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Synopsis 

Precise and timely rainfall estimates are crucial not only for real-time flood forecasting but 

also for various water management activities. Microwave links from telecommunication 

operators have been proposed as a complementary and cost-effective means to provide 

valuable information concerning the space-time variability of rainfall. Especially in urban 

areas, where there is a dense network of such microwave links, they can provide an untapped 

resource of rainfall estimates at an intermediate scale between point measurement from rain 

gauges and weather radar data. Although the theoretical basis of such rainfall estimation from 

microwave links is well studied and understood, real-world applications in an operational 

setting have been very limited due to uncertainties and errors associated with this technique. 

Therefore, the focus of this thesis is to develop a better understanding of uncertainties 

associated with such a technique and ultimately propose a methodology to improve the 

rainfall estimation using such opportunistic data.  

First, a dedicated experimental microwave link was set up close to the city of Melbourne. 

This setup was complemented by 2 laser disdrometers, 5 automated rain gauges and 2 

weather stations positioned at several locations along the path. Two and half years of the data 

collected from the 2 laser disdrometers were used for deriving the parameters for the power 

relationship between rainfall and attenuation at different frequencies from 1 to 75 GHz. This 

was later used for validating the rainfall retrieval algorithm for the selected 72 different 

rainfall events. The overall result showed a good correlation between the observed and 

estimated rainfall rates, however there was an overestimation of about 90%. Later, the same 

experimental data were sampled to three different commonly used sampling strategies to 

understand the impact on the rainfall retrieval. It was found that the average sampling strategy 

for both the 5 and 15-minute periods provided rainfall estimates closer to the ground 

observation compared with the minimum/maximum and instantaneous strategies. Also, the 

impact of data quantization for the 24 GHz frequency microwave link was found to be 

negligible. Based on a simple wet antenna experiment, an additional attenuation in the order 

of up to 3.5 dB was observed. When comparing the three different wet antenna attenuation 

models, there was a substantial improvement in the rainfall estimates. However, when the 

parameters derived based on the experimental microwave link were used in the commercial 

microwave link, the constant wet antenna attenuation model performed better.   
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Second, rainfall retrieval using the commercial microwave link (CML) was assessed. More 

than 100 CMLs with their microwave frequency ranging between 10 and 40 GHz were used 

for rainfall retrieval. The 15-minute received signal levels (RSLs) for each CML for 2 years 

provided a unique dataset to compare the performance of the rainfall retrievals using the two 

sampling strategies (average and minimum/maximum). The open-source algorithm 

RAINLINK was used for deriving rainfall from the 15-minute RSL data. From two years of 

data, a subset of 30 rainy days distributed across this period was used for calibrating the 

RAINLINK parameters, with the remaining data used for validation. For this study, only 

path-averaged rainfall intensities were evaluated based on a gauge-adjusted radar product 

serving as the reference. The result of the wet-dry classification showed that the minimum 

and maximum RSL data performed better, with a lower false alarm ratio and a higher 

Matthews correlation coefficient than average RSL data. For the rainfall retrieval, both 

datasets showed a similar correlation with the gauge adjusted radar product. However, based 

on other statistics (RMSE, bias and CV) the minimum and maximum RSL data outperformed 

the average for the rainfall retrieval.  

In the last part of this research, a deep learning approach was developed to improve rainfall 

retrieval. A two-layer Long Short-Term Memory (LSTM) network model with 30 neurons 

each was designed and implemented. This model was trained with a one-year disdrometer 

dataset comparable to equivalent data provided by telecommunication companies. For the 

test dataset, the Root Mean Square error between the observation and the results from the 

LSTM model was reduced from 4.4 mm h-1 to 0.67 mm h-1, the relative bias reduced from 

125%  to 3%, and the coefficient of determination increased from 0.60 to 0.96. This trained 

LSTM model was then applied to data from a nearby CML with substantial improvements in 

rainfall estimation.   
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Introduction 

This thesis demonstrates the potential to use commercial microwave links for rainfall 

retrieval in Australia.  Moreover, it contributes to the global body of knowledge using 

commercial microwave links for rainfall retrieval and underpins the development of a more 

accurate operational rain measurement capability, including measurement of rainfall and 

drop size distribution. This study also develops a better understanding of the uncertainties in 

rainfall estimation associated with this measurement technique.   

1.1  Importance of rainfall measurement 

Rainfall is one of the dominant factors in terrestrial and atmospheric mass and energy balance 

over a wide range of spatiotemporal scales (Testik and Gebremichael, 2013). It is a primary 

source of freshwater, which plays a critical role in Earth’s hydrological cycle. Thus, accurate 

and timely rainfall measurement is crucial for a wide range of applications in earth, 

environment, agricultural and other science and engineering disciplines. Following are some 

of the examples where quantitative rainfall measurement is considered important:  

• Rainfall is arguable the most critical input in any hydrological model (Alemayehu et 

al., 2017; Skoulikaris et al., 2020). This is the primary input forcing to drive the 

simulation of the hydrological cycle in the catchment.     

• Accurate and timely rainfall information is critical for providing real-time flood 

forecasting and issues early warning to reduce life and property loss (Michaelides, 

2008).  

• Rainfall is one of the most important climatic factors influencing the growth 

characteristics of the crops (Watson and Challinor, 2013). It provides the water that 

serves as a medium through which nutrients are transported for crop development. 

Thus, having this information known would help farmers to increase productivity.   

• Information of rainfall is critical for water resource management as reservoir 

operation, irrigation planning and management etc.  

• Accurate quantitative rainfall information is crucial for both Short term weather 

prediction (often called as nowcasting) or long-term weather forecasting. 
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• Rainfall is one of the dominant factors that control the ecosystem dynamics like water 

and energy fluxes, landslide activity etc.  

1.2 Statement of the problem 

In spite of its importance, there are a number of challenges with providing accurate and 

routine spatial information on rainfall.  Importantly, rain gauges are point measurements that 

always underestimate the true rainfall, and are difficult to site and maintain in urban and 

mountainous areas (Muller and Kidd, 2006). Moreover, weather radar has limited spatial 

coverage, is impacted by clutter in urban and mountainous areas, and suffer numerous errors 

due to beam spreading and angle (Joss et al., 1990; Germann et al., 2006; Berne and 

Krajewski, 2013).  Furthermore, satellites are challenged by spatial resolution, temporal 

repeat, and the ability to accurately relate the observations to rainfall amounts, especially 

over land (Kucera et al., 2013). Finally, while weather prediction models can give high spatial 

and temporal resolution estimates of rainfall, the accuracy of these estimates remain 

inadequate for most applications (Sene, 2010). Therefore, accurate and timely high spatial 

resolution information on rainfall is rarely available in the areas where it is needed most.  

However, there is a potential solution.  Continental areas are becoming increasingly 

crisscrossed with commercial microwave links for pushing data around, particularly in our 

urban areas, and these have been shown to provide great potential for supplementing the 

above approaches with rich information on rainfall estimates  (Messer, 2018; Uijlenhoet et 

al., 2018; Chwala and Kunstmann, 2019). Networks of commercial microwave links are 

installed and maintained for the purpose of telecommunication however rainfall can also be 

measured as a by-product. Rainfall can be estimated based on the loss of microwave signal 

over a microwave link path between a transmitting and receiving antenna (see Figure 1-1 for 

an example). The strength of the signal at the receiving and transmitting end of the link path 

are usually monitored by telecom operators for quality purposes. Upton et al. (2005) 

introduced the idea to use microwave link observations to determine path-averaged rainfall, 

which was later proven to be successful with actual commercial microwave link data.   
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Although the theoretical basis of rainfall estimation from microwave links has been well-

studied and understood, real-world applications have been minimal (Overeem et al., 2016b). 

The parameters used in the rainfall-attenuation relationship provided by the International 

Telecommunication Union – Radiocommunication Sector (ITU-R) are based on global 

weather data, and so there is a need to derive these parameters for local weather condition. 

Theoretically, received power can be measured with a fine temporal resolution and precision, 

but in reality, these data are often made available at a relatively coarse resolution and 

precision (typically every 15-minute with 1 to 0.1 dB precision), leading to uncertainties in 

derived rainfall estimates. Thus, the effect of these sources of uncertainty on rainfall 

observation needs close investigation. Moreover, wet antenna attenuation remains one of the 

largest sources of uncertainty in the existing rainfall retrieval algorithm from commercial 

microwave links, and so this needs to be characterised and carefully understood.  

Furthermore, rainfall measurements using CMLs largely depends on the sampling strategy 

and the frequency of the received signal level adopted by the mobile operators. Most of the 

operators only record the minimum and maximum received signal level (RSLs), but some 

others also record the average and instantaneous RSL data sampled over 15 minutes. Thus, 

 

Figure 1-1: Example of a commercial microwave link antenna tower, used in 

telecommunication networks. 

 

source : https://www.flickr.com/photos/jbdodane/13716797063 
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the difference in the performance for the rainfall retrieval using various sampling data need 

further investigation.  

Also, at instances when only 15-minute minimum and maximum RSL data are available, a 

constant distribution between the minimum and maximum for the rainfall retrieval is usually 

assumed. However, the distribution of rainfall or attenuation is generally not consistent 

across any 15-minute period. A more robust and accurate methodology of estimating rainfall 

when using limited data such as minimum and maximum RSL data is therefore necessary.  

1.3 Objectives and scope of research 

The main objective of this research was to demonstrate the potential for an operational 

application of rainfall measurement from commercial microwave links. Consequently, the 

research questions and hypotheses for this thesis were as follows:  

1. What are the errors associated with microwave link rainfall estimates, and how can 

these errors be minimised for more accurate rainfall estimates using microwave 

links? The accuracy of the rainfall estimates depends on the type of rainfall event (eg. 

convective, stratiform). This also largely depends on the data sampling strategy of the 

attenuation data. The higher the sampling frequency of the data, the shorter could be the 

averaging interval and the better the temporal accuracy. Quantisation errors could also 

have a significant impact on the estimated rainfall amounts. Similarly, wet antenna 

attenuation could be characterised based on the rainfall intensity.   

2. How is the performance of rainfall retrieval from commercial microwave links 

impacted by sampling strategy? The most common sampling strategy, which 

telecommunication operators use to store the received signal level, is the 15-minute 

minimum and maximum. However, in some cases, average sampling data are also 

available.  These additional average sampling data could provide extra information for 

the wet-dry classification and the rainfall retrieval, which could eventually be helpful for 

the overall performance of the rainfall retrieval using CML data. 

3. Can a data-driven technique be used to improve rainfall estimates from CMLs? 

Rainfall estimates based on a constant weighting using minimum and maximum 

attenuation induces uncertainties in the rainfall estimates as the distribution of the rainfall 

or attenuation is not consistent across any 15-minute period. However, data-driven 
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techniques such as deep learning models could capture such relationships from historical 

data. A deep learning model would make the most of the dynamics of the 

minimum/maximum time-series, while a standard approach would consider single 

timesteps of minimum/maximum separately to retrieve attenuation.  

1.4 Outline of the approach 

The research conducted for this thesis was comprised of the following tasks that can be 

broken down as follows:  

1) Understanding uncertainties associated with microwave link rainfall 

estimation 

a. Set up a dedicated experimental microwave link including disdrometers, 

weather stations and rain gauges along the link path. 

b. Analysis and estimation of rainfall of different types and report issues 

associated with each of these different rainfall types. 

c. Compare the performance of three common sampling strategies, namely 

average, minimum/maximum and instantaneous, for various time intervals. 

d. Compare existing wet antenna attenuation models and propose local 

parameters based on the experimental link data. 

2) Evaluation of rainfall retrievals from commercial microwave link data for 

Melbourne 

a. Calibration of the rainfall retrieval model named RAINLINK for average 

and minimum/maximum RSL data obtained for the Greater Melbourne 

region. 

b. Analyse and compare the performance of wet-dry classification and rainfall 

retrieval for average and minimum/maximum RSL data. 

c. Present the analysis results and discuss the differences in outcomes.  

3) Deep learning techniques for improving rainfall measurement from CML 

a. Develop various machine learning models and evaluate their performance 

using simulated specific attenuation based on disdrometer data.  

b. Conduct an independent test of the best-identified model for its performance. 

c. Validate the model using actual CML data for rainfall retrieval. 

d. Present the analysis and discuss its implication for retrieval.  
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1.5 Structure of the thesis 

This thesis is structured into seven chapters, including this Introduction chapter. A number 

of these chapters have also been the basis of journal publications, as indicated below.  The 

remaining six chapters are:  

 

• Chapter 2: Literature review 

The literature review provides a broad overview of the theoretical background of using 

microwave link attenuation for rainfall measurement. This includes a review of and 

comparison with the existing conventional rainfall measurement techniques. Existing 

knowledge gaps are identified, and research questions to fill these gaps are formulated. 

Lastly, opportunities for utilisation of the research are presented.  

 

• Chapter 3: Study area and data used 

This chapter provides a description of the study area and data used for this study. This 

includes a detailed description of the setup of a dedicated experimental microwave link 

alongside a regular commercial microwave link for this study, including the addition of 

disdrometers, weather stations and rain gauges. This chapter also provides detailed 

information on the collection of commercial microwave link data across Melbourne, 

including reference rainfall data from radar and rain gauges. 

  

• Chapter 4: Uncertainties associated with microwave link rainfall estimates 

This chapter uses the datasets from the experimental link to investigate the uncertainties 

associated with microwave link rainfall estimates. This work has formed the basis of an 

article to be submitted to Advances in Water Resources:  

o Pudashine, J., Guyot, A., Pauwels, V.R., Overeem, A., Seed, A., Uijlenhoet, R., 

Prakash, M., and Walker, J.P. (2020). Uncertainties associated with microwave 

link rainfall estimates: Insights from an experimental setup in Melbourne, 

Australia. Advances in Water Resources. Manuscript under internal review.  
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• Chapter 5: Validation of commercial microwave links 

This chapter provides a comparison of the two-sampling data commonly used by the 

telecommunication operators for the Greater Melbourne region as a case study. This 

work has formed the basis of an article submitted to the Journal of Hydrology:  

o Pudashine, J., Guyot, A., Pauwels, V.R., Overeem, A., Seed, A., Uijlenhoet, R., 

Prakash, M., and Walker, J.P. (2020). Urban rainfall retrieval using commercial 

microwave links: Effect of sampling strategy on retrieval accuracy, Journal of 

Hydrology. Manuscript under the second review.  

 

• Chapter 6: Deep learning for rainfall improvement 

This chapter provides a formulation of an innovative deep learning technique for 

improving the rainfall estimation if only minimum and maximum received signal level 

data are obtained. The results from this study have formed the basis of an article published 

in Water Resources Research:  

o Pudashine, J., Guyot, A., Petitjean, F., Pauwels, V.R., Uijlenhoet, R., Seed, A., 

Prakash, M., and Walker, J.P. (2020). Deep Learning for an Improved Prediction 

of Rainfall Retrievals From Commercial Microwave Links. Water Resources 

Research, 55, e2019WR026255. https://doi.org/10.1029/2019WR026255 

 

• Chapter 7: Conclusion and future recommendations 

This chapter presents a summary of the discussion of the main conclusions that can be 

drawn from the research and provides some future direction of work. 

 

The following co-authored paper also contributed to the work of this thesis. For this 

paper, my contribution was in data processing and analysing the disdrometers data.  

o Guyot, A., Pudashine, J., Protat, A., Uijlenhoet, R., Pauwels, V.R., Seed, A., and 

Walker, J.P. (2019). Effect of disdrometer type on rain drop size distribution 

characterisation: a new dataset for south-eastern Australia.  Hydrology and Earth 

System Sciences, 23,4737-4761. https://doi.org/10.5194/hess-23-4737-2019

https://doi.org/10.1029/2019WR026255
https://doi.org/10.5194/hess-23-4737-2019
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Chapter 2  

Literature review 

This chapter provides an overview on literature related to the various rainfall measurement 

techniques; their drawbacks, basic theoretical background on microwave attenuation and its 

application for the estimation of rainfall rate, previous experimental studies for rainfall 

estimation using microwave link and research gaps in the existing literature.  

2.1 Conventional rainfall measurement techniques 

2.1.1. Rain gauges 

Rain gauges are one of the conventional techniques for measuring rainfall all over the world, 

even though it provides only a point measurement (Wood et al., 2000). The tipping buckets 

are the most commonly used worldwide but are costly due to regular maintenance and their 

method of operation (Sevruk, 2002). Moreover, gauges are difficult to site in dense urban 

areas and mountain valleys. They need careful positioning, and they are prone to vandalism 

in urban areas; and provide accurate rainfall measurement only during low to intermediate 

intensity rainfall (Muller and Kidd, 2006). They are prone to errors in recording very heavy 

intensity rainfall due to inherent characteristics of the counting device (La Barbera et al., 

2002; Muller and Kidd, 2006). Rain gauges also suffer from biases related to both the 

intensity and the wind field around the site. They are also prone to errors subjected from 

losses due to wind effect, wetting, splashing and evaporation (Emad et al., 2008). Since the 

rainfall field has a strong spatial gradient, particularly in the case of convective storms, single-

point measurements cannot reflect the areal rainfall distribution in the large catchment 

(Michaelides et al., 2009).  

2.1.2 Weather radar 

In contrast, operational weather radars can provide broad spatial coverage of up to 300 km, 

by emitting a beam through the atmosphere at some angle above the horizon and measuring 

the reflected energy. Thus, the presence of large objects such as buildings or mountains in 

the beam renders the use of radar impossible. This is called clutter and is a serious problem, 

especially in urban areas. Radar measurement is based on the empirical relationship between 

radar reflectivity and precipitation which can be written as 𝑍 = 𝑎𝑅𝑏, with 𝑍  the radar 
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reflectivity (mm6 m-3), 𝑅 the rainfall (mm h-1) and 𝑎 and 𝑏  parameters depending on the type 

of precipitation (snow, hail, rain, convective or stratiform). In many cases, the type of rainfall 

and its drop size distribution are unknown, causing an error in the rainfall retrieval (Morin et 

al., 2003). Most commonly, operational weather radar uses the frequency in C- and S-band 

range with wavelengths of about 5 and 10 cm, respectively, which are proven to be less 

sensitive to lighter rainfall. Similarly, X-band radars (wavelength of about 3 cm) have been 

used in research for many years (Sene, 2013), but these provide a shorter range and suffer 

from a greater signal attenuation than other radars due to the shorter wavelength (Germann 

et al., 2006). One rainfall event behind another can be almost completely blocked out.  

2.1.3 Satellite 

Satellite rainfall has the advantage of providing global estimates of rainfall, which is 

especially useful for remote areas and areas in developing countries where there is a lack of 

ground observations (Kidd and Levizzani, 2011). Currently, a number of satellite products 

are available using a wide range of techniques and sources from real-time information. Most 

of these products combine visible and infrared observations from geostationary satellites, 

with microwave observations from polar-orbiting satellites as well as outputs from Numerical 

Weather Prediction models in some cases (Sene, 2013). Even though the precipitation 

products derived from the satellite observations have already reached a good level of 

maturity, there still exist issues of accuracy and resolution (both temporal and spatial), which 

limit the stand-alone application in an operational setting (Brocca et al., 2014).  

2.2 Rainfall measurement using microwave link  

The innovative technique of utilizing attenuation data from microwave links to measure 

rainfall rate has recently gained the interest of a number of researchers across the globe. It is 

now considered a reliable means for continuous rainfall monitoring, complementing 

conventional rain measurement techniques (Messer et al., 2006). The major advantage of 

microwave links is that they can provide path-integrated measurements of attenuation by 

rainfall close to the surface at a range of a couple of meters above the ground level (Fenicia 

et al., 2012) . Figure 2-1 shows how microwave links are used in a mobile network.  Mobile 

network operators (MNO) uses backhaul towers (base stations) to relay the high volume of 

the data from one place to another. As the link between these back-haul towers required high 

bandwidth, most of these links are of higher frequency which is usually attenuated by rain.  
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The rainfall measurement using a microwave link is based on the fact that microwave signals 

are absorbed and scattered when passing through the rain in the microwave region of 

wavelengths between 3 cm to 0.3 cm, corresponding to frequencies between 10 GHz to 100 

GHz. The theoretical relationship of this attenuation phenomenon was studied a long time 

ago by Stratton (1930) and Mueller (1946). In these earlier days, the aims were to study the 

processes in order to establish a reliable microwave transmission along with the link, focusing 

on the prediction of unwanted interference. After the 1960s, weather radar technology used 

the attenuation and scattering that rainfall has on microwave signals to measure the rainfall 

intensity (Atlas and Ulbrich, 1977; Giuli et al., 1991; Jameson, 1991). Later, several 

experimental microwave links with dual and multi frequencies were studied to measure the 

path integrated rainfall rate (Rincon et al., 1996; Rincon, 2002; Holt, 2003; Rahimi et al., 

2003).    

The use of commercial microwave links (CML) for rainfall estimation was first 

recommended by Messer (2006). Received signal level (RSL) obtained from commercial 

telecommunication companies were processed to obtain rain-induced attenuations and then 

converted to average rainfall rates using an empirical power-law relationship. Leijnse et al. 

(2007) also used a commercial microwave link operating at 38 GHz data for a 2-month period 

to demonstrate its usefulness in the climatic setup of The Netherlands. They have considered 

eight rainfall events for obtaining the rainfall estimates from the link, which is well 

represented when compared with rain gauges and C-band radar data. Results showed that the 

link-derived rainfall compared better during the uniform rainfall event, whereas in variable 

rain, it showed a good comparison with radar rainfall. Since then, several studies have 

 

Figure 2-1: Use of microwave links for the mobile communication. 
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demonstrated the feasibility of using microwave links from the commercial 

telecommunication network to measure rainfall rates (Messer, 2006; Leijnse et al., 2007; 

Blazquez et al., 2009; Goldshtein; et al., 2009; Chwala et al., 2012; Overeem, 2013; 

Doumounia, 2014; Overeem, 2016b).  

Zinevich et al. (2008) demonstrated the robustness of microwave links to provide accurate 

rainfall estimates over an area of 3200 km2 in Israel, providing more precise rainfall in the 

urban areas with an average correlation of 0.89. Their findings suggested that there is a 

significant impact on rainfall estimation due to quantization (rounding and truncation) errors, 

which need to be addressed. Overeem (2013) used CML data to produce country-wide 

rainfall maps for the Netherlands. Doumounia (2014) used a 29 km long link at 7 GHz to 

derive rainfall depths during the monsoon season in West Africa; 95% of rainfall was detected 

with a daily correlation coefficient of 0.8 and a bias of 6%.  

The CML network is constantly expanding worldwide, and it exists wherever there is a reach 

of mobile phones. There is no additional investment in the infrastructure to make use of it to 

measure rainfall. These networks are denser in urban areas where there remains a challenge 

to improve the accuracy of observations of rainfall using weather radar and rain gauges. 

Mostly in developing countries where there is no radar measurement or rain gauges, CML 

could be the best alternative option for measuring rainfall. Besides this, CML has been used 

in various studies related to hydrological applications and flash flood early warning systems 

(Hoedjes et al., 2014). Microwave link attenuation data and rainfall derived from it are found 

useful for improving X-band radar estimates (Kramer, 2005) in Germany. They found that 

an error margin of 30 percent can be corrected using the microwave link data compared with 

gauge-based rainfall observation. Similarly, other studies also conducted in Germany found 

that microwave link attenuation data are helpful for optimizing the performance of weather 

radars by providing adequate estimates of the attenuation correction factor (Tromel et al., 

2014). Further, Bianchi et al. (2013) recently used microwave link rainfall to spot fault rain 

gauges in Switzerland.  
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2.3 Theoretical background on microwave attenuation 

2.3.1 Microwave attenuation in the near-surface atmosphere  

When a radio wave  propagates through the atmosphere due to the presence of mainly oxygen 

and water vapour, it suffers from refraction/reflection, scattering and absorption/attenuation 

(Seybold, 2005). Except refraction, all other effects are insignificant below 30 MHz but rain 

attenuation starts to be a significant factor above 10 GHz. Microwave attenuation happens 

mostly through two main mechanisms.  

a) Attenuation due to gaseous molecules in the atmosphere 

Atmospheric gases (mainly oxygen and water vapour) absorb electromagnetic energy at 

microwave frequencies, which causes loss in the received signal power.  This loss is very 

minimal for short distances and low frequencies. For example, there is a specific attenuation 

of 0.05 dB km-1 for 1 GHz. For the frequency range from 2 to 40 GHz, O2 and H2O are the 

predominant attenuation factors in the atmosphere. There has been well-established theory 

and models for the understanding of these processes as described by Liebe (1981).  

The specific gaseous attenuation is given as:  

𝑘𝑔𝑎𝑠 = 𝑘0 + 𝑘𝑤 = 0.1820 𝑓 (𝑁"𝑂𝑥𝑦𝑔𝑒𝑛(𝑓) + 𝑁"𝑊𝑎𝑡𝑒𝑟𝑉𝑎𝑝𝑜𝑢𝑟(𝑓)), (2.1) 

where 𝑘0  and 𝑘𝑤 are the specific attenuation (dB km-1) due to dry air  and water vapour, 

respectively, f is the frequency (GHz) and 𝑁"𝑂𝑥𝑦𝑔𝑒𝑛(𝑓) and 𝑁"𝑊𝑎𝑡𝑒𝑟𝑉𝑎𝑝𝑜𝑢𝑟(𝑓) are the 

imaginary parts of the frequency-dependent complex refractivity which is given by: 

𝑁"𝑂𝑥𝑦𝑔𝑒𝑛(𝑓) = ∑ (𝑂𝑥𝑦𝑔𝑒𝑛)𝑖 𝑆𝑖𝐹𝑖 + 𝑁"(𝑓), (2.2) 

𝑁"𝑊𝑎𝑡𝑒𝑟𝑉𝑎𝑝𝑜𝑢𝑟(𝑓) = ∑ (𝑊𝑎𝑡𝑒𝑟𝑉𝑎𝑝𝑜𝑢𝑟)𝑖 𝑆𝑖𝐹𝑖. (2.3) 

Here, 𝑆𝑖 is the strength of i-th oxygen or water vapour line, 𝐹𝑖 is the oxygen or water vapour 

line shape factor. Figure 2-2 shows the specific attenuation for 15°C for a standard 

atmosphere containing water vapour density of 7.50 g/m3 and dry air.  
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b) Attenuation due to rain  

According to Vande (1981), if an electromagnetic wave with a wavelength 𝜆 and a wave 

number 𝑘0 =
2𝜋

𝜆
  passes through a region containing hydrometeors (with 𝑁(𝐷)𝑑𝐷 the number 

of drops of equi-volume diameter 𝐷, 𝐷 + 𝑑𝐷 and forward scattering amplitude of 𝑓(𝐷)) then:  

𝐾 = 𝑘0 +
2𝜋

𝑘0
∫ 𝑓(𝐷)𝑁(𝐷)𝑑𝐷

𝐷𝑚𝑎𝑥

0

. (2.4) 

 

Then attenuation due to rain 𝐴 (dB km-1) is given as:  

𝑘 = 8.686 × 105𝐼𝑚(𝐾), (2.5) 

 

where 𝐷 and 𝑓are in cm, 𝐾  and 𝑘0 are in cm-1
 and 𝑁(𝐷) in cm-4.  

 

Figure 2-2: Specific attenuation of a standard atmosphere and dry air (ITU-R, 2016). 
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The relationship between attenuation and rainfall has been investigated by several authors. 

Using the Mie scattering solution, Olsen et al. (1978) proposed an empirical power 

relationship between rainfall rate 𝑅  (mm h-1) and specific attenuation 𝑘  (dB km-1) given as:   

𝑘 = 𝑐𝑅𝑑, (2.6) 

where 𝑐 and 𝑑 are the power-law parameters depends on the frequency 𝑓, polarization, 

raindrop size distribution and temperature. The total attenuation A (dB) can be obtained by 

integrating the specific attenuation over the path length (L) as:  

A = ∫ 𝑘(𝑥)𝑑𝑥,
𝐿

0

 (2.7) 

Substituting eq (2.7) and (2.6) can be written as:  

A = 𝑐 ∫ 𝑅(𝑥)𝑑𝑑𝑥
𝐿

0

, (2.8) 

For the sake of simplicity, the dependence of time (t) and frequency (f) is not considered in 

the notation. Now, considering the constant transmit power, the total attenuation A due to 

rainfall on a microwave link of length L, which is related to the received power level during 

the rainfall event (expressed in watts) and the received power during the dry period 𝑃0 (W) 

is given as :  

A = 10 𝑙𝑜𝑔 [
𝑃0

𝑃
] = 10 log(𝑃0) − 10 log(𝑃). (2.9) 

This can be written using the natural log as:  

A =
10

𝑙𝑛(10)
𝑙𝑛 [

𝑃0

𝑃
]. (2.10) 

Taking exponential on both sides of the equation: 

𝑃

𝑃0
= 𝑒𝑥𝑝 [−

ln (10)

10
A]. (2.11) 

Again, substituting the value of equation 2.8 in equation 2.11:  

𝑃

𝑃0
= 𝑒𝑥𝑝 [−

ln (10)

10
 ∫ 𝑘(𝑥)𝑑𝑥

𝐿

0

], (2.12) 
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which is a form of Lambert-Beer’s law of exponential extinction that is one of the 

fundamental equations used in physics. This equation is time and frequency-dependent which 

expresses the basic principle of the electromagnetic signal that it experiences attenuation as 

they pass through the rain medium. However, there is a need to invert the problem for the 

measurement of total rain-induced attenuation, A using equation (2.9) from the received 

power during the rainfall event and that just before the rainfall event. And once A is 

estimated, equation (2.6) can be used to invert to get the rainfall measurement. An important 

steps was the nearly simultaneous findings by several research groups about a decade ago 

that, for typical frequencies employed by microwave links in cellular communication 

networks, the exponent 𝑑 of the power-law relation between specific attenuation k and 

rainfall rate R is very close to the unity. Thus, equation 2.6 can be approximated as:  

𝐴 ≈ 𝑐 [∫ 𝑅(𝑥)𝑑𝑥
𝐿

0

]

𝑑

, (2.13) 

Dividing by the total path length L both sides,  

�̅�  ≈ 𝑐�̅�𝑑 , (2.14) 

Where �̅� = 𝐴/𝐿 which is the path specific attenuation and �̅� =
1

𝐿
∫ 𝑅(𝑥)𝑑𝑥

𝐿

0
 

Now, inverting equation 2.14 yields the desired rain rate estimator given as:  

�̅�  ≈ a�̅�𝑏 , (2.15) 

where, a = (1/𝑐)1/𝑑 and 𝑏 = 1/𝑑. This equation (2.15) forms the basis of any rainfall 

retrieval algorithm for microwave links. Equation 2.15 is exact if d is unity  
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2.3.2 Review of the rainfall retrieval algorithm 

The empirical power-law proposed by Olsen et al. (1978) as presented in equation (2.15) is 

the basic relationship used for deriving rainfall from microwave link attenuation data, where 

𝑅  is the rainfall rate (mm h-1), 𝑘  is the specific attenuation (dB km-1), and 𝑎 (mm h-1 dB-b 

kmb) and 𝑏 are the parameters also related to frequency, polarization, temperature, drop size 

distribution, drop shape and canting angle. Figure 2-3 shows the parameters 𝑎  and 𝑏  for the 

frequency range 0 to 100 GHz which have been recommended for use worldwide by ITU-R 

as well as the parameters used by Leijnse et al. (2007) for The Netherlands. 

To estimate rainfall depths from attenuation data, the following steps in the CML data 

processing have been proposed in the previous literature, as discussed in the following 

section.  

a) Distinction between wet and dry periods 

There is a decrease in received signal level during dry weather condition due to absorption 

and scattering by atmospheric gases, water films or dew formation on the antenna horn, and 

even due to the variation in temperature in the electronic components of the receiver itself 

(Liebe, 1981; Holt, 2003; Upton et al., 2005).  This fluctuation in signal level could be 

misinterpreted as being caused by rainfall even in the absence of any form of precipitation. 

Thus, various methods have been proposed to classify wet from dry periods in order to 

quantify the correct baseline/reference signal level.  

 

Figure 2-3: Frequency dependency of parameters 𝒂 and 𝒃  as proposed by ITU-R and 

Leijnse et al. (2007) in the power-law relationship. 
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i) Nearby link approach: One of the approaches to identify whether the timestep is wet or 

dry is based on a temporal correlation with the time series from the microwave links in the 

proximity. This method relies on the fact that the decrease in received signal power level in 

the proximity of the links is due to alteration of weather conditions on those links. In this 

method, the interval of 15 min for the selected link is considered as wet if there is also a 

mutual decrease in the received signal power in the proximity links within a certain radius 

(Overeem et al., 2011; Overeem et al., 2016a). This approach was successfully used to 

process 2 years of microwave link data covering the Netherlands. The code is available in a 

package called RAINLINK (Overeem et al., 2016a).  

ii) Radar approach:  Overeem (2011) proposed this method which uses the unadjusted radar 

data to distinguish between the dry and wet conditions. For each link, overlapping radar 

pixels are checked for the rainfall intensity higher than 1 mm h-1. If the intensity is greater 

for the selected link, the current and following time step is also categorized as wet. Since 

radar measures rainfall at greater heights, it will take additional time to reach the ground. It 

was found that in the case of the Rotterdam region, the fall time ranges from 5 to 12 min for 

a height of 1.5 km (Overeem, 2011, 2016b, a).  

iii) Time series analysis: Besides these, there have been further approaches to analyse the 

individual time series of CMLs. (Chwala et al., 2012) have suggested using a spectral time 

series analysis.  Similarly, Wang (2012) used Markov switching models to distinguish 

between dry and wet periods from the commercial telecommunication microwave links. As 

these methods do not require any empirical threshold value, they performed better compared 

with existing methods. Schleiss and Berne (2010) also used a time series analysis to classify 

between dry and wet periods. Their result performed well with the reliability of capturing 

93% of the total rain amount on average. The only disadvantages of this method are that they 

require high-frequency data. 

iv) Satellite-derived products to inform on possible rain occurrence: Recently, vanhet et 

al. (2017) proposed a new approach of using geostationary precipitation data from the 

Precipitation Clouds (PC) and Cloud Physical Properties (CPP) products derived from 

EUMETSAT. Each of the pixels is considered wet if one or both of these satellite product 

has rain with the probability of precipitation higher than 20 % for the PC product or a rainfall 

intensity greater than 0.1 mm/hr for the CPP product. Each of the links overlapping these 
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classified pixels are used to differentiate between dry and wet periods for each of the time 

steps of the links. This method was found to be prominent for the daily rainfall estimates.   

v) Data-driven techniques: Various author proposed data-driven techniques like deep 

learning models to distinguish the time steps between the wet and dry period from the 

microwave link data. Habi and Messer (2018) developed a long short-term memory (LSTM) 

using a multi-variable time series to monitor the wet period in the time series. Recently, Polz 

et al. (2020) proposed a convolutional neural network (CNN) to recognize the attenuation 

pattern and then distinguish between the dry and wet periods. The model was trained using 4 

months of data from randomly chosen CMLs which was later verified on 2 different months 

of data for all 3904 CMLs. This proposed method was outperforming the reference method; 

however, the data driven techniques need a large CML data set for the training the model.   

Besides these above approaches, there are also other methods, such as using a decision tree 

method as demonstrated by Cherkassky et al. (2014) to distinguish between rain and sleet 

events with several classification features. 

b) Reference signal level determination 

Rainfall is the principal cause of attenuation of microwave links but is not the only factor 

causing signal fluctuations. Received signal power level will vary due to changes in 

atmospheric gaseous concentrations, translated as fluctuations of variables such as air relative 

humidity, atmospheric pressure, air temperature and wind velocity. Even though such 

fluctuations are not as large as those caused by rainfall, these need to be accounted for in the 

data processing to obtain a specific attenuation in order to derive a rainfall depth (Upton et 

al., 2005). Various authors suggested different methodologies to remove the baseline signal 

from the observed attenuation data. These include simple methods such as using a constant 

threshold to more complex methods, using advanced signal processing techniques (such as 

Fast Fourier Transforms and wavelet analysis (Minda and Nakamura, 2005; Upton et al., 

2005; Overeem, 2011; Chwala et al., 2012). Fenicia et al. (2012) tested a linear low-pass filter 

to estimate the baseline signal with the assumption that the reference signal do not remain 

constant for any rainfall even.  This linear loss pass filter baseline method provides a more 

realistic reference level than the constant baseline method.  
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c) Identifying erratic signal behaviour 

Rainfall is not only the source of attenuation in the microwave link. Additional attenuation 

can be caused due to various atmospheric constituents like water vapour and oxygen. It can 

also be caused due to refraction, obstruction, multipath propagation. Thus, these additional 

attenuations should be identified and removed before converting the signal to the rainfall 

intensity. Overeem (2016a) introduced a pre-processing step for the minimum-maximum 

power level data to remove the malfunctioning and noisy links. This is based on a filter that 

relies on the principle of rainfall distribution over space. The filter discards a time interval of 

a link for which the cumulative difference between its specific attenuation and the 

surrounding links becomes lower than the outlier filter threshold. The implementation of this 

algorithm is included in a RAINLINK package. Recently, Graf et al. (2020) applied several 

quality checks on CML data using the filter threshold based on two criteria. The first is based 

on a 5 h moving window standard deviation exceeding the threshold of 2.0 for more than 

10 % of a month, and the second is a 1 h moving window standard deviation exceeding the 

threshold of 0.8 more than 33% of the time in a month. These filters remove all the links with 

missing, noise and unrealistic data.  

d) Estimating wet antenna attenuation 

Wet antenna attenuation (WAA) is an essential factor that needs to be estimated correctly to 

obtain accurate rainfall measurement using microwave links (Fencl et al., 2018; Chwala and 

Kunstmann, 2019; Valtr et al., 2019) Various theoretical models and pragmatic approaches 

have been proposed to address this issue. WAA mainly depends on the type and material of 

the antenna cover. Blevis (1965) first modelled WAA as a uniform water thickness water 

film depending on the rain rate following a power-law relationship. A rain rate dependence 

with WAA was also obtained from the experimental work conducted by (Islam and Tharek, 

2000; Kharadly and Ross, 2001; Minda and Nakamura, 2005). Leijnse et al. (2008) proposed 

a semiempirical model where WAA was considered a function of water film thickness on the 

antenna surface dependent on rainfall intensity. Furthermore, Fencl et al. (2018) used a 38 

GHz microwave link to demonstrate a rain-rate dependence of WAA reaching the maximum 

value of 9 dB in extreme cases. Recently Valtr et al. (2019) proposed a model describing the 

wet antenna attenuation as a function of the rain rate, which also follows a power relationship 

between the WAA and rainfall intensity. On the other hand, Schleiss et al. (2013) proposed 

an exponential decay WAA model, which determines how fast the WAA reaches the 
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maximum value over the course of the rainfall event. The modelled WAA value increases 

sharply at the beginning of the rainfall event reaching the maximum value of 2.3 dB during 

the rainfall event. As a pragmatic approach, when only minimum and maximum RSL data is 

available, Overeem et al. (2011) suggested a constant wet antenna attenuation during wet 

periods, estimated for the transmitter and receiver antennas together.  

2.4 CML studies around the world 

Even though the near linearity on the power relationship was known for a long time to the 

meteorological community, this was limited to the dedicated experimental microwave link 

path for the rainfall estimation until the early 2000s, when Messer et al. (2006) and Leijnse  

et al. (2007) concomitantly demonstrated the use of CML signal attenuation for rainfall 

measurement. This was a major breakthrough toward demonstrating the potential to use the 

more than 4 million commercial microwave links in the world (Ericsson, 2017) for rainfall 

monitoring purposes. Since then, several studies have demonstrated the feasibility of using 

microwave links from the commercial telecommunication network to measure rainfall rates 

around the world, including Brazil (Rios Gaona et al., 2015), Burkina Faso (Doumounia et 

al., 2014), Czech Republic (Fencl et al., 2013; Fencl et al., 2017), Germany (Chwala et al., 

2012; Chwala et al., 2016; Smiatek et al., 2017; Graf et al., 2020), Israel (Messer et al., 2006; 

Zinevich et al., 2008; Goldshtein et al., 2009), Italy (Roversi et al., 2020) , The Netherlands 

(Leijnse  et al., 2007; Overeem et al., 2011, 2013, 2016b; de Vos et al., 2019), Pakistan 

(Sohail Afzal et al., 2018) and Switzerland (Bianchi et al., 2013).  

These validation studies have been conducted based on a few links to a couple of thousand 

links covering the entire country, such as The Netherlands (Overeem et al., 2013) and 

Germany (Graf et al., 2020). The temporal resolution of such CML rainfall estimates 

typically varies from a few seconds to 15 minutes, with most telecommunication operators 

sampling the received signal level (RSL) at 10 Hz but storing it at a much coarser temporal 

resolution. The summary of such studies using microwave links for the rainfall measurement 

conducted worldwide is summarized in Table 2-1.  
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Table 2-1: Published works on rainfall measurement using microwave links 

Authors Country Dataset  Summary 

Leijnse  et al. (2007) The Netherlands 2 CML 38GHz links 

15 minutes instantaneous RSL data 

Eight rainfall events were evaluated. Results were 

compared with rain gauges and C-band radar data.  

Blazquez et al. (2009) France 4 microwave links (26 GHz dual 

polarization links) 

30-sec instantaneous data 

Two rainfall retrieval models were compared. Results 

showed a correlation coefficient of about 0.8 when 

compared with the rain gauge close to the links.  

Goldshtein et al. (2009) Israel 22 microwave links  

Frequency range 17 to 24 GHz 

RSL recoded at a temporal resolution 

of 1 minute with 1 dB resolution.  

An algorithm to construct a spatial distribution of 

rainfall map obtained from the CML was proposed. 

Watson and Hodges 

(2009) 

United Kingdom 38 GHz and two simulated links of 

35 and 45 GHz 

A reconstruction algorithm to estimate the rainfall 

field was proposed.  

Schleiss and Berne (2010) France 4 operational telecommunication 

links 

19 and 26 GHz 

10 milliseconds instantaneous 

transmitted and received powers   

A method to distinguish between dry and wet periods 

was presented. Result detected about 92% of wet 

periods and about 93% of the total rainfall amounts.  
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Authors Country Dataset  Summary 

Overeem et al. (2011) The Netherlands 57 microwave links 

Minimum and maximum receiver 

power over 15-min interval with the 

resolution of 0.1dB 

Rainfall derived from microwave links were 

compared with gauge-adjusted radar rainfall 

estimates over the path.  

Rayitsfeld et al. (2012) Israel 70 CMLs,  

16-24 GHz with lengths varying 

from 0.8 to 18 km 

RSL logged every minute at a 

resolution of 1 dB 

Results obtained from the CMLs were compared with 

the rain gauges in the vicinity of the links. 1-minute 

temporal resolution showed a correlation up to 0.75; 

however using a 10-minute resolution showed a 

correlation up to 0.85.  

Chwala et al. (2012) Germany 5 CMLs (15, 18.7 and 23 GHz), 

Data logger installed on the tower to 

record the RSL data.  

Resolution < 0.05 dB 

A new wet-dry classification algorithm was proposed 

using short-time Fourier transform. Rainfall derived 

for 4 months period showed a good correlation up to 

0.81 between link and rain gauge data.  

Bianchi et al. (2013) Switzerland 14 CMLs 

23, 38, 58 GHz, 0.3 – 8.4 km links 

Temporal resolution from 2 to 5 

minutes 

CMLs data were used to identify the malfunctioning 

of rain gauges. An algorithm to detect error 

occurrence and quantitative errors in rain gauge 

measurement was proposed.  

David et al. (2013) Israel 36 CMLs (17-23 GHz), 

15-min minimum and maximum 

RSL data with 0.1 dB quantization 

Results from the CMLs suggested the probability of 

early detection of convective cells as compared with 

rain gauges.  
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Authors Country Dataset  Summary 

Fencl et al. (2013) Czech Republic 14 CMLs 

~ 38 GHz 

CMLs derived rainfall showed better information on 

spatio-temporal rainfall variability that has the 

potential to use for urban flood modelling.   

Overeem et al. (2013) The Netherlands 2400 microwave links  

Minimum and maximum received 

power with 1 dB resolution over 15-

minutes 

Countrywide validation of rainfall retrieval using 

CMLs providing the usefulness of such data for real-

time rainfall monitoring over large areas.  

Cherkassky et al. (2014) Israel 3 CMLs 

18.36 (11.9 km), 19.37 GHz (12.8 

km) 

The classification of wet period based on the kernel 

Fisher discriminant analysis. Results showed that the 

classification is in good agreement (~ 85%) with the 

data obtained from the disdrometer.   

Doumounia et al. (2014) Burkina Faso 7 GHz, 29 km microwave link 

Temporal resolution of 1 sec 

Rainfall estimation obtained from the microwave link 

was compared with the rain gauge data, showing a 

correlation of 0.8. Accuracy of 95% in detection 

rainy days.  

Liberman et al. (2014) Israel 96 CMLs 

18-23 GHz  

RSLs are stored at 15-minute with a 

resolution of 0.1 dB.  

A novel approach of 2-D rainfall reconstruction was 

proposed using commercial microwave link rainfall 

estimation. These results outperformed the radar 

measurement both in intensity and the total amount 

of rainfall.  
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Authors Country Dataset  Summary 

Fencl et al. (2015) Czech Republic 14 microwave links 

25-39 GHz 

10-sec RSL data 

Quantization of transmitted and RSL 

are 1 and 1/3 dB 

Microwave links derive rainfall estimates well-

captured microscale spatio-temporal rainfall 

dynamics during all 9 rainfall events.  

Ostrometzky et al. (2015) Israel 4 CMLs 

18.36 GHz and19.37 GHz, 12.08 km 

15-minute minimum and maximum 

RSL data with 1 dB quantization 

A new approach for monitoring other than pure rain 

precipitation using microwave links was proposed 

taking into the advantage of having multiple links at 

the same location. The result suggested the 

outperformance during the mixed precipitation 

compared with standard power-law based estimation. 

Ostrometzky et al. (2016) Israel 18.6 GHz (16 km) microwave link 

15-minute minimum and maximum 

RSL data with a resolution of 0.3 dB 

This study proposed a methodology to calibrate the 

power-law parameters locally using the standard 

measurement from rain gauges and existing CML.  

Overeem et al. (2016b) The Netherlands More than 3000 CMLs 

15-minute minimum and maximum 

RSL data 

Countrywide rainfall maps using two and half years 

of commercial microwave link was presented. The 

evaluation was done with the comparison of gauge-

adjusted radar data.  
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Authors Country Dataset  Summary 

Fencl et al. (2017) Germany and 

Czech Republic 

Dubendorf, Germany (38 GHz dual-

polarized CML) 

Prague, Czech Republic (4 CMLs at 

frequencies 25,32 and 38 GHz) 

This study proposed a method to reduce the bias on 

the rainfall estimation from CMLs by adjusting 

quantitative precipitation estimates to existing rain 

gauges.  

Schip et al. (2017) The Netherlands ~ 2400 CMLs 

13 to 40 GHz 

15-minute minimum and maximum 

RSLs were collected with 1 dB 

resolution 

Meteosat Second Generation satellite precipitation 

product was used for the wet/dry classification.  

Fencl et al. (2018) Czech Republic 8 CMLs 

37.3 to 39.2 GHz (48 -497 m) 

Data are recorded using a specially 

designed server-side software that 

pools data once per 10 seconds. 

Wet Antenna Attenuation distribution and the upper 

limits based on the rainfall climatology was 

identified.  

Rios Gaona et al. (2018) Brazil 145 CMLs (8 to 23 GHz)  

Quantization level of 0.1 dB 

 

The open-source algorithm RAINLINK was applied 

for rainfall retrieval. Results were evaluated against 

the automatic gauge network.  
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Authors Country Dataset  Summary 

de Vos et al. (2019) The Netherlands 1936 CMLs 

12.8 to 39.3 GHz 

Instantaneous 15-minute data with 

quantization of 0.1 dB for RSL and 1 

dB for TSL. 

Rainfall intensities were validated with data obtained 

from gauge-adjusted radar product. A good 

correlation up to 0.63 was obtained for daily 

estimates of rainfall accumulations.  

Graf et al. (2020) Germany 3904 CMLs 

10 to 40 GHz, 0.1 to 30 km 

Both RSL and TSL at a temporal 

resolution of 1 minute with a 

quantization of 0.3 dB for RSL and 1 

dB for TSL. 

This study evaluated the rainfall retrieval of CML 

data compared with a gridded gauge-adjusted hourly 

radar product with a good agreement for hourly, 

monthly and season rainfall sums expect for the 

winter season.  

Polz et al. (2020) Germany Same data set as  Graf et al. (2020) Convolution Neural Networks was developed for the 

wet-dry classification of the CML data, which was 

later compared with the rolling window standard 

deviation method.   

Roversi et al. (2020) Italy 357 CMLs  

6 to 42.6 GHz, 162 m to 30 km  

15-min minimum and maximum 

with 1 dB resolution 

The accuracy of the rainfall retrieval from CML was 

evaluated on different scales, including a single link, 

5 km grid and catchment scale. An open-source 

algorithm RAINLINK was used for the analysis.  
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2.5 Knowledge gap and the proposed approach  

After reviewing the literature, it is clear that the empirical power law between the signal 

attenuation and rainfall rate is the basis for rainfall retrieval from microwave link. The 

parameters of this power law depend mainly on the drop size distribution, which will vary 

significantly from one place to another. The International Telecommunication Union – 

Radiocommunication Sector (ITU-R) provides standard parameter value for worldwide use, 

which do not consider the local weather condition. Thus, there is a need to derive these 

parameters for the local weather condition for improved rainfall estimation.  Furthermore, 

there have been not any validation studies using the microwave links in Australia. 

Theoretically, received power can be measured with a fine temporal resolution and precision, 

but in reality, these data are often made available at a relatively coarse resolution and 

precision (typically every 15-minute with 1 to 0.1 dB precision), leading to uncertainties in 

derived rainfall estimates. Thus, the effect of these sources of uncertainty on rainfall 

observation needs close investigation. Furthermore, rainfall measurements using CMLs 

largely depends on the sampling strategy and the frequency of the received signal level 

adopted by the mobile operators. Most of the operators only record the minimum and 

maximum received signal level (RSLs), but some others also record the average and 

instantaneous RSL data sampled over 15 minutes. Thus, the difference in the performance 

for the rainfall retrieval using various sampling data need further investigation. Also, at 

instances when only 15-minute minimum and maximum RSL data are available, a constant 

distribution between the minimum and maximum for the rainfall retrieval is usually assumed. 

However, the distribution of rainfall or attenuation is usually not consistent across any 15-

minute period. A more robust and accurate methodology of estimating rainfall when using 

limited data such as minimum and maximum RSL data is therefore necessary.  

Therefore, this research aims to validate the existing rainfall retrieval algorithms for the 

Australian climate, to develop an understanding of uncertainties in rainfall retrieval using 

different sampling strategies, and developing a new data data-driven rainfall methodology. 

The research is divided into three steps: (1) establish and collect data from a dedicated 

experimental link and later use that data to validate the rainfall retrieval algorithm and further 

investigate the uncertainties on the retrieval; (2) evaluation of the rainfall retrieval from 

commercial microwave link data, and (3) develop a deep learning model to improve the 



 Chapter 2. Literature review  

28 

 

rainfall estimation when there is only limited information available. These three steps will be 

covered in Chapter 4, 5 and 6, respectively.  

2.6 Chapter Summary 

The innovative technique of rainfall measurement using commercial microwave links has 

been discussed. However, reliable estimation of rainfall from such an opportunistic source 

remains a challenging task. The power-law model is the basis of the rainfall retrieval 

algorithm, which requires parameters derived based on a local climatic condition. There are 

other uncertainties in the rainfall estimates due to data sampling strategies adopted by the 

mobile operators, which need to be investigated. One of the knowledge gaps in getting 

accurate rainfall measurement from a commercial microwave link is due to the availability 

of only limited information. Therefore, this research proposes a methodology of using deep 

learning models to improve the rainfall estimates if only minimum and maximum received 

signal level data are available.  
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Experimental setup and dataset used in this study 

This chapter provides an overview of the study area, together with the experimental setup 

established for this study and the data used for this research. The experimental setup includes 

an experimental microwave link (microwave scintillometer) along with two disdrometers, 

two weather stations and three rain gauges located along the path of the experimental link. In 

addition to the data from the experimental link, this study also includes microwave link 

attenuation data received from one of the telecommunication operators in metropolitan 

Melbourne and reference rainfall data obtained from the Bureau of Meteorology. These data 

were used to understand the uncertainties in rainfall retrieval from microwave link 

attenuation in Chapter 4, validate the microwave link attenuation rainfall retrieval algorithm 

in Chapter 5, and demonstrate the application of a machine learning model for improving the 

microwave link attenuation derived rainfall in Chapter 6.  

3.1 Experimental setup 

3.1.1 Research microwave link 

The experimental setup was located in suburban Melbourne, Australia with the core of the 

experimental setup formed by a dual polarisation microwave research link operating at 24 

GHz with a path length of 3.79 km. The transmitter was installed at the Mount Waverly 

Reservoir [37°53'26.17"S, 145°10'21.10"E] and the receiver was installed at a rooftop in 

Lakeside Drive [37°51'21.74"S, 145°10'5.85"E] as shown in Figure 3-1. The transmitter 

antenna was placed on a 25 m high water tower, and the receiving antenna was placed on a 2 

m high mast above the rooftop of a 3-story building, as shown in Figure 3-2.  

This 24 GHz research microwave link is a custom-built instrument by Rutherford Appleton 

Laboratories (RAL), UK. The receiver contains both linear and logarithm detector boards, 

for both horizontal and vertical polarisations. For this research work, only data from the 

logarithm detector were analysed, as these are similar to the data stored by the commercial 

telecom operators. Additional characteristics of the experimental link antenna are given in 

Table 3-1.  
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Figure 3-1: (a) Location of the experimental setup (the orange shaded circle provides 

the indicative location of the experimental site in the Greater Melbourne region). 

(b)Experimental setup including transmitter and receiver antennas. Disdrometers 

were installed at each end of the microwave link. Three tipping bucket rain gauges 

were installed along the length of the link. 

a) 

b) 
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Table 3-1: Characteristics of experimental link antenna 

Beamwidth 3.0° 

Antenna diameter 250 mm 

Antenna gain 34.5 dBi 

Bandwidth ~ 1.2 KHz 

Peak Power 0.2 W/m2 

Frequency 24.00 GHz 

 

Before the instrument was set up at the site, Rutherford Appleton laboratories calibrated the 

instrument and provided the calibration curve shown in Figure 3-3. This enabled conversion 

of the received voltages (V) to received power in decibels (dB) for the logarithm detector 

board. The transmitted power was kept constant throughout the entire experiment.        

  

Figure 3-2: (a) Transmitter antenna (antenna within the red circle) installed at the 

Melbourne Water Reservoir placed on a 25 m high water tower, and (b) receiver 

antenna installed at Lakeside drive on a 2 m mast together with the disdrometer. 

a) b) 
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Figure 3-3: Received signal power vs received voltage data used for calibration of 

the detector board for RAL link (24 GHz) 

 

Figure 3-4:  Profile of the experimental link. The hatch lines indicate the ground 

profile. The transmitter antenna was installed at the 0 km mark and the receiver 

antenna at the 3.79 km mark. 

Most of the area along the experimental path is a residential urban area, with few small parks 

and urban reserves having a number of 20 to 30 m high trees, typical of the suburban 

Australian landscape. The terrain in between the transmitter and receiver consists mostly of 

one-story residential houses with a few buildings being of two or three stories construction 

(profile of the experimental link is shown in Figure 3-4). Similarly, there are no big trees or 

any other obstruction that exist along the path length. The maximum width of the Fresnel 

zone (halfway along the path) at the featured frequency is 3.43 m. Thus, considering the 

height of the antenna, locations compared to the intermediate terrain and height of the trees, 

there were no permanent obstructions affecting the beam, and no multipath effect was 
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observed. Sample of the data collected from the RAL for one of the rain event is shown in 

Figure 3-5. 

A duplex link from a commercial telecommunication operator (frequency: 23.33 GHz/22.71 

GHz) also operated on the same path as our RAL. Received signal level (RSL) data were 

stored by one mobile operator (name not disclosed due to a Non-Disclosure Agreement). This 

provided us with actual data to compare against the experimental high-resolution data. The 

commercial RSL data were sampled at 10 Hz but stored every 15-minutes, providing average, 

minimum and maximum RSL during each 15-minute interval over the study period.  

Table 3-2: Data storing frequency for the different instruments used in the 

experimental setup. 

Instrument Sampling frequency Storing frequency 

Experimental link 100 Hz 1 minute 

OTT PARSIVEL1 disdrometer 25 kHz 30 sec 

Weather stations 30 sec 30 sec 

Rain gauges 1 min 1 min 

Commercial microwave link 10 Hz 15 minutes (minimum, 

maximum and average) 

 

Figure 3-5: Time series of a rainfall event on the 9th to 10th May 2018 showing: (a) 

received signal level; (b) Specific attenuation measured by two disdrometers.  
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This experimental setup was complemented by two laser disdrometers (OTT1 PARSIVEL), 

three tipping bucket rain gauges, and two weather stations positioned at several locations 

along the experimental link path, as shown in Figure 3-1. This experimental setup was 

operational from 1 March 2018 until 28 November 2019. All these data were stored on 

Campbell Scientific dataloggers (CR1000 and CR300) and remotely collected on a daily 

basis. The sampling and storing frequencies for the various instruments used in this 

experimental setup are shown in Table 3-2.  

3.1.2 Auxiliary instruments  

a) Disdrometers 

An OTT PARSIVEL1 laser disdrometer was installed at both ends of this experimental link 

(receiver and transmitter side of the RAL link) as shown in Figure 3-6. Both disdrometers 

were placed on flat surfaces 2 m above ground level. These disdrometers are intended for 

measurement of the hydrometeor size and fall-speed. They are capable of measuring raindrop 

sizes up to about 25 mm and use 32 size classes of different widths, spread over 0-26 mm. 

However, the lowest two size classes were not used due to their low signal to noise ratio. The 

velocity was also subdivided into 32 non-equidistant classes, meaning that these instruments 

  

Figure 3-6: The OTT PARSIVEL1 disdrometers installed at each end of the 

experimental link path. (a) Disdrometer installed at the Melbourne Water Mount 

View reservoir and (b) Disdrometer installed at Lakeside Driver, Burwood.  

a) b) 
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stored particles in 32 × 32 matrices with a temporal resolution of 30 s. These disdrometers 

have built-in processing units which sample the raw laser signals and convert them into 

hydrometeor counts using an algorithm (which is not disclosed by OTT) and aggregates the 

samples to 30 s.  

b) Weather stations 

At both ends of the experimental link, weather variables such as wind speed and direction, 

air temperature and humidity, and barometric pressure were measured and recorded using a 

compact built-in weather sensor (WXT520, Vaisala). These variables were measured every  

1 s and stored every 30 s. Data were collected remotely on a daily basis.  

c) Rain gauges 

Three tipping bucket rain gauges were also installed (see Figure 3-1) in order to provide a 

finer spatial resolution along the RAL pathlength. Among these, two tipping bucket rain 

gauges were manufactured by Hobo (RG3-M), while the remaining one was manufactured 

by HSA (TB4). These rain gauges were installed on the edge of one-story building rooves, 

as shown in Figure 3-7. All three rain gauges recorded rainfall amounts with a resolution of 

0.2 mm and stored cumulative rain amounts at 1-minute time steps.  

   

Figure 3-7: Tipping bucket rain gauge installed along the experimental path; (a) and 

(b) RG3-M rain gauges installed on the edge of one-story rooves, (c) TB3 rain gauge 

installed on the top of a one-story building. All three rain gauges were installed 

following the guidelines of the WMO. 

a) c) b) 



 Chapter 3. Experimental setup and dataset   

36 

 

3.2 Other data 

3.2.1 Commercial microwave link data 

Received signal level (RSL) data from one of the mobile operators in the area were collected 

for this study within a radius of approximately 200 km around the Melbourne Central 

Business District. Data from a total of 178 microwave links (64 duplex links and 50 single 

links) for the period ranging from 15 July 2017 to 31 July 2019 were collected as shown in 

Figure 3-8. This dataset contained minimum, maximum and average RSLs over 15-minute 

intervals with a resolution of 0.1 dB, based on a 10 Hz sampling rate. These 178 links had 

frequencies ranging from 6 to 39 GHz with corresponding path lengths ranging from 0.2 km 

to 57 km. Among the 178 microwave links, only links with frequencies above 10 GHz (144 

 

Figure 3-8: Commercial microwave links (CML) from one of the operators for 

Greater Melbourne. Red lines indicate microwave links having a microwave 

frequency greater 10 GHz (which were used for this study). Green lines indicate 

microwave links with frequencies less than 10 GHz (which were not used for this 

study). On the top left is a plot of the frequency of the microwave links f (GHz) against 

the path length L (km) for the 144 links used for this study. 
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links) were retained for this study. Among these selected 144 links, 9 links were horizontally 

polarised while all other links were vertically polarised. The majority of the links (128 links) 

were duplex (transmitter and receiver at both ends), with only 16 links being a single 

direction, thus forming 80 unique link paths. The transmitting powers of all retained links 

were constant through time. Figure 3-9 shows an example of a time series of 15-minute 

Average and MinMax RSL for a selected event. In both cases, the received power levels 

decreased proportionally with the observed rainfall rate; however, the power level still 

fluctuated during the dry periods. This fluctuation is seen more in the minimum and 

maximum compared with the average power level. The values of the minimum and maximum 

power levels over the 15-minute intervals obviously reached more extreme values (larger 

maximum and lower minimum). Since the RSL was sampled at 10 Hz, the minimum and 

maximum are the extremes of a distribution of values or the outlier of that distribution 

(Pudashine et al., 2020). 

 

Figure 3-9: Time series of a rainfall event on the 16th to 19th June 2018 showing: (a) 

15-min average received power level; (b) 15-min minimum and maximum received 

power levels; and, (c) Path-averaged observed rainfall rate along the microwave link. 
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3.2.2 Weather radar data 

An S-band weather radar operated by the Australian Bureau of Meteorology (BoM) produced 

data over the study area during the 2 years of the experimental link data collected in this 

study. This radar was located at Laverton (3751’36” S, 14445’36” E), 44 m above sea level. 

A gauge-adjusted radar data product named Rainfields version 2 was obtained from the BoM 

with a spatial resolution of 0.5 km  0.5 km and a temporal resolution of 5 minutes (Seed et 

al., 2008). Rainfields is a comprehensive framework, which provides real-time quality-

controlled quantitative precipitation for the operational Australian weather radar network. 

This framework follows a series of quality control measures, including removal of ground 

and sea clutter, interferences, bright band correction and partial beam blocking. This filtered 

observation was then converted to surface rainfall maps by combining existing rain gauges 

using kriging to interpolate three-dimensional observations onto a surface that is 1000 m 

above the radar.  

3.3 Chapter Summary 

This chapter has presented an overview of the data sets used in this study, including the setup 

of a dedicated experimental microwave link with auxiliary instruments, data collected by 

commercial microwave links, and ground reference rainfall data. Data collected from the 

experimental link, disdrometers and weather stations data are made publicly available on 

https://doi.org/10.5281/zenodo.4442322. However, due to the non-disclosure agreement with 

the mobile network operator, the CML data are not able to be made available.  
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Uncertainties associated with microwave link rainfall estimation 

This chapter provides an evaluation of the rainfall retrieval algorithm at the scale of a single 

microwave link, using ground-based observations, including rain-gauges and disdrometers 

as the ground-based rainfall benchmark. The primary goal of this chapter was to investigate 

the impact of data sampling strategy and data quantization scheme used for rainfall retrieval 

using a microwave link. A relatively simple retrieval algorithm, including a minimum 

number of corrections, was used. In parallel, the dedicated experimental link was also 

compared to a real commercial microwave link operating on the same path for rainfall 

retrieval.  

4.1 Background 

Rainfall retrieval from attenuation values collected from an individual link involves various 

steps, including (a) dry/wet classification of each time step; (b) baseline/reference signal 

determination; (c) identification of faulty/noisy received signal level; (d) correction for wet 

antenna attenuation, data quantization and other physical phenomena such as dew formation; 

and (e) conversion of specific attenuation to rainfall intensity. Each of these steps is subject 

to uncertainties arising from assumptions in the chosen model and its parameterisation, but 

also from the precision of the hardware and data generation (Fenicia et al., 2012).  

All these uncertainties can be broadly classified into two categories (a) technological and (b) 

environmental (Zinevich et al., 2010). The technological uncertainties include errors and 

uncertainties associated mainly due to the hardware, which remains a major challenge, as the 

operational microwave links used by telecommunication operators are optimized for 

communication rather than for rainfall monitoring. Similarly, environmental uncertainties 

include errors associated to the various physical phenomena occurring along the link path, 

such as the variability of the drop-size distribution of rainfall and dew formation on the 

antenna. 

Various experimental setups have been designed to understand underlying uncertainties at 

the different steps of the rainfall retrieval algorithm (Christopher et al., 1996; Rincon et al., 

1996; Rincon and Lang, 2002; Rahimi et al., 2003; Fenicia et al., 2012; van Leth et al., 2018). 

Leijnse et al. (2008) reported wet antenna attenuation as the dominating source of error at 
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frequencies lower than 30 GHz and for links path lengths greater than 2 km. They also 

reported uncertainties due to variability in rainfall drop size distribution along the link path. 

However, links operating in the 10 GHz to 40 GHz frequency band are in the region of a 

near-linear relationship between rainfall and microwave attenuation, where the impact of the 

drop size distribution is minimal. Recently, van Leth et al. (2018) showed that the attenuation 

caused in a microwave link is not only due to rainfall itself, with fog and other weather 

phenomena also causing the same amount of attenuation. They also found that different 

hardware and materials used for the antenna pose some uncertainties; however, a consistent 

phenomenon was observed among dedicated experimental links and real commercial 

microwave links.  

As the primary purpose of commercial microwave links is the provision of reliable 

communication rather than weather monitoring, the opportunistic nature of the data causes 

uncertainties in the rainfall retrieval process. Most of the telecommunication operators store 

the data at 15-minute time intervals, even if they are sampled at 10 Hz. But the type of 

statistics extracted from high-frequency data stored within this 15-minute interval varies 

across operators. Most of the operators provide the minimum and maximum of the received 

signal level (RSL) at 15-minute intervals, while others provide only the 15-minute average 

or in some cases, the 15-minute instantaneous RSL. Thus, the impact and uncertainties related 

to the data sampling techniques need to be assessed and incorporated in the rainfall retrieval 

model. Moreover, telecommunication operators employ different quantization (rounding off 

the raw data) on these RSL data to reduce the load of the storage on their operational system; 

also having a potential impact on the rainfall retrieval (Leijnse et al., 2008).  

Similarly, excess attenuation is a critical issue with the microwave link rainfall estimation 

(Fencl et al., 2019; Valtr et al., 2019). One of the main causes of this excess attenuation is 

wet antenna attenuation (WAA). Various theoretical models and pragmatic approaches have 

been proposed to address this issue. Leijnse et al. (2008) proposed a semiempirical model 

where WAA was considered a function of water film thickness on the antenna surface 

dependent on rainfall intensity. Similarly, Schleiss et al. (2013) proposed an exponential 

WAA model which increased attenuation during the rainfall event, reaching a maximum 

value. However, this model was shown to poorly correlate with the rainfall intensity. As a 

pragmatic alternative, Overeem et al. (2011) suggested a constant wet antenna attenuation 

during wet periods, estimated for the transmitter and receiver antennas together. Recently 
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Valtr et al. (2019) proposed a model describing the wet antenna attenuation as a function of 

the rain rate, which also follows a power relationship between the WAA and rainfall intensity. 

Thus, there is a need to compare these different models for rainfall retrieval. Also needing 

testing is whether parameters derived based on a research experimental link can be directly 

applied on real commercial microwave links.  

4.2 Study area and data used 

This study was based on the experimental setup described in Chapter 3. Besides the 

experimental link and auxiliary data (disdrometers, weather stations and rain gauges), a co-

located commercial microwave link along the same experimental path was also used for this 

analysis. Herein, data collected from the custom-built microwave link, designed and 

produced at Rutherford Appleton Laboratory, United Kingdom is referred to as RAL, while 

the commercial microwave link from a telecommunications operator (name not disclosed due 

to a non-disclosure agreement) along the same path is abbreviated as CML. In short,  provides 

the locations of the various instruments used in this chapter. For more detailed information 

regarding the data sampling and storing frequency for each of the instrument, please refer to 

Chapter 3.  

4.3. Data Processing  

4.3.1 Disdrometer data 

Although measuring the drop sizes and fall velocity using a disdrometer, there are various 

spurious and physically unrealistic particles that can be recorded in the measurement, which 

need to be removed before further analysis. Accordingly, a series of filtering procedures were 

applied, starting with a filter to remove the outliers as suggested by Jaffrain and Berne (2011), 

requiring particle size and velocity distribution to fall between ± 50% of the empirical fall 

velocity diameter suggested by Atlas et al. (1973). Similarly, the filter by Tokay et al. (2013), 

using the number of particles for each time step in three different bins, was used to remove 

unrealistic bins with a significantly less number of particles. Hence, for the disdrometer data 

sampling interval of 30 seconds, a threshold of 10 particles per 30 s intervals was chosen. 

Very small drizzle, e.g. recorded rain rates per timestamp that were less than 0.1 mm h-1 were 

also excluded from the analysis (Jaffrain and Berne, 2011). All this post-processing was 
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conducted using a script written in python language using some of the existing libraries as 

pyDSD and pyTmatrix (Leinonen, 2014). The drop size distribution was calculated using: 

𝑁(𝐷) = ∑
𝑛𝑖𝑗

𝐴𝑖∆𝑡 𝑣𝑗∆𝐷𝑖

32
𝑗=1  , (4.1) 

where, 𝑛𝑖𝑗 is the number of droplets recorded for measured fall velocity 𝑣𝑗  (m s-1) for the 

velocity bin 𝑗, 𝐴𝑖 (m
2) is the effective sampling area for the 𝑖𝑡ℎ size bin and ∆𝑡 (s) is the 

sampling interval which was 30 s for this study. The effective sampling area 𝐴𝑖 is calculated 

using  

𝐴𝑖 = 𝐴 (1 −
𝐷𝑖

2𝜔
) , (4.2) 

where 𝜔 (m2) is the width of the laser beam. 

The rainfall intensity 𝑅 (mm h-1) and specific attenuation 𝑘 (dB km-1) are computed by 

integrating the drop size distribution N(D), weighted by appropriate functions, such that 

Table 4-1: Location of the instruments used for this study. 

Location Coordinates Instrument 

Abbreviation 

used for this 

study 

Mount view 

Reservoir 

37°53'26.17"S, 

145°10'21.10"E 

Transmitter (RAL and 

CML), Weather station, 

OTT1 disdrometer 

Site T 

Burwood East 
37°51'21.74"S, 

145°10'5.85"E 

Receiver (RAL and CML), 

Weather station, OTT1 

disdrometer 

Site R 

Larpent reserve 
37°52'16.92"S, 

145°10'12.75"E 
Tipping bucket rain gauge TB1 

Mount View Primary 

School 

37°53'0.83"S, 

145°10'42.84"E 
Tipping bucket rain gauge TB2 

Private House 

property at Balfour 

Court 

37°51'50.90"S, 

145°10'0.41"E 
Tipping bucket rain gauge TB3 
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𝑅 = 6𝜋 × 10−4 ∫ 𝐷3𝑣(𝐷)𝑁(𝐷)𝑑𝐷,
∞

0

 (4.3) 

 

𝑘 =
1

𝑙𝑛10
∫ 𝑄𝑒𝑥𝑡𝑁(𝐷)𝑑𝐷,

∞

0

 (4.4) 

where 𝐷 is the volume equivalent raindrop diameter (mm), 𝑄𝑒𝑥𝑡 is the extinction cross-

section (cm2) of a rainfall drop with equi-volumetric diameter D (mm), N is the drop size 

distribution, N(D)dD (m-3) is the total number of drops in the diameter interval of (D, D+dD) 

per unit volume, and R is the rainfall rate (mm h-1).  The extinction cross-section 𝑄𝑒𝑥𝑡 was 

derived using a python implementation (pyTmatrix) of the T-matrix approach (Leinonen, 

2014). Here, the shape of the rainfall was approximated by an oblate spheroid, with the axis 

ratio dependent on the volume equivalent-diameter. The default parameters, including a 

canting angle of 15°, and the drop shape model of Brandes et al. (2003) were used for the T-

matrix calculations. Both horizontal and vertical attenuations were calculated for both the 

RAL (24 GHz) and CML (22.7 GHz).  

4.3.2 Microwave links 

A basic algorithm without applying any correction of the phenomenon was first used to 

calculate the rainfall intensity from the RSL of the microwave links. Following are the steps 

that were applied:  

a) Dry-wet classification: This was the very first step in calculating rainfall intensity from 

microwave links. Overeem et al. (2016a) used a spatial correlation looking at nearby links to 

identify the given time steps as either dry or wet. As only a single path was used in this 

analysis, the nearby link approach was not applicable. Rather, the rainfall information 

collected from the two disdrometers and the three rain gauges were used to distinguish dry 

and wet periods. Time steps for which the rainfall rate was observed by either of the 

instruments as larger than or equal to 0.1 mm h-1 were classified as ‘wet’ with the remaining 

time steps classified as ‘dry’.   

b) Estimating reference signal level:  The reference signal level was calculated based on a 

moving median overall measurements of the signal level classified as dry in a centred window 

of 24 h. The specific attenuation was then calculated as  
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𝑘 = max(𝑅𝑟𝑒𝑓 − 𝑅𝑥, 0), (4.5) 

where 𝑅𝑟𝑒𝑓 is the baseline/reference signal level and 𝑅𝑥 is the received signal level of the 

microwave link. 

c) Applying attenuation correction: Additional attenuation caused by the wet antenna, fog 

and dew formation were removed in this step. For investigating the underlying uncertainties 

associated with rainfall retrieval, no correction factors were applied.  

d) Computation of the rainfall rate: The rainfall rate was finally calculated using the power 

relationship between rainfall intensity (R) and specific attenuation (k), (Olsen et al., 1978) as   

𝑅 = 𝑎𝑘𝑏, (4.6) 

where, R is the rainfall intensity (mm hr-1), k is the attenuation of the signal (dB km-1), and a 

and b are parameters depending on the frequency, polarization, drop size distribution, drop 

shape and canting angle. These a and b used in this equation were derived based on the 

processed disdrometer data. The rainfall intensities and specific attenuation were derived for 

two frequencies (24 GHz: RAL link and 22.7 GHz: CML) and for both polarizations using 

equation 4.3 and 4.4, respectively. These data were then later used to fit the R-k power-law 

models using a non-linear square fit. As there were disdrometers at both ends of the link, the 

average of both of these disdrometers was utilised for the rainfall retrieval. Later, path-

averaged ground observation (used as reference rainfall rate) was obtained by calculating the 

mean rainfall intensity measured by two disdrometers and three tipping bucket rain gauges.  

4.3.3 Rainfall events  

For this analysis, several rainfall events were identified based on the three tipping bucket rain 

gauges and two disdrometers installed along the path of the link. As the data frequencies of 

these instruments were different, all the data were resampled to a one-minute interval. 

Moreover, all the following conditions had to be met to conform as a rainfall event:  

• A minimum rainfall intensity measured by any of these five instruments larger than 

0.1 mm h-1.  

• A minimum rainfall duration of 1 hour.  

• A maximum gap of 1 hour with no rain within the storm.  
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Based on the above-mentioned conditions and availability of data from all the instruments, 

there were 72 rainfall events identified during the 2 years of data collection. Table 4-2 

shows the summary of the rainfall events.  

Figure 4-1 shows the distribution of the rainfall depth measured by the 5 different instruments 

across these 72 rainfall events. Site T and Site R refer to the rainfall measurement recorded 

by the OTT1 disdrometer at the transmit and receive ends of the link, while TB1, TB2 and 

TB3 refer to the three tipping bucket rainfall measurements along the link path.  

Table 4-2: Summary of the 72 rainfall events (rainfall rates were based on 1-minute 

stored frequency). 

Longest duration (h) 10 

Shortest duration (h) 1 

Minimum rainfall depth (mm) 0.8 

Maximum rainfall depth (mm) 38.09 

Minimum rainfall intensity (mm h-1) 0.1 

Maximum rainfall intensity (mm h-1) 150 

Total cumulative minutes for all records (min) 46080 

 

 

Figure 4-1: Distribution of rainfall depth along the RAL path for 72 rainfall events. 

(Distances from each of the rain gauges to the Site T (transmitter antenna) were: 0.88 

km from TB1, 2.16 km from TB2, and 3.01 km from TB3). 
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4.3.4 Data sampling and quantization 

In order to evaluate the impact of various data sampling strategies on the overall rainfall 

retrieval, raw RAL data were resampled to 5 and 15 minutes. For each of the sampling 

periods, the three commonly used sampling strategies were used: (a) Average; (b) Minimum 

and maximum (hereafter called as MinMax); and (c) Instantaneous. For each of these 

strategies, RAL received power level data were sampled at the start of the period. For the 

instantaneous strategy, only one snapshot of data at the start of the period was taken. Once 

the RSL data were resampled to 5 and 15-minute for all three different strategies, a similar 

algorithm was applied for the rainfall retrieval. To have a fair comparison of the results from 

different strategies sampled at two different time periods, obtained rainfall results were 

finally all resampled to 15-minute interval. Similarly, to further understand the impact of data 

quantization on the overall rainfall retrieval process, raw RAL data were resampled with 

quantization levels ranging from 0.1 to 1dB. A similar rainfall retrieval algorithm was applied 

using each quantized received signal level data. 

4.3.5. Wet antenna attenuation 

Three different wet antenna models were compared for this study. A model proposed by 

Garcia-Rubia et al. (2011) with wet antenna attenuation 𝐴𝑎 (dB) expressed as a function of 

the measured attenuation 𝐴𝑝 (dB) was used, given as  

𝐴𝑎 = 𝐶(1 − exp(−𝑑𝐴𝑝)), (4.7) 

where 𝐶 is the highest expected wet antenna attenuation (WAA), and 𝑑 is a coefficient to be 

determined from fitting the model to the experimental data. This model is an improved 

version of the model proposed by Kharadly and Ross (2001) which is expressed as a function 

of measured attenuation 𝐴𝑚 (dB) given as 

𝐴𝑎 = 𝐶(1 − exp(−𝑑𝐴𝑚)). (4.8) 

This model was used purely to separate the wet antenna effect from measured values, making 

it not applicable for estimating WAA before actual measurements are available. 

Similarly, the model proposed by Valtr et al. (2019) was also used, given as  

𝐴𝑎 = 𝑘′𝑅𝛼′
, (4.9) 
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where 𝑘′ and 𝛼′ are coefficients determined by fitting the left-hand side of equation (4.9) to 

the predicted wet antenna attenuation using the least square method. Similarly, a simple 

constant attenuation model was also used. For the constant attenuation model, a constant wet 

antenna attenuation (dB) was identified based on the optimization of RMSE and percent bias 

between the rainfall estimation from the experimental link and the path-averaged ground 

observation.  

4.3.6 Rainfall retrieval using the analytical approach 

Among various analytical approaches, two approaches proposed by Ostrometzky (2017) were 

used for this study. These are based on a statistical signal processing tool in combination with 

the Extreme Value Theory (EVT); thus, only data sampling based on the extreme values i.e. 

minimum and maximum RSL data, were feasible for this analysis. Following are the two 

approaches used for this study: 

a) Generalized Extreme Value (GEV) approximation method: This analytical method 

was based on the assumption that for certain types of parent distribution, such as the 

exponential distribution or log-normal distribution, the parameter vector of the original parent 

distribution ∅̂ can be estimated from the parameter derived from the GEV vector �̂�  

(Ostrometzky and Messer, 2014). The following workflow suggested by Ostrometzky and 

Messer (2014) and Ostrometzky (2017) was used:  

1. Pre-processing: This was done in two stages.   

(a) Applying bias correction: This bias was mainly due to the data quantization of the 

collected raw data. This was assumed as a constant for a long period for each 

CML with the bias-corrected minimum (𝐴𝑐
𝑚𝑖𝑛) and maximum attenuation (𝐴𝑐

𝑚𝑎𝑥) 

calculated as: 

𝐴𝑐
𝑚𝑖𝑛 = 𝐴𝑚𝑖𝑛 + (

𝛿𝑇 + 𝛿𝑅

2
), (4.10) 

𝐴𝑐
𝑚𝑎𝑥 = 𝐴𝑚𝑎𝑥 + (

𝛿𝑇 + 𝛿𝑅

2
), (4.11) 

 where, 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥  are the unbiased raw minimum and maximum attenuation 

and 𝛿𝑇 and 𝛿𝑅 are hardware quantizer values, respectively.  
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(b) Filtering data other than rain: In this stage, corrected minimum and maximum 

attenuation were used to estimate the attenuation only due to rain (𝐴𝑟
𝑚𝑎𝑥) in dB. 

This was calculated as: 

𝐴𝑟
𝑚𝑎𝑥 = { 𝐴𝑐

𝑚𝑎𝑥[𝑖] − (𝐴𝑐
𝑚𝑖𝑛[𝑖], … … 𝐴𝑐

𝑚𝑖𝑛[𝑖 − 𝑇]) ,0}, (4.12) 

 where 𝑖 indicates the 𝑖𝑡ℎ timestep and T is a constant parameter obtained after the 

optimization. For this study a value of T=10 was used.  

2. The power-law based on eq (4.6) was used on 𝐴𝑟
𝑚𝑎𝑥 to estimate the maximum 

observed rainfall rate vector defined as  𝑟𝑚𝑎𝑥. 

3. The maximum likelihood estimation was performed on the vector of 𝑟𝑚𝑎𝑥 obtained 

in the previous step to estimate the GEV parameter vector �̂�. 

4. The estimated GEV vector 𝜓 was later used to estimate the �̂� and �̂�.  

5. As the final step, using the �̂� and �̂�, the accumulated rainfall was calculated using:  

�̂�(𝑡) = 𝑡. 𝑒�̂�+
�̂�2

2 , (4.13) 

where,  �̂�(𝑡) =  ∫ 𝑟(𝑡)𝑑𝑡 
𝑡

0
≈ 𝐸[𝑟|𝑚𝑅𝑆𝐿] and  𝐸[𝑟] is the expected value of the rain 

𝑟 which is given by the Log-Normal distribution properties.  

b) Calibrated power law 

After conducting the pre-processing according to the GEV approximation method, 𝐴𝑐
𝑚𝑎𝑥 

was directly used to calculate 𝑅𝑎𝑣𝑔 using: 

𝑅𝑎𝑣𝑔 = (
𝐴𝑐

𝑚𝑎𝑥

𝑎𝑐𝑎𝑙
𝑚𝑎𝑥. 𝐿

)

1
𝑏

, (4.14) 

where, 𝐴𝑐
𝑚𝑎𝑥 is the maximum attenuation, 𝐿 is the path length of a microwave link and 

𝑎𝑐𝑎𝑙
𝑚𝑎𝑥 is the calibrated/adjusted 𝑎 parameter given as: 

𝑎𝑐𝑎𝑙
𝑚𝑎𝑥 = 𝑎 . (𝑙𝑛 𝑙𝑛 (𝐾) +  𝛾 )𝑏 , (4.15) 

where, 𝐾 is the number of samples from which the maximum attenuation sample is extracted, 

which is hardware dependent (for this study the value of 𝐾 = 90), 𝛾 is Euler’s constant, 

which equals  𝛾 = 0.57722 and 𝑎 and 𝑏 are the power-law parameters. The detailed 

description and the assumption made to derive equations (4.14) and  (4.15) can be found in 
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Ostrometzky and Messer (2020). For this method, both minimum and maximum attenuation 

values can be used; however, minimum attenuation contains a higher signal-to-noise ratio 

(SNR) and is likely to be affected by the other-than-rain phenomenon. Thus, this was not 

included in this study. 

4.4 Results and discussion 

4.4.1 Rainfall -specific attenuation relationship 

Table 4-3 shows the resulting a and b parameters for the RAL (24 GHz) and the CML link 

(22.7 GHz). The power exponents for both the 24 GHz and 22.7 GHz links were close to 

unity, indicating that the specific attenuations and rainfall intensities were linearly 

proportional; however, when compared with the result obtained by International 

Telecommunication Union – Radiocommunication (ITU-R) there were some differences in 

both the a and b parameters. The parameter a based on ITU-R was underestimated by about 

13% and 10% for horizontal and vertical polarizations respectively at 24 GHz; however, there 

was only about 1% overestimation at 22.7 GHz. Similarly, the parameter b based on ITU-R 

was overestimated by about 6% for both horizontal and vertical polarizations at 24 GHz and 

underestimated by about 3% at 22.7 GHz for vertical polarization. 

4.4.2 Validation of the rainfall retrieval algorithm 

Out of the 72 rainfall events identified for this study, three unique rainfall events were 

presented in detail, demonstrating the performance of the rainfall retrieval without applying 

Table 4-3: Coefficients and exponents (a and b parameters) of the R-k relationship 

derived for both the RAL link (f: 24 GHz) and the CML (f: 22.7 GHz) for both 

horizontally and vertically polarised radiations [Unit of a is mm h-1dB-bkmb, b is 

unitless]. 

 
a24H b24H a24V b24V a22.7V b22.7V 

Site T 7.83 0.93 8.66 0.96 9.56 0.95 

Site R 7.75 0.94 8.62 0.98 9.60 0.97 

ITU-R (2005) 6.88 0.99 7.79 1.04 9.69 0.93 
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any correction to the other phenomenon. These three events were selected such that they 

represent different rainfall types demonstrating the various phenomena of the signal 

attenuation. The raw RAL data were resampled to 15-minutes when the results were 

compared with the commercial microwave link data.  

a) Convective event  

Figure 4-2 shows an example of one of the convective events that occurred during the 3rd and 

4th May 2018. This event lasted for 237 minutes (equivalent to 3.95 hours). It was selected as 

it occurred after a prolonged dry period, such that there would be no other phenomenon 

contributing to the dynamics of the signal other than rain. The received power level started 

to drop once the rainfall began; however, there were some fluctuations observed (about 2 dB 

variation from -21.6 dB to -23.5 dB) in the observed signal during the dry period. Note that 

for all this analysis, the baseline or reference signal was determined based on a 24-hour 

moving window median of the received power level during the dry period. Also, to have an 

idea of the variation of the baseline signal, the 5th and 95th percentiles have been shown along 

with the median value. Initially, this event started with a low-intensity rainfall of about 0.3 

mm h-1 before reaching two peaks of about 7 mm h-1 and 22 mm h-1 each. This is also reflected 

in the specific attenuation plot, with approximately 1.8 dB km-1 and 7.2 dB km-1 

corresponding to the two peaks. Specific attenuation based on the RAL showed a strong 

correlation (with site T = 0.91 and site R = 0.71) with measured attenuation based on the 

disdrometers; however, the magnitude was overestimated from the beginning of the event. 

The two parameters (a and b) derived for the RAL frequency using the data from the two 

disdrometers showed little variability in the drop size distribution at the two ends of the link 

path. The rainfall derived from the RAL was also higher than the observed from the beginning 

of the event, and for most of the timesteps, the differences increased with the magnitude of 

the rainfall intensity. However, there was a strong correlation of 0.95 between the RAL-

derived rainfall and the path-averaged ground observations. As there was no other 

phenomenon involved, this overestimation was explained as being caused by the wet antenna 

attenuation. The magnitude of this overestimation can also be seen on the accumulation plot 

shown in Figure 4-3. The total accumulated rainfall estimated from the RAL was almost 

100% higher than the path-averaged ground observations. For this event, the relative 

humidity started to increase once the rainfall started and stayed at the same level for the whole 

duration of the event; however, the temperature dropped from 20°C to 13°C during the event. 

Similarly, the average wind speed gradually decreased from 4 m s-1 to 1 m s-1. 
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Figure 4-2: Time series of an event on the 3rd and 4th May 2018 of (a) received signal 

level  and the reference signal (green dashed line); the shaded colour shows the 5th and 

95th percentile of the reference signal during the dry period; (b) specific attenuation 

derived based on the RAL data and theoretical specific attenuation derived for the 

RAL frequency using the processed disdrometer data; (c) rainfall intensity derived 

from the RAL data using the R-k power law and path-averaged rainfall intensity 

using three tipping bucket rain gauges and two disdrometers; (d) variation of relative 

humidity (green line) and average temperature (red line) for the same event; (e) 

average wind speed (blue) and wind direction (brown) at the transmitter site. 
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To understand and compare the performance of the rainfall retrieval using the operational 

microwave link for the same event, the RAL data were resampled at the same interval of 15-

minute similar to the received signal level data from the telecommunication operator.  

Figure 4-4 shows the time series plot of the RAL and the CML data for the same event. There 

is an offset of about 26 dB between the RAL and CML received signal level data, which was 

mainly due to the differences in the transmitting power of these links. The rainfall intensity 

derived from both the RAL and the CML showed a strong correlation with the path averaged 

ground observations; however, both of these estimates were overestimated. The 

overestimation was observed to be of a larger magnitude on the CML when compared with 

the RAL. This was attributed to the larger decrease of the signal level on the CML at the start 

of the event, and after the peak when the path-averaged ground observations were almost 

close to zero. The signal level of the CML took a longer time to return to the level of the 

baseline signal, which could be due to different antenna covers used on the two links, 

becoming wet due to the rain and subsequently drying at variable paces after the event (Minda 

and Nakamura, 2005; Leijnse et al., 2008).  

 

 

Figure 4-3: Accumulated rainfall plot for an event on 3rd and 4th May 2018. 
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b) Stratiform event 

Figure 4-5 shows an example of one of the stratiform rainfall events, which occurred on 18th 

August 2018. This event lasted for 84 minutes (equivalent to 1.4 h). During this event, the 

signal level fluctuated around 2 dB during the dry period. The specific attenuation obtained 

from the RAL showed a strong correlation with the observed attenuation based on the data 

from the two disdrometers (Site T = 0.83 and Site R = 0.82). However, the magnitude of the 

specific attenuation and the rainfall rate was overestimated by the RAL for the whole event. 

This overestimation was observed to be consistent throughout the entire event, but a different 

magnitude compared to the convective event and almost double in magnitude compared with 

the path-averaged ground observation estimates from the disdrometers. 

 

 

Figure 4-4: Time series of an event on the 3rd and 4th May 2018 using the 15-minute 

dataset of (a) received power levels (solid lines) from the CML, the RAL and the 

reference signal (dotted line); (b) rainfall intensities derived from the link attenuation 

using the R- k power law. 
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Figure 4-6 shows the time series plot of the RAL and CML data for the same 18th August 

event. The variation of the power level from the RAL and the CML was very similar to the 

convective event, showing a correlation of 0.92. The signal behaviour of the RAL and CML 

were slightly different once the rainfall stopped; however, the CML signal took more time to 

return to the baseline compared with the RAL. This was also reflected in the rainfall 

estimation based on the CML and the RAL. Even though the rainfall estimates based on both 

the CML and RAL were overestimated, the magnitude of the overestimation was higher on 

 

Figure 4-5: Same as Figure 4-2 but for an event on 18th August 2018. 
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the CML estimates throughout the event. This difference was more likely related to the 

antenna film material used on the link, which may have different characteristics reflected in 

the wet antenna attenuation. For the RAL link, a hydrophobic material was used; however, 

for the CML, a standard polycarbonate was used as the antenna film.  

c) Longest rainfall event 

Figure 4-7 shows the longest rainfall event out of the 72 rainfall events observed. It occurred 

from the 16th till the 17th June 2018. This event lasted for 663 minutes (equivalent to almost 

continuous 11 hours), including both low and high-intensity rainfall. It started with low-

intensity; however, there were several peaks of high-intensity rainfall, as well as some short 

intermittent dry periods during the rainfall event. Similar to the other two rainfall events 

discussed, both the RAL attenuation and the RAL-derived rainfall intensity showed a strong 

correlation with the path-averaged ground observations with correlation coefficients greater 

than 0.8. Again, the rainfall intensity was overestimated from the beginning of the event; 

however, the magnitude of the overestimation was lower compared with the two other events. 

 

Figure 4-6: Same as Figure 4-4 but for an event on the 18th August 2018. 
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The main differences were observed during the peaks when the wind speed was increasing; 

the magnitude of the overestimation at such peaks was lower compared with when the wind 

speeds were decreasing. Table 4-4 shows the variability of a and b parameters at the two sites 

compared with the parameter derived based on the whole experimental dataset.  

 

 

 

Figure 4-7: Same as Figure 4-2 but for an event on the 16th and 17th June 2018. 
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Table 4-4: Comparison of the a and b parameters of the rainfall-attenuation 

relationship for three rainfall events. 

 a b 

3rd and 4th May 
Site T 8.17 0.90 

Site R 7.95 0.89 

18th August 
Site T 7.63 0.89 

Site R 6.28 0.82 

16th and 17th June 
Site T 7.29 0.98 

Site R 7.65 0.93 

Whole experimental data 7.79 0.93 

Figure 4-8 shows the time series plot of the RAL and CML data for this long rainfall event. 

The variation of the power level for the RAL and CML were very similar, showing a 

correlation of 0.95. The derived rainfall based on both the RAL and CML were overestimated 

as in the other two cases; however, the major difference observed was during the peaks of the 

rainfall event; both the RAL and CML estimated a similar magnitude of rainfall. This was 

mainly due to lower excess attenuation estimated by the CML compared with the two 

previous events. Even though the difference between the baseline and received signal level 

was higher for the CML most of the time, during the peak of the rainfall event, the excess 

attenuation was almost equal to the RAL. This is likely to be due to the increasing wind speed 

during the rainfall peak, as also observed on the 1-minute dataset, resulting in the reduction 

of the excess attenuation caused due to the wet antenna. After the peak rainfall event, the 

CML signal level showed similar behaviour as in the previous two examples showing an 

overestimation.  
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d) Summary of all 72 rainfall events   

Figure 4-9 shows a summary of the rainfall retrieval for all 72 rainfall events analysed. The 

RAL-derived rainfall estimates showed a strong correlation with the path-averaged ground 

observations with a  = 0.87; however, there was an overestimation of about 90% with a 

multiplicative factor (regression slope of 1.24). This overestimation was also observed in the 

double mass curve plot for RAL and ground observations in Figure 4-9(b); a plot commonly 

used for the continuous evaluation of rainfall. This plot suggested that the total rainfall 

amount estimated based on RAL was almost double that of the path-averaged ground 

observation. This overestimation could be attributed mainly to phenomena other than rain 

such as wet antenna, dew formation, which was erroneously processed as rain in the retrieval 

algorithm. This was also due to the fact that for this analysis, no correction was applied to 

the rainfall retrieval process. Also, when comparing the specific attenuation in Figure 4-9 

(c), similar results were obtained with slightly higher bias and CV compared with the rainfall 

intensity, with the multiplicative factor (regression slope) being 1.29. This indeed indicated 

 

Figure 4-8: Same as Fig 4-4 but for an event on the 16th and 17th June 2018. 
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that the uncertainties in the R-k relation did not statistically explain uncertainties in the 

rainfall estimates.  

Further, to understand the performance of all 72 rainfall events, total rainfall depth derived 

based on the RAL and path-average ground observation for those events were compared in 

Figure 4-10. Rainfall depths for all 72 rainfall events were overestimated by about 97% with 

 

Figure 4-9: (a) Scatterplot of rainfall rate estimated for the RAL versus path-averaged 

ground observation based on the 1-minute dataset; (b) double mass curve derived 

based on the RAL and path-averaged ground observation; and, (c) scatter plot of the 

specific attenuation measured from the RAL versus based on two disdrometers at two 

ends. 

 

Figure 4-10: Scatter plot of total rainfall depth from the RAL and ground observation 

for all 72 rainfall events; each data points on the scatter plot represent one rainfall 

event. 
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a multiplicative regression scale of 1.76, however with a high correlation coefficient of 0.91 

indicating the best match between the RAL estimation and path-averaged ground 

observation.  

Further analysis was made based on the operational network. To make a fair comparison of 

the CML and the RAL link performance, raw RAL data were resampled to 15-minute 

average. Figure 4-11 shows the comparison of the scatter plot with the ground observation 

based on the RAL and CML. The RAL showed a bias of 103%, whereas the CML showed a 

higher magnitude bias of 142%. Also, the correlation coefficient was higher for the RAL link 

compared with the operational microwave link data. In addition, there was more noise in the 

CML derived rainfall estimates (CV value of 3.18) compared with the RAL link (CV value 

of 2.11).  

Further comparison based on the RAL and the CML derived rainfall estimates is provided as 

a complementary cumulative distribution function (CCDF) of the estimated rainfall rate in 

Figure 4-12. Both the RAL and the CML derived rainfall estimates were higher compared to 

the path-average ground observation; however for the higher probabilities of occurrence, the 

RAL estimates were closer to the path-average ground observation compared with the CML. 

At probabilities of 0.01, both showed similar estimates, and the RAL even showed higher 

estimates at the lower probabilities, which represent higher intensity rainfall.    

 

Figure 4-11: Scatterplots of the link derived rainfall intensities versus path-averaged 

ground observed rainfall as obtained from two disdrometers and three tipping bucket 

rain gauges for (a) 1-minute, and (b) 15-minute. 
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4.4.3 Impact of sampling strategies 

Figure 4-13 shows the scatter plot for 5-minute sampling data for three different strategies 

(Average, MinMax and Instantaneous). All three strategies showed a strong correlation with 

the path-averaged ground observation, with all being greater than 0.80 and the Average 

strategy showing the highest correlation being 0.92. The Average strategy also showed the 

least bias of 112%, with the highest overestimation of 185% shown by the Instantaneous 

strategy. However, comparing the RMSE and the CV for the three strategies, the MinMax 

strategy showed the lowest values, indicating the lower spread of the results compared with 

the other two strategies. Similarly, looking at the data based on one sampling strategy versus 

the others, there was a strong correlation among them for all three cases, with correlations 

greater than 0.8. However, there was a larger spread among the data from the Instantaneous 

when compared with the Average and Instantaneous strategies as indicated by the higher CV. 

The lowest spread was observed between the Average and MinMax data.  

 

 

 

 

Figure 4-12: Complementary cumulative distribution function of path-average ground 

observation and derived based on the RAL and CML. 
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Figure 4-14 shows the scatter plot for 15-minute sampling data for three sampling strategies. 

For this case, the Average and the MinMax strategies showed a strong correlation, with the 

ground observation greater than 0.8. However, the Instantaneous strategy showed a 

correlation of only 0.52. The percent bias for the MinMax and Instantaneous strategies were 

higher compared to the Average strategy indicating that the RAL-derived rainfall estimates 

for these two sampling strategies significantly overestimate rainfall rates. Also, the spread in 

the results was higher, indicating more noise in the results compared with the Average 

strategy.   Considering all statistics, RMSE, , percent bias and CV, the 15-minute Average 

strategy showed the best performance of the three strategies tested. In order to evaluate the 

performance of one sampling versus another, scatter plots among the three strategies are 

shown in Figure 4.16 (d)-(e). In this case, the Average and the MinMax strategies showed a 

strong correlation of 0.88 and a low CV of 1.0. However, comparing the Instantaneous with 

the Average and MinMax strategies showed a lower correlation and more spread with higher 

CV values. This was mainly due to the fact that there was only one snapshot of data during 

the period of 15-minute as opposed to the other two sampling data.  

 

Figure 4-13: (a)-(c) Scatter plot for 5-minute sampling derived based on the RAL 

versus path-averaged ground observation; (d) Average versus MinMax; (e) Average 

versus Instantaneous; and (f) MinMax versus Instantaneous. 
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To further analyse the performance of rainfall retrieval based on different sampling strategies, 

the complementary cumulative distribution function (CCDF) of rainfall depth was plotted, as 

shown in Figure 4-15. As there was no correction applied for the RAL derived rainfall, 1-

minute RAL derived rain was considered as the benchmark estimate along with the path-

averaged ground observation. For 5-minute sampling data, derived rainfall based on the 

Average strategy was found to be quite similar for all the probabilities; however, some 

differences were observed for the MinMax and Instantaneous strategies. For the MinMax 

data, the probabilities of occurrence of rainfall above 1 mm were observed to be lower 

compared with the Average sampling strategy. Similarly, there were also differences 

observed based on the Instantaneous sampling strategy.  

Similarly, for the 15-minute sampling data, rainfall derived based on the Average sampling 

strategy was closer to the benchmark 1-minute data for all the probabilities. For the 15-minute 

MinMax strategy, the probability of occurrence of rainfall was higher for rainfall depth up to 

9 mm; however, for the higher rainfall depths, the probability was lower compared with the 

other two sampling strategies.   

 

Figure 4-14: Same as Figure 4-13 but for 15-minute sampling. 
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Figure 4-16 shows the scatter plot of rainfall depth derived based on 5 and 15-minute 

sampling strategies compared with the 1-minute benchmark. Figure 4-16 (a-c) shows the 

scatter plot of 5-minute rainfall depth based on the Average, MinMax and Instantaneous 

strategies compared with the 1-minute Average strategy (considered as the benchmark). For 

all three cases, the correlation coefficient was higher than 0.9; however, the percent bias and 

CV was higher for the MinMax and Instantaneous strategies compared with the Average 

strategy. Similarly, as in Figure 4-16 (d-e) all statistics (RMSE, correlation coefficient, 

percent bias and CV) showed better performance of the 15-minute Average strategy 

compared with the MinMax and Instantaneous strategies for the same time interval. This 

demonstrated that the uncertainty in the rainfall estimates from both the 5 and 15-minute 

Average strategy was lower compared with the MinMax and Instantaneous strategies. 

Comparing the 15-minute and 5-minute sampling intervals, Figure 4-16 (g-i) showed that the 

Average strategy had the best performance with a correlation of 0.99, percent bias of only 

3.6% and CV of 2.67. This performance deteriorated for the MinMax strategy with the 

percentage bias and CV increased and showing more scatter in the rainfall depths.  

  

 

Figure 4-15: Complementary cumulative distribution plot of rainfall depth for (a) 5 

and (b) 15-minute sampling data. 
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The distribution of the rainfall based on the three different sampling strategies across all 72 

rainfall events are presented in Figure 4-17. Here, the Average sampling strategy again 

showed better performance compared with the MinMax and Instantaneous strategies for both 

5-minute and 15-minute intervals, with the mean rainfall depth being closer to the reference 

(1-minute data) and the spread being lower compared with the other two strategies, indicating 

 

Figure 4-16: Scatter plot of (a) 5-min Average vs 1-min Average; (b) 5-min MinMax 

vs 1-min Average; (c) 5-min Instantaneous vs 1-min Average; (d) 15-min Average vs 

1-min Average; (e) 15-min MinMax vs 1-min Average; (f) 15-min Instantaneous vs 1-

min Average; (g) 15-min Average vs 5-min Average; (h) 15-min MinMax vs 5-min 

MinMax; and (i) 15-min Instantaneous vs 5-min Instantaneous 
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that the Average sampling strategy provides more reliable rainfall estimation compared with 

the MinMax and Instantaneous strategies.  

4.4.4 Impact of quantization errors 

To understand the impact of data quantization on the overall rainfall retrieval process, the 

raw RAL data was artificially modified with different quantization levels from 0.1 to 1dB. 

The rainfall retrieval algorithm used was exactly the same as the one used previously for 1-

 

Figure 4-17: Distribution of rainfall based on three sampling strategies for 5 and 15-

minute compared with observed and reference (1-minute). 

  

Figure 4-18: (a) Scatter plot of rainfall depth based on the RAL data with no 

quantization vs 1 dB quantized data; and (b) Complementary cumulative distribution 

function for various level of quantized data.  
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minute data. Figure 4-18 shows a summary of the results for the quantization. The scatterplot 

with the 1 dB (highest quantization) versus no quantization in Figure 4-18 (a) showed only 

minor variation in the rainfall results with a correlation coefficient of 0.99 and with -0.6% 

bias. Similarly, the cumulative distribution function plot with three different levels of 

quantization of data showed a minor variation in the result, indicating that the impact of 

quantization up to 0.5 dB for the RAL link (24 GHz) was negligible compared with other 

uncertainties like data sampling strategy. This is similar to the results obtained by Leijnse et 

al. (2008) using simulated microwave link data from radar when comparing with 0 dB and 1 

dB quantization level.  

4.4.5 Wet antenna attenuation experiment 

A simple experiment was conducted to assess the impact of wet antenna attenuation on 

rainfall retrieval. For this, during a dry, sunny day (23rd August 2019) with an ambient 

temperature of 24°C, the receiver antenna of the RAL link was artificially wetted with a water 

spray bottle. As the transmitter antenna was installed on a 30m tower, a similar experiment 

could not be conducted on the transmitter antenna; however, as the antenna material was the 

same, it was assumed to have a similar effect. Figure 4-19 shows photographs taken during 

this experimental setup, with water droplets observed on the antenna film after the water 

spray was applied on the antenna surface.  

  

Figure 4-19: Photograph of the receiver antenna just after receiver antenna sprayed 

with water during the wet antenna experiment. Water droplets formation was 

observed on the antenna film. 
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Figure 4-20 shows the resulting impact on the received signal level data. Once the antenna 

got wet, it resulted in an attenuation of up to 3.5 dB. This corresponds to a rainfall intensity 

of 7.5 mm h-1 at 24 GHz using the power relationship derived in equation 4.6. The drop in 

 

Figure 4-20: Time series of the wet antenna simulation experiment conducted on 23rd 

August 2019. Three experiments were conducted at different times (dotted line on the 

plot indicate the start time of the water spray [I :10:16 AM,  II :10:58 AM and III: 

11:14 AM]);  (a) received signal level with the baseline signal plotted on orange 

colour;  (b) specific attenuation of the RAL link; and (c) rainfall equivalent using the 

R-k relationship. 
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the signal level was immediate but took almost 2 minutes to reach the maximum attenuation 

for all three cases. It took another 10 to 12 minutes to return to the original signal level. For 

all three experiments, the drop in the signal level was not the distinct decay function observed 

by Minda and Nakamura (2005) for their wet antenna experiment. This result was more 

similar to the experiment conducted by van Leth et al. (2018), where no distinct distribution 

was observed for their experimental link at 38 GHz. However, due to the different drying 

rate, the signal level in this case returned to the original level more quickly than what was 

observed by van Leth et al. (2018). Even though the formation of a few large beads was 

observed on the corner of the antenna surface during the start of the experiment, this was 

slowly evaporated, thus showing the gradual reduction in the attenuation level.    

4.4.6 Modelling wet antenna attenuation 

Figure 4-21 (a) shows the CCDFs of measured rainfall intensity based on the RAL and path-

averaged ground observation. For all probabilities, the RAL-derived rainfall intensities were 

higher than the ground measurements. As an example, for 10% probability, the RAL-derived 

rainfall intensities were about 6 mm h-1 as opposed to the ground measurement that was only 

2 mm h-1. Similar trends were observed on the measured attenuation based on the RAL and 

the ground observations, as shown in Figure 4-21 (b). For the total attenuation, theoretical 

attenuation was derived based on the power relationship using the path-averaged ground-

 

Figure 4-21: Complementary cumulative distribution function of (a) Rainfall 

measured by the RAL and ground observation, and (b) total path attenuation. For 

attenuation, the ground observation was obtained based on the theoretical raindrop 

attenuation. 
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based rainfall measurement. This difference was mainly attributed to the wet antenna 

attenuation. Besides the wet antenna attenuation, this difference could also be due to 

variability in the drop size distribution along the path as the RAL link was quite long (~ 4 

km). However, the theory predicts that the drop size distribution at this frequency (24 GHz) 

would have a negligible impact on the R-k relationship and subsequent rainfall retrieval.   

Figure 4-22 shows a direct comparison between the measured total attenuation and path-

averaged ground observation. Pearson’s correlation coefficient and Spearman’s rank 

correlations were calculated to identify any relationship between these two parameters. The 

Pearson’s correlation was observed to be 0.83, and the Spearman’s rank coefficient was 0.86, 

indicating that the total attenuation from RAL is a function of rainfall rate. Also, the rank 

correlation between the rainfall intensity and wet antenna attenuation (WAA) estimated from 

the difference between the theoretical attenuation and measured attenuation from the RAL 

was 0.97, providing evidence that wet antenna attenuation and rainfall intensity were 

correlated.  

a) Model parameterization  

The two wet antenna correction models are compared in Figure 4-23. The results obtained 

were in line with the result of WAA at 27 GHz reported by Leijnse et al. (2008). The total 

WAA observed at both antennas combined to a total of about 2 dB for light rainfall with a 

rate lower than 4 mm h-1, 4 dB for moderate rainfall with a rain rate of 30 mm h-1 and 5 dB 

for rain rates of 100 mm h-1. The difference between measured and predicted attenuation, 

without considering the wet antenna effect, increased with decreasing probability (increasing 

rain rate). With the wet antenna effect included, the difference between measurements and 

predictions was almost constant for all levels of probability. In absolute terms, the difference 

between the measured and predicted attenuation for 0.1% probability level was reduced from 

29 dB to 23 dB. The disagreement between the measurement and predictions can be seen 

more prominently for lower percentages of time i.e for high rainfall intensity. This is more 

likely due to the variation of drop size distribution during high-intensity rainfall.  
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b) Applying WAA on RAL link 

Figure 4-24 shows the scatter plot after applying wet antenna correction based on three 

different models. The percent bias, RMSE and CV after applying the wet antenna correction 

 

Figure 4-22: Measured attenuation related to the path-averaged rainfall intensities 

shown at log-scale. Pearson’s correlation () and Spearman rank correlations (s) 

are displayed on the plot. 

 
 

Figure 4-23: (a) Fitting of WAA of antenna pairs on rate for RAL using the least 

squares method, rain rate plotted on a log scale and; (b) CCDFs of attenuation 

based on the RAL and ground observation based on the theoretical raindrop 

attenuation with the correction applied. 
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reduced for all three models. The percent bias reduced from ~ 90% to 4.2% using the model 

proposed by Valtr et al. (2019), to 4.06% using Garcia-Rubia et al. (2011), and to -7.23% 

using a constant attenuation model. Other statistics (RMSE and CV) were also reduced, with 

the overall performance for the models based on Valtr et al. (2019) and Garcia-Rubia et al. 

(2011) found to be very similar. Even though the overall performance of a constant 

attenuation model was lower compared with the other two, it showed a significant 

improvement of percent bias in rainfall retrieval.  

 

Figure 4-24: Scatter plot of rainfall intensity derived from the RAL and path-

averaged ground observation after applying the wet antenna correction based on (a) 

the power-law model of Valtr et al. (2019); (b) the exponential decay model of Garcia-

Rubia et al. (2011); and (c) a constant wet antenna attenuation of 1.1 dB. 

 

Figure 4-25: Double mass curve of the RAL derived rainfall versus path-averaged 

ground observation after applying WAA 
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This result has been further plotted as a double mass curve plot in Figure 4-25. Both the 

power-law and exponential model this was slightly overestimated (above the 1:1 line), with 

the magnitude similar to the path-averaged ground observation. Similarly, the constant 

attenuation model was slightly underestimated but was very close to the path-averaged 

ground observation. 

c) Applying WAA on CML data 

The WAA parameters derived based on the RAL were applied to the CML data, as shown in 

Figure 4-26. All three models showed substantial improvement for the rainfall retrieval after 

applying the WAA correction. However, considering the statistics (RMSE,  and percent 

bias), the simple constant attenuation model was found to be performing better compared 

with the other two (power-law and exponential decay) models. The main reason behind this 

is that the material used on the RAL antenna was different from the CML antenna. The RAL 

antenna used hydrophobic material as an antenna cover; however, the CML antenna used a 

standard polycarbonate material. This impacts the parameters of both the power-law and 

exponential decay models.  

4.4.7 Comparison with the analytical result 

Figure 4-27 shows the distribution of the accumulated rainfall amount for all 72 events based 

on the empirical and analytical approaches. These results are based on the 15-minute 

minimum and maximum RSL data, with no wet antenna correction applied. For the empirical 

 

Figure 4-26: Scatter plot of the CML data after applying wet antenna correction using 

(a) the power law model; (b) the exponential decay model; and (c) the constant 

attenuation model. 
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method, the weightage factor (𝛼) was considered as 0.31. The rainfall amounts for all 72 

rainfall events were overestimated for both analytical methods (GEV approximation and 

Calibrated power-law), with a higher mean rainfall amount compared to the empirical and 

observed values. The spread of the GEV approximation was found to be the largest compared 

with the empirical and calibrated power-law. This indicated that the empirical method used 

in this study provided rainfall estimates closer to the ground observations even without 

applying any further correction.   

4.5 Chapter summary 

This study validated the rainfall retrieval algorithm based on a dedicated experimental 

microwave link. Additionally, this synthesis study recommended a new parameter set for the 

power-law model which will be used for the rainfall retrieval from the commercial 

microwave link in Chapters 5 and 6. Although this chapter provided insights on the impact 

of data sampling strategy on rainfall retrieval accuracy, there is a need to understand the 

impact on the whole rainfall retrieval process, including the dry/wet classification which will 

be conducted in Chapter 5.  

 

 

Figure 4-27: Distribution of accumulated rainfall for 72 rainfall events based on 

analytical method compared with the empirical approach and observed data. 
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Validation of rainfall retrieval using commercial microwave 

links 

This chapter provides an evaluation of rainfall retrieval using commercial microwave link 

signal extinction data for the Greater Metropolitan area of Melbourne. An open-source 

algorithm named RAINLINK was used for this analysis. For this study, the parameters of 

RAINLINK were calibrated using the commercial microwave link dataset for Melbourne. 

Additionally, this chapter provides a comparison of the rainfall retrieval performance using 

two common data sampling approaches for the same period, with data based on minimum-

maximum and average sampling from the same link paths compared. This chapter is the basis 

of an article submitted to the Journal of Hydrology.  

5.1 Background 

Backhaul towers operated by Mobile Network Operators (MNO) have proven to be a 

complementary source of rainfall information (Messer, 2018; Uijlenhoet et al., 2018; Chwala 

and Kunstmann, 2019). This technique of rainfall measurement gained popularity with 

feasibility and validation studies undertaken for a variety of locations around the world 

including: Brazil (Rios Gaona et al., 2015), Burkina Faso (Doumounia et al., 2014), Czech 

Republic (Fencl et al., 2013; Fencl et al., 2017), Germany (Chwala et al., 2012; Chwala et 

al., 2016; Smiatek et al., 2017; Graf et al., 2020), Israel (Messer et al., 2006; Goldshtein et 

al., 2009), Italy (Roversi et al., 2020) , The Netherlands (Leijnse  et al., 2007; Overeem et al., 

2011, 2013, 2016b; de Vos et al., 2019), Pakistan (Sohail Afzal et al., 2018) and Switzerland 

(Bianchi et al., 2013). These validation studies have been conducted based on a few links to 

a couple of thousand links covering an entire country such as The Netherlands (Overeem et 

al., 2013) and Germany (Graf et al., 2020). The temporal resolution of such CML rainfall 

estimates typically varies from a few seconds to 15 minutes, with most telecommunication 

operators sampling the received signal level (RSL) at 10 Hz but storing it at a much coarser 

temporal resolution. In most studies, 15-minute minimum and maximum RSL data, as stored 

operationally by the MNO’s network management systems, were used for rainfall retrieval 

(Leijnse  et al., 2007; Goldshtein et al., 2009; Overeem et al., 2011, 2016b; Rios et al., 2017). 

There have been a few studies using 1-min and even higher temporal resolution, up to a 
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second, instantaneous RSL data for rainfall estimation (Doumounia et al., 2014; Chwala et 

al., 2016). Overeem et al. (2016b) evaluated 2.5 years of microwave link rainfall estimates 

for the Netherlands with more than 3000 microwave links (using 15-minute minimum-

maximum sampling) against gauge-adjusted radar rainfall data, showing a relative 

underestimation of 9% for 15-min interpolated rainfall maps with a 74 km2 resolution. 

However, the interpolated hourly rainfall map using CMLs outperformed automatic rain 

gauges compared with gauge adjusted radar data. Similarly, Chwala et al. (2012) used 1-

minute averaged RSL data recorded with the data loggers for five microwave links, showing 

a good correlation between link and radar-derived rainfall.  

Some of the Mobile Network Operators (MNO) also provide instantaneous RSL (periodic 

snapshots) data over the 15-minutes: de Vos et al. (2019) compared the performance of 

instantaneous versus minimum and maximum RSL data for The Netherlands. Even though 

this comparison was based on data from two different periods, each having a different 

network, the use of minimum and maximum sampled data outperformed the instantaneous 

15-minute data. Similarly, average sampling of the received signal level over the 15-minute 

interval is also common for telecommunication operators in some parts of the world, but this 

has not been evaluated against the widely used minimum and maximum RSL strategy. 

Accordingly, this study tests this alternative strategy while demonstrating for the first time 

the capability of rainfall retrieval using CML signal extinction data in the Australian 

continent.   

To date, there has not been a study evaluating the errors introduced by the minimum-

maximum sampling as opposed to average sampling. This study explores the capability of 

rainfall retrieval using CML signal extinction data for the Greater Metropolitan area of 

Melbourne, the second-largest city in Australia, with a population of 4.48 million (ABS, 

2016). This study compares the performance of rainfall retrieval using two commonly 

sampled datasets for the same period, where data based on minimum-maximum and average 

sampling from the same link paths are compared.   
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5.2 Study area and data used 

5.2.1 Study area 

The study area covers the greater Melbourne region in the Australian state of Victoria. This 

region has a temperate oceanic climate (Cfb, Köppen-Geiger classification), with an annual 

average rainfall (based on 29 years of rainfall data from 1990 until 2018 for 73 stations) 

varying from 500 mm in the west of Melbourne to 1400 mm in the Dandenong ranges towards 

the eastern part of the city, with a standard deviation of 175 mm. Most of the rainfall occurs 

during the southern hemisphere winter (June, July and August) and spring (September, 

October and November). On average, there are 110 days each year with at least 1 mm of 

rainfall. The average temperature (based on the same period with 21 stations) of the study 

area varies between 18°C to 24°C for summer and varies between 6°C to 12°C for the winter 

season. The elevation of the study area ranges from sea level to 1803 m.  

5.2.2 Data used  

This study was based on the data collected from one of the telecommunication operators. The 

detail of the dataset is explained in Chapter 3. A total of 135 microwave links were used, 

covering approximately 2 years of data. These CML data were sampled with a frequency of 

10 Hz and stored as the minimum, maximum and average over 15-min intervals with constant 

transmitted power.  

5.3 Methodology  

5.3.1 Preliminary data processing and quality check 

The CML dataset was delivered by the operator in two separate files: one with 15-min RSL 

data for all the links stored daily and the other with the corresponding metadata. These files 

were received on a monthly basis at the end of each month. Metadata included the location 

of transmitter and receiver nodes, the elevation of the antennas, the assigned microwave 

frequencies (including minimum and maximum frequency range), the polarization of the 

signal, path lengths and the IP addresses of each transmitter and receiver. Using the IP address 

as a unique identifier in the CML data and metadata, merged RSL data with necessary fields 

(frequency, latitude, longitude, and polarization) were prepared for further processing.    
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Among all 144 links, there were nine links that showed some suspicious behaviour in the 

data. Three distinct behaviours were identified in these links: (a) presence of noise in the 

dataset; (b) a sudden drop in the signal level during dry periods; and (c) a gradual 

increase/decrease in the signal level. Examples are shown in Figure 5-1. These suspicious 

links were excluded from further analysis.     

5.3.2 Use of RAINLINK 

After pre-processing the data, the freely available RAINLINK package developed by 

Overeem et al. (2016a) was used for retrieving rainfall rates. Originally, RAINLINK was 

designed for handling minimum and maximum RSL data with a constant transmitting power. 

de Vos et al. (2019) describe the pre-processing necessary to handle instantaneous received 

signal level data, where the transmitted power is allowed to vary. Studies employing average 

 

 

Figure 5-1: Example of some suspicious microwave link data: (a) There is noise 

observed in the minimum (green) and maximum (yellow) RSL; (b) There is a sudden 

drop in the received power level even if the transmitted power remains constant. Blue 

lines indicate observed rainfall rates from Rainfields. 
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RSL data have not been published to date. This study is, therefore the first to use average 

RSL data in RAINLINK for retrieving rainfall. Here average and minimum/maximum RSL 

data were processed separately. Further details of the RAINLINK package can be found in 

Overeem et al. (2016a). 

The RAINLINK package includes the following processing steps:  

1) Pre-processing of the data. Duplicated link identifiers, identifiers with inconsistent 

metadata, and links with frequencies outside the range 10–40 GHz are excluded from 

the analysis. 

2) Dry/wet classification. Rainy periods are identified based on spatial correlation. 

When at least half the nearby links (default radius of 15 km) experienced a drop in 

the minimum or average signal level, the time interval was considered as “wet”. This 

radius was increased to 20 km (in contrast to the default value of 15 km) based on the 

spatial distribution of the microwave links in the Melbourne metropolitan area. This 

drop in the signal level was calculated based on the difference between the RSL data 

as compared with the maximum value of the link over the previous 24-hour period, 

both as a difference and a difference divided by the path length. If the median of all 

nearby links was less than the predefined threshold median QmP(dB) for the 

difference and 𝑄mPL(dB km−1) for difference per kilometre link path, the link was 

labelled as “wet” for that interval. 

3) Reference signal level. Based on the moving median of the signal level during the 

previous 24-hour dry period, the reference signal level (𝑃ref) was determined. The 

difference between this reference level signal and the actual signal level provided the 

attenuation due to rainfall.  

4) Outlier removal. Based on a filter that relies on the principle of the rainfall 

distribution over space (Overeem et al., 2016a), outliers were removed. This filter 

discards the time interval of a link for which the cumulative difference between its 

specific attenuation and that of the surrounding links (default radius of 15 km, 

although for this study increased to 20 km) over the 24 hour becomes lower than the 

outlier filter threshold value.  

5) Attenuation level. The corrected minimum (𝑃Cor/min), maximum (𝑃Cor/max) and 

average (𝑃Cor/avg) attenuation level was calculated for each time interval as:    
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𝑃Cor/min = {
𝑃min 𝑖𝑓 wet AND 𝑃min < 𝑃ref

𝑃ref otherwise                           
 (5.1) 

𝑃Cor/max = {
𝑃max 𝑖𝑓 𝑃Cor/min < 𝑃ref  AND  𝑃max < 𝑃ref

𝑃ref 𝑜therwise                                           
 (5.2) 

𝑃Cor/avg = {
𝑃avg 𝑖𝑓 wet AND 𝑃avg < 𝑃ref

𝑃ref otherwise                           
, (5.3) 

where 𝑃min , 𝑃max and 𝑃avg  are the raw minimum, maximum and average attenuation, 

respectively.  

6) Wet antenna attenuation. A constant wet antenna attenuation (𝐴a) was deducted 

from the corrected total attenuation. This attenuation was later divided by the path 

length to obtain the specific attenuation (k).  

7) Rainfall estimation. The rainfall rate R was calculated from k using the power law 

equation proposed by Olsen et al. (1978): 

𝑅 = 𝑎𝑘𝑏, (5.4) 

where the values of the parameters a and b in Eq. 4 were derived for Melbourne using data 

obtained from an OTT PARSIVEL1 optical disdrometer and shown in Figure 5-2. Extinction 

cross sections were estimated based on the T-matrix method developed by Mishchenko and 

Travis (1994) using a python interface developed by Leinonen (2014) being the most 

comprehensive and computationally efficient method for the calculation of electromagnetic 

scattering of particles of arbitrary shape. This was later used to derive the specific attenuation, 

which were related to rainfall rates using the power-law model based on the least-squares 

method. For the case of using MinMax, the weighing factor α was used to calculate the 

average rainfall from Rmin and Rmax.  

𝑅 = 𝛼. 𝑅max + (1 − 𝛼). 𝑅min (5.5) 

However, for the case of using average sampling, this α parameter was obviously not 

required.  
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5.3.3. Calibration of the RAINLINK parameters 

RAINLINK has 14 parameters for rainfall retrieval, including those related to wet-dry 

classification, reference signal determination, outlier filter, wet antenna attenuation and 

rainfall retrieval using the power law. The optimal values of these parameters are likely to 

differ between different climatic conditions and microwave link networks (e.g. regarding 

sampling strategy, spatial link density, and resolution of the RSL data); thus it is 

recommended to calibrate the most important parameters on a subset of the data (de Vos et 

al., 2019). For this study, based on a sensitivity analysis using one month of a dataset, the 

three parameters 𝑄mP, 𝑄mPL and 𝐴𝑎 for both the  Average and MinMax dataset were 

identified as most important for the overall rainfall retrieval. Additionally, α parameter was 

also identified as the most important for the MinMax RSL. For the sensitivity analysis, the 

cost function proposed by de Vos et al. (2019) was used, which includes the POD, FAR, CV, 

percentage bias and correlation coefficient. Besides these, two additional parameters a and b 

are required; based here on local drop size distribution data from Guyot et al. (2020). More 

information on these parameters is provided in Table 5-1.  

 

Figure 5-2: (a) Coefficients a and (b) exponent b of the power-law relation between R 

and k for both horizontally and vertically polarized signals for frequencies ranging 

from 1 to 70 GHz. The values recommended by the International Telecommunication 

Union, Radio communication (ITU-R, 2005) for computing specific attenuation for 

given rain rates for world wide application are shown in dotted and dashed lines. 
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A subset of 30 rainy days spread over the 2-year period was selected for the calibration of 

the RAINLINK parameters. This subset was selected such that there is high availability of 

RSL data from microwave links during the selected periods, also ensuring that data from 

different seasons were included. This subset represents a total rainfall amount of 390 mm, 

ranging from 3 mm to 33 mm per day. The details of the calibration dataset are shown in 

Table A1 in the Appendix. 

a) Parameters for the average RSL 

The optimised values of the three most important parameters 𝑄mP, 𝑄mPL and 𝐴a for the 

average RSL data have been identified using the optimization procedure in de Vos et al. 

(2019). The detail of the calibration procedure is described later in this section. The radius 

for nearby links was increased from 15 km to 20 km, as the density of the links was lower for 

the present case, as compared to The Netherlands. Other parameters besides these were kept 

at their default values in the RAINLINK package. Based on the calibration dataset, hourly 

rainfall estimates were calculated for the various combinations of values of 𝑄mP, 𝑄mPL 

and 𝐴a. Here, hourly rainfall estimates were considered to minimize the sampling error 

caused by the measurement lag in the radar due to its providing measurements aloft that 

usually take a couple of minutes for the rainfall to reach the earth’s surface. Accordingly, 

𝑄mP was varied from -2.5 to -0.1 dB, 𝑄mPL was varied from -2.0 to -0.1 dB km-1 and 𝐴a was 

Table 5-1: List of variables used for calibration of RAINLINK. Here, the alpha 

coefficient provides the weightage between the minimum and maximum rainfall. The 

parameters a and b used in this relationship are based on a local disdrometer data. 

Variable description Symbol Unit 

Threshold median 𝑄mP dB 

Threshold median per unit length 𝑄mPL dB km -1 

Wet antenna attenuation 𝐴𝑎 dB 

Alpha coefficient α - 

Prefactor of rainfall-attenuation relationship a mm h-1 dB-b 

kmb 

Exponent of rainfall-attenuation relationship b - 
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varied from 0.5 to 3 dB (steps of 0.1 for all parameters). The sensitivity of each of these 

parameters based on the MinMax data is shown in Figure 5-3. The results obtained for each 

of the combinations were evaluated against the gauge-adjusted radar product, also 

accumulated to path-averaged hourly values. The path-averages were calculated based on the 

weights of the intersecting CML paths for each radar pixel. 

  

b) Parameters for minimum/ maximum RSL  

For the minimum and maximum RSL data, an additional parameter α is required in the 

optimization process of the rainfall retrieval (Overeem et al., 2016a). The value of α was 

varied between 0.10 to 0.50 (with steps of 0.01). Other three parameters, including the wet 

antenna attenuation 𝐴a were obtained in a similar manner as for the average RSL. 

 

Figure 5-3: Sensitivity analysis using MinMax RSL data for: (a) Threshold median; 

(b) Threshold median per unit length; (c) Wet antenna attenuation; and (d) Alpha 

coefficient. 
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5.3.4 Performance metrics 

The overall performance of the path-average rainfall retrieval was assessed based on a series 

of evaluation criteria, covering the two main steps in the rainfall retrieval: (a) Wet-dry 

classification and; (b) Rainfall retrieval.    

(a) Wet-dry classification 

This provides a measure of how well the link observations correctly estimate the occurrence 

of rainfall. The following criteria (de Vos et al., 2019; Graf et al., 2020) were used to assess 

the performance of the classification based on the confusion matrix, as shown in Table 5-2.  

1) The probability of detection (POD) provides a measure of the proportion of actual wet 

periods that are identified by both the CML and the radar. In this case, POD is defined as 

the percentage of wet periods identified using the nearby link approach when both 𝑅link 

and 𝑅radar detect rainfall. The POD is given as:  

POD =  
TP

TP +  FN
 × 100 % . 

 

(5.6) 

Table 5-2: Confusion matrix based on gauge adjusted radar and CML 

  Gauge adjusted radar (Rainfields). 

  Wet (0) Dry (1) 

C
M

L
 Wet (0) True Positive (TP) False Positive (FP) 

Dry (1) False Negative (FN) True Negative (TN) 

TP: True positive (both 𝑅link and  𝑅radar detect rainfall),  

TN: True negative (both 𝑅link and  𝑅radar show no rainfall), 

FP: False positive (𝑅link detects rainfall but 𝑅radar shows no rainfall), 

FN: False negative (𝑅link shows no rainfall but 𝑅radar detects rainfall). 
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The POD value ranges from 0 to 100%, with 100% being a perfect score and 0% being 

the worst.  

2) The false alarm ratio (FAR) provides a measure of the proportion of the actual wet 

periods that are incorrectly identified. In this case the 𝑅𝑙𝑖𝑛𝑘 detects rainfall but 

𝑅radar shows no rainfall. The FAR is given as:  

FAR =  
FP

FP +  TP
 × 100 % . 

 

(5.7) 

Similarly, the FAR value also ranges from 0 to 100 %, but with 100% being the worst 

score and 0% being the best score.   

3) The Matthews correlation coefficient (MCC) provides a measure of the quality of the 

binary classification (wet-dry in the case of classification for CMLs) (Matthews (1975). 

This is considered as one of the best ways to report the result of the confusion matrix:  

MCC =  
TP ×  TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 . (5.8) 

The MCC value ranges from 0 to 1, with 1 being the best score and 0 being the worst.  

4) The Error rate (ERR) or misclassification rate provides the performance measure of 

binary classification based on the miss-classification from both positive and negative 

classes and is calculated as:  

ERR =  
(FP + FN)

(TP + TN + FP + FN)
 . (5.9) 

Similarly, ERR ranges from 0 to 1, with 0 being the best score and 1 being the worst 

score. 

  

(b) Rainfall retrieval 

This set of evaluation parameters provides a measure of how well the CML-derived rainfall 

relates to the reference rainfall depths (in this case, the gauge-adjusted radar).  

1) The Pearson correlation coefficient (𝝆) provides the correlation between rainfall depths 

measured by the link 𝑅link and the gauge-adjusted radar (𝑅radar). It is given as:  
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𝜌 =
𝑐𝑜𝑣 (𝑅link, 𝑅radar)

𝑠𝑡𝑑 (𝑅link) 𝑠𝑡𝑑(𝑅radar)
 , (5.10) 

where cov (x, y) is the covariance between x and y, and std(x) is the standard deviation 

of x. 𝜌 values range from 0 to 1, with 1 being the best and 0 the worst performance.  

2) The coefficient of variation (𝑪𝑽) provides a measure of the dispersion of data points 

between the rainfall intensity derived by the link (𝑅link) and the gauge-adjusted radar 

(𝑅radar). It is given as: 

CV =
std (𝑅res)

�̅�radar

 , (5.11) 

where 𝑅res = 𝑅link − 𝑅radar and �̅�radar is the mean of the gauge adjusted radar data. 

The smaller the CV the better the performance.  

3) The relative bias provides the average error between the rainfall intensity measured by 

the link 𝑅link and the gauge-adjusted radar (𝑅radar). It is given as:  

�̅�res

�̅�radar

× 100% , (5.12) 

where, �̅�res is the mean of the residual.  Similarly, values closer to 0 are better, however, 

positive values indicate overestimation and negative values indicate underestimation 

compared with the reference.  

5.4. Results 

5.4.1 Calibration 

Table 5-3 shows the calibration results for the four most important RAINLINK parameters. 

Two parameters,  threshold median (𝑄mP) and threshold median per unit length (𝑄mPL), are 

related to the wet-dry classification while the remaining two, wet antenna attenuation (𝐴a) 

and Alpha (), are related to rainfall retrievals. For Average, both 𝑄mP and 𝑄mPL are less 

negative compared to the default values of RAINLINK, while the 𝐴a value is also lower 

compared to MinMax, but higher compared to instantaneously sampled data. For MinMax, 

the threshold median is slightly higher, but the threshold median per unit length is less 
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negative than the default value.  This indicates that the time interval is more likely to be 

classified as wet, with the threshold median per unit length being closer to 0 than the default 

value, which is also the case for the threshold median for Average.  

Table 5-4 shows the performance for the calibration dataset for both the Average and 

MinMax data presented at an hourly timescale. For dry/wet classification, MinMax had a 

better performance when compared to Average data, although its POD value was lower. For 

the rainfall retrieval, both datasets showed similar performance for 𝜌. MinMax had a small 

negative bias compared to the almost unbiased Average data, and had a much lower value for 

CV. Hence, MinMax resulted in the best overall performance.  

 5.4.2 Validation result 

After processing the dataset (excluding the data used for calibration), the number of data 

points containing results for the two sampling strategies (MinMax and Average) were of 

different sizes, because the outlier filter used in processing the raw data removed different 

time intervals for specific links from MinMax and Average data. Thus, in order to make a 

fair comparison, the time intervals with available data for both strategies were retained. Also, 

to note that all the performance evaluation was based on the path-average rainfall depths 

against the reference. 

Table 5-3: Calibration results for a selection of four of the RAINLINK parameters 

and comparison with values obtained for The Netherlands. 

Dry/ wet classification parameters Rainfall retrieval parameter 

Threshold Median, 

𝑄mP(dB) 

Threshold Median 

L, 

𝑄mPL (dB km-1) 

Wet antenna 

attenuation, 𝐴a (dB) 

Alpha,  

 

Average data 

-0.7 -0.2 1.6 - 

MinMax data 

-1.50 (-1.4) -0.40 (-0.7) 1.4 (2.30) 0.29 (0.33) 

Instantaneous RSL data (de Vos et al., 2019) 

-0.6 -0.4 1.4 - 
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Table 5-4: Performance criteria for the calibration period for Average and MinMax. 

Dataset 

Dry/ Wet classification Rainfall retrieval 

POD FAR MCC 
Relative 

Bias (%) 
CV 𝜌  

Average 68.25 10.25 0.47 0.20 1.41 0.67 

MinMax 64.62 7.38 0.55 -0.68 1.12 0.68 

 

a) Performance of wet-dry classification 

Figure 5-4 shows the time series of RSL with corresponding rainfall intensities for a selected 

event, together with the wet-dry classification for one of the microwave links. For both the 

Average and MinMax data, most of the wet periods with higher rainfall intensities were 

identified correctly, as shown by the true positives. However, some time-steps with low 

rainfall intensities during a wet period were classified as dry, e.g. false negatives. There were 

instances where the time-steps are incorrectly classified as wet even though there was no rain 

observed on the ground indicated by the false alarm. These false alarms were observed during 

the time-steps where the RSL dropped below the baseline signal level due to reasons other 

than rain. For this event, Average data correctly identified wet periods with a POD of 90 % 

and a slightly lower POD of 84 % for the MinMax data. Also, for the Average data 18 % and 

for the MinMax only 9 % of the dry periods were incorrectly classified as wet. Similarly, 

10 % and 16 % of wet periods were missed by the Average and MinMax, respectively.  
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Table 5-5 shows the performance summary of the wet-dry classification for three threshold 

values used to distinguish each of the time intervals between wet and dry periods based on 

the gauge-adjusted radar data for all the dataset. Average data showed a higher probability of 

detection (POD) value of 64%, whereas MinMax showed a slightly lower POD of 54%. Also, 

9% and 4% of the dry periods were incorrectly classified as wet based on the Average and 

MinMax data, respectively. Similarly, 36% and 46% of wet periods were missed by Average 

 

Figure 5-4: Time-series of (a) average RSL; (b) minimum and maximum RSL; and (c) 

gauge adjusted radar rainfall intensities for a selected rainfall event for LinkID 62. 

The wet-dry classification using the calibrated parameters is shown as shaded colours. 

Table 5-5: Performance of wet-dry classification for 15-min average and 15-min 

minimum/maximum RSL data. 

Data set 

Threshold for time interval to be wet 

0 mm h-1 0.1 mm h-1 0.5 mm h-1 

POD FAR MCC POD FAR MCC POD FAR MCC 

Average 64.34 8.76 0.38 68.05 8.94 0.38 77.91 9.57 0.35 

MinMax 53.58 3.70 0.42 57.34 3.84 0.46 68.41 4.35 0.45 
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and MinMax data, respectively (see Figure 5-5).  For all threshold, Average data showed a 

higher probability of detection (POD) when compared with the MinMax data. However, at 

the same time, it also showed a much higher false alarm ratio (FAR), meaning there were a 

larger number of time intervals that were misclassified as wet as compared with MinMax. 

Based on the MCC values, for all the threshold values, MinMax data outperformed the 

Average data.  

As a further investigation of the performance for wet-dry classification, Figure 5-6 shows the 

box plot for four different statistics (POD, FAR, MCC and ERR with the wet-dry threshold 

of 0.1 mm h-1). Considering all four statistics, three of the values showed better performance 

of MinMax compared with Average data. Although the POD value was higher for Average, 

there were a higher number of both positive and negative misclassifications, which is 

reflected in the higher value of ERR. The wider range of all four statistics suggests that some 

of the links were performing poorly. Graf et al. (2020) obtained similar statistics in their study 

for Germany, where they found the median MCC value of 0.47, which is slightly higher than 

that obtained for MinMax data here. In their case, they used data with a temporal resolution 

of 1 min for the wet-dry classification.   

 

 

 

Figure 5-5: Normalized confusion matrix for wet-dry classification for (a) Average 

data; and (b) MinMax data 
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In order to further investigate the performance of the wet-dry classification for different rain 

rates, the POD was calculated for each of the different classes of data exceeding certain 

threshold rain rates from the reference data as shown in Figure 5-7. The probability of 

detecting rain increases with higher rain rates, reaching more than 90 % when 5 mm h-1 was 

used as a threshold rain rate rather than a lower rainfall rate. This suggests that the correct 

detection rate of wet periods is better under more intense rainfall conditions.   

 

Figure 5-6: Box plots showing the performance criteria for the wet-dry classification 

using the nearby links methods with: (a) Probability of detection (POD); (b) False 

alarm ratio (FAR); (c) Matthew correlation coefficient (MCC); and (d) Error rate 

(ERR) for Average and MinMax data. 
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Similarly, Figure 5-8 shows the accuracy of the links in determining rainfall occurrence for 

various accumulation intervals. Here, a threshold of 0.1 mm h-1 was used to distinguish wet 

 

Figure 5-7: Probability of detection (POD) based on a reference rainfall rate. Here 

five thresholds (0, 0.1, 0.5, 1.0 and 5.0-mm h-1) for the gauge adjusted radar data are 

used to filter the data; thus this result provides POD result for only wet intervals. 

 

Figure 5-8: Validation criteria showing the ability of CMLs to detect rainy periods 

against reference data; (a) POD and FAR; and. (b) Matthew correlation coefficient 

(MCC) and Error rate (ERR). All four parameters were calculated for Average and 

MinMax for various accumulation intervals, using a threshold of 0.1 mm h-1 to detect 

rain occurrence. 
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from dry periods using the gauge-adjusted radar data. Although the POD increased and FAR 

decreased as the considered intervals became longer, the error rate simultaneously increased. 

This is due to a decrease in the relative proportion of true negative (TN) values compared 

with the lower accumulation interval. The increase in MCC values suggests that the 

performance increases for longer accumulation intervals for both Average and MinMax data.   

b) Performance for the rainfall retrievals  

Figure 5-9 shows the comparison of link-derived rainfall with gauge-adjusted radar data for 

15-min, 1-hour, 3-hour and 1-day accumulations for both MinMax and Average. The 

accuracies of the link-derived rainfall increase for longer durations for both sampling 

strategies. This can be seen by the decrease in the value of CV (for Average RSL 2.84 to 1.49 

and for MinMax 2.70 to 1.22), and the increase in the value of the correlation coefficient (for  

Average 0.29 to 0.75 and MinMax 0.30 to 0.79). A systematic overestimation in link-derived 

rainfall estimates with respect to gauge-adjusted radar data was found for all accumulation 

intervals for both sampling strategies. The lower values of RMSE and CV for MinMax, the 

smaller overestimation and generally similar values for the correlation coefficient indicate 

that it outperforms Average.  

In addition, Table 5-6 shows the results for the performance of the rainfall retrieval on a 

seasonal basis. For both sampling strategies (Average and MinMax), link-derived rainfall is 

overestimated for all four seasons, with the largest overestimation occurring during the 

Summer and Autumn. This larger magnitude of overestimation is mainly attributed to 

precipitation events with a higher intensity of rainfall during these two seasons. The 

performance in terms of bias and CV was better for winter and spring for both sampling 

strategies compared with the other two seasons. This result differs from the result presented 

by Graf et al. (2020) for the winter season in Germany. They obtained the lowest performance 

during the winter month (with the highest overestimation and higher CV values of 16.04) due 

to the presence of both mixed and solid precipitation, which is not the case for this study. 

Further, this overestimation during other seasons was most likely due to dew formation on 

the antenna covers as solid/melting snow does not occur in the study area. Similarly, for all 

seasons, link-derived rainfall corresponded well to the validation data for hourly 

accumulations. The best performance in terms of correlation coefficient and CV was found 

in the Spring, followed by the Summer. Based on the two sampling strategies, MinMax had 

a lower overestimation and a better CV value compared with Average data.   
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Figure 5-9: Validation of path-average CML-rainfall against gauge-adjusted radar 

rainfall. Scatter density plot of link-derived rainfall with radar over intervals of (a) 15 

minutes; (b) 1 hour; and (c) 3 hour. Only gauge-adjusted radar rainfall depths greater 

than zero were selected. 
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To have a better understanding of the performance of CML rainfall retrievals, event-based 

results were also analysed for CML-derived and gauge-adjusted radar rainfall data as shown 

in Figure 5-10. Here, a rainfall event was defined as a rain period separated by a 1-hour or 

longer rain-free period and having each 15-min time interval with a minimum rainfall rate of 

0.1 mm h-1. There were altogether 342 such rainfall events with periods lasting from 45 

minutes to 29.25 hours. Compared to the results presented in Figure 5-9, correlation 

coefficients were significantly higher, with values of 0.86 for both Average and MinMax 

data. In terms of relative bias, the Average was closer to the reference gauge-adjusted radar 

dataset compared with MinMax. However, other statistics (RMSE and CV) were lower for 

MinMax, showing better performance.  

Table 5-6: Validation of 15-min and 1-hour accumulation link-derived rainfall against 

gauge-adjusted radar rainfall (reference) on a seasonal basis. 

Dataset 

15-minute 1-hour 

Relative 

bias (%) 
CV 𝜌 

Relative 

bias (%) 
CV 𝜌 

Summer (Dec, Jan, Feb) 

Average 15.75 2.87 0.29 15.80 1.92 0.69 

MinMax 9.05 2.85 0.32 9.05 1.90 0.69 

Autumn (Mar, Apr, May) 

Average 12.73 2.81 0.30 12.71 2.60 0.52 

MinMax 13.68 2.65 0.29 13.70 2.32 0.51 

Winter (Jun, Jul, Aug) 

Average 9.56 2.52 0.22 8.78 2.21 0.53 

MinMax 3.60 1.38 0.23 3.62 1.90 0.56 

Spring (Sep, Oct, Nov) 

Average 7.92 2.71 0.32 8.12 1.90 0.71 

MinMax 7.26 2.58 0.33 7.51 1.72 0.72 
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In order to further investigate the continuous performance of link-derived rainfall estimation, 

double mass curves between link-derived and gauge-adjusted radar rainfall are shown as 

accumulation plots in Figure 5-11. Intervals, where either link or radar had missing data were 

excluded. Most of the links rainfall were passing through the 1:1 black line indicates a good 

agreement between the link-derived rainfall and the gauge-adjusted radar reference data. In 

the overall comparison, both Average and MinMax showed a positive bias of about 15 %. 

 

Figure 5-10: Scatter density plots of path-average CML-rainfall against gauge-

adjusted radar rainfall for 342 rainfall events. 

 

Figure 5-11: Double mass curves per event for all links: (a) Link-derived cumulative 

rainfall using average data versus cumulative gauge-adjusted radar rainfall; and (b) 

Link-derived cumulative rainfall using min/max RSL data versus cumulative gauge-

adjusted rainfall data. 
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However, 37 links for Average and 40 links for MinMax showed a mean negative bias of 

19.30% and 17.34%, respectively. There were almost similar numbers of links (11 links for 

Average and 10 links for MinMax) for both RSL data types showing overestimation above 

50% and up to 135%.  

The results presented in Figure 5-11 for the rainfall retrieval include both timesteps with the 

false-positives and false-negatives. As there was a significant difference in the false alarm 

ratio between the two datasets (Average and MinMax), to further investigate the performance 

for only wet periods, the density plot of double mass curves for all links are plotted in Figure 

5-12 by including only time intervals which have non-zero rainfall for both the links and the 

radar. In terms of bias, Average data showed better performance with a negative bias of 

3.96% compared with MinMax data showing a stronger negative bias of 15.18 %. For a 

higher number of links (35 links), there was an overestimation based on Average data 

compared with only 18 links for MinMax data. However, other statistics (RMSE,  , CV) 

suggest that MinMax performed slightly better compared with the Average RSL.  

Figure 5-13 provides more insights regarding the performance of rainfall retrieval by the two 

sampling strategies. The average link-derived rainfall using the MinMax data was lower than 

the Average RSL (Figure 5-14 (a)) for time intervals where it was wet according to both 

sampling datasets (not involving the reference). Furthermore, almost all higher rainfall depths 

were lower for the MinMax data. In addition, Figure 5-14(b) shows the density scatter plot 

 

Figure 5-12: Density plot of the double mass curve for all links during only the wet 

period (no false alarm included) for: (a) Average, and (b) MinMax data. 
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of link-derived rainfall during all the periods when there was a false alarm for both sampling 

strategies when compared to the reference.  This result suggests that the mean rain rate 

obtained from MinMax data was higher compared with the Average data even though the 

higher rainfall depths were lower. So, on average, overestimations during false alarms were 

higher for MinMax but higher for Average in the case of larger rainfall depths.  

In order to explore the spatial variability of the performance of the rainfall retrieval based on 

the two-sampling data, the correlation coefficient and RMSE based on an hourly 

accumulation over the study area are shown in Figures 5-15 and 5-16. The correlation 

coefficients were found to be homogeneously distributed over the area for both Average and 

MinMax, with some of the outliers in the south-west and south of the Melbourne CBD, where 

the values were the lowest, and for some individual links with the lower frequencies. The 

RMSE distribution over the study area was homogenous over the Melbourne CBD and closer 

to the radar, with a couple of links over the study area showing a higher RMSE for both 

sampling datasets.  

 

 

 

 

 

Figure 5-13: Comparison of link-derived rainfall retrievals using 15-min Average vs 

MinMax RSL data for: (a) wet periods only; and (b) all time intervals with false alarm 

only. 
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5.5 Discussion 

5.5.1 Optimized parameters for RAINLINK 

Among the parameters used in RAINLINK, only the four most sensitive parameters were 

optimized for this Melbourne dataset, specifically the threshold median(𝑄mP), the threshold 

median per unit length (𝑄mPL), wet antenna attenuation (𝐴a) for Average RSL data and the 

alpha () for MinMax RSL data. In addition, two parameters, a and b, were obtained based 

on local disdrometer data from the study of Guyot et al. (2020), and are the most critical for 

rainfall retrieval of all the parameters. In the absence of these parameters, one needs to use 

the generalized values from the ITU recommendations (ITU-R, 2016) or, when available, 

those from other studies from a similar climate.  𝑄mP and 𝑄mPL, which are related to dry/wet 

 

Figure 5-14: Spatial distribution of the correlation coefficient (circle size) between the 

reference and CML-derived hourly rainfall accumulation at different frequencies 

(circle colour) for (a) Average; and (b) MinMax data. 

 

Figure 5-15: As for Figure 5-14 but for room mean square error (RMSE). 
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classification, were obtained separately for the Average and MinMax datasets. For Average 

RSL data, 𝑄mP and 𝑄mPL were found to be -0.7 dB and -0.2 dB km-1
 (no reference is available 

for comparison using the Average RSL data). For the MinMax RSL data, 𝑄mP and 𝑄mPL 

were found to be -1.50 dB and -0.40 dB km-1, which is less negative compared with a similar 

dataset for The Netherlands. This means using the new parameter values enabled 

corresponding time intervals to be classified as wet with a lower deviation in median and 

median per unit length values. The average POD and FAR for the MinMax reported in this 

study were in a similar range to the values for RAINLINK reported by de Vos et al. (2019).  

The optimized value of the parameter 𝐴a was found to be 1.6 dB and 1.4 dB for the Average 

and MinMax data, respectively, and was within the range of values suggested by Overeem et 

al. (2011) (1.2-1.9 dB) for MinMax data. However, for the MinMax data, Overeem et al. 

(2013) used 𝐴𝑎 = 2.3 dB, which is higher than the value obtained for the Melbourne dataset. 

In their case, 𝐴a and  was optimized for the rainfall after determining  the parameters for 

the wet-dry classification separately and is therefore different than the case presented herein 

as both wet-dry and rainfall were optimized together. Also, the weighting factor (= 0.29) 

for the minimum and maximum attenuation for the Melbourne dataset was slightly lower than 

obtained by Overeem et al. (2013).  

There are other parameters in RAINLINK (like the minimum number of available links, the 

period over which the reference level has to be determined, the minimum number of hours 

that should be dry in the preceding period, the outlier filter threshold, and the radius for 

finding nearby links) which have not been altered from the default values of RAINLINK. 

These parameters are more likely to remain constant and have less dependency on the dataset 

and climatology of the study area. However, the radius for finding the nearby links was 

increased from 15 km to 20 km, as the density of links in the employed dataset for the 

Melbourne metropolitan area was low compared to other studies in The Netherlands. 
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5.5.2. Effect of sampling type on overall rainfall retrievals 

For the wet-dry classification, the Average RSL showed a higher POD when compared with 

the MinMax RSL data, but at the same time, the FAR value was also higher for the Average 

RSL data. This means that the Average RSL missed less rain, but the higher FAR shows that 

often false alarms are provided during dry periods, whereas the MinMax RSL strategy indeed 

has a lower POD but also a lower FAR. This is mainly because for each of the time intervals, 

the MinMax RSL contains additional information of 15-minute data characteristics as 

opposed to the Average RSL data. A similar result has been reported by de Vos et al. (2019) 

for the MinMax data from the Netherlands. They obtained a POD of 38% and a FAR of 35% 

for a threshold of 0 mm, a POD of 50% and a FAR of 40% for a threshold of 0.1 mm. Also, 

taking into account the MCC and ERR, the MinMax data outperformed the Average RSL 

strategy for the wet-dry classification. 

For the rainfall retrieval, the Average data performed very similarly to the MinMax data. In 

a few cases, considering relative bias, Average data performed slightly better. However, other 

statistics, such as the CV and RMSE, are in favour of the MinMax sampling data. Thus, in 

the overall comparison, the MinMax outperformed the Average data. The main reason behind 

this is that the MinMax data had better wet-dry classification compared with the Average 

data. Even though for some cases, results favour Average data, for the overall rainfall 

retrieval process, both wet-dry classification and rainfall retrieval are necessary steps. There 

are no other studies to date that compare the performance of Average versus MinMax data, 

but the MinMax, performance is quite similar to the results of Overeem et al. (2016b). 

5.6 Chapter summary 

This chapter presented an evaluation of rainfall retrieval based on commercial microwave 

link data for Melbourne, Australia. An open-source algorithm named RAINLINK was used, 

and the most important parameters for the rainfall retrieval were calibrated using the local 

commercial microwave links dataset. The main purpose of this study was to compare the 

overall performance for rainfall retrieval using the two commonly available data sampling 

strategies.    
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Deep Learning model for improving rainfall estimates 

This chapter presents a novel approach of using deep learning to improve the rainfall 

estimation from commercial microwave links when there is only limited information 

available from the telecommunication operators. This includes the development a special 

type of recurrent neural network known as the long short-term memory model. The data 

collected from one disdrometer was used for the training and evaluation. This chapter is the 

basis of a published article in Water Resources Research.  

6.1 Background 

The CML-derived rainfall retrieval accuracy and temporal resolution is dependent on a 

number of factors, one of which is the way the received signal level (RSL) is stored by the 

telecommunication companies or operators (Leijnse et al., 2008). Operators use a Network 

Management System (NMS) to collect and store RSL data in their cellular network for quality 

control monitoring of their network. In most cases, the minimum and maximum values are 

stored for a 15-minute window (Messer, 2018; Uijlenhoet et al., 2018). Usually, this 15-

minute time window and parameters (minimum, maximum RSL and transmit power) stored 

by the NMS are hard-coded by the hardware provider, which is usually sufficient for network 

quality monitoring purposes. However, parameters for the rainfall retrieval using the power 

relationship, derived from (typically 30-s) drop size distribution (DSD) data and applied to 

15-min minimum and maximum or average attenuation could lead to uncertainty. Also, 

within this 15-minute interval, the exact time when the minimum and maximum RSL reading 

occurred is unknown (Ostrometzky and Messer, 2014), which could lead to uncertainties in 

the rainfall retrieval. Several studies tried to make use of such available datasets to retrieve 

rainfall (Overeem et al., 2011, 2013; Ostrometzky and Messer, 2014; Overeem et al., 2016a; 

Ostrometzky and Messer, 2017). Using only minimum and maximum RSL values, Overeem 

et al. (2011) employed an extra coefficient to provide the estimate of time-averaged rain rate 

over the 15-minute sampling period. This coefficient provides the relative contribution of 

minimum and maximum attenuation (α and 1 - α for minimum and maximum, respectively) 

to obtain the weighted average attenuation. They suggested α as 0.33 based on a set of data 

for The Netherlands with the same value used for all time steps. Thus, this α remains 
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uncertain as the distribution of the rainfall or attenuation is usually not consistent across any 

15-minute period. Similarly, Ostrometzky and Messer (2017) also used various extreme value 

distribution functions for estimating time-average rain rates from minimum and maximum 

signal levels.  

Theoretically, there is no physical limit of a NMS on recording interval, meaning that it is 

possible to record the average RSL, poll the data at a higher frequency or even record in real-

time, except for the limitation of storage capacity or data transfer (Messer, 2018; Uijlenhoet 

et al., 2018; Chwala and Kunstmann, 2019). However, as these cellular networks have been 

designed and optimized for providing efficient telecommunication rather than measuring 

rainfall, the opportunistic use for rainfall monitoring needs to deal with the existing scheme 

of data sampling and storage. Thus, there is a need for a robust and more accurate 

methodology of estimating accurate rainfall using only the minimum and maximum RSLs 

that are currently recorded.  

Recent developments in the field of deep learning, especially in the branch of deep neural 

networks, offer a great opportunity to model various physical processes from data, especially 

if large quantities of data are available (Reichstein et al., 2019). As rainfall occurrence and 

RSL are time-dependent phenomena, and as a prediction is required at each time step, 

recurrent neural networks (RNNs) are well-suited: they can learn time dependency and are 

applicable to series of varying lengths (Shi et al., 2014). Such networks have been 

successfully used in other fields of computer science, such as speech recognition, language 

translation, and video and motion prediction (Graves and Schmidhuber, 2009; Mathieu et al., 

2015). Closer to the application presented here, Mishra et al. (2018) have implemented a deep 

learning framework to distinguish dry and wet periods from communication satellite data to 

improve rainfall retrievals. Recently, Habi and Messer (2018) and Polz et al. (2019) have also 

used machine learning techniques for the wet-dry classification of commercial microwave 

links. Similarly, there have been a few other studies using deep learning for rainfall-runoff 

modelling (Hu et al., 2018; Kratzert et al., 2018), but according to an extensive search, this 

is the first work that employs a recurrent neural network for improving the rainfall estimation 

from commercial microwave link data.  The primary objective of this study was to design 

and apply a deep learning model for improving rainfall estimation using CML data. The 

specific objectives of this study were: (1) to train and validate a deep learning model using a 

disdrometer dataset; and (2) to use this model to predict rainfall using limited data (only 
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minimum and maximum RSL data) from a CML. To achieve these objectives, laser-based 

disdrometer data were collected for more than one year, and then used for training, validation 

and testing. Subsequently, the disdrometer trained model was used to retrieve rainfall from a 

CML situated in the proximity of the disdrometer. A range of deep learning model 

architectures was evaluated and compared with the existing approach (in this case, the result 

obtained using the weighted average method).In the overall rainfall retrieval process, all other 

steps are based on the steps followed by Overeem et al. (2016a), including baseline 

estimation, wet antenna attenuation and attenuation-rainfall relationship. 

6.2 Study area and data 

For this study, disdrometer data from an OTT1 PASIVEL installed at Mount View Reservoir; 

Glen Waverly [37°53′24″S, 145°10′23″E] was used. For the detail description of the 

processing chain involved in deriving the specific attenuation, please refer to the Chapter 4.3 

section. Besides this, the same commercial microwave link along the dedicated experimental 

microwave link path was also used for the independent testing of the model.  

6.3 Methodology 

6.3.1 Long short-term memory network 

Long Short-Term Memory (LSTM) architecture is a specific type of recurrent neural network 

(RNN) that was originally designed to capture long-term dependencies in time series data. It 

has the capability of overcoming issues of vanishing and exploding gradients (Hochreiter and 

Schmidhuber, 1997). This architecture preserves the states over a longer period of time 

without losing temporal dependencies (Hochreiter and Schmidhuber, 1997). For the problem 

related to the temporal distribution with non-linearity in data, such as natural language 

processing, image classification and sound translation, this method has proved the most 

useful when compared with other statistical and conventional feed-forward models (Shen, 

2018; Shen et al., 2018).  

In this study, among various architectures within the LSTM, the sequence-to-sequence LSTM 

network has been used herein (Figure 1a). The output 𝑦 = 𝑦1, 𝑦2, … … … . . 𝑦𝑛 is the average 

attenuation from an input 𝑥 = 𝑥1, 𝑥2, … … … . . 𝑥𝑛 consisting of n consecutive time steps. The 
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input variables are the minimum and maximum attenuation and the output is the average 

attenuation.  

In each time step t (1 ≤ 𝑡 ≤ 𝑛), the current input 𝑥𝑡 is processed in the LSTM recurrent cells 

of each layer in a network, as in Figure 1(b). The LSTM cell is composed of an input layer, 

one or more memory cells and an output layer. The major feature of LSTM networks is that 

they contain hidden layers, which are referred to as memory cells. Each of these memory 

cells is composed of three gates for adjusting the internal cell state (𝑠𝑡): the forget gate (𝑓𝑡), 

an input gate (𝑖𝑡) and an output gate (𝑜𝑡). Details of the LSTM algorithm are explained by 

Hochreiter and Schmidhuber (1997), and can be summarized as 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥𝑡 + 𝑊𝑔ℎℎ(𝑡−1) + 𝑏𝑔) (6.1) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ(𝑡−1) + 𝑏𝑖) (6.2) 

𝑓𝑡 =  𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ(𝑡−1) + 𝑏𝑓) (6.3) 

𝑜𝑡 =  𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ(𝑡−1) + 𝑏0) (6.4) 

𝑠𝑡 =  𝑔𝑡⨀ 𝑖𝑡 + 𝑠𝑡−1⨀ 𝑜𝑡 (6.5) 

ℎ𝑡 = tanh(𝑠𝑡) ⨀ 𝑜𝑡 (6.6) 

𝑦𝑡 = (𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦), (6.7) 

where 𝜎 is the logistic sigmoidal function, ⨀ is an element wise multiplication, 𝑔𝑡 is input 

node, 𝑥𝑡 is the input forcing, 𝑊 are the network weights, 𝑏 are bias parameters and 𝑦 is the 

1st recurrent layer

2nd recurrent layer

Dense layer

Output layer

x1 x2 xn-1 xn

Input layer

y1 y2 yn-1
yn

 

 

Figure 6-1: (a) General architecture of a two-layer sequence-to-sequence recurrent 

neural network. The output of the second layer for each of the time steps is fed into a 

dense layer to calculate the prediction (𝒚𝟏, 𝒚𝟐 … . . 𝒚𝒏). (b) The internal architecture of 

the LSTM recurrent cell [Adapted from: Hu et al. (2018)]. 
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output for the time step t. Among these parameters, W and b are learnable (adaptable) 

parameters which are updated at each time step based on a given loss function. 

6.3.2 Modelling approach  

For this study, a two-layer LSTM model was designed with fully connected hidden layers, 

50 LSTM neurons and a single dense layer for predicting output was implemented to form 

the base architecture of the model. This architecture was adopted based on the prior 

sensitivity analysis using different numbers of layers and neurons.  The Mean Squared Error 

(MSE) was used as a loss function (quantified and minimized for average attenuation) and 

the Adaptive Moment Estimation, in short, known as Adam, was used to optimize the model. 

Adam is an adaptive learning rate optimization algorithm proposed by Diederik and Ba 

(2014), which performs better than the conventional stochastic gradient descent algorithms.  

This model was run for 200 epochs (i.e. 200 passes through the data), with variations in the 

number of layers and hidden neurons tested to understand the sensitivity and optimize model 

performance. A newly developed architecture of the RNN called Grated Recurrent Unit 

(GRU), developed by Cho et al. (2014), was also tested. The GRU has a similar goal of 

tracking the long-term dependencies in the time series data. This GRU contains two gates 

called a reset gate and an update gate as opposed to the LSTM, which contains three gates. 

Similarly, a conventional artificial neural network (which is a memoryless model that does 

not capture the temporal trend in the data) using dense layers was tested and compared to the 

performance of the LSTM model. In order to prevent the model from overfitting, a dropout 

rate of 50% was adopted for each of the layers.  

The input dataset (15-minute maximum and minimum attenuation) for the model was 

produced from the 30-second disdrometer derived attenuation. This whole dataset was split 

into sets of sub-sequences of size Nw, which helps in the backpropagation of the LSTM model 

over time. This is helpful in back-propagation through time, which unfolds this LSTM into a 

feed-forward neural network with a number of recurrent steps, Nw. This Nw was determined 

based on the most prevalent duration of rain events (based on the Poisson-type distribution). 

Time steps of 10, 15 and 20 minutes were considered for this. Samples with all dry time steps 

were discarded. For the rain events longer than the considered time-steps, these events were 

split into overlapping sequences. Here we define a rainfall event as a rain period separated 

by a 1-hour or longer rain-free period and having a minimum rainfall rate of 0.1mm/hr.  
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The chosen dataset was split into two groups of sequences; (i) the training group 

corresponding to 80% of the whole sequence, and (ii) the testing group corresponding to the 

remaining 20% of the whole sequence (typical independent test amount range between 10 

and 20%). And within a training group, 80% of the data was used to optimize the model and 

the remaining 20 % was used as a validation set to monitor the learning process. This 

validation was conducted to make sure that there was no overfitting of the model parameters 

during the training phase.  

6.3.3 Rainfall retrieval from CML data 

The algorithm introduced by Overeem et al. (2016a) was used for the rainfall retrieval from 

commercial microwave link data. A brief description of the algorithm is given below:  

a) Wet/dry classification: The algorithm proposed by Overeem et al. (2016a) uses a spatial 

correlation by looking at the nearby links to identify the given time steps as either wet or dry. 

In the case presented herein, there was only one link, and so this classification was based 

solely on the disdrometer data. Time steps for which the rainfall rate observed by the 

disdrometer was greater than or equal to 0.1 mm h-1 were classified as “wet”, and all 

remaining time steps were classified as “dry”. 

b) Identification of the reference/baseline signal: This was calculated as the moving median 

of the signal level during the previous 24-hour dry period. 

c) Wet antenna attenuation correction: A constant wet antenna attenuation was obtained 

based on the optimization a microwave link using the algorithm suggested by de Vos et al. 

(2019). In this case, average RSL data was used to obtain the wet antenna attenuation of 1.2 

dB. The resultant (total – wet antenna) attenuation was later divided by the path length to 

obtain the rain-induced specific attenuation (k).   

d) Computation of the rainfall rate: This was done using the power-law relationship between 

rainfall intensity (R) and specific attenuation (k), (Olsen et al., 1978) as   

𝑅 = 𝑎𝑘𝑏, (6.8) 

where, R is the rainfall intensity (mm h-1), k is the specific attenuation of the signal (dB km-

1), and a and b are parameters depending on the frequency, polarization, drop size 

distribution, drop shape and canting angle. The values for parameters a and b (a = 9.563 and 
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b = 0.956) were derived for Melbourne for an equivalent 22.715 GHz microwave link using 

data obtained from an OTT PARSIVEL1 optical disdrometer over a three-year period.  

6.4 Results 

6.4.1 Verification result 

Figure 6-2 shows an illustrative comparison of the rainfall estimation (obtained from the 

attenuation estimate using equation (10) with the same a and b parameters) using the 

weighted average method with parameter α = 0.21 and the LSTM model. The factor α = 0.21 

 

 

Figure 6-2: Comparison of the predicted to the observed (a, b) average attenuation 

based on disdrometer derived attenuation and (c,d) rainfall rate based on disdrometer 

derived attenuation estimates for the weighted average method with α=0.21; and for 

the LSTM Model. 
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was obtained by optimizing the minimum and maximum attenuation values.  It shows how 

the LSTM model outperformed the constant weighted average method when compared with 

observed attenuation and rainfall directly derived from the 30-second disdrometer data. Using 

the weights 21% and 79% for the maximum and minimum, respectively, resulted in a larger 

relative bias in both average attenuation and rainfall rate compared to using the LSTM model. 

The Root Mean Square Error (RMSE) between the attenuation measured by the disdrometer 

and that obtained from LSTM dropped from 0.14 dB km-1 to 0.07 dB km-1, while the relative 

bias reduced from 5.6% to 1.9% and the coefficient of determination (R2) increased from 

0.85 to 0.97. Similar improvements were observed for rainfall intensity. To further examine 

the performance of the LSTM model over a constant weighted average method, other α 

values, ranging from 0 to 1 with a step of 0.1, were also tested. It was found that the statistics 

(RMSE, R2, CV and percentage bias) of the LSTM model were better compared to those of 

the constant weighted average method for all values of α considered. 

Figure 6-3 shows the time series of the rainfall intensity observations and model estimates 

for the longest rainfall event that occurred on 2 and 3 December 2017 and lasted for 31 hours. 

The LSTM model is able to accurately capture the entire range of rainfall intensities, 

including higher rainfall intensities. The RMSE is reduced from 4.29 mm h-1 to 1.04 mm h-1. 

Similarly, the relative bias in the mean is reduced from 55.95% to -2.01% for the LSTM 

model compared with other conventional approaches.  



 Chapter 6. Deep learning model for improving rainfall estimates  

110 

 

6.4.2 Performance of various architectures of the deep learning model  

Table 6-1 shows five statistical measures for three different architectures of the deep learning 

model. Among these, the dense layer was a traditional artificial neural network with no 

capacity to model time dependencies and the other two (GRU and LSTM) were different 

types of RNN architectures. For both the training and test datasets, the performance of the 

LSTM and GRU were very similar, while the GRU performed better in terms of relative bias. 

The remaining four statistical parameters were similar. The RMSE, MAE, R2 and Coefficient 

of Variation (CV) values for the LSTM model indicate that it performed slightly better than 

the GRU and much better than the dense layer.  

   

 

 

Figure 6-3: (a) Time series of predicted and observed rainfall intensity based on 

disdrometer data from conventional models and LSTM for 2 and 3 December 2017. 

Bottom panels: Comparison of the predicted to the observed rainfall for the same 

days for (b) the conventional approach with α=0.31; (c) the conventional approach 

with α=0.21; (d) the LSTM model. 
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Table 6-1: Comparison of the performance of various model architectures for rainfall 

prediction for the training and test datasets based on the disdrometer. 

Data sets Architecture R2 RMSE 

(mm h-1) 

MAE 

(mm h-1) 

Relative 

bias (%) 

CV 

Training datasets 

31495 sets Dense Layer 

(ANN) 

0.85 1.12 0.21 -6.23 1.48 

GRU 0.96 0.61 0.17 -0.17 0.81 

LSTM 0.97 0.62 0.17 2.87 0.76 

Test datasets 

7874 sets Dense layer 

(ANN) 

0.86 1.11 0.20 -0.13 1.47 

GRU 0.95 0.71 0.20 -0.45 0.84 

 

 

Figure 6-4: LSTM model performance for (a) RMSE; (b) Relative percentage bias; (c) 

Coefficient of variation vs No. of hidden neurons; (d) RMSE; (e) Relative percentage 

bias; and (f) Coefficient of variation vs no. of hidden layers. 



 Chapter 6. Deep learning model for improving rainfall estimates  

112 

 

6.4.3 Sensitivity analysis 

a) Sensitivity of the LSTM model  

Figure 6-4 shows the LSTM model sensitivity for different numbers of neurons and hidden 

layers for the training and test datasets. The RMSE decreased significantly with an increasing 

amount of neurons up to 100 and remained constant after increasing the number of neurons 

further. Similar characteristics were observed for the relative bias and the coefficient of 

variation. For the hidden layers, the LSTM model performance increased from one to three 

layers and started to deteriorate beyond that value. The performance of the model showed the 

fluctuation based on percent bias but its best performance was observed with three hidden 

layers.  

b) Sensitivity on input data 

To understand the impact of input data on the overall performance of LSTM model, the 

following two cases were considered:  

1) Case I: adding a constant bias of ±0.4 dB km-1 in both minimum and maximum 

attenuation, which is almost equal to the wet antenna attenuation applied to the 

commercial microwave link data (refer to Figure 6-5 and 6-6). 

2) Case II: adding a random noise of -0.3 to +0.3 dB km-1, which is equivalent to the error 

that may be caused due to quantization and other errors (refer to Figure 6-7).  

Figure 6-5 and Figure 6-6 showed that the performance of the LSTM model deteriorates when 

compared with clean attenuation data. However, overall performance of the LSTM model 

itself was still better for both cases compared with the constant weighted average method 

with parameter α, although there was a significant bias in the rainfall estimation. Thus, the 

outcome of the LSTM model is linked to the nature of the bias in the input data (in our case, 

in the attenuation obtained from the min and max RSL data from CML).  

Figure 6-7 showed the performance of The LSTM model with added random noise data. For 

this case also, the overall performance of the model was still better compared with the 

constant weighting factor method. Also, when comparing the two cases, the LSTM model 

with added random noise input showed lower bias in the rainfall estimates compared with 

constant bias.  
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Figure 6-5: Scatter plot of the predicted versus observed rainfall intensity with +0.4 

dB km-1 constant bias for (a) with α=0.31; (b) with α=0.21; and (c) LSTM model 

 

Figure 6-6: Scatter plot of the predicted versus observed rainfall intensity with -0.4 dB 

km-1 constant bias (a) with α=0.31; (b) with α=0.21; and (c) LSTM model 

 

Figure 6-7: Scatter plot of the predicted versus observed rainfall intensity with added 

random noise from -0.3 to +0.3 dB km-1 for (a) a weighting factor with α=0.31; (b) a 

weighting factor with α=0.21; and (c) LSTM model. 



 Chapter 6. Deep learning model for improving rainfall estimates  

114 

 

6.4.4 Application of the disdrometer-trained LSTM model to the CML dataset 

Figure 6-8 shows the comparison of the predicted rainfall using the CML observations for 

the 22 GHz CML link closest to the disdrometer site. The factor α = 0.21 and wet antenna 

attenuation of 1.2 dB were obtained through optimisation of average rainfall obtained from 

minimum and maximum rainfall based on the gauge-adjusted radar data obtained from the 

Bureau of Meteorology. The LSTM model outperformed the two weightage average method 

results (α = 0.30 and 0.21) for all but a few events. In particular, shorter duration convective 

rainfall events were under-estimated by the LSTM model compared with the weighted 

average method.  

6.5 Summary 

This chapter proposed a new data-driven model which uses deep learning techniques for more 

accurate rainfall estimation. The developed model was independently verified with a dataset 

that had not been used for training the model. These results have demonstrated the ability to 

use such data-driven models for rainfall retrieval. Generally speaking, this technique is the 

first study to propose such an approach based on building the model using disdrometer data 

and applying it to real commercial microwave link data.

 

Figure 6-8: Scatter plots of the predicted versus observed rainfall intensity using 

commercial microwave link data for: (a) the weighted average method with α=0.30; 

(b) the weighted average method with α=0.21; and (c) the disdrometer-trained LSTM 

Model. 
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Conclusions and future work 

7.1 Conclusions  

Backhaul towers from telecommunication companies provide a valuable source of rainfall 

information close to the ground surface, complementing in-situ measurement devices like 

rain gauges and weather radar. The accuracy of such rainfall estimates depends on a number 

of factors. Researchers have made significant advances in developing algorithms and models 

for improving the rainfall estimates from such opportunistic data sources. However, real-

world applications have been minimal due to a lack of widespread testing. Therefore, the 

main contribution of this research was validating the existing rainfall retrieval algorithms for 

the Australian climate, developing an understanding of uncertainties in rainfall retrieval using 

different sampling strategies, and developing a new data-driven rainfall methodology. Such 

techniques have never been tested in the Australian weather conditions, providing the basis 

to further develop and improve rainfall estimation.  

7.1.1 Uncertainties associated with microwave link rainfall estimates 

Key parameters used in the power-law model, which is the basis for the commonly used 

rainfall retrieval algorithms, were assessed using data collected from the two OTT 

disdrometers. These parameters were later used to validate a total of 72 rainfall events 

collected between February 2018 and December 2019. Later, this data was resampled 

according to three commonly used strategies; namely average, minimum/maximum, and 

instantaneous. Moreover, this was undertaken for two different time intervals i.e. 5 and 15-

minutes, to understand the impact on the rainfall retrieval accuracy and compared with the 

reference 1-minute dataset. This work also intercompared the performance of three wet 

antenna attenuation models.  Analyses led to several conclusions:  

• The path-averaged rainfall estimation from the experimental link showed a strong 

correlation of 0.95 with ground observations. However, a systematic overestimation 

of about 103% was observed. When applied to commercial microwave links the 

rainfall estimation showed a larger bias of 142%. In addition, there was more noise 
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observed in the CML derived rainfall estimates (CV of 3.18) compared with the 

experimental link (CV of 2.11). 

• Based on a comparison of three commonly used sampling strategies, for both 5 and 

15-minute time periods, it was found that the average sampling strategy showed better 

rainfall estimates compared with the minimum/maximum and instantaneous sampling 

strategies.  

• For the quantization errors, for the 24 GHz link it was found that there was no such 

significant impact of data quantization.  

• The signal attenuates up to 3.5 dB when the receiver antenna got wet, corresponding 

to 7.5 mm/h rainfall at 24 GHz. It was not possible to test the effect on the transmitting 

antenna.   

• All three wet antenna attenuation models tested showed a substantial improvement in 

rainfall retrieval. Based on all performance statistics, both the exponential decay and 

power-law models showed very similar performance and outperformed the constant 

wet antenna model.  However, when applied to the commercial microwave link data, 

the constant wet antenna model performed best.  

7.1.2 Rainfall retrieval from commercial microwave links 

This study presented rainfall retrievals over the greater Melbourne Metropolis using 135 

commercial microwave links operating at frequencies ranging from 10 to 40 GHz with path 

lengths of 0.2 km to 25 km. This study was the very first to conduct a comparison of rainfall 

retrieval using CML data with two different sampling strategies over the same link paths 

(Average and MinMax RSL data over 15 minutes). For this study, the RAINLINK package 

was used, and a new set of parameters derived for rainfall retrieval for Melbourne. The 

analyses led to the following conclusions:  

• For the wet-dry classification using the nearby link approach, MinMax data was found 

to perform best, with a lower FAR (3.7%) and similar POD compared with the 

Average data. Other statistics, including Matthew’s correlation coefficient (0.45 for 

MinMax and 0.35 for Average) and error rate, suggested that the use of MinMax data 

achieved fewer false alarms. 

• The Average data sampling approach had a similar rainfall retrieval performance to 

using the MinMax data sampling approach. When compared for different 
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accumulation intervals, the MinMax data sampling approach provided the best 

performance based on statistics (relative bias, CV, RMSE and 𝜌) and double mass 

curve.  

7.1.3 Deep learning for improved rainfall estimates  

A novel approach for improving the rainfall estimation from commercial microwave links 

(when only limited information such as minimum and maximum RSL data are available) by 

using a deep learning model was proposed. This used the data collected from a disdrometer 

for training and testing prior to applying the model to the commercial microwave link data. 

Analyses led to the following conclusions:  

• Results showed a substantial improvement based on simulated microwave link 

attenuation data from a disdrometer and for real commercial microwave link data, 

compared with two weighted average methods with parameters of α =0.31 or α =0.21.  

• Although the performance of the deep learning model was lower when used on 

commercial microwave link data rather than the simulated data, there was still a good 

improvement in bias and R2 of the rainfall estimation compared to the weightage 

average method.  

7.2 Limitations and Future work 

There are a couple of limitations in this research, and so the corresponding future needs are 

as listed below:  

1)  For the experimental study, only two disdrometers were installed, with one at each 

end of the experimental microwave link. As this microwave link was about 4 km in 

length, the drop size distribution measured at two ends only would not fully capture 

the spatial distribution of the drop size distribution (DSD) along the path. It is 

therefore recommended to install more disdrometers along the path in future work in 

order to investigate the variability of DSDs at a small spatial scale. This would 

provide more insights on the distribution of the received signal data sampled at the 

coarser time resolutions of 15-minutes. Additionally, it is also recommended for 

future studies to include a high-resolution time-lapse camera on the transmitter and 

receiver antenna so that other environmental phenomena such as dew formation and 

its impact on the rainfall retrieval could be investigated. 
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2) This study has evaluated the use of CML data for the Melbourne metropolitan area. 

Here, gauge-adjusted radar data were used as the reference data even though there are 

limitations of such radar-derived products. Thus, it is recommended to compare with 

nearby gauge data for the link performance. Furthermore, it is recommended that 

CML rainfall estimates be used as a complementary source of information where 

there are no radars or as an alternative rainfall measurement instrument. At the city 

scale, CML-derived rainfall estimates can help overcome data gaps due to radar 

clutter from high-rise buildings and the absence of traditional rain gauges. 

Accordingly, there is a great opportunity to combine the three datasets into a “merged 

product”. Moreover, studying the performance of different sampling strategies in 

detail with a high-resolution dataset is expected to provide greater insight to the 

optimal sampling strategy. This may also lead to an improved rainfall retrieval 

algorithm.  

3) The proposed deep learning model was only verified on a single CML link close to 

the disdrometer, but a similar methodology could be adopted for other links having 

different frequencies within the same climate. Usually, links having frequencies 

ranging from 20 to 40 GHz are most suitable as these tend to be associated with a 

close to linear specific attenuation-rain rate relationship (Berne and Uijlenhoet, 2007). 

Following the approach developed in this thesis and based on a time series of 

attenuation and rainfall rates from a single disdrometer data set, various deep learning 

models for each given frequency can be designed and implemented. The limitations 

of this data-driven approach reside first in the size and representativeness of the 

collected disdrometer data set for a given location. The applicability of this trained 

model to retrieve rainfall for a wider area still has to be demonstrated, and likely the 

size (duration, diversity and quantity of the recorded rainfall events) of the 

disdrometer data will also be an important factor. Second, this disdrometer-trained 

model replaces only one of the steps among numerous successive steps in the rainfall 

retrieval, such as dry/wet classification, baseline estimation, and wet antenna 

attenuation. Such data-driven deep learning approaches for dry/wet classification 

have also been recently explored by Polz et al. (2019) and Habi et al. (2018). 

Similarly, one could think of a similar approach for baseline estimation and wet 

antenna attenuation. Also, adaptive learning and/or transfer learning techniques with 
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such deep learning models could be implemented and applied in places where such 

disdrometer data are unavailable. 
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Appendix 

Table A1: Dataset used for calibration of RAINLINK parameters. 

Day Time steps with rain 
Total rain 

(mm) 

Maximum rainfall 

intensity (mm/hr) 

2017-08-06 34 10.64 4.40 

2017-08-07 32 7.87 3.34 

2017-08-15 33 8.87 6.17 

2017-08-18 51 9.53 2.86 

2017-08-26 28 13.65 8.47 

2017-09-05 33 12.61 7.12 

2017-09-07 38 10.35 3.76 

2017-09-08 36 5.85 2.28 

2017-09-13 33 8.21 3.92 

2017-09-15 51 30.13 19.64 

2018-06-08 35 12.64 5.25 

2018-06-15 22 6.74 6.07 

2018-06-16 48 30.19 7.44 

2018-07-07 57 19.55 5.03 

2018-07-08 70 15.42 3.66 

2018-08-07 31 9.80 4.08 

2018-08-12 39 6.06 2.27 

2018-08-18 51 18.52 6.57 

2018-08-19 38 7.59 3.99 

2018-08-21 38 4.29 2.35 

2018-10-09 37 7.25 4.11 

2018-10-16 24 8.85 6.99 

2018-10-17 21 4.20 3.72 

2018-10-19 27 13.35 6.87 

2018-11-07 32 9.66 5.17 

2018-11-20 31 32.12 17.69 

2018-11-21 24 13.14 8.97 

2018-11-22 64 33.66 9.22 

2018-11-23 58 17.93 4.07 

2018-12-20 26 3.18 0.94 
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