, and a transition function for the Fresnel coefficients (Hsieh et al., 

1997, Wu et al., 2001, Chen et al., 2003, Fung and Chen, 2004). 

The other category of physically-based models is the numerical backscattering model, 

which directly solves the Maxwell’s equations on a conducting surface. The method of 

moments is the most commonly used numerical method for σ0 simulation over a bare 

soil. It was initially limited in the evaluation of other simplified physical models because 

of the large computation cost and the fact that it can only be used to model a small 

surface of 8 ‒ 10 times of the wavelength (Huang et al., 2010, Ulaby et al., 1986, Liao 

et al., 2016a). Recently, the numerical solutions of Maxwell’s question in three 

demission (NMM3D; Huang et al., 2010, Huang and Tsang, 2012) was used to build 

look up tables (LUTs) for operational soil moisture retrieval using the SMAP radar 
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(Kim et al., 2012a, Huang et al., 2010). Despite the great potential of numerical 

methods, faster algorithms, more powerful computer systems or new conceptions of 

computation (e.g., cloud computing) are required for their routine applications in soil 

moisture retrieval. 

2.3.3 Scattering models for vegetated surfaces 

For a vegetated surface, the scattering and absorption of vegetation layers should be 

included in the above scattering models. Since the vegetation materials are commonly 

less than 1% of the vegetation layer in volume, the relative permittivity of the 

vegetation layer (εv) is slightly larger than air, meaning that the surface scattering at the 

top boundary of the vegetation layer can be ignored (Ulaby et al., 2014). Moreover, the 

first-order scattering contributions are significantly larger than those of higher-order 

ones for natural vegetation (Ulaby et al., 2014). Figure 2-4 shows the conceptual first-

order scattering mechanisms over a vegetated surface, including the volume scattering, 

the attenuated soil scattering and the double bounce scattering between the soil surface 

and vegetation layers. The optical depth τ, a measure of the vegetation penetration, 

mainly depends on the radar frequency and εv. The other two scattering components 

are functions of vegetation structure, geometry, εv and radar configuration (Wigneron 

et al., 2004). 

In the early growth stages, the biomass of crops is very low with an undetectable effect 

on radar signal, especially for long wavelengths. Accordingly, the effect of vegetation 

was not considered for areas with low biomass (Dubois et al., 1995, Moran et al., 2000, 

McNairn and Brisco, 2004). As the crop grows, the radar signal becomes increasingly 

sensitive to the canopy. The volume scattering increases in a linear fashion in relation 

to the vegetation water content (VWC) or plant density until a saturation point (Ulaby 

et al., 1986), which varies for different radar configurations. Imhoff (1995) reported 

that the saturation points for C-, L- and P- band are about 2 kg/m2, 4 kg/m2 and 10 

kg/m2 respectively. Moreover, it has been found that the VV polarization tends to 

saturate at a lower level than HV and HH polarization, because of the dominant 

vertical structure of most vegetation types (Bindlish and Barros, 2001). 
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Many scattering models have been developed to account for the effect of vegetation 

and thereby to assist soil moisture retrieval from SAR data (Kornelsen and Coulibaly, 

2013). These models are either based on the radiative transfer theory (Ulaby et al., 1990, 

Bracaglia et al., 1995, Stiles and Sarabandi, 2000, Karam et al., 1992) or the distorted 

Born approximation (DBA; Lang and Sighu, 1983, Saatchi and McDonald, 1997, 

Sarabandi and Lin, 2000, Burgin et al., 2011). Both models fall into the general category 

of wave theory and energy transport approach, with the main difference being 

inclusion of the coherent effect in the DBA (Saatchi and McDonald, 1997). All these 

models treat the vegetation layer as a discrete random medium consisting of single 

microwave scatterers that represent vegetation components (e.g., trunks, branches, and 

foliage). Among these, the Michigan Microwave Canopy Scattering Model (MIMICS; 

Ulaby et al., 1990) is the most popular first-order solution of the radiative transfer 

equations, and is widely used in soil moisture retrieval (Balenzano et al., 2011, De Roo 

et al., 2001, Dobson et al., 1992, Lin et al., 2009, Song et al., 2014). The DBA has also 

achieved promising results in soil moisture mapping (O'Neill et al., 1996, Chauhan, 

2002, Kurum et al., 2009, Huang et al., 2017a). However, the use of those physical 

models in operational soil moisture retrieval still suffers from the great number of 

vegetation parameters required, including the dielectric properties, geometry, and 

density distribution of scatterers. Recently, the DBA was used to build a series of look 

up tables (LUTs) for global soil moisture mapping from the SMAP radar (Kim et al., 
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Figure 2-4: Conceptual scattering of an incident radar signal by a vegetated surface; 
modified from Ulaby et al. (2014). 
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2014a), where the required vegetation parameters were determined by the VWC and 

allometric relationships. 

The water cloud model (WCM) (Attema and Ulaby, 1978) is a less complicated 

alternative that is widely used in soil moisture retrieval (Prakash et al., 2012, Gherboudj 

et al., 2011, El Hajj et al., 2016, Askne et al., 2017, Li and Wang, 2018). The principles 

behind the WCM include that: 1) the vegetation is described as a homogeneous cloud 

of identical water spheres, uniformly distributed between the ground and the 

vegetation height; 2) neglecting multiple scattering between the ground and vegetation 

constituents 0
canopy+soilσ ; and 3) the crop height and cloud density are the only parameters 

required. In this context, the total backscatter is represented by: 

 0 2 0 0
soil canopyσ τ σ σ= + , Eq. 2-2 

with 

 2exp( sec θ)BVτ = − , Eq. 2-3 
and 

 0 2
canopy 1 cos (1- )AVσ θ τ= , Eq. 2-4 

where A and B are fitted parameters dependent on the vegetation type and radar 

configuration, and V1 and V2 are bulk vegetation parameters, being various 

biophysical properties of the canopy (Graham and Harris, 2003). Some commonly 

used parameters include VWC, leaf area index, leaf water area index and NDVI 

(Joseph et al., 2010). Lievens and Verhoest (2011) compared the performance of 

the WCM using different bulk vegetation parameters and found the leaf area index 

to be the optimal choice, while NDVI was suggested by Wang et al. (2019). The 

main limitation of the WCM is the single scattering assumption, hampering its 

application in areas with significant multiple scattering (e.g., dense vegetated areas). 

Moreover, since the parameters A and B are dependent on the canopy type and radar 
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configuration, generalization of the model and integration of the WCM in a multi-

configuration inversion scheme is still challenging. 

2.4 Soil Moisture Retrieval from SAR Data 

The scattering models introduced above suggest that soil moisture retrieval is a process 

of separating the contribution of soil moisture from a few other surface parameters. 

From the view of finding a solution, this process is commonly ill-posed as the number 

of observations is usually less than that of the unknowns, especially in vegetated areas. 

It is widely acknowledged that a single configuration was insufficient to retrieve soil 

moisture accurately (Altese et al., 1996), with most methods using multi-configured 

and/or multi-temporal data. Accordingly, multi-configuration methods are reviewed 

first, followed by multi-temporal methods where the major unknowns representing the 

roughness and vegetation can be assumed time-invariant. 

2.4.1 Multi-configuration methods 

Multi-polarization radar has been successfully applied for soil moisture retrieval from 

SAR observation alone. The availability of multi-polarized data has allowed the 

application of both the Dubois model (Dubois et al., 1995) and Oh model (Oh, 2004). 

The former needs HH and VV polarization, while the latter requires both the cross- 

and co-polarization ratios. Multi-polarized data also benefit the soil moisture retrieval 

using IEM like models and various inversion methods, such as the LUT (Van Oevelen 

and Hoekman, 1999, Bryant et al., 2007, Baghdadi et al., 2002a, Bai et al., 2016), neural 

networks (Baghdadi et al., 2002a, Notarnicola et al., 2008) and Bayesian methods 

(Notarnicola et al., 2008, Paloscia et al., 2008). Multi polarized data in these inversion 

methods help turn the ill-posed retrieval problem into a well-posed one. 

For a vegetated area, the advantage of multi-polarization may be the availability of 

cross- (HV/VV) and co-polarization (HH/VV) ratios, which closely relate to 

vegetation parameters (Kornelsen and Coulibaly, 2013). Simple empirical models 

based on these ratios can be built to remove the influence of vegetation (Gherboudj 
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et al., 2011). Moreover, polarimetric decomposition methods that were initially used in 

landcover classification (Freeman and Durden, 1998a, Yamaguchi et al., 2005) were 

introduced in soil moisture retrieval, to better utilize the information contained in 

multi-polarized data. Individual contributions of the three components depicted in 

Figure 2-4 can be separated by proper decomposition models, with soil moisture then 

being retrieved from the soil surface contribution (Hajnsek et al., 2009, Jagdhuber et 

al., 2013, Jagdhuber et al., 2015, He et al., 2016, Wang et al., 2017). Despite some 

positive results, polarimetric decomposition models need further development for the 

purpose of soil moisture retrieval. For example, Baghdadi et al. (2013) found that the 

polarimetric parameters calculated from multi-frequency data were not very relevant 

to soil moisture over bare agricultural soils. Moreover, these methods need well 

calibrated data in terms of both amplitude and phase, with the influence of calibration 

uncertainty being unclear. 

The σ0 collected from multiple incidence angles shows great promise for soil moisture 

retrieval. The difference of σ0 collected from two incidence angles was found to be 

relatively insensitive to soil moisture but very sensitive to soil roughness (Boisvert et 

al., 1997, Zribi and Dechambre, 2003), and thus being an effective indicator of 

roughness for improving the empirical soil moisture retrieval models (Srivastava et al., 

2003, 2009). Alternatively, roughness can be estimated from the σ0 difference of two 

incidence angles, thereby simplifying the soil moisture retrieval. Zribi and Dechambre 

(2003) proposed an empirical model that relates roughness parameter Zs with the σ0 

difference of HH polarization from 23°and 39°. Rahman et al. (2008) then extended 

this method for soil moisture and roughness retrieval based on an extra observation 

of dry season. Wang et al. (2011) further developed this method by integrating the 

empirical relationship between σ0 and the effective LC developed by Baghdadi et al. 

(2006a). Studies have also directly used multi-angular data (commonly multi-polarized) 

in inverse scattering models (Sahebi and Angles, 2010, Bryant et al., 2007, Merzouki 

and McNairn, 2015, Baghdadi et al., 2006b). 
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Of greater promise in soil moisture retrieval is the use of satellites to obtain multi-

frequency data. A two-frequency polarimetric radar (such as a C- and L-band system) 

is expected to derive more accurate soil moisture over bare soil than a single frequency 

radar, as the different roughness scales respond differently to the different frequencies 

(Ulaby et al., 2014). Despite the great potential, only limited studies so far have applied 

multi-frequency data in soil moisture retrieval (Bindlish and Barros, 2000, Bindlish and 

Barros, 2001, Pierdicca et al., 2008, Zhang et al., 2016, Zhang et al., 2018). The main 

challenging has to do with the dependency of oversimplified scattering models (e.g., 

the IEM, Oh, and WCM) on frequency. For a bare soil surface, the single scale 

roughness parameters (HR, LC and isotropic ACF) are insufficient to represent the real 

roughness viewed by radar with different frequencies. As a result, effective roughness 

parameters of one frequency are not optimal for another frequency, requiring 

frequency-specific calibration. For vegetated surfaces, the fitted parameters of 

simplified radiative transfer models such as the WCM are also dependent on the radar 

configuration (Bindlish and Barros, 2001, Zribi et al., 2005a, Joseph et al., 2010, 

Hosseini and McNairn, 2017). Consequently, successful soil moisture retrieval from 

multi-frequency data either requires more complex model calibrations or includes 

more unknown parameters (e.g., multi-scale roughness) to represent the real roughness 

viewed by a multi-frequency radar. More frequencies also mean more unknowns to be 

determined in soil moisture retrieval. 

Moreover, current and the forthcoming satellites (Table 2-1) cannot simultaneously 

image surfaces with multi-frequency. Therefore, collecting multi-frequency data at the 

same location is only possible by combining multi-SAR missions. However different 

SAR missions often do not pass by the same location on the same date, resulting in a 

delay between images with different frequencies. A potential solution is to use the 

different temporal behaviors of surface parameters. For instance, for short periods 

roughness and vegetation can be assumed as time-invariant with the soil moisture 

being the only parameter varying over time. This is the main principle of the multi-

temporal methods introduced below. 
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2.4.2 Multi-temporal methods 

The temporal behavior of soil moisture is usually characterized by a relatively fast dry 

down process following an abrupt increase from precipitation, compared to the 

changes in soil roughness and vegetation which undergo relatively smooth transition 

in time, except for deliberate cultivation practices. Accordingly, roughness and 

vegetation parameters may be considered constant for acquisitions over sufficiently 

short time intervals. This assumption allows for a simple empirical relationship 

between soil moisture change and the σ0 difference of two images. This method is 

called the change detection or image difference technique accordingly. 

A general formulation is given as follows: 

 0 0
benchmark benchmarkσ σ ( )A mv mv− = − , Eq. 2-5 

where mv and mv benchmark are the soil moisture of the target image and the benchmark 

image (e.g., the σ0 of a dry season). The right hand side can also be written as a wetness 

index by dividing the left hand side by the σ0 difference of extreme wet and dry 

conditions (Sano et al., 1998, Wagner et al., 1999a, 1999b). Some studies have directly 

applied such methods with satisfactory results (Moran et al., 2000, Thoma et al., 2006, 

Hornáček et al., 2012, Hoshino et al., 2012, Wagner et al., 2015). Other researchers 

have improved this method by removing the area with a low sensitivity of σ0 to soil 

moisture. For example, Quesney et al. (2000) used an unsupervised classification to 

first mask the insensitive dense wheat fields, and then applied the change detection to 

the remaining area. Likewise, Hégarat-Mascle et al. (2002) classified the landcover 

using multi-temporal SAR images and proposed a set of rules to determine the 

insensitive targets based on different landcover types and different vegetation growing 

stages. Similarly, Zribi et al. (2007) used NDVI, Normalized Difference Water Index 

(NDWI) and Digital Terrain Model (DTM) to mask the insensitive areas. Moreover, 

some studies have combined other source data with SAR observations in the change 

detection method, such as radiometer data (Kim and Van Zyl, 2009, Piles et al., 2009) 

and optical data (Kurucu et al., 2009). 
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There are several other soil moisture retrieval methods using multi-temporal data. 

Joseph et al. (2008) first estimated the roughness using ground measured soil moisture 

and the IEM, with time series soil moisture retrieved from images over the whole crop 

growing season. Similarly, Rahman et al. (2008) estimated the roughness parameter Zs 

(Zribi and Dechambre, 2003) using two images of dry condition first, and then applied 

the retrieved roughness in the following moisture retrieval. Mattia et al. (2006b) took 

a previously retrieved soil moisture map as the prior information and updated the soil 

moisture using subsequent images. This method was then extended to estimate time-

series soil moisture, and one HR and LC, through numerical inversion of the IEM from 

time-series measurements of HH backscatter (Mattia et al., 2009). Pierdicca et al. (2010) 

proposed a two-step multi-temporal soil moisture retrieval method, with the first step 

being vegetation correction of time-series SAR observations taking the image achieved 

before the vegetation growing season as the benchmark. These corrected images are 

then integrated into an inversion scheme based on Bayesian theory. Balenzano et al. 

(2011) related the multi-temporal alpha approximation for the HH polarization to the 

soil moisture, which was further extended for multi-polarization data (Ouellette et al., 

2017). Taking another approach, Kim et al. (2012a), (2014a) implemented a LUT 

times-series method to estimate time-series soil moisture by minimizing a cost function 

of the LUT calculated by NMM3D (Huang et al., 2010) using time series HH and VV 

observations. In another approach again, Kweon and Oh (2014) developed an 

approximation method called “juxtaposition/possibility” to derive time-series soil 

moisture and one invariant HR from time-series single polarization data; this was found 

to perform as well as the Oh model using quad polarizations. 

Currently, there are two main limiting factors of the multi-temporal methods. The first 

has to do with the assumption of invariant roughness. Although many studies have 

confirmed the time-stationarity of roughness in grasslands and agricultural fields after 

seeding (Callens et al., 2006, Jackson et al., 1997, Moeremans and Dautrebande, 2000), 

care is still needed to identify when surface cultivation practices have been executed 

between acquisitions. To this end, Notarnicola (2014) proposed a Bayesian change 

detection approach in which the possible roughness change is accounted for. Gorrab 
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et al. (2015) applied roughness correction in multi-temporal retrieval, resulting in 

improved retrieval accuracy. The other limitation is that current multi-temporal 

methods have focused on soil moisture retrieval from data with the same configuration. 

As mentioned in 2.2.3, there is usually a long time-lag between images with the same 

configuration. Despite these limitations, integrating multi-temporal data in soil 

moisture retrieval is becoming increasingly popular for large scale applications, because 

of its operational simplicity and the increased revisit of satellites (Pierdicca et al., 2014, 

Fascetti et al., 2015, Tomer et al., 2015, Wagner et al., 2015, Naeimi et al., 2009, Mattia 

et al., 2017). 

2.5 Knowledge Gap and Proposed Approach 

Joint use of multi-SAR missions is a promising way to meet the spatial (tens m) and 

temporal (2 ‒ 3 days) requirements of soil moisture measurement. The abundant 

information contained in multi-SAR-mission data is also promising to derive more 

reliable soil moisture retrieval in view of solving an ill-posed inversion problem. 

However, there is no sophisticated approach to derive time series soil moisture from 

multi-SAR-mission data. The multi-angular, multi-frequency and multi-temporal 

methods are being developed. But current multi-angular and multi-frequency methods 

can only work for multi-configuration data acquired simultaneously. Otherwise, soil 

moisture should be time-invariant during the acquisitions of multi-configuration data 

and thus can only derive the average soil moisture. Current multi-temporal approaches 

are only suitable for time series data with the same incidence angle, polarization and 

frequency. Figure 2-5 shows the conceptual relationship among multi-configuration 

methods, multi-temporal methods and the proposed method for multi-SAR mission 

retrieval. 



 

Literature Review 

 

2-30 

 

Inheriting from multi-temporal methods, the main principle behind the proposed 

multi-SAR-mission method is the assumption of time-invariant surface roughness and 

vegetation parameters. This is valid for time series data acquired over a short time 

interval. However, unexpected surface preparation and animal activities may change 

the surface drastically and there is no sophisticated method to eliminate the influence 

of such changes. Therefore, a roughness change detection algorithm is required to 

identify the roughness variations before combing multi-SAR-mission in soil moisture 

retrieval. 

Some studies have retrieved time series soil moisture from time series multi-angular 

data in view of extending the multi-temporal methods (Naeimi et al., 2009, Zribi et al., 

2007). An incidence angle normalization procedure is required before soil moisture 

retrieval in these studies. Although incidence angle normalization methods are well 

developed (Karvonen et al., 2002, Ye et al., 2015, Zribi et al., 2005a, Ulaby et al., 1986), 

this procedure not only introduces additional uncertainties but also removes the 

abundant information contained in the multi-angular data. Balenzano et al. (2011) 

proposed a multi-temporal method and claimed the temporal backscatter changes is 

relatively insensitive to changes in the incidence angle between subsequent L-band 

acquisitions. This is, however, not confirmed by its further applications (Balenzano et 

al., 2012, Balenzano et al., 2013, Mattia et al., 2014). A novelty method without 

 

Figure 2-5: Conceptual relationship among the multi-configuration methods, multi-
temporal methods, and the proposed method for multi-SAR mission retrieval. 
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incidence angle normalization is needed in view of extending multi-angular methods. 

For a further extension to cover multi-frequency data, a combination of current 

scattering models coving all potential radar configurations are required. The 

effectiveness of high frequency bands (e.g., the X-band) over vegetated area still need 

to be addressed although some successful cases were reported recently (Aubert et al., 

2011, El Hajj et al., 2016, Bai et al., 2015). More importantly, the dilemma that more 

frequencies equal to more unknowns should be carefully considered. 

In summary, there is no sophisticated method to collectively retrieve soil moisture 

from radar data with time-varying incidence angle and frequency. A multi-SAR mission 

retrieval framework was designed to be compatible with SAR missions operating at 

the commonly used remote sensing frequency bands, i.e., L-, C- and X-band. Similar 

to the multi-temporal methods above, the assumption of time-invariant roughness and 

vegetation is used to remove the major unknowns in soil moisture inversion. The main 

steps include: 1) development of LUTs coving potential radar configurations; 2) a 

change detection algorithm to ensure the basic assumption; 3) a time series multi-

angular retrieval method and 4) a further extension for multi-frequency data. 

2.6 Chapter Summary  

This chapter has provided an overview of the importance of soil moisture 

measurement and techniques for soil moisture measurements. In particular, the 

potential of using current and forthcoming SAR missions for a reliable soil moisture 

mapping with high spatial and temporal resolution is discussed; the scattering models 

relating soil moisture to radar observations and the retrieval methods are presented. 

Among those retrieval methods, multi-temporal and multi-configuration methods 

have been widely accepted as promising approaches for the ill-posed soil moisture 

estimation. The application of those methods, however, are limited in specific radar 

configuration or data source. Therefore, a framework that can collectively retrieve soil 

moisture from multi-SAR missions was proposed. 
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 Data Sets 

This chapter presents an overview of the data sets used in this study, including the field 

data from the fourth and fifth Soil Moisture Active Passive Experiment (SMAPEx-4 

and -5) and associated satellite data. The SMAPEx data sets include airborne SAR data 

and ground sampling of soil moisture, vegetation and soil surface roughness. The 

satellite data used include radar data from the L-band PALSAR-2, C-band 

RADARSAT-2 and X-band COSMO SkyMed, and optical data from the Landsat-8 

Operational Land Imager (OLI). These data were used to validate the airborne SAR 

system in Chapter 4, develop and evaluate the forward scattering models in Chapter 5, 

identify abrupt surface roughness and vegetation changes in Chapter 6, and 

demonstrate the multi-angular and multi-frequency soil moisture retrieval algorithms 

in Chapter 7 and Chapter 8, respectively. 

3.1 The SMAPEx Campaign Data 

The SMAPEx-4 and -5 were conducted at the beginning of the SMAP operational 

phase for the purpose of in-orbit calibration/validation of the NASA’s SMAP 

conception (Ye et al., In Review). These experiments were made in the austral autumn 

from April 30th to May 23rd, and austral spring from September 6th to 28th 2015, 

covering various stages of the crop growing season and across a wide range of soil 

moisture conditions (Ye et al., In Review). The time series soil moisture and rainfall 

measurements during this period is presented in Figure 3-2. The SMAPEx study site 

is a semi-arid cropping and grazing area near the Yanco agricultural institute, located 

in the center of the Murrumbidgee River catchment, Australia (Figure 3-1). The 

airborne mapping area is a 71 km × 89 km rectangle with a mostly flat topography. 

Soil types are predominantly clays, red brown earths, sands over clay and deep sands 

(Panciera et al., 2014b). The main landcover types during SMAPEx-4 were bare soil, 

grass, open wood land and early-stage wheat, with two additional crops (canola and 

lupine) being observed during SMAPEx-5. A total of six 3 km × 3 km focus areas, 
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YA4, YA7, YB5, YB7, YE and YF, were selected for intensive ground sampling. These 

areas were selected to cover the land cover conditions represented within the airborne 

mapping area. Table 3-1 lists the characteristics of the six focus areas. 

 

Figure 3-1: Layout of the SMAPEx study area showing the location of six focus areas 

and the landcover during SMAPEx-5. 

 
Figure 3-2: Time series of the top 5 cm soil moisture and rainfall measurements from  

all OzNet sites over the Yanco area 2015; the solid black line and dashed black lines 

show the mean and 25th/75th percentiles of soil moisture respectively. 
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While the SMAPEx campaigns were a major initiative involving many people, I made 

extensive contributions to the SMAPEx-5 campaign, including key responsibilities for 

the soil surface roughness and soil moisture sampling. I performed all processing of 

the surface roughness sampling data of SMAPEx-5 as well as calibration and 

processing of all the airborne radar data.  

3.1.1 Airborne radar observations 

The Polarimetric L-band Imaging Synthetic aperture radar (PLIS) was used to collect 

L-band (1.26 GHz) radar data during the SMAPEx-4 and 5. PLIS was developed in 

2010 by ProSensing Inc. to provide high spatial resolution L-band radar observations 

using a small low-cost aircraft. The weight of the system is about 38 kg, including i) a 

radio frequency unit, ii) main and auxiliary dual polarized antenna pairs which can be 

used separately, iii) a radar data system and iv) external support components including 

cables, heaters and power supply. A detailed description of the PLIS system is provided 

below (see also Table 3-2 for a summary): 

Signal Generation and Radio Frequency Circuits. A direct digital synthesizer generates either 

an unmodulated or linear frequency modulated waveform which is then single stage 

up-converted to radio frequency by mixing with the output from a 1170 MHz phase 

locked oscillator. For unmodulated waveforms, the pulse width can be varied from 

Table 3-1: Characteristics of the six focus areas, adapted from Gao (2016).  

Area ID Land Use Landcover Types Soil Texture 
(%C/%Si/%S) 

YA4 Irrigated cropping 
(90%); Grazing (10%) 

Wheat, bare, grass, open 
wood land Clay loam (31/48/20) 

YA7 Irrigated cropping 
(90%); Grazing (10%) 

Wheat, bare, naturalised 
grass, canola, lupine, open 

wood land 
Clay loam (31/48/20) 

YE Grazing (100%) Grass, open wood land Silty clay loam (39/43/17) 

YF Irrigated cropping 
(85%); Grazing (15%) Bare, wheat, rice, grass Loam (23/47/29) 

YB5 Grazing (100%) Grass Loam (24/44/25) 

YB7 Grazing (100%) Grass Loams (24/44/25) 

 



 

Data Sets 

 

3-4 

 

100 ns to 10 µs resulting in a maximum slant range resolution of 15 meters. For linear 

frequency modulated waveforms the maximum bandwidth that can be chosen is 30 

MHz giving a slant range resolution of 5 meters. More commonly a bandwidth of 20 

MHz is used giving a slant range resolution of 7.5 m. Subject to the constraint that the 

duty cycle not exceed 4%, the pulse repetition frequency can be varied to 20 KHz 

allowing unambiguous Doppler measurements up to 10 KHz. When using a 20 KHz 

pulse repetition frequency the unambiguous range is 7.5 km.  To minimize transmitted 

power leaking into the nearby GPS band a 25 MHz cavity filter has been placed prior 

to a 30W peak solid-state amplifier. PLIS also employs an internal calibration loop 

where the transmit signal can be fed via an attenuator directly to the down-converters 

prior to the digital receiver. 

Antennas. The main antennas are usually installed beneath the aircraft and consists of 

a right and left pointing antennas mounted at 30 degrees off nadir. A programmable 

switching network enables transmission through the right and left pointing antennas 

to be interleaved. Each antenna is a 2×2 patch array with an ~20 cm aperture, giving 

Table 3-2: PLIS system specification 

System Parameter Value 
Frequency L-Band, 1.26 GHz 

Peak transmit power 30 W 
Pulse repetition frequency Up to 20 kHz 

Transmitter duty cycle < 4% 
Pulse width 0.1- 20 μs 

Maximum bandwidth 30 MHz 
Polarization HH, VV, HV, VH 

Beamwidth (H- and E-plane) ~ 51° 
Antenna gain 9 dBi 

System noise figure ~5.2 dB 
Antenna cross polarization < - 30 dB 
Flight height / swath width Typically 3 km / 2.2 km (15 - 45°) 

Measured noise equivalent normalized 
d  i  

< -47 dB m2/m2 (10 m range resolution 
d 3 k  fli h  h i h ) Typical range spacing 3.75 m 

Typical azimuth spacing 2 m 
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a measured one-way beamwidth of ~ 51° and theoretical gain of approximately 7 dBi. 

A similar auxiliary antenna pair can be mounted with an offset enabling interferometric 

processing to be undertaken. To avoid detuning, the working temperature of each 

antenna is maintained at a constant 20 °C using temperature-controlled heater strips. 

Polarimetry. Prior to each antenna there is a two-port network that allows switching the 

antenna from H to V polarization, thus enabling the full polarization scattering matrix 

to be estimated on both sides of the aircraft; when the switching is enabled there is a 

resultant reduction in effective pulse repetition frequency. The cross-polarization 

isolation has been measured at less than 30 dB. 

Radar Data System. The radar data system consists of a standard server mainboard, a 

two-channel digital receiver and GPS receiver/timestamp card. The two-channel 

digital receiver samples the data using two 16-bit digitizers at a sampling rate of 120 M 

samples/s, with an on-board field-programmable gate array employed to implement 

I/Q demodulation and decimation filtering. The GPS receiver/timestamp card 

together with the radar control board is employed to determine the absolute time of 

acquisition. 

External support components. An inertial measurement unit aboard the aircraft platform 

provides navigation and flight attitude data with a sample rate of 10 Hz. This ensures 

precise flight track control and are used in the motion compensation during the off-

line pre-processing stage. In addition, a graphical user interface provides a friendly 

environment to configure PLIS, and real-time monitoring including raw I/Q voltages, 

the corresponding power, the filtered pulse power, and the phase after application of 

the optimal pulse compression filter. 

During SMAPEx-4 and -5, the PLIS was flown at an altitude of 10,000ft with a speed 

of 75 m/s. The main antennas were installed beneath the aircraft with their broadside 

direction at 30° to nadir to collect full polarimetric data with incidence angles ranging 

from approximately 15° to 45°, across an ~2 km swath. Data was collected on both 

sides of the flight track with a 2 km gap in the middle, resulting a nominal swath of 6 
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km (Figure 3-3). The collected single look complex (SLC) data had a spacing of 2 m in 

azimuth and 3.75 m in slant range. Flight lines were designed in a north-south direction 

with spacing of 5 km, such that the far bins of each swath were overlapped between 

adjacent flight lines, ensuring full coverage of PLIS over all six focus areas (Ye et al., 

In Review). An extended swath up to 2.8 km was available for each side with incidence 

angles being up to 53°, resulting into two radar observations at most parts of the focus 

areas in each flight date. 

A total of 16 out of the 17 scheduled flights were conducted, with the 5th flight in 

SMAPEx-4 being cancelled due to a rainfall event. Each flight was made over an 

approximately 6 hour time window from 3 am to 9 am (local time), in order to 

minimize temporal deviation from the SMAP nominal overpass time of 6 am (Ye et 

al., In Review). PLIS calibration was conducted using a modified version of the 

distributed target method (Ainsworth et al., 2006) and six trihedral passive radar 

calibrators (PRCs). Three Polarimetric Active Radar Calibrators (PARCs) were used 

for independent evaluation. A comprehensive description of the PLIS calibration and 

cross-validation with PALSAR-2 are provided in Chapter 4.  

 

Figure 3-3: Schematic of PLIS mapping geometry at a flight height of 3000 m. 
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3.1.2 Ground observations 

Ground observations during the SMAPEx campaigns included intensive soil moisture 

sampling, vegetation sampling and roughness sampling over the six focus areas. A 

summary of ground sampling schedule during SMPAEx-4 and -5 is presented in Table 

3-3. Ground soil moisture of top 5 cm was sampled concurrently with PLIS 

observations using the Hydraprobe Data Acquisition System (HDAS, Merlin et al., 

2007). The HDAS consists of a Hydraprobe soil moisture sensor and a micro-

computer integrated with a Geographic Information System (GIS) and Global 

Position System (GPS). During each flight, three of the six focus areas were sampled 

in rotation with at least one being characterized by cropping and one being grazing 

land use. Measurements were made on a north-south oriented regular grid, with a 

spacing of 250 m (Figure 3-4). At each sampling location, three point-based soil 

moisture measurements were made within a 1 m radius for capturing small scale soil 

moisture variability. At the end of each intensive sampling day, three gravimetric soil  

 

Figure 3-4: An example of ground soil moisture sampling on Sep. 9th, 2015 for the 
focus area YA4, with the background being the Landsat-8 near-infrared/red/green 
composition. Three point-based soil moisture measurements were made within a 1 m 
radius at each location for small scale variability. 
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samples representing low, medium, and high soil moisture within each sampled 3-km 

focus area were collected for the calibration of HDAS. The comparison between 

Table 3-3: A summary of ground sampling schedule, adapted from(Ye et al., In 
Review) . 

 UTC Date 
Ground sampling of focus area 

Soil moisture Vegetation Roughness 

SM
A

PE
x-

4 

May 02 YA4, YB5, YF   
May 03 YA7, YB7, YE   
May 04 Regional YA4, YA7 YA4 
May 05 YA4, YB5, YF   
May 06 Regional YA4, YA7 YA7 
May 07 Regional YE,YF, YB YB/YE/YF 
May 10 YA7, YB7, YE   
May 11 YA4, YB5, YF   
May 12 Regional YA4, YA7 YA4 
May 13 YA7, YB7, YE   
May 14 Regional YA4, YA7 YA7 
May 15 Regional YE,YF, YB YB/YE/YF 
May 18 YA4, YB5, YF   
May 19 YA7, YB7, YE   
May 20 Regional YA4, YA7 YA 
May 21 YA4, YB5, YF   

SM
A

PE
x-

5 

Sep 08 YA4, YB5, YE   

Sep 09 Regional YA4, YA7 YA4 

Sep 10 YA7, YB7, YF   

Sep 11 Regional YE,YF, YB YA7 

Sep 13 YA4, YB5, YE   

Sep 14 Regional YA4, YA7 YB/YE/YF 

Sep 15 Regional YE,YF, YB YA4 

Sep 16 YA7, YB7, YF   

Sep 17 Regional YA4, YA7 YB/YE/YF 

Sep 18 YA4, YB5, YE   

Sep 21 YA7, YB7, YF   

Sep 22 Regional YA4, YA7 YA4 

Sep 23 YA4, YB5, YE   

Sep 24 Regional YE,YF, YB YB/YE/YF 

Sep 25 Regional YA4, YA7 YA4 

Sep 26 YA7, YB7, YF   
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HDAS and gravimetric soil samples showed a root mean square difference (RMSD) 

of better than 0.04 m3/m3. 

Vegetation samples for the six focus areas were collected between the airborne 

sampling days, including spectral and intensive vegetation sampling. Spectral 

observations of the major vegetation types within the focus areas were collected for 

VWC extrapolation, also being basis of landcover mapping from optical data. Intensive 

vegetation sampling focused on detailed plant biophysical parameters of cropping and 

grazing areas (Ye et al., In Review). The plant density and height, leaves and stalks 

geometry and orientation were sampled over dominant vegetation types within the 3-

km focus areas. A minimum of 3 samples were made within homogenous vegetation 

paddocks for each major vegetation types or growth stages of the same vegetation 

type, with the measured values presented in following chapters. Additional information 

on row spacing, plant spacing, and row direction were recorded for crop paddocks (Ye 

et al., In Review). 

Surface roughness was characterized at 2 ‒ 3 locations within each dominant land 

cover type in the six focus farms. Roughness Measurements were made along a 3 m 

segment using a pin profiler with pins at 0.5 cm spacing in two orthogonal directions 

(along and across rows or north-south and east-west in the case of no row structure). 

A digital camera was fixed in front of the profiler to capture the images of soil surface 

profiles. A software package based on Matlab was developed to automatically process 

these photos (see Figure 3-5 for an example), with the main outputs being the digital 

profiles and roughness statistics (HR and LC). Measurements for paddocks were then 

averaged for these with an isotropic surface or averaged along and across rows 

respectively in presence of periodical row features. Note that the roughness was 

expected to be fairly constant over the 3-week period of each SMAPEx campaign, so 

resampling was only made in paddocks with soil cultivation activities. It was however 

resampled in several selected paddocks to show the natural evolution. The roughenss 

measurements used in this study is provided in Chapter 5. 
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Cultivation activities within the focus areas, including tillage and irrigation, occurred 

during the SMAPEx-5. The dates of these activities were also recorded and 

summarized in Chapter 6. These details were used as ground truth for evaluating the 

proposed change detection algorithm (Chapter 6) and exploring the effect of abrupt 

roughness and vegetation changes on multi-temporal retrieval approaches (Chapter 8). 

3.2 Satellite Data  

The spaceborne radar data from four platforms was used in this study; PALSAR-2, 

RADARSAT-2 and COSMO-SkyMed. The PALSAR-2 data were used in cross-

validation of the PLIS data. The data from RADARSAT-2 and COSMO-SkyMed, 

 

Figure 3-5: Main steps for soil roughness calculation: roughness photo (top), extracted 
pin profile (middle) and digital profile (bottom). 
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together with the PLIS data were used in the development and evaluation of the 

proposed multi-SAR retrieval framework. An example of radar data collected from all 

platforms is presented in Figure 3-6. 

The PALSAR-2 is an L-band (1.26 GHz) SAR aboard the JAXA’s Advanced Land 

Observing Satellite 2 (ALOS-2). It was launched in 2014, as an enhanced successor of 

the PALSAR-1 that retried in 2011. PALSAR-2 has 7 SAR observation modes for 

various applications, with different polarization, swath, incidence angle and bandwidth 

(Rosenqvist et al., 2014). Although the nominal revisit is 14 days, global coverage 

requires a much longer period dependent on the observation mode ranging from 42 

days to 5 years (Rosenqvist et al., 2014). One Fine Beam Stripmap image and one 

ScanSAR image are available from during the SMAPEx-4 & 5 respectively and were 

used in the cross-validation with the PLIS data. 

The RADARSAT-2 is a C-band (5.4 GHz) SAR of the Canadian Space Agency that 

was launched in 2007, as a follow-on to the RADARSAT-1 which terminated in 2013. 

RADARSAT-2 can collect data from both left and right sides with more than 10 

observation modes. The details of the mission can be found in Morena et al. (2004). 

The available C-band data was all collected during the SMAPEx-5, including three 

wide-swath standard quad-polarization SLC products and four standard dual 

polarization SLC products. The slant range spacing is either 8 or 11.8 m with a 

consistent azimuth spacing of 5.1 m. The incidence angle of these images varied 

between 22° ‒ 40°. 

The COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin 

Observation) is a 4-satellite constellation developed by the Italian Space Agency.  Each 

of the satellites is equipped with an X-band SAR operating at 9.3 GHz collecting single 

or dual polarized data. The nominal incidence angle varies from 25° to 50° and can be 

extended to between 20° and 59°. The main purposes of this constellation are 

environmental risk management for both civilian institutional and defense needs, and 

commercial services (Covello et al., 2010). Consequently, data is only collected based 

on scheduled orders without routine global coverage, despite the extremely high revisit 
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of up to 2 hours (Covello et al., 2010). The available data was all collected during 

SMAPEx-5 consisting of two interferometric subsets of STRIPMAP HIMAGE. One 

was acquired from ascending and the other was from descending orbits.  

Apart from radar data, two Landsat-8 Operational Land Imager (OLI) image were 

acquired, one on June 10 and the other on September 30, 2015. These were used for: 

1) landcover mapping of the airborne area; 2) geo-registration of multi-temporal SAR 

data; and 3) extraction of paddock boundaries. The Landsat-8 was launched in 2013, 

successfully extending the 40 + year Landsat record. The OLI on board Landsat-8 is 

a multi-spectral sensor operating in 11 spectral bands ranging from 0.43 to 12.51 um 

 

Figure 3-6: Examples of radar data (HH polarization), coving the YA4, YA7 and YE 
areas, with the PLIS, PALSAR-2, RADARSAT-2 and COSMO SkyMed data collected 
on Sep. 11, 24, 11, and 10, 2015 respectively.. 
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(Roy et al., 2014). The spatial resolution is 30 m for visible to shortwave infrared, 15 

m for panchromatic and 100 m for two thermal infrared bands. 

Two landcover maps were generated using the 7 visible to shortwave infrared bands 

of OLI for SMAPEx-4 and -5 respectively, with the map for SAMPEx-5 shown in 

Figure 3-1. Briefly, the boundaries of paddocks were generated using the 

multiresolution segmentation algorithm (Baatz, 2000) embedded in the commercial 

software eCognition Developer 8. Paddock based features, including the spectral and 

texture parameters, were then calculated as input of classification. A Support Vector 

Machine was trained using half of the ground observations of land cover types. The 

evaluation based on the other half of ground truth showed an overall accuracy and 

kappa coefficient of 91.02% and 0.877, respectively. 

3.3 Chapter Summary 

This chapter has presented an overview of the data sets used in this research, including 

the existing satellite data and field data from the two SMAPEx campaigns. The 

SMAPEx data sets, comprising airborne active observations from PLIS, ground 

sampling of soil moisture, vegetation and roughness data, together with their sampling 

strategy were described in detail.  While the chapter is only a brief overview of the data 

Table 3-4: A summary of data used in each chapter. 

Chapter Focus area Campaign Data 

4 The whole SMAPEx 
area (Figure 3-1) 

SMAPEx-4 
& 5 

PLIS and PALSAR-2 data; landcover 
maps 

5 YA4, YA7, YE SMAPEx-5 
PLIS, RADARSAT-2, COSMO 
SkyMed data; ground measured mv, 
roughness, all vegetation parameters 

6 YA4, YA7, YE SMAPEx-5 
PLIS, RADARSAT-2, COSMO 
SkyMed data; records of vegetation and 
roughness changes 

7 YA4, YA7, YE SMAPEx-5 PLIS data; ground measured mv, 
roughness, VWC; landcover 

8 YA4, YA7, YE SMAPEx-5 
PLIS, RADARSAT-2, COSMO 
SkyMed data; ground measured mv, 
roughness, VWC; landcover 
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used in this thesis with a focus on how those data were collected, the details of specific 

data sets used in each of the research steps are described more fully in the “Date Sets” 

section of the respective chapters. A summary of specific data used in the following 

chapters is presented in Table 3-4. Please also refers to the workplans of the two SMAPEx 

campaigns for more details (available at: http://www.smapex.monash.edu.au/). 

http://www.smapex.monash.edu.au/
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 Calibration and Validation of PLIS 

The airborne PLIS system introduced in Chapter 3 provided a unique and dense L-

band data set for development of the proposed multi-SAR-mission approach. 

However, accurate polarimetric and radiometric calibration is critical for validation of 

the proposed soil moisture mapping concept, and this task had not been completed 

for the SMAPEx-4 and 5 data sets. Therefore, the calibration of the PLIS data is 

presented in this chapter. Moreover, the potential for cross-validation/calibration 

among SAR systems is demonstrated through a comparison between PLIS and ALOS-

2/PALSAR-2 data. The work in this chapter has been published in Zhu et al. (2018) 

4.1 Background 

Despite the increased availability of spaceborne SAR data (Table 2-1), airborne SAR 

systems still play a vital role in the development, implementation, testing and 

verification of potential spaceborne SAR applications. Several popular airborne SAR 

systems have already been mentioned in Chapter 2. Most of these airborne SAR 

systems can operate in quad-polarization and interferometric modes. The significant 

flexibility provided by these airborne platforms enables extremely dense observations 

and variable acquisition geometries, e.g. incidence and azimuth angles. These 

characteristics allow for a better understanding of the surface scattering and its 

temporal behavior, which are essential for the successful development of applications. 

The PLIS is Australia’s first L-band polarimetric airborne interferometric SAR system 

dedicated to scientific research into civilian applications. The main objective of the 

PLIS system is to provide hydrologic, ecologic, atmospheric and oceanic researchers 

with a capability for high temporal and spatial resolution observations over Australia. 

Compared to other airborne SAR systems (Ouchi, 2013), the weight of PLIS is 

significantly lower (~ 38 kg) allowing integration aboard much smaller and lower-cost 
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aircraft, thus making the SAR capability available to a much wider range of users. Since 

its first flight in 2010, PLIS has been used for a range of applications. 

PLIS together with the Polarimetric L-band Multibeam Radiometer was used as an 

active-passive microwave simulator (Wu et al., 2015b) of NASA’s Soil Moisture Active 

Passive (SMAP) mission (Entekhabi et al., 2010). Three pre-launch experiments 

(SMAPEx-1, 2 and 3) (Panciera et al., 2014b) and two post-launch experiments 

(SAMPEx-4 and 5) (Ye et al., In Review) were carried out in 2010 - 2011 and 2015 

respectively, for the calibration/validation of the SMAP concept. The data acquired by 

the PLIS system have been extensively used for testing active-passive soil moisture 

downscaling algorithms for SMAP (Wu et al., 2014, Wu et al., 2015a, Wu et al., 2016). 

By making full use of the flexible acquisition geometries of PLIS, data from the 

SMAPEx campaigns also allowed the development of novel algorithms for measuring 

critical environmental variables. Such algorithms include soil moisture retrieval using 

polarimetric decomposition (He et al., 2016), evaluation and calibration of surface 

scattering models (Zhu et al., 2016, Panciera et al., 2014a), vegetation biomass 

estimation (Tanase et al., 2013, Tanase et al., 2014a, Tanase et al., 2014b), estimation 

of vegetation water content (Huang et al., 2016, Tanase et al., 2015) and inland water 

body detection (Elhassan et al., 2013). 

More applications of PLIS are expected in the near future, including the development 

and evaluation of soil moisture retrieval algorithms for the recently launched L-band 

SAOCOM constellation (Giraldez, 2003), monitoring the effect of bushfires and the 

subsequent recovery of affected areas throughout Australia (Menges et al., 2004), and 

high spatial resolution Land Use Land Cover (LULC) mapping. All these applications 

need an accurate calibration of the PLIS sensor in terms of both polarimetry and 

radiometry as per the requirements for the various applications provided in (Freeman, 

1992). Briefly, the absolute and relative calibration accuracy is required to be better 

than ± 1 dB and ± 0.5 dB respectively. For polarimetric data, additional requirements 

are that the polarimetric channel balance be better than ± 0.4 dB and ± 5° in phase, 

with the cross-talk isolation better than 30 dB (Dubois et al., 1992). 
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To verify that such criteria have been met, active or passive point targets with large 

Radar Cross Section (RCS) and known polarimetric characteristics (e.g. trihedrals and 

transponders) are commonly used. Radiometric calibration factors, polarimetric 

calibration parameters, and image quality are derived from the impulse response 

functions (IRFs) of these point targets (Freeman et al., 1990, Gray et al., 1990, 

Sarabandi et al., 1995, Christensen et al., 1998, Shimada et al., 2009). The main 

challenges of using point targets are i) the uncertainty introduced by the interaction 

with the background; ii) the need to carefully set and maintain their orientation angles; 

iii) the poor visibility in coarse SAR images (e.g., the 3-km resolution SMAP radar); 

and iv) their relatively large size compared to the spatial sampling of high resolution 

SARs. Alternatively, a uniformly distributed scene (clutter), such as homogeneous 

dense forests, can be used for calibration; the RCS and polarimetric characteristics of 

which are either measured by ground-based scatterometers (Sarabandi et al., 1994) or 

assumed to satisfy some time-invariant prior-knowledge (Shimada et al., 2009, Shimada, 

2011, Ainsworth et al., 2006, Sarabandi et al., 1995, Gupta et al., 2016). The former is 

commonly unavailable for a large area while the latter may suffer from uncertainty of 

the prior knowledge. 

Cross-calibration among different radar systems is another promising approach where 

airborne SAR observations can be the intermediate step for the calibration of space-

based SARs (Freeman, 1992). However, very few studies on this topic have been 

carried out mainly because of the difference in observation time, radar configuration, 

and look direction (azimuth and elevation angle). In Sarabandi et al. (1994), a ground-

based scatterometer was used to calibrate AIRSAR, and different tracks and 

polarizations of SIR-C/X-SAR were cross-calibrated in Zink et al. (1993). More 

recently, QuikSCAT and Oceansat-2 were cross-calibrated in Jaruwatanadilok et al. 

(2014).  
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4.2 Calibration Site and data 

4.2.1 Experiments and the Calibration Site 

The PLIS has been used in five SMAPEx campaigns. The detail of SMAPEx-1, 2 and 

3 as well as a brief introduction to the corresponding calibration is provided in Tanase 

et al. (2014b) and Panciera et al. (2014b). Similar to these three campaigns, two types 

of targets were used for calibration in SMAPEx-4 and 5. One is a large forest area (area 

C in Figure 4-1) which was used in the polarimetric calibration on a daily basis. The 

other was artificial reflectors including trihedral Passive Radar Calibrators (PRCs) 

otherwise known as corner reflectors, and Polarimetric Active Radar Calibrators 

(PARCs).Specifically, six metallic trihedrals with a leg length (ltri) of 1.665 m were 

deployed at a single calibration site located in a flat, uniformly grazed area (area B in 

Figure 4-1). The theoretical radar cross section of these targets is 27.5 dBsm, given by 

4πltri4/3λ2 with λ being the wavelength. Figure 4-2(a) shows the RCS pattern along the 

azimuth and elevation directions. The trihedrals were uniformly distributed across the 

PLIS swath, with their symmetric axis parallel to the direction of incident signal. The 

local incidence angle at the six trihedrals was 15°, 21°, 27°, 33°, 39° and 45° 

respectively in SMAPEx-4, while the 15° trihedral was moved to a location with an 

incidence angle of 51° in SMAPEx-5 to represent the far edge beam. 

A PARC aligning to receive 45° linear polarization and re-transmit -45° linear 

polarization was also deployed within the Narrandera airport grounds (the area A in 

Figure 4-1) for calibration during the SMAPEx-4 and -5 campaigns. The theoretical 

polarimetric response of this PARC is: 

 
1 1

1 1
S

− − 
=  
 

, Eq. 4-1 

depicted in Figure 4-2(b). The temperature of the PARC antennas was recorded to 

determine the real-time RCS, using a carefully measured temperature-RCS look up 

table. The response of this PARC is expected to independently provide polarimetric  
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accuracy estimates of the calibrated data (Freeman et al., 1990). Calibration flights with 

the PARC falling towards the far edge of run 1 (42° incidence angle), in the center (30° 

incidence angle) of run 2, and towards the near edge of run 3 (19° incidence angle) 

 

Figure 4-1: Calibration sites and flights used in the calibration and validation, as well 
as the PLIS and PALSAR2 coverage during the SMAPE-4 and -5. The top left shows 
the location of the Yanco agricultural area and the spatial coverage of PLIS and 
PALSAR-2 data. The middle left is the land cover map of SMAPEx-5 with the main 
calibration sites delineated in black rectangles. Areas A and B show the deployment of 
PARCs and trihedrals for the corresponding calibration flights (the yellow lines in the 
bottom panel) respectively. Area C includes the forest areas used in the polarimetric 
calibration. The middle right is an example of PLIS HH data acquired on September 
17, 2015. 
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respectively. The calibration circuits were undertaken only at the start and end of the 

airborne campaigns. 

4.2.2 Data 

Two PALSAR-2 images acquired during the SMAPEx-4 (May 1st to May 22nd, 2015) 

and -5 (September 7th to September 27th) experiments were available for cross-

 

 

Figure 4-2: RCS patterns of the trihedral (a) and PARC (b) for L-band 
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validation. The PLIS data with a minimum time offset (32 and 19 hours respectively) 

with respect to the PALSAR-2 data were selected. Notably, the PLIS data used in 

cross-validation was the calibrated and multi-looked products with a pixel size of 10 

m. The details of the data used in comparison are summarized in Table 4-1 with their 

spatial coverage shown in Figure 4-1. Geo-registration of both the PALSAR-2 and 

PLIS images was carried out taking the Landsat-8 OLI image acquired on 30th 

September 2015 as reference. The spatial miss-registration error was less than 1 pixel 

(10 m) for PLIS and PALSAR-2 Stripmap images. PALSAR-2 ScanSAR image showed 

a larger spatial uncertainty (70 m) because of the difficulty in identifying point targets 

during geo-registration. 

Table 4-1: PLIS and PALSAR-2 images used in the cross-validation 

 
SMAPEx-4 scenario SMAPEx-5 scenario 

PLIS PALSAR-2 PLIS PALSAR-2 

Imaging mode Stripmap ScanSAR Stripmap Stripmap 

Day of year 
(UTC) 130 132 266 267 

Overpass time 
offset ~ 32 hours ~ 19 hours 

Incidence angle 15° - 50° 36.5° - 43.5° 15° - 50° 31.5° - 34.5° 

Polarization HH+VV+HV 
+VH HH+HV HH+VV+HV 

+VH HH+HV 

Orbit/direction North-South, 
South-North Descending  North-South, 

South-North Ascending  

Spatial 
resolution 10 m 100 m 10 m 10 m 

Soil moisture* 
(m3/m3) 0.172 0.143 0.107 0.105 

*: Average soil moisture is estimated from OzNet and ground sampling. 
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4.3 Method 

4.3.1 Calibration method 

The calibration of PLIS data included two steps, taking the pre-processed 16-bit slant-

range SLC as the input: 

1) Polarimetric calibration. The a posteriori method based on a distributed target 

(Ainsworth et al., 2006) was used to estimate cross-talk parameters (u, v, w, z) and one 

of the channel imbalance parameters α. The distortion model relating the actual ([shh, 

shv, svh, svv]T) and observed ([Ohh, Ohv, Ovh, Ovv]T) scattering matrixes, and derivation of the 

corresponding calibration matrix can be found in Ainsworth et al. (2006). Briefly, this 

algorithm iteratively updates u, v, w, z and α, with an initial guess of zero cross-talk 

using data over a distributed area, e.g. dense forest. The trihedrals were then used to 

estimate the other imbalance parameter k’ denoting the reception imbalance between 

HH and VV. Finally, the estimated cross-talk and imbalance parameters were 

employed to correct the observed SLC data:. 

 

1 1 1

1 1 1

1 1 1

1 1 1

' '
' '
' '
' '

hh hh

hv hv

vh vh

vv vv

s Ok u w vwk
s Ozk wz wk
s Ouk w vk
s Ouzk u z k

α α α α
α α α α
α α α α
α α α α

− − −

− − −

− − −

− − −

    
    
    
    
    
     

= , 
Eq. 4-2 

 

2) Absolute radiometric calibration. The well-known integral method based on 

trihedrals (Gray et al., 1990) was used to estimate the absolute calibration coefficient. 

Figure 4-3 illustrates the definition of point target area Apnu and background area Anu 

for the purpose of extracting the point energy in this study. The energy of the trihedrals 

was estimated as: 

 ( ) /sin
pnu nu

pnu
p ij ij a r

A Anu

A
E I I

A
δ δ θ= − ⋅ ⋅∑ ∑ , Eq. 4-3 

where Iij is the intensity of the pixel ij and θ is the incidence angle. δa and δr are the 

azimuth and range spacing respectively. The absolute calibration factor from a trihedral 

(CFtri) can thus be estimated using CFtri =σ/Ep where σ is the theoretical RCS of the 
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trihedral. Six trihedrals were deployed for different range bins and accordingly CFtri 

could be calculated for different range bins for each calibration flight. The average 

(CFa) of all calibration coefficients of a campaign were used to provide a single set of 

calibration parameters for all observations throughout the campaign. The absolute 

calibrated σ0 (dB) for each pixel was then calculated: 

 0
1010 log ( ) as s CFσ ∗= ⋅ − , Eq. 4-4 

where s* is the complex conjugate of the polarimetric calibrated SLC s. The CFa of 

SMAPEx-4 were -37.74 dB (left) and -37.69 dB (right) respectively, while they were -

37.59 dB (left) and -37.79 dB (right) for SMAPEx-5. The stability of CFtri in the range 

direction and time for each campaign is provided below in terms of the residual RCS 

(CFa– CFtri) after calibration. 

4.3.2 Evaluation and cross-validation method 

The PLIS 3-dB resolution, the Peak-to-Side Lobe Ratio (PSLR), and the Integrated 

Side Lobe Ratio (ISLR) were estimated using the IRFs of the PARCs. Specifically, the 

target area in Figure 4-3 was interpreted into 1024×1024 pixels using the fast Fourier 

 

Figure 4-3: Definition of point target area and background area for extracting the 
response of a point target. The range and azimuth spacing are 3.75 m and 2 m 
respectively. 
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Transform. Two 1-D profiles (azimuth and range) through the peak pixel were then 

used to estimate these quantities. In addition, the polarimetric matrix of the PARC was 

used to provide independent evaluation of the calibrated data. The integration method 

was also used to estimate the amplitudes of the PARC by simply replacing the intensity 

with amplitude in Eq. 4-3, while the phase of the peak pixel was treated as that of the 

PARC. The residual radiometric and polarimetric error over trihedrals after calibration 

was estimated to show the quality of the calibrated data in terms of accuracy and 

stability in time and space, though they had been used in the estimation of k’ and Ca. 

Since PLIS and PALSAR-2 have different incidence angles and spatial resolutions, they 

were resampled onto a coarser grid for cross-validation (Figure 4-4). Specifically, the 

average incidence angle (θpal) of PALSAR-2 within the PLIS coverage was calculated, 

with grids generated to include the PLIS pixels whose incidence angles fall within θpal 

± 3°. These grid cells have the same size in the azimuth and range directions. It’s worth 

noting that the ground resolution in the range direction is different, resulting in 

different sizes of the grid cells (500 - 750 m) at different incidence angles. The 

ensemble mean of PLIS and PALSAR-2 for each grid was calculated for further 

comparison. Four metrics, i.e., correlation coefficient (R), Bias, Root-Mean-Squared 

Difference (RMSD) and unbiased RMSD (ubRMSD) were used to represent the 

agreement between PLIS and PALSAR-2. The ubRMSD is defined as: 

 2ubRMSD ( ( )) /
N

i i x y
i

x y Nµ µ= − − −∑ , Eq. 4-5 

where xi and yi are the ith grid of PLIS and PALSAR-2, N is the number of grid cells 

in comparison. μx and μy are the mean of x and y respectively. In addition, land cover 

maps of SMAPEx-4 and -5 derived from Landsat-8 OLI images were used to analyze 

the effect of LULC on cross-validation/calibration. 
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4.4 Results 

4.4.1 Calibration accuracy over point targets 

A summary of PLIS image quality parameters is provided in Table 4-2. The estimated 

azimuth and range 3-dB resolutions were 2.07 m and 5.97 m respectively. The average 

PSLR were -16.13 dB in azimuth and -16.07 dB in range, the latter of which can be 

further improved using data specific least mean square filter coefficients in the range 

compression, but at the cost of broadening point target responses. 

Figure 4-5(a) shows the difference between observed and theoretical RCS (residual 

error) over all trihedrals of SMAPEx-4. In general, this difference was less than 0.5 

dBsm for most of the trihedrals which satisfies the absolute calibration accuracy 

requirement (Freeman, 1992). A satisfactory balance between HH and VV phase was 

also observed with an RMSD of 0.17 dBsm. In addition, no clear pattern of residual 

RCS could be found with respect to the incidence angle, although trihedrals with 

incidence angles of 23° and 27° had negative residuals while positive residuals were  

 

Figure 4-4: Schematic of PLIS and PALSAR-2 comparison. The grid cell size in 
azimuth and look direction is the same, but the real ground size ranges from 500 – 
750m for different PLIS strips because of the variation of ground range spacing. 



 

Calibration and Validation of PLIS 

 

4-12 

 

C
om

pa
ris

on
 w

ith
 

PA
LS

A
R

-2
 

R
ad

io
m

et
ric

 
ca

lib
ra

tio
n 

(d
B)

 

Po
la

rim
et

ric
 

ca
lib

ra
tio

n 

Si
de

 lo
be

 

3d
B 

re
so

lu
tio

n 

 

Ta
bl

e 
4-

2:
 P

LI
S 

ca
lib

ra
tio

n 
ac

cu
ra

cy
 a

nd
 it

s 
co

m
pa

ris
on

 w
ith

 a
no

th
er

 tw
o 

L-
ba

nd
 a

irb
or

ne
 S

A
R

 s
ys

te
m

. P
SL

R
 a

nd
 I

SL
R

 a
re

 p
ea

k-
to

-s
id

e-
lo

be
-r

at
io

 a
nd

 in
te

gr
at

ed
-s

id
e-

lo
be

-r
at

io
. A

 ±
 B

 re
pr

es
en

ts
 a

n 
av

er
ag

e 
of

 A
 a

nd
 a 

st
an

da
rd

 d
ev

ia
tio

n 
of

 B
. *

 d
en

ot
es

 th
e 

de
sig

n 
i

 

R
M

SD
 w

ith
 S

tri
pm

ap
 (d

B)
 

R
M

SD
 w

ith
 S

ca
nS

A
R

 (d
B)

 

 C
ro

ss
ta

lk
 (n

at
ur

e 
ta

rg
et

) (
dB

) 
C

ro
ss

ta
lk

 (P
R

C
) (

dB
) 

Ph
as

e 
im

ba
la

nc
e 

(°
) 

A
m

pl
itu

de
 im

ba
la

nc
e 

(d
B)

 
IS

LR
 in

 a
zi

m
ut

h 
(d

B)
 

PS
LR

 in
 ra

ng
e 

(d
B)

 
IS

LR
 in

 ra
ng

e 
(d

B)
 

PS
LR

 in
 a

zi
m

ut
h 

(d
B)

 

R
an

ge
 (m

) 

A
zi

m
ut

h 
(m

) It
em

s 

1.
29

 (H
H

); 
1.

01
(H

V
) 

2.
47

 (H
H

);1
.9

2 
(H

V
) 

0.
82

 (1
 si

gm
a)

 
0.

58
 (R

M
S)

 
-3

0.
55

 ±
 1

.0
1 

-2
7.

58
 ±

 1
.0

2 
3.

87
 ±

 2
.8

6;
 4

.8
1 

(R
M

S)
 

0.
17

 ±
 0

.1
5;

 0
.2

2 
(R

M
S)

 
-1

1.
04

 ±
 2

.6
5 

-1
6.

07
 ±

 2
.9

0 
-1

2.
12

 ±
 2

.5
1 

-1
6.

13
 ±

 3
.1

9 

5.
97

 ±
 0

.2
8 

2.
07

 ±
 0

.1
2 

PL
IS

 

  

1.
16

 (1
 si

gm
a)

 

-3
8.

62
 

<
-3

2 
1.

36
8 

±
 2

,1
42

 
0.

09
 ±

 0
.1

0 

-7
.0

4 
±

 1
.2

6 

-9
.0

5 
±

 3
.4

2 
-9

.0
5 

±
 3

.4
2 

1.
8 

±
 0

.0
6 

1.
01

 ±
 0

.2
5 

Pi
-S

A
R

-L
2 

(S
hi

m
ad

a 
et

 a
l.,

 
20

13
a)

 

  

0.
7 

(R
M

S)
 

 
-3

0 
5.

3 
(R

M
S)

 
0.

17
 (R

M
S)

 
 

R
an

ge
: -

30
*  

A
zi

m
ut

h 
Ty

: -
20

*  
A

zi
m

ut
h 

Tx
: -

11
*  

2.
53

 

0.
94

 

U
A

V
SA

R
 (F

or
e 

et
 a

l.,
 2

01
5,

 
C

ha
m

be
rla

in
 e

t 
al

., 
20

06
) 

     -3
0 5 0.
4       

R
eq

ui
re

m
en

t 
(D

ub
oi

s e
t a

l.,
 

19
92

, F
re

em
an

, 
19

92
) 

 



 

Chapter 4 

 

4-13 

 

observed over others. This can be partly explained by the limitation of the trihedral 

approach and the integral method used to extract its RCS. The interaction between 

trihedral and background is well known to introduce uncertainty in the estimation of 

the RCS, which cannot be removed by the integral method (Ulaby et al., 2014, 

Sarabandi et al., 1994). This uncertainty can vary from trihedral to trihedral because of 

the variation of the background over the time and space domain. The variation in time 

series can in turn partly explain the variation of RCS of trihedrals at the same incidence 

angle. The instability of the small aircraft platform from day to day (e.g., slight changes 

of flight track and observation geometry) is another explanation for these phenomena. 

Figure 4-5 also includes the co-polarized phase difference (HH/VV) of all trihedrals, 

which should be close to zero. The co-polarized phase difference of less than 5° 

achieved in almost all cases satisfies the accuracy requirement in phase. It’s worth 

noting that as all trihedrals were involved in the polarimetric calibration (estimation of 

the imbalance of HH and VV), the near zero phase difference was expected with 

further validation using the PARC required, as presented below. 

Figure 4-5 (b) depicts the results of SMAPEx-5, which are similar to those observed 

for SMAPEx-4. The residual RMSE of HH and VV were 0.62 dBsm and 0.68 dBsm 

respectively. The RMSD between HH and VV was 0.21 dBsm. Notably, the trihedral 

deployed at the outer edge of the PLIS swath during SMAPEx-5 did not have much 

variation from the remaining ones, suggesting that the PLIS data from far range bins 

was also of high quality. The negative difference between the observed and theoretical 

RCS of the 23° trihedral in SMAPEx-4 was not found in SAMPEx-5, refuting any 

suggestion of angular instability of PLIS. 

The small difference (< 0.2 dB) between the SMAPEx-4 and -5 absolute calibration 

coefficient CFa confirmed the sensor stability of sensor between campaigns. The short-

term relative calibration accuracy of PLIS data is reflected in Figure 4-5 (c). The largest 

day to day difference with respect to the theoretical cross-section were 0.56 dBsm 

observed between DOY 126 and 134, and 0.58 dBsm observed between DOY  



 

Calibration and Validation of PLIS 

 

4-14 

 

252 and 257, for SAMPEx-4 and 5 respectively, which slightly exceed the target 

calibration requirements of < 0.5 dB (Freeman, 1992). The instability of trihedral 

orientation and aircraft platform mapping geometry may be the main reason for this 

larger short-term variation. Figure 4-5 (d) depicts the corresponding averaged crosstalk 

estimated from trihedrals, which were 2 - 4 dB greater than the calibration 

requirements of -30 dB. This was mainly caused by the stronger multiple scattering 

between the trihedrals and ground surface compared to those directly from ground. 

The difference in ground response under the trihedrals between two field campaigns 

may be the main reason for the higher crosstalk in SMAPEx-4. The crosstalk (the 

correlation of HV and HH) estimated from a distributed area (i.e., the forest area C in 

Figure 4-1), was on the order of -30 dB. which is similar to the calibrated UAVSAR 

data (Fore et al., 2015) using the same polarimetric calibration method (Ainsworth et 

al., 2006). 

 
Figure 4-5 Response of trihedral PRCs after calibration. (a) and (b) are the RCSs and 
co-polarized phase differences of all trihedrals during SMAPEx-4 and 5, respectively. 
(c) and (d) are the time series average RCS of trihedrals and the averaged crosstalk 
estimated from trihedrals and forest respectively. 
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Figure 4-6 shows the channel imbalance of PARCs after calibrating the SMAPEx-5 

data. The PARC with local incidence angle of 42° could not be identified in the image 

of 27 September 2015 (DOY 270) and thus was not included. In general, the calibrated 

PLIS data achieved satisfactory accuracy in both amplitude and phase. The amplitude 

imbalance of most channels at the three different incidence angles was less than ± 0.4 

dB. The observed phase differences among different polarizations are very close to the 

theoretical ones (i.e. 0° for HH/HV and VH/VV, and 180° for the rest). The average 

phase imbalance was 3.87°. No clear angular pattern was observed despite the large 

variation of amplitude ratio and phase difference among the different incidence angles. 

To demonstrate the quality of the calibrated PLIS data, examples of Freeman-Durden 

polarimetric decomposition (Freeman and Durden, 1998b) are analyzed in Figure 4-7 

where the dihedral, volume, and surface power in dB are set to red, green, and blue 

respectively. Figure 4-7 (a) and (b) show results of an urban area and dense forest area. 

Significant difference was observed between the forest and urban area with the 

dominant components being the volume and dihedral scattering respectively. Strong 

volume scattering was also observed in some parts of the urban area (yellow patches). 

This was mainly caused by dense trees near buildings. The field within the black 

boundary (Figure 4-7 b) was bare soil with a significant row structure perpendicular to 

the radar look direction, and thus dihedral scattering was the dominant component. 

 

Figure 4-6: Amplitude (a) and phase (b) differences of the polarimetrically calibrated 
PLIS data from PARCs. 
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Figure 4-7 (c)-(e) show the decomposition results over agricultural areas at three 

different times, the beginning (May 3rd, 2015) and end (September 24th and 27th, 2015 

irrigated and non-irrigated) of the winter wheat growing cycle. In May, almost all fields 

were bare and thus the surface component (blue shades) was predominant. In 

September, some fields were covered with fully developed dry wheat characterized by 

increased dihedral and volume scattering contributions. Irrigation was carried out in 

the fields with white boundary between September 24th and 27th, resulting in an 

abrupt increase in all three mechanisms because of the sudden supplement of water in 

both soil surface and vegetation. 

It’s worth noting that the actual incident radar signal is not strictly perpendicular to the 

aperture of the PARCs and trihedrals. The angle offsets, which were less than 3° as 

shown in Figure 4-6 (a) and (b), can introduce uncertainty in estimating the scattering 

characteristics of these targets. Fortunately, both the trihedrals and PARCs have a very 

wide beamwidth (Figure 4-2), meaning that the effect of the observed offsets on the 

RCS of the trihedral and PARC were less than 0.1 dB with negligible channel 

imbalances. However, the angle offsets can also introduce a small co-polarized phase 

difference (< 3°) for the trihedral at L-band (Kahny and van ZyI, 1990, Craeye et al., 

 

Figure 4-7: RGB image of the Freeman-Durden decomposition powers in dB where 
red, green and blue are dihedral, volume and surface component respectively. (a) and 
(b) are results over an urban and forest area respectively. (c) - (f) are results of May 3rd, 
September 24th and 27th of an agricultural area where the irrigated fields were 
delineated with white boundaries.  



 

Chapter 4 

 

4-17 

 

1997). With respect to the PARC, the phase of all polarizations was retained and thus 

the phase differences are independent on the angle offsets. Nonetheless, the 

interaction between calibration targets and background can be different for different 

incidence angle, introducing unclear uncertainty. 

4.4.2 Comparison of PLIS and PALSAR-2 

The PLIS data shows a high agreement with the PALSAR-2 Stripmap image, with R 

better than 0.87 and RMSD better than 1.25 dB for both channels (Figure 4-8). The 

HV polarization showed the highest agreement with an ubRMSD of 0.94 dB. The 

biases between PLIS and PALSAR-2 Stripmap for HH and HV were 0.32 dB and 0.25 

dB respectively. This difference may be related to uncertainties in the calibration of 

both sensors, or a small drift between the PLIS and PALSAR-2 Stripmap, as soil 

moisture was nearly constant between the two acquisitions (Table 4-1). 

The agreement between PLIS and PALSAR-2 ScanSAR is not as good (Figure 4-8). 

The RMSD for HH and HV were 2.47 and 1.92 dB, nearly double compared to those 

observed between PLIS and PALSAR-2 Stripmap. The average HH and HV measured 

by PLIS were respectively 1.45 dB and 0.73 dB larger than those of PALSAR-2 

ScanSAR image. Such large positive biases can be partly explained by the change of 

soil moisture between the two acquisitions, which decreased from 0.17 to 0.14 m3/m3 

during the overpass of PLIS and PALSAR-2. This difference in soil moisture is 

predicted to result in a decrease in backscattering coefficient of 0.5 dB and 0.6 dB for 

HH and HV respectively; simulated using the IEM given a HR of 1 cm and Lc of 10 

cm. In addition, the relatively large geometric uncertainty of the PALSAR-2 ScanSAR 

(Shimada et al., 2009) can also introduce large uncertainties, especially for areas with 

high spatial heterogeneity. Figure 4-9 shows the relationship between R of PLIS and 

PALSAR-2 and spatial homogeneity, where homogeneity is described as the fraction 

of the dominant land cover. The R of PLIS and PALSAR-2 ScanSAR gradually 

increased as the spatial heterogeneity decreased, while no clear tendency was observed 

for the comparison of PLIS and PALSAR-2 Stripmap. This is reasonable because the 

spatial heterogeneity itself does not introduce uncertainty into the comparison of two 
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well spatially located images. In other words, the effect of spatial registration error on 

the comparison is more significant over a heterogeneous area. 

The impact of land cover type and azimuth difference between the two sensors is 

further illustrated in Table 4-3. Only grid cells with a high spatial homogeneity (where 

the fraction of dominant land cover type was > 80%) were used to eliminate the 

potential influence of geo-registration error. Since the PALSAR-2 Stripmap only 

covered the south-west part of the SMAPEx-5 area (Figure 4-1), less than 10 

 

Figure 4-8: Comparison of PLIS and PALSAR-2 backscattering coefficient in dB. (a) 
and (b) are HH and HV for SMAPEx-5 (PLIS and PALSAR-2 Stripmap) respectively 
while (c) and (d) are HH and HV for SMAPEx-4 (PLIS and PALSAR-2 ScanSAR). 
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homogeneous forest grid cells were achieved and thus comparison over forest was not 

included in Table 4-3. In addition, a large bare soil area in SMAPEx-4 was covered by 

milk-stage wheat in SMAPEx-5, and thus the comparison over wheat was included in 

the SMAPEx-5 scenario. 

In the SMAPEx-4 scenario, PLIS and PALSAR-2 ScanSAR had much higher RMSD 

over bare soil than over grass, forest and open woodland. The highest agreement was 

observed over forest with RMSD of 1.17 dB for HH and 1.02 dB for HV. The smallest 

RMSD were all achieved when the PLIS observed from west to east. Note that the 

look direction of PALSAR-2 is also nearly west to east (the inclination of satellite 

platform is ~97.9 °), indicating that azimuth direction had an impact on the backscatter 

observations. The impact of look direction for PLIS also varied for different landcover 

types, resulting in the largest RMSD over bare soil followed by open woodland, grass 

Table 4-3: The comparison of PLIS and PALSAR2 over different landcover types and 
look directions. Values in bold indicate the lowest RMSD among different landcover 
types. A(B) represents a root mean square difference of A and a correlation coefficient 
of B. Only the grids whose fractions of dominant landcover type were > 80% were 
included. 

 HH HV 

Look direction East-West West-East East-West West-East 

SMAPEx-4 scenario    

Bare soil 2.71(0.53) 2.53(0.63) 2.77(0.42) 2.05(0.60) 

Wheat - - - - 

Grass 1.42 (0.82) 1.54(0.80) 1.53(0.78) 1.38(0.81) 

Forest 1.34 (0.96) 1.17(0.95) 1.22(0.95) 1.02(0.95) 

Open woodland 1.37 (0.89) 1.47 (0.92) 1.48(0.76) 1.02(0.97) 

SMAPEx-5 scenario    

Bare soil 2.23 (0.59) 1.33(0.83) 1.27(0.82) 0.76(0.95) 

Wheat 0.91 (0.88) 1.05 (0.91) 0.74(0.98) 0.58(0.99) 

Grass 0.74 (0.91) 0.63 (0.91) 0.79(0.95) 0.70(0.98) 

Forest - - - - 

Open woodland 1.63 (0.71) 1.40 (0.51) 1.09(0.94) 0.93(0.94) 
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and forest. This is consistent with the fact that uniform grass and forest is nearly 

azimuth symmetric to radar remote sensing, while bare soil, especially with row 

structures, commonly has different backscattering behavior for different azimuth 

angles. Similar results were observed in the SMAPEx-5 scenario. The highest 

agreement was achieved over grass for HH and over wheat for HV, with RMSD less 

than 0.65 dB and R larger than 0.9. The largest RMSD and lowest R were observed 

over the bare soil, when PLIS look direction was not aligned to that of PALSAR-2. 

4.5 Chapter Summary 

The stability, accuracy and image quality of PLIS data was comprehensively evaluated 

using two airborne campaigns (SMAPEx-4 and 5), with the calibrated data used in the 

following chapters. The calibration results based on PRC and PARCs were found to 

be close to those observed for other L-band airborne SAR systems (Table 4-2), i.e. 

NASA UAVSAR (Fore et al., 2015) and JAXA Pi-SAR-L2 (Shimada et al., 2013b), 

which meet the accuracy requirements for the applications listed in Freeman (1992) 

and references therein, including age of lava flows classification, ice classification and 

motion monitoring, vegetation mapping/monitoring, wind speed monitoring over 

ocean, and soil moisture retrieval. PLIS / PALSAR-2 cross validation confirmed the 

calibration accuracy of the PLIS data over various land cover types and the potential 

 

Figure 4-9: The relationship between the correlation coefficient and spatial 
heterogeneity. 
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for cross-calibration of SAR systems. Homogeneous dense forest and grass land were 

suggested as optimal cross-calibration targets to reflect the accuracy of high and low 

backscattering observations respectively. Uncertainties in cross-validation/calibration 

caused by the difference of incidence angle, azimuth, spatial resolution and spatial 

miss-registration can be partly removed using a uniform area and large comparison 

grids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Calibration and Validation of PLIS 

 

4-22 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5 

 

5-1 

 

 Forward Scattering Models 

The proposed multi-SAR-mission retrieval is designed for SAR missions operating at 

L-, C- and X-bands. The commonly used scattering models have been introduced in 

Chapter 2. While these models have achieved positive results for forward simulation 

and soil moisture retrieval, currently a single model is unable to satisfy the validity 

range requirements for multi-SAR-mission retrieval. Consequently, a combination of 

scattering models covering the range of radar remote sensing configurations and 

natural surface conditions expected were selected for developing look up tables (LUTs) 

in this chapter. LUTs were developed to overcome the intensive computation 

demands of these models. The SMAPEx-5 data set presented in Chapter 3 was used 

in the development and evaluation of these LUTs. This work forms the basis of two 

papers with one published (Zhu et al., 2019a) and the other in review. 

5.1 Forward models used in this thesis 

A summary of the scattering models used in this study is presented in Table 5-1. For 

bare soil surfaces, the NMM3D (Huang et al., 2017b, Huang et al., 2010, Huang and 

Tsang, 2012) was used to simulate the L-band (1.26 GHz) backscattering coefficients. 

Use of the NMM3D was motivated by its successful application in the SMAP baseline 

algorithm for radar soil moisture products (Kim et al., 2012a, Kim et al., 2014a) and 

its satisfactory forward simulation results over a wide range of soil roughness and soil 

moisture (Huang et al., 2010). Despite the improved accuracy of the NMM3D 

compared with other models (Huang et al., 2010), the HR of available NMM3D 

simulations for the SAMP products was limited to 0.168 of the wavelength (Kim et al., 

2012a), being ~ 0.93 and 0.54 cm for C- and X-band respectively. Some simulation 

cases for larger HR values are available in Liao et al. (2016b). However, they still do not 

cover the range of natural soil surface. Moreover, it is challenging for this PhD study 

to generate extended LUTs covering larger HR, because of the intensive computation 

demand. Consequently, the Oh model (Oh et al., 2002) was used to represent the bare 
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soil σ0 at C- and X-band, because of its large validity range and robustness which have 

been demonstrated by many studies (e.g., Baghdadi and Zribi, 2011, Panciera et al., 

2014a, Choker et al., 2017). 

For vegetated areas, the distort Born approximation (DBA; (Lang and Sighu, 1983) 

was selected for all radar configurations, with the motivation to avoid the radar-

configuration-specific calibration required by semi-empirical models, e.g. parameter 

tuning of the water cloud model (Attema and Ulaby, 1978). A brief introduction of the 

forward models used in this thesis are as follows, with the generation of LUTs using 

those models described in Section 5.3. 

5.1.1 NMM3D based LUTs 

In the baseline algorithm of the SMAP radar products (Kim et al., 2012b), 

precomputed LUTs were used for operational soil moisture retrieval because of the 

intensive computational demand of the NMM3D. For building those LUTs, the soil 

surface was simulated as a random surface parameterized according to root mean 

square height (HR), correlation length (LC) and relative permittivity (εs) with isotropic 

exponential correlation functions. Accordingly, the Maxwell equations were directly 

solved at the boundary of air and simulated soil surfaces based on the methods of 

moments. Results for infinite surfaces were extracted from simulations of finite rough 

surfaces with a size of 16×16 wavelength (for L-band). Please refer to Huang et al. 

(2010) for more details. The LUTs for L-band have been generated for the SMAP 

Table 5-1: A summary of scattering models used. Wheat and grass were simplified as 
a random layer of cylinders, with the required parameters being that of cylinders. 

Model Frequency 
(GHz) Landcover Required unknown parameters* 

NMM3D (Huang et 
al., 2010) 1.26 Bare soil root mean square height (HR), correlation 

length (LC) and relative permittivity (εs) 

Oh model (Oh et al., 
2002) 5.4, 9.3 Bare soil HR, LC, and soil moisture (mv) 

DBA (Lang and 
Sighu, 1983) 

1.26, 5.4, 
9.3 Wheat, grass 

radius (r), length (l), relative permittivity 
(εv), azimuth (α), elevation (β) angle, and 

density in m3 (n) 
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baseline algorithm of the radar product (https://web.eecs.umich.edu 

/~leutsang/Computer%20Codes%20and%20Simulations.html) and were directly 

used in this study. 

5.1.2 Oh model 

The Oh model (Oh et al., 2002) is described as follows: 

 
0.65 1.4
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0
VV

1 ( ) e
90

Rmv k Hσ θ
σ

− − ⋅
°= −  Eq. 5-1 
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0.1( sin1.3 ) (1 e )Rk HR
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H
L

σ θ
σ

− ⋅= + −  Eq. 5-2 

 1.80 0.7 2.2 0..32( )
VH 0.11 cos (1 e )Rk Hσ θ θ − ⋅= − , Eq. 5-3 

where θ is the incidence angle, k=2π/λ is the wave number and λ is the wavelength. 

The validity range of the Oh model is 0.1 < kHR < 6.0, 2.6 < kLC < 19.7, 0.09 < mv < 

0.31 m3/m3 and 10° < θ < 70°. Similar to the assumptions made for the NMM3D 

simulations at L-band, the soil surface of the training data used for the Oh model also 

follows a stationary Gaussian random process with directionally isotropic correlation 

functions (Oh et al., 1992). The required unknown parameters of the Oh model (Oh 

et al., 2002) for forward prediction include the HR, LC, and mv. 

5.1.3 Distorted Born approximation 

The DBA assumes that the wave incident on each vegetation scatterer is the mean field 

in the vegetation layer, and the mean scattered fields then computed by embedding the 

scatterers in the equivalent medium (Lang and Sighu, 1983). The assumption is valid 

when the scatterers have a small albedo, which holds for frequencies up to 10 GHz 

for plant canopy (Moghaddam and Saatchi, 1995). 

Only the dominant vegetation types (i.e., wheat and grass) were considered, which were 

simplified as a layer of random distributed cylinders (Figure 5-1). These cylinders are 

homogeneous, lossy, uniformly distributed with consistent radius (r), length (l) and 

relative permittivity (εv) in each radar illumination grid. It was also assumed that the 

cylinders are distributed with prescribed orientation statistics which are independent 
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of r, εv, and l. Figure 5-1 shows the geometry of one particular cylinder in the vegetation 

layer. The ground underlying the vegetation layer is a rough and lossy soil surface layer. 

In the DBA (Lang and Sighu, 1983), the backscattering coefficients from vegetated 

area, can be decomposed according to (Figure 5-1): 

 0 0 0 0 0
, , , ,pq pq s pq sr pq rs pq vσ σ σ σ σ= + + +  Eq. 5-4 

where subscripts v, sr, rs and s are the volume, scattered (vegetation)-reflected (soil), 

reflected-scattered and surface scattering, respectively. subscript q and p refer to either 

horizontal (H) or vertical (V) polarization, respectively. The commonly used first-order 

radiative transfer models (e.g., (Ulaby et al., 1990) share a similar form to Eq. 5-4, with 

the main difference being the enhanced double-bounce scattering in the DBA because 

of the full simulation in coherent scattering (Tsang et al., 1985). In principle, the 

double-bounce scattering ( 0 0
, ,pq sr pq rsσ σ+ ) has a significant contribution on the cross-

polarization backscatter, while it contributes little to the HH and VV polarization 

backscatter at L-band, depending on the incidence angle, soil moisture, VWC and 

roughness. For C- and X-band, the double-bounce is greatly enhanced for co-

polarization, with experimental observations available in Brown et al. (2003). The 

volume scattering is commonly negligible for all polarizations at L-band at an arable 

area, but it could be dominant at C- and X-band for densely vegetated areas with large 

 
Figure 5-1: Schematic of vegetation layer and soil surface as well as the scattering 
mechanisms in distorted Born approximation (DBA), adapted from Huang et al. 
(2017a). The subscripts v, sr, rs, and s are the volume, scattered-reflected, reflected-
scattered and surface scattering, respectively. q and p are either horizontal (H) or 
vertical (V) polarization of the incident and scattered fields; α, β, r and l are the azimuth 
angle, elevation angle, radius, and length of a cylinder, respectively.  
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θ. Consequently, an operational method is proposed in Chapter 8 for removing these 

with negligible soil surface scattering. 

The terms in Eq. 5-4 can be expressed as: 

 0
, ,

1 exp( 2 Im( ) )
2 Im( )

p q
pq v pq v

p q

K K d
n

K K
σ σ

− − +
=

+
 Eq. 5-5 
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exp( 4 Im( ) )
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p q

pq rs pq rs q q
p q

K K d
n R K d

K K
σ σ

− − −
= −

−
 Eq. 5-7 

 0 0
, , exp( 2 Im( ) )pq s pq g p qK K dσ σ= − + , Eq. 5-8 

where d and n are the depth (in m) of the vegetation layer and the number density of 

vegetation scatterers (1/m3), respectively. K and σ in the above expressions are 

effective propagation constants in the vegetation layer and the ensemble average of 

the backscattering cross section of individual cylinders, respectively. 

Both K and σ can be calculated using the bistatic scattering amplitude of cylinders fpq. 

Specifically, σ is given by: 

 
2

, ,4 ,  { , , }pq pqf v sr rsχ χσ π χ= ∈ , Eq. 5-9 

where 〈⋅〉  is the ensemble average over the angular distribution of cylinders, and fpq for 

cylinders are calculated using the infinite cylinder approximation (Tsang et al., 1985) 

with the main difference in Eq. 5-5 – Eq. 5-8 being the directions of the scattered and 

incident waves. Kp was calculated by Foldy’s approximation where scatters were 

assumed to be embedded in the equivalent (mean) medium (Lang and Sighu, 1983): 

 0
0

2
cos

cos
pp

p

n f
K k

k

π
θ

θ
= + , Eq. 5-10 

where k0 and θ are the free-space propagation constant and angle of incident wave, 

respectively. The imaginary part of Kp is the attenuation constant, which is directly 

related to the optical depth τp by τp=2Im(Kpd). Accordingly, Eq. 5-8 can be interpreted 

as two-away attenuated soil surface scattering. 
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The remaining quantities are: Rp, the coherent reflectivity of ground for polarization p; 

and 0
,pq gσ , the backscattering coefficient of ground, both related to the underlying 

rough surface. In this study, the Rp and 0
,pq gσ  were calculated by NMM3D (Huang and 

Tsang, 2012) for L-band. The Oh model (Oh et al., 2002) was used to calculate 0
,pq gσ  

for C-and X-band, with the Rp being calculated using the Kirchhoff’s technique (Ulaby 

et al., 2014): 

 
2

0exp(2 cos )p p RR k Hρ θ= , Eq. 5-11 

where ρp is the Fresnel reflection coefficient. 

5.2 Data sets 

5.2.1 Ground measurements 

The ground measurements collected in three 3 km × 3 km SMAPEx-5 focus farms 

(YA4, YA7 and YE) were used for the development and evaluation of forward models, 

as presented previously in Chapter 3. The main landcover types of these three areas 

include winter wheat, grass, bare soil and open wood land (Figure 5-2). Since the tree 

coverage in the open wood land is less than 5% (~2000 – 3000 trees /km2), the open 

wood land was treated as grass for the purpose of soil moisture retrieval here. The 

 

Figure 5-2: Landcover and paddocks in the three SMAPEx-5 focus farms used in the 
development and evaluation of the forward models. The focus farms include YA4 (left), 
YA7 (middle) and YE (right). The paddocks with ID are those with ground roughness 
and/or vegetation measurements as given in Table 5-2. 
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boundaries of paddocks were delineated using visual-interpretation according to the 

homogeneity of landcover and the availability of ground measurements. A total of 69 

paddocks were extracted, accounting for 48% of the three focus farms. Notably, the 

boundaries here were only used for analyzing the results at the paddock scale. 

Throughout the campaign, intensive soil moisture measurements (mv) were made on 

September 9th, 14th, 19th, and 24th for YA4 and YE, and on September 11th, 17th, 

22th, and 27th for YA7 using the HDAS on a regular grid with a spacing of 250 m. A 

moderate rainfall of ~18 mm (measured at the Yanco agricultural institution) occurred 

prior to the experiment, resulting in mv values of larger than 0.3 m3/m3 followed by a 

three-week dry down period to values around 0.1 m3/m3. As introduced in Chapter 3, 

soil surface roughness of the paddocks was measured using a pin profiler and 

parametrized by their HR and correlation LC. Paddocks with HR and LC measurements 

in YA4, YA7 and YE are presented in Table 5-2. In general, the wheat and bare soil 

paddocks had a wide range of roughness, with large values observed on those with 

furrows due to tillage. 

In the selected three focus farms, the wheat had quite varying VWC values ranging 

from 1.17 – 3.72 kg/m2, which is mainly caused by the spatial heterogeneity of plant 

density (120 – 370 /m2) and height (0.35 – 1.0 m). Allometric relationships between 

VWC and height for grass and wheat were fitted (Figure 5-3), using ground 

measurements of the whole SMAPEx-5 area. No clear tendency of VWC values was 

observed but with significant random fluctuations over time for most paddocks during 

the three-week period (Table 5-2). These fluctuations were mainly caused by the intra-

paddock heterogeneity, as it was impossible to resample at exactly the same location 

using the destructive collection of samples for VWC estimation. Consequently, all 

vegetation parameters were assumed constant in time and averaged for each paddock 

with the average values reported in Figure 5-3. 
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Table 5-2: Available roughness and vegetation measurements of the paddocks in three 
SMAPEx-5 focus farms used in this chapter 

# LULC 
Vegetation parameters Soil surface parameters 

VWC (kg/m2) * Height 
(m) 

Radius 
(mm) 

Elevation 
angle (°) 

Row 
direction HR** (cm) LC/ HR ** 1 2 3 

2 Bare - - - - - - 90 1.94(8.66) 6.82(2.44) 
27 Bare - - - - - - - 1.22 14.53 
30 Bare - - - - - - 28 2.76(6.33) 5.13(2.95) 
35 Bare - - - - - - 28 1.61(5.54) 8.24(3.65) 
48 Bare - - - - - - 90 2.12(6.30) 7.76(3.20) 
54 Bare - - - - - - 10 - - 
55 Bare - - - - - - - 1.50 6.98 
70 Wheat - 2.3 1.9 0.46 1.42 25 - - - 
72 Wheat 2.5 2.6 3.1 0.47 1.49 30 - 1.60 7.44 
75 Wheat 3.3 2.6 2.9 0.77 1.50 25 90 1.12(4.05) 6.58(4.99) 
80 Wheat 1.9 2.5 2.3 0.62 - - 10 1.95(3.71) 14.20(5.83) 
83 Wheat 3.1 - - - - - 90 0.87(4.03) 7.19(6.51) 
95 Wheat 2.4 2.5 2.5 0.72 - - 90 1.45(2.58) 5.61(4.59) 
98 Wheat - - 2.7 0.70 - - 10 - - 
103 Wheat 2.8 2.8 - 0.74 - - 90 1.54(2.83) 6.95(5.34) 
105 Wheat 1.7 - - 0.60 1.02 - - 0.91 20.93 
109 Wheat 1.9 2.2 2.9 0.71 - - - - - 
110 Wheat 0.9 1.3 1.3 0.61 - - - - - 
112 Wheat 1.6 1.4 1.9 0.66 1.00 20 90 2.46(3.12) 9.16 (9.91) 
115 Wheat 3.5 4 3.6 1.05 1.63 20 10 1.01(2.94) 11.30(6.49) 
116 Wheat 2.8 - - 0.67 1.51 22.5 90 1.06(2.76) 7.24(4.98) 
117 Wheat 2.7 3.2 - 0.60 - - 55 1.18(2.38) 2.94(6.74) 
135 Grass 0.6 0.8 0.7 0.32 - - - 1.20 17.86 
138 Grass 0.7 - - 0.30 - - - 1.21 7.12 
143 Grass 1.5 1.7 1.7 0.43 - - - 0.71 14.98 
154 Grass 1.2 - - - - - - 0.71 14.98 
158 Grass 0.9 - - - - - - 0.71 14.98 
159 Grass - 0.5 - 0.30 - - - 0.96 18.21 
161 Grass 0.7 1.2 1.0 0.33    1.15 20.34 

*: VWC of three weeks during the SMAPEx-5  
**: roughness along (perpendicular) to row structure for paddocks with periodic surface 

 
Figure 5-3: Fitted relationship between vegetation water content and vegetation height 
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5.2.2 Radar data 

Radar images for three different microwave bands, i.e., L-band (1.26 GHz), C-band 

(5.4 GHz) and X-band (9.3 GHz), were used in this chapter. The L-band images were 

acquired by the Polarimetric L-band Imaging SAR (PLIS) coincident with the eight-

ground soil moisture sampling dates mentioned above; details of this data and its 

calibration were provided in Chapter 4. The C- and X-band images are from satellite 

data including seven RADARSAT-2 images (C-band) and five COSMOS SkyMed 

images (X-band). Their details are summarized in Table 5-3. 

5.3 Development of the look up tables 

Since the NMM3D and DBA are computationally intensive, LUTs were built as 

representations of forward scattering instead of directly integrating models to an 

inversion framework. Table 5-1 gives a summary of the inputs of each model, with 

three and ten parameters required for a bare soil surface and vegetated area, 

respectively. For soil moisture inversion, these models must be simplified and 

parameterized in terms of fewer soil and vegetation parameters, considering the limited 

Table 5-3: Specification of SAR data in a format of incidence angle/orbit/ 
polarization, where A and D are ascending and descending pass, respectively. 

DOY PLIS (L-band) RADARSAT -2 (C-band) COSMO-SkyMed (X-band) 
251   33.5°/D/HH 
252 20-50°/D/HH, HV, VV 39.5°/D/VV, VH  
253   28.5°/A/HH 
254 20-50°/A/HH, HV, VV 22.4°/A/HH, HV, VV  
255  22.7°/D/VV, VH  
257 20-50°/D/HH, HV, VV 39.2°/A/HH, HV, VV  
260 20-50°/A/HH, HV, VV   
261   33.5°/D/HH 
262 20-50°/D/HH, HV, VV 28.9°/D/VV, VH  
263   28.5°/A/HH 
264  34.1°/A/VV, VH  
265 20-50°/A/HH, HV, VV   
267 20-50°/D/HH, HV, VV   
269  34.5°/D/HH, HV, VV 33.5°/D/HH 
270 20-50°/A/HH, HV, VV   
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number of independent radar observations and the drastically increased complexity of 

the inversion problem with more than three geophysical parameters. 

5.3.1 LUTs for bare soil 

As aforementioned, the rough soil surfaces were assumed to follow a stationary 

Gaussian random process with an isotropic exponential correlation function in the 

NMM3D simulation, which have been demonstrated to match well with experimental 

soil surfaces (Shi et al., 1997, Oh et al., 1992, Ulaby et al., 2014). However, natural soil 

surfaces are typically more complex, with rain-eroded and ploughed soil having a shape 

lying somewhere between an exponential and a Gaussian function (Zribi et al., 1997, 

Zribi et al., 2005b). Moreover, directional row or tillage features often exist and were 

observed over several paddocks (Table 5-2), negating the isotropic assumption. 

Accordingly, more comprehensive descriptions, e.g., two-dimension roughness (Blaes 

and Defourny, 2008) and the Zg as a function of HR, LC and correlation function (Zribi 

et al., 2014), are undoubtedly more suitable. But either additional parameters (to 

represent the two-dimension soil surface) or radar-configuration-specific calibration 

(for the use of Zg) are required, leading to an increased complexity, especially when 

merging multi-SAR missions. 

Fortunately, previous studies (Champion and Faivre, 1996, Joseph et al., 2010) have 

shown that effective isotropic roughness values can be used to account for the surface 

scattering of periodic features. Those effective roughness values were either 

determined via calibration of forward models (Baghdadi et al., 2002c, Baghdadi et al., 

2004, Lievens et al., 2011a, Joseph et al., 2010) or directly retrieved together with soil 

moisture in an iterative manner (Bai et al., 2016). Since the effective roughness is 

dependent on the incidence angle, polarization and frequency (Joseph et al., 2010, 

Lievens et al., 2011a), a calibration process is not suitable in this study for combining 

multiple SAR missions, with the effective roughness being retrieved together with soil 

moisture. Similarly, the retrieved effective roughness values also depend on the varying 

configurations of input data, with a detailed discussion provided in Chapter 7 and 8. 
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In this thesis, HR was selected as the only independent effective roughness parameter, 

with the corresponding Lc determined by HR, considering the poor performance of 

using the observed Lc values in IEM forward simulations at the same research area 

(Zhu et al., 2016, Panciera et al., 2014a) and the need to reduce the number of 

independent soil parameters. Specifically, the available ground measured HR (Table 5-2) 

and mv were used to predict the σ0 at L-band HH and VV polarization, with LC/HR 

ranging from 5 to 15. The simulated σ0 was then compared with the multi-angular PLIS 

observations at a resolution of 25 m, with the RMSE and correlation coefficients 

depicted in Figure 5-4. In general, the RMSE gradually decreased from 3 ‒ 4 dB to 2 

dB as the LC/HR was increased from 5 to 10, with insignificant difference of both 

RMSE and R for LC/HR ratios larger than 10. This suggests the effectiveness of using 

a fixed ratio of 10‒15 at the pixel/paddock scale in the Yanco area, with the calibrated 

empirical relationships between LC and HR proposed in earlier studies (Baghdadi et al., 

2002c, Baghdadi et al., 2004, Lievens et al., 2011a) undoubtably more reliable. However, 

re-calibration of those relationships were required in Yanco area as demonstrated in 

Panciera et al. (2014a), for each polarization, frequency and even incidence angle, 

leading to an increasingly complex problem. Consequently, a further simplified 

relationship of LC = 10HR was used in this PhD study, as has been used in the SMAP 

baseline algorithm (Kim et al., 2012a). 

 

Figure 5-4: The effect of LC/HR on L-band forward accuracy over bare soil at a spatial 
resolution of 25 m. 
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To further reduce the number of unknowns, only the real part (εs’) of relative 

permittivity was used, with corresponding imaginary parts being 1 to 4.5 (Kim et al., 

2012a). Accordingly, two unknown parameters (HR and εs’) need to be determined for 

a bare soil surface. For the L-band LUTs, εs’ ranged from 3 to 30, covering the very 

dry (~0.03 m3/m3) to very wet (~0.42 m3/m3) soil experienced in the Yanco area 

(Dobson et al., 1985b). Different relative permittivity ranges were used for C- and X-

band LUTs to have a roughly consistent mv range (0.03 ‒ 0.43 m3/m3). The HR values 

ranged from 0.5 to 4 cm covering the validity range of all paddocks except the 

roughness measured across the row structure in several paddocks (#2, #27, #30, #48, 

#75 and #83) during SMAPEx-5 (Table 5-2). 

Limited by the NMM3D’s computational requirements, only six HR nodes (0.5, 1, 1.5, 

2, 3, and 4 cm) and seven εs’ nodes (2.8, 4, 5.5, 9, 15, 22 and 30) were used for the 

initial L-band LUTs at an incidence angle (θ) of 20°, 30°, and 50°, while an additional 

roughness node of 5 cm was included for 40° (Kim et al., 2012a). These LUTs in dB 

were then equally interpolated in terms of dB onto a cube with 256×256×31 nodes 

using a cubic spline function, with the three axes denoting the HR, εs’, and θ respectively. 

The Oh model was directly used to generate the backscattering coefficient (in dB) for 

C- and X-band at the same cube. The steps in HR and εs’ were ~0.01 cm and ~0.1, 

respectively. 

5.3.2 LUTs for vegetated area 

To calculate the σ0 from a vegetated surface (Figure 5-1), a total of seven vegetation 

parameters are required, including the radius (r), length (l) and relative permittivity (εv) 

of individual cylinders; the probability density function (pdf) of azimuth (α) and 

elevation (β) angle; volumetric water content of vegetation materials (Mveg) and the 

number density of cylinder in m3 (n). The first three parameters are required in the 

infinite cylinder approximation (Tsang et al., 1985) for the calculation of bistatic 

scattering amplitudes, the integration of which with the pdf over α and β is the 

ensemble average in Eq. 5-9 and Eq. 5-10. Among those parameters, n and l showed 

large spatial variations as mentioned in section 5.2.1, with other vegetation parameters 
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being relatively homogenous spatially (Table 5-2). For operational inversion, only the 

vegetation water content (VWC) was used to represent the effect of vegetation, as in 

previous studies (e.g., Kim et al., 2014a, Huang et al., 2017a, Joseph et al., 2010). 

Specifically, the r, α, β and Mveg were set as spatially uniform in the forward simulation 

and directly determined using the ground measurements summarized (summarized in 

Table 5-4). The heterogeneous parameters l and n were represented by VWC through 

the fitted allometric relationships (Figure 5-3) and the equation: 

 2
veg

VWCn
r l Mπ ρ

=  Eq. 5-12 

where ρ are water density (~1000 kg/m3). 

The LUTs built for bare soil were used to account for scattering from the underlying 

rough surface. The VWC for wheat and grass ranged from 0.5 – 5 kg/m2 and 0.1 – 3 

kg/m2, respectively. The initial LUTs have a resolution of 0.05 kg/m2 in VWC, with 

seven incidence angles ranging from 20° to 50° with an interval of 5°. These LUTs 

were then equally interpolated to 31 incidence angle specific cubes with the VWC also 

being interpolated into 256 nodes. A comparison over 1000 random combinations of 

VWC, εs’, HR and θ showed that the maximum difference between LUTs and 

NMM3D/Oh-DBA was less than 0.2 dB, being equivalent to a soil moisture value of 

Table 5-4: Parameters used in building lookup tables, U (a, b) denotes a uniform 
distribution ranging from a to b; and N (a, b) is a normal distribution with a mean of 
a and a standard deviation of b. 

Parameter Wheat Grass Bare 

α (°) U(0, 360) U(0, 360) - 

β (°) N(30, 4) N(60, 15) - 

Mveg 0.75 0.65 - 

r (mm) 1.4 1.2 - 

VWC (kg/m2) 0.5 ‒ 5 0.1‒3 - 

εs’ 3 ‒ 30 3 ‒ 30 3 ‒ 30 

HR (cm) 0.5 ‒ 4 0.5 ‒ 4 0.5 ‒ 4 

θ (o) 20 ‒ 50 20 ‒ 50 20 ‒ 50 
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< 0.01 m3/m3 for radar observations. A summary of the parameters used for building 

these LUTs are listed in Table 5-4. 

5.4 Forward model evaluation 

5.4.1 Evaluation of L-band LUTs 

The LUTs built by NMM3D-DBA were evaluated using the available radar 

observations (Table 5-3) and ground samples over the paddocks containing roughness 

and VWC observations (Table 5-2). The model σ0 were first calculated for each mv 

sample and then averaged for each paddock. The roughness values measured along the 

row structure were used for paddocks #2, 30 and 48, because their average roughness 

values are out of the range of bare soil LUTs (0.5 – 4 cm). Figure 5-5 shows the 

predicted σ0 in dB versus the PLIS observations over bare soil, grass and wheat. The 

co-polarizations (HH and VV) achieved the best performance over bare soil, followed 

by the grass and wheat. The root mean square error (RMSE) for all land cover types 

(1.6 – 3.2 dB) were marginally larger than those reported in other studies using the same 

models, which are ~1.5 dB for bare (Huang et al., 2010), 1.8 dB for grass (Kim et al., 

2014a), and 1.1 – 1.7 dB for wheat (Huang et al., 2017a). One reason for the difference 

is the periodic row structures observed in several paddocks. For example, significantly 

larger co-polarized σ0 were observed at paddock #80 (wheat) which was ploughed 

nearly perpendicular to the radar look directions. After removing these paddocks, the 

 

Figure 5-5: Comparison of forward NMM3D-DBA σ0 and PLIS multi-angular 
observations at the paddock scale (~0.1 – 0.5 km). The dash lines denote the ±1dB offset. 
R refers to Pearson correlation coefficient. 
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RMSE for wheat decreased to 2.1 dB (HH), 2.3 dB (VV) and 2.8 dB (HV). The effect 

of surface row structure on radar observations is well documented (Ulaby and Bare, 

1979, Blanchard and Chang, 1983, Champion and Faivre, 1996, Zribi et al., 2002), with 

the co-polarized σ0 observed perpendicular to row structure being be up to 10 dB larger 

than those observed with parallel row direction at L-band (Ulaby and Bare, 1979). 

Observations from other azimuth angles also have a relatively larger σ0 compared to 

the parallel direction, but with a limited difference when the azimuth angle difference 

(θa) between the incident wave and row direction was less than 60° (Blanchard and 

Chang, 1983). This is coincident with the σ0 observed at other ploughed paddocks in 

the research area whose θa ranged from 0 - 62° (e.g., the paddock #2). The predicted 

σ0 of these paddocks, based on average or along row direction roughness, matched 

approximately the observed σ0 having a difference of less than 4 dB. Notably, this does 

not mean that the isotropic roughness assumption and the fixed Lc/HR ratio of 10 

accurately describes the periodic soil surface, but rather indicates that the roughness 

values used in the forward evaluation were close to the perceived effective roughness 

values for those paddocks. 

 

Figure 5-6: The difference of measured and predicted σ0 at HH polarization versus 
incidence angle. The circled points belong to paddock #80 that was ploughed nearly 
perpendicular to the radar look directions. 
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A further investigation on the angular dependence of forward model performance at 

HH is depicted in Figure 5-6, with the results for HV and VV being similar. In general, 

no clear angular pattern was observed for all three landcover types, showing the 

reliability of the angular effect modeling. Different angular behavior was observed for 

paddock #80, with the PLIS observations being 8-12 dB and 4-6 dB higher than the 

model predictions at incidence angles of ~30 and 48° respectively. Similar results were 

observed by Ulaby et al. (2014) and Zribi et al. (2002) for 3.25 GHz. 

5.4.2 Evaluation of C- and X-band LUTs 

The C- and X-band LUTs were evaluated using the RADARSAT-2 and COSMO 

SkyMed observations and ground samples over the paddocks containing roughness 

and VWC observations (Figure 5-7). Overestimations of 2 ‒ 4.5 dB for C-band were 

observed over bare soil using the Oh model, in line with similar results observed in 

several previous studies ranging from 1 ‒ 5 dB (Choker et al., 2017, Baghdadi and Zribi, 

2006, Merzouki et al., 2010). The Oh model also had a large overestimation of 5.2 dB 

at X-band HH polarization, being much larger than those (< 1 dB) observed by 

Baghdadi and Zribi (2011) and Merzouki et al. (2010). The potential reason could be 

the calibration uncertainty of X-band data, as large offsets have been observed between 

different beams of the COSMO SkyMed and among different X-band missions 

(Pettinato et al., 2013). After removing the biases, an acceptable unbiased RMSE 

(ubRMSE) of <2 dB and R of 0.4 ‒ 0.8 were achieved. Therefore, correction factors 

were used to remove the biases as suggested by Merzouki et al. (2010), with the soil 

contribution in Eq. 5-8 for vegetated area also being corrected. 

Acceptable RMSEs (< 2.2 dB) were observed over grass and wheat paddocks for all 

available radar configurations except the C-band VV polarization for wheat paddocks. 

A large underestimation of 12.4 dB was observed for wheat at C-band VV polarization, 

which could be ascribed as the underestimation of transmission in the DBA (Huang 

et al., 2017c). More specifically, the mean field of the vegetation layer is assumed to be 

the incident wave on each scatterer in DBA and thus is uniform for different parts of 
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a single cylinder (Figure 5-8 a). This approximation can greatly overestimate the actual 

incident wave at low parts of a cylinder (Figure 5-8 a) because of the increasing 

attenuation caused by the nearby cylinders. Consequently, the scattering field of a 

single cylinder was overestimated because of the overestimated incident wave, resulting 

in an overestimated attenuation in Eq. 5-8. Additionally, the assumption of equivalent 

medium can further underestimate the transmission of areas with a large spatial 

variation of vegetation density. An example is shown in Figure 5-8 (b) where the 

vegetation layer has an average τp of 4 and a 20% spatial gap without vegetation. The 

transmission calculated by the DBA is near 0 because of the large average τp; however, 

this should be near 0.2 because of the 20% spatial gap where the signal can go through 

without attenuation. 

 

Figure 5-7: Comparison of forward and observed σ0 at the paddock scale (~0.1 – 0.5 
km) for available C- and X-band data. The dash lines denote the ±1dB offset. R 
refers to Pearson correlation coefficient.  
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The two-potential effects described by Figure 5-8 tend to be more significant at C-

band than L-band, with a near-zero bias for L-band at all polarizations (Figure 5-4). 

This can be explained by the stronger attenuation of nearby cylinders and the relatively 

larger gaps for a shorter wavelength. In addition, these effects relate to the geometry 

of the vegetation scatterers and the polarization of incident waves. In this study, wheat 

was simplified as a layer of near vertical cylinders and thus VV polarization had a more 

significant underestimation than HH. On the contrary, HH polarization should be 

more sensitive over grass as it had larger elevation angles. Fortunately, grass commonly 

has a relatively small VWC value of <1 kg/m2, and only slight underestimations of 1 ‒ 

2 dB were observed for C- and X-band at HH polarization. 

5.5 Chapter Summary 

Landcover specific LUTs were built to accurately represent the behavior of surface 

scattering under various radar configurations using a combination of scattering models 

(NMM3D-DBA for L-band and Oh-DBA for C- and X-band). The soil surface was 

assumed to be isotropic, with an assumed effective isotropic roughness value for 

paddocks with periodic features, as suggested by Champion and Faivre (1996) and 

Joseph et al. (2010). The performance of these LUTs was evaluated using ground 

measurements and airborne/spaceborne radar data, showing acceptable representation 

 

Figure 5-8: Conceptual figure showing the two potential reasons for the overestimated 
attenuation in DBA. (a) shows the attenuation overestimation caused by the 
overestimation of incident field in a single cylinder. (b) shows the effect of a 20 % gap 
between vegetations on attenuation estimation. 
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of the angular behavior and a forward ubRMSE of 1 – 3.2 dB dependent on the 

polarization, frequency and land cover type; calibration of the Oh model was 

undertaken to remove the biases. These LUTs are used to build a synthetic data set in 

Chapter 6, to retrieval soil moisture from time series multi-angular data in Chapter 7, 

and multi-frequency data in Chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Forward Scattering Models 

 

5-20 

 

 

 



 

Chapter 6 

 

6-1 

 

 Surface Anomaly Change Detection 

The different temporal behavior of soil moisture and other earth surface parameters, 

such as surface roughness and vegetation, are utilized here to remove the major 

unknowns in the proposed multi-SAR-mission retrieval. The method assumes that 

only the soil moisture varies in the period of interest, while all other parameters such 

as vegetation water content and soil surface roughness are sufficiently time invariant. 

However, this assumption is not always satisfied in agricultural areas, where cultivation 

practices such as ploughing, irrigation and harvesting are conducted irregularly 

between radar acquisitions, resulting in abrupt roughness and vegetation changes. 

Consequently, a roughness and vegetation change detection approach is developed in 

this chapter as a pre-processing of the soil moisture retrieval presented in Chapters 7 

and 8. The work in this chapter has been published in Zhu et al. (2019b). 

6.1 Background 

The rational and benefit of using time-invariant soil roughness and vegetation in multi-

temporal soil moisture retrieval have already been introduced in Chapter 3. However, 

the assumption that the variation of backscatter in time only relates to a change of soil 

moisture may not be valid, with a few other factors summarized in Figure 6-1. 

Specifically, variation of the SAR system can introduce significant changes in SAR 

observations (Ulaby et al., 2014), creating a problem in the change detection-type 

methods (Wagner et al., 1999a). Relative geometric and calibration errors are tightly 

related to a specific SAR system, meaning that data acquired from the same 

observation geometry commonly has great stability, while combining images with 

different acquisition modes and/or incidence angles may introduce large uncertainties. 

The third category is the anomaly backscatter changes due to mechanisms that are 

different from the gradually evolving surface conditions. A heavy rainfall between two 

observations can cause impulse smoothening of the soil roughness (Zobeck and 

Onstad, 1987) and significant change of the vegetation’s dielectric constant (McDonald 



 

Surface Anomaly Change Detection 

 

6-2 

 

et al., 2002). While identifying extreme rainfall events from light rainfall events using 

radar-based soil moisture products may be challenging (Bazzi et al., 2019), the 

presence/absence of a rainfall event is relatively easy to be determined through either 

the abrupt increase of average backscatter over time or from rainfall products. The 

uncertainty caused by the radar system and the input data will be discussed in Chapter 

7. This chapter only focuses on the backscatter variations at the paddock scale as a 

result of cultivation practices, e.g. irrigation, harvest, ploughing and harrowing. 

Soil moisture retrieval approaches that consider the paddock scale roughness changes 

includes the Bayesian change detection method of (Notarnicola, 2014) and the use of 

multi-temporal roughness corrections (Gorrab et al., 2015). A more favorable 

approach is to include a pre-processing procedure that can determine the changed 

paddocks, making detection independent of the multi-temporal approach. With 

knowledge of the changed paddocks, time series SAR data of changed paddocks can 

then be split into multiple different subseries according to the paddock specific change 

dates, where multi-temporal retrieval methods can be used safely. 

A great number of methods have been proposed for detecting earth surface changes 

using multi-temporal SAR data, with the main interest focusing on change of landcover 

types (Marin et al., 2015, Pantze et al., 2014), flooded area (Brisco et al., 2013), ship 

 
Figure 6-1: Flowchart showing the factors affecting backscatter changes from multi-
temporal SAR images. The solid rectangles at the bottom level show the sources that 
should be considered before applying soil moisture retrieval from multi-temporal SAR 
images with short time interval. 



 

Chapter 6 

 

6-3 

 

movements (Wei et al., 2014) and oil spills (Konik and Bradtke, 2016). There are two 

main steps in change detection (Bruzzone and Prieto, 2002): one is the generation and 

selection of features (e.g. the difference/ratio maps) at a pixel and/or object basis; the 

other analyzes the difference between images and identifies the changes. The former 

is tightly related to specific changes because of their different scattering mechanisms. 

For the latter, several popular methods include an automatic Bayesian algorithm 

(Bruzzone and Prieto, 2002), a Kittler-Illingworth based method (Satalino et al., 2014), 

and a method based on enhanced fuzzy clustering (Gong et al., 2012). Despite the 

promising performance of these methods in specific applications, two issues need to 

be further addressed: i) Can slight changes in roughness and vegetation be identified? 

and ii) What are the optimal polarizations and spatial scale combination in identifying 

these changes? 

In this chapter, an anomaly detection method was developed as a pre-processing step 

for the safe use of multi-temporal approaches. The spatial/temporal characteristics of 

roughness and vegetation changes in SAR data were first investigated to guide the 

development of the method. The proposed method includes two main components: i) 

extraction of the optimal image ratio/difference for change detection at the paddock 

scale with the aid of a feature selection algorithm, and ii) a two-step algorithm to 

identify the changed paddocks with the first step generating multiple over-detection 

for the same period of interest using different SAR image pairs, which are then 

combined to remove the false alarms in the second step. The proposed pre-processing 

method was evaluated using extensive synthetic and real SAR data sets. The multi-

temporal soil moisture retrieval method proposed by Wagner et al. (1999a), (1999c) 

was used to show the initial and residual errors caused by surface changes in multi-

temporal soil moisture retrieval before and after application of the pre-processing 

method. 
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6.2 SMAPEx-5 Data Set 

6.2.1 Ground measurements 

A focus area of SMAPEx-5 was selected in this chapter (Figure 6-2) considering the 

availability of ground truth of cultivation activities. The focus area is a 3 km × 21 km 

north-south strip covering three SMAPEx-5 focus farms (YE4, YE7 and YE), with 

the main land cover types being dense winter wheat, grass and bare soil. Some parts of 

the area undergoing intensive cultivation practices during the later stage of the 

SMAPEx-5 period. All paddocks with cultivation activities in the focus area were 

recorded for ground truth, including 8 irrigated wheat paddocks and 13 bare soil or 

 
Figure 6-2: Focus area selected for algorithm evaluation using ground measurements. 
The right panel shows two examples where roughness changed during the period of 
SMAPEx-5. 
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grass paddocks. These paddocks account for a small part of the focus area, with their 

boundary and paddock ID depicted in Figure 6-2.  

As introduced in Chapter 3, ground sampling of soil moisture, roughness and 

vegetation was made in the SAMEPx-5 focus farms. The three-week campaign was a 

gradual dry-down period because of a moderate rainfall occurred before the 

experiment. The gradually changing rate can be roughly expressed as 1 - e(-I/2), with the 

I being the order of ground sampling dates from 1 to 8. The available measurements 

of paddocks with cultivation activities are listed in Table 6-1. HR and LC ranged from 

0.53 to 3 cm and 5 to 35 cm for isotropic surface, respectively. Large HR values up to 

9 cm were observed across the row in paddocks with row structures. The available 

measurements for paddocks with cultivation activities during the experiment are listed 

in Table 6-1. Unfortunately, most of the cultivation events occurred between the last 

two soil moisture sampling dates (DOY 267 and 269). Only the occurrence of these 

events was recorded on the last soil moisture sampling date (DOY 269) without any 

detailed measurements of the roughness and vegetation changes. 

6.2.2 Radar data 

The radar data from Chapter 5 was used here for the evaluation of the change detection 

algorithm, including eight acquisitions of L-band PLIS observation, seven C-band 

RADARSAT-2 images and five X-band COSMO SkyMed acquisitions. An optical 

image acquired by Landsat 8 Operational Land Imager (OLI) on 30th September 2015 

was used as a reference for geo-registration. Images from all three sensors were multi-

looked and re-sampled to a grid size of 25 m. The cosine law (Ulaby et al., 1982b) with 

a power index of 2 was used to normalize all the backscattering coefficient (dB) data 

to a reference angle of 30°. This can have a negative effect on change detection. For 

real applications, the proposed method could be applied to data with similar incidence 

angle ranges respectively with the presence/absence of roughness and vegetation 

changes being combined using logical operations. Alternatively, as a pre-processing 

stage of multi-temporal soil moisture retrieval, the one used in a specific retrieval 

study/application could also be the optimal choice. 
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The PLIS time series data over the focus area (the red rectangle in Figure 6-3) and the 

records of cultivation practices between DOY 267 and 270 in 2015 were used to 

provide an opportunity to investigate the spatial and temporal characteristics of 

anomaly surface changes. Figure 6-3 shows the difference maps of HH, VH and VV 

polarized backscatter images acquired on DOY 267 and 270. Ploughing and irrigation 

practices were observed over five bare soil paddocks and eight winter wheat fields in 

this period, respectively. Obviously, these cultivation practices were carried out for 

individual paddocks, resulting in quite different patches in the difference maps and the 

boundaries of these patches roughly match that of paddocks. Accordingly, it is 

reasonable to treat all pixels describing a single paddock as an object and applying 

object-based techniques to detect those that changed. Object-based techniques take 

the irregular geographical objects in the research area (i.e. the paddocks in this study) 

Table 6-1: Available roughness and vegetation measurements of the paddocks with 
cultivation activities 

# 
Land 

cover 

VWC 

(kg/m2) 

Before cultivation After cultivation Cultivation 

DOY HR* (cm) LC/ HR * HR* (cm) LC/ HR * 

1 Bare - 1.94(8.66) 6.82(2.44) 0.51(5.47) 5.32(20.7) 264 
2 - 3 Bare - - - - - 258 
4 - 7 Bare - - - - - 263 
8 Bare - - - 1.16(5.54) 8.24(3.65) 263 
9 Bare - 1.50 14.65 1.90 6.05 268 
10 Bare - 2.12(6.30) 7.76(3.20) - - 269 
11 Bare - - - - - 268 
12 Bare - - - - - 268 
13 Wheat - - - - - 269 
14 Wheat 3.72 1.01(2.94) 11.30(6.49) - - 269 
15 Wheat 2.81 1.06(2.76) 7.24(4.98) - - 269 
16 Wheat 1.17 - - - - 269 
17 Wheat 2.32 - - - - 269 
18 Wheat 2.82 1.54(2.83) 6.95(5.34) - - 269 
19, 
20 Wheat - - - - - 269 

21 Wheat 2.78 1.60 7.44 - - 269 

*: roughness along (perpendicular) to row structure for paddocks with periodic surface 
-: not available  



 

Chapter 6 

 

6-7 

 

as the analysis unit rather than the uniform pixel/gird, with the first step being the 

image segmentation to determine the boundaries of geographical objects. For 

SMAPEx-5 (Yanco area), the area of paddocks ranged from 0.1 km2 to 0.5 km2, which 

is also the target scale of this study. However, soil moisture retrieval can still be carried 

out at a finer or coarse scale simply taking the detection results as a spatial mask. The 

use of an object-based analysis helps to reduce the effect of geo-referencing and 

speckle noise (Hussain et al., 2013), thus reducing the uncertainty caused by data pre-

processing. 

The time series HH, VH and VV of four bare soil paddocks with soil practices (i.e., 

#9-12) and four wheat paddocks with irrigation (i.e., #16-19) are also depicted in 

Figure 6-3. Others were not included in the figure to avoid overlapping data because 

of similar behavior. In general, the backscattering coefficients for all polarizations 

gradually decreased over the whole period of DOY 252-270, which is coincident with 

the decrease of soil moisture over the SMAPEx-5. A significant increase of HH, VH 

and VV can be observed from DOY 267 to 270 over the winter wheat paddocks due 

to irrigation. Similar results were found across bare soil paddocks due to soil cultivation 

activities. However, these changes were generated by different mechanisms. The 

relationship between irrigation and surface changes is quite complex. Despite a 

significant increase of soil moisture, irrigation can decrease soil roughness over a short 

time (Hunsaker et al., 1999). The sudden increase of soil water can also change the 

dielectric constant of wheat, with a similar magnitude effect to that of rainfall 

(McDonald et al., 2002). With respect to soil cultivation, the soil moisture of the top 

layer and roughness can be changed simultaneously. As a result, it can be hard to 

determine the contribution of soil moisture change to the measured backscatter 

variation. Nevertheless, for detecting these anomalies, it is not critical what causes the 

backscatter variation. Since the changed paddocks commonly takes only a small part 

of the whole research area, and the SAR observations of these paddocks deviate a lot 

in both space and time from that of other paddocks, the changed paddocks may be 

treated as outliers. 
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Figure 6-3 also illustrates the sensitivity of different polarizations to these changes. The 

increase in VH backscatter for all bare soil paddocks was somewhat higher than that 

in HH and VV from DOY 267 to 270, which can be explained by the different 

polarization sensitivities to soil roughness. Irrigated paddocks showed significant 

backscatter increase in all three polarizations. A feature space (e.g. the 2-dimension 

space spanned by temporal difference of HV and VV) with larger sensitivity is 

 

Figure 6-3: Anomaly surface changes at L-band (PLIS) multi-temporal SAR images. (a) 
shows the changed paddocks observed between DOY 267 and 270, 2015 on a false 
color composite Landsat 8 OLI image (RGB: near-infrared/red/green); (b), (c), (d) are 
the backscatter difference maps in HH, HV and VV polarizations between images 
acquired on DOY 267 and 270 with the changed paddocks delineated as well, 
respectively; (e), (f) and (g) are respectively the time series HH, HV and VV of several 
examples, which also include the average backscattering coefficient of the whole area 
labeled as “All”. 
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commonly more powerful in detecting the changed paddocks than one with smaller 

sensitivity. For multi-temporal polarimetric data, thousands of feature spaces are 

available and thus a feature selection algorithm is needed to find the optimal feature 

space. 

6.3 Synthetic Data Set 

The cultivation practices during the SMAPEx-5 cannot fully represent all possible 

anomaly changes in real applications. Accordingly, a synthetic SAR data set was 

generated with various soil moisture, roughness and vegetation changes based on the 

SMAPEx-5 ground measurements for a comprehensive evaluation. The landcover of 

the SMAPEx-5 focus area was selected as the based map for the synthetic with a total 

of 621 paddocks. In this section, the detail of synthetic roughness, vegetation and soil 

moisture was introduced first, followed by the method to build synthetic radar data 

and the evaluation process over the generated synthetic data set. 

6.3.1 Synthetic surface parameters 

Eight soil moisture maps were generated with a time step of 2-3 days according to the 

eight sampling dates of SMAPEx-5. Specifically, the initial average soil moisture value 

(m3/m3) of each paddock was randomly generated from a uniform distribution of U 

(0.25, 0.4). From this, the soil moisture of each pixel of a paddock was randomly 

generated from a normal distribution with a standard deviation of 0.05 (m3/m3) to 

show inner-paddock variability. The dry down process observed during the SMAPEx-

5 was used to produce the following seven soil moisture maps. 

After soil cultivations, both the HR and LC changed (Table 6-1). However, the changes 

of HR and LC can be hardly independent in real applications. Different empirical 

relationships between s and effective LC values were observed for various radar 

configurations in forward prediction, e.g., Baghdadi et al. (2002c), Baghdadi et al. 

(2004). A fixed LC/HR ratio of 10 was suggested by Kim et al. (2012a) for soil moisture 

mapping at a 3-km grid from L-band data. In addition, more parameters are required 
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for soil surface with periodical row structures. The effect of row structures and their 

temporal changes on backscatter is quite complex to model (Zribi et al., 2002, Blaes 

and Defourny, 2008). Fortunately, this study only needs to determine the 

presence/absence of roughness changes, while it is not necessary to know the specific 

kinds of changes. Different types of roughness changes, including the correlation 

function shape, row structure, HR and LC, can result in similar changes in radar 

observations. This means effective changes of s can always be found for all potential 

roughness changes. For instance, effective isotropic roughness described by a single 

set of HR and LC could be used to roughly account for the soil surface with row 

structures (Champion and Faivre, 1996). 

Accordingly, only HR was simulated independently with the exponential correlation 

function and a fixed LC of 10s considering the significantly higher sensitivity of s to the 

radar observations (Ulaby et al., 2014). Similar to the generation of soil moisture maps, 

the initial average HR value (cm) of each paddock was randomly generated from U(0.5, 

4). Then, s values of each paddock were randomly generated from a normal 

distribution with a standard deviation of 0.3 (cm). A decreasing rate of 0.98 denoting 

the gradual roughness changes was applied to produce the second to eighth maps. 

Random changes were introduced in the HR and VWC maps with a fixed probability 

of 10% for two successive roughness and VWC maps in time. Once a paddock was 

selected with HR or VWC changes, the average value of the paddock was randomly 

determined and the value of each pixel in the paddock was re-generated. The input for 

generating these maps is summarized in Table 6-2. It is worth noting that the VWC of 

bare soil paddocks was set to 0 without changes in time. 

6.3.2 Construction of synthetic radar data 

Based on the surface parameter maps, speckle-free backscattering coefficient maps 

were produced using LUTs built in Chapter 3. Only bare soil was included in X-band 

data set because it is questionable to use X-band in soil moisture retrieval under 

vegetation. Speckle noise maps with the same size were produced using the chi-square 
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distribution with 2N degrees of freedom, where N is the number of independent looks 

(Bolter et al., 1996). The speckle-free backscattering coefficient maps were then 

multiplied with their generated speckle noise maps pixel by pixel. 

Figure 6-4(a) show the process of generating the time series σ0 in dB of a given period 

1 to q. For one grid with s or VWC changes at a date k, two sub-series σ0 were simulated 

with the initial (s1 and VWC1) and changed (s2 and VWC2) surface parameters. The σ0 

of wettest (mv = 0.43 m3/m3) and driest (mv = 0.03 m3/m3) conditions with the initial s 

and VWC were also generated, while an additional set of σ0 representing wettest and 

driest conditions were calculated for these with s or VWC changes (the part 5 and 6).  

6.3.3 Validation metrics 

The records of simulated anomalies and cultivation practices observed during 

SAMPEx-5 (Figure 6-2) were used to produce reference maps for synthetic and real 

data, respectively. There are four possible outcomes in identifying a paddock as 

changed or not, when comparing the detection results and the reference maps: true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN). Based on 

these, accuracy rate (AR), false alarm rate (FAR), and F score (Olson and Delen, 2008) 

were calculated: 

Table 6-2: The input for generating time series maps of surface parameters. U (A , 
B) denotes a uniform distribution ranging from A to B. 

Parameter mv (m3/m3) HR (cm) VWC (kg/m2) 

Distribution for initial mean value U (0.25, 0.4) U (0.1, 4) U (0.2, 4) 

Inner-paddock standard deviation 0.5 0.3 0.5 

Gradually changing rate 1 - e(-I/2) * 0.98 1.05 

Probability of anomaly change 0 10% 10% or 0 

Anomaly change amplitude (%) 0 U (10, 70) U (10, 70) 

*: coincident with SMAPEx-5, I is the map time index starting from 1. 
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Eq. 6-3 

The AR (also known as precision) and FAR reflect the missed alarms and the false 

alarms of change detection results, respectively. F score is a joint measure that 

penalizes both missed alarms and false alarms. For soil moisture retrieval from multi-

temporal SAR data, the missed alarms are the source of error but the FAR is also 

important because it controls the retrieval rate which is defined as the percentage of 

areas that can be used in soil moisture retrieval. As an example, with all paddocks 

identified as changed (AR=1; FAR ~1) no errors will be introduced because the entire 

image cannot be used in soil moisture retrieval. 

In addition, the multi-temporal soil moisture retrieval algorithm proposed by Wagner 

et al. (1999a) was used to show the effect of s and VWC changes on retrieval before 

and after the change detection. Specifically, the Wetness Index (WI: 0 to 100%) for a 

grid is defined as (Wagner et al., 1999a): 

 
0 0

0 0
dry

wet dry

WI
σ σ
σ σ

−
=

−
, Eq. 6-4 

where 0σ , 0
dryσ , and 0

wetσ are the current backscatter values at HH polarization of a 

pixel and that of the wettest and driest conditions, respectively. Figure 6-4(b) shows 

the concept of validation process using the WI. The time series σ0 was first separated 

into two sub-series at the detected change date k’ (The part 7 and 8). Three WIs can  
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be calculated: i) one without removing the effect of roughness and VWC changes (WIu); 

ii) one with all changes being removed using the ground truth (WIgt); and iii) one with 

 

Figure 6-4: Flowchart of synthetic radar data construction (a) and the validation 
process over the synthetic radar data using the Wanger’s method (b). The s and VWC 
are roughness RMS height and vegetation water content with the superscript 1 and 2 
being the initial and changed states. mv1,q denote time series soil moisture from the first 
to qth dates. 
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changes being partly removed by the proposed method (WIc). The root mean square 

error (RMSE) of WIc and WIu were then calculated taking the WIgt as the truth. 

Accordingly, the RMSE of WIc and WIu can be treat as the error and residual error 

caused by the roughness and VWC changes before and after change detection, 

respectively. 

6.4 Method 

The proposed change detection method consists of two components (Figure 6-5): (i) 

feature selection and extraction at the paddock scale, and (ii) determination of the 

change maps. The first component intends to extract the optimal features of paddocks 

for effectively detecting the anomaly surface changes. The second component is a two-

step procedure (ensemble detection) to identify the changed paddocks, where multiple 

over-detected change maps for the period of interest were first generated using a 

simple density-based method and then merged using a voting to remove the false 

changed paddocks. 

 
Figure 6-5: Flowchart of the proposed change detection method. 
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6.4.1 Feature selection and extraction at the paddock scale 

As previously addressed, anomaly surface change detection is more suitable to be 

carried out at the paddock scale within the optimal feature space. Accordingly, a 

Landsat 8 OLI image was used to provide the paddock boundaries. Several 

difference/ratio images were then extracted using pixel-wise algebraic operations to be 

the candidates for an optimal feature space which was further determined using a 

genetic algorithm (GA)-based feature selection algorithm. Following the extracted 

boundaries and corresponding difference/ratio values of pixels, the mean vector of 

each paddock was calculated over the optimal space. These vectors were then 

normalized between 0-1 along each dimension as the input to the change detection 

algorithm. The process is detailed as follows: 

A. Paddock extraction. The boundaries of paddocks can be conveniently extracted 

using a range of image segmentation algorithms, some of which were comprehensively 

evaluated in Zhang et al. (2015). In this study, the multiresolution segmentation 

algorithm (Baatz, 2000) embedded in the commercial software eCognition Developer 

8 was used, with the scale and shape parameters being 10 and 0.5, respectively, 

considering the size and shape of paddocks in the study area. 

B. Calculation of backscatter difference/ratio images. The candidate 

difference/ratio images are listed in Table 6-3. The difference and ratio images of two 

acquisitions t and t-1 in dB can be calculated as: 

 1 1( , ) ( , ) ( , )t t
pq pqf x y f x y f x y−= −  Eq. 6-5 

 2 1( , ) ( , )/ ( , )t t
pq pqf x y f x y f x y−=  Eq. 6-6 

where p and q refer to H and V polarization, and x and y are the row and column of a 

pixel in the image. The number of features for fully polarized data is 18, resulting in a 

large number of available feature combinations (218= 262,144) for subsequent 

refinement using the feature selection algorithm below. 
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C. Optimal feature space selection. A range of feature selection algorithms are 

available (see Guyon and Elisseeff (2003) for an introduction and review). Among 

these, genetic algorithms (GA) are well-known general adaptive optimization methods 

that can efficiently process large search spaces with a low risk of reaching a local 

optimum (Guyon and Elisseeff, 2003). Hence, a GA is employed as the search 

algorithm in this study to find the optimal feature space.  

A GA is a metaheuristic searching algorithm inspired by the process of natural 

selection. The first step of a GA is chromosome design and population initialization. 

For fully polarized data, the chromosome is an 18-bit binary value, corresponding to 

the 18 available features listed in Table 6-3. In the population initialization, 20 

chromosomes were randomly generated with several bits of each chromosome being 

1, denoting the initial selected features. These chromosomes were then adaptively 

optimized using three genetic operations, i.e. selection, crossover, and mutation. The 

selection operation was used to pick good chromosomes from the current population 

according to the fitness function defined in this study as: 

 /2(1 ) Ns Nafitness e eα− −= − ⋅  Eq. 6-7 

 
1* *

* * * *1 1 1( ) ( ) ln
28 2 2

i jT
i j i j i j i j

C C
C C C Cα µ µ µ µ

−
 +  = − − + +       

 Eq. 6-8 

where µi and µj are the mean vector of class i and j (change or unchanged), respectively; 

Ci
* and Cj

* are the covariance matrix of class i and j, respectively; Ns and Na denote 

Table 6-3: Candidature feature index for SAR data acquired at phase t and t-1. 

Family (#) Candidature features 

Difference (6) HHt - HHt+1, HHt - HVt+1, HHt - VVt+1, HVt - HVt+1, HVt - VVt+1, 
VVt - VVt+1 

Ratio (6) HHt / HHt+1, HHt / HVt+1, HHt / VVt+1, HVt / HVt+1, HVt / 
VVt+1, VVt / VVt+1 

Second order 
features (6) 

HVt/VVt - HVt+1/VVt+1, HVt / HHt-HVt+1/HHt+1, HHt/VVt-
HHt+1/VVt+1, (HVt/VVt)/(HVt+1/VVt+1), 

(HVt/HHt)/(HVt+1/HHt+1), (HHt/VVt)/(HHt+1/VVt+1) 
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the number of the selected feature and of all available features, respectively. The first 

term of the fitness function, i.e. 2(1 )e α−− , is known as the Jeffreys-Matusita (J-M) 

distance (0 - 2 ) which is a commonly used metric of interclass separability (Bruzzone 

et al., 1995). Two classes are partly to fully separable if the J-M distance is larger than 

1. The rest of the fitness function is used to limit the number of selected features 

considering the computational efficiency in the change detection.  

The crossover operator refers to the exchange of several bits between two 

chromosomes, and the mutation operator is used to improve the genetic diversity by 

randomly modifying some part of a chromosome. Both crossover and exchange can 

help avoid local optima by exploring new regions of search space. The optimization 

process is terminated when the number of iterations (also known as generations) 

reaches a defined value. In this study, the maximum generation, population size, 

crossover rate, and mutation rate were 100, 20, 0.1, and 0.01 respectively. 

6.4.2 Determination of the change maps 

After the previous step, each paddock corresponds to a feature vector in the selected 

optimal feature space and a set of thresholds or a hyper-plane is required to separate 

the changed paddocks from those that are unchanged. A number of methods can be 

used to achieve an accurate hyper-plane with some assumptions and/or iterative 

optimization (Bazi et al., 2005, Gong et al., 2012). Despite the satisfactory performance 

in specific applications, the main drawback of these methods is the complexity to be a 

pre-processing stage of multi-temporal soil moisture retrieval. A simple strategy 

inspired by the ensemble machine learning is used here. In the framework of ensemble 

leaning (Zhang and Ma, 2012), the combination of multiple poor to moderate results 

from different leaners is expected to result in an accurate result. Similarly, the 

combination of multiple over-detected change maps for the period of interest derived 

from different SAR pairs are also expected to have a satisfactory result. Generating 

over-detected change maps is easier than an accurate one. 
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Given a time series of SAR images O = {O1,…, Ok, …, Ot }, the anomaly surface 

changes that occurred between the acquisitions t-1 and t are recorded by t-1 SAR pairs 

Ot/Ot-1,…, Ot/Ok, …, Ot/O1 (1 < k < t-1). Based on these SAR pairs, t-1 over detected 

change maps C={Ct,t-1,…, Ct,k …, Ct,1} (1 < k < t-1) can be generated. Obviously, a 

change map Ct,k includes not only the changed paddocks for the target period (t-1 and 

t) but also these for the period of t-1 to k. The latter can be removed by simply 

subtracting the change map Ct-1,k generated from Ot-1/Ok from the Ct,k. Accordingly, t-

1 change maps for the target period are generated C={Ct,t-1,…, Ct,k－Ct-1,k , …, Ct,1－

Ct-1,1} (1 < k < t-1). These poor to moderate change maps were finally merged to get 

a more accurate one through: 

 
−= − ≥ − < <∑ , 1, k( ) 1,  (1 )t k t k

k

C C C N k t  Eq. 6-9 

where Nk is the number of k. A straightforward explanation of Eq. 6-9 is as follows: 

multiple change maps for the period t and t-1 can be treated as independent “voters” 

which are more likely to vote the real changed paddocks. The maximum number of 

votes that one paddock can get is Nk and the real changed paddocks are expected to 

receive near Nk votes, which is significantly larger than that of falsely identified 

paddocks. Accordingly, a threshold Nk-1 can help remove most of the false alarms. An 

example of how multiple change detection results are merged is provided in Figure 6-6, 

using the time series L-band data. 

Eq. 6-9 requires multiple over-detected change maps which are generated using a 

simple clustering algorithm, i.e. Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) (Ester et al., 1996). DBSCAN is capable of dealing with a large 

dataset and discovering clusters with arbitrary shape and noise without 

predetermination of a cluster number. Since the DBSCAN is only used to identify the 

noise which is the changed paddocks in this study, only a brief introduction relating to 

the noise is included. Please refer to Ester et al. (1996) for detail.  
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In DBSCAN (Ester et al., 1996), a point pi of a dataset P belongs to one of the 

following three types: core point, border point, and noise. The definitions of these 

types are based on the conception of local density D (pi) = Cardinality (NEps (pi)), where 

NEps (pi) is the number of neighbor points of pi within a given radius (Eps) defined as 

( ) { | , distance( , ) }Eps i j i jN p p j p p Eps= ∀ < . In other words, this refers to the number 

of points within a radius Eps. A core point pc refers to a point containing at least a user-

defined minimum number of other points (MinPts) within Eps, i.e. D (pc) ≥ MinPts. A 

noise point pn refers to one that does not contain core points in their neighbours and 

D (pn) < MinPts. 

 

Figure 6-6: An example showing the process of generating the change map for the 
period of t and t-1 using an L-band series. White paddocks are those identified as 
changed. The label C refer to over-detected maps with the subscripts denoting the 
periods. Three over-detected maps for the periods of t and t-1 were generated first and 
then merged to remove the false alarms. 
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6.5 Results 

Three experiments were designed to evaluate the performance of the proposed 

method. The parameter Nk was set to 3, indicating that four SAR images in the time 

series were used to produce three over-detected change maps in the single detection 

step, with these merged in the ensemble detection. This is an appropriate value for real 

applications, considering the requirement of producing multiple change maps for the 

period of interest and a short time span to eliminate the effect of gradual roughness 

and vegetation changes (e.g., 24 days for 4 Sentinel-1 observations). The detail of each 

experiment is introduced below with the input data sets described in Table 6-4. 

The first experiment was designed to select the optimal feature spaces for roughness 

and/or VWC changes based on two synthetic data sets (DS-1 and DS-2). Specifically, 

optimal feature spaces for L-, C-, and X-band and two polarization modes i.e., Quad 

(HH+HV+VH+VV) and Dual (VH+VV), were selected. These optimal spaces 

therefore are independent from the later change detection over real data set. 

The proposed change detection method was comprehensively evaluated in the second 

experiment using the optimal spaces selected in Experiment A. The evaluation was 

first carried out on DS-1 and DS-2 to show the performance at different frequencies 

and incidence angles, followed by an investigation on the effect of noise and change 

amplitude using DS-3. The time series of PLIS, RADARSAT-2 and COSMO SkyMed 

images were used in the last experiment to show the performance on a real data set. 

Table 6-4: Synthetic data sets used in this study. DS denotes dataset 

 Frequency (GHz) Incidence angle (°) #Look Types of anomaly 
changes  

DS1  1.26 & 5.41 20,30,40,50 1 VWC & Roughness 

DS2 9.3 20,30,40,50 1 Roughness 

DS3 1.26  30 1:2:11 VWC & Roughness 
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All synthetic data were generated ten times with different random presence/absence 

of roughness and VWC changes and thus ten values are available for each validation 

metric. The mean and standard deviation of these values was reported below to show 

the average performance and stability of the proposed method. For simplicity, F score, 

AR, and FAR are used to denote the average F score, AR, and FAR of the 10 trials 

hereafter. 

6.5.1 Optimal feature space 

Table 6-5 introduces the optimal feature space for different radar configurations 

(frequency and polarization). In general, the J-M distance for all cases was larger than 

1.28 showing a satisfactory separability between changed and unchanged paddocks in 

the selected feature space. The number of selected features was relatively small (3 - 4) 

compared to the 18 available features for fully polarized data. More specifically, the 

HVt/VVt-HVt+1/VVt+1 combination was selected by all radar configurations, followed 

by the VVt - VVt+1, HVt - HVt+1, and HVt / HVt+1, which were selected in 5, 3 and 2 

cases, respectively. Since VVt - VVt+1, and VVt / VVt+1 are highly correlated, the 

features based only on time series VV were selected by all configurations. Similarly, 

time series of HV polarization were selected in 5 cases, including either HVt - HVt+1 

or HVt / HVt+1. These results can be explained by the different sensitivities of features 

to surface changes. For example, the cross-polarized ratio (HV/VV) is very sensitive 

to the change of roughness, especially for roughness changes at small values (kσ <2 

where k is the wavenumber; (Oh, 2004). The HV polarization is sensitive to both VWC 

and roughness changes (Ulaby et al., 2014). The VV polarization has larger attenuation 

than HH over vegetation with a dominant vertical structure (e.g., wheat) and thus 

VWC changes can result larger changes in VV. Despite the great similarity, slight 

changes in feature constitution were observed among different radar configurations, 

which may result from the existence of multiple solutions with similar fitness. 
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L-band achieved the largest J-M distance in both Quad and Dual polarized data, 

followed by C- and X-band. However, the difference was limited with the largest 

difference (0.16) observed between L-band Quad and X-band Dual. Quad data 

achieved a slightly larger J-M distance than Dual data for L- and X-band, with the aid 

of an additional feature related to the co-polarized ratio (HH/VV); i.e. HHt/VVt+1 for 

X-band and (HHt/VVt)/(HHt+1/VVt+1) for L-band. The effect of HH/VV here is 

Table 6-5: Selected optimal feature space and the corresponding J-M distance for 
different radar configurations based on synthetic SAR data sets with various surface 
changes, where the grey grids denote the unavailable features. Q and D denote Quad 
and Dual (HV+VV) polarization, respectively. 

 X-band C-band L-band 

Feature Q D Q D Q D 

HHt - HHt+1       

HHt - HVt+1       

HHt - VVt+1       

HVt - HVt+1 ×  × ×   

HVt - VVt+1  ×     

VVt - VVt+1  × × × × × 

HHt / HHt+1       

HHt / HVt+1       

HHt / VVt+1 ×      

HVt / HVt+1     × × 

HVt / VVt+1       

VVt / VVt+1 ×      

HVt/VVt-HVt+1/VVt+1 × × × × × × 

(HVt/VVt)/(HVt+1/VVt+1)       

HVt/HHt-HVt+1/HHt+1       

(HVt/HHt)/(HVt+1/HHt+1)       

HHt/VVt-HHt+1/VVt+1       

(HHt/VVt)/(HHt+1/VVt+1)     ×  
J-M distance 1.32 1.28 1.35 1.35 1.39 1.37 
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unclear, because i) the elevation angle of vegetation was assumed to follow a fixed 

distribution and thus VWC changes cannot introduce significant changes in HH/VV; 

and ii) HH/VV is relatively insensitive to roughness changes, changing from 0.6 dB- 

3.5 dB when σ changes from 0.3 to 4.8 cm at C-band (Oh, 2004). Accordingly, a 

uniform feature space including the HVt/VVt-HVt+1/VVt+1, HVt/HVt+1 and VVt - 

VVt+1 is sufficient for all radar configurations listed in Table 6-5. The J-M distances in 

this space were around 1.37, 1.34 and 1.27 for L-, C- and X-band, respectively.  

However, this does not mean that the dual polarized data is sufficient for all future 

applications. For example, HH can be required for vegetated areas with more complex 

structures (e.g., soybean). In addition, the effect of vegetation structure and its 

interaction with VWC changes were not considered, because of the simplistic 

vegetation scattering representation in the DBA (Lang and Sighu, 1983). To address 

this, some cases based on the Numerical Maxwell Model of three-dimensional 

simulations (Tsang et al., 2017) can be promising as this model can fully simulate the 

scattering of vegetation in detail. The polarimetric parameters calculated from fullly 

polarized data (Cloude and Pottier, 1996) are expected to be more sensitive to the 

vegetation structure changes than simple polarization difference/ratio. Finally, the J-

M distance is only part of the cost function used in the feature selection and a more 

complex feature space can be used for full polarized data for a better performance at 

the expense of a drastic increase in computational expense. 

6.5.2 Evaluation using synthetic data sets 

Figure 6-7 shows the performance of the proposed method on single-look synthetic 

data with different frequencies and incidence angles. In general, moderate performance 

was achieved in all cases with the F score, AR and FAR ranging from 0.81 to 0.87, 

0.76 to 0.82 and 0.09 to 0.15, respectively. These are lower than the results of other 

methods in identifying the change of landcover types (Marin et al., 2015, Pantze et al., 

2014), flooded area (Brisco et al., 2013), ship (Wei et al., 2014) and oil spills (Konik 

and Bradtke, 2016), which commonly have an AR and FAR of better than 0.9 and 0.1 

respectively. However, detecting soil roughness and VWC changes is more challenging 
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as the amplitudes of these changes are much smaller than that of landcover type change, 

presence/absence of a ship etc.  

The proposed method performed best at L-band, followed by C- and X-bands but 

with a slight F score difference of less than 0.06. These results are coincident with the 

difference of J-M distance listed in Table 6-5. The standard deviation of F score, AR 

and FAR was all less than 0.02 showing a good stability of the proposed method. All 

three metrics demonstrated no clear angular pattern although the same roughness 

and/or VWC change resulted in quite different backscatter changes at different 

incidence angles. This can be partly explained by the multiple dependence of detection 

accuracy on the sensitivity of radar configuration, noise level and the spatial variation 

 

Figure 6-7: Performance of the proposed method on single-look synthetic data sets. (a) - 
(d) are the AR, FAR, F and RMSE of wetness index at L-, C- and X-bands with various 
incidence angles, respectively. The error bars denote the standard deviation of metrics. 
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of moisture changes. For time series with slight roughness and vegetation changes, 

noise could be the dominant factor and similar detection accuracy at different 

incidence angles was achieved regardless of the difference in sensitivity. The binary 

process (absence/presence) in change detection could be another reason. For these 

with large roughness and vegetation changes, the backscatter changes at less sensitivity 

radar configurations (e.g., small incidence angles) could be large enough to be 

identified. 

Despite the moderate performance in view of accuracy metrics (Figure 6-7 a-c), the 

proposed method can greatly remove the error caused by roughness and VWC changes 

in multi-temporal soil moisture retrieval as depicted in Figure 6-7 (d). About 68.30% 

(L-band), 74.48% (C-band) and 74.75% (X-band) of the initial RMSE was removed 

after change detection. The residual RMSE was less than 8%, 7% and 3% for L-, C-, 

and X-band respectively. This difference is mainly caused by the different amount of 

changed paddocks. At X-band, 10% of bare soil paddocks have random roughness 

changes, while additional VWC changes in 10% of the vegetated paddocks were 

included at L- and C-bands. Significant angular dependence of RMSE was observed at 

L- and C-bands. This is mainly caused by the heavy dependence of backscattering 

coefficient on incidence angle and frequency over vegetated areas. The same VWC 

change at larger incidence angles and/or higher frequencies resulted in larger 

backscattering coefficient changes and consequently larger error in the multi-temporal 

retrieval. In contrast, the same roughness change at different angles resulted in similar 

backscattering coefficient changes and thus no clear angular pattern was observed in 

the results of X-band. For instance, a σ change from 0.3 cm to 3 cm results in a HH 

difference of 8.13 dB at an incidence angle of 20° according to the Oh model, which 

is 10.01 dB at 50° given a soil moisture value of 0.3 m3/m3. 

The relationship between the performance and the number of independent looks for 

L-band is presented in Figure 6-8, where a larger number of looks indicates a lower 

noise level. As expected, AR and F gradually increased as noise decreased and reached 

their highest values when the number of looks was larger than 7, while the opposite 
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was found for FAR. This is consistent with the process of noise reduction using the 

multi-look operation. The main part of the noise was removed changing the number 

of looks from 1 to 7, with further multi-looking contributing little to the result. After 

removing the major part of the noise, a satisfactory performance was achieved with an 

F score, AR and FAR of 0.90, 0.85, and 0.07, respectively. However, the improvement 

in the residual RMSE of wetness index was negligible (~ 1%), as depicted in Figure 

6-8 (b). One explanation is that the improvement in AR mainly comes from additional 

identification instances of small roughness and VWC changes whose effect on radar 

observations is close to the noise level. Such small roughness and VWC changes could 

have limited effect on multi-temporal soil moisture retrieval with negligible 

improvement. 

A further investigation on the relationship between detection accuracy and surface 

change amplitude in percentage for single-look L-band data is presented in Figure 6-9. 

The proposed pre-processing method had a relatively poor performance in identifying 

small roughness and VWC changes with an AR of 0.62 for a 10% change, but 

fortunately the effect of these small changes on multi-temporal soil moisture retrieval 

is also small. The residual RMSE in wetness index after change detection is only 2.46%. 

An important implication based on this is that the gradual (natural) roughness and 

VWC changes should not have a significant effect on soil moisture retrieval. When the 

 

Figure 6-8: Impact of noise on performance at L-band synthetic data. (a) shows the 
average AR, FAR, and F versus the number of looks; (b) shows the RMSE of wetness 
index versus the number of looks. The error bars denote the standard deviation of 
metrics. 
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amplitude of roughness and VWC change increases from 10% to 70%, AR and F 

increased from 0.62 to 0.90 and 0.68 to 0.92 respectively, with a sharp FAR decrease 

of 0.19. However, the residual RMSE in soil wetness first slightly increased from 2.46% 

to 7.32% and then decreased to 4%. This can be explained by the different effect of 

surface change amplitude on AR and RMSE. An increase in change amplitude resulted 

in large errors caused by missed alarms, which however increased the detection 

accuracy and resulted in fewer missed alarms. The negative effect of increasing change 

amplitude on RMSE is larger than the positive effect of AR increase for change 

amplitudes less than 40%, which was reversed for larger surface changes. 

6.5.3 Evaluation using real observational data set 

The sudden surface change detection results over time series of PLIS, RADARSAT-2 

and COSMO SkyMed acquisitions are presented in Figure 6-10, with the dashed lines 

showing the start and end time of the period of interest for each change map. The 

detection agreement is shown in light grey for the unchanged paddocks and in blue for 

the changed paddocks. The false alarms and missed alarms are depicted in  

dark grey and green, respectively. In general, the proposed method achieved 

satisfactory results for L- and C-band data. Only one changed paddock was missed in 

L-band data with a total of 9 false alarms. Despite the relatively high FAR (0.3), only  

 
Figure 6-9: Impact of roughness and VWC change amplitude on performance at L-
band synthetic data. (a) shows the average AR, FAR, and F versus change amplitude; 
(b) shows the RMSE of wetness index versus change amplitude. The error bars denote 
the standard deviation of metrics. 
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Figure 6-10: Change detection results versus ground truth at real SAR data collected 
during SMAPEx-5 study period. The dashed lines show the start and end time of the 
period of interest for each change map.  
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one paddock was erroneously identified as changed twice in this period (the red circle 

in Figure 6-10). These false alarms only have a negative influence on soil moisture 

retrieval methods that need a long time series of SAR data, e.g. (Wagner et al., 1999a). 

Taking the paddock in the red circle as an example, it was falsely detected as changed 

between DOY 260-262 and DOY 265-267. Consequently, the relevant time series of 

the L-band observations should be separated into three sub-series, i.e. DOY 255-260, 

DOY 262-265, and DOY 267-end. Soil moisture retrieval algorithms can still be 

applied on these respective sub-series. 

In the detection results of C-band, acceptable results (AR 0.91; FAR 0.09) were 

achieved with two false and two missed alarms. This demonstrates the robustness of 

the proposed method in dealing with time series images acquired by different 

observation modes, with the assistance of a simple incidence angle normalization 

process. However, the detection results of X-band data were much poorer. A number 

of changed paddocks for DOY 263-269 were not identified. This is mainly caused by 

the feature space used in X-band; the COSMO SkyMed data only has HH polarization 

which is not sufficient to detect all changed paddocks. 

6.6 Chapter Summary 

The objective of this chapter was to identify abrupt roughness and vegetation changes 

caused by cultivation activities, to ensure that soil moisture variation is the only source 

of backscattering variation for the time period being processed for soil moisture. While 

the proposed method only achieved a moderate detection accuracy with the AR and 

FAR ranging from 0.75 - 0.85 and 0.08 - 0.15 for single-look data, evaluation based on 

synthetic data sets demonstrated that the proposed approach can effectively eliminate 

the major errors in multi-temporal soil moisture caused by VWC and roughness 

changes. To serve as a pre-processing procedure of operational soil moisture retrieval, 

time series data are separated into multiple subseries according to the detection results 

first. For multi-temporal soil moisture retrieval methods without a calibration process, 

e.g., Balenzano et al. (2011), Kim et al. (2012a), and Ouellette et al. (2017), and the 

retrieval method presented in Chapter 7 and 8, soil moisture retrieval can be carried 
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out on each sub-series independently. However, for those retrieval methods requiring 

either calibration or multi-temporal vegetation correction, e.g., Wagner et al. (1999a) 

and Pierdicca et al. (2010), the proposed method could provide an alarm for 

uncertainty caused by roughness and/or vegetation changes. 
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 Time Series Multi-Angular Retrieval 

This chapter presents a time series method for collective soil moisture retrieval from 

radar data collected by the same satellite/constellation. While several time series 

retrieval approaches have been developed in the past three decades, it is still 

challenging to retrieve soil moisture from data with different polarizations and 

incidence angles caused by the transition of imaging modes (e.g., ScanSAR, StripMap 

and Spotlight), radar beams, look directions (left and right) and orbits (ascending and 

descending). Consequently, a method that is compatible with varying polarization and 

incidence angle over time is proposed based on the forward model LUTS built in 

Chapter 5, the data introduced in Chapter 3 as calibrated in Chapter 4 and the change 

detection method proposed in Chapter 6. The work presented in this chapter has been 

published in Zhu et al. (2019a). 

7.1 Background 

The rational and advantage of using the different temporal behavior of soil moisture 

and other surface parameters in soil moisture retrieval, as well as several multi-temporal 

retrieval approaches, have been introduced in Chapter 2. The main limitation of those 

multi-temporal methods is the availability of radar data with a short time lag and similar 

radar configuration (Balenzano et al., 2011, Kornelsen and Coulibaly, 2013). More 

specifically, current SAR missions commonly operate with multiple imaging modes in 

both ascending and descending orbits, resulting in the transition of both incidence 

angle and polarization in time. As an example, the SAOCOM constellation and ALOS-

2/PALSAR-2 operate at both ascending and descending orbits with multiple imaging 

modes alternating in time, namely ScanSAR, StripMap and Spotlight (Rosenqvist et al., 

2014, Giraldez, 2003). As a result, a much longer time interval is required for acquiring 

multi-temporal data with a consistent radar configuration than the reported satellite 

revisit. The use of multi-angular time series data with different polarizations is 

therefore questionable in change detection techniques (Wagner et al., 1999c, Wickel et 
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al., 2001, Balenzano et al., 2011, Notarnicola, 2014, Ouellette et al., 2017), while 

scattering models that accurately describe the angular dependence of SAR data are 

needed for multi-temporal inversion methods (Kim and Van Zyl, 2009, Mattia et al., 

2009, Pierdicca et al., 2010, Kim et al., 2012a, Kim et al., 2014a, Kweon and Oh, 2014). 

Consequently, a multi-angular time series method for operational soil moisture 

mapping from time series L-band SAR data, e.g. the joint data sets of PALSAR-2 and 

the SAOCOM constellation, was developed. The method applies the assumption of 

constant soil roughness and vegetation over the retrieval period with the main 

difference from the multi-temporal methods introduced above being that a priori 

information of dry-down soil moisture is integrated into a genetic algorithm (GA) 

based inversion of LUTs to partly remove the uncertainties in calibration, speckle noise 

removal, and in the forward models. The method was evaluated using the multi-

angular airborne L-band data collected during the SMAPEx-5 data set (Chapter 3 and 

4). The effect of data time interval and polarization combinations on retrieval accuracy 

are also here investigated to guide the use of the method in future applications. 

7.2 Data set 

Similar to the Chapter 5, three SMAPEx-5 focus farms (YA4, YA7 and YE) were 

selected for validation of the proposed method. The ground sampling of mv, VWC HR 

collected during the three-week campaign (Chapter 3) were used for evaluation of the 

proposed retrieval method in this chapter. Apart from the major vegetation types 

(wheat and grass), the open wood land in Figure 5-2 was also treated as grass land for 

the purpose of soil moisture retrieval here, because of the low tree coverage in the 

open wood land (less than 5%; ~2000 – 3000 trees /km2). The paddock boundaries in 

Figure 5-2 were used for analyzing the results at the paddock scale, while soil moisture 

retrieval at the pixel scale was made for the whole research area, with the water bodies 

removed. 

As mentioned in Chapter 3, eight flights were conducted coincident with the 

SMAPEx-5 soil moisture sampling dates, providing L-band (1.26 GHz) radar data 
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using the airborne PLIS oriented to West and East (Figure 7-1). Consequently, radar 

observations of each location had two local (across track) incidence angles within 20° 

– 50°. In this chapter, a multi-angular time series data set was built using data collected 

alternatively from right and left sides of the aircraft, which can be treated as being 

similar to a series of ascending and descending orbits. The incidence angle difference 

of two successive PLIS measurements ranged from 0 to 30°, with the smallest and 

largest difference being at the center and boundaries respectively, coving the general 

incidence angle difference of satellite data. PLIS backscatter data were calibrated, geo-

referenced, multi-looked (12 × 7 looks) and resampled to 25 m. 

7.3 Method 

In the proposed method, soil roughness and vegetation are assumed to be time-

invariant over the retrieval time window, the descriptions of which are simplified as a 

single parameter for HR and VWC, respectively. Given N radar acquisitions 

sequentially collected within a short time span, N+1 unknows need to be determined 

for bare soil consisting of N εs’ (εs1’, εs2’, …, εsN’) and one HR, while an extra parameter 

of VWC needs to be derived for vegetated area. For full-polarized PLIS data 

(HH+HV+VH+VV), 3N independent measurements are available resulting in an 

over-determined inversion problem without considering the dependence among 

 

Figure 7-1: Observation geometry of airborne PLIS for each flight in SMAPEx-5. 
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different channels. This is also commonly true for operational polarimetric SAR 

missions, e.g. PALSAR-2, because either two dual-polarized or one full-polarized 

acquisition are acquired in time series ensuring at least N+2 measurements. 

The general formulation therefore is to minimize the cost function: 

 0 0 ' 2
, ,LUT s

1

1
( ( , ) ( , , , ))

N

pq i pq i i pq R i i
i

f w t H VWC
N

σ θ σ ε θ
=

= −∑ , Eq. 7-1 

where 0
pqσ  and 0

,LUTσ pq  are the backscattering coefficients in dB from measurements 

and LUTs, respectively. The subscript i denotes the time sequence from 1 to N. The 

weight wpq,i, accounts for the differing error of LUTs and/or radar observations. The 

main sources of this error include: 

i) Speckle. SAR data inherently suffer from the speckle noise, originated by the 

SAR system’s coherent nature (Ulaby et al., 2014). The speckle noise can be 

partly removed by the multi-look operation at the expense of spatial resolution 

(Thoma et al., 2006), with the available single look SAR pixels however being 

different among imaging modes and also varying across the swath. 

Consequently, it is impossible to multi-look the data with the same number of 

looks for a consistent retrieval grid, resulting in different levels of residual 

speckle noise. 

ii) Calibration uncertainty. Time series data collected by different imaging 

modes may have inconsistent calibration and geometric accuracy, e.g. the 

difference between PAlSAR-2 ScanSAR and StripMap mode reported by 

Shimada et al. (2009). Similar difference was also observed among different 

beams of the COSMO SkyMed and among different X-band missions 

(Pettinato et al., 2013). 

iii) Forward model error. A forward model could have different accuracy at 

different incidence angle and polarizations. Currently available surface 

scattering models are more prone to larger errors at high than at low incidence 

angles (Mattia et al., 2006a, Mancini et al., 1999). The NMM3D-DBA used in 
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this study may also have error imbalance at different incidence angles. Huang 

et al. (2017b) has demonstrated a significant overestimated attenuation of DBA 

at C-band which can be worse for VV at larger incidence angles than for other 

radar configurations. 

Different from these using time series data with the same radar configuration (e.g., 

Kim et al., 2012a), none of the three sources can be accurately modeled because of the 

time varying incidence angle, polarization and available SLC pixels. In order to keep 

the method as general as possible, it is not suitable to have a determined assumption 

of wpq in Eq. 7-1 for a given multi-angular data series. Hence, the weights are taken as 

uniform for all items and a prior information of mv trend in time was involved: 

 ' '
s, 1 s, 130 3,   ( )ε ε+ +≥ ≥ ≥ <i i i N , Eq. 7-2 

denoting a drying down process during the period of radar observations. This can be 

guaranteed for a period after a rainfall like the SMAPEx-5. In addition, rainfall can be 

identified considering the significant increase of backscattering coefficients in all 

polarizations after a rainfall. With this constraint, the effect of anomaly fluctuations in 

time series caused by various non-surface factors is expected to be partly removed.  

A genetic algorithm (GA) was used to find the optimal solution of Eq. 7-1, because of 

its efficiency to search large spaces, low risk of reaching a local optimum (Gen and 

Cheng, 2000) and its convenience to integrate with constraints. Figure 7-2 shows the 

flowchart of the proposed retrieval method. The inputs include the LUTs, landcover 

map and the time series radar data, with the landcover map used to determine the type 

of LUT (bare soil, grass, wheat). The method starts from the generation of 20 random 

solutions (known as chromosomes in GA), with each solution consisting of N 

unknown values of εs’, one unknown value of HR and VWC. An 8-bit binary was used 

to encode each unknown parameter with an example of εs’ included in Figure 7-2. 

Consequently, the length of each solution was 8×(N+1) bits and 8×(N+2) bits for 

bare soil and vegetated areas, respectively. These solutions were then adaptively 

optimized using three genetic operations (selection, crossover, and mutation) 

according to the fitness estimated using Eq. 7-1. Please refers to Gen and Cheng (2000) 
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for more details about genetic operations. Specially, the dry down constraint was 

integrated as a pre-selection step, discarding solutions not satisfying Eq. 7-2. A 

maximum iteration number of 100 was set. The N εs’ of the optimal solution was finally 

converted to N mv using the relationship between mv and εs’ (Dobson et al., 1985b), 

because the soil texture of Yanco area (Table 3-1) is very close to the data set used in 

the development of Dobson model. 

7.4 Results 

7.4.1 Retrieval results 

Eight full polarized images with the look direction alternating between left and right 

were used to simulate combining descending and ascending radar observations from 

space-borne sensors, to evaluate the proposed method. The multi-angular time series 

for a paddock with cultivation activity identified in Chapter 6 was separated into two 

sub-series, according to the presence of the cultivation event, with mv retrieval carried 

out independently for each sub-series. The mv retrieval results at the pixel scale (25 m) 

 

Figure 7-2: Flowchart of the soil moisture retrieval method 
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and their comparisons with ground measurements are depicted in Figure 7-3. 

Generally, an overall correlation coefficient (R) of 0.77 and a RMSE of 0.07 m3/m3 

was achieved for a wide range of mv (0.04 – 0.42 m3/m3). Different from the forward 

model accuracy of co-polarizations (Figure 5-3), the proposed method achieved the 

best results over grassland, followed by the wheat and bare soil. This may result from 

the poor modeling of cross-polarization at bare soil and wheat as well as the relatively 

simple roughness features in grassland. Underestimation was observed for high mv 

conditions (larger than 0.42 m3/m3), which can be caused by i) the lower εs’ upper 

bound of LUTs (~ 0.42 m3/m3) compared to the wettest condition of SMAPEx-5 

period in the Yanco area and ii) the decreased sensitivity of the radar signal to mv at 

large values. 

Despite the relatively poor results compared to the 0.05 m3/m3 requirement suggested 

by Walker and Houser (2004) and the target (0.06 m3/m3) of SMAP radar products 

(Kim et al., 2012b), great spatial details of soil moisture were retained as depicted in 

Figure 7-4. The paddocks with cultivation activities occurring between the last two 

radar acquisitions were masked for the last retrieval because only one acquisition was 

 
Figure 7-3: In-situ versus retrieved soil moisture at the 25m pixel scale. The dash 
lines denote the target accuracy of ± 0.06 m3/m3 
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Figure 7-4: Time series soil moisture maps of focus farms YA4 (a), YA7 (b) and YE 
(c) during the eight observation dates of the SMAPEx-5 period. 
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available after cultivation activities. The dry-down process of the SMAPEx-5 period 

was accurately captured over all three focus farms with the RMSE of daily averaged mv 

being 0.031, 0.017, and 0.020 m3/m3 for bare soil, grass and wheat, respectively. 

Different spatial patterns of mv were also obtained with clear boundaries, showing 

relative wet patches for vegetated area, particularly for the wheat farms. Besides, mv 

retrieval was also made for one canola and one lupine paddock in YA7 with acceptable 

results (RMSE: 0.072 m3/m3) using the wheat LUT, because they have a similar vertical 

dominant structure. 

The proposed method was also compared with two other retrieval methods, i.e., LUT 

snapshot retrieval and multi-temporal retrieval without the dry down constraint. The 

snapshot method minimizes Eq. 7-1 using only one SAR acquisition (here, one HH, 

HV and VV measurement) and thus the retrieved roughness and VWC can be different 

in time. The results for mv retrieval at the paddock scale using these three algorithms 

are shown in Figure 7-5 with the corresponding retrieved roughness and VWC shown 

in Figure 7-6. It is noted that the roughness ground truths for ploughed paddocks used 

in Figure 7-6 are those measured along the row direction, while the retrieved roughness 

were the equivalent ones. The roughness values retrieved by the snapshot algorithm 

were averaged over time for each paddock. 

As expected, relatively poor results were achieved by the snapshot algorithm with a 

RMSE of 0.088-0.112 m3/m3, 1.274 cm and 1.183 kg/m2 for mv, HR and VWC retrieval, 

respectively, which is ascribed to the ambiguities among soil moisture, roughness and 

vegetation effect (Satalino et al., 2002) as well as the larger sensitivity of snapshot 

method to noise (Kim et al., 2012a). The impact of these uncertainties is clearly shown 

by the low correlation coefficients. The mv, HR and VWC retrieval were significantly 

improved using a time series retrieval even without the dry down constraint, showing 

a decrease of RMSE as much as 0.03 m3/m3, 0.5 cm and 0.1 kg/m2 for soil moisture, 

HR, and VWC, respectively. These improvements mainly come from the insensitivity 

of the time series retrieval to system measurement noise (Kim et al., 2012a). Further 

improvement was made for the mv retrieval to an acceptable level (RMSE < 0.06 
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m3/m3) by adding the dry down constraint, while only slight changes in HR and VWC 

retrieval were found. A possible explanation is that the dry down constraint forced 

slight adjustments in the HR and VWC to ensure the soil moisture trend at the expense 

of a somewhat larger value of the cost function to ensure the soil moisture trend at the 

expense of a somewhat larger value of the cost function (Eq. 7-1), and thus the effect 

of any anomaly fluctuations in time series σ0 was removed. 

The dry down constraint here provides a priori information, the use of which has been 

widely acknowledged to result in more reliable mv retrieval (Kornelsen and Coulibaly, 

2013, Mattia et al., 2006b). The integration of a priori mv information or assumption in 

soil moisture retrieval is not new. For instance, the mv predicted by hydrological models 

(Mattia et al., 2006a, Mattia et al., 2009) and the assumption of time-invariant mv for 

dry or frozen conditions (Rahman et al., 2007, van der Velde et al., 2012). The merit 

of the dry down assumption is its generalization that can be guaranteed by a period 

between two rainfall events. A change detection algorithm proposed in Chapter 6 can 

help to separate the time series into multiple sub-series, according to the presence of 

rainfall events or small-scale irrigations. Notably, this constraint is difficult to apply for 

areas with frequent rainfall (e.g., tropics); such conditions are also a challenge for other 

multi-temporal algorithms because of the potential changes in roughness and 

vegetation after rainfall (Balenzano et al., 2011). 

 
Figure 7-5: Comparison of retrieved and in situ soil moisture values for multiple 
algorithms at the paddock scale; (a) snapshot retrieval, (b) multi-temporal retrieval 
and (c) multi-temporal retrieval with the dry down constraint. The dash lines denote 
the target accuracy of ± 0.06 m3/m3. 
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A further investigation was conducted to show the performance of the proposed 

method on the paddocks with row directions nearly perpendicular to the radar look 

directions, consisting of two bare (#39 and #54) and three wheat paddocks (#80, #98 

and #115). The RMSE and R of mv were 0.056 m3/m3 and 0.826 for the bare paddocks, 

which were 0.053 m3/m3 and 0.919 for wheat. No significant difference was found 

between the results of these paddocks and the other paddocks in terms of RMSE and 

R. This can be explained by the significantly large retrieved HR and VWC (circled in 

Figure 7-1). Specifically, large HR values can result in large σ0 from the soil surface, 

while the attenuation by the vegetation layer with small VWC values can be negligible. 

As a result, the combination of large equivalent HR values and small VWC can partly 

account for the strong backscattering caused by the row structure, resulting in a 

relatively accurate estimation of mv. Despite the satisfactory results observed in this 

study, there may be several other undesirable situations. For instance, relatively 

accurate VWC was retrieved at the expense of overestimated mv. Therefore, the mv 

retrieval for paddocks with their row direction perpendicular to the radar look 

directions still need to be further assessed using other data sets. 

 
Figure 7-6: Comparison of in-situ and retrieved (a) soil surface root mean square 
height and (b) VWC. The cycled points belong to the paddocks ploughed nearly 
perpendicular to the radar look directions with their paddock ID as labeled. A, B and 
C denote results of snapshot retrieval, multi-temporal retrieval and multi-temporal 
retrieval with the dry down constraint. 
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7.4.2 The effect of time interval and polarization combination 

The proposed method intends to retrieve soil moisture using any given L-band time 

series, with potentially different polarization combinations and irregularities in time 

interval. The performance of the proposed method with different polarization 

combinations was evaluated first. Soil moisture retrieval was made at the paddock scale 

with different polarization combinations, including HH+HV+VV, HH+VV, 

HH+HV, VH+VV, HH, VV, and HV. The results are presented using the Taylor 

diagram (Figure 7-7) which uses the standard deviation of the retrieval results, unbiased 

RMSE (ubRMSE) and correlation coefficient (R) between the retrievals and ground-

truth data to summarize the performance of multiple algorithms in a single figure 

(Taylor, 2001). 

 

Figure 7-7: Effect of polarization combinations on soil moisture retrieval using eight 
multi-angular images at the paddock scale. a-f denote HH+HV+VV, HH+VV, 
HH+HV, VH+VV, HH, VV, and HV respectively. ubRMSE denotes the unbiased 
RMSE. 
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In general, all combinations achieved similar ubRMSE values with the largest 

difference (0.003 m3/m3) observed between the HH+HV+VV (the a in Figure 7-7) 

and single HV (the g in Figure 7-7) series. Full polarized data performed slightly better 

than dual polarized series or single HH, HV and VV in term of ubRMSE and R, but 

the difference is hardly significant. A possible explanation is that more observations 

introduce more uncertainties and thus cannot improve the performance for an already 

well-determined inversion problem. For the single polarized series, VV achieved the 

best results (ubRMSE: 0.056 m3/m3; R:0.858), followed by HH (ubRMSE: 0.056 

m3/m3; R:0.833) and HV (ubRMSE: 0.058 m3/m3; R:0.813). Similarly, insignificant 

differences between VV and HH were observed in other studies (Lievens and Verhoest, 

2012, Kweon and Oh, 2014, Ouellette et al., 2017, Satalino et al., 2012) with various 

multi-temporal algorithms, although the HH was suggested for the multi-temporal 

alpha approximation method at C-band (Balenzano et al., 2011). 

The effect of time interval was also evaluated with the results presented using the 

Taylor diagram (Figure 7-8). The last PLIS acquisition of SMAPEx-5 acquired at DOY 

270 was respectively combined with acquisitions collected in the previous seven flights 

to form seven SAR pairs with different time intervals ranging from 2 - 17 days. The 

mv retrieval was then carried out at the paddock scale using these SAR pairs respectively. 

As expected, retrieval with short time intervals (G, E, and F in Figure 7-8) achieved 

relatively better results than those with long time intervals (A, B, C and D). However, 

the ubRMSE and R difference was less than 0.003 m3/m3 and 0.07, respectively and 

the performance was not strictly consistent with the time intervals. Since the abrupt 

changes were removed before mv retrieval, this may suggest that the proposed method 

is insensitive to the gradual roughness and VWC changes in the SMAPEx-5 period. In 

particular, the proposed method can be directly used as a multi-angular algorithm for 

a period with a near-zero mv change, e.g. the case of G (mv difference is 0.007 m3/m3). 
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7.5 Chapter Summary 

A time series multi-angular method was proposed for mv retrieval from the joint time 

series of multiple L-band SAR missions with various observation modes. Similar to 

other multi-temporal retrieval algorithms, this method also follows the assumption of 

time-invariant roughness and vegetation with the main difference being: i) the 

capability to deal with multi-angular data acquired from both ascending and 

descending obits without needing incidence angle normalization and ii) the use of a 

dry down constraint to further reduce noise. The performance of the proposed 

method has been comprehensively evaluated using the time series multi-angular L-

band data collected during the SMAPEx-5, showing an mv RMSE (R) of 0.07 m3/m3 

(0.77) at the 25-m pixel scale and 0.056 m3/m3 (0.83) at the paddock scale respectively. 

The investigation on the effect of time interval and polarization combinations has 

demonstrated the robustness of the proposed method using irregularly collected L-

 

Figure 7-8: Effect of time interval on soil moisture retrieval using two multi-angular 
images at the paddock scale. A-G denote two images with a time interval of 17, 15, 12, 
9, 7, 4 and 2 days with the corresponding average soil moisture difference being 0.218, 
0.181, 0.136, 0.094, 0.052, 0.015 and 0.007 m3/m3 respectively. 
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band SAR data with inconsistent polarizations. The acceptable mv retrieval in ploughed 

paddocks confirmed the effectiveness of assuming effective isotropic roughness values. 

For paddocks with row directions perpendicular to radar look directions, the effective 

isotropic roughness was much larger than those measured along the row directions 

with the corresponding VWC typically underestimated. 
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 Time series multi-frequency retrieval 

This chapter presents a multi-frequency framework as an extension of the time series 

L-band multi-angular method for joint multi-SAR mission soil moisture retrieval 

developed in Chapter 7. The framework consists of the LUTs built in Chapter 5, the 

anomaly surface change detection method of Chapter 6 and a variant of the GA-based 

inversion method developed in Chapter 7, and an additional pre-processing step to 

remove the radar observations with insufficient soil surface backscattering 

contribution (calibration uncertainty equivalent signal) over densely vegetated areas 

and/or at higher frequency. While several main components have been introduced in 

previous chapters, the framework outlines how to combine time series data collected 

from multiple SAR missions. The framework is demonstrated using the SMAPEx-5 data 

presented in Chapter 3 and calibrated PLIS radar data presented in Chapter 4.  

8.1 Background 

As discussed in Chapter 2, the joint use of multiple SAR missions operating at different 

wavelengths provides a great opportunity for soil moisture mapping with a satisfactory 

temporal resolution. While several snapshot methods have been developed for soil 

moisture retrieval from multi-frequency data (Bindlish and Barros, 2000, Bindlish and 

Barros, 2001, Pierdicca et al., 2008, Zhang et al., 2018), this approach is quite 

inconvenient for soil moisture retrieval from multiple SAR missions, because multiple 

snapshot algorithms are required to deal with the irregular observations acquired at 

different time instances. 

In Chapter 7, a time series multi-angular method was proposed for joint soil moisture 

retrieval from multiple L-band SAR missions. This method has been extended to 

account for multi-frequency data in this chapter, with expansion to include C- and X-

band data. To incorporate these shorter wavelengths (C- and X-band), the 

effectiveness of these bands in soil moisture retrieval over vegetated area needed to be 
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further addressed. A number of studies have reported the considerable sensitivity of 

C-band (~5.4 GHz; Sentinel-2, RADARSAT-2) to soil moisture over densely 

vegetated areas, especially for small incidence angles (Romshoo et al., 2002, Toure et 

al., 1994, Brown et al., 2003, Balenzano et al., 2011). Despite the higher attenuation, 

X-band was also suggested to be effective for soil moisture retrieval over dense grass 

(Aubert et al., 2011, El Hajj et al., 2016). In addition, HH commonly has a higher 

sensitivity than VV for vegetation layers dominated by vertical structures (Ulaby et al., 

2014, Bindlish and Barros, 2001, Balenzano et al., 2011). These results provide 

important implications of selecting radar data in soil moisture retrieval but are still not 

straightforward for determining whether a backscattering measurement contains 

sufficient information of soil moisture. 

Consequently, a method that could be easily implemented in an operational context 

was developed as a step of the proposed framework to determine the effectiveness of 

a given radar measurement in soil moisture retrieval. Moreover, a faster variant of the 

inversion method developed in Chapter 7 was proposed, with the capability to include 

temporal variation of other surface parameters. The proposed framework was 

evaluated using the time series multi-frequency data collected during the SMAPEx-5 

campaign as presented in Chapter 3. The effect of frequency combinations on retrieval 

accuracy were also investigated to guide the use of the method. 

8.2 Data set 

The radar data used in Chapter 5 (Figure 8-1) was also used in this chapter, covering 

three frequency bands, L-, C- and X-band with varying incidence angle and 

polarizations over time. Radar data was available for 15 days of the three-week 

SMAPEx-5 campaign, confirming the desirable temporal resolution if multiple SAR 

missions can be combined. The available observations varied from day to day, with 

five and ten days having dual frequency (L+C or C+X) and single-frequency data 

respectively.  



 

Chapter 8 

 

8-3 

 

As in Chapter 7, soil moisture (mv), VWC and soil roughness (HR) were retrieved at 

the 25-m pixel scale and paddock scale, with the paddock boundaries as depicted in 

Figure 5-2. Ground measurements of three SMAPEx-5 focus farms (YA4, YA7 and 

YE) were used for comparison with the retrieved values. 

8.3 Method 

8.3.1 Overview of the framework 

Figure 8-1 outlines the proposed framework. Inputs include the landcover of the 

research area and time series radar data from three platforms (but not limited to those 

platforms). The framework starts from the construction of forward LUTs, covering 

the commonly used configurations in radar remote sensing, and the range of soil 

roughness, soil moisture and vegetation water content (VWC). The time series data 

was first used to detect the potential roughness and VWC changes caused by 

cultivation activities and rainfall events. Time series with detected changes were then 

separated into multiple sub-series accordingly, ensuring the assumption of time-

invariant roughness and vegetation. Soil moisture retrieval was then carried out 

independently on each sub-series. For the vegetated area, the relative backscatter 

contribution relating to that from the soil surface (Cs) was calculated using the forward 

models. Radar data with negligible (equivalent to the data calibration uncertainty) soil 

contribution was removed before soil moisture retrieval. Finally, soil moisture retrieval 

was carried out independently for each landcover type using an optimization method 

 
Figure 8-1: Summary of SAR data used in this chapter, showing acquisition date (day of 
year), frequency, polarization and orbit. 
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and forward LUTs. The output includes time series soil moisture maps, one VWC map 

and roughness (HR) map.  

The LUTs were built in Chapter 5 (step 1 in Figure 8-2) for three land cover types 

(bare soil, grass and wheat) and the commonly used radar configurations in remote 

sensing. The step 2 and 3 in Figure 8-2 can be treated as pre-processing stages of soil 

moisture retrieval, which are designed to ensure the assumptions of the method and 

remove noisy data, respectively. The details of step 3 is provided in Chapter 6, with 

the step 2 and 4 being presented below. 

8.3.2 Determination of effective radar configuration 

As no straightforward method for determining the effective radar configuration could 

be found in literature, a model-based quantitative method was presented here. The 

basis of the method is that when the backscattered signal related to the soil surface 

falls below a certain level it is no longer making a detectable contribution to the total 

returned signal. Such a radar measurement may therefore only contribute noise in the 

soil moisture retrieval. In principle, the effectiveness of a radar measurement in linear 

units is determined by the volume (σv
0), double bounce (σdb

0) and soil surface scattering 

(σs
0) over a vegetated area: 

 
0 0

0s db
all cal0 0 0

v s db

( , )mv Eσ σ σ
σ σ σ

+
≥ ∂

+ +
, Eq. 8-1 

where the left and right sides are the relative contribution related to the soil (Cs) and 

the sensitivity of backscattering ( 0
allσ∂ ) to mv and calibration accuracy (Ecal), 

respectively. For a 0.02 m3/m3 change of soil moisture, the corresponding 

backscattering coefficient changes can be 0.15 to 1 dB depending on radar 

configurations and soil properties (Altese et al., 1996). The absolute radiometric 

calibration is commonly on the order of 1 dB (Christensen et al., 1998, Shimada et al., 

2009, Zhu et al., 2018). Therefore, a sensitivity of 1 dB was considered as being 

appropriate, yielding a ratio of ~0.23. 
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The volume, double bounce and soil surface scattering in Eq. 8-1 can be determined 

by Eq. 5-5 ‒ Eq. 5-8 with the knowledge of VWC, HR and soil moisture. This is, 

however, impractical for real applications as these geophysical parameters are those to 

be determined. Figure 8-3 shows, as an example, the Cs of wheat at C-band VV 

polarization generated by the forward model. As expected, VWC was the dominant 

parameter, while HR and εs’ were insensitive to Cs. Hence, given the radar frequency, 

incidence angle and polarization, an initial guess of VWC is probably to be sufficient 

for determining Cs. Accordingly, the VWC of each gird was estimated using the radar 

vegetation index (RVI; Kim and Van Zyl, 2009): 

 
0
HV

0 0 0
HH VV HV

8
RVI

2
σ

σ σ σ
=

+ +
. Eq. 8-2 

RVI is a sensitive indicator of biomass and VWC, with several empirical relationships 

between VWC and RVI available in literature (Huang et al., 2016, Kim et al., 2012c, 

Kim et al., 2014b). To consider the vegetation condition in the whole retrieval period, 

all available full-polarized radar data were used to calculate the RVI and then the 

average VWC over time of each pixel estimated using the empirical relationships. The 

average relative soil contribution (Cs) of each input radar measurement (σ0) was 

subsequently determined from the corresponding soil contribution LUTs. For instance, 

given a σ0 (C-band VV polarization; θ = 30°) with an estimated VWC of 2 kg/m2, the 

average Cs can be determined from the middle cube of Fig.2 by averaging the slice 

 

Figure 8-3: Relative contributions related to the soil surface (Cs) for wheat at C-band VV 
polarization with incidence angles from left to right being 20°, 30° and 40°. 
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corresponding to the VWC of 2 kg/m2. Radar measurements with an average Cs less 

than 0.23 were removed before soil moisture retrieval. It is worth noting that the 

estimated VWC here is not used in the soil moisture retrieval. Compared with the 

sensitive analysis widely used in earlier studies (Quesney et al., 2000, Hégarat-Mascle 

et al., 2002, Zribi et al., 2007, Kim and Van Zyl, 2009), the main advantage of the 

proposed method is its independence on study-specific analysis, with the main 

disadvantage being the uncertainty of forward model, e.g., the DBA’s overestimation 

of attenuation as discussed above. 

8.3.3 Multi-frequency retrieval method 

The time series multi-angular retrieval algorithm proposed in Chapter 7 was extended 

for multi-frequency data. Radar data with the same acquisition date was treated as data 

collected simultaneously. Given a time series acquired at N dates with the ith date 

containing Mi multi-configured channels or σ0 measurements, the soil moisture 

retrieval is a search process to minimize the cost function between simulated and 

observed σ0: 

 
' ' '
s,1 s,2 s, 0 0 ' 2

LUT, s,
1 1

( , , ..., ) 1
( ( , , VWC))

iMN
N

ij ij ij R i
i ji

X
f w H

N M
ε ε ε

σ σ ε
= =

= ⋅ −∑ ∑ , Eq. 8-3 

where 0 '
LUT, s,( , ,VWC)σ εij is  and 0σ ij  are backscattering coefficients from the LUT and 

observation in dB respectively, with the subscript i and j being the time index and the 

order of available channels on the ith date. The weight wij was set as a uniform value 

of 1 because of the difficulty to model the noise, the accuracy imbalance of the forward 

models and calibration accuracy at different channels. The assumption of a monotonic 

dry down in the time series, proposed in Chapter 7 as a constraint to partly remove 

the effect of random fluctuations over time, was also used here. However, this 

assumption is directly integrated into the cost function as: 

 ' ' '
s,1 s,2 s,

1
( , ,..., ) 1ε ε ε

=

= − +∑
N

N i
i

X k i  Eq. 8-4 

where ki is the descending order of εs,i’ in the relative permittivity series. X has a 

minimum value of 1 for a non-increasing relative permittivity series, while the 
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maximum value is either 0.5(N2+1) (N is odd) or 0.5N2+1 (N is even) for a strictly 

increasing series. A genetic algorithm similar to the one in Chapter 7 was used to find 

the optimal solution of Eq. 8-3, with N permittivity values, one time-invariant HR and 

VWC value retrieved simultaneously. A dielectric model presented in Dobson et al. 

(1985a) converts the estimated dielectric constants into soil moisture. 

Several assumptions were made for Eq. 8-3, including: 1) a uniform soil moisture 

profile for the soil layer above the penetration depth of L-band; 2) time-invariant 

physical roughness and vegetation; and 3) input data dependent effective roughness 

for the period of interest. With the first assumption, different radar configurations in 

remote sensing have the same perceived soil moisture although this may not be 

satisfied under dry conditions (Ulaby et al., 1996). The second assumption helps to 

eliminate the effect of natural roughness and vegetation evolution but does not 

account for the fact that effective roughness varies for different radar configurations. 

Accordingly, an effective HR was assumed to represent the perceived roughness of the 

available radar configurations at each retrieval grid. Different effective roughness 

values were thus expected for single-, dual- and triple-frequency retrieval at the same 

location and are discussed below. 

8.4 Results 

8.4.1 Effective radar configuration 

For a given σ0 with the knowledge of frequency, incidence angle, and polarization, the 

relative soil contribution (Cs) of this measurement and its effectiveness in soil moisture 

retrieval can be determined using Eq. 8-1. The Cs for all available data is provided in 

Figure 8-2 (the cube named as pixel specific soil relative contribution). For the area 

without roughness or vegetation changes, the number of effective channels (σ0 

measurements) in soil moisture retrieval ranged from 57 – 63 out of 70 channels, with 

the C-band VV polarization being removed in most areas. An investigation of the Cs 

for wheat is provided in Figure 8-4 as an example. Not surprisingly, L-band had the 

largest Cs, followed by C- and X-band. Moreover, across all three frequency bands, it 
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was observed that 1) HH polarization had the largest Cs followed by HV and VV 

polarization; and 2) the Cs decreased as the incidence angle and VWC increased, with 

the largest decrease being observed at VV polarization. An interpretation for the 

different response among the three polarizations is the predominant vertical structure 

that exists in a wheat canopy. 

More specifically, a Cs of ~1 was observed for L-band at HH and HV polarization 

with almost no dependence on VWC and incidence angle. This can be explained by 

the dominant surface scattering that at HH, and the dominant double-bounce in HV 

 

Figure 8-4: Simulated relative contribution of the soil surface from under a wheat canopy. 
The mv and HR were 0.15 m3/m3 and 2 cm.   



 

Time series multi- frequency retrieval 

 

8-10 

 

with a negligible volume scattering in both polarizations. In contrast, the Cs for VV 

decreased to 0.5 - 0.9 as the VWC and incidence angle increased, because of the 

increased attenuation and volume scattering. The smallest Cs (~0.47) for VV was, 

however, still larger than the 1 dB sensitivity (0.23). This confirms the capability of L-

band in soil moisture retrieval under dense wheat. C-band HH and HV polarization 

also showed great potential, given the considerable Cs in all cases (> 0.5). This was 

coincident with a number of other studies (Romshoo et al., 2002, Toure et al., 1994, 

Brown et al., 2003, Balenzano et al., 2011). However, C-band at VV polarization should  

be used carefully for wheat-like crops, because the volume scattering gradually 

becomes dominant as the VWC and incidence angle is increased. For a layer with a 

VWC of 4 kg/m2, the Cs of C-band at VV polarization was less than 0.23 for an 

incidence angle larger than 27°, being 33° and 43° for a VWC of 3 kg/m2 and 2 kg/m2, 

respectively. For X-band, HH and HV polarization could still provide sufficient 

information about the soil surface over wheat fields, in accordance with previous 

experimental studies (Aubert et al., 2011, El Hajj et al., 2016). The figure also suggests 

a much lower validity range of VWC (< 2 kg/m2) for X-band at VV polarization. 

8.4.2 Multi-frequency retrieval 

Soil moisture retrieval was made at the 25-m pixel and paddock scales respectively, 

using all available radar data (20 acquisitions from 15 dates). The 25 m pixel soil 

moisture maps for the YA7 area are depicted in Figure 8-5 as an example, while the 

pixel and paddock scale comparison against corresponding ground measurements 

shown in Figure 8-6. The retrieved time series soil moisture maps agree well with the 

dry down process observed during SMAPEx-5, with a faster dry down observed over 

bare soil paddocks. The observed cultivation activities in the circled paddocks were 

detected between DOY 267 and 269, with the sudden soil moisture increases being 

successfully recorded. 
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Moderate accuracy was achieved at the pixel scale, showing an RMSE of 0.07 – 0.08 

m3/m3 and a correlation coefficient (R) of 0.6 – 0.8. No clear difference was found 

between the results of isotropic paddocks and of these with a periodic soil surface. The 

retrieved soil moisture for wet conditions (larger than 0.4 m3/m3) was slightly 

underestimated, which is consistent with the single L-band retrieval in Chapter 7. Such 

underestimations were also observed and ascribed to the decreased sensitivity of σ0 in 

moist areas in other studies (Bai et al., 2016, Wang et al., 2011). The other 

 

Figure 8-5: Retrieved soil moisture maps in YA7 with the day of year listed in top left. 
The paddocks in black circles are these with soil ploughing, while the red circles are 
those with irrigation. 
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interpretation could be the relatively low upper bound of soil moisture in the LUTs (~ 

0.43 m3/m3) compared to the ground measurements at first days of SMAPEx-5. As 

expected, the results were greatly improved at the paddock scale. The RMSE decreased 

to 0.062, 0.058 and 0.054 m3/m3 in bare, wheat and grass, respectively, roughly 

reaching the 0.06 m3/m3 accuracy target of SMAP radar products. A good correlation 

(R: 0.75 – 0.87) was observed at the paddock scale with negligible biases (< 0.02 

m3/m3). However, the retrieved accuracy was still slightly worse than the requirement 

of 0.05 m3/m3 suggested by Walker and Houser (2004) and World Meteorological 

Organization (available at http://www.wmosat.info/oscar/requi rements). 

Soil moisture retrieval was also carried out at the paddock scale using all available 

single- and dual-frequency series, with the results summarized in Table 8-1. Not 

surprisingly, the use of single L-band series observations retrieved better results than 

single C- or X-band, confirming the merit of using long wavelengths in soil moisture 

retrieval. The larger number of channels (polarizations) at L-band could be another 

reason for its better performance. Moreover, the time offset between ground 

measurements and the C- and X-band acquisitions could have introduced a bias of less 

than 0.02 m3/m3, in the comparison according to station measurements (Ye et al., In 

Review). The inconsistency of the penetration depths at the three wavelengths (0.5 – 

 
Figure 8-6: In situ versus retrieved soil moisture at the 25-m pixel (a) and paddock scale 
(b) using time series L-, C- and X-band data. The dash lines denote the ± 0.06 cm3/cm3 

http://www.wmosat.info/oscar/requi%20rements
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5 cm) and the single depth of ground measurements could have also resulted in 

evaluation uncertainty. 

In contrast to expectations and earlier studies using multi-frequency data (Oh, 2004, 

Pierdicca et al., 2008, Zhang et al., 2016), the time series multi-frequency retrieval did 

not achieve the best results in this study. The L-band retrieved results were slightly 

deteriorated by combining the C-band series, and further deteriorated with the addition 

of the X-band series. Similarly, the joint use of C- and X-band series performed worse 

than using the C-band series alone, but better than using the X-band series alone. This 

could be partly explained by the relatively poor performance of using single C- and X-

band series alone, which made a negative effect on the multi-frequency retrieval. Single 

L-band series retrieval in this study was a well-posed inversion problem, and so 

additional observations (e.g., the X-band series) may only introduce noise, while those 

additional observations in snapshot methods (Pierdicca et al., 2008, Zhang et al., 2016) 

can help to turn the ill-posed L-band retrieval to a well-posed one, thus improving the 

retrieval accuracy. While slight deterioration in accuracy was observed to combine C- 

and X-band data, the revisit was greatly enhanced to be ~1.4 days during the SMAPEx-

5, reaching the requirements of most applications (Engman, 1992, Walker and Houser, 

2004). 

Table 8-1: Accuracy of soil moisture retrieval at the paddock scale. The bold styles 
denote the best case for each land cover. 

  Bare soil Grass Wheat #date/
#image   RMSE R Bias RMSE R Bias RMSE R Bias 

L* 0.061 0.74 -0.012 0.047 0.91 -0.014 0.058 0.84 -0.004 8/8 

C 0.061 0.71 0.012 0.052 0.87 0.002 0.071 0.69 -0.006 7/7 

X 0.080 0.50 0.021 0.065 0.80 -0.019 0.084 0.58 -0.008 5/5 

L+C 0.061 0.73 -0.004 0.050 0.89 -0.022 0.059 0.82 -0.003 11/15 

L+X 0.062 0.73 -0.007 0.055 0.87 0.006 0.058 0.83 0.006 13/13 

C+X 0.067 0.61 -0.009 0.056 0.87 -0.026 0.071 0.80 -0.014 11/12 

L+C+X 0.062 0.75 -0.007 0.054 0.87 -0.019 0.058 0.83 0.006 15/20 

*: Chapter 7 
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The soil HR and VWC were also retrieved using the proposed method. The results for 

paddocks with an isotropic soil surface are listed in Table 8-2. for paddocks with in-

situ measurements. Similar to the soil moisture retrieval, the L-band observations yield 

the best results for HR in single frequency retrieval, followed by C-band and X-band. 

Negative biases were observed at all three frequencies, with the largest bias observed 

at X-band, indicating that smaller effective roughness values were retrieved at shorter 

wavelengths. An interpretation can be the dependence of effective roughness on 

wavelength. Similarly, larger effective HR were observed for long wavelengths in earlier 

studies calibrating the IEM (Lievens et al., 2011b, Baghdadi et al., 2004). Moreover, 

the cost function formation used in the retrieval may also slightly change the effective 

roughness, with larger HR retrieved at L-band after removing the dry-down constraint 

(Chapter 7).  

For single frequency retrieval of VWC, C- and L-band had similar accuracy in terms 

of ubRMSE, while X-band achieved the best results in all four metrics; this may be 

explained by its larger sensitivity to vegetation. The multi-frequency retrieval of both 

HR and VWC seemed to follow the same law of soil moisture retrieval, i.e., an 

additional frequency with poor retrieval results did not have a positive effect on the 

multi-frequency retrieval, suggesting that the proposed multi-frequency retrieval may 

Table 8-2: Accuracy of rms height and VWC retrieval at the paddock scale. The bold 
styles denote the best case in RMSE. ubRMSE refers to unbiased RMSE. 

  HR (cm) VWC (kg/m2) 

  RMSE R Bias ubRMSE RMSE R Bias ubRMSE 

L* 0.397 0.577 -0.084 0.389 0.775 0.506 0.054 0.773 

C 0.664 0.034 -0.509 0.426 1.008 0.603 0.449 0.802 

X 1.080 0.002 -0.693 0.828 0.590 0.651 -0.063 0.587 

L+C 0.469 0.361 -0.145 0.447 0.799 0.713 0.310 0.737 

L+X 0.428 0.425 -0.122 0.411 0.610 0.695 -0.039 0.609 

C+X 1.069 -0.041 -0.680 0.851 0.695 0.697 0.145 0.680 

L+C+X 0.406 0.551 -0.121 0.356 0.646 0.708 0.191 0.617 

*: Chapter 7 



 

Chapter 8 

 

8-15 

 

not necessarily have the highest accuracy, especially when low frequency data are in 

abundance. 

An investigation of HR and VWC retrieval over paddocks with periodic soil surface 

features was also made, using the wheat paddocks with row directions nearly 

perpendicular or parallel to the radar look directions (Figure 8-7). For those paddocks 

with perpendicular row features (red lines in Figure 8-7), L-band had a significantly 

larger HR and smaller VWC value than that retrieved from C- and X-band. This can 

be explained by the different effects of row structure on radar signals with different 

wavelengths. Specifically, the co-polarized σ0 observed perpendicular to the row 

structure has been found to be much larger than those observed parallelly (Blanchard 

and Chang, 1983, Champion and Faivre, 1996, Ulaby and Bare, 1979, Zribi et al., 2002). 

However, this effect has been found negligible for frequencies larger than 4 GHz 

(Ulaby and Bare, 1979). Consequently, for perpendicular rows, larger HR and smaller 

VWC values were retrieved at longer wavelengths in order to have a larger soil surface 

scattering and a smaller vegetation attenuation. For paddocks with parallel row features 

 

Figure 8-7: Retrieved HR and VWC values for wheat paddocks with a periodical soil 
surface. The red and black lines are paddocks with a row direction perpendicular and 
parallel to the radar look direction, respectively. 
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(black lines in Figure 8-7), L-band tended to have similar HR and VWC with C- and X-

band, confirming the reduced effect of parallel row structures. 

With respect to multi-frequency retrieval, the combinations of L+C, L+X, and 

L+C+X retrieved a similar HR compared to that of the single L-band retrieval, 

especially for those with perpendicular row structures. The potential reason is that L-

band is more sensitive to the row structure and thus was dominant in the cost function. 

Multi-frequency VWC retrieval seemed to have a value similar to the average of the 

values retrieved by single frequency series. For instance, the combination of L+X 

series had a VWC of 1.4 kg/m2 in paddocks #80, #98 and #115, which was close to 

the average value from X-band (2.3 kg/m2) and L-band (0.84 kg/m2) retrievals on their 

own. This may suggest that multi-frequency retrievals may not necessarily have the 

best results but can be less sensitive to effect of complex surface conditions, e.g., the 

effect of periodic features at long wavelengths. Moreover, this also confirms the risk 

of retrieving VWC and HR from one radar configuration (frequency, incidence angle 

and polarization) and subsequently soil moisture at another using the former derived 

VWC and HR (Lievens et al., 2011a). 

8.4.3 The effect of abrupt cultivation activities 

The framework performance was presented in previous sections. Here, the effect of 

the change detection information produced by the first step on soil moisture retrieval 

was investigated, using a comparison with soil moisture retrieval without change 

detection information. The results of six selected paddocks with cultivation activities 

is shown in Figure 8-8. Other paddocks with cultivation activities were not included 

because of the similar results. For example, the proposed method had similar results 

over paddock #48 and #30 as depicted in the time series soil moisture maps (Figure 

8-5) and thus only paddock #48 was included for discussion. 

In general, the dry down process was successfully captured by both approaches 

(with/without change detection) with the main differences after the roughness changes 

or irrigation. The soil moisture retrieved with the change detection information 
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showed a sudden increase after both soil tillage and irrigation in all paddocks, which is 

consistent with the ground observations in paddocks #54, #103, #110 and #113. 

Since the shadow root zone commonly has higher soil moisture than the surface layer 

(< 5 cm), a slight increase of soil moisture after the soil practice was also expected for 

paddocks #2 and #48. This suggests that the proposed method can accurately reflect 

the soil moisture evolution in time despite the split of time series in the presence of 

cultivations activities. In view of RMSE, the integration of change detection 

information outperformed in five of six cases, especially for these with irrigation events. 

Different from other multi-temporal methods, an additional dry down constraint was 

used here. The preprocessing step of change detection potentially ensure both the dry 

down constraint and the assumption of time-invariant roughness and VWC is met 

8.5 Chapter Summary 

A multi-frequency soil moisture retrieval framework was presented as an integration 

of the forward modeling in Chapter 5, the change detection method proposed in 

Chapter 6, and the time-series multi-angular soil moisture retrieval mothed presented 

in Chapter 7 and an operational method to select effect radar input for vegetated area. 

 
Figure 8-8: Time series average soil moisture of paddocks with/without integrating 
change detection results. The error bar denotes the standard deviation.  
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The development of multi-frequency retrieval starts from solving an ill-posed problem 

and takes all available data as equally weighted input, with the dilemma that more radar 

configurations means more unknown parameters being partially addressed through 

several assumptions (Section 8.3.3). Evaluation based on the SMAPEx-5 dataset 

consisting of L-band airborne data, C-band RADARSAT-2 data and X-band COSMO-

SkyMed data confirmed the robustness of the proposed framework, showing an 

acceptable overall RMSE of 0.058 cm3/cm3 at the paddock scale (~0.1 – 0.5 km). The 

comparison with single and dual frequency retrieval suggested that multi-frequency 

retrieval does not necessarily provide the highest accuracy. However, it is valuable to 

jointly use multi-frequency data considering the limited deterioration in accuracy and 

the significantly enhanced temporal resolution for capturing the soil moisture variation 

over time. 
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 Conclusions and Future Work 

9.1 Conclusions 

The application of radar remote sensing in soil moisture retrieval has recently entered 

a new era, with operational use now possible due to the increased number of existing 

and planned SAR missions in the next decade. While significant advances have been 

made in developing the algorithms for retrieving soil moisture using radar remote 

sensing in the past four decades, it is still challenging to derive reliable soil moisture at 

appropriate spatial and temporal resolutions from a single mission. Therefore, the main 

contribution of this research is to develop a multi-SAR-mission framework that can 

be applied to the joint use of current and forthcoming SAR missions to produce 

reliable soil moisture with high spatial (tens m) and temporal (2 – 3 days) resolution. 

This research consists of five parts with the conclusions described as follows: 

9.1.1 Calibration and validation of PLIS 

The stability, accuracy and image quality of PLIS data were comprehensively evaluated 

in Chapter 4 using two airborne campaigns (SMAPEx-4 and 5) as the basis of this 

study. The radiometric accuracy (RMSE) was found to be better than 0.65 dB over 

trihedrals, with satisfactory short-term stability (better than 0.2 dB) during the 

SMAPEx-4 and -5 experiments (a half-year period). Long-term stability was also 

confirmed with an average system-shift of around 1 dB since the first use of the PLIS 

system in 2010. The imbalance of different channels was 0.17 ± 0.15 dB and 3.87 ± 

2.86° over PARCs. The residual HH and VV imbalance over trihedrals after calibration 

was 0.04 ± 0.05 dB and 0.86 ± 1.49°. The residual crosstalk estimated from distributed 

targets was on the order of -30 dB. 

PLIS / PALSAR-2 cross validation confirmed the calibration accuracy of the PLIS 

data over various land cover types and demonstrated the potential for cross-calibration 

of SAR systems. High correlation (R > 0.8) between PLIS and PALSAR-2 
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backscattering coefficients was observed for both ScanSAR and Stripmap images. 

However, the comparison of PLIS and PALSAR-2 ScanSAR showed larger RMSD 

and lower R than that of PLIS and PALSAR-2 Stripmap, which was ascribed to the 

change of surface conditions during the acquisitions of images and the uncertainty of 

the ScanSAR geometric accuracy. The latter was confirmed to be partly removed by 

selecting a large homogenous area. Moreover, the use of homogenous grass, wheat and 

forest grid cells were found to be insensitive to the azimuth difference between sensors, 

thus being optimal choices for cross-validation of multiple SAR systems. 

9.1.2 Forward scattering models 

A combination of scattering models was selected (NMM3D-DBA for L-band and Oh-

DBA for C- and X-band) to cover the potential remote sensing radar configurations 

and natural surface conditions. Landcover specific multi-configuration LUTs were 

built for operational soil moisture retrieval. The performance of these LUTs was 

evaluated using ground measurements and airborne/spaceborne radar data, showing 

acceptable forward modeling over bare soil using the NMM3D (RMSE: ~2.3 dB) with 

a near-zero bias. Overestimations of 2 to 5.5 dB for C- and X-band were observed 

using the Oh model, with biases removed in the LUTs. The use of a single soil 

roughness parameter of HR with a fixed LC of 10HR was confirmed to have acceptable 

forward accuracy at paddock scale. However, it was noted that careful attention should 

be paid to paddocks with perpendicular row directions to radar look directions, with 

the effective roughness potentially being out of the range of the LUTs. 

The DBA achieved satisfactory forward predictions at most radar configurations but 

had great underestimation (~ 12 dB) at C-band VV polarization, as a result of the 

overestimation of attenuation in a vertical dominant vegetation layer. A single 

vegetation parameter of VWC together with vegetation type specific allometric 

relationships was confirmed to well represent the complex vegetation layer. After 

removing the biases, the LUTs showed acceptable modeling of the angular behavior 

and a forward ubRMSE of 1 – 3.2 dB, dependent on polarization, frequency and land 

cover type. 
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9.1.3 Surface anomaly change detection 

An unsupervised change detection method was proposed to serve as a pre-processing 

procedure of multi-temporal retrieval, ensuring the assumption of time-invariant 

roughness and vegetation. Investigation based on the SMPAEx-5 ground 

measurements and L-band PLIS data showed that the abrupt roughness and vegetation 

changes caused by cultivation practices commonly occurred at the paddock scale, and 

thus object-based techniques were implemented to identify changed paddocks. The 

sensitivity of different polarizations to those changes differed as a result of the varying 

dominant scattering mechanisms. The temporal ratio of HV polarization, the temporal 

difference of HV/VV, and the temporal difference of VV polarization were selected 

as the optimal feature space, using a GA-based feature selection algorithm and an 

extensive synthetic data set. The J-M distance of the selected optimal feature space was 

larger than 1.27 at all three frequency bands, confirming that slight roughness and 

vegetation changes can be detected. 

In the selected feature space, a two-step procedure was proposed to identify the 

changed paddocks, with the first step producing multiple over-detected change maps 

for the period of interest. The second step merges the multiple change maps to remove 

the false alarms with a principle similar to the ensemble machine learning. Evaluation 

on synthetic data sets demonstrated that the proposed approach can effectively 

eliminate the major part of error in multi-temporal soil moisture caused by roughness 

and VWC changes, although only a moderate AR (0.75 - 0.85) and FAR (0.08 - 0.15) 

was achieved for single look data. Experiments on real L- and C-band data also 

confirmed the effectiveness of the method showing an accurate identification of 

changed paddocks (> 0.9), while presenting a low false-alarm rate (< 0.1). 

As a preprocessing step, the proposed method can work independently with the 

subsequent multi-temporal soil moisture. Time series data are separated into multiple 

subseries according to the detection results. For multi-temporal soil moisture retrieval 

methods without a calibration process, soil moisture retrieval can be carried out on 

each sub-series independently. However, for those requiring calibration or multi-



 

Conclusions and Future Work 

 

9-4 

 

temporal vegetation correction, the proposed method could be used to provide an 

indication of areas where these methods are invalid. 

9.1.4 Time series multi-angular retrieval 

A time series multi-angular method was proposed for soil moisture retrieval from the 

joint time series of multiple L-band SAR missions with various observation modes. 

Apart from the assumption of time-invariant vegetation and roughness, the period of 

interest was assumed to have a dry down soil moisture, which was guaranteed by the 

change detection method proposed in Chapter 6. The performance of the proposed 

method has been comprehensively evaluated using the time series multi-angular L-

band data collected during the SMAPEx-5, showing an mv RMSE (R) of 0.07 m3/m3 

(0.77) at the 25-m pixel scale and 0.056 m3/m3 (0.83) at the paddock scale respectively. 

In comparison, the RMSE and R of the LUT snapshot retrieval at the paddock scale 

are 0.105 m3/m3 and 0.41 respectively, or 0.073 m3/m3 and 0.73 for multi-temporal 

retrieval without a dry down constraint, showing the effectiveness of including the dry 

down constraint. Acceptable soil moisture was also achieved over paddocks with 

periodic row structures, without significant difference compared with the isotropic 

ones in terms of RMSE and R. 

An investigation on the effect of polarization combinations showed that full polarized 

data performed slightly better than dual polarized series or single HH, HV and VV in 

terms of ubRMSE and R. However, the difference can be hardly significant (< 0.003 

m3/m3), showing the robustness of the proposed method even with single polarized 

data. Moreover, retrieval with short time intervals was demonstrated to achieve 

relatively better results than those with long time intervals. However, the observed 

ubRMSE and R difference was less than 0.003 m3/m3 and 0.07, denoting the negligible 

effect of gradual roughness and vegetation changes after removing the abrupt changes. 
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9.1.5 Time series multi-frequency retrieval 

The time-series multi-angular method proposed in Chapter 7 was extended to cover 

L-, C- and X-band. An additional preprocessing step was integrated to determine the 

effectiveness of input radar data over vegetated areas. Simulation based on forward 

models confirmed the capability of L-band in soil moisture retrieval over dense wheat 

(VWC: 4 kg/m2). However, C- and X-band data should be used carefully over the same 

area, as the contribution of the underlying soil surface can be less than the general 

calibration uncertainty in several cases (e.g., C-band VV polarization for an incidence 

angle larger than 27°). 

Evaluation based on the SMAPEx-5 dataset consisting of L-band airborne data, C-

band RADARSAT-2 data and X-band COSMO-SkyMed data confirmed the 

robustness of the proposed framework, showing an acceptable overall RMSE of 0.058 

cm3/cm3 at the paddock scale (~0.1 – 0.5 km). The effectiveness of the change 

detection was confirmed, showing a significant improvement (up to 0.1 m3/m3) for 

areas with cultivation activities. The comparison with single and dual frequency 

retrieval suggests that multi-frequency retrieval will not necessarily have the highest 

accuracy. However, it is still valuable to jointly use multi-frequency data considering 

the limited deterioration in accuracy and the significantly enhanced temporal resolution. 

Different effective roughness values were achieved for single-, dual- and triple-

frequency retrieval, denoting that the share of roughness parameters among different 

radar configurations is questionable. 

9.2 Future Work 

Improvement and future work mainly include: 

1. While the LUTs built in Chapter 5 showed satisfactory forward predictions, 

calibration was still required to remove the bias of the Oh model for C- 

and X-band. Moreover, the DBA needs several vegetation parameters, e.g. 

the radius and the distribution of elevation angle, which depend on 
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vegetation types and growth stages. As a result, the use of these LUTs in 

other areas needs to be further assessed. Limited by the ground 

measurements available in this thesis, in particular the allometric 

relationships, the LUTs developed here only cover two vegetation types, 

i.e. grass and wheat. Therefore, the development of LUTs for other 

vegetation types will be conducted in the future, with the possibility of 

auto-calibration investigated through machining learning techniques. The 

assumption of effective isotropic roughness for paddocks with periodical 

features and a fixed LC/HR of 10 should be further evaluated over a wider 

range of cultivation conditions. The use of multi-scale scattering models is 

currently being investigated as an extension of this PhD study, with the 

information of row orientation and row periods estimated from very high-

resolution optical data. 

2. To serve as a pre-processing procedure of operational soil moisture 

retrieval, the proposed change detection method should be further 

simplified. The future work could be a global paddock map extracted from 

available global land cover maps. The selected optimal feature space should 

be evaluated and enhanced for other landcover types. A parallel version of 

the proposed method can be integrated for large scale applications. A 

longer time series is required for a more comprehensive evaluation, e.g., 

those covering a whole crop season. 

3. Future work should also focus on improving the generalization capability 

of the multi-angular and multi-frequency retrieval approaches. A more 

general assumption about the soil moisture tendency may be used for areas 

with frequent rainfalls, e.g., these from in situ stations or hydrological 

models. An increasing or decreasing VWC could be integrated for a 

retrieval period with significant VWC variations. 
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