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Abstract 

Climate change, urbanization, and increasing population density in global floodplains 

have made accurate forecasts of flood inundation vital to designing effective rescue, response, 

and resource allocation strategies during emergencies. Precipitation forecasts from numerical 

weather prediction models are typically propagated through hydrological models to generate 

streamflow at catchment outlets, which are then input to hydraulic models to determine 

inundation depth and flow. The uncertainties in precipitation forecasts are usually amplified 

through this modelling chain, and significantly reduce the reliability of the resulting inundation 

forecasts. Consequently, point hydrometric gauge observations of discharge and water level 

have traditionally been used to quantify flood risk and increase the reliability of flood 

inundation model predictions. However, the global decline in gauge networks and lack of 

spatial representativeness of point measurements have necessitated the exploration of 

alternative data sources to reduce flood inundation forecast uncertainties.  

In this context, remote sensing has emerged as a valuable tool, providing capabilities 

for synoptic and systematic coverage of large inundated areas. Synthetic Aperture Radar (SAR) 

sensors are ubiquitous in flood monitoring applications, due to their all-weather/all-day imaging 

capabilities. SAR-derived flood extents can be converted to floodplain water levels through 

integration with digital elevation models (DEMs), and subsequently used to inform flood 

inundation forecasts in real-time using data assimilation. However, this water level derivation 

process is neither straightforward nor automatic and requires several simplifying assumptions. 

Moreover, due to SAR data uncertainties in urban and vegetated areas, reliable water level 

estimates can only be obtained at select shoreline locations. Recent studies have therefore 

recommended the direct assimilation of flood extents without converting to water levels but 

have struggled with (a) reducing and quantifying the uncertainties in SAR-based flood maps 

and (b) defining a cost function that appropriately compares the modelled and observed 

inundation. Therefore, this thesis first improved the estimation of probabilistic flood extents 

from SAR data using optimized texture-based methods, and then developed a novel cost 

function to sequentially assimilate them into a hydraulic model. Independently acquired 

crowdsourced water levels were used to quantitatively calibrate the hydraulic model, and the 
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sensitivity of the proposed flood extent assimilation strategy to observation spatiotemporal 

characteristics was also assessed.  

In order to overcome the problem of uncertainties in SAR-based flood extents, a novel 

texture optimization method was introduced. Image texture or the spatial arrangement of SAR 

backscatter values, provides additional information about the observed features which can 

complement intensity information. However, the selection of an appropriate window size and 

orientation for texture calculations, as well as the subjectivity in choosing optimal application 

specific textures has impeded widespread application. The proposed method first estimated the 

appropriate window size through variogram analysis, then second-order uncorrelated statistical 

textures were estimated and optimized using a dimensionality reduction technique. Finally, an 

Adaptive Neuro-Fuzzy Information System (ANFIS) was used to classify the texture-enhanced 

SAR images, which provides the advantage of using neural networks to optimize the backscatter 

distribution parameters, while a fuzzy expert-based system can be used to define the form of 

the distributions. The proposed approach was validated using independent aerial photographs, 

achieving up to 54% improvements in classification accuracy in some areas. 

A particle filter based assimilation framework was then implemented with a novel 

mutual information based cost function to assimilate the fuzzy flood extents, which measures 

the amount of information contained in one random variable about another. The performance 

of the proposed assimilation algorithm was evaluated through synthetic experiments and real 

data. Results revealed the suitability of the cost function to effectively assimilate flood extents, 

resulting in improved quality of inundation forecasts for lead times of up to a week. The 

sensitivity of the proposed flood extent assimilation framework to observation spatiotemporal 

characteristics was also synthetically evaluated. Specifically, questions pertaining to the 

optimal location, timing, and frequency of satellite images to obtain maximum improvements 

from model data integration were answered in this section. Observation timing with respect to 

the flood wave arrival time, emerged as a crucial factor determining the success of the 

assimilation. In fact, a single image acquired shortly after the flood peak assimilated at an 

optimal location in the catchment, resulted in forecast improvements comparable to the 

assimilation of multiple images (±4%). Moreover, this thesis also revealed that the possibility 

of forecast degradation if early rising limb observation were assimilated or if the correlation 

between subsequent observations was overestimated. 
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This research demonstrated that the assimilation of SAR-based flood extents can be 

optimized to maximize flood inundation forecast improvements and can successfully mitigate 

streamflow forecast uncertainties. The increased reliability of inundation estimates could pave 

the way for their inclusion in global flood forecasting systems, potentially leading to predictions 

relevant at catchment scales which can significantly augment flood resilience.  

 



P r e f a c e   P a g e  | xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page has intentionally been left blank. 

  



P r e f a c e   P a g e  | xiii 

 

 

 

Table of Contents 

Declaration.................................................................................................................................. i 

Acknowledgements ................................................................................................................... v 

Abstract ..................................................................................................................................... ix 

Table of Contents ................................................................................................................... xiii 

List of Acronyms and Abbreviations...................................................................................... xix 

List of Symbols ...................................................................................................................... xxii 

List of Figures ........................................................................................................................ xxv 

List of Tables ....................................................................................................................... xxxv 

PART I INTRODUCTION AND BACKGROUND 

CHAPTER ONE 

1. Introduction .................................................................................................................... 1-1 

1.1 Background and Problem Statement ......................................................................... 1-1 

1.2 Objectives, Assumptions, and Scope ........................................................................ 1-8 

1.3 Outline .................................................................................................................... 1-10 

CHAPTER TWO 

2. Literature Review ........................................................................................................... 2-1 

2.1 Synthetic Aperture Radar-based Flood Extents ........................................................ 2-2 

2.1.1 Common SAR-based Flood Mapping Methods ................................................ 2-5 

2.1.2 Image Interpretation: Challenges and Solutions .............................................. 2-12 

2.1.3 Representation of Uncertainties....................................................................... 2-21 

2.2 Remote Sensing Data Assimilation for Improved Flood Inundation Modelling .... 2-22 



P r e f a c e   P a g e  | xiv 

 

 

 

2.2.1 Assimilating Earth Observations into Hydraulic Flood Forecasting Models . 2-28 

2.2.2 Observation Operators and Characteristics ..................................................... 2-39 

2.2.3 Opportunities and Challenges ......................................................................... 2-42 

2.3 Research Gaps ........................................................................................................ 2-45 

2.4 Chapter Summary ................................................................................................... 2-47 

PART II DATA AND MODELS 

CHAPTER THREE 

3. Study Area and Data ...................................................................................................... 3-1 

3.1 Introduction .............................................................................................................. 3-1 

3.2 Study Area ................................................................................................................ 3-2 

3.3 Data Summary .......................................................................................................... 3-5 

3.3.1 SAR Images ...................................................................................................... 3-6 

3.3.2 Optical Imagery................................................................................................. 3-7 

3.3.3 Topography ....................................................................................................... 3-9 

3.3.4 Land Cover Data ............................................................................................. 3-10 

3.3.5 Crowdsourced Data ......................................................................................... 3-11 

3.3.6 Hydrometric Data ............................................................................................ 3-12 

3.4 Chapter Summary ................................................................................................... 3-13 

CHAPTER FOUR 

4. SAR-based Flood Inundation Mapping ......................................................................... 4-1 

4.1 Introduction .............................................................................................................. 4-1 

4.2 Principles of SAR: Implications for Flood Mapping ............................................... 4-3 

4.2.1 Geometric Distortion......................................................................................... 4-4 

4.2.2 Surface Roughness and Local Incidence Angle ................................................ 4-6 



P r e f a c e   P a g e  | xv 

 

 

 

4.2.3 Dielectric Constant ............................................................................................ 4-8 

4.2.4 Polarization ........................................................................................................ 4-9 

4.2.5 Speckle .............................................................................................................. 4-9 

4.3 Methodology ........................................................................................................... 4-10 

4.3.1 SAR Preprocessing .......................................................................................... 4-10 

4.3.2 Texture Analysis .............................................................................................. 4-11 

4.3.3 The Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier .................. 4-14 

4.3.4 Validation Strategies ....................................................................................... 4-17 

4.4 Results and Discussion ........................................................................................... 4-21 

4.4.1 Window Size Selection .................................................................................... 4-21 

4.4.2 Neuro-Fuzzy Classifier - Training, Testing, and Validation ........................... 4-22 

4.4.3 Fuzzy Flood Maps - Accuracy Assessment ..................................................... 4-25 

4.4.4 Land Cover Based Performance Analysis ....................................................... 4-35 

4.5 Chapter Summary ................................................................................................... 4-37 

5. Flood Inundation Modelling ........................................................................................ ...5-1 

5.1 Introduction ............................................................................................................... 5-1 

5.2 Principles of Hydrodynamic Modelling ................................................................... 5-2 

5.3 Uncertainties in Hydrodynamic Modelling .............................................................. 5-4 

5.4 Model Selection ........................................................................................................ 5-6 

5.5 LISFLOOD-FP: Model Equations and Implementation ........................................... 5-8 

5.6 Model Parameterization .......................................................................................... 5-10 

5.6.1 Potential of Crowd-sourced Observations ....................................................... 5-10 

5.6.2 Framework for Flood Model Calibration using Crowdsourced Data .............. 5-11 

5.6.3 Results and Discussion .................................................................................... 5-14 

5.7 Model Evaluation .................................................................................................... 5-19 



P r e f a c e   P a g e  | xvi 

 

 

 

5.8 Chapter Summary ................................................................................................... 5-23 

PART III FLOOD EXTENT ASSIMILATION 

CHAPTER SIX 

6. Flood Extent Assimilation: Framework Development .................................................. 6-1 

6.1 Introduction .............................................................................................................. 6-1 

6.2 Principles of Data Assimilation ................................................................................ 6-4 

6.2.1 Sequential Data Assimilation ............................................................................ 6-5 

6.2.2 Variational Data Assimilation ........................................................................... 6-6 

6.3 Reducing Model Uncertainty: The Role of Data Assimilation ................................ 6-8 

6.4 Hydrological Data Assimilation: The Systems Perspective ................................... 6-11 

6.4.1 System Identification ...................................................................................... 6-11 

6.4.2 Parameter Estimation ...................................................................................... 6-12 

6.4.3 State Estimation .............................................................................................. 6-14 

6.5 Particle Filter-based Flood Extent Assimilation Framework ................................. 6-18 

6.6 Chapter Summary ................................................................................................... 6-26 

CHAPTER SEVEN 

7. Flood Extent Assimilation: Synthetic Study .................................................................. 7-1 

7.1 Introduction .............................................................................................................. 7-1 

7.2 Methods .................................................................................................................... 7-4 

7.2.1 Experimental Design ......................................................................................... 7-5 

7.2.2 Ensemble Generation ........................................................................................ 7-5 

7.2.3 Synthetic Satellite Observation Simulation ...................................................... 7-8 

7.2.4 Performance Metrics ....................................................................................... 7-10 

7.3 Results and Discussion ........................................................................................... 7-15 



P r e f a c e   P a g e  | xvii 

 

 

 

7.3.1 Impact on Simulated Inundation Extent .......................................................... 7-16 

7.3.2 Impact on Floodplain Water Depth Simulation ............................................... 7-19 

7.3.3 Impact on Floodplain Flow Velocity Simulation ............................................ 7-23 

7.3.4 Impact on Flood Hazard Simulation ................................................................ 7-28 

7.3.5 Impact on Channel Flow and Water Level Simulation ................................... 7-31 

7.4 Chapter Summary ................................................................................................... 7-37 

CHAPTER EIGHT 

8. Sensitivity to Observation Characteristics ...................................................................... 8-1 

8.1 Introduction ............................................................................................................... 8-1 

8.2 Methods .................................................................................................................... 8-3 

8.2.1 Experimental Design ......................................................................................... 8-3 

8.2.2 Performance Metrics.......................................................................................... 8-5 

8.3 Results and Discussion ............................................................................................. 8-6 

8.3.1 Sub-reach Hydraulic Characterization............................................................... 8-7 

8.3.2 Impact of Assimilating a Single Image on Forecast Accuracy ......................... 8-7 

8.3.3 Optimizing Multiple Image Assimilation ........................................................ 8-12 

8.3.4 Maximum Possible Improvements through Flood Extent Assimilation ......... 8-22 

8.4 Chapter Summary ................................................................................................... 8-24 

CHAPTER NINE 

9. Real-data Application ..................................................................................................... 9-1 

9.1 Introduction ............................................................................................................... 9-1 

9.2 Results and Discussion ............................................................................................. 9-2 

9.2.1 Impact on channel water levels ......................................................................... 9-4 

9.2.2 Impact on simulated inundation extent ............................................................ 9-11 

9.3 Chapter Summary ................................................................................................... 9-17 



P r e f a c e   P a g e  | xviii 

 

 

 

PART IV SUMMARY AND PERSPECTIVES 

CHAPTER TEN 

10. Conclusions ............................................................................................................... 10-1 

10.1 SAR-based Flood Extent Mapping......................................................................... 10-2 

10.2 Hydraulic Model Calibration using Crowd-sourced Data ...................................... 10-3 

10.3 Flood Extent Assimilation Algorithm .................................................................... 10-4 

10.4 Observation Spatiotemporal Sensitivity Analysis .................................................. 10-6 

CHAPTER ELEVEN 

11. Perspectives ............................................................................................................... 11-1 

11.1 SAR-based Flood Extent Mapping......................................................................... 11-1 

11.2 Crowdsourced Observations in Hydraulic Modelling ............................................ 11-2 

11.3 Optimizing Flood Extent Assimilation................................................................... 11-3 

11.4 Observation Spatiotemporal Sensitivity ................................................................. 11-5 

Publications 

References 

Appendix A Impact of Different Observation Operators…………………………………….1 



P r e f a c e   P a g e  | xix 

 

 

 

List of Acronyms and Abbreviations 

AHD Australian Height Datum 

BSS Brier Skill Score 

CSK Cosmo Skymed 

CS Crowdsourced 

CSI Critical Success Index 

DA Data Assimilation 

DEM Digital Elevation Model 

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Space Agency) 

EnKF Ensemble Kalman Filter 

EnSRF Ensemble Square Root Filter 

EO Earth Observation 

ETKF Ensemble Transform Kalman Filter 

ERS European Remote Sensing 

ESA European Space Agency 

FP Floodplain 

GFDS Global Flood Detection System 

GPS Global Positioning System 



P r e f a c e   P a g e  | xx 

 

 

 

HAND Height Above Nearest Drainage 

HD Hydrodynamic 

HEC-RAS Hydrological Engineering Corps – River Analysis System 

HH Transmitted and received waves are horizontally polarised 

HV 
Transmitted wave is horizontally polarised and received wave is 

vertically polarised 

IRS Indian Remote Sensing 

KF Kalman Filter 

KGE Kling Gupta Efficiency 

LETKF Localised Ensemble Transform Kalman Filter 

MODIS Moderate Resolution Imaging Spectrometer 

MSS Multi Spectral Scanner 

NASA National Aeronautical and Space Administration 

NDVI Normalised Difference Vegetation Index 

NDWI Normalised Difference Water Index 

MNDWI Modified Normalised Difference Water Index 

PF Particle Filter 

RADAR Radio Detection and Ranging 

RMSE Root Mean Squared Error 

RS Remote Sensing 



P r e f a c e   P a g e  | xxi 

 

 

 

SAR Synthetic Aperture Radar 

SIS Sequential Importance Sampling 

SIR Sequential Importance Resampling 

SPOT Systeme Pour l’Observation de la Terre 

SRS Satellite Remote Sensing 

SWOT Surface Water and Ocean Topography 

TM Thematic Mapper 

VH 
Transmitted wave is vertically polarised and received wave is 

horizontally polarised 

VV Transmitted and received waves are vertically polarised 

WDD Water Depth Difference 

WL Water Levels 

WOfS Water Observations from Space 

WSE Water Surface Elevation 



P r e f a c e   P a g e  | xxii 

 

 

 

List of Symbols 

𝐴 m2 Area 

𝐴𝑔𝑖  Model-observation agreement for each particle 

𝑐. 𝑣.  Coefficient of variation 

𝐷  Kullback-Leibler distance 

𝐸𝑃𝑋   Expectation of the probability distribution function  

𝐹𝑆𝐴𝑅𝑓𝑙𝑜𝑜𝑑 - Fuzzy membership value to the flood class in a given pixel in the 

SAR-based flood maps 

𝐹𝑆𝐴𝑅𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑  - Fuzzy membership value to the non-flood class in a given pixel in 

the SAR-based flood maps 

𝐹𝑠 
- Fuzzy membership value predicted in the class based on SAR 

analysis 

𝐹𝑉𝐴𝐿𝑓𝑙𝑜𝑜𝑑 - Fuzzy membership value to the flood class in a given pixel in the 

validation flood maps 

𝐹𝑉𝐴𝐿𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑  - Fuzzy membership value to the non-flood class in a given pixel in 

the validation flood map 

𝐹𝑣 - Observed proportion of wet cells in the validation flood maps 

𝑔 m/sec2 Acceleration due to gravity 

ℎ m Root mean squared deviation 

ℎ̅ m Mean height 

𝐻  Entropy of a random variable 

𝐼  Mutual information between two random variables 

𝐊 - Kalman gain matrix 

𝐾𝑓𝑢𝑧𝑧𝑦 - Fuzzy implementation of Cohen’s Kappa 

𝑛𝑖 - Pixel count in each probability bin used for the reliability diagram 

𝑛 m-1/3/sec Manning’s roughness coefficient 



P r e f a c e   P a g e  | xxiii 

 

 

 

𝑃  Probability distribution function of a random variable 

𝑃𝑜  Observed agreement 

𝑃𝑒  Expected agreement 

𝑝(𝐹|𝜎0) 
 Conditional probability of flooding given a particular backscatter 

value 

𝑝(𝜎0|𝐹) 
 Conditional probability of observing a specific backscatter value 

given that the pixel is flooded 

𝑝(𝜎0) 
 Marginal probability distribution of backscatter values at a given 

pixel 

𝑄 m3/sec Discharge 

𝐐 - Model error variance-covariance matrix 

𝑟  Pearson’s correlation coefficient  

𝐑 - Observation uncertainty 

𝑆 - Spatial similarity 

𝑆𝑜𝑏𝑠 - Observed spatial similarity 

𝑆𝑒𝑥𝑝 - Expected spatial similarity 

𝑆0 - Bed slope 

𝑆𝑓 - Friction slope 

𝑡 sec Time  

𝐰 - Model white process noise 

𝑤𝑖  Global weight for each particle 

𝑥 m Along channel distance 

𝐗𝟎 - Initial model state vector 

𝐗 - System state vector 

𝐗𝑘
𝑏  Background state vector 

�̂�𝑘
𝑎  Analysis state vector 

𝑦 m Depth of flow 



P r e f a c e   P a g e  | xxiv 

 

 

 

𝐙𝑘  Vector of state observations 

�̂�𝑘  Vector of model predicted state values 

𝑧 m Bed elevation 

𝛼 - Stability factor in max. adaptive time step calculation 

𝛼𝐹 
 Mixing proportion of the flood class in the Gaussian mixture 

model  

𝛼𝑁𝐹 
 Mixing proportion of the non-flood class in the Gaussian mixture 

model  

𝛼𝑟 
 Ratio of the standard deviations of the simulated and observed 

values  

𝛼𝑡  Temporal decorrelation factor 

𝛽  Ratio of the means of the simulated and observed values  

∆𝑡𝑚𝑎𝑥 sec Maximum stable time step in Lisflood-FP 

∆𝑡 sec Time interval 

∆𝑥 m Model cell resolution 

𝜀𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑊𝑅𝑀𝑆  

- Root mean squared deviation from the 1:1 line of the reliability 

diagram, weighted based on bin sizes 

𝜌  Variance growth scaling factor 

𝜎0  Backscatter value at a given pixel 

𝜎𝑘  Time varying model error variance 

𝜎  Variance of model errors 

𝚺 - Model uncertainty 

𝜃𝑙𝑜𝑐𝑖 radians Local incidence angle 

𝜆 m Wavelength 

𝜏 days Temporal correlation length  

𝜗  Tempering factor to ensure weight variability 



P r e f a c e   P a g e  | xxv 

 

 

 

List of Figures 

Fig. 1.1 Schematic of overall methodology followed in this thesis. Note that the objectives and 

contributions have been highlighted in magenta. .................................................................... 1-9 

Fig. 2.1 Distribution of hazard types for Charter activations between 2000 and 2017. Source : 

International Charter “Space & Major Disasters”, 2017 Annual Report. ............................... 2-2 

Fig. 2.2 Summary of satellite-based SAR missions which are applicable for flood studies, with 

corresponding wavelength bands and frequencies illustrated. ................................................ 2-4 

Fig. 2.3 The image shows example subsets of problem areas in SAR based flood mapping taken 

from a TerraSAR-X (HH, 3m Stripmap) scene acquired on the 25th of July, 2007, covering the 

Severn River flood event. The urban area shown here lies to the west of Tewkesbury, UK. © 

2007 DLR, adapted from (Mason et al. 2012a). .................................................................... 2-14 

Fig. 2.4 Schematic of the Earth Observation data assimilation problem in hydraulic modeling, 

adapted after Moradkhani (2008). Here, Earth Observations are interpreted as “truth” plus 

errors, as satellite-derived flood extents are expected to encompass the “true” flood extent even 

though a major component of measurement errors are also expected to be present in the 

observation. ........................................................................................................................... 2-25 

Fig. 2.5 Illustration of the combined filtering and error forecast procedure followed by Neal et 

al. (2007) and Madsen & Skotner (2005). Taken from Madsen & Skotner (2005), © Elsevier, 

2005. ...................................................................................................................................... 2-30 

Fig. 2.6 Illustration of filter localisation for an example observation update location in 1D, 

adapted from Madsen and Skotner (2005). US = upstream and D S = downstream. ............ 2-39 

Fig. 3.1 Geographical location of the Clarence Catchment, in Australia shown in (a), with the 

Clarence River and nearby towns marked with respect to the Clarence River Catchment in (b). 

The extent of the model domain from Lilydale to Yamba is shown in (c), with upstream and 

downstream model boundary conditions marked in red squares while gauge locations are 

represented by green squares. The LiDAR DEM made available by Geoscience Australia is 



P r e f a c e   P a g e  | xxvi 

 

 

 

displayed as the base layer, with the spatial coverage of the two overlapping Cosmo-SkyMed 

SAR images covering the 2011 flood event, shown with respect to the model domain. ........ 3-2 

Fig. 3.2 Locations of the flood control levee system, constructed to protect the Towns of Grafton 

and Maclean from inundation. Source: Clarence Valley Council. ......................................... 3-4 

Fig. 3.3 Spatial extent of the SPOT-6 optical image covering the 2013 flood event in the 

Clarence, shown here with respect to the model domain. The LiDAR DEM available to this 

study is used as the base layer. ................................................................................................ 3-6 

Fig. 3.4 Locations of the “crowd-sourced” water depth observations for the 2013 flood event in 

the Clarence Catchment. Sub-figures A and B show example images used for the depth 

calculation, by Clarence Valley Council. ................................................................................ 3-7 

Fig. 3.5 Map illustrating the spatial coverage for the aerial photographs of Junction Hill (1) and 

Ulmarra (2), used in this study for validation of the flood mapping and data assimilation 

algorithms................................................................................................................................ 3-8 

Fig. 3.6 Hydrographs recorded at the hydrometric gauges along the main stem of the Clarence 

River (locations shown in Fig. 3.1) for the 2011 flood event, shown together with the temporal 

acquisitions of available remote sensing data represented as the vertical black lines. ......... 3-10 

Fig. 3.7 As for Fig. 3.5 but for the 2013 flood event. ........................................................... 3-11 

Fig. 4.1 Map displaying the location of the Clarence catchment (a), and the main drainage lines 

and towns (b). The COSMO-Skymed SAR image acquired on 12th Jan, 2011 is also shown (c), 

with the green polygons indicating the aerial photo coverage used for validation. The example 

subsets used in Fig. 4.5 are depicted in red, while those used in Fig. 4.8 and 4.13 are shown in 

blue and yellow respectively. .................................................................................................. 4-2 

Fig. 4.2 The differences between ground-range and slant-range for side-looking radar 

geometries. Modified based on: 

http://nature.berkeley.edu/~penggong/textbook/chapter3/image/fig331.gif ........................... 4-4 

Fig. 4.3 Geometric distortions caused by the side looking radar viewing geometry. Modified 

based on: https://earth.esa.int/handbooks/asar/CNTR1-1-2.html ........................................... 4-5 

Fig. 4.4 Different scattering mechanisms displayed by radar interactions with water and land 

surfaces. Based on Martinis et al. (2015b). ............................................................................. 4-7 



P r e f a c e   P a g e  | xxvii 

 

 

 

Fig. 4.5 Schematic of EM wave propagation, showing orthogonal electric and magnetic wave 

components (Source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html). ..... 4-10 

Fig. 4.6 Schematic of the overall classification framework used to generate the fuzzy flood 

maps. ...................................................................................................................................... 4-11 

Fig. 4.7 Eigen values of the independent components obtained after analysing the texture bands.

 ............................................................................................................................................... 4-14 

Fig. 4.8 The actual training polygons selected to train the neuro-fuzzy classifier are shown, 

where (a), (b), and (c), correspond to training sets 1, 2, and 3, respectively. The difference in 

the three trainings is primarily the size of individual polygons and their corresponding locations 

as shown by the coloured squares. ........................................................................................ 4-16 

Fig. 4.9 Example subsets of the true colour aerial photographs (left) shown along with the 

corresponding manually fuzzified flood maps (right).  Locations are shown in Figure 4.1. 4-17 

Fig. 4.10 Semivariograms showing spatial autocorrelation amongst backscatter values for the 

different classes in a COSMO-SkyMed 3m image. .............................................................. 4-22 

Fig. 4.11 Histograms depicting the bimodality in the distribution of pixel values for (a) the 

filtered SAR image in digital numbers, (b) Independent Component (IC) I texture values, (c) 

IC II texture values, and (d) IC III texture values. ................................................................ 4-23 

Fig. 4.12 Validation maps generated from aerial photographs are displayed in the first column, 

followed by flood maps derived by processing the following inputs through the ANFIS 

classifier; SAR alone in column two (SAR), arbitrarily selected textures with SAR in column 

three (Std+SAR), and optimized textures with SAR in column four (Opt+SAR). Areas depicting 

maximum reductions in uncertainty for the Junction Hill test site were chosen for illustration. 

The locations of the subsets used here are shown in Fig. 4.1. ............................................... 4-26 

Fig. 4.13 Pixel-wise difference maps generated by subtracting the SAR-based flood maps, from 

the fuzzy validation map digitized from aerial photos, for entire Junction Hill region. ....... 4-27 

Fig. 4.14 Fuzzy similarity maps for the central cell comparison between the Junction Hill 

validation map and the SAR-based fuzzy maps, where (a) SAR represents the use of SAR alone 

as a classification input, (b) Std+SAR represents arbitrarily selected textures with SAR, and (c) 

Opt+SAR represents optimized textures with SAR. ............................................................. 4-28 



P r e f a c e   P a g e  | xxviii 

 

 

 

Fig. 4.15 As for Fig. 4.14 except with neighbourhood context included for the Junction Hill site 

with (a) SAR, (b) Std+SAR, and (c) Opt+SAR. ................................................................... 4-29 

Fig. 4.16 Reliability diagram for the Junction Hill area with Weighted Root Mean Squared Error 

values and bin sizes represented in a sub-plot. ..................................................................... 4-30 

Fig. 4.17 As for Fig. 4.12 but for the Ulmarra test site, with locations of the chosen subsets 

highlighted in Fig. 4.1. .......................................................................................................... 4-31 

Fig. 4.18 As for Fig. 4.14 but for the Ulmarra region, where the agreement with validation data 

is shown for (a) SAR, (b) Std+SAR, and (c) Opt+SAR. ...................................................... 4-31 

Fig. 4.19 As for Fig. 4.15 but for the Ulmarra test site with similarities shown as (a) SAR, (b) 

Std+SAR, and (c) Opt+SAR. ................................................................................................ 4-32 

Fig. 4.20 As for Fig. 4.16 but for Ulmarra. ........................................................................... 4-33 

Fig. 4.21 Distribution of land cover classes and the corresponding Weighted Root Mean 

Squared Error values obtained for each of the SAR-based flood mapping techniques at (a) 

Junction Hill and (b) Ulmarra. .............................................................................................. 4-35 

Fig. 5.1 Momentum equation of the Saint Venant equations, with definitions of all terms and 

various approximations used in literature. .............................................................................. 5-2 

Fig. 5.2 Schematic of overall methodology used in this thesis for the parameterization of 

channel roughness in LISFLOOD-FP. The number of “crowd-sourced” and gauged water level 

locations have been included in the illustration, along with the range of roughness values 

considered for calibration. ..................................................................................................... 5-11 

Fig. 5.3 Maximum water depths simulated by LISFLOOD-FP compared with crowd-sourced 

observations, with the plot on the left showing the root mean squared error values and the mean 

percent difference values on the right. .................................................................................. 5-14 

Fig. 5.4 As for Fig. 5.3, but for gauged maximum water levels. .......................................... 5-15 

Fig. 5.5 Cumulative distribution functions showing the distribution characteristics of 

performance measures computed using (a) the crowd sourced water levels and (b) gauged water 

levels. .................................................................................................................................... 5-16 



P r e f a c e   P a g e  | xxix 

 

 

 

Fig. 5.6 Plot showing the maximum water levels simulated by the calibrated model using 𝑛 =

0.026 and the crowd-sourced maximum water levels at all the available locations. Water level 

values have been sorted from the largest to the smallest according to the magnitude for 

illustration purposes. .............................................................................................................. 5-17 

Fig. 5.7 Plot showing the maximum water levels simulated by the calibrated model using 𝑛 =

0.026 and the gauged maximum water depths at all the available locations. Gauges are ordered 

from upstream to downstream. Note that Tyndale is not located along the main stem of the river 

and therefore has lower values than Lawrence. ..................................................................... 5-18 

Fig. 5.8 Optical multispectral imagery from the SPOT-6 satellite, with (a) showing a true colour 

composite of the area, and (b) showing the Normalized Differential Water Index values derived 

from (a). ................................................................................................................................. 5-20 

Fig. 5.9 Left panel shows the contingency map and statistics comparing the surface water extent 

map based on NDWI values derived from the SPOT-6 optical image against the inundation 

extents simulated by the LISFLOOD-FP acceleration solver in full 2D using the calibrated 

channel roughness parameter. False Alarms* indicates a lack of confidence in the inundation 

identified through the SPOT-6 image due to dense vegetation. Right panel shows the NDVI 

map showing area covered by vegetation and not vegetated regions, with respect to the extent 

of the False Alarms obtained. ................................................................................................ 5-21 

Fig. 6.1 Schematic of the a) sequential and b) variational data assimilation approaches, taken 

from Walker and Houser (2005). ............................................................................................. 6-4 

Fig. 6.2 Illustrative representation of the different facets of uncertainty, adapted from Hou, Li, 

and Liang (2019). .................................................................................................................... 6-9 

Fig. 6.3 Schematic representation of particle filter data assimilation, using the sequential 

importance sampling and the standard sequential importance resampling algorithms. ........ 6-17 

Fig. 6.4 Example plot of information entropy of a binary system, taken from Wellmann (2013). 

In the case of the fair coin with P(head)=P(tail)=0.5, the information entropy is maximal with 

a value of H(0:5)=1(green dot); in the case of the bent coin with P(head)=0.7, the uncertainty 

of the system is reduced, and the information entropy is accordingly lower H(0.7)≈0.88 (red 

dot). In the case of a double headed coin with P(head)=1, no uncertainty remains because the 

outcome is known, and H(1.0)=0 (black dot). ....................................................................... 6-23 



P r e f a c e   P a g e  | xxx 

 

 

 

Fig. 6.5 Venn diagram showing additive and subtractive relationships various information 

measures associated with correlated random variables 𝑋 and 𝑌. The area contained by both 

circles is the joint entropy 𝐻𝑋, 𝑌. The circle on the left (red and violet) is the individual entropy 

𝐻𝑋, with the red being the conditional entropy 𝐻𝑋|𝑌. The circle on the right (blue and violet) 

is 𝐻𝑌, with the blue being 𝐻𝑌|𝑋. The violet is the mutual information 𝐼𝑋; 𝑌. Source: 

https://en.wikipedia.org/wiki/Mutual_information. .............................................................. 6-24 

Fig. 7.1 Schematic of the synthetic assimilation experiment using an identical twin setup, where 

synthetic data were generated from the flood extents produced by the truth run and subsequently 

assimilated within the same model. ........................................................................................ 7-4 

Fig. 7.2 Synthetic and real SAR images juxtaposed in columns (a) and (b), respectively, for 

assimilation time steps 1 and 2. ............................................................................................ 7-10 

Fig. 7.3 Contingency maps comparing the forecast versus true flood extents, for the open loop 

and assimilation runs, at the first assimilation time step. ...................................................... 7-15 

Fig. 7.4 As for Fig. 7.3 but at the second assimilation time step after considering both images 

together.................................................................................................................................. 7-15 

Fig. 7.5 Percentage improvement in Critical Success Index before and after the assimilation, 

for different lead times from the time of assimilation. ......................................................... 7-16 

Fig. 7.6 As for Fig. 7.5 but for Cohen’s Kappa. ................................................................... 7-17 

Fig. 7.7 As for Fig. 7.5 but for spatially averaged RMSE in water depth. ........................... 7-18 

Fig. 7.8 The location of the gauges used for the discussion on the WDD maps. ................. 7-19 

Fig. 7.9 Forecast ensemble mean minus true water depth for different *lead times measured 

from the first assimilation time step after assimilating only the first image. ........................ 7-20 

Fig. 7.10 As for ..................................................................................................................... 7-21 

Fig. 7.11 As for Fig. 7.7 but for RMSE in flow velocities. .................................................. 7-23 

Fig. 7.12 Difference between the forecast mean flow velocities and the truth computed at each 

grid cell, shown here for different lead times following the first assimilation time step. The 

difference is calculated as forecast minus truth, so positive errors represent overestimation 

while negative errors show underestimation. ........................................................................ 7-24 



P r e f a c e   P a g e  | xxxi 

 

 

 

Fig. 7.13 As for Fig. 7.12, but for the assimilation of both images together at the second 

assimilation time step. ........................................................................................................... 7-25 

Fig. 7.14 As for Fig. 7.11 but for flood hazard estimates. ..................................................... 7-28 

Fig. 7.15 As for Fig. 7.12 but for the product of flow velocities and depth for different lead 

times from the first assimilation time step............................................................................. 7-29 

Fig. 7.16 As for Fig. 7.15 but for the second assimilation time step. .................................... 7-30 

Fig. 7.17 Channel discharge time series at the synthetic and real gauge locations along the main 

stem of the Clarence River, with the open-loop expectation (red), assimilation experiment 

expectation (blue-I and dashed magenta-I+II), and the truth (green). ................................... 7-32 

Fig. 7.18 As for Fig. 7.17 but for simulated channel water levels. ....................................... 7-33 

Fig. 7.19 Illustration of the channel evaluation efficiency metrics, (a) RMSE, (b) KGE, and (c) 

BSS for the simulated discharge, at the gauges along the main stem of the river (Locations 

shown in Fig. 7.8). ................................................................................................................. 7-34 

Fig. 7.20 As for Fig. 7.19, but for the simulated channel water levels. ................................ 7-35 

Fig. 8.1 Spatial locations of the three model sub-domains covering the three identified sub-

reaches are shown in red squares, along with the locations of the real and synthetic gauges 

considered for performance assessment. ................................................................................. 8-4 

Fig. 8.2 Shows (a) thalweg bathymetric elevations extracted from a LiDAR DEM (30m) and 

(b) maximum water surface elevations simulated by the hydrodynamic model LISFLOOD-FP, 

at each 1km of downstream flow distance, along with their deviation from a sub-reach linear 

approximation (red lines) and the kinematic wave approximation plotted along the entire main 

stem of the Clarence River (mustard line). .............................................................................. 8-8 

Fig. 8.3 Brier Skill Scores (BSS) obtained for single image assimilation in each sub-reach, from 

the time of the satellite overpass to the end of the forecast. Observations were independently 

considered each 12h starting from the 6th of Jan with BSS calculated at nine water level gauges 

along the channel (three in each sub-domain); the true stage at the location is shown in all 

subplots as a reference. Positive values of BSS imply forecast improvements, while negative 

values imply degradation and 0 implies no change from the open loop. Each point on each curve 



P r e f a c e   P a g e  | xxxii 

 

 

 

is representative of the satellite acquisition time and the corresponding BSS obtained from the 

time of the satellite overpass to the end of the forecast. ......................................................... 8-9 

Fig. 8.4 As for Fig. 8.3 but for the spatiotemporal mean RMSE in water depth shown in (a) for 

the global RMSE averaged across the entire model domain and (b) for the local RMSE averaged 

within the model sub-domains used for the assimilation. ..................................................... 8-11 

Fig. 8.5 As for Fig. 8.3 except for the time window used for the BSS calculation. Here BSS is 

calculated from the assimilation time until the next image becomes available. As images are 

considered every 12 hours, this time window is restricted to 12h after each assimilation time 

step. ....................................................................................................................................... 8-13 

Fig. 8.6 As for Fig. 8.4 but for the time window used for the calculation of the spatiotemporal 

mean RMSE. Here, the time window used is the same as in Fig. 8.5, i.e. the 12h between one 

assimilation time step to the next. ......................................................................................... 8-14 

Fig. 8.7 As for Fig. 8.3 but for the multiple image assimilation case with a revisit interval of 

12h and weights carried forward by multiplication. Each point on each curve corresponds to the 

first visit time and the BSS obtained from the time of the last image assimilated on 22nd Jan 

2011 00:00 until the end of the forecast. ............................................................................... 8-16 

Fig. 8.8 As for Fig. 8.7 but for a revisit interval of 24h. ....................................................... 8-17 

Fig. 8.9 As for Fig. 8.7 but for a revisit interval of 48h. ....................................................... 8-18 

Fig. 8.10 Observation correlation lengths with respect to different first visit times and revisit 

intervals are shown in the left column (a) of this plot, with correlation length defined as the 

number of images for which sequential assimilation with weights carried forward through 

multiplication had a positive impact. Positive impact was defined in terms of the next 12h BSS 

as calculated in Fig. 8.5, with the main difference being that the weights for each image were 

multiplied forward in time. The right column (b) shows the number of images after the first 

visit at which the maximum improvement in the BSS was observed. The true stage at Lawrence 

is shown as a reference in all the sub-plots. .......................................................................... 8-20 

Fig. 9.1 Schematic of the real-world application of the proposed assimilation algorithm. .... 9-3 

Fig. 9.2 Channel water level time series at the gauge locations along the main stem of the 

Clarence River......................................................................................................................... 9-5 



P r e f a c e   P a g e  | xxxiii 

 

 

 

Fig. 9.3 Plots showing the (a) Kling Gupta Efficiency or KGE, (b) the percentage improvement 

in the KGE, and (c) the Brier Skill Scores for the six gauges along the main stem of the Clarence 

River. ....................................................................................................................................... 9-6 

Fig. 9.4 As for Fig. 9.2 but for the flood extent assimilation performed with consideration of 

the flood peak arrival time lag. .............................................................................................. 9-10 

Fig. 9.5 As for Fig. 9.3 but for the lagged assimilation accounting for the delay in the flood 

peak timing. ........................................................................................................................... 9-12 

Fig. 9.6 Contingency maps comparing the forecast versus observed flood extents derived from 

the aerial photographs of Junction Hill, for the open loop and assimilation runs at the first 

assimilation time step. ........................................................................................................... 9-13 

Fig. 9.7 As for Fig. 9.6 but for the Ulmarra region. .............................................................. 9-13 

Fig. 9.8 Contingency maps comparing the forecast versus observed flood extents derived from 

the aerial photographs of Junction Hill, for the open loop and assimilation runs at the first 

assimilation time step after considering peak time lag. ......................................................... 9-14 

Fig. 9.9 As for Fig. 9.8 but for the Ulmarra region. .............................................................. 9-14 

Fig. A.1 Brier Skill Scores (BSS) obtained for single image assimilation in each sub-reach, for 

a lead time of 12h from the time of the satellite overpass. Observations were independently 

considered each 12h starting from the 6th of Jan with BSS calculated at three water level gauges 

along the channel (one in each sub-domain); the true stage at the location is shown in all 

subplots as a reference. Positive values of BSS imply forecast improvements, while negative 

values imply degradation and 0 implies no change from the open loop. Each point on each curve 

is representative of the satellite acquisition time and the corresponding BSS. The cost function 

used here is the Critical Success Index or CSI. .......................................................................... 2 

Fig. A.2 As for Fig. A.1 but using CSI^4 as a cost function for the assimilation. ..................... 2 

Fig. A.3 As for Fig. A.1 but using CSI^8 as a cost function for the assimilation. ..................... 3 

Fig. A.4 As for Fig. A.1 but using the fuzzy CSI as a cost function. The fuzzy CSI is calculated 

as the ratio of True Positives and the sum of True Positives, False Positives, and False Negatives 

in each probability class in the reliability diagram. .................................................................... 3 



P r e f a c e   P a g e  | xxxiv 

 

 

 

Fig. A.5 As for Fig. A.1 but using the product of RMSE and Mean Bias calculated from the 

Reliability Diagrams. Note that the product is a measure of errors and therefore, the cost 

function used here ranks the models with higher errors higher. This is by design, to assess 

whether the metrics work well for the quantification of errors. ................................................. 4 

Fig. A.6 As for Fig. A.1 but using the absolute value of the log of the product of the RMSE and 

Mean Bias to rank the models. Here the errors are compressed by using the log function, but 

not inverted into accuracies as the value of the error product exceeds unity. Absolute values are 

used to convert the negative values from the log function into positive values of probability. 4 

Fig. A.7 As for Fig. A.6 but with the values of the error product restricted to less than unity, 

resulting in an inversion into accuracies using the absolute value of the logarithm. ................. 5 

Fig. A.8 As for Fig. A.1 but using Mutual Information (MI) as a cost function for the 

assimilation. ............................................................................................................................... 5 

Fig. A.9 As for Fig. A.1 but using MI^4 as a cost function for the assimilation. ...................... 6 

  



P r e f a c e   P a g e  | xxxv 

 

 

 

List of Tables 

Table 2.1: Summary of spaceborne SAR missions and sensor characteristics. The italicized 

entries indicate satellite constellations with identical configurations. (Source: Modified based 

on Lillesand, T.M. et al., Remote Sensing and Image Interpretation, 5th edn., John Wiley & 

Sons, New York, 2004; eoPortal, https:// directory.eoportal.org/, 2014.; OSCAR, 

https://www.wmo-sat.info/, 2017) ........................................................................................... 2-6 

Table 2.2 Strengths and limitations of commonly used SAR-based flood extent mapping 

methods, modified based on Di Baldassarre et al. (2011) and Martinis et al. (2015b). .......... 2-7 

Table 3.1 Summary of the relevant data available for hydraulic model implementation in the 

Clarence Catchment (Source: Stefania Grimaldi, Personal Communication). ....................... 3-5 

Table 3.2 Summary of the data utilised in this thesis, with the characteristics and usage for each 

listed. ..................................................................................................................................... 3-12 

Table 4.1 Mean Absolute Error statistics for classification model selection and predictive 

capability assessment. ............................................................................................................ 4-24 

Table 4.2 Root Mean Squared Error statistics based on the pixel-wise deterministic difference 

operation. ............................................................................................................................... 4-26 

Table 4.3 Summary of fuzzy statistics for the two validation sites. ...................................... 4-29 

Table 5.1 Summary table of the parameter values used in this thesis. .................................. 5-19 

Table 6.1 Commonly used data assimilation terminology, after Walker and Houser (2005). 6-7 

Table 7.1 Summary table of the backscatter distribution parameters used in this thesis, estimated 

from 8-bit Cosmo-Skymed SAR flood observations. ............................................................ 7-10 

Table 7.2 Contingency matrix used for the calculation of binary pattern matching based flood 

extent performance measures. The green colour specifies where the model and observation are 

in agreement, while the red and blue, refer to under and overprediction respectively. ......... 7-12 

Table 7.3 Summary table of the performance evaluation metrics used in this thesis to assess the 

accuracy of different flood variables. .................................................................................... 7-14 



P r e f a c e   P a g e  | xxxvi 

 

 

 

Table 7.4 Flood hazard classification according to human safety, given by the Australian 

Rainfall Runoff Revision conducted by Engineers Australia in 2010 (Cox and Shand, 

T.D.Blacka 2010). The green colour refers to the safe category, with colours going towards red 

signifying increasing values of flood hazard ........................................................................ 7-27 

Table 8.1 Summary table of maximum possible improvements in BSS for gauged water level 

simulations within the channel through flood extent assimilation. BSS values were averaged 

across all gauges.................................................................................................................... 8-23 

Table 9.1 Contingency matrix evaluating the forecast flood extent maps against the 

corresponding extents simulated by the truth model, at the first assimilation time step. ..... 9-11 

Table 9.2 Contingency matrix evaluating the forecast flood extent maps against the 

corresponding extents simulated by the truth model, at the first assimilation time step after 

considering peak time lag. .................................................................................................... 9-15 



 

 

 

 

 

PART I  

INTRODUCTION AND 

BACKGROUND  



 

 

 
 
 
 

CHAPTER ONE  

“Experiment is the sole source of truth. It alone can teach us something new; it alone can 

give us certainty.” 

 

- Henri Poincare, The Foundations of Science: Science and Hypothesis, the Value of Science, 

Science and Method, translated by Mélanie Frappier, Andrea Smith, and David J. Stump.
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1.    Introduction 

This thesis presents a novel probabilistic flood extent mapping algorithm and assimilation 

framework, to improve the integration of Synthetic Aperture Radar (SAR) derived flood extents 

with hydraulic flood inundation models in near real-time. The mapping technique, as well as 

the model-data integration methods, were developed from the perspective of transferability to 

current and future remote sensing-based observations of flooding. The efficacy of the mapping 

and assimilation approaches were demonstrated through a series of numerical experiments in 

the Clarence Catchment, Australia, using both synthetic and real-world case studies. An 

investigation of the spatiotemporal observation characteristics that best facilitate model-data 

integration impact on flood forecasts concludes the thesis. 

1.1 Background and Problem Statement 

In the absence of accurate flood inundation model forecasts, floods can have extremely 

expensive and often fatal consequences (CRED and UNISDR 2016). The lack of sufficiently 

precise global elevation data and inflow uncertainties propagated from precipitation forecasts 

leads to inherently erroneous flood inundation model outputs, frequently impeding their 

operational application (Camacho et al. 2015). The worrisome escalating trends in flood risk 

can primarily be attributed to climate change impacts, such as growing number of extreme 

weather events and changing precipitation patterns (Quinn et al. 2019). However, these flood 

impacts are further compounded by anthropogenic factors such as detrimental land-use change 

(urbanization, deforestation, and agricultural intensification) and an increasing population of  

people living on river floodplains (Rakovec 2014). As a consequence, flood events 

disproportionately impact developing nations, due to low climatic resilience of their 

populations and poor disaster management mechanisms (Uhe et al. 2019).  
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Accurate forecasts of flood inundation are necessary to augment flood control measures 

and to ensure effective mitigation of flood impacts. Traditionally, flood predictions have been 

obtained from stage-discharge relationships obtained from hydrometric river gauges or more 

recently, from numerical models based on the laws of conservation of mass and momentum (Di 

Baldassarre and Montanari 2009). Flood inundation models are primarily classified based on 

the approximations of the shallow water equations which they solve. In principle, 1D models 

assume that water velocity, height, and discharge vary along the channel flow direction 

exclusively. In contrast, 2D models account for channel as well as floodplain flows, following 

the grid defined by the digital elevation model or DEM (Haile and Rientjes, 2007). The 

hydraulic heads computed at each computational node are inter-compared to determine 

direction of flow from one grid to the next. These models therefore require inputs such as 

floodplain topography and channel bathymetry as well as hydrometric data for model 

initialization and constraint. Long term field observations of discharge and water levels are also 

required to define the upstream and downstream boundary conditions (Coulthard et al. 2013). 

The global decline in gauge networks have unfortunately reduced the likelihood of obtaining 

such data and the developing regions of the world which exhibit the lowest flood resilience are 

also the ones with the least number of hydrometric gauges (Revilla-Romero et al. 2015). 

Consequently, alternative data sources which can supplement this lack of hydrometric data for 

the initialization and constraint of flood inundation models need to be explored.  

Surface (e.g., flood inundation and lakes) and sub-surface (e.g., soil moisture and 

groundwater) water has been monitored using Earth Observation (EO) satellites for decades. 

The synoptic views provided by Earth Observation satellites is especially suitable for the spatial 

characterization of floods, which are known to span large areas which are almost impossible to 

monitor in the field. Satellite, aerial, and drone based remote sensing platforms provide a unique 

opportunity to obtain distributed flood observations at a variety of spatial scales. The 

topographic information provided as an essential input to hydraulic models are primarily 

sourced from satellite based DEMs. Moreover, additional information to support hydraulic 

flood inundation modelling such as surface roughness (Mason et al. 2003), channel top width 

(Pekel et al. 2016), and even flow directions (Yamazaki et al. 2019), have all been derived from 

satellite data in the recent past (Schumann et al. 2012; Andreadis et al. 2013). Satellite images 

can also be used to extract flood inundation extent and depth (by integrating with DEMs) (Musa 

et al. 2015). Remote sensing derived flood extents and depths have widely been utilized for the 

calibration and validation of hydrodynamic models in the absence of gauge information 
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representative of flood dynamics or to complement hydrometric information (Schumann et al. 

2008a; Patro et al. 2009; Di Baldassarre et al. 2009; Wood et al. 2016). Studies have also 

implemented data assimilation frameworks to update flood inundation models using such 

observations in real time (Neal et al. 2009; Andreadis and Schumann 2014; Hostache et al. 

2018a) 

Multiple studies have highlighted the simplicity of flood extent delineation from optical 

sensors (Schumann et al. 2009b; Grimaldi et al. 2016). In fact, high resolution aerial optical 

imagery has served as the benchmark validation data for a majority of flood mapping studies 

(e.g., Giustarini et al., 2016, 2013; Mason et al., 2014, 2010). The acquisition of such data, 

however, requires meticulous planning, dedicated flights, and is associated with high costs, thus 

impeding access for countries with limited economic resources. Earth observation satellites 

offer a cheaper alternative, with higher spatial coverage and varying resolutions. Coarse 

resolution images are typically available for free from the relevant space agencies, while higher 

to medium resolution datasets often need to be purchased at high prices. However, during major 

flood disasters, countries can activate the International Charter on Space and Major Disasters. 

The charter mandates any satellites positioned around the affected region, to capture the event 

and provide the data free of cost (Martinis et al. 2015c). The potential of optical remote sensing 

images, acquired in the visible region of the spectrum, has been demonstrated for flood mapping 

by a number of studies which were most recently reviewed by Huang et al. (2018).  

Freely available satellite data such as from the LANDSAT and MODIS sensors, have 

also allowed the development of historical databases of observed inundation. The Dartmouth 

Flood Observatory (http://floodobservatory. colorado.edu/), for example, uses MODIS data at 

250 m, in conjunction with appropriate ancillary data, such as the Shuttle Radar Topographic 

Mission (SRTM) Water Body Data Set. Maps of flood inundation are processed and provided 

in near real time, as well as added to an open archive of large floods at global scale (Shen et al. 

2019). In a similar effort to demarcate permanent water bodies, Geoscience Australia developed 

the Water Observation from Space (WOfS) database (http://www.ga.gov.au/scientific-

topics/hazards/flood/wofs). WOfS uses statistical analysis of historical surface water 

observations derived from LANDSAT-5 and LANDSAT-7 satellites for all of Australia from 

1987 to 2015. Pixels which are inundated in >80% of the images, are classified as permanent 

water and provided freely as a surface water body dataset (Mueller et al. 2016). The study by 

Pekel et al. (2016) extended a similar approach to map surface water on a global scale, while 

http://www.ga.gov.au/scientific-topics/hazards/flood/wofs
http://www.ga.gov.au/scientific-topics/hazards/flood/wofs
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widths derived through drainage area to discharge regression were further translated into 

bankfull depths using hydraulic geometry theory in Andreadis et al. (2013). 

While the use of optical data offers certain advantages due to its high spatiotemporal 

coverage and ease of interpretation, it can be severely affected by clouds in the ascending limb 

of the flood hydrograph (Schumann et al. 2009a). In fact, for small to medium catchments, the 

flood often recedes before the clouds have dissipated (Schumann and Moller 2015). Moreover, 

optical data are severely limited by dense canopies, as they completely obscure the flooding 

underneath from the sensor’s view (Bates et al. 2014a). When available, cloud-free optical data 

are still a vital resource for flood management, as the processing is straightforward and does 

not require extensive expertise (Grimaldi et al. 2016). However, for systematic monitoring of 

floods, microwave data are preferred as they can penetrate clouds and are independent of solar 

illumination (Landuyt et al. 2018), making optical data best suited to complement and evaluate 

microwave images when available (O’Grady et al. 2014).  

Passive microwave radiometers measure the thermal radiation naturally emitted by the 

Earth’s surface in the form of brightness temperatures (Lievens et al. 2016). The differences in 

thermal inertia properties of land and water, allow the detection of inundated regions, as these 

areas typically exhibit lower brightness temperatures than land (Ahamed et al. 2017). In contrast 

to optical sensors, radiometers can image flood inundation independent of the prevailing solar 

illumination, weather conditions, or for longer wavelengths even vegetation cover. However, 

the detection of inundated dense vegetation is unique to passive microwave imaging, due to the 

exclusive use of surface emissivity properties. Since, only the brightness temperatures are 

observed and subsequently used for extracting inundation, the detection of floods is unaffected 

by obstructions such as tree canopies, which hamper accurate identification of inundation in 

densely vegetated regions for all other forms of remote sensing. This particular feature is unique 

to microwave radiometry and has been extensively used to monitor the flood dynamics of 

ecologically sensitive regions like the Niger Delta and the Amazon (Slinski et al. 2019).  

The remotely sensed surface water extent information provided by the Global Flood 

Detection System (GFDS), hosted by the Global Disaster Alert and Coordination System 

(GDACS, http://www.gdacs.org/flooddetection/), uses passive microwave sensing to generate 

global products. First, the brightness temperature for a wet (measurement - M) pixel centred on 

the channel and the floodplain is extracted, identified based on historical sensitivity to changes 

in river flow, manifesting as an increase in water extent as a function of discharge. Second, dry 

http://www.gdacs.org/flooddetection/
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(calibration - C) pixels observed over land are extracted, close enough to the measurement pixel 

such that, all physical conditions other than the inundation can be assumed to be sufficiently 

similar. Measured brightness temperature (Tb) values at each pixel usually also include effects 

of physical temperature, permittivity, surface roughness, moisture, and tranmissivity. While 

estimating the relative contribution of these factors is challenging, these effects can be 

normalized by considering a ratio of the measurement and calibration Tb values. River flooding 

is then defined through a series of thresholds on the observed M/C ratio anomalies with respect 

to its cumulative frequency in the time series. Major floods are then classified as the 95th 

percentile and floods as the 80th percentile of its cumulative histogram; anything below that is 

classified as normal flow. The GDACS portal subsequently issues disaster warnings based on 

the detected flood levels, currently operating as an experimental project. Similar techniques are 

employed by the Dartmouth Flood Observatory River and Reservoir Watch project to monitor 

river discharge (http://floodobservatory.colorado.edu/DischargeAccess.html).  

As passive microwave radiometers only record the emitted radiation from the Earth’s 

surface, large pixel sizes often have to be considered such that sufficient amounts of energy can 

be recorded at the sensor, after the dissipation caused by atmospheric effects (Smith 1997). 

Consequently, large angular beams with spatial resolutions ranging from 20-100 km are 

typically used for such systems to ensure signal strength at the antenna. This implies that the 

use of passive microwave sensors can only be feasible for large catchments with channels at 

least several kilometres wide (Kim and Sharma 2019). Therefore, despite the potential of 

passive microwave sensors for flood monitoring, at local scales - especially for small to medium 

catchments - the use of much higher resolution imagery is often deemed necessary (Bates et al. 

2006). The ability of active microwave sensors to provide high resolution images, independent 

of weather and time of day, makes them uniquely suitable for flood monitoring applications 

(Schumann et al. 2009a). This led to spate of development in Synthetic Aperture Radar, as they 

are often considered the only source of reliable information for rivers with sub-kilometre widths 

(Schumann and Moller 2015). 

SAR backscatter intensity is primarily driven by surface roughness, with secondary 

impacts of electrical permittivity characteristics. As water is smoother relative to the 

wavelength of the transmitted radar beam, the incident microwaves are reflected away from the 

sensor in a specular mirror-like fashion, resulting in low recorded backscatter at the receiver 

(Smith 1997). Land, in contrast, presents a complex cohort of potential scatterers to the radar 

http://floodobservatory.colorado.edu/DischargeAccess.html
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beam, which results in high backscatter returned to the sensor. This land-water backscatter 

contrast is exploited by most mapping algorithms to identify flood inundation (Landuyt et al. 

2018). However, as microwaves are highly sensitive to surface roughness changes, wind, 

emergent vegetation, or urban features which alter the backscatter characteristics of the flooded 

area, could potentially lead to under- or over-detection (Martinis et al. 2015b). SAR-backscatter 

over regions of emergent vegetation and urban areas can be quite ambiguous due to the presence 

of multiple potential scatterers per ground resolution cell. Studies have suggested 

complementing the SAR backscatter intensity information with interferometric coherence data 

to counter this problem, demonstrating significant improvements in classification accuracy 

(Pulvirenti et al. 2015). Fully polarimetric SAR images or those acquired from multiple viewing 

angles can also facilitate the detection of flood extents in case of ambiguous radar signatures 

under vegetation (Plank et al. 2017). The use of ancillary datasets such as topographic 

indicators, land cover information, and reference water masks can further reduce false alarm 

errors (Moulatlet et al. 2015; D’Addabbo et al. 2016; Grimaldi et al. 2020). Accurate flood 

extents with objective and reliable estimates of uncertainty, are vital for their integration with 

flood inundation models through data assimilation, which has the potential to improve flood 

forecasts and therefore, enhance flood resilience under a changing climate (Hostache et al. 

2018a).  

SAR-derived flood extents are often intersected with digital elevation models (DEM) to 

derive water stages, which are subsequently used for model performance evaluation (Hostache 

et al. 2009) or data assimilation (Hostache et al. 2010). SAR-based water level estimation 

algorithms assume horizontal water levels across a transverse cross-section of the extent, due 

to the instantaneous nature of the observations (Schumann et al., 2007). However, this 

assumption may not hold in complex catchment or channel geometries, land-uses, or when the 

flow is highly hydrodynamic. Moreover, the retrieval of water level from satellite remote 

sensing images requires a number of non-trivial processing steps and has often been identified 

as a source of uncertainty in hydraulic model forecasts (Bates et al., 2014; Schumann et al., 

2009a). Assimilating SAR-based flood extents can eliminate the need for water level derivation, 

as the observed inundated area can be directly used to inform the model forecasts as opposed 

to the water levels. Although flood extent is only a good proxy for model performance when 

flows are rapidly varying with respect to change in simulated water depth, especially in low 

slope conditions where hydrodynamics dominate (Gobeyn et al. 2017). For example, when flow 

is contained within the banks while the channel is filling up, water levels will vary significantly 
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with each time step while the extent will remain almost constant within the river network. In 

order to be useful then, careful considerations of the spatial location, timing, and frequency of 

image acquisition are also required (García-Pintado et al. 2013).  

Studies have investigated the utility of crowd-sourced water level data, to supplement 

remote sensing, for hydraulic model calibration and data assimilation, as the frequency of 

remote sensing data can still be a limiting factor (Mazzoleni et al. 2017). Preliminary analysis 

conducted using synthetic datasets, imply that such data could prove useful in improving flood 

predictions (Mazzoleni 2016). As crowd-sourced data can be considered independent from the 

model and remote sensing, adding it to the assimilation framework or even just at the model 

calibration stage can reduce forecast errors (Assumpção et al. 2018). Crowd-sourced water 

levels hold potential for those regions and time steps where extents are not sensitive to subtle 

changes in simulated water depth. The utility of crowd-sourcing needs to be explored as satellite 

remote sensing acquisitions still face problems of data latency and temporal coverage, which 

implies that observations of fast-moving floods are largely opportunistic, especially for small 

to medium sized catchments. Further, crowd-sourcing has the potential to provide accurate local 

information and is already informing first responders and planners alike (Chini et al. 2019). 

Since SAR-data are known to be unreliable in urban areas, crowd-sourced data could potentially 

serve as a valuable complementary dataset for flood inundation modelling. Therefore, in this 

study preliminary investigations are also undertaken to assess the utility of crowd-sourced data 

for the quantitative evaluation of hydraulic model predictions. 

The increasing number of SAR satellites have enhanced the probability of monitoring 

flood dynamics from space, but the sensor and surface dependent uncertainties require 

significant post-processing using ancillary data for reliable inundation estimates. Yet, there are 

no sensor independent probabilistic mapping algorithms, which attempt to reduce the 

uncertainty in flood extent delineation using a single SAR image. Accordingly, this thesis 

develops a novel optimized texture-based approach to improve flood detection from SAR 

images. Since, the use of SAR-derived flood maps in conjunction with DEMs for the indirect 

retrieval of floodplain water levels has been identified as a potential source of forecast 

uncertainty, recent studies have recommended the direct assimilation of flood extent. However, 

the development of an appropriate likelihood function to estimate the probability of the model 

given the observation at each assimilation time step remains a scientific challenge. Therefore, 

this thesis develops a new method for assimilating SAR-based flood extents into hydraulic 
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model forecasts and investigates the impacts of observation spatiotemporal characteristics on 

the corresponding assimilation efficiency.  

1.2 Objectives, Assumptions, and Scope 

The principal objective of this thesis was to develop methods for improved near real-time 

estimation and forecasting of flood inundation, which was identified as a major gap in literature 

based on the review (See Section 2.3). Accordingly, a novel approach for 1) satellite SAR-

based flood extent delineation and 2) combination with hydraulic model forecasts was 

developed. Specific objectives included: 

1. Improving operational single image SAR-based flood mapping.  

2. Testing the utility of crowd-sourced water levels for quantitative hydraulic model 

calibration. 

3. Developing a new cost function for a particle filter-based flood extent assimilation 

framework.  

4. Investigating the sensitivity of assimilation performance to observation spatiotemporal 

characteristics. 

Synthetic as well as actual remote sensing observations of surface inundation extent, were 

assimilated into the hydraulic flood model, to evaluate the impacts of the proposed flood extent 

assimilation algorithm on the various model states and fluxes. For instance, the synthetic study 

allowed a distributed evaluation of the assimilation impacts on simulated floodplain flow 

velocities as well as water depths. Moreover, impacts on maximum hazard estimates, which are 

a function of maximum inundation depth, duration, and velocity, were also assessed. In order 

to ensure reproducibility for real cases and to emulate as realistic a setting as possible, the 

synthetic satellite images were generated based on uncertainties estimated from the SAR images 

available to this study. Similarly, the case study using actual satellite observations allowed 

comparisons with previous studies in literature, while also facilitating an appraisal of the pitfalls 

faced in a real-world scenario.  

The approach selected for experimental designs of the open loop simulations also reflect a 

similar strategy. The experimental set up considered in this thesis, emulated the case of most 

developed countries – where reasonably accurate topography and bathymetry are available, 
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implying that forecast streamflow uncertainties dominate. Hydrological model forecasts, input 

to the hydraulic models mostly dominate forecast errors. This allowed an objective evaluation 

of the assimilation results independent of the complex and often strongly non-linear 

relationships between the different sources of uncertainty, including the channel geometry, 

friction, and topography, for example.  

The overall methodology followed in this thesis has been summarized in Fig. 1.1. In order 

to enhance universal application of the approaches developed in this thesis, all assumptions 

were based on an operational implementation scenario. For instance, in the SAR-based flood 

extent mapping, the use of single SAR images is emphasized with the objective being to reduce 

the dependence on ancillary datasets whose global availability is unknown. Although the 

approach developed herewith is not completely automatic, methods to automate the process are 

discussed at length and could be implemented easily in future. Similarly, in the case of the flood 

extent assimilation, the objective was to develop a framework that could effectively quantify 

and reduce uncertainty to facilitate local relevance of large-scale forecasts. Although the 

methods proposed are tested at the catchment scale, an attempt is made to remain cognizant of 

the uncertainties that might affect global models and represent them sufficiently in the 

experimental setup. For example, to ensure that the findings from spatiotemporal observation 

impact on the assimilation performance is not just catchment specific, the assessment is founded 

on reach hydraulic behaviour. This implied that the findings could easily be extended to 

 

Fig. 1.1 Schematic of overall methodology followed in this thesis. Note that the objectives and contributions have 

been highlighted in magenta. 
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hydraulically similar channels globally and were not confined to the study area (Clarence 

Catchment, NSW, Australia).  

Another key assumption of this thesis is around fuzziness and uncertainty. Throughout 

the approaches outlined in this thesis, attempts have been made to account for uncertainty in 

validation methods. In fact, for each experimental output presented herewith, extensive 

validation is undertaken to ensure scientific rigour. Moreover, a detailed validation exercise for 

the flood extent assimilation, allowed an examination of the impacts on the delicate and highly 

non-linear covariability of intermediate states and fluxes within the hydraulic flood inundation 

model. Finally, the experiments on the location, timing, and frequency were conducted with the 

outlook that the number of observations available from remote sensing during any individual 

flood event is likely to increase. Consequently, the thesis questioned, how many observations 

are necessary and when does assimilation performance become independent of observation 

frequency. This ensures that the results will remain relevant in future despite consistent 

evolutionary advances in satellite SAR technology. 

1.3 Outline 

The research encompassed in this thesis is divided into eleven chapters that has been 

organized into four parts – Introduction and Background, Data and Models, Flood Extent 

Assimilation Framework, and Summary and Perspectives. Chapter 2 presents a detailed review 

of the state-of the art literature in SAR-based flood extent mapping and on the use of data 

assimilation of Earth observation images to improve hydraulic flood inundation model 

forecasts. Extensive discussions on literature surrounding the hydraulic modelling of floods and 

model calibration/validation as well as assimilation of field observations, was deliberately 

limited in this chapter to maintain focus on the major contributions of this thesis. Accordingly, 

the theoretical background for each technique employed in this thesis is included in the relevant 

chapters where the methods are implemented and not in the literature review.  

A detailed description of the Clarence Catchment and the data available to this thesis is 

presented in Chapter 3. The study area presented in this chapter is common to all the 

experimental chapters in this thesis. Moreover, the data available in the form of remote sensing 

and field observations, was critical to the development and testing of the methods outlined in 

Chapters 4 to 9 of this thesis.  
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The procedure to extract accurate probabilistic maps of flood inundation from single 

SAR-images is developed and tested in Chapter 4. Theoretical background pertaining to the 

mapping of floods from SAR images is presented first, followed by a description of the methods 

and a discussion of the results obtained through a real-world application. The method used a 

novel texture optimization technique to maximize the information content of the SAR image 

itself, prior to flood extent delineation using a probabilistic neuro-fuzzy classifier. Finally, a 

fuzzy validation scheme is introduced to flood mapping literature which facilitates the 

representation of uncertainties in the optical aerial imagery, popularly used as the benchmark 

for evaluating SAR-based flood extents.  

The hydraulic modelling component of this thesis is described in Chapter 5. First, the 

principles of hydrodynamic modelling are presented, then the sources and characteristics of the 

inherent uncertainties in flood models are discussed. The argument for choosing Lisflood-FP is 

developed subsequently, followed by a description of the full 2D-inertial acceleration solver 

used in this thesis. The model implementation is presented thereafter, including descriptions of 

input data and pre-processing. A simple framework to calibrate the channel friction parameter 

in Lisflood-FP using crowd-sourced observations of maximum flood depth is developed, using 

the 2013 flood event in the Clarence Catchment. Flood extents simulated using the calibrated 

model, are finally evaluated against an optical remote sensing-based flood observation.  

Chapter 6 develops the flood extent assimilation framework used in Chapters 7 to 9. 

The principles of data assimilation are first outlined, along with an introduction to the 

terminology. This is followed by a discussion on the nature of hydraulic model uncertainties 

and the possible role of data assimilation in addressing them. The classification of data 

assimilation schemes is then described from a hydrological systems perspective. The chapter 

concludes with the particle filter-based flood extent assimilation scheme, developed in this 

thesis using a novel mutual information-based cost function. 

In Chapter 7, the performance of the flood extent assimilation algorithm is tested 

through synthetic experiments. The 2011 flood event in the Clarence Catchment is reproduced 

with a representation of temporally correlated forecast inflow uncertainties for the open loop, 

while the calibrated full-2D Lisflood-FP model implementation is assumed to be the “truth”. 

For the synthetic experiment, binary flood extents are derived from the truth model at the times 

corresponding to the actual SAR-observations, by sampling from the flood and non-flood 

backscatter distributions of the real images. These were converted into maps of flood 
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probability using the approach outlined by Giustarini et al. (2016), for the flood extent 

assimilation performed subsequently using methods developed in Chapter 6.  

The impacts of observation location, timing, and frequency on the assimilation 

performance are investigated in Chapter 8. Through synthetic experiments, algorithm 

sensitivity to spatial location, first visit, and revisit frequency, and input uncertainties with 

respect to reach hydraulic characteristics is analysed. The best-case scenario is also identified 

and the maximum possible reductions in forecast error using the methods outlined in this thesis 

are quantified. Chapter 9 demonstrates a real-world application using the 2011 flood event in 

the Clarence, where the methods developed in this thesis are used to derive SAR-based flood 

maps and assimilate them into the hydraulic model Lisflood-FP. The experimental design is 

identical to Chapter 7, except that assimilation impacts on the flood extent and channel depth 

are evaluated using actual observations. 

Chapter 10 summarizes the major contributions of this thesis and the possible 

implications for the field, along with the limitations of the research. Chapter 11 concludes with 

a discussion on the future perspectives for each major research component of this thesis. The 

publications resulting from the research work embodied in this thesis have been listed after the 

perspectives.  



 

 

 

 

 

CHAPTER TWO  

“The Scientist must set in order. Science is built up with facts, as a house is with stones. But 

a collection of facts is no more a science than a heap of stones is a house.” 

 

- Henri Poincare, The Foundations of Science: Science and Hypothesis, the Value of Science, 

Science and Method, translated by Mélanie Frappier, Andrea Smith, and David J. Stump 
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2.   Literature Review  

This chapter reviews the relevant literature pertaining to the two major components 

of this thesis, namely SAR-based flood extent mapping and the subsequent dynamic 

integration of these with hydrodynamic models to improve flood inundation predictions in 

near real-time. The information presented in state-of-the-art literature is synthesized, with 

respect to the specific objectives of this thesis. First, a detailed review of existing SAR-

based techniques for surface water detection is provided, and their limitations with respect 

to flood mapping in particular are discussed. The second section presents a critical 

evaluation of the current efforts to update hydraulic flood inundation models using 

remotely sensed flood information. The need to consider observation characteristics and 

operators, as well as the uncertainty of both the data and the model used for experimental 

design is highlighted. Following this, an outline of gaps in current research, leading into 

the research questions addressed in this thesis along with the hypotheses is presented. 

Finally, the chapter concludes with a short summary. The two major components of this 

literature review have been published as book chapters in edited monographs published by 

AGU-Wiley1 and Elsevier2.  

 
1Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V. R. N., Walker, J. P., Chini, M., Hostache, R. and Matgen, P. (2018). Flood 

Mapping Using Synthetic Aperture Radar Sensors from Local to Global Scales. In Global Flood Hazard (eds G. J. Schumann, P. D. 

Bates, H. Apel and G. T. Aronica). AGU Books. John Wiley Publications. doi:10.1002/9781119217886.ch4 

 

2Dasgupta, A., Grimaldi, S., Ramsankaran, R., Hostache, R., Matgen, P., Chini, M., Pauwels, V. R. N., and Walker, J. P. (2018). Earth 

Observation for Improved Hydraulic Flood Forecasts. In Earth Observation for Flood Applications: Progress and Perspectives (ed. G. 

J.-P. Schumann). Elsevier. 
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2.1 Synthetic Aperture Radar-based Flood Extents 

Flooding involves large inundated regions which are often inaccessible or 

ungauged. Remote sensing (RS) data provides an elegant and practicable solution to assess 

spatiotemporal flood evolution. RS based flood mapping has witnessed significant research 

breakthroughs over the last decade. In addition to providing stakeholders with timely and 

spatially distributed information for crisis response (Schumann et al. 2016), RS-based flood 

maps are now utilized for hydrodynamic model calibration and evaluation, and to improve 

forecasts through assimilation (Schumann and Domeneghetti 2016).  

The cost of high resolution (>4 and ≤10 m) imagery and sparse temporal coverage 

previously acted as a deterrent to unlocking the full potential of RS for flood management. 

In 1999, the International Charter “Space and Major Disasters” was initiated to provide a 

unified system of rapid satellite data acquisition and delivery in the face of major disasters 

(Martinis et al. 2015c). Floods are so frequently occurring and globally pervasive, that 

majority of all satellite data requests through the charter were flood related in the past 

decade, as illustrated in Fig. 2.1. Sensors operating in the visible region of the 

 

Fig. 2.1 Distribution of hazard types for Charter activations between 2000 and 2017. Source : International 

Charter “Space & Major Disasters”, 2017 Annual Report. 
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electromagnetic (EM) spectrum offer the most straightforward solution for flood 

monitoring. Optical RS data is easy to interpret and multiple studies have demonstrated the 

utility of optical RS for flood mapping (Blasco et al., 1992; Jain et al., 2005; Li et al., 2015; 

Ogilvie et al., 2015; Ordoyne and Friedl, 2008). The increasing number of optical sensors 

with comparatively shorter revisit times has improved the spatiotemporal coverage 

substantially. However, as flood events are frequently characterized by persistent cloud 

cover, systematic monitoring using optical sensors is challenging.  

Microwave remote sensing in the longer wavelength regions is able to penetrate 

clouds, which obstruct the view of optical sensors. Synthetic Aperture Radar (SAR) sensors 

use active imaging techniques and therefore can function independently of solar 

illumination or weather conditions. This property is indispensable for small to medium 

sized catchments, where flood waters often retreat before the cloud cover dissipates 

sufficiently (Schumann et al., 2007). Consequently SAR data are currently the only reliable 

source of information for monitoring riverine floods for small catchments with sub-

kilometre channel widths (Schumann and Moller 2015).  

Like the response of a mirror, a smooth surface or what is often referred to as a 

specular reflector in microwave remote sensing, reflects the radar beam back at an angle 

equal and opposite to the angle of incidence. This causes smooth or level surfaces to appear 

black in SAR images as the radar return is not recorded by the antenna. Conversely, 

heterogenous land surfaces appear rough to the sensor and return high backscatter. It is this 

high contrast in backscatter values recorded for land and water that facilitates surface water 

detection through SAR imagery. The launch of several high-resolution SAR missions has 

also contributed to improvements in the spatial and temporal resolutions and global 

coverage, making their use in flood mapping more practical. A summary of currently 

operational, historical, and planned SAR missions is presented in Fig. 2.2, with Table 2.1 

providing details of the sensor characteristics. 

Flood extent information can not only facilitate effective regional prioritization, but 

also efficient resource allocation, both during and after events. For ungauged catchments 

and inaccessible regions, SAR based flood maps are frequently used in combination with 

high resolution topographic data to derive spatially distributed water levels (Frappart et al. 

2006; Schumann et al. 2007a; Hostache et al. 2009; Barreto et al. 2016; Matgen et al. 2016). 

SAR derived water levels (WL) are often used as hydrodynamic model calibration and 

validation targets (Gupta et al. 1998; Horritt 2000; Horritt and Bates 2002; Hostache et al. 
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2006; Pappenberger et al. 2007b; Schumann et al. 2008a; Di Baldassarre et al. 2009; 

Gobeyn et al. 2015, 2017; Wood et al. 2016), or assimilated into the model trajectory for 

an improved forecasting skill (Lai and Monnier 2009; Hostache et al. 2010; Matgen et al. 

2010; Mason et al. 2012b; García-Pintado et al. 2013; García-pintado et al. 2014).  

The last few years have seen a massive increase in utilization of spaceborne SAR 

systems for flood extent mapping, as new high-resolution platforms like TerraSAR-

X/TanDEM-X and the COSMO-Skymed constellation became operational (Pulvirenti et al. 

2011a, 2012, 2013, 2014b; Pierdicca et al. 2013, 2014; Voormansik et al. 2014; Pradhan et 

al. 2014, 2016; Martinis and Rieke 2015). Launch of the Sentinel-1A/B twin satellites, 

which provide global SAR coverage at 20 m spatial resolution with a revisit time of 3 days 

(and a repeat cycle of 6), marks a shift towards open data sharing in the satellite industry. 

Moreover, accessibility to fine resolution SAR imagery has already triggered a plethora of 

automated flood extraction algorithms (Boni et al. 2016; Sala et al. 2016; Twele et al. 2016). 

 

Fig. 2.2 Summary of satellite-based SAR missions which are applicable for flood studies, with 

corresponding wavelength bands and frequencies illustrated. 
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It can therefore be envisioned that the next decade will witness an inclusive data sharing 

environment, conducive to operational SAR-based flood mapping.  

As operational flood mapping needs to facilitate rapid image interpretation, low-

resolution datasets can be used to assess flood hazards at global scales (Westerhoff et al. 

2013; Giustarini et al. 2015a). This diagnostic analysis can be utilized to identify areas of 

high hydraulic complexity, where finer scale imagery needs to be used. Such analysis can 

potentially inform variable resolution global flood models, which can be used to optimize 

the utilization of computational resources (Mason et al. 2015). As high resolution image 

processing as well as modelling are associated with significant computational costs, it’s 

vital to utilize data at scales appropriate for flood event under investigation. This section 

provides a discussion on the issues related to operational SAR-based flood mapping at 

multiple scales and current progress in finding practicable solutions. An overview of the 

state of the art operational SAR-based flood delineation techniques is presented first, 

followed by a discussion of challenges in image interpretation and proposed solutions in 

literature. The section concludes with a discussion on methods to represent SAR-based 

flood mapping uncertainty. 

2.1.1 Common SAR-based Flood Mapping Methods 

A large variety of methods have been introduced in the recent past to map water 

bodies using SAR imagery. Table 2.1 lists some of the commonly used approaches, along 

with their strengths and limitations. When favourable conditions prevail, a single SAR 

image acquired during a flood (hereafter referred to as ‘flood image’) can be sufficient to 

reliably detect terrestrial water bodies. The single image technique works best when there 

is no wind roughening the water surface and when the detection is limited to floodwaters 

on bare soils and scarcely vegetated terrains. However, it is widely recognized that it is 

preferable to consider at least a pair of images consisting of the flood image and an adequate 

reference image (i.e. an image acquired in non-flooded conditions). Change detection not 

only tends to improve the classification accuracy, but also helps distinguishing permanent 

and transient water bodies (Chini et al. 2017). Eventually, only an approach taking 

advantage of a dense time series of backscatter recordings derived from tens or hundreds 

of SAR images acquired over a given area provides all the information that is needed to 

fully understand a floodplain’s backscatter response to changing water levels and to 

accurately delineate the floodwaters on any given day (Schlaffer et al. 2016).  
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Table 2.1: Summary of spaceborne SAR missions and sensor characteristics. The italicized entries indicate 

satellite constellations with identical configurations. (Source: Modified based on Lillesand, T.M. et al., 

Remote Sensing and Image Interpretation, 5th edn., John Wiley & Sons, New York, 2004; eoPortal, https:// 

directory.eoportal.org/, 2014.; OSCAR, https://www.wmo-sat.info/, 2017) 

SAR Platform Band Polarization 

Look 

Angle 

(°) 

Swath 

(km) 

Resolution 

(m) 

Revisit 

Time 

(days) 

Mission 

Status 

ALMAZ-1 S Single 20–70 350 10–30  Completed 

ALOS PALSAR-1 L Dual 10–51 40–350 6.25–100 46 Completed 

ALOS PALSAR-2 L Quad 8–70 25–350 1–100 14 Active 

COSMO-SkyMED  X Quad 
20–

59.5 
10–200 1–100 <1 Active 

CSK-2 X Quad - 40-200 0.8-20 - Planned 

Envisat ASAR C Quad 14–45 58–405 30–1000 35 Completed 

ERS-1/2 AMI C Single 23 100 30 35 Completed 

ICEYE-X1 X Single 15-25 35 10 - 
Proof-of-

concept 

ICEYE-X2 X Single 15-35 10-120 1-20 0.125 Active 

JERS-1 C Single 35 75 18 44 Completed 

KOMPSAT-5 X Quad 20–55 5–100 1–20 28 Active 

NISAR L, S Quad - - - - Planned 

NovaSAR-S S Dual - 15-150 6-30 - Planned 

PAZ X Dual 15–60 5–30 1–6 11 Active 

RADARSAT-1 C Single 10–60 45–500 8–100 24 Completed 

RADARSAT-2 C Quad 10–60 10–500 3–100 24 Active 

RCM  C 
Quad 

- 
20 - 

350 
5 - 50 1-4 Planned 

RISAT-1 C Quad 12–55 10–225 1–50 4 Active 

RISAT-2 X Quad 20–45 10–50 1–8 4 Active 

RISAT-1A C Quad 12–55 10–225 1–50 4 Planned 

SAOCOM-1A/B L Quad 21–50 20–350  10–100 8-16 Active 

SEASAT-1 L Single 20–26 100 25 17 Completed 

Sentinel-1A/B C Quad 20–45 20–400 5–100 6 Active 

SIR-A L Single 47–53 40 40 – Completed 

SIR-B L Single 15–60 10–60 15–45 – Completed 

SIR-C 
X, C, 

L 

Quad 
15–60 15–90 15–45 – Completed 

TerraSAR/TanDEM-

X 
X 

Quad 
15–60 5–200 0.24–40 11 Active 

TanDEM-L L Quad - ~350 1–20 16 Planned 

TSX-NG X Quad 20-55 5-400 1-30 - Planned 

TerraSAR-X 

(HRWS-SAR) 
X 

Quad 
- 10-800 0.25-25 - Planned 
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Table 2.2 Strengths and limitations of commonly used SAR-based flood extent mapping methods, modified based on Di Baldassarre et al. (2011) 

and Martinis et al. (2015b). 

Flood/Surface 

Water Detection 

Method 

Subtype Strengths Limitations References 

Visual 

interpretation 
- 

Straightforward application and high 

accuracy; single-image approach 

Extremely subjective; requires expert 

knowledge of image processing and flood 

processes; difficult to implement over 

large number of images; rarely useful for 

operational cases; Challenging for images 

with complex flow paths 

Sanyal and Lu, 2004 

Thresholding 

Manual trial-

and-error 
Very fast, high potential of 

automation, moderate complexity, 

basis for other methods (e.g., change 

detection, integration of contextual 

and auxiliary information); single-

image approach 

Fails when land-water backscatter contrast 

is low; low flexibility; optimized threshold 

might not be most appropriate 

Henry et al., 2006; Lang and 

Kasischke, 2008; P. Matgen et 

al., 2007; Townsend, 2001 

Automatic 

global 

Martinis et al., 2009; Matgen 

et al., 2011; Pulvirenti et al., 

2012; G. J.-P. Schumann and 

Di Baldassarre, 2010 

Automatic local 
Chini et al., 2017; Martinis et 

al., 2015a, 2011 

Change detection 

Post 

classification 

comparison 

Reduction of water look-alikes; 

improved detection of flooded 

vegetation areas; separation between 

flooded and permanent water areas 
Availability of reference data of non-flood 

conditions; selection of appropriate 

reference image; possibly high 

complexity; multi-image approach 

Clement et al., 2017; 

Giustarini et al., 2013; 

Hostache et al., 2012; Li et al., 

2012; Mason et al., 2014 

Repeat pass 

interferometry 

Facilitates flood detection in 

complex land-uses like urban and 

vegetated regions 

Canisius et al., 2019; 

Chaabani et al., 2018; Chini et 

al., 2019; Li et al., 2019; Nico 

et al., 2000; Ohki et al., 2019; 

Pierdicca et al., 2014; 

Pulvirenti et al., 2015; Refice 

et al., 2014 
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Contextual 

classification 

Texture-based 

Accounts for spatial autocorrelation 

of SAR backscatter; statistical and 

robust; mimics human interpretation 

accounting for tonal differences; 

automation possible; moderate 

complexity; single-image approach 

Window size and area appropriate texture 

measure selection; thresholding still 

required to obtain flooded area 

Adam et al., 1998; Pradhan et 

al., 2014; Senthilnath et al., 

2013 

Object-based 

Avoids dispersed misclassified pixels 

removing the need for classification 

post-processing; reduces speckle 

effects; accounts for backscatter 

spatial structure; automation 

possible; single-image approach 

Misclassified segments pose a higher risk 

of over- and under-detection, as compared 

to pixel-based approaches; post 

classification region merging might still be 

necessary; computationally intensive, 

might slow down flood map delivery 

during emergency 

Evans et al., 2014; Ouled 

Sghaier et al., 2018 

Active contour 

models 

Statistical and robust; high accuracy; 

easy automation; mimics inundation 

processes when integrated with 

topography; single-image approach 

Post-processing necessary; 

computationally intensive; time 

consuming so unsuitable for real-time 

applications 

Horritt, 1999; Horritt et al., 

2003, 2001; Mason et al., 

2010; Mason and Davenport, 

1996; Tong et al., 2018 

Markov random 

fields 

Allow integration of spatial, 

hierarchical, and temporal 

information; high automation 

possibilities; single-image approach 

Must be applied to all image pixels; 

enormous computational complexity; 

might be unsuitable for real-time 

applications 

Martinis et al., 2011; Martinis 

and Twele, 2010 

Ancillary data 

fusion 

Increases accuracy; adds information 

content to single channel SAR 

response; 

Might be unavailable for all regions 

globally; selection of suitable ancillary 

dataset is subjective, e.g. using HAND-

based post processing might erroneously 

remove areas of pluvial flooding; multi-

image approach 

D’Addabbo et al., 2016; 

Pierdicca et al., 2008 
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2.1.1.1 Single Image Analysis 

Histogram thresholding is the simplest and most straightforward single-image 

classification method. It consists of assigning to the semantic class “flooded” all pixels with a 

backscattering value lower than a given threshold. To overcome the subjectivity of this method 

many automated techniques have been proposed in the literature. They are based on either 

parametric or non-parametric approaches. When the former are applied, water and all other 

classes are discriminated by approximating the class distributions with predefined statistical 

models and, as a result, the optimal threshold value can be derived from their parameters. By 

contrast, the non-parametric approaches do not make any assumption about the classes’ 

statistical distributions. In 2007, Bazi et al., introduced a representative variant of a parametric 

thresholding approach that consists in automatically estimating the statistical parameters of the 

“target” and “background” classes by the expectation–maximization algorithm. The approach 

is based on the assumption that both the two classes follow a generalized Gaussian distribution. 

One of the most widely used non-parametric image thresholding techniques is known as Otsu's 

method. It searches for the threshold that minimises within-class variability while at the same 

time maximising between-class variability (Otsu 1979). The main advantage of this approach 

is that it is computationally inexpensive and therefore particularly suitable for rapid mapping 

applications.  

For calm open water surfaces, the results of thresholding approaches are usually reliable 

and the largest part of an inundation area is detected. However, the effectiveness of pure 

thresholding methods is reduced when the “target” and “background” classes are unbalanced 

and/or overlap significantly. This is often the case as flooded areas typically cover a relatively 

small fraction of a SAR scene and different factors contribute to having relatively high 

backscatter from inundated terrain. A procedure adopted to render thresholding approaches 

more robust consists in splitting the entire SAR scene into different tiles that were either 

manually or automatically selected for their bimodality characteristics (Martinis et al. 2009, 

2015a; Chini et al. 2017). To limit the over- and under-detection of flooded areas, backscatter 

thresholding is sometimes complemented with contextual information. One possible alternative 

is region growing, an image segmentation method that starts with the selection of seeds which 

are usually identified via thresholding. The backscatter values of neighbouring pixels are then 

examined to determine whether they should be added to the “flood” class or not (Giustarini et 

al. 2013). Similarly, active contour models (ACMs) allow converting incomplete or noisy edge 
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maps into smooth continuous vector boundaries (Mason and Davenport 1996), and were first 

described by Horritt (1999) for fluvial flood extent delineation. ACMs identify areas of 

homogeneous speckle statistics, and supplementary information such as topography and 

vegetation height maps can also be added as inputs (Mason et al. 2007). A hybrid region 

growing and active contour modelling approach was adopted by Mason et al. (2010), which 

allows the flood edge elevations to vary smoothly along the river reach. 

2.1.1.2 Multi-temporal Image analysis 

A second category of flood mapping algorithms is based on the analysis of two or more 

SAR scenes acquired over time. In its simplest form, a change image is produced by subtracting 

the grey values of a flood scene from those in a so-called reference image acquired before the 

event. Changes in backscatter are assumed to be mostly due to the appearance of floodwater 

and the delineation of the latter requires the application of a classification algorithm to 

differentiate the “target” (i.e. changed pixels) and “background” (i.e. unchanged pixels) classes 

derived from the difference image (Chini et al. 2008, 2013). A variety of algorithms are 

available to distinguish the changed and unchanged areas from a pair of SAR scenes. The 

previously described thresholding algorithms represent an option. A more advanced split-based 

approach for unsupervised change detection was proposed by (Bovolo and Bruzzone 2007), for 

the identification of tsunami-induced changes obtained from multi-temporal SAR imagery. A 

fully automated hierarchical split based approach was introduced by (Chini et al. 2017) that 

searches for tiles that are characterized by histograms of backscatter and change values both 

depicting an observable bimodality. The process facilitates the parameterization of the two 

distribution functions, thereby rendering the mapping of the floodwater more accurate and 

reliable.  

The application of change detection requires the availability of SAR scenes acquired 

under non-flooded conditions. To select an adequate reference image several requirements 

should be fulfilled: the reference image should have the same viewing geometry and the same 

polarisation configuration as the selected flood image. Furthermore, it should have been 

acquired during the same season as the flood image, especially for applications in regions 

characterized by a pronounced seasonality in moisture and vegetation growth. The difficulties 

of finding an adequate image in the archive and of correctly interpreting all detected changes 

in backscatter represent the main limitations of flooding-related change detection. The advent 
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of missions such as Sentinel-1 providing regular observations at high temporal resolution 

together with the development of algorithms rendering the retrieval of reference images 

automatic and objective (Hostache et al. 2012) facilitates the application of these techniques. 

Methodologies based on interferometric SAR are starting to be more widely used for 

flood mapping. These methods also fall in the category of change detection techniques. A well-

known problem of SAR-based flood mapping is that the detection of floodwater in built up 

areas remains problematic. This is because the increase of the double bounce effect resulting 

from the presence of floodwater between buildings is hardly detectable through the observation 

of changes in SAR intensity. To address this important issue, Pulvirenti et al. (2015) and Refice 

et al. (2014) developed algorithms that integrate SAR intensity data with other features 

extracted from SAR data, such as the coherence. Interferometric coherence can be defined as 

the degree of correlation between two complex (phase and amplitude) SAR images. It is 

particularly related to the change in the spatial arrangement of the scatterers within a SAR 

image pixel (Chini et al. 2015), and thus to geometric changes in the scene. Flooded areas 

exhibit low coherence, which helps distinguishing them from non-flooded regions where 

coherence tends to be high. A coherence-based change detection approach thus effectively 

complements one that is solely based on intensity change detection.  

The launch of several constellations of SAR satellites has paved the way to improve 

flood mapping by making use of multi-temporal as well as multi-angular information. An 

approach that is based on a time series of backscatter derived from tens or hundreds of images 

acquired over an area allows characterising floodplains in an unprecedented way. 

Notwithstanding this recent progress, multi-temporal image analysis of SAR data is still the 

exception rather than the rule and these techniques are mostly applied to optical data.  

In their pioneering study Westerhoff et al. (2013), used multi-temporal ASAR imagery 

to estimate for each pixel specific probability distributions of water and non-water backscatter. 

Using these histograms, the probability of a “new” measurement belonging to either one or the 

other population is derived. In O’Grady et al. (2014) collections of SAR data were used to find 

a relationship between local incidence angle and backscatter coefficient, that is used to separate 

water and non-water pixels. Thereby addressing commonly encountered problems with single 

image techniques and simpler forms of change detection such as under-detection due to waves 

on water and over-detection due to low backscatter from dry surfaces. A harmonic model was 
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fit to the backscatter time series on a per-pixel basis and used to generate flood maps from 

newly acquired SAR scenes in (Schlaffer et al. 2015). 

2.1.2 Image Interpretation: Challenges and Solutions 

The contrast between water and land backscatter values, is caused by specular reflection 

which decreases the backscatter returned to the sensor. This allows for the use of thresholding 

procedures, when the distributions of the two main classes in the image histogram do not exhibit 

significant mixing (Martinis et al. 2009, 2015a; Boni et al. 2016). These techniques work fairly 

well for surface water extraction in relatively homogeneous regions such as bare soils. 

However, as discussed in the previous section, natural environments are rarely so ideal. Flood 

surfaces are mostly broken by emergent vegetation, roughened by wind effects or by protruding 

urban structures, each of which contribute to complex scattering responses. As backscatter is 

affected by all the factors discussed above, inferences based solely on the signal return are often 

ambiguous. Motivated scientific research in this direction has resulted in some remarkable 

improvements, however, many open research questions remain. In this section, the challenges 

in SAR-based flood delineation and state of the art solutions proposed in literature are 

discussed. 

2.1.2.1 Smooth Water Detection  

When the water surface is substantially smoother than the adjacent land pixels at the 

boundary, a clear distinction between land and water backscatter values exists, the conditions 

for surface water detection become ideal. Some of the most common methods which exploit 

this property include visual interpretation, histogram thresholding (Matgen et al. 2004), 

automatic classification algorithms like active contour (snake) (Horritt et al. 2001), and 

contextual classification (Martinis et al., 2011), which have been reviewed most recently by 

(Brown and Brownett 2016; Grimaldi et al. 2016). Some hybrid automated techniques featuring 

backscatter modelling, radiometric thresholding, region growing, and change detection have 

been proposed to simplify the processing of large number of datasets in a near-real time manner 

(Matgen et al. 2011; Giustarini et al. 2015b).  

Most of the methods listed above work very well for smooth water detection in near 

ideal cases. Roughness and smoothness are a function of wavelength and angle of the incident 

radar beam. With present understanding, it intuitively follows that lower wavelength or higher 
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frequency systems display a higher land-water backscatter contrast ratio leading to better 

detection of smooth open water. The sensitivity to surface roughness is drastically reduced with 

increasing wavelengths, as many of the potential scatterers on land also appear smooth to the 

low frequency sensor, which in turn leads to a reduced contrast between flood and non-flood 

classes. 

The contrast between these two land cover classes increases with the incidence angle, 

as the scattering from a smooth surface decays more rapidly than that of a rough surface, as a 

function of the incidence angle (Weydahl 1996; Wdowinski et al. 2008). The drawback of 

working with higher incidence angles is an increase in the shadow effect or regions where an 

object point is not reached by any portion of the radar beam (Kropatsch and Strobl 1990). This 

effect is caused primarily by the side-looking imaging technique of SAR system and primarily 

occurs in areas with steep reliefs or in the presence of obstacles such as buildings. As the radar 

views objects at an angle, it cannot “see” a certain region hidden by vertical structures, these 

appear as dark shadows in the SAR image. This can give rise to some false alarms since its 

backscattering values is similar to that of water. Moreover, if the incidence angle is reduced, 

the shadow and layover effects which occur may mask the view of hydraulically important 

features leading to loss of important domain knowledge and underestimation. For example, a 

long line of tall buildings orthogonal to the line of sight of the sensor, may obscure the flooding 

of an important highway or a dyke which may be close to overtopping, which might be critical 

from a flood management perspective. As the spatial resolution is continuously improved with 

newer SAR sensors joining the fleet of EO satellites every year, the size of objects which can 

cause such distortions is getting smaller. For example, in high resolution imagery, riparian 

vegetation can cast a shadow over the flooded area boundary being detected and add uncertainty 

to various regions.  

Change detection approaches which use the difference between a pre and post flood 

image acquired with the same geometric characteristics, are often used to deal with this problem 

as shadowed areas show the same backscattering values. In some cases, the same considerations 

can apply for very smooth urban surfaces such as tarmac or asphalted areas. However, the 

shadowed area remains a region where no information is available and thus, hydraulic models 

or other ancillary data must be used to fill the gap (Pierdicca et al. 2008). The shadow effect 

can also be pre-calculated if a high-resolution DEM is available to calculate the local incidence 

angle at each pixel (i.e., incidence angle with respect to the local normal to the surface). Then, 
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a map of areas in shadow, which occurs when the local incidence angle is larger than 𝜋/2 rad, 

can be pre-computed to avoid false alarms. One of the more recent approaches suggest using 

linear regression to derive the slope coefficient between the local incidence angle and 

backscatter. The study found that the class separability was much higher when using the derived 

coefficient in place of backscatter (O’Grady et al. 2013). The only limitation of this study was 

the data intensive approach which requires enough samples of contemporary SAR images to 

assess the variation in backscatter behaviour with the local incidence angle, which may not be 

available for most study areas. 

In terms of polarization, several studies have assessed the best combination of 

transmitted and received polarizations for smooth open water detection. As one might expect, 

the horizontal component of the beam undergoes a perfect specular reflection resulting in low 

signal returns. Conversely, vertical polarizations are extremely sensitive to surface roughness, 

especially at higher frequency ranges (Martinis et al. 2015b). This means that a short 

wavelength radar beam would experience severe scattering over “rough” land surfaces. 

Although all polarizations can be used for flood mapping of bare terrains, the VV one is more 

sensitive to the small waves generated by the wind over a water surface, so that the wind effect 

for flood detection is mitigated in HH polarization. Wind induced surface roughening, is one of 

the major causes of under detection due to the reduced contrast between backscatter from 

flooded and non-flooded soils.  

The contrast between flood and non-flood regions is usually larger for moist soils, 

because the volumetric soil moisture content increases the complex soil permittivity. This 

results in an increase of the contrast between the electromagnetic impedances of air and terrain. 

In fact for a constant roughness, backscatter increases with an increase in soil moisture 

 

Fig. 2.3 The image shows example subsets of problem areas in SAR based flood mapping taken from a 

TerraSAR-X (HH, 3m Stripmap) scene acquired on the 25th of July, 2007, covering the Severn River flood 

event. The urban area shown here lies to the west of Tewkesbury, UK. © 2007 DLR, adapted from (Mason et al. 

2012a). 
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(Pierdicca et al. 2008; Panegrossi et al. 2011). Moreover, because soil permittivity and 

roughness play the same role for both water and land, the difference in backscattering between 

floodwater and bare soils is not largely affected by frequency. Although in case of a very calm 

water surface the contrast may increase with frequency, as the soil would appear equivalently 

rougher to the sensor and therefore appear brighter in the image. At this point it would be worth 

to recall the concept of roughness which needs to be considered relative to the radar wavelength. 

A surface considered smooth at lower frequency (e.g., L-band) may behave as a rough surface 

at higher one (e.g., X-band). 

2.1.2.2 Rough Water Detection 

Flooded SAR images are often captured while the associated rainfall event is ongoing 

which implies that open water surfaces are roughened due to wind and rain effects. Larger water 

surfaces like oceans are more susceptible to the effects of wind, which generates small 

amplitude waves over a wide range of wavelengths resulting in Bragg scattering. Smaller inland 

water bodies such as lakes, reservoirs or flood inundation patches, exhibit a more irregular 

pattern of roughness leading to some diffuse surface scattering. These factors which increase 

the surface roughness result in higher signal returns, which in turn reduce land-water class 

separability and could potentially lead to an underestimation of the flooded area.  

Wind-induced gravity waves are still an open issue in case of mapping inland water 

from SAR because many unknown factors (different depths or obstacles that screen the wind 

flow) contribute to the problem. This makes modelling the radar signal rather challenging, even 

in case accurate meteorological information is available. The linear regression approach 

proposed by O’Grady et al. (2013) to enhance separability between water and lookalike surfaces 

which exhibit specular scattering behaviours, was extended to solve this problem. Additional 

parameters like backscatter normalized to 30 degrees (using the fitted model) and the ratio 

between standard deviations of the time series of backscatter and intercept (SDR) at each pixel, 

was additionally used to derive a thresholding based flood map (O’Grady et al. 2014). 

Optimally thresholding the SDR image showed the best class separability, establishing the merit 

of generating such a database globally. Currently operational and planned high resolution SAR 

missions, facilitate the development of such a database in the future.  

In addition to wind roughening, intense precipitation events (Pulvirenti et al. 2012) and 

wet snow (Pulvirenti et al. 2014a) also contribute to flood detection problems.  The signal 
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attenuation caused by heavy rain can be observed at higher frequencies, since the amount of 

absorption and scattering of the signal is due to water drops is higher. Similar to the case of 

rain, wet snow is also very absorbent and produces very low backscatter which can be easily 

misinterpreted as floodwater (Pulvirenti et al. 2014a). Ancillary data such as local incidence 

angle maps, land cover maps, and optical imagery, can be utilized to supplement SAR 

information and reduce false alarm errors arising from this phenomenon (Pulvirenti et al. 

2014a). 

2.1.2.3 Partially Submerged Vegetation 

Identifying flooding in pixels having a high vegetative fraction is relatively harder due 

to the complex scattering patterns which result from a combination of volume and double-

bounce scattering. Double-bounce scattering represents the key process used to detect flooded 

vegetation on a SAR image. Radar beams achieve measurable penetration depths directly 

proportional to the incident wavelength. When the ground is covered by a smooth and very 

reflective water surface, the intensity of the double-bounce effect increases notably depending 

on canopy penetration. The returned signal is a combination of dihedral reflection - caused by 

steep emergent stems for the parts of the radar beam that surpass the canopy, and volume 

scattering - resulting from the radar beam travelling through air, interleaved with a multilayer 

canopy, all having different electrical permittivity properties (Richards et al. 1987). However, 

the difference between the signal returned by a flooded and a non-flooded forest, is strongly 

dependent on vegetation and sensor characteristics. 

The abovementioned factors result in volume scattering which negates specular 

reflection effects and reduces detectability of flood patches. SAR sensors operating in the longer 

wavelength regions can partially penetrate vegetation canopies, as penetration is directly related 

to the signal wavelength. Additionally, the double-bounce can be exploited to detect the 

flooding, as non-flooded forested areas would return a lower backscatter due to the underlying 

rough forest floor which does not support corner reflection mechanisms (Pulvirenti et al. 2013). 

In this case an increase in soil moisture content decreases the contrast with flooded vegetation 

because the double-bounce effect gets amplified. 

Flooded vegetation often results in enhanced backscatter due to a combination of 

dihedral and volume scattering, as opposed to dry vegetation where the radar beam only 

undergoes volume scattering. A review of early studies investigating flooding under vegetation 
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concluded that L-band radar images exhibited higher sensitivity to detect flooding under 

vegetation (Hess et al. 1990), and that steep incidence angles are better for flood detection as 

the possibility for the radar pulse to reach the forest floor is increased. Increasing the incidence 

angle also raises the bistatic surface scattering, however, smaller angles favour larger 

penetration depths. It is critical then to determine the optimum angle of incidence for the 

specific domain application being considered, such that the double-bounce enhancement effect 

is most pronounced. 

As longer wavelengths favour greater penetration depths, they are often preferred for 

monitoring floods in vegetated areas. However, several studies have demonstrated that C-band 

data could allow flood mapping under lighter canopies (De Grandi et al. 2000). Another factor 

affecting the penetration depth for forested regions outside the tropics is seasonality. As the 

shedding of leaves reduces the potential scatterers in each pixel, lower wavelength sensors can 

also achieve penetration during leaf-off seasons (Townsend 2001).  This has been examined by 

using X-band data to investigate surface water extent under low density canopies (Antonova et 

al. 2016). An increase in backscatter was noted for all the different forest types in that area 

under flooded conditions indicating that such approaches could be useful for boreal and 

temperate environments (Voormansik et al. 2014; Cohen et al. 2016). For cases of increasing 

complexity where flooded water needs to be distinguished from marshes or mangroves, using 

multifreqency fully polarimetric data and the use of P-band is suggested for high density 

canopies (Martinis and Rieke 2015). 

Although radar polarimetry can facilitate a reliable detection of the complex scattering 

mechanisms observable in flooded vegetation, fully polarimetric SAR images are often 

unavailable during a flood event. Polarimetry is able to isolate the contribution of the double 

bounce from volume and surface scattering mechanisms, which is beneficial for detecting the 

changes caused specifically by flood water. This is done by measuring the magnitude and phase 

difference between co-polarized (i.e., HH, VV) and cross-polarized (e.g., HV backscatter) 

backscatter (Plank et al. 2017).  

It was also demonstrated that using a combination of HH and VV polarized images 

favoured the separation of flooded and non-flooded forests over the use of HH data alone (Zalite 

et al. 2014). This can largely be attributed to the increased phase difference observable in the 

former, as a result of interactions with inundated vegetation. In case of dense vegetation, the 

combined occurrence of absorption and scattering, can produce an overall attenuation that is 
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relevant also for the HH polarization. In such cases, the SAR signal is reduced as the biomass 

increases, penalizing especially higher incidence angles and creating false alarms as well, since 

the backscattering is drastically reduced. 

More recent studies proposed the use of interferometric SAR (InSAR) which measures 

the level of similarity between two SAR images based on the speckle distribution patterns. 

Recall that speckle results from multiple scatterers within the same ground resolution cell, 

meaning that this pattern should be consistent for a given geographic area imaged using 

identical sensor characteristics. If the difference in acquisition times of the SAR images can be 

limited such that the only change in terrain properties which occurs within that duration is the 

flooding, coherence data can supplement intensity information for flood detection under 

canopies (Refice et al. 2014).  

Vegetation normally decorrelates the microwave signal intensities due to volume 

scattering, which determines low Differential SAR Interferometry (DInSAR) coherence (even 

for short temporal baselines). This is primarily a result of changes in plant phenology and 

movement of stalks and/or leaves caused by wind. However, flooded vegetation is characterized 

by even lower values of coherence due to the added presence of floodwaters (Chini et al. 2012). 

Flooded waters contribute further to decorrelation due to specular reflection properties, which 

in the presence of emergent vegetation, manifests as double-bounce scattering (Zebker and 

Villasenor 1992).  When combined with intensity information, flooded vegetation can be 

identified as areas displaying an increase in backscatter and decrease in coherence (Nico et al. 

2000). These approaches primarily detect the change in image texture and dielectric properties, 

which can be explained as a function of the underlying water level (Pulvirenti et al. 2011a). As 

the use of these change detection approaches are very sensitive to the temporal baseline of the 

SAR acquisitions, the use of newer satellites offering relatively lower repeat cycle, like the 

COSMO-SkyMed (CSK) Constellation, should be explored. 

The problem with high frequency SAR systems like CSK is the heightened sensitivity 

to any potential scatterers. However, for narrow leaved plants these data could still provide 

useful information (Pierdicca et al. 2017). Furthermore, the capability to provide multitemporal 

observations can support the monitoring of flood evolution in some areas. If the land-cover 

distribution of the vegetated areas in the scene is known a priori, vegetation scattering models 

can be used to predict backscatter behaviour (Pulvirenti et al. 2011a). This information assists 

in tuning fuzzy models which can then be used to interpret flooded vegetation while 
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simultaneously acknowledging the uncertainty (Pulvirenti et al. 2013). The study by Grimaldi 

et al. (2020), attempted to further reduce the dependence on site specific knowledge required 

for the implementation of electromagnetic models by statistically analysing wet and dry 

backscatter distributions through probability binning. Implementing the thresholds obtained 

within a fuzzy classification framework, with the addition of commonly available ancillary data 

layers, the authors demonstrated an overall accuracy >80% for flood maps derived from L- 

(ALOS PALSAR) and C-band (Cosmo-Skymed) SAR images.  

2.1.2.4 Urban Flooding 

Flood detection around urban features is challenging due to a variety of factors. Double 

bounce scattering from buildings and pavements, along with metals with high dielectric 

constants having high reflectivity, contribute to the enhanced backscatter observed. The effect 

of material properties dominates over the soil roughness characteristics, since the smooth urban 

surfaces like tarmac and asphalt are already smooth with respect to still water (Mason et al. 

2010b). Distortion effects caused by the side-looking sensor geometry additionally pose 

problems for high to very high resolution SAR imagery as high rise buildings tend to cause 

shadows and layover effects. Smooth urban surfaces cause specular reflection and return a 

signal, very similar to inundated areas, frequently leading to false alarm situations. However, it 

must be noted that specular reflection effects are increased for smooth urban surfaces oriented 

along the sensor's line of sight. Conversely, corner reflection is more likely to occur if the urban 

features are oriented orthogonally to the incoming radar beam (Pulvirenti et al. 2015). 

Change detection (CD) based approaches were found to reduce the misclassifications 

of other dark image regions by identifying areas of shadow, layover, tarmac, and permanent 

water a priori (Giustarini et al. 2013). Once these areas are diagnosed and masked out, 

overestimation can be substantially lowered. Earlier studies investigated the use of active 

contours in conjunction with region growing. However, each step of the seed selection process 

required manual intervention. Further studies automated this seed selection process for region 

growing using LiDAR-based topographic information (Schumann et al. 2011). 

While backscatter based approaches like change detection can work in some case studies 

(Aggarwal et al. 2014), there are some limitations for urban flood detection problems. For 

instance, the backscatter variation attributable to a change in the surface dielectric constant 

which is caused by the flooding, is nearly unobservable as the returned signal is too low due to 
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specular reflection. If the smooth tarmac surfaces like roads and pavements are masked out of 

the analysis, flooding on and around these features cannot be detected (Pulvirenti et al. 2015). 

Conversely, in the case of dihedral reflection this intensity change is usually detectable, as the 

increased surface reflectivity results in a stronger return. However, if the water level is not 

negligible with respect to the building height, the signal return from corner reflectors might be 

reduced due to a decrease in the beam cross-sectional area (Thiele et al. 2007). Therefore, the 

reliability of SAR intensity based approaches appears to be limited for operational urban flood 

mapping. 

The interferometric coherence approach has recently been applied to deal with many of 

these limitations (Chaabani et al. 2018). Urban areas are generally temporally coherent as the 

decorrelation is a function of relative motion of scatterers in the pixel over the temporal baseline 

(separation between the two image acquisitions), which can be considered negligible for high 

density built-up areas. On average, double-bounce in urban regions correspond to highly 

coherent targets in the image as a function of their high backscatter in combination with 

temporal invariance. As spatial decorrelation is inversely proportional to the wavelength of the 

radar beam, at lower wavelength bands this effect is more pronounced (Zebker and Villasenor 

1992).  

Standing water is expected to decorrelate the signal more than is expected, a property 

which may be exploited for urban flood mapping (Matgen et al. 2011; Pulvirenti et al. 2015). 

In high resolution SAR imagery, some false alarms in the coherence information may be 

generated from dynamic traffic flows and parking lots. However, assessing three pairs of SAR 

images acquired within the critical spatiotemporal baselines, one for the dry or pre-event 

situation, one with images acquired before and after the event and finally a post-event pair, can 

help in correctly identifying the decorrelation caused by flooding. While this seems to be a data 

intensive approach at the outset, when the improved temporal resolutions of current and 

upcoming SAR sensors is considered, it appears more likely that such data may soon be 

available for analysis globally. Gaps still remain in urban areas, such as shadowed areas 

structures where SAR backscattering does not provide any information about the presence of 

water, and they could be filled-up by the assimilation of the flood maps into hydraulic models. 

In that case, the flood maps should be provided in terms of probability that a certain pixel is 

flooded in order to characterize the uncertainties that associated with the flood map (Schumann 

2019).  
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2.1.3 Representation of Uncertainties 

Regardless of the number of images considered, most SAR image processing methods 

output flood extent estimates in the form of binary maps and thus do not provide any indication 

on the uncertainty associated with the pixel classification. A more informative and arguably 

more advanced method involves estimating the probability of each pixel belonging to the flood 

class. However, probabilistic flood mapping is still not very common and only a few noteworthy 

exceptions exist (Westerhoff et al. 2013; Giustarini et al. 2016; Schlaffer et al. 2017).  Previous 

studies on the characterisation of uncertainties in flood extent maps have often been limited to 

random realisations of potential sources of uncertainty (Hostache et al. 2006, 2009; Schumann 

et al. 2008d; Di Baldassarre et al. 2009; Refice et al. 2014; Giustarini et al. 2015b).  

The uncertainties contributed by ambiguities in backscattering properties cannot be 

completely removed (Stephens et al. 2012). Approaches which account for this uncertainty in 

the flood detection process provide fuzzy outputs in which pixel values convey the confidence 

with which the pixel is correctly classified as flooded. As SAR-based flood extents serve as 

calibration and evaluation targets for hydrodynamic models, quantifying the uncertainty  of 

flood observations is essential (Schumann et al. 2008a). Studies have successfully illustrated 

that factors like the acquisition time of the SAR image (Gobeyn et al. 2017), sensor 

characteristics (Giustarini et al. 2015b) as well as the flood mapping procedure chosen (Di 

Baldassarre et al. 2009), can impact the calibrated model parameters. These studies 

demonstrated the need for a shift towards probabilistic mapping, which is the current consensus 

amongst the flood mapping community (Di Baldassarre et al. 2010, 2011; Schumann and Di 

Baldassarre 2010b; Alfonso et al. 2016). 

The discussion in the previous section, of factors which may contribute to errors in 

SAR-based flood maps, is important to understand and identify areas in which the model 

outputs will always be more reliable. However, in practical applications when large amounts of 

data need to be processed, especially at the regional or global scale, it makes more sense to 

convey the observational uncertainty to the model for which several techniques have been 

proposed in literature. For example, Schumann et al. (2008c) investigated the uncertainty in 

SAR-derived water stages, from a single SAR image and a single flood mapping procedure, 

and identified two main sources of uncertainty: (i) the parameter value applied to classify a 

pixel as flooded (i.e. flooded/non-flooded classification threshold) and (ii) geocoding of the 

image itself. The study conducted by (Refice et al. 2014)  implicitly introduced a semi-
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automated approach that allows integrating ancillary information to derive a posteriori 

probabilistic maps of flood inundation, accounting for different scattering responses to the 

presence of water. 

In order to eliminate the subjectivity in the selection of a particular algorithm for flood 

mapping, several studies investigated the use of a possibility of inundation (POI) map 

(Schumann et al. 2009b; Di Baldassarre et al. 2009; Schumann and Di Baldassarre 2010b). An 

ensemble of maps generated using a variety of flood detection algorithms which perform 

equally well for a given study region are combined to arrive at the POI map. Each pixel in the 

POI map is assigned a value between 0 and 1 based on how many of the ensemble members 

classified it as flooded. It can be interpreted as an event-specific flood probability map which 

can facilitate probabilistic calibration procedures.  

Fuzzy approaches which combined SAR based information with available ancillary data 

sets have since been suggested and exploited for operational flood mapping at various levels 

(Pappenberger et al. 2007b; Pierdicca et al. 2008; Pulvirenti et al. 2011b, 2013). The fuzzy 

membership functions, are usually defined based on EM backscattering models for each land-

use class, which the classifier may encounter in the SAR scene. These models can be difficult 

to parameterize if domain knowledge is limited, thus histogram based methods still need to be 

tested for more generalizability.  

Probabilistic mapping approaches which utilize Bayesian posterior probabilities of 

flooding for each pixel were tested recently, demonstrating a good agreement with the 

validation data assessed through reliability diagrams (Giustarini et al. 2016; Schlaffer et al. 

2017). One of the major limitations of current validation strategies is that the validation data is 

assumed to be completely true. This is counterintuitive as probabilistic mapping operates on 

the premise that observational uncertainty needs to be acknowledged. The current challenge is 

to develop an effective statistical measure to assess fuzzy flood maps with fuzzy validation 

data. 

2.2 Remote Sensing Data Assimilation for Improved Flood 

Inundation Modelling 

Current global flood forecasting systems, primarily consist of a numerical weather 

prediction and hydrological model cascade, which provide predictions of streamflow (Emerton 
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et al. 2016). For example, the Global Flood Awareness System (GloFAS, Alfieri et al., 2013) 

provides forecast probabilities of the streamflow exceeding pre-defined flood severity 

thresholds, in the global channel network with a lead time of up to a month (Hirpa et al. 2018a). 

GloFAS is the first globally concerted effort towards operational flood forecasting, which could 

potentially offset the disproportionate impacts of flooding on developing nations where the 

necessary expertise and infrastructure might be lacking (Uhe et al. 2019). However, the lack of 

corresponding inundation information severely prohibits the direct translation of GloFAS 

forecasts into actionable insights for flood mitigation. As flood extent estimates are not 

provided, pre-emptively assessing risk and damage based on GloFAS predictions is nearly 

impossible. 

Although there exists a widespread scientific consensus regarding the inclusion of 

hydraulic flood inundation models into global forecasting chains, there are mainly two reasons 

why this has not materialized yet. The first, pertains to the availability of sufficient 

computational resources for operational real-time ensemble forecasts of flood inundation. To 

put this in perspective, hydrological model calibration studies use thousands (Pappenberger et 

al. 2005) to a million model runs (Moradkhani et al. 2005a) within a research scenario, while 

GloFAS (real world scenario) can only use 51. This is primarily because a trade-off between 

computational time and prediction accuracy, becomes absolutely critical in an operational 

scenario where time is of essence (Sanders and Schubert 2019). Moreover, in an ensemble 

forecasting model cascade these 51 GloFAS outputs are inputs to a hydraulic model. A task 

which requires even more time and even larger computational capabilities. Recent advances in 

scientific computing prowess suggest that integrating flood inundation models into forecasting 

chains might now be feasible (Ward et al. 2015; Bates et al. 2017). However, extensive 

investigations into the computational demand versus accuracy trade-off are essential to realize 

this operationally.  

The second reason is related to the data required for the implementation of flood 

inundation models (Bates 2012; Bates et al. 2014a). Typically, this necessarily includes 

information on upstream (rainfall or inflow) and downstream (outflow or water levels) 

boundary conditions, channel geometry, and floodplain topography. Among these, the 

floodplain topography is arguably the most critical factor which determines floodplain 

connectivity and flow pathways, exerting a dominating influence on the resulting inundation 

patterns (Schumann et al., 2014). The uncertainty contributed by forecast inflows compounds 
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topographic errors, often leading to highly erroneous predictions of inundation extent (Hostache 

et al. 2018b). Current global digital elevation models (DEMs), such as those from the Shuttle 

Radar Topography Mission (SRTM) or from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) mission exhibit large vertical errors to the order of several 

meters (Chen et al. 2018). These errors are exacerbated over complex topography and cannot 

resolve microtopographic variations low gradient regions, limiting their utility towards 

generating flood predictions with acceptable accuracy (Chu and Lindenschmidt 2017; 

Schumann and Bates 2018; Grimaldi et al. 2019).  

Studies have explored a variety of bias correction (Sanders 2007; Pramanik et al. 2010; 

Kumar et al. 2019), vegetation and artefact removal (Yamazaki et al. 2012, 2017; Hirt 2018), 

artificial enforcement of drainage networks (Gallant et al. 2011; Yamazaki et al. 2019), and 

DEM merging techniques (Robinson et al. 2014; O’Loughlin et al. 2016; Yue et al. 2017; Pham 

et al. 2018; Wang et al. 2018) to improve the quality of global DEMs for flood modelling. For 

example, the global Multi Error Removed Improved Terrain (MERIT) DEM (Yamazaki et al. 

2017) removed absolute bias, stripe noise, speckle noise, and tree height bias from a merged 

SRTM3 and AW3D elevation product. The resulting MERIT DEM showed significant 

improvements, especially in the representation of microtopographic variations and channel 

networks in flat terrains. In spite of this, Schumann & Bates (2018) observe that these improved 

topographic datasets still exhibit vertical errors much larger than those acceptable for flood 

inundation forecasting.  

Recent literature has explored the possibility of a high resolution global DEM based on 

TanDEM-X data, reporting sub-meter vertical accuracy in simulated water surface elevations, 

indicating suitability for flood applications (Archer et al. 2018). Moreover, the TanDEM-X 90 

(~1 arc second) product was also found to exhibit lower vertical errors than the MERIT DEM, 

for all land-use classes except tree-covered regions (Hawker et al. 2019). However, the 

development and provision of a global product is still a long-term goal which would need 

extensive testing, as even small vertical errors can strongly impact flood forecasting accuracy 

especially at local scales (Schumann and Bates 2018). As Hawker et al. (2019) demonstrate, 

the choice of an appropriate global DEM for floodplain applications should ideally be 

determined through an assessment of the predominant land cover in the region. While this 

recommendation is feasible on a case to case basis for research purposes, it also implies that 

when using any one of the global DEMs for operational forecasting, large vertical errors may 
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still exist in one or more of the underlying land cover regions. Consequently, in order to prepare 

for the imminent integration of flood inundation models into global forecasting systems, 

methods to reduce the uncertainty contributed by topography need to be developed urgently 

(Fleischmann et al. 2019).  

Earth Observation (EO) data has the potential to provide independent observations of 

surface water flood dynamics (Bates et al. 2014a), which can be used to improve flood 

inundation predictions in near real-time as shown in Fig. 2.4. The primary objective of data 

assimilation is to nudge the model trajectory towards observed data, improving the agreement 

between them whenever new observations become available (Schumann et al. 2009a). Data 

assimilation (DA) can be interpreted as a dynamic calibration technique in that sense, where 

the observations are used to update model forecasts in an online manner (Smith et al. 2011). 

The implementation of DA techniques also allow extending the temporal coverage of 

instantaneous satellite-based flood observations, through integration with a continuous dynamic 

process-based hydraulic flood inundation models (Lahoz et al. 2010). In fact studies have 

shown that forecast errors can be improved by up to ~50% at the assimilation time step, while 

 

Fig. 2.4 Schematic of the Earth Observation data assimilation problem in hydraulic modeling, 

adapted after Moradkhani (2008). Here, Earth Observations are interpreted as “truth” plus 

errors, as satellite-derived flood extents are expected to encompass the “true” flood extent even 

though a major component of measurement errors are also expected to be present in the 

observation.  



C h a p t e r  2 -  L i t e r a t u r e  R e v i e w   P a g e  | 2-26 

 

improvements can persist for up to 48 hours (Hostache et al. 2018b). EO-datasets which can be 

assimilated into flood models to improve forecast skill include water levels (WLs) (e.g., Matgen 

et al. 2010), inundation volumes (Revilla-Romero et al. 2016), and inundated area (e.g., 

Hostache et al. 2018).  

While the inundated area is directly observed by optical and microwave imaging 

sensors, satellite altimeters provide water levels on a large scale with typical footprint 

resolutions in the order of kilometres  (Paiva et al. 2013; Hossain et al. 2014; Tourian et al. 

2017; Huang et al. 2018b; Schneider et al. 2018). However, satellite altimetry is currently 

unable to resolve flood depth in narrow channels at local and catchment scales (Schumann et 

al. 2014c, 2018; Biancamaria et al. 2016; Grimaldi et al. 2016), which is problematic as almost 

25% of global rivers have widths <120 m (Frasson et al. 2019). Some innovative research is 

ongoing in this direction which promises future improvements (Michailovsky et al. 2012; 

Bauer-Gottwein et al. 2015; Kim and Sharma 2019; Kim et al. 2019), especially with respect 

to the potential of swath altimetry for hydraulic flood inundation modelling applications 

(Domeneghetti et al. 2018b; Pitcher et al. 2018; Tuozzolo et al. 2019). The upcoming SWOT 

(Surface Water Ocean Topography) mission with an expected launch date of 2021, will use 

swath altimetry provide direct observations of water surface elevation, widths, and slopes 

simultaneously for rivers wider than 100 m (Baratelli et al. 2018). Inverse modelling can then 

be used to remotely derive discharge, bathymetry information (slope and geometry), and flow 

velocity values, within a hindcasting data assimilation framework (Durand et al. 2008; Yoon et 

al. 2012; Prigent et al. 2016; Baratelli et al. 2018; Brisset et al. 2018; Domeneghetti et al. 2018b, 

a; Oubanas et al. 2018a, b; Kim et al. 2019; Revel et al. 2019). Investigative studies preparing 

for the SWOT mission, have successfully demonstrated the value of combining virtual swath 

altimetry measurements with hydrodynamic models, for improved modeled depth and 

discharge estimates. Therefore, the SWOT satellite is expected to revolutionize hydraulic data 

assimilation research, as remote sensing-based spatially distributed water levels will be 

available to modellers for the very first time. 

While multiple studies have noted that the processing of optical satellite imagery to 

extract inundated areas is relatively straightforward (Ogilvie et al. 2015; Lacava et al. 2019; 

Oliveira et al. 2019), cloud persistence during flood events hinders their systematic use in flood 

monitoring (Huang et al. 2018a). Per contra, Synthetic Aperture Radar (SAR) sensors which 

use active imaging techniques are capable of cloud penetration and capturing observations 
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through the day and night. SAR sensors are thus uniquely suited to flood mapping applications, 

especially for small to medium catchments, where flood events are quick and inundation often 

recedes before clouds have dissipated (Schumann and Moller 2015). Moreover, for narrow 

channels the surrounding topography can also significantly impact the echo shape returned to 

radar altimeters, adding uncertainties to the corresponding water surface elevation (Grimaldi et 

al. 2016). This makes SAR-derived WLs more suitable than radar altimetry for channels with 

sub-kilometre widths (Schumann et al. 2008c, d, 2010). Consequently, satellite-based flood 

extents can be overlaid on DEMs, to obtain shoreline WLs after a number of post-processing 

steps (Schumann et al. 2007a; Matgen et al. 2007a; Mason et al. 2012b). In fact, comparisons 

of WLs derived from LiDAR and topographic contours with those derived from the global 

SRTM DEM, have demonstrated that even coarse resolution DEMs have the potential to 

support flood modelling (Schumann et al. 2008b). Recent years have witnessed the 

development of a variety of data assimilation techniques, designed to enhance the exploitation 

of the available satellite-derived WL datasets for flood model improvements (Domeneghetti et 

al. 2019). However, research in this direction has also revealed a number of caveats in the WL 

derivation process, that must be effectively addressed to unlock the full potential of EO-data 

for flood disaster management (Schumann and Domeneghetti 2016).  

This section provides a discussion on the issues related to the integration of EO-data 

with hydraulic flood forecasting models within a data assimilation framework, with an aim to 

harmonize and present the current progress in finding feasible solutions. Therefore, it is 

important to note that this section focuses exclusively on the use of EO-based hydraulic data 

assimilation to improve predictions of floodplain inundation extent, water level, and flow 

velocity. This implies that studies on the assimilation of satellite altimetry for improved 

discharge modelling, for example, are not within the scope of this thesis and accordingly have 

not been covered. Consequently, an overview of the state of the art of data assimilation 

techniques proposed for flood inundation model improvements is presented first. Next, the 

estimation of relevant hydraulic model states and fluxes using flood data assimilation is 

described. Furthermore, some selected case studies from recent literature which demonstrate 

the potential of EO-based data assimilation for improved flood inundation forecasting are 

presented. Finally, future work and open research questions in EO-based data assimilation for 

flood applications have been elucidated. 
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2.2.1 Assimilating Earth Observations into Hydraulic Flood Forecasting 

Models  

Disentangling and dealing with multi source uncertainty in modelling is widely accepted 

as a scientific challenge in hydrological and hydraulic modelling (Blöschl et al. 2019). 

Accordingly, most hydraulic data assimilation studies have employed EO-data assimilation 

with the objective towards improved flood forecasting accuracy. As this requires dynamically 

updating the model trajectory at each assimilation time step, as and when a new observation 

becomes available, most of the studies have employed sequential filtering techniques 

(Andreadis 2018). A few studies have also investigated the potential of variational data 

assimilation approaches such as 4DVAR; although the main objective of these studies was not 

improving forecast accuracy in real time. These studies primarily focused on the selection of 

effective inputs and parameters in hindcasting scenarios, which implies that operational 

constraints of rapid processing times were largely ignored. For example, Lai & Monnier (2009) 

used EO-derived water level assimilation based on the 4DVAR algorithm for input updating; 

while a lumped friction parameter was estimated in Hostache et al. (2010) using the same 

approach. Within a similar 4DVAR-based assimilation framework, Lai et al. (2014) introduced 

the possibility of direct flood extent assimilation – eliminating the need for a water level 

processing step – for distributed channel roughness estimation. Analysis of the application of 

variational DA can also be found in Fletcher (2018a, 2018b), Lahoz et al. (2010), and Briggs et 

al. (2013). However, as this chapter is focused towards the use of EO-based assimilation for 

forecasting applications, variational data assimilation strategies have not been considered for a 

more detailed discussion. Accordingly, the following paragraphs focus on studies that used 

sequential filtering approaches with a clear objective towards improving forecast accuracy in 

real time. 

2.2.1.1  Water Level Assimilation using the Kalman Filter and Variants 

The earliest studies which investigated the potential of EO-based assimilation for flood 

variable estimation, typically used the Kalman Filter (KF) and its variants (Evensen 2003). The 

Kalman filter family of data assimilation approaches forecast the background error covariance 

matrix to calculate the Kalman gain, which determines how much of the observational 

information is taken up at each time step. This gain matrix is determined by the relative 

confidence in the model and the observations. The traditional Kalman filter approach achieves 
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this using a standard error propagation theory on the tangent linear model, while the extended 

Kalman filter (EKF) uses a Taylor’s series expansion for linearization (Walker and Houser 

2005). EKF allows the extension of KF to non-linear modelling problems, however, the 

computational cost exceeds model run times by a factor of one more than the number of 

assimilated observations (Habert et al. 2016). Here the computational cost is measured in terms 

of the number of binary matrix operations required at each time step to propagate the 

assimilation system forward. The Ensemble Kalman Filter or EnKF, computes the error 

covariance matrices from an ensemble of state forecasts using the Monte Carlo approach, 

significantly reducing computational cost and the required ensemble size (Madsen and 

Canizares 1999).  

Although the studies discussed in this paragraph did not directly use EO-based flood 

variables for assimilation, they have been included here as they paved the way for future flood 

data assimilation studies. The first hydraulic data assimilation studies were by Madsen & 

Skotner (2005) and Neal et al. (2007), who assimilated ground gauge-based river level data at 

different points along river reaches. Madsen & Skotner (2005) developed a novel hybrid 

assimilation technique combining a simplified Kalman filter with an error forecast model, using 

gain functions with predefined shapes that reflect typical error correlation structures along the 

reach. Neal et al. (2007) used the EnKF to simultaneously update the states and inputs of a 1D-

hydrodynamic model. One major structural assumption in both studies was that the boundary 

conditions were the sole source of uncertainty. Both studies sequentially updated an augmented 

state vector including discharge and stage (Madsen and Canizares 1999), as well as future state 

error covariance matrices which were also parameterised through the assimilation scheme (See 

Fig. 2.5). The error forecasting procedure allowed for an update of the inflow boundary 

conditions, which are known to strongly influence flood flow regimes between subsequent 

assimilation steps. As the errors introduced through the inflows at each time step, are pre-

emptively estimated and accounted for in the assimilation framework, the forecast error 

reduction obtained is persistent. An autoregressive error model was used to synthetically 

generate and subsequently predict temporally correlated inflow errors. On testing a variety of 

temporal sampling intervals for field hydrometric observations of water stage, Neal et al. (2007) 

concluded that the state uncertainty was overestimated when the sampling rate was reduced. 

This indicated that the observations were assigned relatively lower weights than model 

predictions, when the temporal density of the measurements was low. Similarly, the spatially 



C h a p t e r  2 -  L i t e r a t u r e  R e v i e w   P a g e  | 2-30 

 

distributed systematic bias in the field sensor measurements led to an underestimation of the 

state uncertainty.  

The following study on hydraulic data assimilation was actually geared towards the 

feasibility assessments of the proposed SWOT mission, then known as WatER - Water 

Elevation Recovery (Alsdorf et al. 2007).  Through the assimilation of synthetic swath-

altimetry data into the raster-based hydraulic model Lisflood-FP (Bates and De Roo 2000b) 

using the square root EnKF or EnSRF (Evensen 2004), Andreadis et al. (2007) investigated the 

prospects for estimating channel flow and water depth. Errors were propagated from boundary 

inflows, generated by corrupting outputs obtained from the Variable Infiltration Capacity (VIC) 

model. Given that this was a feasibility study, synthetic spatial fields of WL were generated 

using the NASA JPL SWOT simulator (Fu and Rodriguez 2004) by corrupting predictions from 

the “truth” model with Gaussian errors. A hydraulic data assimilation for EO-data was 

developed for the first time by Andreadis et al. (2007), to simultaneously update states and 

inputs by dynamically parameterizing the inflow error prediction model, following Madsen and 

Skotner (2005). The EnSRF-based approach was successfully able to retrieve channel water 

 

Fig. 2.5 Illustration of the combined filtering and error forecast procedure followed by Neal et al. (2007) 

and Madsen & Skotner (2005). Taken from Madsen & Skotner (2005), © Elsevier, 2005. 
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depth and discharge from the corrupted open loop simulations. While the filter showed low 

sensitivity to assumed observation errors, it was highly sensitive to observation frequency; 

assimilation performance degraded substantially as the temporal frequency was halved.  

The study by Matgen et al. (2007) considered real EO-derived WL observations, as 

opposed to the synthetic ones used by Andreadis et al. (2007), within a sequential data 

assimilation framework for the very first time. As state updating is the most straightforward 

way to utilize EO data to correct models in real time (Grimaldi et al. 2016), this proof-of-

concept study implemented a similar strategy. Water stages were derived from ERS-2 SAR and 

ENVISAT ASAR images, by intersecting with a LiDAR DEM using the REFIX approach of 

Schumann et al. (2007). Considering all the sources of uncertainty in EO-based WL estimation, 

an interval of values is determined from the EO-based WL estimation approach and further 

refined by enforcing hydraulic coherence principles (Puech et al. 2007). Subsequently, the 

model generated water line is updated at the time steps of the EO data acquisition, to fall within 

the interval of EO-derived WLs at each model cross-section (Matgen et al., 2007). As the 

calibrated 1D HEC-RAS model already performed very well for the study reach, the reported 

improvements were minor and rapidly decayed within a few hours. For instance, the 

assimilation of ERS-2 based WLs improved forecast error by 23 cm at the assimilation time 

step, but this reduced to 3cm within 3 hours of the assimilation, after which the analysis 

trajectory completely decayed back to the background state values within ~4.5 hours. In 

contrast, the assimilation of ENVISAT-derived WLs increased the deviation of the assimilated 

state vector from the open loop from 3 cm to 6 cm, which was an almost 100% relative 

degradation. The decay to the original model trajectory in this case was faster (~2 hours). These 

results can primarily be attributed to the flashy catchment characteristics, where the flood wave 

peaked in a few hours and receded within three days. This study particularly highlighted that 

EO-based data assimilation can even degrade model predictions when observation errors are 

not appropriately represented. The implication here is that some a priori quality control might 

be necessary to effectively filter outliers which may negatively impact forecast errors.   

Extending the work of Andreadis et al. (2007), Durand et al. (2008) used data 

assimilation to estimate bathymetric depth and slope, through an inverse modelling approach. 

This study used Lisflood-FP (Bates & De Roo 2000), and errors in the upstream inflow, DEM, 

bathymetry, and the channel roughness parameter for the first time. While there was no explicit 

objective towards flood forecasting, the realistic uncertainty scenario assumed in this study, 
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made it a rather significant contribution to flood data assimilation literature. Bathymetric slope, 

channel roughness, and upstream inflow uncertainties were modeled as multiplicative log-

normal error (MLNE) distributions, with unit mean and different coefficients of variation. 

Topographic uncertainty in floodplain DEM is modeled as a zero mean additive normal 

distribution, while bathymetric depth was estimated from the slope ensemble previously 

described. A novel assimilation scheme which used Monte Carlo techniques to modify a linear 

parameter estimator for non-linear cases was designed. Synthetic SWOT WL fields were 

assimilated to obtain the reach-averaged bathymetric slope and point-based bathymetric depth. 

Using the assimilation scheme, the reach-averaged slope was estimated within 0.30 cm/km of 

the truth, while an improvement of 84% was observed at the downstream point estimate of 

channel depth. The experiments detailed in this study corroborated the low measurement error 

sensitivity observed by Andreadis et al. (2007). This phenomenon was primarily attributed to 

the higher-magnitude model errors, which likely dominate over measurement errors within the 

assimilation framework.  

Similarly, Neal et al. (2009) built upon the earlier body of work to estimate discharge, 

using a combination of hydrodynamic modelling and EO-derived EnKF-based WL 

assimilation. This study considered the impact of incorrect bathymetry specification on the 

predicted flows by simulating a data limited scenario, where the channel cross-sections were 

simplified to a trapezoidal shape for the first time. The use of simple channel geometry led to 

an underestimation of hydraulic conveyance, resulting in higher predicted WLs for a given flow 

value. This is caused by an underrepresentation of river carrying capacity, which pushes the 

water surface elevations higher than they would actually be in the field. However, the 

assimilation of EO-based WLs was able to effectively improve the retrievals of observed 

discharge, even in the data scarce scenario where simplified channel geometries were 

considered. This study corroborated the findings of Matgen et al. (2007), who demonstrated 

that SAR images may not provide useful information across the entire model domain. It was 

also noted that forcing the model to reproduce observations at certain locations, may introduce 

measurement bias leading to model performance degradation. 

The studies which exclusively used state updating or evaluated its impacts with respect 

to input updating, highlighted that the analysis vector rapidly decayed back to the background 

state trajectory immediately following the assimilation (Andreadis et al. 2007; Matgen et al. 

2007b). Schumann et al. (2009) attributed this lack of persistence in accuracy to the dominating 
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effect of upstream boundary conditions in hydraulic modelling. They argued that as long as 

errors in the initial conditions and forcing data persisted, merely reinitializing the model with 

an updated state vector may not serve as an adequate solution. Based on these findings the 

simultaneous updating of states and inputs was recommended to obtain more persistent forecast 

error reductions. 

Furthermore, the work of Schumann et al. (2008) showed that SAR-derived WL 

observations, mostly exhibit non-Gaussian probability density functions (PDF) at each cross-

section. It therefore follows, that the distribution from all the cross sections considered for the 

full river reach, is also strictly non-normal in form (Kitagawa 1996). The EnKF algorithm 

assumes that the forecast and measurement error covariance matrices are jointly normal to make 

the data assimilation problem tractable; such that their respective PDFs can be sufficiently 

characterized using only the first and second moments of the distribution, i.e., mean and 

covariance (Moradkhani et al. 2005b). This raised questions about the theoretical justification 

of employing EnKF-based assimilation schemes for EO-based hydraulic data assimilation, 

where states are subject to unknown disturbances (Moradkhani et al. 2005a). The conditional 

probabilities of strongly non-linear model trajectories, can only be characterized sufficiently by 

tracking the higher order moments of the distribution (Moradkhani 2008). However, the spatial 

coverage of EO-data implies that some observations can be discarded, for example, those that 

fail a normality test as suggested by Neal et al. (2009). While simple and easy to implement, 

this approach might reject potentially useful information. Further studies then investigated 

possible ways to solve the problem of obtaining persistent improvements from hydraulic data 

assimilation while accounting for non-Gaussian uncertainties. 

2.2.1.2  Water Level Assimilation using the Particle Filter and Variants 

Particle Filters (PF) relax the assumption of Gaussianity regarding the forms of the 

posterior probability density functions of the models and observations, offering certain 

advantages over KF and variants (Moradkhani 2008).  This enables PFs to easily manage the 

propagation of non-Gaussian distributions through highly non-linear hydraulic models, by 

tracking the temporal evolution of all the moments of the full probability density function (Plaza 

et al. 2012). This is achieved by updating the probabilities of any given model being true 

conditioned on the observation, rather than updating the state trajectory (Arulampalam et al. 

2002). Exclusively updating the PDFs also provides the unique advantage of avoiding the 
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hydrostatic reinitialization shock, known to cause numerical instabilities in the hydraulic model 

domain, as fluxes drop to zero at the assimilation time step and momentum cannot be conserved 

(Hostache et al. 2018b).  

Early implementations of the PF used the Sequential Importance Sampling (SIS) 

algorithm. The SIS algorithm used a Sequential Monte Carlo procedure to approximate the 

posterior true state PDF, through a number of independent random samples called particles, 

sampled directly from the state-space. Subsequently, the conditional probability of a given 

model realization being true given that the observation is true, is assigned as a weight to each 

particle and used to compute the weighted ensemble mean. Starting with a likely proposal 

distribution, weights and estimates are sequentially updated at every assimilation time step and 

the weighted mean vector is calculated, which is representative of the “analysis”. PFs conserve 

mass for each particle unlike the EnKF, by selecting the most likely model runs rather than 

updating model states, which may cause discontinuities in the hydraulic model domain (Matgen 

et al. 2010). 

The SIS algorithm, however, suffers from several significant limitations. Firstly, there 

is the problem of particle degeneracy, where most of the particles attain very low weights after 

a few assimilation steps, leading to an underrepresentation of the state-parameter space in the 

approximated posterior PDF. In extreme cases, only one particle will acquire the full weight of 

unity leading to filter collapse, implying that even the equifinality of hydraulic model states and 

parameters is no longer characterized. The second problem pertains to the ensemble size or 

particles required for an effective estimation of the posterior PDF. As the true state PDF 

approximation is dependent on discrete random sampling, it is understandable that the 

estimation will improve as the number of samples in increased. In theory this approximation 

process will work best as the number of particles tend to infinity; this is obvious, as discrete 

sampling is being used to characterize a continuous process. However, this is nearly impossible 

to achieve in practice, due to the huge computational demand of distributed hydraulic models.  

Literature suggests several pragmatic solutions. Moradkhani et al. (2005a) suggest a 

variety of ensemble verification measures, to pre-emptively assess the skill and spread of the 

ensemble. Several resampling schemes have also been proposed, such as the Sequential 

Importance Resampling (SIR) algorithm. The SIR algorithm repopulates the particles by 

replicating the highly ranked particles, in proportion to their respective importance weights. In 

some cases simplistic solutions such as these may work, however, in most cases the resampling 
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leads to the problem of sample impoverishment. This is when the replicates represent only a 

few unique model realizations, yet the effective particle population remains spuriously high, 

again violating the principles of parameter equifinality. Techniques such as inflation which 

artificially scale the error covariance matrices, to account for the underrepresentation of 

variance due to small ensemble size, have also been proposed and can be used for sequential as 

well as variational assimilation (Evensen 2003; Slivinski et al. 2015; Browne 2016; Fletcher 

2018b). Most studies use one or several of these in conjunction, to avoid the problems of filter 

collapse. 

In this context, the study by Matgen et al. (2010) used the PF-SIR algorithm to 

assimilate synthetic EO-derived WLs into a coupled hydrological-hydraulic model. The PF-

SIR algorithm was chosen primarily to relax the assumption of Gaussianity. However, as there 

were no alternative theoretical distributions yet identified in literature, only the sub-sample of 

observations that passed a normality test were used. Global weighting procedures such as the 

one used here, consider WLs simulated by a particular model realization along the entire 

channel reach as one particle. Weights at each cross-section were computed using a Gaussian 

PDF and aggregated through multiplication, by assuming (perhaps unrealistically) mutual 

statistical independence. The PF-based assimilation was able to retrieve the truth, even when 

errors of up to 5m were introduced in the synthetic WLs. This implied that for completely 

ungauged catchments, WLs extracted from a combination of coarse resolution satellite data and 

global DEMs, could also be useful to effectively constrain flood forecast errors (Schumann et 

al. 2008a, c). Consistently with previous findings (Andreadis et al. 2007; Matgen et al. 2007b), 

input updating was identified as a crucial aspect in retaining improvements to the model state 

trajectory. Interestingly, the study also found that a higher frequency of observations is required 

during the rising limb than during recession, as the errors in the precipitation are unpredictably 

compounded through the modelling cascade, resulting in increased model forecast errors.  

In order to address the gap of defining a suitable spatially and temporally variable non-

Gaussian distribution of observations, Giustarini et al. (2012) suggested using the full empirical 

distribution of WLs. Employing the empirical distribution with no assumptions about its form, 

finally allowed the optimal utilization of the advantages of PF over KF variants. At each cross-

section, a histogram of the EO-derived WLs is computed, which is subsequently used to define 

the local likelihood of each particle. The final aggregation to global weights is achieved by 

following the approach proposed by Matgen et al. (2010). Two different case studies were 
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presented in Giustarini et al. (2012), using coarse and high-resolution EO datasets respectively; 

temporally persistent improvements in discharge estimation were obtained for both cases. 

Numerical experiments performed in this study, interestingly revealed a trade-off between WL 

and discharge estimation accuracy, particularly in regions where channel bathymetry is poorly 

specified.  

2.2.1.3  Filter Localization and Flood Extent Assimilation 

In a pioneering study which highlighted the possibility of degrading model forecasts 

through assimilation for the first time, Giustarini et al. (2011) demonstrated that the use of 

global weighting procedures always leads to compromise solutions. Using synthetic and real 

experiments, assimilating field data at the cross-sections where EO-derived WLs were 

available, this study argued that a single model run cannot perform equally well along the entire 

river reach. In fact the study showed that defining global weights as a product of local weights 

as proposed by Matgen et al. (2010), could even lead to the propagation of local scale systematic 

model errors over the whole domain. Global weights were found to favour acceptable solutions 

all over the domain, rather than well performing solutions locally.  To avoid this problem, 

Giustarini et al. (2011) proposed the use of filter localization. Using a model setup identical to 

Matgen et al. (2010), the assimilation was implemented by considering the model simulated 

WL at each cross-section as a separate particle. Local weights were calculated for each particle, 

by comparing with the corresponding EO-WLs, using uniform as well as normal PDFs. While 

this study advocated the use of filter localization techniques going forward, it also warned of 

potentially introducing bias into the model predictions, as a function of local inconsistencies in 

the calibrated model. The use of local PF for diagnosing and correcting model errors was 

recommended for hindcasting applications, while inflow correction was identified as a major 

research gap for forecasting problems. 

Filter localisation only updates the states close to the observation location, reducing the 

weight given to observations spatially disconnected from the estimated state variable (See Fig. 

2.6). The impact of using small ensemble sizes can then be minimized, primarily by decreasing 

the state-parameter subspace in which the analysis is conducted (García-Pintado et al. 2013). 

The study by García-Pintado et al. (2015) also investigated this issue through a series of SAR-

derived WL assimilation experiments, based on the Ensemble Transform Kalman Filter (ETKF) 

with and without localisation. ETKF (Hunt et al. 2007) is an adaptation of the square root form 
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of the EnKF. More specifically, the EnSRF implementation explicitly updates both the 

ensemble mean and the error covariance at each assimilation time step to theoretically match 

the Kalman filter. The ETKF additionally introduces a transform matrix to ensure a symmetric 

solution (García-Pintado et al. 2013). Results obtained by García-Pintado et al. (2015), 

corroborated the need for filter localisation to avoid the development of spurious correlations, 

within the forecast error covariance matrix (García-Pintado et al., 2014). The use of a flow 

distance based spatial domain localization metric was recommended, although further testing 

for channel networks with varied geometries is required. Simultaneous estimation of states and 

inputs proved necessary for persistent reductions in forecast error as in earlier studies (Neal et 

al. 2009). The use of localised ETKF for simultaneous parameter estimation (lumped channel 

roughness and distributed bathymetry) was also investigated, although the results proved to be 

inconclusive in terms of forecast improvements. Possible reasons could be the localization 

distance or the error covariance chosen for the stochastic generation of bathymetry estimates, 

as the standalone experiments on channel friction demonstrated adequate convergence. The 

findings highlighted that further experiments might be warranted to effectively tune the 

localization radii and the reach correlation length used in the bathymetry error generation model 

for improved forecast accuracies. Experimental results were corroborated by the findings of 

other studies, where empirical localization was found to significantly improve state estimation 

(Yamazaki et al. 2018; Revel et al. 2019).  

As most studies observed and Schumann et al. (2009) incisively pointed out, the 

problem of local uncertainties stemming from the measurement bias of EO-derived WLs, 

required the development of more mature retrieval methods (García-Pintado et al. 2013; 

Andreadis and Schumann 2014). Moreover, the use of the same DEM both to retrieve the EO-

derived WLs and for the implementation of the hydraulic model leads to adding the DEM 

uncertainty twice in the resulting predictions. While this might be an acceptable risk where 

highly accurate LiDAR-based elevation data are available, in the case of coarse resolution 

global topography this could severely impact the forecast error. Moreover, using the same 

elevation data additionally violates a basic principle of data assimilation, which mandates the 

use of model independent observations to improve the accuracy of subsequent predictions. 

Furthermore, even with the advent of sophisticated thinning algorithms for the automatic 

derivation and appropriate subsample of EO-WLs (Mason et al. 2012b), manual intervention is 

often still necessary (Hostache et al. 2018b).  
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Recent studies have, therefore, focused on the development of techniques capable of 

directly assimilating flood extents into flood forecasting modelling cascades, rather than water 

levels (Lai et al. 2014; Revilla-Romero et al. 2015, 2016; Hostache et al. 2018b; Shastry and 

Durand 2019). Lai et al. (2014) and Revilla-Romero et al. (2016) both interpret inundation 

extents as a function of the internal model states to develop the cost function for assimilation, 

i.e. water depth and discharge, respectively. The 4D-Var filter was used in the proof of concept 

study by Lai et al. (2014), for the assimilation of a MODIS-derived flood extent map (250m) 

to optimize a lumped friction parameter, with no particular aim towards forecasting. In contrast, 

Revilla-Romero et al. (2016) use the EnKF to assimilate dimensionless surface water extent 

observations (0.1°×0.1°) satellite-derived from the Global Flood Detection System 

(http://www.gdacs.org/flooddetection), to improve near real time (NRT) global flood forecasts. 

The EO-derived flood extents were interpreted as inundation volumes; the difference between 

the simulated and observed (interpreted) values, was used to update the models within the EnKF 

framework. The study was conducted on a global scale and gauge validation demonstrated 

improvements for a major portion (~60%) of those evaluated. Although the use of EnKF was 

perhaps not theoretically justified, significant improvements were noted in practice. 

Adopting a different approach, Hostache et al. (2018) directly assimilated SAR-derived 

flood extents using a PF-based assimilation framework. Through a binomial comparison of 

modelled cell wet-dry status and satellite observed flood probabilities, improvements of up to 

50% were obtained in forecast WLs at the assimilation time step. Inundation extents were 

retrieved from ENVISAT ASAR (resampled to 75m) into the hydraulic model LISFLOOD-FP. 

As modelled flood extents are derived based on simulated water depth, the variation in the 

number of wet-dry cells at most time steps is limited. Consequently, the development of an 

extent based cost function with enough sensitivity to isolate the best performing ensemble 

members and drive the assimilation is a scientific challenge (Lai et al. 2014). Hostache et al. 

(2018) used a number of pragmatic mathematical solutions to facilitate the direct assimilation 

of flood extents in a real case for the first time. For example, local weights were first computed 

on a pixel-by-pixel basis for each ensemble run or particle, by comparing the modelled vs. 

observed cell wet-dry status through the binomial distribution. The joint probability density of 

these pixel-wise weights is then used as the global weight of the particle, which is aggregated 

as a product of all pixel weights (Matgen et al. 2010; Giustarini et al. 2011). This method of 

calculating the joint probability density makes the assumption that the local pixel-wise weights 

are statistically independent (Hastie et al. 2009). As raster-based models numerically compute 

http://www.gdacs.org/flooddetection
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flow between cells, the values of simulated flow depths that are used to derive the wet-dry cell 

status cannot be considered independent. Moreover, flooding itself is a spatial phenomenon 

implying interdependence between modelled grid cells. Thus, the development of novel flood 

extent assimilation techniques to optimally combine flood inundation models with EO-flood 

extents still remains an open scientific challenge (Van Wesemael et al. 2019). 

2.2.2 Observation Operators and Characteristics 

One common issue highlighted by previous studies was the possible degradation of 

forecast skill, caused by the introduction of measurement bias by highly erroneous 

observations. Although the issue of observation timing (Matgen et al. 2010; Giustarini et al. 

2011) and frequency (Andreadis et al. 2007; Neal et al. 2009) was briefly discussed in a few 

studies, the first explicit discussion and assessment was provided by García-Pintado et al., 

(2013). Similarly, Andreadis and Schumann (2014) evaluated assimilation performance 

sensitivity to the observation spatial location for the very first time. Further studies in this 

direction, evaluated the impact of domain length (Cooper et al. 2018), observation error 

correlations (Waller et al. 2018a), and observation operators used to calculate the innovation 

(Cooper et al. 2019). 

In order to assess the impact of acquisition timing, García-Pintado et al., (2013) used an 

ETKF based assimilation strategy in conjunction with LISFLOOD-FP, with a synthetic 

experiment based on the July 2007 flood event in the widely researched Severn Catchment, UK 

(Mason et al. 2010b; Neal et al. 2011; Schumann et al. 2011). An error free model was 

 

Fig. 2.6 Illustration of filter localisation for an example observation update location in 1D, adapted from Madsen 

and Skotner (2005). US = upstream and D S = downstream. 
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considered with no parametric uncertainty, to independently evaluate the impacts of 

observation timing on inflow error correction, through several satellite first visit and revisit 

scenarios. Results illustrated that frequent assimilation during the decreasing limb does not lead 

to sensible improvement in the forecast, implying that post peak overpass frequency could be 

reduced when considering budget limited scenarios. However, as satellite flood extents which 

are used to derive the WLs for assimilation can only be informative for out-of-bank flows, the 

first visit time should ideally closely follow channel overtopping. Corroborating the findings of 

Matgen et al. (2010), the results of Garcia-Pintado et al. (2013) demonstrated that multiple 

observations were necessary during the rising limb of the hydrograph, as additional errors are 

continuously introduced at the upstream boundary.  

Subsequently, Andreadis and Schumann (2014) assessed the spatial observation impact 

on the forecast skill of hydraulic models, through the LETKF formulation of Hunt et al. (2007) 

within an ensemble sensitivity (ES) framework (Liu and Kalnay 2008). In the ES method, the 

LETKF cost function is modified such that each term can be calculated from the previously 

initialized ensemble forecasts. This eliminates the need for generating forecasts after the 

assimilation step. The cost function can be pre-emptively computed for each observation time 

and for different lead times, simply by selecting the appropriate time steps for the forecasts and 

observations (Andreadis and Schumann 2014). Using a continuous annual large-scale 

implementation of LISFLOOD-FP for the Ohio River, this seminal study showed for the very 

first time, that observations acquired during low flows consistently degrade forecast error. A 

synthetic study was conducted where model errors stemming from inflows, parameters, 

topography, and channel network delineation were considered. The observations were not 

explicitly assimilated, rather their impact was evaluated by just replacing the state and 

observation variables in the cost function equation. This allowed previously unused 

observations, such as river channel width and inundated area, to be considered alongside water 

surface elevation. On assimilating WLs, the largest improvements in forecast accuracy could 

be obtained during peak flows, although the error reductions decayed after 5–11 days in some 

locations and eventually led to forecast degradation. Interestingly, the findings indicated that 

the assimilation of channel top width mostly degraded forecast skill, while inundated area 

assimilation mostly resulted in improvements. Further examination revealed that the 

improvements possible from the assimilation of either observed variable, could be considered 

as a direct function of the variability (e.g., see Fig. 10 in Andreadis and Schumann (2014)). 

Authors also recommended the use of these methods to plan targeted satellite acquisitions, over 
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reaches that would either maximize the forecast error reduction or from the locations of fastest 

growing errors (Langland 2006). As this approach was tested with an almost real-world 

uncertainty scenario, it could potentially be operationally implemented to allow forecast 

improvements by incurring minimum possible costs.   

The study by Cooper et al. (2018) showed that the hydrostatic reinitialization shock, 

caused by the fluxes dropping to zero just after the update step in hydraulic data assimilation, 

could be minimized by applying pre-assimilation velocities. This pragmatic solution was able 

to significantly reduce the root mean squared error values obtained just after the assimilation 

time. Using an idealized synthetic domain topography, the study also demonstrated that 

persistence of error reductions from WL assimilation could be improved by simply considering 

a longer domain length. The WL observations in different parts of the domain are usually 

strongly correlated, thereby allowing the ETKF to effectively update downstream WLs. State 

augmentation was used to simultaneously update model states and parameters, resulting in 

consistent improvements in forecast accuracy. This finding also suggests an interdependence 

between parametric and inflow errors, due to similar forecast error characteristics obtained from 

both. Furthermore, the joint-state parameter estimation using EO-derived WLs, can effectively 

detect and compensate for biases introduced in either or both. 

In a study similar to Andreadis and Schumann (2014), the impact of observation quality 

on flood data assimilation was investigated by Waller et al. (2018). Through numerical 

experiments, the authors show that statistical averages of observation-minus-background and 

observation-minus-analysis residuals, can be useful for the estimation of error correlations in 

EO-derived WLs. Using the same flood event as García-Pintado et al. (2015), an analysis of 

observation error and spatiotemporal correlation was elucidated. Spatial analysis showed that 

the observed forecast error correlations were independent of observation errors. In terms of 

observation timing, the observations exhibit similar error standard deviations although the 

correlation length is fairly short. This is expected as this is the most dynamic part of the flood 

event, where ongoing precipitation is continuously adding errors to the domain while each 

tributary and sub-catchment respond differently. As the flood wave progresses, standard 

deviation decreases while the correlation length scale increases. Given that such observation 

error assessments are possible at a relatively low computational cost, the authors recommend 

its use in the identification of data anomalies. 
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Sensitivity to observation operators was examined by Cooper et al. (2019) using the 

same idealized test domain as Cooper et al. (2018). In this study, backscatter from a SAR image 

was directly assimilated to improve hydraulic model forecasts for the first time. Inflow and 

parametric uncertainty was considered, in a synthetic experiment based on the 2012 River 

Severn flood event, to compare the performance of a WL-based and a backscatter based 

observation operator. Synthetic SAR images were generated using a Gaussian mixture model, 

using the parameters empirically derived by Giustarini et al. (2016). These parameters were 

perturbed within 1% of the values to obtain an ensemble of observed SAR images. The number 

of backscatter observations used was limited to match the number of satellite WL observations 

that can typically be expected, to facilitate an intercomparison of the observation operators 

independent of observation frequency. The new backscatter operator generally performs better 

than the WL operator in all the test cases considered in this study. Using backscatter directly 

also eliminated the need for multiple image processing steps and the water level derivation, 

which has been identified as a major source of uncertainty (Schumann et al. 2009a). The authors 

acknowledge that the new operator can exclusively work well in conditions where a clear 

separation exists between the land-water distributions of backscatter response. As this is rarely 

the case in reality where backscatter is affected by multiple sources of uncertainty (Schumann 

2019), the effectiveness of this operator has to be tested using a real case study.  

2.2.3 Opportunities and Challenges 

The high sensitivity of data assimilation algorithms to observation characteristics 

unlocks several innovative possibilities. Firstly, optimal acquisition strategies can be designed 

which allow maximum improvements in forecast skill while minimizing costs, based on the 

relationships between observation characteristics and assimilation performance (Andreadis 

2018). Assimilation experiments can be used to inform acquisition planning, thereby optimizing 

the location, timing, and frequency of satellite-based flood observations to best support 

hydraulic forecasting of inundation. Similarly, assimilation can help to diagnose localized 

discrepancies, in model implementation or even parameterization.  

In certain scenarios, integrating observations acquired at specific timings or locations, 

have no impact on the assimilation and can even lead to model degradation. This phenomenon 

is typically a function of localized dominating model errors, although in rare cases observation 

errors or the assimilation algorithm itself could also lead to similar problems. For example, 
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Schumann and Andreadis (2016) insightfully utilized this particular feature to objectively 

identify reaches which could especially benefit from high resolution topography. Using the 

LETKF-based ensemble sensitivity approach employed by Andreadis and Schumann (2014), 

optimum locations for LiDAR acquisitions along the Lower Zambezi River were identified, 

such that maximum improvements in accuracy could be obtained at minimum costs. The 

authors also demonstrate local improvements of up to 78% in risk estimates, which is 

substantial from an emergency management perspective.  

In spite of the significant advances made towards hydraulic data assimilation of EO-

data for improved operational food inundation forecasting, several areas still require extensive 

research. An objective estimation of the computational demand versus accuracy trade-off, 

considering the precision needs of the various stakeholders involved, is the first challenge which 

needs to be addressed. The representation of model uncertainties ideally requires a large number 

of simulations to effectively explore the state parameter space. However, in practice each 

hydraulic model run on a global or even continental-scale, may require several hours of 

computational time depending on the grid resolution. As Schumann et al. (2014) demonstrated, 

higher resolution models are required to efficiently resolve local scale flow pathways. Studies 

have shown that higher resolution modeling is now possible at much larger scales, as a 

consequence of the giant strides in scientific computing (Schumann et al. 2013; Dottori et al. 

2016; Quinn et al. 2019; Uhe et al. 2019). Additionally, nested modelling approaches could be 

used to maximize computational efficiency. The work of Mason et al. (2015), for instance, 

shows that it might be possible to pre-emptively diagnose, areas of large vertical errors in the 

specified DEM. Subsequently, these highly uncertain subdomains of the hydraulic model, can 

serve as the focus of local scale high resolution modelling using LiDAR acquisitions, 

significantly improving flood forecast skill (Schumann and Andreadis 2016; Fleischmann et al. 

2019).  

Another significant challenge for effectively utilizing EO-based data assimilation for 

improved flood forecasts, is the adequate representation of anthropogenic factors like hydraulic 

infrastructure in models (Andreadis 2018). Large hydroelectric or irrigation dam reservoirs, 

often form a substantial portion of catchment storage capacity, yet data on reservoir operations 

is seldom available in the public domain (Do et al. 2010). Although alternative methods to 

determine factors like irrigation supply and demand are currently being explored in literature 

(Brocca et al. 2018; Zaussinger et al. 2018), significant uncertainties are remain in the accurate 
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estimation of flood regulation measures (Schumann et al. 2018). Moreover, the implementation 

of flood control structures in the DEM is absolutely vital, to capturing the actual inundation 

patterns observed on ground. In fact, misrepresentation of structures can be especially 

expensive in terms of risk management, in the rare case of a breach which can suddenly inundate 

large regions. Attempts are underway to develop global maps of control structures using EO-

data, although several difficult challenges still remain (Wood et al. 2018).  

The integration of other diverse datasets, for example point observations of water levels 

and velocities from crowdsourcing or depth Doppler maps of inundation from GNSS 

reflectometry, is another significant challenge that faces the flood data assimilation community. 

Using alternative datasets requires an objective estimation of the associated uncertainty and 

some data sources such as crowdsourcing are still rather young in this direction. A lot of 

research is ongoing, where the potential utility of crowd-sourced and citizen science 

observations for flood inundation modelling is being investigated (Assumpção et al. 2018; 

Zheng et al. 2018). Significant progress has been made in this direction, but the filtering and 

standardisation of the available data remain challenging (Mazzoleni 2016). Alternative 

observations of flow velocities are also becoming available (Fujita et al. 2007; Muste et al. 

2011; Assumpção et al. 2018), which soon might be available to the flood data assimilation 

community. There is also a need to integrate the research progress in the assimilation of soil 

moisture (Patil and Ramsankaran 2018) and evapotranspiration (Hartanto et al. 2017) in 

hydrological models with hydraulic data assimilation frameworks, such that the utilization of 

EO-data for flood inundation forecasting can be optimally harmonized.  

The final challenge is the translation of flood extent and depth estimates, into hazard 

and risk estimates, which are more relevant to the stakeholders (Ward et al. 2015). In fact open 

source/free models exist, which can integrate hydraulic model outputs with socioeconomic risk 

factors, e.g. the GLOFRIS (Global Flood Risk) framework (Winsemius et al. 2013) or HAZUS 

(https://msc.fema.gov/portal/resources/hazus) provided by FEMA (Federal Emergency 

Management Agency, US). Yet, the delivery of maps and inundation forecasts is often only in 

scientific terms. Open Street Maps (OSM) which use local knowledge of citizen scientists, to 

maintain a detailed global vector database of road/rail/waterways and buildings, is yet another 

rich resource which could potentially revolutionize flood emergency management. Maps of 

inundation could be intersected with the richly detailed OSM GIS layers, with structured crowd-

sourced local information about assets at risk (Ward et al. 2015). The humanitarian benefits of 

https://msc.fema.gov/portal/resources/hazus
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the progress in flood inundation modelling can only be quantified, through an evaluation of the 

impacts of improved forecasts on corresponding risk and hazard estimates (Pappenberger et al. 

2015).  

Schumann and Andreadis (2016) conducted such analyses for the first time in flood 

inundation modelling literature, although in streamflow forecasting this is a widely 

recommended practice (Cloke et al. 2013; Wetterhall et al. 2013; Pappenberger et al. 2015). In 

this context, the High-Resolution Settlement Layer (HRSL) developed by Facebook in 

association with the Centre for International Earth Science Information Network (CIESIN) can 

also prove to be a valuable resource. HRSL provides gridded population density estimates for 

33 countries, at a ~30m resolution for the year 2015, based on recent census data and high-

resolution 50cm DigitalGlobe imagery (https://www.ciesin.columbia.edu/data/hrsl/). This 

dataset could be readily used to quantify the change in risk estimates resulting from improved 

flood data assimilation techniques. Developing comprehensive forecasting frameworks which 

synergize the progress in Earth Observation, numerical modeling, data assimilation, and 

scientific computing to enhance global flood hazard estimates, could significantly increase 

flood resilience. In light of urbanization and climate change exacerbating the number and 

impacts of extreme weather events, developing effective techniques to minimize global flood 

hazard are urgently required. 

2.3 Research Gaps  

The current generation of high resolution SAR satellites like COSMO-Skymed, 

TerraSAR/TanDEM-X, Radarsat Constellation Mission, and Sentinel-1, and planned missions 

like NiSAR, SWOT (Surface Water Ocean Topography), TerraSAR/TanDEM-L, and CSK-2, 

have stimulated scientific research on the optimal use of this rich database for flood detection. 

The shift towards open data policies across space organizations could potentially lead to more 

innovative solutions to the persisting challenges in the field. Moreover, the continued 

investment in satellite SAR technology makes the development of model-data integration 

techniques quite essential for the future.   

Identifying flooding under vegetated and urban land forms is a research topic of high 

interest with many open questions currently being examined. The use of ancillary datasets and 

complementary approaches like interferometric coherence can be helpful. However, diagnostic 

https://www.ciesin.columbia.edu/data/hrsl/
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assessments are required to evaluate the environmental conditions under which each of these 

approaches work and why. Furthermore, it’s important to develop techniques that provide an 

associated measure of flood detection uncertainties, at least in regions exhibiting complex 

surface properties. A synthesis of all the relevant literature in this direction revealed the 

following gaps: 

1. The shift towards fuzzy and probabilistic approaches in the field of SAR-based flood 

mapping necessitates the development of suitable validation techniques. Present 

strategies involve the use of binary validation maps for assessment, which seems 

counterintuitive, as the premise of this shift from deterministic approaches is that 

uncertainty cannot be eliminated. Investigative analysis of current mapping approaches 

for multi-sensor, multi-band data should be conducted across diverse geographical 

regions, to gain an in-depth understanding of why certain approaches favour a particular 

set of environmental conditions. 

2. There is a clear need to develop advanced approaches which can detect flooding 

accurately from a single SAR image. In this context, it is worth investigating the 

potential of image features such as texture, which can automatically be derived from the 

image itself and reduce the dependence on ancillary data. Moreover, some statistical 

texture estimation approaches can even minimize wind and sensor geometry impacts, 

which could enhance the transferability of the mapping algorithms. 

3. Crowd-sourced flood information has the potential to complement remote sensing based 

mapping of floods, as the advent of social media and the proliferation of smart phones 

has ushered in an era of citizen sensing. However, research in this direction is very new 

and many scientific challenges remain, especially in the objective estimation of 

uncertainties and the design of appropriate validation methodologies. The availability 

of data from diverse sources will continue to increase in the coming years and the flood 

mapping community needs to evolve rapidly to unlock the full potential of RS for 

disaster management.  

4. Diagnostic assessments of localized flood flow behaviour need to be undertaken to 

identify which portions of the model domain could benefit the most from data 

assimilation. In fact, the possibility of forecast degradation as a consequence of 

assimilating in highly erroneous model sub-domains makes answering this question 

quite crucial.  
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5. The impact of assimilating highly uncertain observations, needs to be further 

investigated, especially with respect to completely ungauged catchments. In this regard, 

efficient methods for quality control of the assimilated observations while retaining the 

maximum amount of information possible, also need to be designed. 

6. Filter localization methods which consider hydraulic relationships to objectively 

identify optimal regions of observation influence need to be developed, to support 

operational applications of hydraulic data assimilation. Similarly, advanced techniques 

to artificially inflate the error covariance need to be considered, which allow a 

comprehensive representation of model uncertainties even with limited ensemble 

members. 

7. Effective spatial cost functions which are sensitive to subtle changes in the model state 

variable in question, need to be designed to better quantify the innovation and optimize 

the possible forecast improvements through assimilation. In this context, techniques to 

synthetically scale the objective function values such that the sensitivity to changes in 

state can be enhanced also need to be explored. 

Research on hydraulic data assimilation of Earth Observations of floods, is relatively 

new and many scientific challenges remain. The availability of different flood observations 

from diverse sources, will only increase in future and the hydraulic data assimilation community 

needs to evolve rapidly to keep up with the pace of advancements in measurement techniques. 

Estimates of associated uncertainty will vary based on each observation technique and the 

measured variable in question. In order to unlock the full potential of Earth Observation data 

for hydraulic flood inundation forecasting, it is imperative to objectively estimate these 

uncertainties and remain cognizant of them during the assimilation process (Schumann et al. 

2016). Harmonizing the progress in hydraulic modelling, data assimilation, and measurement 

techniques through the development of operational forecasting systems, is required to ensure 

the optimal utilization of EO-data and can finally result in tangible humanitarian benefits. 

2.4 Chapter Summary  

This chapter provided an overview of the state-of-the-art literature in SAR-based flood 

extent mapping and their integration with hydraulic flood inundation models through data 

assimilation. First, the challenges and opportunities associated with operational SAR-based 
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flood mapping at multiple spatial scales were critically discussed. The challenges of SAR image 

interpretation were presented next, specifically with reference to flood detection problems, 

along with the solutions proposed in literature to eliminate these effects. This was followed by 

a discussion on the representation of uncertainties in SAR-based flood mapping. An overview 

of the challenges and opportunities associated with the online integration of Earth Observation 

data with hydraulic flood inundation models using data assimilation techniques was critically 

examined thereafter. The progress in EO-based hydraulic data assimilation studies was 

critically examined here and the evolution of assimilation techniques with respect to the current 

state-of-the-art was presented. Sensitivity of hydraulic data assimilation algorithms to 

observation operators and characteristics like location, timing and frequency were then 

discussed. Finally, the challenges in hydraulic data assimilation were systematically illustrated 

and the opportunities with respect to improved flood forecasting were summarized.



 

  

 

 

 

PART II  

DATA AND MODELS 

  



 

  

 

 

 

 

CHAPTER THREE 

  

“It is a capital mistake to theorize before one has data.” 

- Sherlock Holmes, in the short story A Scandal in Bohemia by Sir Arthur Conan Doyle 
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3.   Study Area and Data  

In order to develop and comprehensively evaluate the methods outlined in Chapters 5 to 8, 

extensive state-of-the-art datasets including field and remote sensing observations were 

necessary. This chapter describes the data available to this study and the selected study 

area, the Clarence Catchment of New South Wales, Australia. 

3.1 Introduction 

The Clarence Catchment, Australia, was selected for this analysis as the New South 

Wales State Emergency Service expressed a strong interest in the development of a more 

accurate flood forecasting system for the Clarence Valley. Accordingly, detailed ancillary 

datasets were collected, to support the study of recent major flood events in the catchment, 

which had been heavily monitored. These datasets comprise of a LiDAR-based DEM, 

channel bathymetry, and inflows together with flood monitoring observations including 

gauged discharge and water levels (WLs), remotely sensed images capturing the flood 

events and crowd-sourced WLs. All the data were collected in the framework of the 

Bushfire and Natural Hazards Collaborative Research Centre grant ‘‘Improving flood 

forecast skill using remote sensing data". In particular, the support of The Clarence Valley 

Council, BMT-WBM Ltd., the Australian Bureau of Meteorology, Geoscience Australia, 

New South Wales State Emergency Services, New South Wales Land Registry Services, 

New South Wales Manly Hydraulics Laboratory, and e-GEOS, towards the collection and 

timely provision of the data is gratefully acknowledged. The following sections describe 

the test site in detail and the available data. 
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3.2 Study Area 

The Clarence Catchment is situated in the far north coast of New South Wales. It is 

one of the largest river systems on the South-Eastern coast of Australia (Fig. 3.1), with a 

net drainage area of about 22,700 sq. kms. The Clarence Valley extends from 28°30' S to 

30°25' S latitude and 152°4' E to 153°21' E longitude. The river mouth is located between 

the towns of Yamba and Iluka, with the estuary reaching 108 kilometres inland to 

Copmanhurst. The towns of Grafton, Ulmarra, Maclean, Yamba, and Iluka are the main 

centres of population along the estuary (https://www.industry.nsw.gov.au/).  

The main stem of the river is approximately 394 km long and occupies the southern 

part of the Clarence-Moreton Basin in north-eastern New South Wales. The Clarence 

Catchment, which forms the Eastern part of the Great Artesian Basin, is markedly 

asymmetric in shape (Haworth and Ollier 1992). The main valley containing the main stem 

 

Fig. 3.1 Geographical location of the Clarence Catchment, in Australia shown in (a), with the Clarence 

River and nearby towns marked with respect to the Clarence River Catchment in (b). The extent of the 

model domain from Lilydale to Yamba is shown in (c), with upstream and downstream model 

boundary conditions marked in red squares while gauge locations are represented by green 

squares. The LiDAR DEM made available by Geoscience Australia is displayed as the base layer, 

with the spatial coverage of the two overlapping Cosmo-SkyMed SAR images covering the 2011 

flood event, shown with respect to the model domain.   
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is almost 200 km long and aligned northwest-southeast, while most of its major tributaries 

flow southwest to northeast, with large gorges and deep valley systems on its western and 

south-western margins (Mcqueen 2016). The major tributaries to the Clarence River 

include the Maryland, Cataract, Timbarra, Mann, Guy Fawkes, Nymboida and Orara rivers. 

To the east from Coffs Harbour to Yamba, the catchment is bounded by the Coast Range, 

in the west by the Great Dividing Range (Northern Tablelands); by Baldblair, the 

Doughboy Ranges and the Dorrigo Plateau in the south; and by the MacPherson Ranges, 

in the north (NLWRA 2000). The lower floodplain is divided into two depositional basins 

by the Maclean-Tyndale Ridge which includes two large lakes, The Broadwater and Lake 

Wooloweyah (Mcqueen 2016). Generally, the catchment is characterised in its eastern 

extremities by tableland areas which fall away to the relatively large, flat coastal floodplain. 

The land cover of the Clarence region is primarily dominated by grassland 

vegetation and agriculture, with some urban settlements around Grafton, Ulmarra, 

Maclean, Yamba, and Iluka. Most of the Clarence river basin is unregulated. Major water 

storages in this basin are associated with the Nymboida River and include the Shannon 

Creek Dam (capacity 30 GL), Karangi Dam (capacity 6 GL) and Rushford Road Reservoir 

(100 ML). A weir on the Nymboida River supplies water to the Karangi Dam. Non-irrigated 

agriculture dominates the Clarence Valley with only approximately 0.3% of the catchment 

area is under irrigation (https://www.bioregionalassessments.gov.au/).  

The mean annual rainfall for the basin is 1,111 mm and mean annual actual 

evapotranspiration is 854 mm. The Clarence River is perennial with a mean annual flow of 

about ~181.6 cumecs and a runoff coefficient of about 0.23 (NLWRA 2000). The 

headwaters for the Clarence river basin represent some of the highest rainfall areas in NSW. 

As a result, flooding is a regular occurrence. There have been 73 major and moderate flood 

events since 1839, with the most recent major events recorded in 2009, 2011, and 2013 

(Huxley and Beaman 2014). Dealing with this flood frequency, unquestionably requires 

improved flood modelling and forecasting solutions. The highest on record flood occurred 

in 2013, which reached water levels of 8.09m Australian Height Datum (AHD) at Grafton, 

Prince Street Gauge (Huxley and Beaman 2014). To put this in context, the bankfull height 

at this location is 1.1m (based on the 2 years ARI discharge) and the average low flow level 

varies between ~0m (low ebb tide level) and ~0.5m (high ebb tide level) (Stefania Grimaldi, 

Personal Communication). 
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Floods in this catchment move fast, resulting in a flashy catchment response 

(Rogencamp 2004). For example, in 2011 the flood peak travelled the 125 km from 

Lilydale to Yamba in less than 30 h (Grimaldi et al. 2018). Low-intensity, long duration 

rainfall events are the dominant cause of flooding in the area, closely followed by the back 

propagation of ocean storm tides which control inundation dynamics as far upstream as 

Maclean (Ye et al. 1997). The catchment is characterized by largely variable flow 

velocities, ranging from 2-5 m/s in the channel and the levee system, to almost zero in the 

backwaters (Sinclair Knight Merz and Roads and Traffic Authority of NSW 2011). 

Extensive levee walls have been constructed to protect Grafton (both South and North), 

Ulmarra, and Maclean from flooding as shown in Fig. 3.2 (Rogencamp 2004).  

 

Fig. 3.2 Locations of the flood control levee system, constructed to protect the Towns of Grafton and 

Maclean from inundation. Source: Clarence Valley Council.  
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3.3 Data Summary 

The present study was benefited by the availability of remotely sensed data in the 

form of radar imagery and aerial photography, as well as LiDAR elevation data and field-

recorded high water marks. Bathymetric data was collected during a field campaign in 2015 

(Grimaldi et al., 2017) - described extensively in (Grimaldi et al. 2018) - and supplemented 

with pre-existing bathymetric datasets (Farr and Huxley 2013), forming a rich database. 

The data available to this study, compiled and kindly shared by Dr. Stefania Grimaldi 

(Personal communication, September, 2016), is summarized in Table 3.1. 

Table 3.1 Summary of the relevant data available for hydraulic model implementation in 

the Clarence Catchment (Source: Stefania Grimaldi, Personal Communication). 

Data Provider/Source Remarks 

Hourly gauged water 

level and discharge 
NSW Office of Water 2000 – 2014 (vary among gauges) 

Hourly gauged water 

level 

NSW Manly Hydraulics 

Laboratory 

Spatial coverage: river branch 

downstream of Rogans Bridge 

DEM 

Geoscience Australia 

(Gallant et al. 2011) 
Spatial resolution: 1 sec (InSAR) 

Clarence Valley Council Spatial resolution: 1m (LiDAR) 

Bathymetric data 

BMT-WBM 
Spatial coverage: from Mountain View 

to Yamba 

Port Authority of NSW Spatial coverage: Yamba harbour 

Grimaldi et al., 2017 
Spatial coverage: Copmanhurst to 

Mountain View 

Geometric data of 

the levees 
Clarence Valley Council  

Geometric data of 

the bridges 

NSW Road’s and 

Maritime Service 
 

Clarence Valley Council  

Dynamic Land 

Cover 

Geoscience Australia 

(Lymburner et al. 2011) 
Spatial resolution: 250m 

Debris marks and 

high water marks 
Clarence Valley Council 

Flood events in January 2011 and 

January-February 2013 

Photos of flood 

events 

Clarence Valley Council 
Flood events in January 2011 and 

January-February 2013 
NSW State Emergency 

Service 

Airborne 

photography 

Clarence Valley Council 
Acquisition time: high and low flow 

days 
Land and Property 

Information NSW 

Satellite images 

Geoscience Australia 

(SPOT6 image: AIRBUS) 

E-Geos (COSMO 

SkyMED images) 

Optical and SAR images acquired 

during the flood events in January 2011 

and January-February 2013 
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3.3.1 SAR Images 

Two COSMO-SkyMed (CSK) X-band (9.6 GHz with a wavelength of 3.1 cm) HH-

Polarized images, acquired by the CSK-3 satellite were available for this study. The data 

were acquired in Stripmap HIMAGE mode at 3 m resolution on 12 January, 2011 at 18:03 

hours and 13 January, 2011 at 07:33 hours (AEDT). They were acquired at the peak of the 

2011 flood event at Grafton and just after it on the falling limb, as depicted in Fig. 3.6. The 

CSK Level 1D Georeferenced Terrain Corrected (GTC) product delivered as an 8-bit image 

of digital numbers was used in this study. This was a consequence of project budgetary 

constraints, as at the time of ordering the SAR scenes from E-Geos, the project team did 

not intend to process the images. The objective was to obtain the 8-bit images along with 

interpretation from E-Geos for the Clarence Catchment, as the project objective was to 

 

Fig. 3.3 Spatial extent of the SPOT-6 optical image covering the 2013 flood event in 

the Clarence, shown here with respect to the model domain. The LiDAR DEM 

available to this study is used as the base layer. 
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improve modelling using RS-data, rather than improve the RS-image interpretation itself. 

Moreover, the 8-bit images were made available to the study at a discounted price, 

compared to the native bit resolution backscatter products. The calibration process for the 

GTC product followed by E-Geos, corrects for local incidence angle impacts using a DEM, 

by normalising the backscatter to a 40° reference incidence angle (Italian Space Agency 

2009). The domain comprised of 74,056,858 pixels each having an area of 9 m2, bringing 

the total tile coverage to approximately 666.5 km2. The spatial coverage of the SAR tiles 

with respect to the model domain, is illustrated in Fig. 3.1. The SAR images described here 

were used to develop and test the fuzzy flood mapping algorithm presented in Chapter 4 of 

this thesis. The fuzzy flood maps thereby generated, were subsequently assimilated into the 

flood forecasting model LISFLOOD-FP in Chapter 9.  

3.3.2 Optical Imagery 

An optical multi-spectral image from the Satellite Pour l'Observation de la Terre 

(SPOT) 6 satellite was available to this study, acquired at 31st Jan 2013 at 09:35 am 

(AEDT). The data were acquired at 6 m resolution and were delivered as an ortho-rectified, 

pan-sharpened multi-spectral (PMS) product at 1.5 m with four spectral bands, i.e. blue 

 

Fig. 3.4 Locations of the “crowd-sourced” water depth observations for the 2013 flood 

event in the Clarence Catchment. Sub-figures A and B show example images used for 

the depth calculation, by Clarence Valley Council. 
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(450-520 nm), green (530-590 nm), red (625-695 nm), and near infrared (760-890 nm). 

SPOT-6 PMS products have a radiometric resolution of 12 bits per pixel and the image was 

delivered in the JPEG 2000 raster format (Astrium Services 2013). The image comprised 

of a total of 255,072,110 pixels covering a total area of 573.91 km2. About 20% of the tile 

was affected by cloud cover, obscuring the underlying inundated regions. In order to avoid 

the associated uncertainty, this portion of the image was removed from the analysis. Fig. 

3.3 shows the spatial extent of the SPOT image with respect to the model domain, while 

Fig. 3.7 shows the temporal position with respect to the 2013 flood hydrographs. This 

image was used to delineate the flooded area and used in Chapter 4 for verification of 

selected model parameter values.  

Two high-resolution optical aerial photographs covering the 2011 flood event in the 

Clarence Catchment, were provided by the NSW-Land and Property Information (LPI) 

Department for this study. As the NSW-LPI had only one airplane available to monitor the 

flooding, the spatial coverage was focused on urbanized areas. The images were captured 

on January 12, 2011, between 16:41 and 17:17 hours and 17:17 to 17:39 hours, 

 

Fig. 3.5 Map illustrating the spatial coverage for the aerial photographs of Junction Hill 

(1) and Ulmarra (2), used in this study for validation of the flood mapping and data 

assimilation algorithms. 
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respectively. The images have a spatial resolution of 10 cm and cover Junction Hill and 

Ulmarra regions of the catchment, as shown in Fig. 3.5. These were used for validation of 

the proposed flood mapping approach in Chapter 4, and the real world application of the 

proposed data assimilation strategy in Chapter 9. Aerial photographs available from the 

region for non-flood scenarios were also used to derive distributed surface roughness 

values. First, the photographs were used to manually identify land-use classes at high 

resolution. Second, distributed roughness values were assigned based on standard 

prescriptions of each class available in literature (Arcement and Schneider 1989).  

3.3.3 Topography 

Topographic information was available in the form of a 1m Light Detection and 

Ranging (LiDAR) Bare Earth Digital Elevation Model (DEM), acquired in 2010 with a 

vertical accuracy of ±30 cm at 95% confidence (1.96 x RMSE) and horizontal accuracy of 

±80 cm at 95% confidence (1.73 x RMSE) (New South Wales Land and Property 

Management Authority, 2010; Fig. 3.1). The vertical accuracy was assessed by comparing 

LiDAR point returns against survey check points as per the ICSM Guidelines for Digital 

Elevation Data (Intergovernmental Committee On Surveying & Mapping 2008). This 

dataset is freely available under a Creative Commons Attribution 4.0 license, for 

commercial and non-commercial applications at https://elevation.fsdf.org.au/, provided by 

Geoscience Australia. The channel bathymetry was reconstructed by interpolating between 

field observed cross-sections and stitched to the LiDAR DEM, for the part of the domain 

where it was available. The area upstream of Copmanhurst where LiDAR coverage was 

unavailable, was filled in with the SRTM-derived 30 m product enhanced by Geoscience 

Australia (DEM-H), which is described in greater detail in the next paragraph. For a 

detailed description of this combined topographic dataset, field data collection, and 

bathymetry generation, readers are referred to Grimaldi et al. (2018). The bathymetric 

dataset is freely available at 

https://figshare.com/articles/Bathymetric_survey_of_the_Upper_Clarence/5648251 

(Grimaldi et al. 2017). 

The SRTM-derived DEM-H (Gallant et al. 2011), a 1 arc second (~30 m) gridded 

DEM corrected for hydrological applications produced for the Australian continent by 

Geoscience Australia, was used in this thesis to represent the “best available” global 

https://elevation.fsdf.org.au/
https://figshare.com/articles/Bathymetric_survey_of_the_Upper_Clarence/5648251
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topography for the region (Jarihani et al. 2015). The DEM-H is considered superior to the 

globally available SRTM product for hydraulic modelling, as drainages were enforced 

using 1:250,000 scale watercourse lines and smoothed using ANUDEM software 

(Hutchinson 2011; Zheng et al. 2016), to ensure seamless hydraulic connectivity (Dowling 

et al. 2011). As coarse resolution SRTM products are often unable to accurately capture 

flow lines, which lead to erroneous inundation forecasts, the DEM-H with region specific 

hydrological enhancements was considered an appropriate choice (Mukherjee et al. 2013). 

The accuracy of DEM-H is similar to the raw SRTM 1-arc second product with geolocation 

errors <12.6 m and 90% of tested heights within 9.8 m for Australia (Gallant et al. 2011). 

This dataset is available for free, downloadable from http://elevation.fsdf.org.au/. 

3.3.4 Land Cover Data 

Land cover information was extracted from the National Dynamic Land Cover 

Dataset (DLCD) distributed by Geoscience Australia and the Australian Bureau of 

Agricultural and Resource Economics and Sciences (ABARES) at 250 m spatial resolution. 

 

Fig. 3.6 Hydrographs recorded at the hydrometric gauges along the main stem of the 

Clarence River (locations shown in Fig. 3.1) for the 2011 flood event, shown together 

with the temporal acquisitions of available remote sensing data represented as the vertical 

black lines. 

http://elevation.fsdf.org.au/
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The base dataset for the DLCD is NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) 16-day Enhanced Vegetation Index (EVI) composite, 

collected between 2000 and 2008 (Lymburner et al. 2011). Each pixel was subject to time-

series analysis to derive 12 coefficients representative of its statistical, phenological, and 

seasonal characteristics. These were subsequently classified and labelled using support 

vector machines (SVM). Readers are referred to Lymburner et al. (2011) for a more detailed 

description of this dataset. The DLCD dataset was used in this study to facilitate a land-use 

based performance assessment of the flood mapping algorithm developed in Chapter 4. 

3.3.5 Crowdsourced Data 

The Clarence Valley Council also provided field data in the form of photographs of 

wrack marks (debris deposited at the flood edge) and water marks (staining on the side of 

structures within the flooded area) available at  http://clarenceriverfloods.blogspot.com.au/. 

Field observed water levels surveyed by the council just after the 2013 event were also 

provided. The water level observations presented here were derived based on field 

photographs and were therefore interpreted as crowdsourced, as field photographs form one 

of the most common citizen science data types that can be mined from social media for 

instance (Fohringer et al. 2015). These “crowdsourced” observations are used in Chapter 4 

for hydraulic model calibration and shown in Fig. 3.4 alongside example photos. 

 

Fig. 3.7 As for Fig. 3.5 but for the 2013 flood event. 

http://clarenceriverfloods.blogspot.com.au/
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3.3.6 Hydrometric Data 

Hydrometric gauge information in the form of WL and discharge measurements 

were provided by the NSW Public Work's Manly Hydraulics Laboratory (MHL) and the 

Australian Bureau of Meteorology (BoM). The observations were recorded with a temporal 

frequency of fifteen minutes for the WL gauges and hourly for the discharge gauges. 

Missing data were interpolated using linear interpolation. Seasonality was not considered 

as the study required only event-based flood modelling. Discharge observations were 

available at Lilydale (BoM) and Grafton. Moreover, WL observations were available at 

Rogan’s Bridge, Grafton, Ulmarra, Brushgrove, Lawrence, Maclean, Palmer’s Island 

Bridge, and Yamba, from upstream to downstream along the main stem of the river. Gauge 

locations are shown in Fig. 3.1, while hydrographs recorded by gauges along the main stem 

Table 3.2 Summary of the data utilised in this thesis, with the characteristics and usage for each 

listed. 

 Dataset Main 

Characteristics  

Usage 

2 Cosmo-SkyMed 

Images 

2011 event, SAR Flood extent mapping (Chapter 4) and 

assimilation (Chapter 7 and 9) 

1 SPOT-6 PMS 

Image 

2013 event, Optical Model verification (Chapter 5) 

Aerial 

Photographs 

2011 and 2013, 

Optical 

Flood map validation (Chapter 4) and verification 

of assimilation performance – real case (Chapter 

9) 

LiDAR DEM 2001-2015, Optical Flood inundation modelling (Chapters 5, 7, and 8) 

DEM-H 2011, InSAR Flood inundation modelling (Chapters 5 and 8) 

LULC Data 2011, Optical Flood map accuracy assessment (Chapter 5) 

Hydrometric 

gauge data 

1980-2017, Field Model implementation (Chapter 5) and 

verification of assimilation performance – real 

case (Chapter 9) 

High water marks 

and flood photos 

2011 and 2013, Field Model calibration (Chapter 5) 
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of the channel are shown in Fig. 3.6 and Fig. 3.7, for the 2011 and 2013 flood events 

respectively.  

Additionally, WL observations were available at Tyndale, The Avenue, Oyster 

Channel, and Lake Wooloweyah. The WL values were recorded in metres with respect to 

AHD while the discharge observations were available in Mega Litres/day (ML/d) which 

were converted to cubic metres/second (cumecs). All of the gauges were used in Chapter 4 

to calibrate the channel friction parameter in the hydraulic model, for the 2013 flood event 

in the Clarence. The gauges along the main stem were used for validation of the real world 

application of the assimilation algorithm in Chapter 9. 

3.4 Chapter Summary 

This chapter presented an overview of the study area and the data that were used to 

set up and validate the experiments outlined in this thesis. The study area description 

included details on the extent, drainage, geomorphology, topography, land cover, and 

flooding characteristics. Locations of flood control structures currently operative in the 

catchment were illustrated. The data summary comprised of reasons for choosing each 

dataset, detailed descriptions of each, and information on where and why they were used 

in the thesis, as summarized in Table 3.2. Positions of ground sensors and observations, as 

well as spatiotemporal coverage of the remote sensing data were also shown.



 

  

 

 

CHAPTER FOUR 

  

“I claim that many patterns of Nature are so irregular and fragmented, that, compared 

with Euclid — a term used in this work to denote all of standard geometry — Nature exhibits 

not simply a higher degree but an altogether different level of complexity … The existence of 

these patterns challenges us to study these forms that Euclid leaves aside as being 

“formless”, to investigate the morphology of the “amorphous”.” 

Benoit Mandelbrot, quoted in a review of The Fractal Geometry of Nature by J. W. Cannon 

in The American Mathematical Monthly, Vol. 91, No. 9 (November 1984), p. 594. 
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4.   SAR-based Flood Inundation Mapping 

The literature review revealed several gaps in the utilization of image texture in the field 

of SAR-based flood mapping. Consequently, a SAR texture optimization technique is proposed 

in this Chapter, to improve the utilization of texture in single image flood mapping and thus 

address these open research questions. Probabilistic flood maps developed using the methods 

detailed in this chapter, have subsequently been assimilated into LISFLOOD-FP in Chapter 7, 

using the framework developed in Chapter 5. The flood mapping algorithm presented in this 

chapter, was published as a peer-reviewed journal paper in Remote Sensing of Environment3. 

4.1 Introduction 

Synthetic Aperture Radar (SAR) data are currently the most reliable resource for flood 

monitoring, though still subject to uncertainties which can only be objectively represented with 

probabilistic flood maps. Ideally, the inclusion of ancillary datasets could eliminate one or more 

sources of errors in SAR-based flood extraction (D’Addabbo et al. 2016). However, suitable 

supporting datasets are usually unavailable for the area of interest, especially for developing 

regions. Moreover, the present cohort of fuzzy flood classification algorithms utilize theoretical 

electromagnetic backscattering models for parameterization. Given that these are wavelength 

specific, they typically limit the transferability of fuzzy approaches across the range of SAR 

satellites. Therefore, this study introduced a texture-based image enhancement approach to 

 

3Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V. R. N., & Walker, J. P. (2018). 

Towards operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote 

Sensing of Environment, 215(15 September 2018), pp. 313–329, 

http://doi.org/10.1016/j.rse.2018.06.019. 

http://doi.org/10.1016/j.rse.2018.06.019
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improve single image flood mapping, which can incorporate the spatial autocorrelation amongst 

pixel values to minimize the impact of sensor parameters. 

 Since texture can be derived from the SAR image, it also reduces the dependence on 

ancillary or complementary datasets. However, state-of-the-art texture based mapping 

approaches also struggle with the subjectivity in selecting application appropriate texture 

features, suitable window sizes, and optimal direction for identifying the feature of interest (Di 

Baldassarre et al. 2011). Optimized texture bands were considered alongside the SAR intensity 

image, within a neuro-fuzzy classifier to generate a fuzzy flood map. Moreover, Gaussian 

 

Fig. 4.1 Map displaying the location of the Clarence catchment (a), and the main drainage lines and 

towns (b). The COSMO-Skymed SAR image acquired on 12th Jan, 2011 is also shown (c), with the 

green polygons indicating the aerial photo coverage used for validation. The example subsets used 

in Fig. 4.5 are depicted in red, while those used in Fig. 4.8 and 4.13 are shown in blue and yellow 

respectively. 
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membership functions were chosen to represent the backscatter distribution of each class, based 

on the image histogram as in the probabilistic mapping approaches (Giustarini et al. 2016; 

Schlaffer et al. 2017). However, using the neural network for a data driven parameter estimation 

of these membership functions removes the need for identification of suitable prior probability 

distributions. Moreover, training the classifier on the image to be processed offers the additional 

advantage of accounting for image specific backscatter variability, caused by the reference 

incidence angle or wind effects. 

Given a filtered SAR image, the ideal window size for texture estimation was first 

determined through semivariogram analysis. This was followed by an estimation of 

omnidirectional Grey Level Co-occurrence Matrices (GLCM) from which second-order 

statistical texture features were derived. An independent component analysis was then used to 

condense the maximum possible information into minimum bands, which were then added to 

the SAR image prior to classification. The class distributions were modelled as Gaussian 

functions within a fuzzy inference system, and parameterized using training data from the image 

itself. The resulting maps were evaluated using aerial photographs through reliability diagrams, 

as well as a fuzzy validation exercise novel to flood mapping literature. The fuzzy map 

comparison accounts for the uncertainties in manual shoreline extraction for validation data as 

well. The classification performance of the SAR image with added optimized texture bands was 

compared against a SAR image without any texture addition and a SAR image with some 

randomly selected texture features added. Finally, a land-use specific analysis was conducted 

to assess the spatial variability of classifier performance, to facilitate an area appropriate choice 

of classifiers for flood mapping. The following sections detail the general principles of SAR 

with respect to flood mapping, the proposed flood mapping framework, and the validation 

results for the Clarence Catchment (See Fig. 4.1) are subsequently presented.   

4.2 Principles of SAR: Implications for Flood Mapping 

Microwave interactions with the Earth’s surface are governed by the SAR sensor configuration 

(wavelength, polarization, resolution and looking angle), surface characteristics (roughness and 

dielectric properties), and local slope. The high contrast in the radar image between flooded and 

non-flooded areas, is primarily the result of specular reflection from standing water. This 

phenomena makes water surfaces appear dark on SAR images, as opposed to the increased 
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scattering from rough land surfaces which makes terrain appear bright. As floods are mainly 

identified using the changes they cause in backscattering behaviour of land cover classes, flood 

mapping is then detecting the insurgence of water in three main land cover classes - bare soil, 

vegetation and urban areas. In order to understand these changes, one needs to be aware of the 

underlying mechanisms which drive the microwave interactions with the Earth’s surface. 

4.2.1 Geometric Distortion 

The SAR side-looking sensing implies that two points will look closer in the slant-range 

image than they actually are on the ground. This effect gets more pronounced as we move closer 

to the antenna i.e. in the near range and is most noticeable at nadir (90°). The projection lines 

from the ground-range to slant-range are usually in the form of concentric circles around the 

antenna, due to the spherical divergence of radar pulses over such large distances (See Fig. 4.2). 

This leads to geometric distortion in the images, which needs to be accounted for in flood 

mapping problems. 

 

Fig. 4.2 The differences between ground-range and slant-range for side-looking radar geometries. 

Modified based on: http://nature.berkeley.edu/~penggong/textbook/chapter3/image/fig331.gif 
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The imaging of steep vertical objects through SAR, results in a phenomenon known as 

relief displacement. The top of the structure shifts from its actual ground location, proportional 

to object height and radar look angles. In particular, these errors can be of three types, as shown 

in Fig. 4.3 and elucidated below. 

1. Foreshortening - As radar imaging records distances from the antenna, the top of tall targets 

such as mountains would be encountered by the beam before the bottom is seen. This makes 

the object appear to “lean” towards the sensors with the foreslope (the slope facing the 

sensor) appearing shorter than in reality. 

2. Layover - When slopes are steeper, targets in the valley region behind the mountains display 

a longer slant range. This causes objects in the slant range to be ordered in reverse of their 

actual ground positioning. Consequently, the front slope appears to overlay on the 

backslope on the SAR image. 

3. Shadow - This effect is caused primarily by the side-looking imaging technique. As the 

radar views objects at an angle, it cannot “see” a certain region hidden by vertical structures, 

these appear as dark shadows in the SAR image. 

 

Fig. 4.3 Geometric distortions caused by the side looking radar viewing geometry. Modified based on: 

https://earth.esa.int/handbooks/asar/CNTR1-1-2.html 
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4.2.2 Surface Roughness and Local Incidence Angle 

Radar backscatter is a function of the surface roughness and local incidence angle of the 

surface from which the radar beam is scattered. The nature of this scattering determines the 

strength of the signal returned to the sensor and can be of several types as shown in Fig. 4.4.  

4.2.2.1 Surface Scattering 

The scale of the surface roughness can be represented by the root-mean-square deviation 

(ℎ) from the mean height (ℎ̅) of the interface dividing the two homogeneous media, the 

atmosphere and the hypothetical perfectly smooth open water surface. Intuitively, one can 

imagine that when this deviation is comparable to the magnitude of the wavelength, the surface 

undulations return separate radar echoes to the antenna. The interference of these returned 

signals spuriously raises the recorded backscatter values, leading to a reduction in specular 

reflection effects. 

According to the Rayleigh Criterion the phase change caused by ℎ should be less than 

a quarter of the wavelength (𝜆). As this phase difference increases, scattering becomes more 

diffuse (i.e. energy reflected equally in all directions) and “smooth” surfaces would no longer 

be detectable by contrast. The local incidence angle 𝜃𝑙𝑜𝑐𝑖  determines the path difference 

between the incident and the scattered path, and therefore can influence the maximum 

acceptable value of ℎ for smooth surfaces. The Rayleigh Criterion describes smooth surfaces 

as those satisfying 

ℎ <
𝜆

8𝑐𝑜𝑠 𝜃𝑙𝑜𝑐𝑖
 ,       (4-1) 

Equation 4.1 implies that ℎ must be 
1

8
𝑡ℎ of the wavelength to account for two-way travel 

of the radar path. In case of RS a stricter criterion for smoothness is needed, known as the 

Frauenhoefer Criterion which restricts ℎ to 
1

32
𝑡ℎ of λ, as the distance between the target and the 

sensor is usually several orders of magnitude larger than the wavelength of the incident beam. 

Based on the above, surface scattering mechanisms can broadly be classified into two 

categories: 

1. Specular scattering (or reflection): Where the majority of the incident microwave energy 

is reflected off a smooth surface; the remaining energy is transmitted through the media in 
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accordance with Snell Law of refraction. Radar returns are negligible for a perfect specular 

reflector as the beam is reflected away from the receiver.  

2. Bragg scattering: When the surface roughness of a slightly rough (
λ

32
< ℎ <

λ

8
) 

homogeneous medium  exhibits periodicity, an identifiable and coherent pattern of 

backscatter is returned. Bragg surfaces are often an ordered collection of facets, where 

particular orientations occur at regular intervals. The facets oriented towards the sensor can 

often produce return signals which resonate with the incident beam resulting in bright image 

regions. This effect is more pronounced for steeper incidence angles as the sensor may 

record backscatter returned from both specular and Bragg scattering.  

3. Diffuse surface scattering: As the surface roughness increases beyond 
1

8
𝑡ℎ of the 

wavelength the scattering gets more random. An extremely rough surface should ideally 

scatter the radar beam in all directions with equal intensities, resulting in higher signal 

returns.  

 

Fig. 4.4 Different scattering mechanisms displayed by radar interactions with water and land surfaces. 

Based on Martinis et al. (2015b). 
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4. Corner reflection: The radar pulse is reflected back to the sensor when it encounters a 

smooth horizontal and smooth vertical surface orthogonal to each other, resulting in 

saturated pixels. Corner reflection can be caused by partially submerged vegetation or urban 

features such as roads, pavements and buildings, resulting in very strong returns.  

4.2.2.2 Volume Scattering 

Radar beams achieve measurable penetration depths directly proportional to the incident 

wavelength. Complex natural environments often include multiple media, having different 

dielectric constants, which results in volume scattering. When microwaves come in contact with 

a heterogeneous media exhibiting variations in electromagnetic properties, each wave is 

scattered in many different directions. The intensity of returned backscatter is a function of the 

density and heterogeneity of the traversed media. The shape, density, relative permittivity, and 

orientations of the various media encountered by the radar signal then determine the strength 

of the backscatter recorded at the antenna.  

4.2.3 Dielectric Constant  

The dielectric constant is defined as the ratio between the electrical permittivity of a 

homogeneous material with respect to that of a vacuum, given by a dimensionless quantity also 

known as relative permittivity. Natural materials do not respond to external electromagnetic 

fields instantaneously, unlike a vacuum. The response generally depends on the frequency of 

the applied field, which in this case is the radar signal.  

Microwave frequencies are highly sensitive to changes in the dielectric constant, and 

can achieve considerable penetration depths as most dry natural materials exhibit values 

between 3 and 8, resulting in low reflectivity in this region of the EM spectrum. Conversely, 

liquid water has a dielectric constant of approximately 80 in the microwave region. Based on 

this, open water should return most of the signal right back to the sensor, exhibiting strong 

reflectivity. This doesn't happen in reality as the effects of specular reflection dominate and the 

beam is directed away from the sensor.  

Since the dielectric constant is directly correlated to the moisture content per unit 

volume, higher vegetation/soil water content implies larger values of radar returns. Most of the 

sensible variation in backscatter recorded from natural surfaces can be explained by the 

moisture content of the underlying geographical features. This property is often exploited in the 
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derivation of remote sensing based soil moisture. As the dielectric constant depends on the 

frequency of the EM wave, the penetration depth is directly related to the wavelength. For 

instance, when detecting flooding under forests, using a SAR image operating in the longer 

wavelength region (lower frequency) allows the EM waves to penetrate the canopy to a greater 

extent than shorter wavelengths which experience surface scattering. 

4.2.4 Polarization 

The polarization of a SAR image refers to the orientation of the electric field intensity 

vector in the transmitted and received radar waveform as shown in Fig. 4.5. SAR sensors 

usually send and receive horizontally polarized waves, as the returns recorded are higher than 

in vertical polarization. When the transmitted and received radar wave polarizations are 

identical this is known as co-polarized; conversely cross-polarization refers to opposite send 

and receive polarizations. Fully polarimetric SAR images (antenna can record HH, HV, VH 

and VV returns simultaneously) can be useful for detecting flooding under vegetation or urban 

areas as illustrated in the following sections because they are able to highlight the double-

bounce component of the surface scattering. 

4.2.5 Speckle  

SAR images are affected by conspicuous bright and dark spots, known as shot noise or 

speckle. This apparently random manifestation of light and dark pixels arises from constructive 

and destructive interference of scattered radar waves. A SAR pixel represents a few square 

metres of area on the ground, often presenting the incident microwaves with multiple scatterers. 

These waves which are scattered non-uniformly in all directions, interfere with one another 

before reaching the antenna.  If this interference is constructive (the crests and troughs of the 

waveform superimpose), a strong signal return is recorded leading to a bright spot in the SAR 

image; conversely destructive interference causes the dark spots. 

Speckle can be modelled as a random noise effect and several filtering techniques have 

been proposed to deal with this particular phenomenon over the years. Research suggests that 

the choice of the particular filtering technique chosen should be governed by the final 

application. Lee, Frost, Enhanced Lee, median and Gamma-Maximum-A-Posteriori are some 

of the speckle filters commonly applied as a pre-processors to SAR-based flood detection 

studies (Martinis et al. 2009; Voormansik et al. 2014). 
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4.3 Methodology 

An overview of the proposed flood mapping approach is illustrated in Fig. 4.6.This 

methodology was applied to the two SAR images available to this study (See Section 3.3.1, 

Chapter 3), while high resolution aerial photographs acquired concurrently were used for 

validation (Section 3.3.5, Chapter 3). The reasons for choosing the processing steps and their 

subsequent data specific implementation are discussed at length in the following sections. 

4.3.1 SAR Preprocessing 

The COSMO images were preprocessed using the Gamma Maximum-A-Posteriori 

(GMAP) filter which suppresses speckle noise while preserving edges and image texture, a 

property conducive for flood detection (Senthilnath et al. 2013). A window size of 3 × 3 was 

used as higher resolution SAR images are more susceptible to speckle noise, due to backscatter 

interference from neighboring pixels adding to sub-pixel interference. The GMAP filtered 

image is then used for texture analysis, and hereafter referred to as the SAR image. 

 

Fig. 4.5 Schematic of EM wave propagation, showing orthogonal electric and magnetic wave 

components (Source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html). 
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4.3.2 Texture Analysis  

Texture based approaches have the advantage that a single SAR image of the event can 

be used for their derivation and their extraction can be automated. Image texture can be defined 

as a measure of the transitional probabilities of pixel values, which can facilitate object 

identification in SAR data (He and Wang 1991; Haack and Bechdol 1999). As SAR images are 

rich in texture, it has often been utilized for flood identification (Schumann et al. 2009b; 

Senthilnath et al. 2013; Pradhan et al. 2014). However, most of the studies which utilize textural 

properties of SAR, have unfortunately failed to quantify their contribution to the overall 

improvement in flood mapping accuracy. Consequently, this study aims to explicitly assess the 

role of texture in flood delineation and quantify the maximum improvement possible through 

its inclusion. 

 

Fig. 4.6 Schematic of the overall classification framework used to generate the fuzzy flood maps. 
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Objectively selecting appropriate texture features for a particular case study is critical, 

as this can significantly impact the subsequent flood classification (Schumann et al. 2009a, 

2012; Schumann and Di Baldassarre 2010b; Di Baldassarre et al. 2011). Moreover, SAR-based 

land cover mapping studies have demonstrated the merit of texture optimization methods to 

solve this problem (Carr 1996; Franklin et al. 1996; Carr and De Miranda 1998; Berberoglu et 

al. 2000, 2007; Haack and Bechdol 2000; De-yong et al. 2008; Balaguer et al. 2010). However, 

the impact of optimized texture still needs to be investigated in the context of SAR-based flood 

mapping as the implementation of texture based methods is fairly empirical (Amitrano et al. 

2018; Ouled Sghaier et al. 2018). As texture is direction and scale dependent, these parameter 

choices can also influence notably the classification, and so must be explicitly considered in 

any texture based mapping approach (Franklin et al. 1996; Di Baldassarre et al. 2011).  

Statistical texture estimation approaches were chosen for this analysis as they utilize 

non-deterministic properties, governing the distribution of pixel value pairs. Second-order 

image statistics are also useful for SAR-based flood extent mapping, as the range of spatial 

autocorrelation for speckle noise is limited to the image resolution in this space (Ulaby et al. 

1986). Grey Level Co-occurrence Matrices (GLCM), which can be interpreted as joint gray 

level probability density distributions or 2-D image histograms, were used for this study due to 

their low sensitivity to image contrast (Kuplich et al. 2005).  It then follows that the GLCM-

based texture features which were subsequently derived and used to enhance flood 

identification in this study, were also relatively insensitive to the land-water backscatter 

contrast.  

This implies that the effect of wind related surface roughening, which usually hampers 

accurate flood mapping from SAR by significantly increasing the backscatter of open water 

surfaces, can largely be mitigated. Adding contrast insensitive texture features as additional 

information layers reduces the dependence on backscatter, and therefore minimizes the impact 

of wind-induced backscatter variations. As the patterns in the backscatter rather than the 

backscatter itself were analysed, the probability of correctly classifying a wind roughened flood 

pixel was increased. This is a clear improvement over backscatter contrast dependent flood 

classification techniques such as histogram thresholding, which are completely unable to 

identify inundated pixels under windy conditions as the class distributions are no longer 

separable. Moreover, the use of a fuzzy mapping technique also allows for a clear expression 



C h a p t e r  4  –  S A R - b a s e d  F l o o d  M a p p i n g   P a g e  | 4-13 

 

 

of the uncertainty in flood detection; especially in the overlap between the two class 

distributions. 

Each entry in the 𝑛 × 𝑛 GLCM indicates the number of co-occurrences of pixel value 

pairs at a specific lag distance in a given direction, where n is the number of gray levels in the 

image. For example, the 45° GLCM with one pixel lag for a binary image would record the 

number of times each combination of grey level pairs ([0,0], [0,1], [1,0], [1,1]) appears in the 

image separated in the specified direction by one pixel distance. The optimum window size for 

GLCM calculation was estimated as the range of sensible intra-class variance through 

semivariogram analysis (Balaguer et al. 2010). Omnidirectional semivariogram curves were 

generated for both the flood and non-flood classes, by taking homogeneous subsets of size 

400 × 400. This step can be automated in the future as the semivariograms for different sensors 

and resolutions can be precomputed and used as a look up table, based on archived satellite 

data. According to this scenario, when a new satellite image becomes available the algorithm 

would select an appropriate window size for texture estimation based on the specific sensor 

characteristics. 

GLCM matrices obtained in the previous step were used to estimate the second-order 

textures proposed by Haralick et al., (1973). Mean, variance, homogeneity, contrast, 

dissimilarity, entropy, angular second moment, and correlation were the co-occurrence 

measures retained for further optimization as they were least correlated. Direction-invariant 

texture information was obtained prior to optimization, by averaging the texture values in all 

eight directions. An independent component transform (ICT) was used, to optimize the textural 

information and reduce the dimensionality.  

As ICT assumes the errors to be of unit variance (white noise), the noise adjusted 

Principal Component Transform was used to whiten the noise and decorrelate it from the signal 

(Chica-Olmo and Abarca-Hernández 2000). From the noise whitened data, ICT extracts the 

direction with the least-Gaussian distribution, and removes the data explained by this variable. 

A cost function implying non-Gaussianity, such as skewness or kurtosis, is iteratively 

maximized until the remaining dataset can be explained by statistically independent variables. 

The first three independent components which contained approximately 99% of the GLCM 

texture information, characterized by significant Eigen values (Fig. 4.7), were added to the SAR 

image by layer stacking. 
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4.3.3 The Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier  

4.3.3.1 Fuzzy Membership Function Definition 

Fuzzy set theory is a probabilistic adaptation of the classical notion of crisp sets which 

provides an elegant solution to objectively dealing with the ambiguity of SAR-based flood 

mapping (Pulvirenti et al. 2011b). An element of fuzzy set is its representation of the degree of 

membership to a particular category or class, characterized by a predefined function with values 

ranging from 0 to1. In this study, the Takagi-Sugeno type fuzzy inference system was 

implemented for the classification, as it can handle non-linearities in the data distribution 

(Takagi and Sugeno 1985). Gaussian membership functions were chosen for both classes, as 

the histograms of flooded SAR images can be modelled as a mixture of two normal distributions 

(Giustarini et al. 2016). Studies have shown that the bimodality assumption fails if the observed 

flooded area is not significant compared to the tile size (Chini et al. 2017). Therefore, the image 

was first subset to extract the area of interest - including the flooded area, flood plains and 

nearby regions - through visual interpretation. This results in a comparable division of flooded 

and not flooded pixels, causing the image histogram to exhibit a clear bimodality.  

4.3.3.2 Function Parameterization  

Theoretical electromagnetic backscattering models have traditionally been used to define 

fuzzy membership functions and parameters (Pulvirenti et al. 2013). However, such approaches 

require detailed soil, vegetation, and land cover maps, to accurately estimate the expected 

 

Fig. 4.7 Eigen values of the independent components obtained after analysing the texture bands. 
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backscattering behaviour based on theoretical models, which are often unavailable. Moreover, 

as these models are wavelength specific, the parameterization is not applicable to data from 

other sensors or even other areas with a different distribution of scatterers on the ground. 

Furthermore, theoretical approaches are often unable to capture all practical considerations, for 

example, seasonal abscission in deciduous vegetation.  The use of data driven models like 

artificial neural networks (ANN), which can learn data characteristics without prior process 

knowledge, is proposed to counteract this problem. Moreover, the variability in backscatter 

caused by wind and incidence angle effects - which alter the mean and standard deviation 

parameters of the class distribution - were implicitly accounted for in this approach, as they 

were estimated from the same image which needs to be classified. 

The ANN was trained using polygons selected manually from the image by an expert, which 

were consistent throughout the analysis. The hybrid learning algorithm was used, which 

identifies parameters by iteratively minimizing errors using the gradient descent technique 

(Jang 1993). The number of epochs used for training were 100 for each case and the model 

error was estimated using cross-validation. In order to individually quantify the impact of 

optimized texture on classification performance, the classifier was tested with the following 

inputs: 

1. The speckle filtered SAR image or the control without any addition of texture, called 

SAR hereafter.  

2. The filtered SAR image enhanced with some arbitrarily selected common texture 

features – variance and mean Euclidean distance in this case – hereafter called 

Std+SAR.  

3. The filtered SAR image with the optimized rather than arbitrary texture bands added, 

referred to as Opt+SAR.  

4.3.3.3 Training Approach  

The classifier was tested with three different sets of training data to ensure repeatability of 

results and to evaluate the sensitivity. The three training datasets are shown in Fig. 4.8 and the 

strategies for each training set are described below: 
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Set 1. Large area polygons were drawn for each class, encompassing the backscatter 

variability of the target classes, and spread out across the image. An equal number of 

polygons were chosen for the flood and non-flood classes.  

Set 2. Smaller area polygons, each comprising of a nearly uniform subset of 

backscatter values representing one of the signatures, were selected for the training. 

Polygon selection was restricted to the flooded area and floodplains, where maximum 

classification accuracy was desired. More non-flood polygons were chosen than flood, 

to ensure sufficient representation of the entire spectrum of backscatter variability for 

training. 

Set 3. Same as in training set 2, except that the size and number of polygons was further 

reduced to ensure that the classifier did not overfit the training data and to maximize 

computational efficiency.  

As results of training Set 1 yielding large errors during the classifier assessment phase, 

it was not tested subsequently for the flood mapping or to assess the classification accuracy. 

However, a description of the training set has been provided here to highlight the problems with 

this set and inform readers about these limitations.  

 

Fig. 4.8 The actual training polygons selected to train the neuro-fuzzy classifier are shown, where 

(a), (b), and (c), correspond to training sets 1, 2, and 3, respectively. The difference in the three 

trainings is primarily the size of individual polygons and their corresponding locations as shown by 

the coloured squares.  
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4.3.4 Validation Strategies  

In order to ensure the reliability of this analysis, results were validated using two 

different methods. First, a fuzzy set approach was used to validate the SAR-based fuzzy maps 

against a fuzzy validation target. Second, reliability diagrams were used to assess the flood 

maps, being the most commonly used validation technique for probabilistic maps.  

4.3.4.1 Fuzzy Set Validation Approach  

Shoreline extraction from aerial photography can be quite ambiguous in densely vegetated 

and built up environments (Giustarini et al. 2013). The accuracy of the derived shoreline may 

vary from 10 to 100 m, depending largely on the skills of the photo interpreter (Mason et al. 

2010a). In this particular case, the riparian vegetation at the edge of the storage areas in the 

flood plain made it rather challenging to “see” the underlying water edge. The illumination 

differences in the separate flight lines, combined with atmospheric effects, severely affected 

the clarity of boundaries in the area, as seen in Fig. 4.9. Studies have proposed marking 

ambiguous boundary regions as “no data” to remove the associated uncertainty (Giustarini et 

 

Fig. 4.9 Example subsets of the true colour aerial photographs (left) shown along with the corresponding 

manually fuzzified flood maps (right).  Locations are shown in Figure 4.1. 
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al. 2016). However, it is more appropriate to use a performance measure which is capable of 

handling uncertainties, rather than discarding potentially valuable information.  

A number of fuzzy performance measures capable of handling uncertainties in validation data 

have been developed for model calibration, especially those which use remote sensing data as 

targets (Pappenberger et al. 2007b). However, the utility of such metrics for the validation of 

SAR-based flood maps has not yet been tested. In order to facilitate this, the fuzzy map 

comparison method proposed by Hagen (2003) has been adopted in this study for the 

assessment of probabilistic flood maps for the first time. The proposed approach takes into 

account locational as well as categorical uncertainty in both the input as well as the validation 

data (Hagen-Zanker et al. 2005; Wealands et al. 2005). The resulting map comprises of pixel-

wise similarity values ranging from 0 to 1, indicative of the local goodness of fit. As this 

evaluation approach requires an explicit representation of uncertainties in both datasets, a fuzzy 

flood map for validation was prepared as follows to reflect the errors of manual flood 

delineation: 

1. The aerial photographs were manually digitized into three classes - clearly flooded, 

clearly non-flooded, and possibly flooded.  

2. The flooded polygons were assigned a value of 1 and non-flooded polygons, a value of 

0.  

3. The partially flooded polygons were filled with intermediate values, interpolated using 

an inverse distance weighting (IDW) algorithm with an exponent of 2, to fuzzify the 

validation data.  

4.3.4.2 Fuzzy Similarity Statistics 

In order to characterize the similarity between the SAR-based flood map and the one 

derived from aerial photos, several statistics were calculated which could highlight the different 

aspects of classifier performance. First, deterministic grid-based statistics, such as Root Mean 

Squared Errors (RMSE) and Mean Absolute Errors (MAE), were calculated to assess classifier 

performance. This was followed by the map comparison method proposed by Hagen (2003), 

which allows the comparison of fuzzy maps while explicitly accounting for spatial and 

categorical uncertainties in both datasets. 
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For the two fuzzy vectors; 𝐹𝑆𝐴𝑅was obtained as the SAR-derived flood extent while 

𝐹𝑉𝐴𝐿 represents the validation data. The similarity measure S can therefore be computed for two 

pixels at the same location in both maps using:  

𝑆( 𝐹𝑆𝐴𝑅 , 𝐹𝑉𝐴𝐿) = [| 𝐹𝑆𝐴𝑅𝑓𝑙𝑜𝑜𝑑 , 𝐹𝑉𝐴𝐿𝑓𝑙𝑜𝑜𝑑|𝑚𝑖𝑛
, | 𝐹𝑆𝐴𝑅𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑 , 𝐹𝑉𝐴𝐿𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑|𝑚𝑖𝑛

]
𝑚𝑎𝑥

, (4-2) 

where 𝐹𝑆𝐴𝑅𝑓𝑙𝑜𝑜𝑑 and 𝐹𝑆𝐴𝑅𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑 denote the fuzzy values of the flood class and the non-flood 

class memberships at a given pixel in the SAR-based map, while 𝐹𝑉𝐴𝐿𝑓𝑙𝑜𝑜𝑑 and 𝐹𝑉𝐴𝐿𝑛𝑜𝑛−𝑓𝑙𝑜𝑜𝑑 

refer to corresponding values in the validation map. 𝑆 is the maximum value within the set 

obtained by evaluating the minimum of the two fuzzy vectors 𝐹𝑆𝐴𝑅 and 𝐹𝑉𝐴𝐿 on a pixel by pixel 

basis (Pappenberger et al. 2007a), which can also be interpreted as the maximum grade of 

membership to the intersection of the fuzzy sets (Zadeh 1965). 𝑆 takes values from 0 to 1 based 

on the degree of similarity, such that 0 was assigned to cells that were completely different and 

1 was assigned to those which were identical. In order to account for fuzziness in location, the 

influence of neighborhood cells was also considered. The contribution of each neighborhood 

cell can be calculated using a distance decay function chosen based on the nature and magnitude 

of uncertainties, and the desired tolerance for spatial error (Hagen 2003).  

In this study, the number and impact of neighbors included in the analysis were selected 

based on the semivariogram assessment results. The neighborhood influence was estimated 

based on the 3D exponential decay function with a halving distance of two pixels. This 

essentially means that the influence of the neighborhood reduced by half after the second pixel 

is encountered in any direction. The two way similarity between the fuzzy distance weighted 

neighborhood contributions (𝐹𝑆𝐴𝑅𝑛𝑏ℎ , 𝐹𝑉𝐴𝐿𝑛𝑏ℎ) and the fuzzy membership values for the central 

cells (𝐹𝑆𝐴𝑅𝑐𝑐 , 𝐹𝑉𝐴𝐿𝑐𝑐) were calculated using the expression: 

𝑆( 𝐹𝑆𝐴𝑅 , 𝐹𝑉𝐴𝐿) = |𝑆(𝐹𝑆𝐴𝑅𝑛𝑏ℎ , 𝐹𝑉𝐴𝐿𝑐𝑐), 𝑆(𝐹𝑆𝐴𝑅𝑐𝑐 , 𝐹𝑉𝐴𝐿𝑛𝑏ℎ)|𝑚𝑖𝑛
,  (4-3) 

For further information about the calculation of the neighborhood sets, the reader is 

referred to (Hagen-Zanker et al. 2005). Last, the fuzzy kappa 𝐾𝑓𝑢𝑧𝑧𝑦 statistic is proposed as an 

overall performance measure, calculated using: 

𝐾𝑓𝑢𝑧𝑧𝑦 =
(𝑆𝑜𝑏𝑠−𝑆𝑒𝑥𝑝)

(1−𝑆𝑒𝑥𝑝)
 ,     (4-4) 

where 𝑆𝑜𝑏𝑠 and 𝑆𝑒𝑥𝑝 are the observed and expected percentages of fuzzy agreement. Here the 

observed percentage of fuzzy agreement refers to the spatial similarity between the SAR-based 
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maps and validation data computed using Equation 2. Conversely, the expected agreement is a 

function of the number of classes and the image histogram calculated theoretically (Hagen 

2003). 𝐾𝑓𝑢𝑧𝑧𝑦 only differs from the traditional Cohen's kappa popularly used for map 

comparison, in the calculation of the expected percentage of agreement 𝑆𝑒𝑥𝑝 (Hagen-Zanker 

2006).  

The fuzzy Kappa statistic quantifies the improvement between the compared maps 

relative to a randomly generated categorical map with an identical histogram (Wealands et al. 

2005). 𝑆𝑒𝑥𝑝 is estimated as the probability that a wet pixel observed in the validation data 

appears within a certain range of pixel distances or neighborhood in the corresponding SAR-

based flood maps. This means that a flooded pixel in the validation data, which may have shifted 

in the SAR-derived map due a variety of factors such as sensor orientation or geo-location 

errors, was considered a match if it fell within reasonable bounds of uncertainty. 𝑆𝑒𝑥𝑝 can be 

viewed as a measure of the chance agreement that the two maps in consideration may exhibit, 

based on chosen neighborhood sizes and the number of classes in the dataset. 

Neighborhood rings are defined as the set of cells located at an equal distance from the 

central cell. This implies that the chance agreement needs to be computed for each central cell 

and all possible neighborhood rings. Ideally this should be done for each pixel individually and 

for an infinite zone of influence, as edge pixels may have a different nature and number of 

possible neighborhood rings. However, on increasing the search radius for neighborhood 

identification from 10 cells to 500, the difference in values of 𝑆𝑒𝑥𝑝 was found to be 

insignificant, as the function used to model the influence decays rather rapidly. Furthermore, 

using a search radius of 500 increases the possible number of permutations and combinations, 

thereby drastically increasing the computational time. Finally, a radius of 10 pixels was used to 

calculate the expected agreement between the SAR-derived and aerial photo based fuzzy flood 

maps. 

4.3.4.3 Reliability Diagram Assessment  

The final performance assessment used reliability diagrams, being the currently 

accepted evaluation method for probabilistic maps in literature. As discussed previously, the 

limitation of this technique is that the validation data need to be binary. However, this analysis 

was conducted to facilitate the understanding of error characteristics with respect to state of the 

art mapping techniques and to understand the specific contributions of under or over 
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predictions. A threshold of 0.5 was chosen for defuzzification, to reflect the maximum 

uncertainty in the resulting deterministic flood map (Schlaffer et al. 2017). As the validation 

map was digitized on an aerial photo with a spatial resolution of 10 cm, the choice of this 

threshold has limited impact on the outcome of the analysis conducted at 3 m.  

The agreement between the fuzzy membership values predicted by the neurofuzzy 

classifier, and the observed proportion of flooded pixels in the validation data can be 

characterized by a reliability diagram (Horritt 2006). The fuzzy membership values were binned 

into intervals of 0.1 and the ratio of wet cells to total number of cells in each bin, was plotted 

against the bin means. The ideal classifier assigns fuzzy membership values identical to the 

proportion of observed wet pixels in the validation data, with deviation from the 1:1 line 

representative of the classification error. As the distribution of pixels across the bins is non-

uniform, a weighted RMSE (WRMSE) was calculated to objectively represent the uncertainty. 

The WRMSE is calculated by assigning weights to the bin errors, based on the bin population 

as in (Giustarini et al. 2016):  

𝑊𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑣−𝐹𝑠)2𝑛𝑖
𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 ,     (4-5) 

where 𝑛𝑖 is the pixel count of each bin, 𝐹𝑣 is the observed proportion of wet cells in the 

validation map, 𝐹𝑠 is the fuzzy membership value predicted based on SAR analysis, and 𝑁 is 

the total number of pixels in the validation domain. Reliability diagrams were also used to 

assess classifier performance for each land cover (LC) class in the study area through reliability 

diagrams. Such diagnostic analyses may lead to insights on when the proposed approach can 

be expected to perform well.  

4.4 Results and Discussion 

4.4.1 Window Size Selection  

The choice of a window size is an essential step for texture estimation, to avoid 

inadvertently interpreting noise as a meaningful pattern. Therefore, the range of spatial 

autocorrelation observed through the flood and non-flood semivariograms was used as the 

window size for texture analysis. The semivariogram plots were estimated by visually selecting 

homogeneous subsets of flood and non-flood classes, to ensure that the observed range reflects 
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only the intra-class variance. The non-flood subsets were located clearly outside and away from 

the floodplain area, such that purely dry land pixels could be isolated.  

Fig. 4.10 shows the semivariogram plots obtained for the flood and non-flood classes. 

The range of both semivariograms is consistent at 3 pixels as expected, as high-resolution data 

are more prone to noise and thus exhibit low spatial autocorrelation. The non-flood class 

exhibits significantly higher values of variance due to the diversity of surface scattering 

characteristics encountered on land. 

4.4.2 Neuro-Fuzzy Classifier - Training, Testing, and Validation  

The results for the neuro-fuzzy mapping are presented in the following manner. First, the 

general training procedure and results of the training are discussed, followed by an evaluation 

of the result maps obtained for each validation site. As the classifier uses a data driven 

estimation of the model parameters, it needs to be trained and subsequently subjected to 

rigorous testing. It is important to note that for statistical models, two types of errors need to be 

estimated:  

1. Model selection error - which characterizes the prediction error of the selected model in 

the context of other available models. This analysis allows to select the one most suited 

to the data distribution;  

2. Model assessment error - which evaluates the ability of the selected model to correctly 

classify new or previously “unseen” data points (Hastie et al. 2009).  

 

Fig. 4.10 Semivariograms showing spatial autocorrelation amongst backscatter values for the 

different classes in a COSMO-SkyMed 3m image. 
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   The appropriate way to assess both, if sufficient data points are available, is to randomly 

divide them into three parts: a training set, a validation set, and a testing set. Based on the signal-

to-noise ratio expected of a high resolution SAR image and the complexity of the Gaussian 

model, the split was chosen as 70% training, 15% validation and 15% testing (James et al. 

2000). The training set includes the majority of data points by convention, and is used to fit the 

data driven model or distribution. Ideally, all distributions which are able to sufficiently explain 

the data characteristics should be examined. A separate dataset, hereafter referred to as the 

validation set, is used to compute the prediction error for all the competing models or the model 

selection error. The model with the lowest value of validation error is chosen for further 

analysis. Since in this case the Gaussian model was already selected based on the histogram 

bimodality, the validation error was used to select a suitable parameterization of the 

distribution. 

Once a distribution has been trained and validated as the best fit model, another 

previously unseen batch of data, called the test set, is used for assessment. The test error 

provides a measure of the generalization capabilities of the chosen model and the ability to 

correctly classify new data points. If the validation set is reused for this evaluation, the true test 

error will be substantially underestimated. Ideally, multiple equally plausible model structures 

 

Fig. 4.11 Histograms depicting the bimodality in the distribution of pixel values for (a) the filtered 

SAR image in digital numbers, (b) Independent Component (IC) I texture values, (c) IC II texture 

values, and (d) IC III texture values. 
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should be tested to assign the test error. From the histograms of the SAR image and the 

optimized texture features presented in Fig. 4.11, it is apparent that the distributions were 

exhibiting slight deviations from Gaussianity. However, investigating different distributions 

with better fits was considered outside the scope of the present investigation, primarily because 

histograms of flooded SAR images are usually known to consist of a mixture of two Gaussian 

class distributions, which is also evident from the backscatter histogram shown in Fig. 4.11(a) 

(Chini et al., 2017). As the distributions of the texture classes were also nearly symmetrical and 

choosing a case-specific distribution function would limit transferability of the method, the 

Gaussian assumption was maintained throughout the analysis. 

The error values followed the expected pattern of lower training set errors and larger 

test and validation set errors as summarized in Table 4.1. Training Set 3 led to a more 

generalized classifier as errors were nearly consistent across training, validation, and test sets. 

As elaborated earlier, minimizing the sample size can reduce overfitting which in turn can 

improve classifier performance, by reducing the bias-variance trade-off (James et al., 2000). 

This is in contrast to Set 2, where the validation errors were noticeably higher for both the 

texture based methods. The larger magnitude of test and validation errors can be due to 

overfitting to the training data in Set 2, which adversely affects model generalization. 

Generalization can be defined as the ability of a classifier to correctly identify previously 

“unseen” data points (Hastie et al., 2009). The pixel-wise comparison of deterministic statistics 

was carried out for both training Set 2 and Set 3, however, the reliability diagrams and fuzzy 

Table 4.1 Mean Absolute Error statistics for classification model selection and predictive capability 

assessment. 

 Training Set 2 Training Set 3 

Input Training Validation Testing Training Validation Testing 

SAR 0.184 0.183 0.186 0.217 0.217 0.216 

Std+SAR 0.155 0.178 0.159 0.174 0.175 0.175 

Opt+SAR 0.121 0.136 0.125 0.117 0.12 0.12 
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statistics were only calculated for Set 3. Set 3 was chosen for the more detailed analysis as the 

classifier achieved a better generalization and was expected to perform better. 

Note that the training, testing, and validation datasets defined in this section are subsets 

of the training data selected to “train” the neurofuzzy classifier, and the meanings of these terms 

are specific to the data driven modelling part of this study. After the model selection and training 

process was conducted, the trained model was used to generate fuzzy flood maps from SAR. 

These were validated against manually derived flood maps from aerial photography, hereafter 

referred to as the validation data. 

4.4.3 Fuzzy Flood Maps - Accuracy Assessment  

The fuzzy flood maps obtained post classification were assessed using two approaches - 

using the fuzzy map comparison and reliability assessment. For each validation site, the fuzzy 

flood maps, difference maps, spatial similarity maps and reliability diagrams were generated 

through the procedures detailed in Sub-section 4.3.4.  

4.4.3.1 Validation Site 1: Junction Hill  

The pixel-wise assessment results from the two training datasets were found to be 

somewhat inconsistent, as evident from Table 4.2. The proposed texture optimization approach 

succeeded in reducing the RMSE slightly (~2%) in Set 2. However, Set 3 exhibited a slightly 

higher RMSE, though increase of 10−3 can be considered to be negligible. It can easily be 

observed from the fuzzy flood maps illustrated in Fig. 4.12 that the optimized texture approach 

reduced the misdetection of linear and smooth urban features, like road networks, as flooded 

pixels in the urban land-use dominated (top row) subsets.  

The proposed approach also reduced the fuzziness in the sparsely vegetated region 

which has varying backscatter but relatively homogenous texture, as seen in the second row of 

Fig. 4.12 where local improvements are visible. However, the pixel-wise assessment was unable 

to capture this improvement as both the maps had very different uncertainty characteristics. A 

deterministic differencing approach doesn't work with such continuous random variables as an 

exact match is nearly impossible. Furthermore, the difference maps depicted in Fig. 4.13 

highlight the disparity between the error characteristics in the validation data and the SAR-

based maps. In fact, the SAR-based maps provide more realistic estimates of uncertainty at each 
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pixel, as these are calculated objectively through the ANFIS classifier. Conversely, given that 

the chief contributor to the uncertainty in manually digitized flood maps is the skill of the 

analyst (Mason et al. 2010a), quantifying this value objectively is significantly more 

challenging.  

The fuzzy set evaluation approach results in two sets of maps; one where only the 

fuzziness of the membership value or class assignment is considered and one which additionally 

includes both fuzziness of value as well as the fuzziness of location. The fuzzy similarity set 

presented in Fig. 4.14 shows a clear improvement but the transition zone uncertainty is 

Table 4.2 Root Mean Squared Error statistics based on the pixel-wise deterministic difference 

operation. 

 Training Set 2 Training Set 3 

 Junction Hill Ulmarra Junction Hill Ulmarra 

SAR 0.242 0.243 0.233 0.261 

Std+SAR 0.239 0.246 0.241 0.257 

Opt+SAR 0.222 0.24 0.236 0.24 
 

 

Fig. 4.12 Validation maps generated from aerial photographs are displayed in the first column, 

followed by flood maps derived by processing the following inputs through the ANFIS classifier; 

SAR alone in column two (SAR), arbitrarily selected textures with SAR in column three (Std+SAR), 

and optimized textures with SAR in column four (Opt+SAR). Areas depicting maximum reductions 

in uncertainty for the Junction Hill test site were chosen for illustration. The locations of the subsets 

used here are shown in Fig. 4.1. 
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spuriously inflated. As the validation data are manually digitized and fuzzified, the nature of 

uncertainties in the transition zone may be very different from that of SAR-based approaches. 

In contrast, the spatial similarity index illustrated in Fig. 4.15 reflects the improvements offered 

at the land-water boundary much better. A significant reduction in uncertainties is noticeable 

across the domain. 

The overall performance (average spatial similarity index) values were 0.899, 0.905 and 

0.915 for SAR, Std+SAR, and Opt+SAR, respectively (Table 4.3). The fuzzy kappa statistic, 

which corrects for the expected percentage of agreement and can be more informative, is 

identical to average similarity in this case due to low expected agreement. The 𝐾𝑓𝑢𝑧𝑧𝑦 can 

provide a measure of the overall improvement, which is categorically required for many 

applications. As the expected value for similarity is directly related to the number of classes 

and the intra-class pixel distribution, the values obtained for this statistic can also be insightful 

(Hagen 2003). 

 

Fig. 4.13 Pixel-wise difference maps generated by subtracting the SAR-based flood maps, from the 

fuzzy validation map digitized from aerial photos, for entire Junction Hill region. 



C h a p t e r  4  –  S A R - b a s e d  F l o o d  M a p p i n g   P a g e  | 4-28 

 

 

Expected similarity can be understood as the probability of chance agreement between 

the two maps having identical image histograms. In the context of fuzzy spatial similarity, this 

value of possible chance agreement is computed for all the cells in the neighbourhood rings 

under consideration. One of the possible reasons for the low expected similarity values obtained 

might be the distance decay function chosen here, which was the 3-D exponential function with 

a halving distance of two pixels, reducing the neighbourhood influence drastically. This 

observation is in keeping with the expectation, as the nature of uncertainties in the validation 

data are very different from the SAR-based maps. Since the validation map is manually 

digitized and fuzzified, error variation is expected to differ substantially from the fuzzy flood 

maps from SAR, which objectively represent backscatter and classification uncertainty. 

The spatial auto-correlation in high-resolution SAR data are also highly localized due 

to increased speckle noise, as already established through the variogram analysis. However, it 

is expected that 𝐾𝑓𝑢𝑧𝑧𝑦 can help with assessing probabilistic flood maps and may add value to 

the average spatial similarity. The expected similarity 𝑆𝑒𝑥𝑝 would obviously vary with the 

spatial resolution of the maps, choice of the distance decay function, and the number of classes 

considered in the analysis. In cases like this where 𝑆𝑒𝑥𝑝 is nearly negligible, the average spatial 

similarity statistic 𝑆𝑜𝑏𝑠 may suffice as a test statistic for map comparison, as the 𝐾𝑓𝑢𝑧𝑧𝑦 doesn't 

add any new information. 

 

Fig. 4.14 Fuzzy similarity maps for the central cell comparison between the Junction Hill validation 

map and the SAR-based fuzzy maps, where (a) SAR represents the use of SAR alone as a classification 

input, (b) Std+SAR represents arbitrarily selected textures with SAR, and (c) Opt+SAR represents 

optimized textures with SAR. 



C h a p t e r  4  –  S A R - b a s e d  F l o o d  M a p p i n g   P a g e  | 4-29 

 

 

The reliability diagram for Junction Hill (Fig. 4.16) better reflects the improvement 

offered by Opt+SAR, which consistently gave predictions very close to the 1:1 line. Both the 

texture based approaches correctly classified nearly all the pixels for the last few bins, 

containing flood membership values ranging from 0.8-1. These are the certainly flooded pixels 

of the study area and the ones the algorithm primarily seeks to correctly identify. The addition 

of optimized texture, especially after optimization, seems to be conducive to this cause. 

Furthermore, omission errors seem to dominate over commission errors, for most of the 

uncertain bins. A closer examination reveals that the underprediction increases with the 

uncertainty, i.e. the Opt+SAR assigned lesser pixels to bins 4, 5, and 6 than observed in the 

validation data. The SAR image alone seemed to over predict in bin 9 and under predict in bin 

10, both of which contained pixels almost certainly flooded, indicating a contribution of noise 

in the training. Consequently a reduction in the signal to noise ratio led to ambiguity in 

classification even within homogeneous image objects such as flood patches. 

Texture estimation highlighted patterns and increased the separability between signal 

and noise. This reduced the uncertainty in feature extraction, offering some advantages for flood 

Table 4.3 Summary of fuzzy statistics for the two validation sites. 

 Junction Hill Ulmarra 

Input 

Observed 

Similarity 

(𝑺𝒐𝒃𝒔) 

Expected 

Similarity 

(𝑺𝒆𝒙𝒑) 

Fuzzy 

Kappa  

(𝑲𝒇𝒖𝒛𝒛𝒚) 

Observed 

Similarity 

(𝑺𝒐𝒃𝒔) 

Expected 

Similarity 

(𝑺𝒆𝒙𝒑) 

Fuzzy 

Kappa  

(𝑲𝒇𝒖𝒛𝒛𝒚) 

SAR 0.899 3.341𝑒−12 0.899 0.670 4.843𝑒−10 0.670 

Std+SAR 0.905 3.168𝑒−12 0.905 0.689 3.799𝑒−11 0.689 

Opt+SAR 0.915 1.342𝑒−12 0.915 0.713 3.827𝑒−10 0.713 
 

 

Fig. 4.15 As for Fig. 4.14 except with neighbourhood context included for the Junction Hill site with 

(a) SAR, (b) Std+SAR, and (c) Opt+SAR. 
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assessment. The change in the distribution of bin-sizes on the application of the Opt+SAR 

approach, evident from the subplot included in Fig. 4.16, corroborates this interpretation. The 

WRMSE values based on the deviation from the 1:1 line show a relative improvement of 54.2% 

over the use of SAR image without texture, and 52.6% over the use of standard textures when 

using the optimized texture approach. This clearly indicates the importance of choosing 

appropriate texture features, as the addition of arbitrary texture features reflects no significant 

improvement. 

4.4.3.2 Validation Site 2: Ulmarra  

At Ulmarra, the pixel based statistics show a reduction in RMSE for both training Set 2 

and 3. However, the magnitude of this reduction was larger in Set 3. According to the flood 

maps in Fig. 4.17, this validation site had a larger proportion of flooded pixels. Since a 

significant percentage of the image is covered with a homogeneous land cover type, the impact 

of noise is more prominently visible. The optimized approach performed better in Set 3, due to 

the better model generalization achieved. The generalized model exhibited lower noise 

sensitivity. The Opt+SAR flood maps showed a noticeable reduction in fuzziness within the 

homogeneous regions and near the transition zone, in agreement with the findings from Junction 

Hill. While the pixel-wise RMSE values reduced with the addition of texture, it is important to 

 

Fig. 4.16 Reliability diagram for the Junction Hill area with Weighted Root Mean Squared Error 

values and bin sizes represented in a sub-plot. 
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consider the failure of the deterministic differencing approach to capture improvements in 

mapping for the Junction Hill site. The problem of non-contiguous vegetation patches 

surrounded by flood pixels is observable even in Ulmarra. The deterministic difference maps 

for Ulmarra have not been included here for brevity as the inferences from the analysis were 

similar to those from Junction Hill.  

 

Fig. 4.17 As for Fig. 4.12 but for the Ulmarra test site, with locations of the chosen subsets 

highlighted in Fig. 4.1. 

 

Fig. 4.18 As for Fig. 4.14 but for the Ulmarra region, where the agreement with validation data is 

shown for (a) SAR, (b) Std+SAR, and (c) Opt+SAR. 
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Additionally, some portion of the domain had agricultural fields with standing crops, 

highlighted in the top row of Fig. 4.17, making the underlying flood water very difficult to 

detect. A large portion of this area had been classified as non-flooded by all the SAR based 

approaches. As texture is a backscatter-derived property, the approach is unable to bring 

significant improvements in this area. Since the experiment was conducted using low-

wavelength X-band data, which experiences severe scattering due to emergent vegetation, it 

was rather challenging to demonstrate the full potential of the proposed approach in this region. 

However, the RMSE still showed an improvement overall as the texture optimization seemed 

to reduce noise sensitivity. Since this particular test site was populated with homogeneous flood 

patches, where the effects of noise dominate, the overall errors were decreased. 

The fuzzy similarity maps for Ulmarra (Figure 4.18) show large regions of uncertainty 

in the flood transition zone. Although the Opt+SAR map shows some improvements compared 

to the SAR and Std+SAR, it is noteworthy that the inclusion of texture itself offers limited 

enhancement in classification performance. This is evident from Fig. 4.18, which shows a 

notable reduction in uncertainties in the Opt+SAR compared to the Std+SAR approach. This 

implies that in areas where texture based approaches can be expected to work, such as 

distinguishing between water and water look-alike surfaces, the Opt+SAR technique will 

definitely provide better outputs than arbitrarily selected texture features. 

Spatial similarity maps provide a suitable assessment measure for probabilistic maps, 

as a clearer reduction in the transition zone uncertainty is visible in Fig. 4.19. 𝑆𝑜𝑏𝑠 values were 

0.67, 0.69, and 0.71 for SAR, Std+SAR, and Opt+SAR, respectively, as shown in Table 4.3. 

The 𝐾𝑓𝑢𝑧𝑧𝑦 values were identical to 𝑆𝑜𝑏𝑠, as in the case of Junction Hill, as values of 𝑆𝑒𝑥𝑝 were 

 

Fig. 4.19 As for Fig. 4.15 but for the Ulmarra test site with similarities shown as (a) SAR, (b) 

Std+SAR, and (c) Opt+SAR. 
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low for the same reasons. However, the 𝐾𝑓𝑢𝑧𝑧𝑦 and 𝑆𝑜𝑏𝑠 both showed improvements when using 

the proposed technique at both test sites. This corroborates the visual observations from the 

fuzzy maps (Fig. 4.14 and Fig. 4.18), generated from each input image. The fuzzy map 

comparison technique used here can also be thought as something which mimics human 

interpretation of errors. The central cell comparison with the additional consideration of 

contextual neighbourhood influence is a powerful tool, which should further be imbibed for the 

assessment of probabilistic maps. 

At Ulmarra the reliability diagram statistics are inconsistent with the results obtained 

from the fuzzy set analysis as illustrated in Fig. 4.20. It is important to observe that WRMSE 

increases with the addition of any texture in this case. One of the possible reasons for this could 

be the large number of certainly flooded pixels classified as not flooded in the SAR based maps. 

This large discrepancy is due to the emergent vegetation in the agricultural region. The 

deviation from the 1:1 line is large (-1), and as bin 1 has a large population size it consequently 

has a higher weightage, which amplifies the error statistic. Further, the WRMSE increases when 

adding optimized texture, as a large number of pixels shift from the uncertain bins to the 

certainly non flooded and flooded bins, increasing the weight associated with these errors. On 

closer examination, the reliability diagram reveals a notable shift from all the intermediate bins, 

containing the uncertain flood values towards the certain bins (1 and 10). This highlights that 

the optimization approach caused a shift in what backscatter value combinations are classified 

 

Fig. 4.20 As for Fig. 4.16 but for Ulmarra. 
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as uncertain, pushing mixed pixels or those with emergent vegetation towards the flood class. 

This observation is identical to the findings at Junction Hill, where the optimized texture 

addition resulted in clear error reductions. 

 Giving due consideration to the visibly flooded agricultural region (top row, Fig. 4.197), 

which is only partially flooded in the SAR-based maps, allows better understanding of the 

reduction in uncertainty through texture optimization. In the SAR-based maps the region 

consists of pixels mostly from bin 1 and 2, i.e. closer to the certainly non-flooded end on the 

fuzzy membership spectrum. However, as optimized texture enhances feature extraction and 

reduces noise effects, these patches were pushed towards the certainly non-flooded bins. This 

is consistent with the notable increase in the pixel count of bin 1 for Opt+SAR when compared 

to other inputs. Many of these pixels from bin 1 and 2, however, belong to the aforementioned 

error hotspots and were flooded in the validation data. Therefore, the proportion of wet pixels 

was increased in the validation data for the almost certainly non-flooded classes, especially in 

bin 2. As more pixels wrongly became “surer” of their non-flooded status, i.e. moving from 

uncertain bins towards bin 1 and 2, the error margin increased thus amplifying the overall 

classification error. It is clear from the above analysis that the use of reliability diagrams alone 

is insufficient for the assessment of fuzzy maps. The need to reconvert the continuous, fuzzy, 

SAR-based maps into discrete categorical maps with specified bin sizes as well as the need for 

a binary validation dataset for assessment, limits the applicability of reliability diagrams for an 

objective evaluation of probabilistic flood maps.   

When comparing continuous spatial fields as in the fuzzy flood maps generated here, 

tolerance for locational or categorical errors is desirable (Pappenberger et al., 2007). Locational 

tolerance accounts for slight pixel shifts without denoting them in complete disagreement, while 

categorical tolerance allows to identify the higher similarity between “slightly wrong” values 

which are common in hydrological spatial fields (Wealands et al., 2005). As the fuzzy spatial 

similarity statistic accounts for both category and location fuzziness, the improvement brought 

about by Opt+SAR could be evaluated without the impact of spatial mismatches caused by the 

notably different nature of the uncertainties in the SAR and the validation data. In this case, 

addition of the fuzzy statistic to the accuracy assessment approach, proved to be rather 

informative.  

The fuzzy map comparison added value to the reliability diagram analysis, with the local 

spatial improvement demonstrated through the maps and captured by the overall similarity 



C h a p t e r  4  –  S A R - b a s e d  F l o o d  M a p p i n g   P a g e  | 4-35 

 

 

statistic (Hagen-Zanker et al., 2005). Even though the values of spatial agreement at Ulmarra 

were lower than those achieved at Junction Hill, which was expected due to the error hotspots 

critically discussed previously, a clear improvement was evident. All values were greater than 

0.6 which has been considered a satisfactory measure of fit, given the expected uncertainties in 

shoreline locations (Pappenberger et al., 2007). By accounting for locational and attribute 

uncertainties in the computation of the local matching, chance agreement and image registration 

problems were also accounted for (Power et al., 2001). Furthermore, fuzzy map comparison 

provides a unique opportunity to assess the spatial characteristics of the classification errors, 

which can help to better diagnose their underlying cause. Correctly identifying the reasons and 

nature of uncertainties represents the first step in designing appropriate post-processing 

strategies, or even formulating better SAR-based flood mapping techniques for the future 

(Power et al., 2001). 

4.4.4 Land Cover Based Performance Analysis  

 

Fig. 4.21 Distribution of land cover classes and the corresponding Weighted Root Mean Squared 

Error values obtained for each of the SAR-based flood mapping techniques at (a) Junction Hill and 

(b) Ulmarra. 



C h a p t e r  4  –  S A R - b a s e d  F l o o d  M a p p i n g   P a g e  | 4-36 

 

 

An investigative analysis of the classifier performance within different land cover 

classes was undertaken, to interpret the classifier response when exposed to pixels with varied 

surface characteristics. This can help to decide whether or not to use the proposed method based 

on the dominant land-use class in the region. In order to quantify the above, land cover maps 

of 250 m resolution were subset for the validation sites. The land cover maps were used to 

extract the underlying classes of the binned flood maps, which were subsequently overlaid on 

the binary validation data, to calculate the observed proportion of wet cells in each bin. Further, 

reliability diagrams were constructed individually for each land cover class and WRMSE values 

plotted for all the different approaches. Notably, the spatial average values of WRMSE in Fig. 

4.16 and Fig. 4.20 differ from the WRMSE values obtained in Fig. 4.21, due to the calculation 

of case individual values for each land-use class. Based on the pixel count in each class, the 

values were found to be significantly different from the global spatial average. Although, if a 

weighted average based on the percentage distribution of the land-use classes was considered 

as shown in the pie diagrams of Fig. 4.21, the statistics were in agreement. 

4.4.4.1 Validation Site 1: Junction Hill  

The Junction Hill area is dominated by the “Trees - Open (TO)” land cover class, 

followed by the “Rain-fed Pasture (RP)” and “Irrigated Cropping (IC)” classes. According to 

Fig. 4.21 (a), WRMSE values had a significant reduction in the RP and TO classes, which might 

be the reason for the algorithm performing well in this region. The image region displaying a 

visible reduction in uncertainty through texture optimization, observable in the fuzzy flood 

maps illustrated in Fig. 4.12, is predominantly covered with the TO land cover class.  

In the IC class however, classification performance was relatively poor due to the altered 

backscatter characteristics caused by emergent vegetation. The stems cause double bounce 

scattering of microwaves at the irrigated water surface making flood identification from SAR 

images in these particular land covers challenging. While the other classes may not contribute 

much to the overall RMSE values they provide crucial insight into classifier behaviour. The 

“Irrigated Sugar (IS)” shows a sharp increase in WRMSE with the proposed approach for the 

same reason as IC. 

The water dominated classes like “Inland Water bodies (IW)” and “Wetlands (WL)” 

also showed a slight degradation in performance on texture addition. The contribution of the 

water based classes is considered limited in this context due to the land cover composition and 
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the small magnitude of the increase. However, this suggests that the slight increase in WRMSE 

for the Ulmarra region on texture addition may have been caused by the majority of pixels being 

flooded with 77.6 % wet cells. As the Junction Hill region has only 36.7 % coverage of flooded 

area in the aerial photo, the improvement is more noticeable in the mixed land cover classes. 

This implies that if permanent water can be masked prior to classification, the results may be 

further improved. 

4.4.4.2 Validation Site 2: Ulmarra  

Major classes in this region are TO, RP, and IC as evident from Fig. 4.21 (b), none of which 

seemed to benefit especially from the random addition of texture. IC seems to show a slight 

improvement over the poor performance at site 1, but as the crop species are unspecified, the 

difference in RMSE values can be assumed to be a function of plant morphological properties. 

TO and RP showed almost no change in WRMSE values for all three approaches. As most of 

the pixels at this site are inundated, the approach may not be able to demonstrate substantial 

improvement due to scattering of X-band from emergent vegetation. Conversely, the proposed 

algorithm was more effective in these land cover classes at Junction Hill, as the false alarm rate 

was reduced. Other classes in the region include “Hummock Grasses - Sparse (HGS)”, “Rainfed 

Cropping (RC)”, TC, and IS, of which all except IS exhibited a slight reduction in RMSE for 

the proposed approach, with TC showing the maximum decrease. IS showed an improvement 

in classification accuracy with texture addition but a degradation after texture optimization. 

However, the percentage coverage of the minority classes is insufficient to cause a quantifiable 

impact on the overall RMSE.  

4.5 Chapter Summary 

A novel single image SAR-based probabilistic flood mapping technique was developed 

and tested in this chapter. The literature review revealed that even though SAR images were 

rich in texture, the utilization of this information in flood mapping algorithms was fairly 

primitive, with appropriate texture feature selection, window size estimation, and directionality 

presenting the major challenges. Consequently, a framework was developed here to optimise 

textural information by choosing the window size based on spatial autocorrelation, removing 

directionality through an omnidirectional average, and condensing the information content into 
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the minimum possible number of bands. An adaptive neuro-fuzzy classification algorithm was 

then proposed to classify these enhanced SAR images into probabilistic flood maps. The 

backscatter distributions of flood and non-flood pixels in the image were modelled as Gaussian 

curves within a fuzzy inference system, parameterized by a neural network using training data 

selected from the input image. The fuzzy flood maps generated thus, were evaluated against 

fuzzy validation maps derived from aerial photographs, using a fuzzy map comparison strategy 

new to flood mapping literature and reliability diagrams. Overall and land-use based 

evaluations for two validation sites, show that the proposed mapping technique has the potential 

to improve operational flood mapping from single SAR images, when ancillary data are 

unavailable.



 

 

 

 

CHAPTER FIVE  

 

“It is far better to foresee even without certainty than not to foresee at all.” 

 

- Henri Poincare, The Foundations of Science: Science and Hypothesis, the Value of Science, 

Science and Method, translated by Mélanie Frappier, Andrea Smith, and David J. Stump 
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5.   Flood Inundation Modelling 

5.1 Introduction 

For any given flood forecasting problem, a model to describe the spatiotemporal 

evolution of the inundation is absolutely vital. Moreover, improving state estimation through 

assimilation of discrete, distributed observations of the system state, also necessarily requires a 

dynamic process model to numerically simulate the state of the system continuously across the 

space-time domain. While it is widely acknowledged that hydraulic models used to predict 

inundation suffer from a vast number of uncertainties (Beven et al. 2018), it is also common 

knowledge that a reliable flood forecasting system cannot be envisioned without a flood 

inundation model (Revilla-Romero et al. 2015; Ward et al. 2015; Alfieri et al. 2018; Hostache 

et al. 2018). It is therefore imperative to choose a suitable flood inundation model which can 

generate simulations fast enough to be useful in near real time and simultaneously allow 

updating through remote sensing data assimilation. It is also deemed necessary to achieve 

preliminary calibration of the model such that, the inundation forecasts generated by the open 

loop – ensemble of model runs with no data assimilation – are at least physically realistic.  

Accordingly, this chapter first describes the principles of hydrodynamic modelling, the 

various uncertainties which affect it, and the guidelines followed for model selection. 

Thereafter, the model chosen for use in this thesis, LISFLOOD-FP is presented in detail. The 

model description section covers the governing equations, model assumptions, and limitations 

of the solver used in this thesis. This is followed by a detailed explanation of the particular flood 

model implementation used throughout this thesis and the chapter concludes with a discussion 

on model parameterization.  
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5.2 Principles of Hydrodynamic Modelling 

Floods travel along river reaches as waves, with continuously varying velocity and depth 

through time and distance. Flood flow is characterized as gradually varied and unsteady, as 

flow properties gradually vary with time. Hydraulic models compute water level and velocity 

in the channel network and when the channel storage capacity is exceeded in the floodplain. 

Fully hydrodynamic models solve the complete Saint Venant or Shallow Water Equations, 

which are based on the conservation of mass and momentum (Horritt and Bates 2002). 

Complete de Saint Venant equations of continuity and momentum, are given below as 

Equations 5-1 and 5-2, respectively. 

∂Q

∂x
+
∂A

∂t
+ q = 0,     (5-1) 

(
1

𝐴
)
𝜕(𝑄2 𝐴⁄ )

𝜕𝑡
+  (

1

𝐴
)
𝜕𝑄

𝜕𝑡
+   𝑔

𝜕𝑦

𝜕𝑥
− 𝑔(𝑆0 − 𝑆𝑓) = 0,  (5-2) 

where Q = discharge (m3/sec); A = area (m2); q = lateral flow per unit length (m3/sec/m); 𝑥 = 

along channel distance (m); 𝑦 = depth of flow (m); 𝑔 = acceleration due to gravity (m/sec2); S0 

= bed slope; and 𝑆𝑓= friction slope.  

 

Fig. 5.1 Momentum equation of the Saint Venant equations, with definitions of all terms and 

various approximations used in literature. 
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It is not possible to solve the Saint Venant Equations analytically for complex real world 

applications (Mujumdar 2001). A wide variety of numerical models have been proposed in 

literature, each solving different approximations of the shallow water equations (SWE), thus 

accounting for varying degrees of physical complexity (Hunter et al. 2007). While all models 

usually solve the equation of continuity, most use an approximation of the momentum equation, 

to reduce the computational burden. Based on which terms are retained in the numerical 

solution, hydrodynamic models can be classified into kinematic wave, diffusive wave, inertial, 

and dynamic wave. Meanings of the various terms and the terms included in each 

approximation of Equation 5-2, are illustrated in Fig. 5.1.  

Studies have shown that increasing physical complexity significantly increases the 

computational effort involved, while not necessarily translating into higher prediction accuracy 

(Neal et al. 2012). It is, therefore, vital to choose appropriate modelling tools for a particular 

flood simulation problem. For example, in steep slope channels with negligible backwater 

effects, gravity and friction forces may balance each other, resulting in uniform flow. Therefore, 

flood flows in such channels can be adequately represented using a kinematic wave 

approximation. Conversely, in mildly sloping channels with primarily downstream controls, 

when both inertial and pressure forces are important, the use of dynamic wave models is 

recommended. Hydrodynamic models are further classified on the basis of the spatial 

discretisation scheme used. 

One dimensional models (1D) assume that flood flow only varies along the flow direction 

and lateral flows are negligible (Haile 2005). The model domain is discretised as a series of 

transverse cross-sections, perpendicular to the direction of flow. Governing equations are 

solved at each cross-section to derive water depth and velocity, assuming horizontal water 

levels (Schumann 2008). Channel geometry is assumed to be constant or vary linearly between 

two subsequent cross sections (Dasgupta 2015). The derivation of floodplain inundation and 

flood depth, requires further post-processing with a DEM. While such an approach is 

computationally efficient, it fails to depict the floodplain dynamics as the representation is not 

in the form of a surface but isolated cross-sections (Horritt and Bates 2002; Hunter et al. 2007). 

1D models lack the potential to accurately represent the complex physical characteristics of the 

flood, leading to the proliferation of 2D, 1D2D and 3D models (Haile and Rientjes 2005; 

Tarekegn et al. 2010). 



C h a p t e r  5  –  F l o o d  I n u n d a t i o n  M o d e l l i n g  P a g e  | 5-4 

 

 

Two dimensional models (2D) consider transient flow characteristics in both the 

longitudinal and transverse directions. The Saint Venant Equations are solved in 2D, for 

estimates of water depth and velocity at each spatial unit with turbulence closure (Bates and De 

Roo 2000). Accurately depicting floodplain heterogeneity, especially in terms of roughness 

coefficient parameterization, is more challenging in this case (Haile and Rientjes 2007). The 

quality and reliability of 2D models, primarily depend on the accuracy of the topographic data. 

This includes channel bathymetry and the DEM used to represent floodplain elevations (Li and 

Wong 2010). 2D model domains can be discretised in the form of structured grids (finite 

difference method) or unstructured grids (finite volume and finite element methods) usually in 

the form of triangles or quadrilaterals (Bates and De Roo 2000). The computational resources 

required by 2D models, are highly sensitive to the choice of the grid size used (Carrivick 2006). 

Larger grid sizes significantly speed up the modelling, but microtopographic floodplain features 

are lost due to the averaging effect (Werner et al. 2005). Conversely, fine resolution grids allow 

for more detailed model outputs, however, computational times required scale almost 

exponentially (Schumann et al. 2007).  

Coupled models which represent the channel in 1D while representing the floodplains in 

2D have also been used to combine the advantages of both 1D and 2D model implementations 

(Haile and Rientjes 2005). In these hybrid modelling approaches; dominant main channel flows 

are modelled using a 1D element based on cross-sections covering the main channel only. Over-

bank and floodplain flows are modelled in 2D typically using the grid-based discretization 

structure of DEMs, but in theory any spatial discretization is possible (Werner 2010). The 

coupling of the two domains at the end points of the channel section(s) to the adjoining 

floodplain cells can be achieved through a variety of methods depending on the model code 

(Moore 2011). For example, in the 1D/2D implementation of LISFLOOD-FP, water is routed 

onto adjacent floodplain cells once channel water depth reaches bankfull height, with only mass 

being conserved and not the momentum (Bates et al. 2013).  

5.3 Uncertainties in Hydrodynamic Modelling 

Hydrodynamic modelling is ridden with a variety of inherent uncertainties, which often 

cannot be completely removed through model calibration (Neal et al. 2009; Di Baldassarre et 

al. 2009; Mason et al. 2009; Stephens et al. 2012). The disparity between model calculated state 
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outputs e.g. water level and velocities computed at each computational grid cell (𝑉𝑠𝑖𝑚) and 

observed real world state data (𝑉𝑜𝑏𝑠) arises due to the following errors (Haile and Rientjes 

2007). 

• Random or systematic errors in the forcing data (𝜀𝑖), e.g. precipitation data 

• Random or systematic errors in the recorded state data (𝜀𝑟), e.g. water levels 

• Errors due to non-optimal parameter values (𝜀𝑛𝑜) 

• Errors due to incomplete or biased model structure (𝜀𝑠) 

• Errors due to the time space model domain discretization (𝜀𝑑) 

• Errors due to rounding off (𝜀𝑟𝑜) 

Hence the total simulation error is given by the following relation: 

𝑉𝑜𝑏𝑠  − 𝑉𝑠𝑖𝑚 =  𝜀𝑡  = 𝜀𝑖 + 𝜀𝑟 + 𝜀𝑛𝑜 + 𝜀𝑠 + 𝜀𝑑 + 𝜀𝑟𝑜,             (5-3) 

Note that these errors could have either positive or negative signs, which may 

compensate for each other when computing the total sum. In hydraulic modelling, channel 

geometry and roughness often compensate for each other, leading to different equally plausible 

parameter sets capable of mapping model predictions to the observed data (Neal et al. 2015; 

Wood et al. 2016; Grimaldi et al. 2018). This leads to the problem of state-parameter 

equifinality which has received significant attention in literature (Beven 2006). Accordingly, 

several statistical approaches have been developed to address these uncertainties, such as the 

Generalized Likelihood Uncertainty Estimation (GLUE) technique (Beven and Binley 1992). 

GLUE methods use Monte Carlo simulations to analyse a large number of model scenarios 

(Stedinger et al. 2008). Each competing model is assigned a prior probability according to the 

parameters used for the simulation. Finally, a likelihood measure is used to compare modelled 

and observed variables, such that the capabilities of each model to accurately represent observed 

conditions can be individually evaluated. Aronica et al. (2002), for example, extended the 

GLUE technique to estimate spatially distributed uncertainty in roughness values in hydraulic 

models through binary flood inundation maps. Similarly, Pappenberger et al. (2005) showed 

that cumulative distribution functions can be used to identify a range of equally well performing 

parameter sets within the GLUE framework. This also allowed the authors to produce event 

specific flood probability maps, which objectively represented parametric uncertainties and 

were more informative for stakeholders (Pappenberger et al. 2005). Similarly, Schumann et al. 
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(2008) extended the GLUE approach to quantify the uncertainty associated with water stages 

derived from a single SAR image.  

In the context of integrating hydraulic models into operational flood forecasting chains, 

however, the consideration of uncertainties changes significantly. As Grimaldi et al. (2019) 

show, the errors could either increase in magnitude through the entire processing chain or 

compensate for each other. Flood forecasts, for example, require precipitation forecasts 

generated by numerical weather prediction models, which are then provided as inputs to a 

hydrological model. The streamflow computed by the hydrological model is then used as an 

input to the hydraulic model, to give distributed estimates of inundation extent and depth in the 

floodplains. This implies that hydraulic models running in forecast mode, often have to deal 

with highly uncertain inflow data (Matgen et al. 2010). Moreover, the lack of high-resolution 

and high accuracy topographic data, is also a major contributor of uncertainties.  

Improved understanding of the uncertainty propagation through model cascades is 

essential to identify critical regions requiring further investigation, invest in data collection, 

improve prediction accuracy, and effectively communicate model uncertainty to end users 

(Ward et al. 2015; Birch et al. 2016). As Schumann & Bates (2018) show, the inherent errors 

in globally available DEMs are often to the order of several metres, rendering these 

unacceptable for many modelling applications. Inflow and topographic uncertainties are several 

orders of magnitude larger than any other sources of uncertainty in hydraulic modelling 

(Hostache et al. 2018). Therefore, in this study the impacts of these different errors on hydraulic 

model forecasts will be evaluated and the potential of the proposed assimilation technique to 

retrieve the true model state will be quantified through numerical experiments. 

5.4 Model Selection 

Selection of the appropriate modelling tool is primarily dependent on the purpose of the 

modelling (Beven 2012). Major factors that determine this decision include the required model 

outputs and inputs, model structure and process representation, and the availability of the model 

code (Koriche 2012). As the aim of this study was to improve the accuracy of operational flood 

forecasts through remote sensing data assimilation, the following features were considered 

necessary:  

1. Ease of integration with remote sensing datasets. 
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2. Speed of simulation including parallelization of the model code. 

3. Accessibility to the model code. 

Based on the aforementioned considerations, the raster-based 2D-hydraulic model 

LISFLOOD-FP (Bates et al. 2010) was chosen for this study, as the executable was freely 

available from the University of Bristol for non-commercial applications. The primary 

objective of LISFLOOD-FP was to provide a simple raster-based model, with minimum process 

representation required to adequately simulate floodplain inundation, making it suitable for 

real-time application. A storage cell approach is used to speed-up the processing, whereby the 

floodplain is treated as a series of discrete cells. The flow between cells is calculated using an 

analytical flow equation such as that of Manning or Chezy, at a fraction of the computational 

cost required for numerical solutions of the St. Venant Equations (Horritt and Bates 2002; 

Coulthard et al. 2007; Hunter et al. 2008; Fewtrell et al. 2009; Gilles and Moore 2010; de 

Almeida et al. 2012; Neal et al. 2012; de Almeida and Bates 2013). Raster remote sensing data 

integration was also simplified by employing this gridded approach. This representation has 

proved to be sufficient for many flood studies even though inertia and supercritical effects were 

neglected (de Almeida and Bates 2013). LISFLOOD-FP is capable of rapidly providing 

distributed values of depths and flow velocities in 2-D, making it the ideal choice for operational 

flood forecasting and for this thesis. 

LISFLOOD-FP includes a number of numerical solvers capable of simulating flood wave 

propagation within the channels and across the floodplains using various approximations of the 

Saint Venant equations (Bates et al. 2013). System characteristics, purpose of the modelling, 

and data availability should primarily determine the appropriateness of a given approximation 

(Schumann et al. 2013). As a novel data assimilation framework is developed in this thesis, 

only the impacts of inflow uncertainties were considered. Given the highly complex, non-linear 

relationships between floodplain inundation and depth, the impacts of assimilating flood extents 

needed to first be investigated neglecting all other sources of uncertainty (Hostache et al. 2018). 

For example, in low slope regions small changes in water depth can lead to large variations in 

flood extent, while the converse is true for steep confined valleys (Wood 2016). Moreover, even 

in data rich environments such as in developed nations, forecast inflow uncertainties always 

exist as a consequence of numerical model cascades necessary for forecasting. Since, observed 

bathymetry and a high resolution DEM were available, a full 2D specification of topography 

could be provided to the model, thereby limiting the uncertainty contribution from this source. 
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Accordingly, the full 2D implementation of the Lisflood-FP acceleration solver, which solves 

the inertial approximation to the SWEs to provide velocities and depths at each grid, was used 

for all the assimilation experiments detailed in this thesis. The following sections describe the 

model structure, implementation, and parameterization in greater detail.  

5.5 LISFLOOD-FP: Model Equations and Implementation 

Initial versions of LISFLOOD-FP used an explicit backward finite difference scheme to 

solve a 1D-kinematic wave representation of channel flow and a 2D-diffusive wave 

approximation of floodplain flow (Bates and De Roo 2000). The floodplain was discretized as 

a series of regular storage cells, for which the mass balance was updated at each time step based 

on water fluxes entering and leaving each cell. Fluxes between cells are calculated analytically 

using uniform flow formulae, reducing the associated computational cost per time step with 

respect to equivalent numerical solutions of the SWEs. All solvers assume subcritical, gradually 

varying flows only in the Cartesian coordinate directions and the momentum of the flows is not 

conserved at channel-floodplain connections. The following paragraphs describe the inertial 

acceleration solver in greater detail. 

The acceleration solver uses the local inertial approximation of the 2D-momentum 

equation to simulate unsteady flow. Solutions are numerically computed through a backward 

finite difference method, explicit in time and first order in space (Bates et al. 2010), with a 

semi-implicit treatment for the friction term to aid stability (Bates et al. 2013). This 

approximation of the SWEs has proved to be numerically stable and has demonstrated 

accuracies comparable to analytical solutions and fully hydrodynamic models (Fewtrell et al. 

2009, 2011), while increasing computational efficiency over diffusive models (de Almeida et 

al. 2012). The water flux (𝑄) passing through each cell face is individually estimated in the 𝑥 

and 𝑦 directions; only the 𝑥-direction flow calculation equation has been included here for 

brevity, such that (Bates et al. 2010): 

𝑄𝑡+∆𝑡 =
𝑞𝑡−𝑔ℎ𝑡∆𝑡

𝛿(ℎ𝑡+𝑧)

𝛿𝑥

(1+𝑔∆𝑡𝑛2|𝑞𝑡| ℎ𝑡⁄ 7 3⁄
)
∙ ∆𝑥,    (5-4) 

where 𝑄 is the flow (m3 s-1), 𝑞 is the flow per unit width (m2 s-1), 𝑔 is the acceleration due to 

gravity (9.81 ms-1), ℎ is the depth of flow (m), 𝑧 is the river bed elevation (m), 𝑛 is the 

Manning’s roughness coefficient (m-1/3 s), 𝑡 is time (s), and ∆𝑥 is the cell resolution (m). The 



C h a p t e r  5  –  F l o o d  I n u n d a t i o n  M o d e l l i n g  P a g e  | 5-9 

 

 

continuity equation is then applied to the full grid domain to update water depths inside each 

computational cell, thus achieving a 2-D solution. An adaptive time step is used in accordance 

with the Courant-Friedrich-Levy condition for small amplitude gravity waves, calculated using 

the following relationship (Bates et al. 2010). 

∆𝑡𝑚𝑎𝑥 = α
∆𝑥

√𝑔ℎ𝑡
,        (5-5) 

where a factor 𝛼 is introduced to aid stability as the small wave amplitude assumption does not 

always hold for celerity calculations and as friction terms are included in the model. Values of 

𝛼 varying from 0.2–0.7 are mostly able to produce stable simulations for floodplain flow (Bates 

et al. 2010). Moreover, the stable time step given by Eqn. 5-5 is almost 1-3 times larger for 

typical cell sizes than a purely diffusive scheme and scales with 1/∆𝑥 instead of (1 ∆𝑥)2⁄ , 

further increasing computational efficiency. 

Hydraulic models require the specification of an inflow discharge hydrograph at the 

upstream boundary, initial conditions, detailed topographic and bathymetric data, surface 

roughness assessments, and outflow data at the downstream boundary. The discharge 

measurements available at the Lilydale gauging station were converted to flow per unit length 

by dividing by the grid size as required by LISFLOOD-FP and used as the upstream boundary 

(Neumann condition). Tidal water levels observed at Yamba were similarly used as the 

downstream boundary condition (Dirichlet condition), see Fig. 3.1 for the locations of Lilydale 

and Yamba, which form the boundaries of the study reach. This study used the inertial 

acceleration solver which was implemented in full-2D, with observed bathymetry, LiDAR 

topography, observed tidal levels, and calibrated channel roughness, only considering inflow 

errors. This implementation was chosen to develop and test the proposed flood extent 

assimilation framework, through both synthetic and real-world experiments, to prove the 

efficacy of the proposed approach independent of the multitude of uncertainties.  

Initial conditions were computed by running a steady state simulation with the most 

commonly median flow value observed at Lilydale. The resulting simulated water depths were 

used as a start file for the model. Based on manual trial and error exercises, a spin-up period of 

six weeks was found to be enough to ensure numerical stability. The long spin-up period was 

required due to inaccuracies in the initial conditions, with the hydrographs showing large 

unrealistic oscillations for spin-ups shorter than one month. Distributed floodplain roughness 

values were assigned, according to land-use classes identified from aerial photographs, based 
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on recommendations made by Arcement & Schneider (1989). As the floodplain roughness is 

not a sensitive parameter for LISFLOOD-FP in most scenarios, this roughness map was kept 

constant through all the simulations (Wood et al. 2016). This choice allowed for a focused 

assessment of the impacts of channel roughness and inflows on the ensemble forecasts 

(Grimaldi et al. 2018). 

5.6 Model Parameterization  

5.6.1 Potential of Crowd-sourced Observations 

Traditionally, hydraulic models have been calibrated with observations of channel flow 

and water depth, measured by hydrometric river gauges (Domeneghetti et al. 2014). For pluvial 

floods where the flooding could occur outside channels, however, gauges within the channel 

cannot provide useful information (Assumpção et al. 2018). Remote sensing forms part of the 

solution, however, some hurdles such as cost and frequency of acquisition have to be fully 

addressed to enable the routine use of RS data (Grimaldi et al. 2016). Therefore, as a 

complement to RS (or where RS data are not yet available), crowd sourced data can be utilized 

to supplement flood information. For example, for flash floods or fast moving floods in small 

catchments, the latency between satellite acquisition tasking and data delivery is often 

prohibitive, as the flood wave has already receded before an image can be captured. 

Consequently, novel sources of low-cost data are needed, which can be acquired frequently and 

in abundance. Citizen science (including citizen participation up to the scientist level) or crowd-

sourcing (distributing a task among many agents), is an emerging concept in which citizens 

monitor the environment around them (See et al. 2016). In recent years, citizen science has 

provided distributed data on a variety of hydraulic variables, including water level (Kutija et al. 

2014), flow velocity (Le Boursicaud et al. 2016; Le Coz et al. 2016), flood extent (Schnebele 

et al. 2014), topography (Shaad et al. 2016), and land-use land-cover (See et al. 2016).  

The contributions and possibilities of citizen science for flood modelling were 

comprehensively reviewed in a recent paper by Assumpção et al. (2018). In their analysis of 

the current body of literature, they report the lack of appropriate techniques to utilize these data 

for model calibration and validation. The few studies which examine the impacts of including 

crowd-sourced water level data, either use qualitative approaches (Kutija et al. 2014; Yu et al. 

2016) or focus on hydrological model validation with synthetic observations (Mazzoleni et al. 
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2015, 2018). Approaches to utilize crowd-sourced observations of water level for effective 

model parameterization still need to be developed. This study demonstrates the quantitative use 

of crowd-sourced flood observations to parameterize a hydraulic model for the first time. Here, 

crowd-sourced observations of floodplain water levels were used to identify the channel 

roughness parameter quantitatively. The primary objective of this experiment was to develop a 

simple framework to utilize water level observations which may be derived from crowd-sourced 

data for model calibration. Here calibration implies fine-tuning the model according to the 

available observations to arrive at best fit parameters (Assumpção et al. 2018). The parameter 

values identified using crowd-sourced data, were then compared with those derived from 

gauges, allowing verification of the parameter choice guided by crowd-sourced observations.  

5.6.2 Framework for Flood Model Calibration using Crowdsourced Data 

The overall methodology for this component of the research has been summarized in 

Fig. 5.2. LISFLOOD-FP Acceleration was set up in full 2D for the Clarence Catchment at 30 

 

Fig. 5.2 Schematic of overall methodology used in this thesis for the parameterization of 

channel roughness in LISFLOOD-FP. The number of “crowd-sourced” and gauged water 

level locations have been included in the illustration, along with the range of roughness 

values considered for calibration. 
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m grid resolution, as Grimaldi et al. (2018) find it a cost-effective modelling solution for the 

Clarence Catchment. Implementation of this model requires a DEM, river geometry 

information, boundary conditions, and spatially distributed roughness coefficient values as 

previously discussed. Lateral tributaries and bridges were not included in the model setup, as 

they did not contribute significant water volumes during floods and the main objective of the 

thesis was towards operational forecasting of flood inundation (Rogencamp 2004). The LiDAR 

DEM available to this study was used to represent floodplain topography, while channel 

bathymetry was described by interpolating a continuous surface from field observations. The 

interested reader is referred to Grimaldi et al. (2018), where the generation of this bathymetric 

DEM is described in greater detail.  

The 2013 flood event in the Clarence Catchment was used for this experiment. Observed 

inflows were introduced at Lilydale as hourly measurements of discharge, while tidal water 

levels were applied as the downstream boundary condition at Yamba. Using the tidal water 

levels as the downstream boundary, additionally allowed the evaluation of backwater effects on 

floodplain inundation for this catchment. Most hydraulic modelling studies choose to 

disaggregate spatially distributed coefficients of channel and floodplain roughness, into just one 

spatiotemporally invariant value for each (Werner et al. 2005). These are generally considered 

as effective parameters in hydraulic modelling, used to compensate for inadequate process and 

topographic representation (Horritt and Bates 2001; Jung et al. 2012). The floodplain roughness 

parameter is expected to be sensitive only during high velocity out-of-bank flows, as water 

shear will dominate resistance to flow once the floodplain is already inundated (Mason et al. 

2003). As the events analysed in this thesis were not events of such magnitude, distributed time 

invariant values of floodplain roughness were assigned based on the land-use and kept constant 

for all runs.  

Channel roughness is then, the only calibration parameter for this particular model 

implementation, which primarily controls the flood wave arrival time. Here, a lumped 

Manning’s 𝑛 value for the channel was optimized from 0.020 to 0.035 s/m1/3, which is the 

seasonal range of values for the Clarence River, by varying it in increments of 0.01 s/m1/3 

(Grimaldi et al., 2018). Given that the objective of this thesis was towards improving flood 

forecasting through data assimilation of inundation extents, undertaking a distributed 

calibration exercise was deemed unnecessary. This is also the reason for not using a finer 

increment for the calibration. Moreover, the limits of the optimization were also fixed at the 
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bounds of physically reasonable values, because in an operational scenario, a fully calibrated 

model which has been “effectively” parameterized will mostly be unavailable (Andreadis and 

Schumann, 2014). 

The observation set considered as “crowd-sourced” here, consisted of 32 distributed 

high water marks and wrack marks from the 2013 flood event (𝑚 = 32), whose timing of 

acquisition was unknown (See Chapter 3, Section 3.2.2). As these were observations of high 

water marks, it was reasonable to assume that these coincided with the peak flow. For each 

model grid cell where a corresponding crowd-sourced observation was available, the simulated 

maximum water depth (MWD) was first evaluated. Subsequently, two objective functions - 

Root Mean Squared Error (𝑅𝑀𝑆𝐸𝑀𝑊𝐷) and Mean Percentage Difference (𝑀𝑃𝐷𝑀𝑊𝐷) - were 

calculated by comparing the model simulated maximum depth with each crowd-

sourced/gauged value (𝑖). RMSE was chosen to quantify absolute error in the simulation, while 

the MPD function allowed a relative assessment with respect to the observation values. The 

objective functions were computed as 

𝑅𝑀𝑆𝐸𝑀𝑊𝐷 = √
∑ (𝑆𝑖𝑚𝑀𝑊𝐷−𝑂𝑏𝑠𝑀𝑊𝐷)2
𝑚
𝑖=1

𝑚
,          (5-6) 

𝑀𝑃𝐷𝑀𝑊𝐷 =
(𝑂𝑏𝑠𝑀𝑊𝐷−𝑆𝑖𝑚𝑀𝑊𝐷)

𝑂𝑏𝑠𝑀𝑊𝐷
× 100,           (5-7) 

𝑛𝑜𝑝𝑡 = min
𝑖
(𝑅𝑀𝑆𝐸𝑖

𝑀𝑊𝐷 ×𝑀𝑃𝐷𝑖
𝑀𝑊𝐷),           (5-8) 

The roughness value corresponding to the minima of the product of 𝑅𝑀𝑆𝐸𝑀𝑊𝐷 and 𝑀𝑃𝐷𝑀𝑊𝐷, 

was selected as the best performing parameter 𝑛𝑜𝑝𝑡. The product was considered as it is a 

simplified approach towards multi-objective optimization, as both the objective functions 

needed to be minimized. As the information content of the observations is distributed in space 

but limited in time, it was postulated that using more than one objective function with different 

priorities will allow for a more robust evaluation. Best fit parameters identified by using crowd-

sourced and gauged water levels were inter-compared to assess the information content of the 

crowd-sourced data. The maximum water depth values given by the numerical model were 

finally compared with crowd-sourced and gauged water levels to arrive at the calibrated 

parameter value.  
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5.6.3 Results and Discussion 

This section presents the results obtained from this novel calibration exercise based on 

crowd-sourced data and discusses the possible implications of this analysis. First, the model 

simulations of maximum water depth for different channel roughness values were compared 

with the crowd-sourced observations. Fig. 5.3 shows the distribution of RMSE and MPD values 

for the considered range of the channel roughness parameter. In this study, spatial variability in 

the roughness parameter was not considered, primarily as the objective was not to arrive at a 

fully calibrated model. It was assumed that in an operational scenario, complete and accurate 

knowledge of model parameters may not be available. Moreover, as previously discussed, 

hydraulic model uncertainties in the forecast mode are predominantly a function of topography 

and inflows (Andreadis and Schumann 2014). Consequently, the impacts of considered spatial 

heterogeneity in the roughness characterization, was not expected to yield significantly 

different results (Giustarini et al. 2011). 

The maximum RMSE across all simulations was ~50cm and the maximum MPD ~40%, 

indicating that the model implementation was able to replicate ground conditions fairly closely. 

 

Fig. 5.3 Maximum water depths simulated by LISFLOOD-FP compared with crowd-sourced 

observations, with the plot on the left showing the root mean squared error values and the mean 

percent difference values on the right. 
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Hostache et al. (2009) reported ±40cm RMSE through traditional calibration using a 

downstream limnigraph, where a LiDAR DEM with ±15cm and observed cross-sections with 

up to ±30cm uncertainty were used. They were further able to reduce the RMSE to ±23cm by 

including SAR-derived water levels in the calibration process. It is expected that the 

assimilation techniques developed in this thesis, will be able to achieve similar reductions in 

the RMSE values. The notable variation observed across the values of RMSE and MPD for the 

evaluated roughness range, implies high parameter sensitivity. There doesn’t seem to have been 

any noticeable trend in the variation of the objective function values. Manning’s 𝑛 values of 

0.026 and 0.032 seem to perform well across both objective functions, with RMSE values of 9 

and 12cm, respectively, and MPD values of 33.07 and 25.44 percent, respectively. When the 

product is computed, 𝑛 = 0.026 appears to be the better choice with a lower value for these 

error metrics, according to the crowd-sourced water level observations. 

The second test involved a comparison between simulated and gauged maximum water 

depths, as shown in Fig. 5.4. In contrast to the previous comparison with crowd-sourced water 

levels, there is a clear trend in the objective function values in this experiment. The values of 

both error metrics first decreased with a corresponding increase in the magnitude of channel 

roughness, then increased after the optima. The maximum RMSE across all simulations was 

~78cm and the maximum MPD ~17%, again indicating a suitable model setup. These findings 

 

Fig. 5.4 As for Fig. 5.3, but for gauged maximum water levels. 
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are aligned well with the expectations; as the water depth in the channel is greater, the 

corresponding RMSE is higher. Low values of MPD imply that the percentage error is actually 

lower than what was observed in the previous test against crowd-sourced water levels in the 

floodplain. In this experiment, Manning’s 𝑛 values between 0.025 and 0.028 seemed to 

perform well across both error metrics. On further examination of the product of the two 

objective functions, 𝑛 = 0.026 appeared to be the clear choice here as well. 

From this investigation, it was concluded that the best performing value for the channel 

roughness parameter was 𝑛 = 0.026, which was chosen for further verification. Fig. 5.6 and 

Fig. 5.7 show plots of the simulated and observed water depths, for crowd-sourced and gauged 

 

Fig. 5.5 Cumulative distribution functions showing the distribution characteristics of performance measures 

computed using (a) the crowd sourced water levels and (b) gauged water levels. 
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data points, respectively. When examined in a distributed fashion there does not seem to be a 

clear trend of discrepancies between modelled and observed values from upstream to 

downstream (gauge locations are shown in Fig. 3.1), i.e. the model sometimes overestimates 

and sometimes underestimates the measurements. As expected, due to the relatively flat 

geomorphology of the region, higher values of water depth were observed within the channel 

associated with higher error magnitudes, conversely the error magnitudes were lower in the 

floodplain where elevation values are lower. The MPD is generally higher for the crowd-

sourced points, as even low magnitude errors constitute a large percentage of the shallow 

observed water depth, while the opposite is true for the gauge-based assessment within the 

channel.  

In the event of unbiased data, the relative and absolute error distributions should exhibit 

similar, if not identical trends (Schumann et al. 2008a). From Fig. 5.3 and Fig. 5.4, the similarity 

in the form of the error distributions is not immediately apparent, prohibiting an analysis of 

observation bias. Accordingly, cumulative distribution functions (CDF) were plotted in Fig. 5.5 

separately for crowd-sourced and gauged maximum water depth observations for both objective 

functions, to evaluate the distribution of the errors. Values of the performance metrics were 

rescaled between 0 and 1, to ensure comparability of the plots and easy visibility on the axes. 

The CDF plots show nearly similar shapes, although some differences are evident in the higher 

error region for the crowd-sourced observations, while the lower errors exhibit some deviations 

 

Fig. 5.6 Plot showing the maximum water levels simulated by the calibrated model using 𝑛 = 0.026 

and the crowd-sourced maximum water levels at all the available locations. Water level values have 

been sorted from the largest to the smallest according to the magnitude for illustration purposes. 
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in the case of gauges. Similarities in the distribution shapes, reveal that the datasets under 

consideration are indeed unbiased, and can be reliably used for model performance evaluation. 

These experiments illustrate that in the absence of gauge information, crowd-sourced 

water level observations might be able to provide sufficient information, to calibrate the channel 

roughness parameter in a hydraulic model. However, this might only be true for the present 

case study and in the floodplains, as in the presence of a levee system even an error of a few 

centimetres in water level predictions can cause false alarms/misses (Stefania Grimaldi, 

personal communication). In this context, there are still quite large discrepancies between 

gauged and modelled peak levels and perhaps the Nash-Sutcliffe efficiency (or other metrics) 

using the full hydrograph, would have allowed a more comprehensive evaluation of model 

accuracy. However, achieving a perfect calibration was not the objective of this thesis, as the 

parameters will be dynamically selected in real-time through data assimilation. The aim of this 

calibration exercise was to bring the magnitudes of errors are within acceptable ranges for 

assimilation, assuming a severely data limited scenario which may well be the case for most 

operational applications. Furthermore, the real world assimilation experiment presented in 

Chapter 9 should also reveal the quality of the calibration, as a full comparison with the 

hydrometric gauges available to this study is shown. 

 

Fig. 5.7 Plot showing the maximum water levels simulated by the calibrated model using 𝑛 =

0.026 and the gauged maximum water depths at all the available locations. Gauges are ordered 

from upstream to downstream. Note that Tyndale is not located along the main stem of the river and 

therefore has lower values than Lawrence. 
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Moreover, the number of crowd-sourced observations available to this study (32) was 

low as compared to the huge volumes of data expected from citizen science but highly accurate. 

As natural language processing and object extraction methods become more sophisticated, the 

processing of text and images/videos from social media for water level extraction are expected 

to be automated. If a large number of crowd-sourced water level observations with a time stamp 

were made available, the present methodology could be extended to accommodate those (Kutija 

et al. 2014), yielding further improvement in parameterization accuracy. The primary advantage 

of crowd-sourcing is that for the first time, calibration points can be in the floodplain where 

settlements usually exist rather than just in the channel, as it should not be assumed that a 

hydraulic model well calibrated in the channel will perform equally well in the floodplains 

(Pappenberger et al. 2007a). Crowd-sourced water levels therefore provide a unique 

opportunity to calibrate the model diagnostic variables in those areas where accurate estimates 

of flow and depth are required. 

5.7 Model Evaluation 

Mean and standard deviation values for the Gaussian parameter distributions (channel 

roughness, depth, and shape) used in this thesis, identified based on the aforementioned 

considerations, are summarized in Table 5.1. Interestingly, the calibrated channel roughness 

value seems quite physically meaningful, which is often not the case in model calibration 

studies. In fact, most studies have emphasized the need for effective friction parameters, to 

compensate for errors in the channel geometry and inflows, for example (Pappenberger et al. 

2005). The first possible reason for this is, the use of a range of seasonal realistic values for the 

calibration. The second and perhaps more important one pertains to the representation of the 

Table 5.1 Summary table of the parameter values used in this thesis. 

Model Parameter 
Mean 

(µ) 

Standard Deviation  

(σ) 

Channel roughness (n) 0.026 0.005 

Depth multiplier (r) 1.05 0.005 

Depth exponent (p) 0.36 0.005 
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bathymetry and topography (Grimaldi et al. 2018). It appears as though the hydraulic flow 

regimes are primarily controlled by channel geometry in this catchment, and therefore, as the 

bathymetric dataset used is highly accurate, a physically meaningful value could be identified 

as the best fit. Moreover, in the full 2D implementation used in this study, the only possible 

source of uncertainty was the inflow discharge, as the DEM, channel geometry, and the 

downstream gauged water levels were fairly accurate.  

Parameter values chosen through the procedures outlined in the previous section, had to 

be verified using an independent dataset to ensure reliability of the estimates. This evaluation 

was performed against an optical image acquired in the falling limb of the 2013 flood 

hydrograph. This image was converted to Normalized Differential Water Index (NDWI) 

(McFeeters 1996) values to delineate the flood waters. The true colour composite of the SPOT 

image is juxtaposed against the derived NDWI image in Fig. 5.8. Problems of flood monitoring 

using optical data are also apparent from the Figure, as nearly 25% of the image is unusable 

due to cloud cover. Although the initial formula for the calculation of NDWI was developed 

for applications to the Landsat Multi Spectral Scanner (MSS) sensors, it has since been 

 

Fig. 5.8 Optical multispectral imagery from the SPOT-6 satellite, with (a) showing a true colour 

composite of the area, and (b) showing the Normalized Differential Water Index values derived 

from (a). 
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extended to almost all optical satellites (McFeeters 2013). The general equation used for the 

calculation of NDWI in this study is given as Equation 5-9. 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
,      (5-9)   

where NIR refers to the Near-Infrared channel.  

NDWI uses features of the water reflectance spectrum, i.e. maximum reflectance in the 

green region of the electromagnetic spectrum and minimum in the NIR region, to enhance the 

identifiability of water surfaces. It also exploits the high reflectance of terrestrial vegetation and 

soil in the NIR region, to aid the delineation of water bodies (McFeeters 1996). Using a band 

ratio approach for surface water detection, is of course, not devoid of uncertainties (Mukherjee 

and Samuel 2016); however, as the objective here was just to achieve an acceptable model set 

 

Fig. 5.9 Left panel shows the contingency map and statistics comparing the surface water 

extent map based on NDWI values derived from the SPOT-6 optical image against the 

inundation extents simulated by the LISFLOOD-FP acceleration solver in full 2D using the 

calibrated channel roughness parameter. False Alarms* indicates a lack of confidence in the 

inundation identified through the SPOT-6 image due to dense vegetation. Right panel shows 

the NDVI map showing area covered by vegetation and not vegetated regions, with respect 

to the extent of the False Alarms obtained. 
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up, this was considered sufficient to verify the parameter choices (Andreadis and Schumann 

2014). 

NDWI values greater than 0 are expected to represent water pixels, while negative 

values represent non-water land-use classes (Jain et al. 2005; Lu et al. 2011). Accordingly, the 

cloud-free portion of the SPOT image was processed to derive NDWI values, which was 

subsequently converted into a surface water map using a global threshold of 0 to retain positive 

values exclusively. NDWI values were derived from the SPOT image at the native resolution 

(1.5 m) of the pan-sharpened product (see Section 3.3.2), although these had to be upscaled to 

the model grid size of 90 m prior to making any comparisons. Model simulated water depths 

were extracted at the time of acquisition of the SPOT image and converted to inundation extent 

maps using a threshold of 1 cm. This depth threshold is used to derive flood extents throughout 

this thesis. Although some studies have justified the use of a 10 cm depth threshold due to 

reasons of uncertainty (Pappenberger et al. 2007b), it also means that for a pixel with 9 cm of 

water will not be considered inundated. This implies that 729 cubic metres of model simulated 

water volume per pixel, is ignored during the flood extent assimilation process. Consequently, 

a threshold of 1 cm was considered more suitable in this study (Hostache et al. 2018). 

The inset table in the left panel of Fig. 5.9 shows a summary of the pixel statistics, also 

identical across both solvers. Number of correctly identified inundated pixels, is significantly 

larger than the misses and false alarms. The ratio of false alarms is quite high as flooding under 

vegetation cannot be identified in optical imagery, which observes only tree canopies. In order 

to corroborate this, the Normalized Differential Vegetation Index (Wang et al. 2011) was 

calculated to facilitate a qualitative comparison. The right panel of Fig. 5.9 shows the area 

identified as “False Alarms” drawn on a base layer of the SPOT-6 NDVI-based vegetation 

classes. As expected, most of the false alarms are perhaps flooded vegetation pixels which are 

not classified as water due to limitations of NDWI-based surface water extraction from optical 

images. 

In spite of the limitations outlined earlier, a Critical Success Index (CSI) value of 0.65 is 

obtained, which is in the acceptable range for flood modelling and mapping exercises (Wood 

et al. 2016; Landuyt et al. 2018). The CSI score has been found to be slightly biased towards 

overprediction, catchment size, and event magnitude (Wealands et al. 2005; Stephens et al. 

2014; Stephens and Bates 2015). However, as the aim was just to evaluate the model calibration 

in the Clarence Catchment for a single event, it was used here due to its ubiquity in flood science 
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literature. The model parameterization is, therefore, considered to be adequate based on this 

analysis. 

5.8 Chapter Summary 

This chapter reviewed the general principles of hydrodynamic modelling, model 

uncertainty, and model selection in brief. Thereafter, detailed descriptions of LISFLOOD-FP 

were provided, as this was selected to model flood inundation in this thesis. In particular, the 

inertial acceleration solver used in this study was comprehensively presented, alongside model 

equations and assumptions. This was followed by an overview of the flood inundation model 

implementation used in this study. Finally, the model parameterization process followed in this 

thesis was explained. A simple framework which was developed in this study to utilize crowd-

sourced water level observations for calibrating the channel roughness parameter in hydraulic 

models, was detailed in this section. This generalized framework was designed such that it can 

be extended to any number of point water level observations that may become available 

irrespective of their source.  



 

 

 

 

 

PART III  

FLOOD EXTENT ASSIMILATION  

 

 



 

 

 

 

 

CHAPTER SIX  

 

“No man ever steps in the same river twice, for it’s not the same river and he’s not the 

same man.” 

 

- Plato quoting the Greek philosopher Heraclitus, in Cratylus, 402a. 
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6.   Flood Extent Assimilation: Framework 

Development 

This chapter presents an overview of the data assimilation framework proposed in this 

thesis. This has been used to integrate satellite-based inundation extent with the hydraulic model 

LISFLOOD-FP implementations described in Chapter 5. The impacts of assimilating 

probabilistic flood maps, such as those developed in Chapter 4, were then evaluated through a 

series of synthetic experiments in Chapter 7 using this approach. The optimum spatiotemporal 

location for the observation used for assimilation was then identified through a numerical 

experiment in Chapter 8. Finally, Chapter 9 describes the real world application of the methods 

proposed in this thesis, where fuzzy flood maps generated through the mapping algorithm of 

Chapter 4 were assimilated using the algorithm developed in this Chapter. In this thesis, a 

standard particle filter based sequential importance sampling (SIS) assimilation scheme is used, 

with a unique cost function designed here to account for the uncertainty in flood extent 

observations. The following provides an overview of the mathematical concepts of data 

assimilation, the role of data assimilation in reducing model uncertainty, popular techniques in 

hydrology, and finally the proposed technique for this thesis and the reasons for its selection.  

6.1 Introduction  

The Heisenberg uncertainty principle states that the position and velocity of an object 

cannot be simultaneously measured with any amount of certainty, as they are continuously 

evolving with respect to time. Therefore, it follows that the likelihood of predicting the precise 

position and velocity of an object simultaneously, is rather low even in theory. Extending this 

argument to a flood wave, it is clear that any mathematical model attempting to describe the 

nature of flow in two dimensions, will remain a mere abstraction regardless of the level of 
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physical complexity incorporated in it (Bates et al. 2014b). Similarly, an observation technique 

will be unable to capture a continuous process without discretizing it; such is the nature of 

measurements and computations, unfortunately (Waller et al. 2018a). In order to then best 

describe a dynamic physical process like flooding, the two sources of information that typically 

exist - a mathematical model describing system dynamics and discrete observations of the 

system states - need to be considered (Nichols 2010). Optimal predictions need to incorporate 

both sources of information while acknowledging the inherent uncertainty in each, while data 

assimilation describes the mathematical framework for accomplishing this model data 

integration in an uncertain environment (Rodell et al. 2004).  

Given the numerous inherent sources of uncertainty in hydraulic modelling, model data 

integration methods are rapidly becoming indispensable in hydrology, primarily to increase the 

reliability of flood predictions (Grimaldi et al. 2016). Moreover, the vast advances in satellite-

based hydrological remote sensing and the increasing availability of such observations, urgently 

demands the development of efficient techniques for optimal utilization (Schumann et al. 2018). 

Data assimilation is ideal for combining the process knowledge embedded in dynamic models 

with real world observations, as it can use the information content in both weighted against the 

errors to improve the accuracy of state estimation (Walker and Houser 2005). System states are 

therefore recursively estimated by combining noisy measurements and model predictions 

synergistically. The error variance in the final state estimate should theoretically always be 

lower than the error variances of any of the contributing datasets. Accordingly, the data 

assimilation challenge can be viewed as an attempt to reduce the deviation of model predictions 

from real world observations while also taking into account the observational uncertainty.  

The utilization of data assimilation methods has been gaining momentum in 

environmental modelling over the last two decades, with an increased number of data sources 

exploitable for modelling becoming available. Earliest applications of data assimilation were in 

the field of meteorology, but due to data deficiency the techniques could not easily be extended 

to hydrological applications for a long time (Walker and Houser 2005; Bates 2012). The growth 

of the satellite industry has aided the improvement in modelling techniques by making 

hydrology a relatively data rich environment (Bates 2012). Current trends suggest that the 

volume of hydrologic remote sensing data will grow exponentially in the years to come (Musa 

et al. 2015; Yan et al. 2015). However, the diversity of the disparate sources of information, 

due to the type of observations available, scale, sensor calibration, and accuracy will need to be 
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quantified and efficiently dealt with. The way forward then, seems to be in developing a 

systematic and comprehensive data assimilation framework which can account for the different 

kinds of uncertainties while improving the model performance. Data assimilation techniques 

can broadly be divided into sequential (Direct observer assimilation) and variational (Dynamic 

observer assimilation) approaches based on the method of model data integration used (Walker 

and Houser 2005). However, as this thesis focuses primarily on hydrological data assimilation, 

the classification of assimilation approaches described here is based on the source of the 

hydraulic model uncertainty that the assimilation seeks to reduce (Liu and Gupta 2007).  

When this thesis was initiated there existed only two studies with any attempt towards 

flood extent assimilation, each of which converted the satellite observed flood extent into 

another variable before applying the cost function (Lai et al. 2014; Revilla-Romero et al. 2016). 

For example, Revilla-Romero et al. (2016) interpreted surface water extents from the global 

flood detection system (GFDS, http://www.gdacs.org/flooddetection/) as inundation volumes, 

which were subsequently used to find the innovation at each assimilation time step. Similarly, 

the study by Lai et al. (2014) converted satellite flood extents into water depths, using a series 

of assumptions which are often physically unrealistic although numerically feasible. The main 

reason why these studies opted for such conversions is that flood extents are not hydraulic 

model states and therefore, constructing an appropriate cost function is rather challenging. In 

this context, the work of Hostache et al. (2018a) can be considered as a seminal contribution, 

as they directly consider probabilistic flood extents derived from SAR images for the very first 

time. Cooper et al. (2018) suggest the use of backscatter values from SAR images directly, 

which would reduce processing time and as they argue increase information uptake per image. 

However, using backscatter directly and not a derived flood probability map, would also mean 

that the improvements in accuracy offered by the consideration of image texture (Dasgupta et 

al. 2018), ancillary data (D’Addabbo et al. 2016), interferometric coherence (Chini et al. 2019) 

or multiple frequencies (Plank et al. 2017) cannot be translated into improved observation 

quality. Accordingly, the flood extent assimilation (FEA) framework developed in this thesis 

improves upon the work of Hostache et al. (2018) and uses flood probability maps to implement 

the model data integration. 

http://www.gdacs.org/flooddetection/


C h a p t e r  6  – F E A :  F r a m e w o r k  D e v e l o p m e n t   P a g e  | 6-4 

 

 

6.2 Principles of Data Assimilation 

Mathematical models of environmental system dynamics can be used effectively to 

generate future predictions of the system behaviour, provided that the initial states of the system 

are known (Lakshmivarahan and Lewis 2010). Here, states refer to the condition of a given 

dynamic physical system at an instant in time. For example, water depth and flow velocities are 

hydraulic system states. However, observational data defining all the states of an environmental 

system are extremely rare. Moreover, the models as well as the initial states contain inherent 

inaccuracies, which can lead to significant discrepancies between the predicted and actual states 

of the system (Lahoz et al. 2010). Incorporating observations of the system into the model 

generated forecasts can therefore improve state estimates while simultaneously providing 

information on the associated uncertainties.  

State estimation is an inverse problem which can be solved using filters operating based 

on feedback design techniques. In environmental data assimilation where the models are 

extremely complex and non-linear, with state variables on the order of ~108, system dynamics 

are often multi-scale, unstable, and chaotic (Nichols 2010). Typically a large number of 

observations are also available through Earth Observation satellites, although their uneven 

spatiotemporal distribution makes the data assimilation problem ill-posed, and the state 

estimates are consequently sensitive to observation errors.  

 

Fig. 6.1 Schematic of the a) sequential and b) variational data assimilation approaches, taken 

from Walker and Houser (2005). 
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This problem can be solved using one of two basic approaches. The first uses a 

sequential data assimilation scheme which dynamically feeds observations back into the model 

as they become available, while the second uses a variational data assimilation scheme where 

an optimal state trajectory is computed by fitting the observed data over a time window (See 

Fig. 6.1). The data assimilation problem can then be formulated as the task of finding the best 

estimates of system states X from (noisy) observations Z, given a (noisy) dynamic model of the 

system (Walker and Houser 2005). In order to demystify the large amount of jargon typically 

associated with data assimilation, a list of terminology adapted from Walker and Houser (2005) 

has been provided in Table 6.1. 

6.2.1  Sequential Data Assimilation 

The model forecast is sequentially updated using the difference between the observed 

value of the state 𝐙𝑘 and the model predicted value �̂�𝑘 known as the innovation, each time a 

new observation becomes available at time 𝑘. The predicted observation is computed from the 

background states 𝐗𝑘
𝑏 by applying the innovation (Andreadis and Schumann 2014). The gain 

matrix 𝐊 (also known as the Kalman gain), which is a function of the relative confidence on the 

model and the observation, determines how much of the observation information needs to be 

incorporated in the forecast state estimate known as the analysis. When dealing with scalar 

quantities this value varies between 0 and 1, with 0 representing high observation uncertainty 

and 1 representing high model uncertainty. The analysis state vector �̂�𝑘
𝑎 calculated 

subsequently, then takes on the values of the actual observation if the errors in the background 

states are significantly larger than the observation errors. Conversely, if the actual observation 

uncertainty is relatively higher than the background, then the analysis remains unchanged from 

the original background value. The magnitude of the correction applied is then given by the 

product of the Kalman gain matrix and the innovation.  

The analysis state vector is then defined as, 

�̂�𝑘
𝑎 = 𝐗𝑘

𝑏 + 𝐊(𝐙𝑘 − �̂�𝑘),        (6-1) 

where the correction (second) term is the product of the gain matrix and the innovation. 

Some commonly used sequential data assimilation methods include direct insertion 

(Mazzoleni et al. 2015), statistical/successive correction, optimal/statistical interpolation, 

analysis correction, nudging (Patil and Ramsankaran 2018), 3D-variational (Smith et al. 2013), 
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Kalman filter and variants (Evensen 2003), particle filter and variants (Arulampalam et al. 

2002; Elvira et al. 2017), and evolutionary algorithm and variants (Dumedah 2012). While some 

of the approaches like direct insertion, nudging, and optimal interpolation offer ease of 

implementation, observational or background uncertainty is often ignored. The widely popular 

sequential algorithm known as the Kalman filter, allows the use of uncertainty estimates in 

models and observations. However, the linearization of model equations is necessarily required, 

which can cause instability in solutions and make the assimilation problem intractable for 

highly non-linear systems common to geophysics. The variants of the ensemble Kalman filter, 

particle filter, and evolutionary filters, while computationally more intensive, allow the full 

representation of model and observation uncertainties. These filters are therefore better suited 

for geophysical applications, as the models as well as Earth observation satellites are known to 

contain a variety of inherent uncertainties which must be acknowledged. 

6.2.2 Variational Data Assimilation 

Variational data assimilation techniques seek to minimize an objective function J over 

a pre-specified time window, to find the best fit between the model forecast and the 

observations, subject to the model uncertainty Σ and observation uncertainty R. Accordingly, 

𝐽 = 1 2⁄ (𝐗0 − 𝐗0
𝑏)
T
∑ (𝐗0 − 𝐗0

𝑏)𝑏−1
0 + 1 2⁄ ∑ (𝐙𝑘 − �̂�𝑘)

T𝑁−1
0 𝐑𝑘

−1(𝐙𝑘 − �̂�𝑘), (6-2) 

where 𝑏 refers to the background, the subscript represents time, and 𝑁 is the length of the time 

window used. Typical implementations utilise an adjoint model to evaluate the derivatives of 

the objective function with respect to the initial model state vector 𝐗0 (Walker and Houser 

2005). The adjoint model can be defined as a mathematical operator, which allows evaluation 

of the objective function sensitivity to changes in state equation solutions using a single forward 

and backward pass over the assimilation window. 

While it is possible to numerically approximate the objective function derivatives with 

respect to each state using a larger number of passes, however, the use of an adjoint significantly 

improves computational feasibility. Variational data assimilation can then be interpreted as an 

optimization or calibration problem, where the state vector itself is “calibrated” to the 

observations over a given time window rather than the parameters, by modifying the initial 

values at the beginning of the window. Variational schemes can be formulated using strong 

(perfect model assumption) or weak constraints (model errors as white process noise). The 
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inclusion of the model error vector w and the model error variance-covariance matrix Q in 

Equation 6-2 then leads to,  

J= 1
2⁄ (X0-X0

b)
T
∑ (X0-X0

b)b
-1

0 + 1
2⁄ ∑ (Zk-Ẑk)

TN-1
0 Rk

-1(Zk-Ẑk)+
1

2⁄ ∑ wk
TN-1

0 Q
k
-1
wk.   (6-3) 

Variational methods are usually well suited for smoothing problems and provide rather 

accurate state estimates, albeit at considerable computational cost. As the backward integration 

of the model is essential over the entire time window at every assimilation time step, these 

Table 6.1 Commonly used data assimilation terminology, after Walker and Houser (2005). 

DA Term Definition 

State 
Condition of a given physical system, e.g. water depth and flow 

velocities are hydraulic system states 

State error Deviation of the estimated state from the truth 

Prognostic A model state/flux required to propagate the model forward in time 

Diagnostic 
A model state/flux diagnosed from the prognostic states – not 

explicitly required to propagate the model 

Observation Measurement of a model diagnostic or prognostic variable 

Model ensemble Set of uniquely parameterized model realizations 

Open loop Model ensemble without any data assimilation 

Error covariance 

matrix 

Description of uncertainty in terms of standard deviations and 

correlations 

State perturbation 

matrix 

Matrix containing values of deviations of each individual state vector 

from the ensemble mean vector 

Prediction Model estimates of future states of a given system 

Update Correction to a model prediction using observations 

Background Model forecast, prediction, or state estimate prior to an update 

Analysis State estimate after an update 

Innovation 
Observation minus prediction, a priori residual between model 

prediction and observation of system state 

Gain matrix 
Correction factor applied to the innovation, calculated based on the 

level of confidence in the model and the observation 

Tangent linear 

model 

Linearized version of a non-linear model using the Taylor’s series 

expansion, around a chosen equilibrium point 

Adjoint Inverse operator allowing the model to be run backwards in time 
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methods have limited use for real-time forecasting applications. Moreover, the development of 

robust adjoint models for the complex and non-linear equations of hydrological and hydraulic 

models, is a scientific challenge in itself and has impeded widespread applications of variational 

methods. 

6.3 Reducing Model Uncertainty: The Role of Data Assimilation 

Any given process model essentially uses physics of the real world to predict the true state 

of the system at any given point in time, which can subsequently be validated with observations. 

It is necessary, however, to consider the inherent errors in the model structure, linearization of 

the non-linear systems, spatiotemporal domain discretization, model initialization, forcings, and 

parameters (Haile and Rientjes 2007). Similarly, observation errors caused by sensor calibration 

issues, over-use, systematic bias, and rounding off, also need to be acknowledged (Waller et al. 

2018a). Disentangling and dealing with uncertainty in hydrological and hydraulic modelling 

has widely been accepted as a necessity by the global hydrological research community 

(Blöschl et al. 2019). It is therefore relevant to understand the two different types of uncertainty 

in hydrological modelling and the characteristics of each as given below and illustrated in Fig. 

6.2 (Gong et al. 2013).   

1. Aleatory uncertainty or the uncertainty in repeatable events caused due to intrinsic 

randomness and unpredictability (O’Hagan 2006). This form of uncertainty is 

characterized by stationary statistical properties, which might be structured but can 

eventually be defined by a stationary random distribution (Beven 2016). For discrete 

variables, this randomness can then be quantified by individual probabilities of each 

possible outcome, while a probability density function can be used to characterize this 

for continuous variables (Beven 2014). 

2. Epistemic uncertainty can be defined as the uncertainty in non-repeatable events caused 

primarily due to a lack of sufficient knowledge about the process, data, or parameters 

(O’Hagan 2006). It is challenging to objectively characterise epistemic uncertainties, 

precisely because they arise from a lack of knowledge about process representations, 

effective parameter values, input data or calibration data such as flood discharge 

estimates (Beven and Hall 2014). However, considering multiple competing alternative 

model structures, probability distributions, or probability density functions based on 
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Bayesian probability theory, are a few possible options to effectively characterize 

epistemic uncertainties (Woodhead 2007).  

In flood management, epistemic uncertainties often lead to biased deterministic predictions 

even for calibrated flood inundation models, especially as appropriate calibration data for all 

model states - flow velocities for example - are rarely available (Beven 1993, 2014; 

Pappenberger et al. 2007a; Beven and Hall 2014; Sene et al. 2014; Beven et al. 2018a). 

Epistemic uncertainties in flood modelling can then be further classified by the source model 

component (Liu and Gupta 2007). 

1. Structural errors: Models use various assumptions and approximations to characterize 

a complex real world system which introduces some inherent error in the system. The 

computational implementation which requires discretization over time and space also 

contributes to this error. If the model conceptualization is improper (i.e. physically 

significant processes are ignored) major errors may follow. As the system boundary is 

part of the model conceptualization, it contributes to the structural errors (Beven 2016).  

2. Parameter errors: Parameters represent system properties continuously varying over 

space and time. Due to the spatiotemporal aggregation of parameters required for 

practical uses, the real world heterogeneity is inadequately represented quite often. 

Additionally, most parameter values cannot be directly measured on field or vary 

continuously making measurements expensive. For instance, channel geometry can be 

considered as one such parameter which is constantly in flux and thus very hard to 

monitor in field. The indirect estimation methods employed such as expert knowledge 

 

Fig. 6.2 Illustrative representation of the different facets of uncertainty, adapted from Hou, 

Li, and Liang (2019). 
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or model calibration, introduce uncertainty due to the ambiguity of the optimal 

parameter choice (Beven 2006). 

3. Data or measurement errors: The uncertainty caused by model inputs and initial 

conditions fall into this bracket. They can typically be attributed to errors in the 

recording device or scale incompatibility between the sensor observation and 

corresponding model prediction which may require spatiotemporal aggregation or 

interpolation (Waller et al. 2018a). 

In order to minimize these uncertainties, some characteristics which describe their 

probability distribution need to be known. However, such information may often be difficult to 

obtain in practice (Winsemius et al. 2013). For example, the frequentist approach to probability 

of observing a particular outcome of an event is defined based on occurrence frequency, and 

therefore, can only be used to quantify and reduce aleatory uncertainties (Oakley and O’Hagan 

2004). In such situations assumptions of local linearity and gaussianity have often been made, 

perhaps incorrectly. In contrast, Bayesian probability theories evaluate the larger picture by 

linking the degree of belief in a given hypothesis before and after evidence is presented. In the 

context of hydrology for instance, this may imply one’s confidence in the belief that a certain 

catchment specific calibrated parameter set will remain stationary across events of different 

magnitude (Oakley and O’Hagan 2004; Beven et al. 2018b). This interpretation of probability 

can be used to quantify both aleatory and epistemic uncertainties through probabilities 

(Woodhead 2007).  

The recent cohort of Bayesian ensemble based methods, which use a prior distribution based 

on system knowledge and iteratively update it as observations become available, have proved 

most effective for uncertainty quantification in hydrology (Liu and Gupta 2007). Data 

assimilation allows the use of these Bayesian theories for correcting model state predictions in 

near real-time through online observations (Sene et al. 2014). In addition to assessing the overall 

forecast uncertainty, data assimilation techniques also aim to reduce the uncertainty using data 

on inputs, forcings, or the model state. Moreover, the different sources of forecast uncertainty 

can be disentangled and independently evaluated and corrected in an online manner for 

operational applications (Cloke et al. 2013). Furthermore, the available data can be 

supplemented by constraining the physically-based model equations with parsimonious 

observations, which can then be used to estimate unobserved quantities (Walker and Houser 
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2005). The next section examines the different applications of DA in hydrology and the 

resulting classification of techniques.   

6.4 Hydrological Data Assimilation: The Systems Perspective 

Hydrological data assimilation can broadly be classified into three categories based on the 

source of the error that one seeks to reduce. Each of these may be used in combination with one 

another or as standalone procedures (Walker and Houser 2005; Liu and Gupta 2007; Mazzoleni 

2016). 

1. System identification: The primary objective of these data assimilation approaches is to 

assign an appropriate “input to intermediate state to output” mapping process, which 

accurately represents the true conceptual relationships among them. Alternatively, 

system identification can be defined as the selection of the most conceptually 

appropriate model structure. 

2. Parameter estimation: The best-fit parameter values are stochastically estimated using 

available data. This enables the model to make more accurate simulations. These 

techniques take into account the structural and measurement errors, thereby, offering 

some advantage over traditional deterministic calibration approaches.  

3. State estimation: These methods combine all available state information derived from 

various data sources with that given by the process model optimally to give the best 

possible estimate of the “true” state of the system. Existing literature uses the term data 

assimilation synonymously with state estimation.  

6.4.1 System Identification 

Research has shown that for a given hydrological system, several parameter sets may 

exist which give equally acceptable real world predictions when used within the process model 

(Beven and Binley 1992; Beven 2006). It follows from this, that several equally plausible 

conceptual model structures may exist which can reproduce the characteristics of a particular 

hydrologic environment (Oakley and O’Hagan 2004; Woodhead 2007). However, real world 

hydrological systems are usually too complex and heterogeneous for all their unique 

behavioural properties to be adequately captured by a single process model (Neuman 2003). 

Therefore, by not considering equally probable model structures and allowing them to compete, 
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a systematic bias is introduced leading to an unconscious underestimation of the structural 

errors (Liu and Gupta 2007). Data assimilation techniques usually account for structural 

uncertainty by adding an unbiased error term to the model transition (input to output mapping) 

equation. However, to fully acknowledge the equifinality of model structures, various different 

model structures which work on diverse underlying assumptions need to be considered (Duan 

et al. 2007). 

One such approach is the Bayesian Model Averaging (BMA) proposed by Hoeting et 

al. (1999) in which the prediction for the quantity of concern is approximated by a weighted 

sum of the predictions given by several independent or mutually exclusive model structures. 

The weights for the individual models are determined by using the Bayes theorem. There is a 

less computationally intensive interpretation called Maximum Likelihood BMA (MLBMA) 

where expert knowledge and field information about the system is used to assign likelihood 

values to the competing structures. MLBMA is based on the assumption that all models giving 

similar results may not be giving the output values as a function of their structure alone 

(Neuman 2003). Another popular approach is the Multi-Model Ensemble (MME) technique 

where the ensemble of model predictions is made up of smaller ensembles of independent 

models (Duan et al. 2007). The objective of MME techniques is to account for uncertainty 

propagation from various sources by sampling from the simulated output distributions of 

multiple plausible models (Butts et al. 2004). A well-chosen MME has given more consistent 

outputs than deterministic single model ensembles, primarily due to the broad range of solutions 

considered in the formulation (Georgakakos et al. 2004; Christensen and Lettenmaier 2007; 

Villarini et al. 2010). 

6.4.2 Parameter Estimation 

Hydrological parameter estimation techniques have evolved tremendously from 

elementary manual calibration to the high end variational assimilation schemes (Moradkhani et 

al. 2012). For example, Horritt (2006) used a basic trial and error method to assign parameter 

values and quantify the error in their selection using standard deviations, while Thiemann et al. 

(2001) used the Bayesian Recursive Estimation (BaRE) technique for model parameterization, 

which assimilates measurement data to recursively estimate state and parameter values, 

resulting in lower predictive uncertainty with each subsequent run. The latter technique, 

however, resulted in convergence to a single parameter value (deterministic) which did not 
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allow for effective uncertainty quantification (Beven and Young 2003; Gupta 2003). In contrast, 

the popular Generalized Likelihood Uncertainty Estimation (GLUE) technique, which uses a 

large number of Monte Carlo simulations, identified multiple equifinal parameter combinations 

which might be able to map inputs to outputs equally well (Beven and Binley 1992). While 

computationally intensive, the GLUE technique provided a major breakthrough towards 

probabilistic calibration methods. The Dynamic Identifiability Analysis (DynIA) used an 

approach similar to GLUE except multiple objectives were used to derive the equifinal 

parameter sets (Wagener et al. 2003). However, most of these approaches are no longer as 

popular, primarily due to the computational revolution which has allowed the use of more 

complex parameter optimization techniques. 

Optimization techniques of higher complexity than the ones discussed above have also 

been found to perform well for parameter estimation. For example, Markov Chain Monte Carlo 

(MCMC) algorithms which search for optimal parameter combinations within the acceptable 

parameter space, and select values based on a predetermined likelihood measure, were adapted 

within a particle filter framework to allow real-time hydrological model improvement 

(Moradkhani et al. 2012). One such optimization scheme based on these methods is the Shuffled 

Complex Evolution Metropolis (SCEM) technique (Vrugt 2003). SCEM uses a large number 

of initial random samples to efficiently locate the true global optimum in the parameter space. 

Additionally, many parallel searches with different starting points are conducted enabling an 

unbiased exploration of the search space and identification of many equifinal parameter sets 

based on likelihood. Extending this approach to a multi objective analysis allows for an even 

more thorough check for optimal combinations of equally well performing parameters 

(Wöhling and Vrugt 2008; Chu et al. 2010). Particle swarm optimization (PSO) techniques 

based on the behaviour of bee/bird swarms have also been used for parameter estimation. 

Random particles fly about in a multi-dimensional acceptable parameter space, readjusting 

flight paths and trajectories based on their own and their neighbours’ experience. Local and 

global best position estimate is updated periodically for each individual particle as demonstrated 

using the Muskingum routing model (Chu and Chang 2009). The same approach can also be 

extended for a multi-objective analysis by using the concepts of Pareto dominance (Gill et al. 

2006). The advantages of using a dual state-parameter estimation approach using the Particle 

Filter and Simultaneous Optimization and Data Assimilation (SODA) with Ensemble Kalman 

Filtering (EnKF) have also been demonstrated through various numerical experiments 

(Moradkhani et al. 2005b; Vrugt et al. 2005). 
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Variational data assimilation techniques which essentially use the adjoint model 

equations (inverse problem) for assimilating state measurements, have also been used to solve 

for true parameter values (Lai et al. 2013). This is accomplished by minimizing a cost function 

representative of the differences between the simulated and observed state data. Chertok and 

Lardner (1996) used variational techniques for a parameter estimation problem but found that 

many instances of the measured state with good spatial spread are required for an accurate 

solution. As discussed in Chapter 2, a variational technique 4D-Var was also used to assimilate 

remote sensing derived flood extent data in a 2D flood model for estimation of parameters and 

improving the state estimation accuracy (Lai et al. 2013), while remote sensing derived water 

levels were assimilated using the same method for the estimation of initial conditions (Lai and 

Monnier 2009). However, prior studies have shown variational techniques to be difficult to 

implement and computationally unrewarding especially for forecasting applications (Wu et al. 

2015). As the focus of this study is on flood forecasting, emphasis will be towards state 

estimation in near real-time. As variational data assimilation techniques cannot be implemented 

in an online manner for forecasting and operate over a fixed length time window propagating 

the algorithm backwards, they have not been considered for use in this thesis.  

6.4.3 State Estimation 

Sequential data assimilation techniques have widely been used in the last decade for 

state estimation and reduction of predictive uncertainty in hydrological models (Mazzoleni et 

al. 2017). Sequential assimilation schemes primarily work on the assumption that at any given 

time, prior estimates of the states known as the background values are known. The innovations 

(i.e. the differences between the sensor observed values of the true state and the model predicted 

observations) calculated using the background states at that point in time are used to correct the 

background state vector such that improved state estimates can be obtained, called analysis 

states (Walker and Houser 2005). The model equations are then propagated forward through 

time using the analysis states as the background values to the next point in time where 

observations are available, and the process is repeated sequentially (Fig. 6.1). This technique 

can be executed over single consecutive time steps, known as filtering, or over a window of 

several time steps, known as smoothing (Liu and Gupta 2007).  

The Kalman filter was one of the first and most popular sequential data assimilation 

techniques to be used in hydrology (Moradkhani et al. 2012). Various extensions of the Kalman 
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filter method have been developed and used since. However, a major limitation of this approach 

is that the nature of the error distribution is assumed to be Gaussian which is almost certainly 

untrue for hydrodynamic cases (Wang and Cai 2008). In order to account for this non-

Gaussianity, the ensemble technique was adapted. The Ensemble KF (EnKF) estimates error 

statistics from the sample member model forecasts, and thus no a priori assumptions need to be 

made about the distribution. The EnKF has been used in various studies for streamflow, soil 

moisture and water level assimilation (Devegowda et al. 2010; Xie and Zhang 2010; Mason et 

al. 2012b; Paiva et al. 2013; Abaza et al. 2014; Trudel et al. 2014). The EnKF technique has 

also evolved into more advanced filters like the Ensemble Square Root Filter (Chen et al. 2013), 

recursive EnKF (McMillan et al. 2013), Ensemble Kalman Smoother (Li et al., 2015, 2014; Li 

et al., 2013) and the Local Ensemble Transform Kalman Filter (García-Pintado et al. 2013, 

2015; Andreadis and Schumann 2014; Cooper et al. 2018, 2019; Waller et al. 2018a) amongst 

others. Even with the ensemble approach, the evolution of Kalman-based methods are governed 

by second order characteristics and a linear state updating equation which cannot capture the 

system dynamics of highly non-linear models (Yan and Moradkhani 2016). Accordingly, the 

probability distributions of such systems can only be accurately computed by including higher-

order moments in the analysis (Moradkhani 2008). 

Particle filters (PF) based on Sequential Monte Carlo (SMC) methods represent the 

posterior probability distribution more comprehensively, thereby improving the capability of 

the assimilation scheme to cope with the propagation of non-gaussian noise within non-linear 

systems (Matgen et al. 2010). Independent random samples called particles, which are 

representative of the posterior probability are directly sampled discretely from the state space. 

As the number of these samples tends to infinity, the assumption is that the posterior probability 

distribution will tend towards the “true” non-Gaussian form. In the case of hydrodynamic 

models, the water levels generated through a single realization of the model at a time t is 

represented by a particle and the cross sections or computational grid points in the analysis 

domain provide the state variables (Giustarini et al. 2011). The particles are appropriately 

weighted and propagated by assimilating the state measurements into the model (Nakamura et 

al. 2009). The sampling is done using a Sequential or Bayesian Importance Sampling (SIS or 

BIS) procedure which chooses particles based on a known function called the proposal 

distribution or importance density (Fearnhead and Künsch 2017). The weights are subsequently 

assigned as the ratio of the target posterior probability density function (pdf) to the proposed 
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pdf. These weights are iteratively updated based on the probability of the particle having a value 

similar to the observed state at that time (Arulampalam et al. 2002).  

The SIS algorithm is prone to degeneracy as particles with lower weights are 

continuously discarded. In order to efficiently mitigate this challenge, Sequential Importance 

Resampling was proposed (Moradkhani et al. 2005), which replicates particles in proportion to 

their weights and assigns a common weight (i.e. the reciprocal of the number of particles to all 

the new ones). The problem of sample impoverishment may also occur due to particles with 

higher weights getting selected multiple times, causing loss of sample diversity which leads to 

clustering of particles in small sub-regions of the state space. This problem has been overcome 

by perturbing the particles around the most likely values. Fig. 6.3 graphically shows the iterative 

fitting of the posterior pdf based on the SIS and SIR implementations, along with the problems 

associated with each. Many studies have established the relative supremacy of the particle filter 

over other state estimation techniques and the advantages of using a non-parametric 

assimilation algorithm, and thus it forms a major component of the data assimilation framework 

used in this thesis (Nakamura et al. 2009; Rémy et al. 2009; Briggs et al. 2013; Mattern et al. 

2013; Noh et al. 2013; Thirel et al. 2013; Dumedah and Coulibaly 2013a, 2014; Li et al. 2014a; 

Kantas et al. 2015; Browne 2016; Penny and Miyoshi 2016; Yan and Moradkhani 2016; Jouin 

et al. 2016; van Leeuwen 2017; Elvira et al. 2017; Long and Hu 2017; Piazzi et al. 2018; Yan 

et al. 2018; Herbst and Schorfheide 2019).  

Evolutionary Data Assimilation (EDA) techniques are relatively new to the field of 

hydrological data assimilation. The concepts of biological evolution and natural selection 

employed in population based sorting tools like genetic and evolutionary algorithms were 

adapted for data assimilation (Dumedah 2012). In genetic algorithms, prospective solutions 

(individuals) are made to compete and their performance assessed based on predefined 

objective functions (Bai and Li 2011). Each cycle of evolution is called a generation and the 

fittest individuals are naturally selected and made to reproduce using crossover and mutation, 

which ensure heredity and variation respectively (Ridolfi et al. 2014). The population size 

remains constant and the average health of the individuals in the population keeps improving 

with successive generations, but the number never converges to one solution in keeping with 

the principles of equifinality (Dumedah and Coulibaly 2013b). The individuals contain state 

and parameter values (genetic make-up – genotype) and the watershed or floodplain response 

(expressed behavior – phenotype) (Dumedah 2015). When the above concepts are extended for 
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multiple contrasting objectives, the vector having as its elements the relevant objective function 

values is optimized (Dumedah 2012).  

The Pareto Optimal Set (POS) is the set of solutions remaining at the end of all the 

generations and the Pareto front is its mapping from parameter to objective space (Wöhling and 

Vrugt 2008; Zaji et al. 2018). Non-dominance is when all solutions perform equally well in all 

objectives being assessed. There are several algorithms which exist to rank non-dominant 

solutions like Strength Pareto Evolutionary Algorithm—II (SPEA-II), Pareto Archive 

Evolution Strategy (PAES), Pareto Envelope-based Selection Algorithm—II (PESA-II), Micro 

Genetic Algorithm and Non-dominated Sorting Genetic Algorithm – II (NSGA-II). The 

application of EDA proposed thus far, uses the NSGA-II, however, any of the listed ones may 

be adapted for the purpose. The POS is obtained by allowing the fittest solutions to compete 

with their elite parents (elitism); preserving stable populations in the neighbourhood of optimal 

solutions (niching); adjusting fitness of individuals and distribution to niches proportionally to 

their average fitness (fitness sharing); discouraging crowding anywhere in the search space by 

replacing many similar solutions with one (Samuel et al. 2014). 

When adapted to data assimilation, each ensemble member is an individual having an 

associated parameter set and a hydrological response, and the sensitivity of one to the other can 

 

Fig. 6.3 Schematic representation of particle filter data assimilation, using the sequential 

importance sampling and the standard sequential importance resampling algorithms. 
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be assessed. These are made to compete based on various objective functions using Pareto 

dominance concepts at each time step; evolved and evaluated for subsequent time steps 

(Dumedah and Walker 2013). After the evaluation, only the Pareto optimal set is assimilated 

for the given time step and the procedure repeated for the next time step. The ensemble size is 

given by the product of the population and generations and remains constant throughout. The 

time variance of model states and parameters is acknowledged as they are re-estimated every 

time a new observation becomes available. 

An assessment of the performance of EDA in comparison to the EnKF and the PF, 

showed that EDA gave the highest cluster convergence for parameter estimation. While EDA 

gave higher ensemble mean accuracy for short lead times, for longer lead times the PF 

performed better. As EDA is able to reduce the search space, smaller ensembles can be used 

after a while. In fact an adaptive ensemble size may be chosen to maximize computational 

efficiency. It is also worth mentioning that the assimilation of new information using the PF 

does not appear to override the background information completely, thus making it less 

sensitive to forcing variables. Previous studies have shown that if there is a large variation in 

the input or forcing data immediately after the assimilation time step, and the next observation 

is unavailable for some time after that, the model state rapidly decays to its original trajectory 

(Samuel et al. 2014). As the PF scheme is relatively more insensitive to extreme forcings, it 

may still retain assimilation effects. Moreover, as hydraulic models are computationally 

expensive and prone to numerical instabilities, restarting the model with updated states e.g. 

water depths, is usually ineffective as it can result in hydrostatic initialization shock. 

Consequently, the PF-SIS implementation remains the most suitable assimilation approach for 

flood modelling, as it does not require restarting the model and has successfully been applied 

to a real case study (Hostache et al. 2018b). Accordingly, in this thesis a new flood extent 

assimilation framework will be developed based on the PF-SIS algorithm. 

6.5 Particle Filter-based Flood Extent Assimilation Framework 

In the PF-SIS based flood extent assimilation algorithm developed in Hostache et al. 

(2018a) for the Severn Catchment, UK, local weights are first computed based on a pixel-wise 

comparison, as each model grid cell has an associated state vector. As the model state can only 

take two values of flood extent in this implementation, the binomial distribution was used to 
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approximate the posterior density (Renaud Hostache, Personal communication). The PF-SIS 

algorithm eventually requires a spatially lumped global weight to rank particles and calculate 

the weighted ensemble mean, the local weights must therefore eventually be aggregated to yield 

one global value. The joint probability density was used for this, computed as a simple product 

of all the local weights by assuming statistical independence of pixel-wise observation errors 

(Hostache et al. 2018b). However, in reality SAR backscatter errors are a function of speckle 

and the underlying land-use, which often exhibit spatial autocorrelation. In fact, for SAR-

derived water level observations in the Severn Catchment, Waller et al. (2018b) showed that 

average observation error correlation existed for ~7km of separation distance. Assuming 

statistical independence for correlated observation errors during assimilation, this may lead to 

an underestimation of standard deviation and correlation length scale (Waller et al. 2016).  

Additionally, as the product of a large number of low local weights values is 

infinitesimally small, an empirical rescaling factor 𝛼 was introduced, such that even a model 

output in complete disagreement with the observation, had a strictly positive non-zero global 

weight. Flood probabilities obtained from SAR, were also truncated to fall within the range 

0.001 and 0.999, to avoid the unreasonable assignment of a global weight of zero to a particle 

due to local mismatches. Pixels with flood probabilities lower than 0.5 in the observation, were 

masked out prior to assimilation. As these usually dominate SAR based flood maps, over-

prediction is penalized much more than under-prediction, which is not conducive for 

operational applications. While these were all mathematically feasible and pragmatic solutions 

to the challenges of flood extent assimilation, there was significant scope for improvements 

which formed the basis of the algorithm development in this study.  

For the model ensemble detailed in Chapter 7, LISFLOOD-FP was used to generate an 

ensemble of water depth maps, which were subsequently converted to binary flood extents 

using a 1cm threshold on the simulated water depth in each pixel. This implies that all grid cells 

with water depths >1cm were considered as flooded and all others were considered as non-

flooded. While the selection of this threshold may seem arbitrary, it was chosen to account for 

the large grid size, where setting a 10cm threshold as commonly used (Pappenberger et al. 2005, 

2007b, a), might ignore ~729 cubic meters (0.09×902) of water in the floodplain. The ensemble 

of binary flood maps simulated by the model, were then compared against the real or 

synthetically generated SAR-derived flood extents, using a novel cost function which directly 

considers the entire flooded area.   
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Particle filters are based on Sequential Monte Carlo simulations as discussed in the 

previous section, which enables a non-parametric representation of the continuous posterior 

probability distribution function. By randomly selecting a large number of discrete and 

independent samples from a proposal distribution, the true non-Gaussian posterior pdf is 

iteratively estimated (Arulampalam et al. 2002). Initially a uniform pdf is assumed, which is 

sequentially updated by assimilating observational information as and when it becomes 

available (Moradkhani et al. 2005a). Each ensemble member or a particular model realization, 

represents a distinct particle with unique associated inputs and parameters. At each assimilation 

time step, the Bayesian conditional probability of a particular model trajectory being “true” 

given that the observation is “true”, is individually evaluated and used as the particle weight 

(Kantas et al. 2015). In the Sequential Importance Sampling algorithm, which is arguably the 

simplest implementation of the ensemble weighting procedure in particle filters, the weighted 

ensemble mean is subsequently calculated. This ensemble mean vector is then representative 

of the total information content of the model and the observations (Plaza et al. 2012).  

The Sequential Importance Sampling algorithm initially generates particles based on a 

predetermined proposal distribution or importance density, as sampling from the complex, 

unknown, non-Gaussian posterior distribution is not possible (Moradkhani et al. 2005a). 

Although it is possible to use any proposal distribution given prior knowledge on the expected 

form of the posterior, a uniform distribution is often assumed when no other knowledge is 

available as in this case (Li et al., 2013). The importance weights are usually assigned as the 

reciprocal of the ensemble size, as in this thesis (Plaza Guingla et al. 2013). As new observations 

become available and importance weights are sequentially updated, a discrete approximation 

of the true continuous posterior is obtained (Plaza et al. 2012). The expectation of the state 

vector, computed as a weighted sum of all state vectors in the ensemble, will tend to the true 

value as the number of particles tends to infinity (Arulampalam et al. 2002). However, as a very 

large number of hydraulic model runs over a large model domain is computationally infeasible, 

the number of runs in practice needs to be determined based on empirical tests. For this study, 

128 particles were used to represent the state-parameter distribution, although several remedial 

measures were used to avoid filter collapse.  

Using the Sequential Importance Sampling (SIS) algorithm provides the unique 

advantage of avoiding hydrostatic initialization shock, which often occurs in state updating data 

assimilation filters applied to hydrodynamic models. As data assimilation is essentially a 
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statistical recombination procedure, the momentum across the domain is not conserved when 

states are updated and the model is restarted from the updated states (García-Pintado et al. 

2015). This is because flow fluxes drop to zero when the model is stopped mid-simulation, and 

conserving the momentum of large volumes of water becomes impossible. As the Sequential 

Importance Sampling algorithm only alters the ensemble statistics without disturbing the 

delicate model dynamics, it perfectly suits the problem of hydraulic data assimilation. Although 

Cooper et al. (2018), demonstrate that this problem can be overcome by applying pre-

assimilation flow velocities to the updated state vectors; this was only shown through 

application to a synthetic catchment topography, and therefore requires extensive testing before 

it can be used for real case studies with complex catchment topography (Cooper et al. 2018). 

However, the proposed data assimilation framework can be updated in the future, as novel 

methods to conserve the momentum of water in the domain during assimilation are developed 

and extensively tested. 

In order to develop an appropriate cost function for the SIS-based particle filter 

implementation used here, a Critical Success Index (CSI) based ranking of particles was first 

computed to understand how the particle weights should look when ranked in comparison with 

the observed extent. Multiple cost functions were evaluated with respect to weight sensitivity 

and accurate particle ranking. The CSI could not be directly used as it is a binary pattern 

matching measure and does not allow for probabilistic representation of the observations. 

Several tests were conducted for the RMSE calculated from reliability diagrams, but as 

observed in Chapter 4, the lumped metric was uninformative for large flood extents near the 

peak. Mutual information (Shannon and Weaver 1964) was finally chosen to quantify the 

agreement between the observed probabilistic SAR-based flood map (𝑂𝑓) and the modelled 

flooded area (𝑀𝑓). At this step mutual information is used to compute the conditional 

probability of the observation being true given that each model is true. Mutual information can 

be defined as the measure of the amount of information one random variable contains about 

another (Cover and Thomas 1991).  

In order to better interpret mutual information, the concept of entropy needs to be introduced. 

Entropy is defined as the measure of uncertainty of a random variable or the self-information 

contained in it (Hirschmüller 2008). Shannon and Weaver (1964) quantitatively defined entropy 

𝐻(𝑋) of a random variable X as a continuous function of its probability distribution function 

𝑃𝑋(𝑥), which fulfills the following conditions: 
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1. It should be maximal when 𝑃𝑋(𝑥) is uniform, and in this case it should increase with 

the number of possible values 𝑋 can take; 

2. It should remain the same if the probabilities assigned to different values of 𝑋 are 

reordered; and  

3. The uncertainty about two independent random variables should be the sum of the 

uncertainties about each of them. 

It can be mathematically proven that the only description of uncertainty which fulfills all of the 

above conditions is given by, 

𝐻(𝑋) = −∑ 𝑃𝑋(𝑥) log 𝑃𝑋(𝑥)𝑥∈𝑋 = 𝐸𝑃𝑋 log
1

𝑃𝑋(𝑥)
 ,    (6-4) 

where 𝐸𝑃𝑋  is the expectation of the probability distribution function. Fig. 6.4 details the concept 

of entropy graphically for a single coin toss experiment, which is maximum for a fair coin with 

a probability of 0.5, where the uncertainty about the unbiased outcome or value that 𝑥 can take 

is maximized. The conditional entropy 𝐻(𝑋|𝑌) between two random variables 𝑋 and 𝑌 is then 

given by extending Eqn. 6-4 to 

𝐻(𝑋|𝑌) = −∑ ∑ 𝑃𝑋,𝑌(𝑥, 𝑦) log 𝑃𝑋,𝑌(𝑥|𝑦)𝑦∈Y𝑥∈𝑋 = 𝐸𝑃𝑋,𝑌 log
1

𝑃𝑋,𝑌(𝑥,𝑦)
 , (6-5) 

where 𝑃𝑋,𝑌 is the joint probability distribution function. With these foundations, relative entropy 

can now be defined as the measure of the distance between two distributions, quantitatively 

expressed as the expected logarithm of the likelihood ratio. Relative entropy is also known as 

the Kullback-Leibler (KL) distance between two probability distributions 𝑝 and 𝑞, which 

provides a measure of the error introduced by assuming that the distribution is 𝑞 when the true 

distribution is 𝑝. Accordingly, the KL distance 𝐷(𝑝||𝑞) or relative entropy is given by 

𝐷(𝑝||𝑞) = ∑ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)𝑥∈𝑋 = 𝐸𝑝 log
𝑝(𝑥)

𝑞(𝑥)
 .    (6-6) 

Relative entropy is always non-negative and zero only if 𝑝 = 𝑞. However, it is not a true 

measure of distance as it is neither symmetric or satisfy the triangle inequality (Cover and 

Thomas 1991).  

Mutual information can now be introduced as the measure of the reduction in the uncertainty 

of one random variable due to the knowledge of the other, calculated as the relative entropy 

between the joint and the product distributions of two random variables according to 
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I(X; Y) = H(X) − H(X|Y)     (6-7) 

= −∑ ∑ 𝑃𝑋,𝑌(𝑥, 𝑦) log
𝑃𝑋,𝑌(𝑥,𝑦)

 𝑃𝑋(𝑥)𝑃𝑌(𝑦)
𝑦∈Y𝑥∈𝑋    (6-8) 

= 𝐸𝑃𝑋,𝑌 log
𝑃𝑋,𝑌(𝑥,𝑦)

 𝑃𝑋(𝑥)𝑃𝑌(𝑦)
 .     (6-9) 

Mutual information can be expressed as a Venn diagram as in Fig. 6.5, showing the 

interrelationships between the various information measures used to define the uncertainty of 

two correlated random variables. While all of the above equations are defined for discrete 

random variables, they can be extended to continuous variables by replacing the summations 

with integrals. In order to compare discrete and continuous variables as in the present case, 

continuous variables can be quantized into a large but finite number of bins by assuming that 

the density is continuous within each bin. Here, 256 bins have been used after testing for 

sensitivity up to 1024 bins, as increasing beyond 256 yielded no notable impact on the 

calculation of mutual information. Mutual information is usually measured in bits when using 

log with a base of 2 as introduced by the computational information theorists. This was retained 

in the present case as the concept of bits to measure information also suits remote sensing 

images fairly well. 

 

Fig. 6.4 Example plot of information entropy of a binary system, taken from Wellmann (2013). In the case of the 

fair coin with P(head)=P(tail)=0.5, the information entropy is maximal with a value of H(0:5)=1(green dot); in the 

case of the bent coin with P(head)=0.7, the uncertainty of the system is reduced, and the information entropy is 

accordingly lower H(0.7)≈0.88 (red dot). In the case of a double headed coin with P(head)=1, no uncertainty 

remains because the outcome is known, and H(1.0)=0 (black dot). 
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The use of mutual information has been rather ubiquitous in remote sensing, specifically 

intensity based image matching and registration studies (Chen et al. 2003; Hirschmüller 2008; 

Suri and Reinartz 2010; Horkaew and Puttinaovarat 2017; Liu et al. 2018). Moreover, it has 

also been used to establish causality of changes in flood occurrences with respect to mean 

precipitation patterns (Perdigão and Blöschl 2014). In the present context, mutual information 

was found to be the most suitable cost function as it allows an elegant comparison between 

discrete and continuous random variables. An additional advantage of using mutual information 

is that it quantifies the probability of correctly guessing the observation given each model, 

which forms the first step of particle filtering based on rules of Bayesian conditional probability 

(Godsill et al. 2004). Previous studies have highlighted the limitations of binary pattern 

matching measures currently in use, which tend to favor models which over predict and lose 

sensitivity when all the models exhibit positive bias (Wealands 2006; Stephens et al. 2014; 

Landuyt et al. 2018). This inhibits the cross-catchment comparison of binary pattern matching 

measures, which has prompted research towards more efficient evaluation measures. Here, 

mutual information is introduced for the first time to flood mapping and modelling literature 

with the expectation that the field could benefit from the rapid uptake of this metric, which 

overcomes the limitations of binary measures to a large extent. 

 

Fig. 6.5 Venn diagram showing additive and subtractive relationships various information measures associated 

with correlated random variables 𝑋 and 𝑌. The area contained by both circles is the joint entropy 𝐻(𝑋, 𝑌). The 

circle on the left (red and violet) is the individual entropy 𝐻(𝑋), with the red being the conditional entropy 

𝐻(𝑋|𝑌). The circle on the right (blue and violet) is 𝐻(𝑌), with the blue being 𝐻(𝑌|𝑋). The violet is the mutual 

information 𝐼(𝑋; 𝑌). Source: https://en.wikipedia.org/wiki/Mutual_information. 
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 The mutual information based cost function allows for an efficient ranking of particles, 

however, an additional rescaling factor was introduced to further enhance particle weight 

variability. This rescaling factor based on the ratio of a given particle weight to the maximum 

weight obtained for all particles, was used for weight tempering and the exponent 𝜗 optimized 

through numerical experiments. In this thesis, the value of 𝜗 was fixed based on the consequent 

weight variability and consequent particle selection obtained. For example, a simple check that 

was used was whether a single particle had an associated weight of at least ~0.1. This indicates 

that the algorithm is able to distinguish between good and bad performing particles effectively. 

The ideal weight distribution has some variability, which is imperative to distinguish good 

models from bad, but the variance should not be so high as to tend towards degeneracy. The 

value of 𝜗 was optimized according to the aforementioned principles, and a value equal of 𝜗 =

4 was identified through manual trial and error experiments. This value is specific to the 

particular catchment, event, and experimental setup used in this thesis, and therefore might need 

to be optimized for case specific implementations. In fact, from the values obtained here it 

appears that the optimum value of 𝜗 depends on the spatial coverage of the observation. This 

also makes sense intuitively as any spatial matching metric loses sensitivity as the area under 

evaluation increases. However, the value of 𝜗 = 4 was found to produce positive impacts in 

most scenarios, as a general good fit parameter for most cases examined in this thesis. 

Accordingly, the final weight (𝑤𝑖) for each particle at a given assimilation time step was 

calculated using 

𝑤𝑖 =
(𝐴𝑔𝑖-min

𝑖
𝐴𝑔)

(max
𝑖
𝐴𝑔-min

𝑖
𝐴𝑔)

× (
𝐴𝑔𝑖

max
𝑖
𝐴𝑔
)

𝜗

 .       (6-10) 

The use of a weight rescaling parameter is almost standard practice for particle filter 

applications and is known as tempering (Woodhead 2007; Fearnhead and Künsch 2017; Herbst 

and Schorfheide 2019). The ideal proposal distribution from which prior weights are sampled, 

must be different from the posterior to allow effective estimation (Godsill and Clapp 2001). 

However, if this difference is too large then the importance weights will be close to zero for 

frequent outcomes and close to one for rare values (Johansen 2015). Consequently, the state 

estimates obtained will be dominated by a small subset of the Markov chain (Woodhead 2007). 

Moreover, a full representation of the state-parameter space for a state vector size common to 

2D flood inundation modelling, ideally requires a prohibitively large number of runs, 

impossible to consider in practice due to computational demands. Tempering allows the 
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inflation of weights such that the full state-parameter space can be spanned using a smaller 

number of model runs (Herbst and Schorfheide 2019). Finally, the global weights are 

normalized to calculate the conditional probabilities of a given particle being true given the 

observations, and to ensure that the posterior probability distribution function sums to unity 

according to 

𝑊𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑃
𝑖=1

 ,         (6-11) 

where 𝑃 is the number of particles and 𝑊𝑖 denotes the final global weight assigned to a particle 

for a given observation. Particle weights evolve over time, as new observations become 

available. When all the observations have been processed and their information content 

extracted in the form of the importance weights, the expectation of any state variable (𝑆) gives 

the assimilated forecast. This can be computed as the weighted mean of the state vector (𝑠𝑖) 

ensemble given by 

𝐸[𝑆] = ∑ 𝑊𝑖 ×
𝑃
𝑖=1  𝑠𝑖 .        (6-12) 

This formula is used to compute the expectation of streamflow, flow velocities, and water depth. 

The expectation of water level and flood extent is derived from the expectation of water depth 

(Hostache et al. 2018b).  

6.6 Chapter Summary 

This chapter presented an overview of the data assimilation framework developed in 

this thesis for flood extent assimilation into hydraulic models. First, the concept of data 

assimilation was briefly introduced and subsequently contextualized based on the different 

types of uncertainties common to hydrological and hydraulic models. Second, the classification 

of data assimilation techniques from a hydrological systems perspective was described and an 

overview of current techniques presented. This section also justified the selection of a particle 

filter based framework for the flood extent assimilation in this thesis. Finally, the flood extent 

assimilation technique developed in this study was presented in detail. A novel cost function 

was formulated in this thesis based on the concept of mutual information, which allows the 

comparison of observed probabilistic flood maps with deterministic model simulated binary 

flood extents. Appendix A provides additional details of the experiments conducted in order to 

arrive at this metric, and the various different cost functions trialed before this. Weight 
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tempering was also introduced to overcome particle degeneracy that is common to sequential 

importance sampling implementations of the particle filter, through the use of an exponential 

rescaling factor. The catchment specific value for the exponent was fixed through numerical 

experiments to ensure optimal weight variability for efficient assimilation. The efficacy of the 

flood extent assimilation framework proposed in this chapter, is tested in Chapter 7 through 

synthetic and real world experiments, while the sensitivity to observation spatiotemporal 

characteristics is evaluated in Chapter 8 through synthetic experiments.



 

 

 
 

CHAPTER SEVEN  

 

“A very small cause which escapes our notice determines a considerable effect that we 

cannot fail to see, and then we say that the effect is due to chance. If we knew exactly the laws 

of nature and the situation of the universe at the initial moment, we could predict exactly the 

situation of that same universe at a succeeding moment.” 

 

- Henri Poincaré, In 'Chance', Science et Méthode (1908), Quoted in Richard Kautz, Chaos: 

The Science of Predictable Random Motion (2011), 167 as translated in Science and Method 

by F. Maitla. 

 

 



C h a p t e r  7  – S y n t h e t i c  S t u d y    P a g e  | 7-1 

 

 

7.   Flood Extent Assimilation: Synthetic Study  

The PF-based flood extent assimilation (FEA) scheme proposed in Chapter 6, which 

utilized an objective function based on mutual information, is evaluated in this chapter through 

synthetic experiments. As the primary objective of this thesis was to develop methods and 

evaluate the DA performance for a realistic operational scenario, a real flood event with real 

inflow measurements were used as the control for the synthetic experimental setup. However, 

this was undertaken in an identical twin experiment framework, where synthetic data were 

generated from the flood extents produced by the control run and subsequently assimilated 

using the same model, to assess filter behaviour and assimilation performance. Assimilation 

efficiency was quantified in terms of the simulated inundation extent, floodplain water depth, 

floodplain flow velocity, flood hazard estimates, and channel flow and depth in this chapter 

through synthetic experiments. The observations were considered together by multiplying 

weights forward in time and at the times at which actual SAR images were available to this 

study, to allow for comparisons across the synthetic experiment outlined in this chapter and the 

real world application of Chapter 9. As the synthetic and the real world experimental setups 

differed only in the spatial coverage of the observations, which for the synthetic case was the 

entire catchment while for the real case a small portion in the centre of the catchment, an 

assessment of the impacts of spatial coverage was also facilitated. The sensitivity of this 

algorithm to the observation spatial and temporal location with respect to the catchment 

morphology and the flood hydrograph are evaluated in Chapter 8. 

7.1 Introduction 

Unlike hydrological models, hydraulic models have only two diagnostic state variables: 

water depths and flow velocities, with information about flood extent and discharge being 

prognostic variables derived from these (Lai et al. 2014). This indeed makes the assimilation of 
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water levels significantly simpler than the assimilation of flood extents (Hostache et al. 2018b). 

Therefore, as evident from the comprehensive review of hydraulic data assimilation literature 

presented in Chapter 2, most studies have focused on assimilating synthetic (Garambois et al. 

2019; Tuozzolo et al. 2019), in situ (Van Wesemael et al. 2019; Ziliani et al. 2019), or remote 

sensing-derived water levels (Lai and Monnier 2009; Giustarini et al. 2012b), rather than flood 

extents which are directly observed by satellites. However, a major limitation of water levels 

derived from remote sensing images is the dependence on the digital elevation model (DEM) 

accuracy and resolution (Schumann et al. 2008), which impedes the application of such 

approaches to data scarce regions. Even though the accuracy of Global DEMs is starting to 

improve (Gallant et al. 2011; Yamazaki et al. 2017), the spatial resolution is often insufficient 

for flood modelling at local scales (Grimaldi et al. 2018). Moreover, Hostache et al. (2018), 

argue that spatial flood information is lost during the interpretation of remote sensing-derived 

water levels, as only shoreline water heights can be reliably derived from the integration of 

flood extents and DEMs (Mason et al. 2012b, 2016; Shastry and Durand 2019). Furthermore, 

as the derivation of water levels from remotely sensed data is neither straightforward nor 

automatic, incorporating such assimilation frameworks into operational forecasting systems 

remains challenging (Hostache et al. 2009). 

Recent studies have therefore focused on the development of techniques capable of 

directly assimilating flood extents into flood forecasting model cascades, rather than water 

levels (Lai et al. 2014; Revilla-Romero et al. 2015, 2016; Hostache et al. 2018b; Shastry and 

Durand 2019). As flood extents are derived based on simulated water depth, the variation in the 

number of wet-dry cells at most time steps is limited. Consequently, the development of an 

extent based cost function with enough sensitivity to isolate the best performing ensemble 

members and drive the assimilation has been a scientific challenge (Schumann et al. 2009a; Lai 

et al. 2014). Cooper et al. (2019) suggested converting modelled binary flood extents into 

synthetic SAR observations, based on the image statistics derived from flooded SAR images, 

then comparing simulated and observed backscatter values at the first dry and last wet model 

cell. The authors argue that using all the backscatter observations could potentially lead to 

overfitting the observation, especially for small ensemble sizes typical of hydraulic modelling 

studies. However, even though the backscatter operator improved the forecast for the idealized 

test domain used in the study, a substantial amount of useful information is discarded. 

Moreover, this technique also neglects the uncertainties in interpreting flooding based on 

backscatter alone, as Chapter 4 of this thesis as well as many prior studies have demonstrated 
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(Amitrano et al. 2016; D’Addabbo et al. 2016). Furthermore, the proposed operator also needs 

to be tested for a real case, in addition to the synthetic application currently illustrated, such 

that the applicability to real world situations can be assessed.  

The work of Hostache et al. (2018) used several pragmatic mathematical solutions to 

facilitate the direct assimilation of flood extents in a real case for the first time. For example, 

local weights were first computed on a pixel-by-pixel basis for each ensemble run or particle, 

by comparing the modelled vs. observed cell wet-dry status through the binomial distribution. 

The joint probability density of these pixel-wise weights is then used as the global weight of 

the particle, which is aggregated as a product of all pixel weights. This method of calculating 

the joint probability density makes the assumption that the local pixel-wise weights are 

statistically independent (Hastie et al. 2009). As raster-based models numerically compute flow 

between cells, the values of simulated flow depths used to derive the wet-dry cell status cannot 

be considered independent. Moreover, flooding itself is a spatial phenomenon implying 

interdependence between modelled grid cells. Another limitation was that the observed flood 

probability values had to be truncated between 0.001 and 0.999, to ensure that the global 

weights computed as a product, did not decay to zero due to a complete mismatch at a few 

pixels. Moreover, the dry pixels were masked out prior to the assimilation, in order to remove 

the effects of asymmetric penalties which result from limited coverage of the inundated area 

within the domain. This study thus developed a novel flood extent assimilation framework to 

optimally combine flood inundation models with EO-flood extents by overcoming these 

limitations. 

The mutual information-based (MIB) cost function used for the assimilation, provides 

a measure of the reduction in uncertainty about one random variable, given the complete 

knowledge of another. This makes the statistic sensitive to subtle changes in the inundation 

extent, and also uniquely suitable to the context of particle filters, rooted in the concepts of 

Bayesian conditional probabilities. Moreover, this process results in global weight values for 

each particle, eliminating the assumption of spatial independence required for the approach of 

Hostache et al. (2018a). The need for truncation of observed flood probabilities as well as the 

masking of dry pixels is also eliminated, reducing the number of pre-processing steps and 

making the assimilation process more straightforward. A tempering factor was also included to 

further enhance weight variability, as extent comparison metrics exhibit limited sensitivities 

when all models over predict (Schumann et al., 2008). Tempering techniques were subsequently 
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used to inflate the MIB-RMSE based weights artificially, to help the selection of a few well 

performing particles (Herbst and Schorfheide 2019). This step would not be necessary if a very 

large number of ensemble members (tending towards infinity) were used, covering the entire 

state-parameter space through generous sampling. However, as this is currently impossible for 

any operational hydraulic model implementation due to the computational expense, it was vital 

to introduce methods to counter the problem of under-representation of the combined error 

covariance of the modelling system. The next sections describe the experimental methods and 

results in greater detail. 

7.2 Methods 

This section outlines the methods used in this study, with Fig. 7.1 illustrating the overall 

workflow followed. The next sections describe the experimental design, ensemble generation, 

 

Fig. 7.1 Schematic of the synthetic assimilation experiment using an identical twin setup, where synthetic data 

were generated from the flood extents produced by the truth run and subsequently assimilated within the same 

model. 
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synthetic observation simulation, and performance metrics used to evaluate assimilation 

performance.  

7.2.1 Experimental Design 

Identical twin experiments common to data assimilation studies, were setup for the 2011 

flood event in the Clarence Catchment, to assess the performance of the flood extent 

assimilation procedures outlined in Chapter 6. Uncertainties generated through incorrectly 

specified inflows were independently considered, to better understand the impact of flood 

extent assimilation. Observed inflows were used to initialise the “truth” model simulation, 

along with the calibrated channel friction parameter. Observed tidal levels were applied at the 

downstream boundary, and floodplain elevations were specified using the LiDAR DEM and 

the observed channel bathymetry. Considering the observed inflows as the truth, forecast inflow 

uncertainties were synthetically generated, representing outputs generated by hydrological 

models running in forecast mode (García-Pintado et al. 2013). The model implementation used 

in this chapter was described in detail in Chapter 5 of this thesis, with the simulation of the 

inflow ensembles presented in the following section.  

Flood extents simulated by the “truth” model were used to generate probabilistic 

satellite-based flood observations for the synthetic experiments, corresponding to the actual 

SAR image acquisition timings. The observation simulation technique is described in 

subsequent sections. Assimilation results were evaluated against the benchmark “truth” model 

in a distributed fashion for the simulated floodplain states, and at point gauge locations for the 

channel. For the real world application of the proposed assimilation technique, the actual SAR-

based observations of flood extent derived using the methods presented in Chapter 4 were used. 

Gauge observations were used for channel performance evaluation, while aerial photographs 

were utilised to quantify the accuracy of simulated flood extents after the assimilation.  

7.2.2 Ensemble Generation 

The success of any assimilation experiment is driven by the perturbation technique 

chosen and the sensibility of the ensemble spread (De Lannoy et al. 2006). In this study, the 

upstream boundary condition, supplied in the form of hourly observed discharge values, was 

assumed to be the only source of uncertainty. In order to emulate discharge forecasts produced 

by hydrological models, temporally correlated, heteroscedastic errors were synthetically 
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generated with a positive mean bias (Gobeyn et al. 2017). As the uncertainty of the rainfall 

forecasts from weather prediction models is propagated down the modelling chain, the nature 

of hydrological streamflow forecast errors is often rather complex. Consequently, the error 

model used to generate these forecast inflow errors is described next. 

The forecast discharge errors were simulated by considering a positive multiplicative 

mean bias of 20% (Matgen et al. 2010). Further, a temporal correlation and time-varying 

variance is also imposed on the errors (García-Pintado et al. 2013). The temporal evolution was 

modelled according to (Evensen, 2003) 

𝑞𝑘 = 𝛼𝑡𝑞𝑘−1 +√1 − 𝛼𝑡2𝑤𝑘−1 ,               (7-1) 

where 𝑤𝑘 ∈ 𝒩(0,1) is white noise, 𝛼𝑡 ∈ [0,1) is a time decorrelation factor, 𝑘 is the simulation 

time, and the white noise component of the model errors is represented by 𝑞𝑘 ∈ 𝒩(0,0.15) 

(García-Pintado et al. 2015). The time decorrelation of the stochastic forcing variable is 

controlled by the factor 𝛼𝑡, where low values generate a series nearly white in time, and higher 

values lead to highly correlated errors. This implies that 𝛼𝑡 is determined by the decay time of 

the temporal correlation (𝜏) and the time interval between subsequent flow observations (∆𝑡), 

computed according to  

𝛼𝑡 = 1 −
∆𝑡

𝜏
 .                 (7-2) 

As operational global flood forecasting systems currently provide discharge forecasts at a 

daily time step, a decay time of 3 days was assumed following the work of García-Pintado et 

al. (2013). Finally, the forecast discharge time series was calculated based on, 

𝑄𝑘 = 𝑄𝑡𝑟𝑢𝑡ℎ + √∆𝑡𝜎𝜌𝑞𝑘 + 0.2 ∗ 𝑄𝑡𝑟𝑢𝑡ℎ ,            (7-3) 

where 𝜎 is the variance of model errors and 𝜌 is a variance growth scaling factor. 

The use of a scaling factor ensures that variance growth becomes independent of 𝛼 and ∆𝑡 over 

the simulation time period (Evensen 2003), computed through, 

𝜌 =  √
1

∆𝑡

(1−𝛼𝑡2)

𝑛−2𝛼𝑡−𝑛𝛼𝑡2+2𝛼𝑡𝑛+1
 .               (7-4) 

In order to implement heteroscedastic errors the value of σ in Eq. 7-3 was replaced by the time 

varying 𝜎𝑘 using, 

𝜎𝑘 = 𝑐. 𝑣.∗ 𝑄𝑘 ,             (7-5) 
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where c.v. is the coefficient of variation, the value for which was estimated from the historical 

rating curves at Grafton, Prince Street gauge (Farr and Huxley 2013). As the average value of 

c.v. was observed to be close to ~0.2, a slightly higher value (c.v.=0.25) was used as 

recommended by García-Pintado et al. (2013). For a more detailed description of the inflow 

ensemble generation techniques described here and for the derivation of the equations used, 

readers are referred to Evensen (2003) and García-Pintado et al. (2013).  

An ensemble of 128 simulations was considered for each of the cases examined in this 

study, which is the most commonly used ensemble size for particle filters in hydraulic data 

assimilation literature and represent an optimum computational burden versus accuracy trade-

off (e.g., Hostache et al., 2018a, 2010). While the ensemble size is rather small with respect to 

the domain size and the size of the state vector, given the computational requirements of each 

run this was considered a sufficient number (Hostache et al. 2018b). Even though studies show 

that increasing the ensemble size may result in improved assimilation performance, there is no 

guarantee that this will occur (Ziliani et al. 2019). In fact for a state vector of the size of the one 

in this thesis (~63,500 wet cells), the ensembles would need to exceed the length of the state 

vector at least by a few orders of magnitude (>100,000 at least) (Banister and Nichols 2012). 

This was not attempted as it was computationally infeasible and slight increases in ensemble 

size (e.g., 256 or 528) have been shown to result in only marginal performance improvements 

for particle filters (Plaza Guingla et al. 2013). Moreover, as the objective of this thesis was to 

prepare flood extent assimilation methods for operational applications, increasing the ensemble 

members arbitrarily was not considered a viable option.  

Even though larger ensemble sizes are possible within a research environment, their 

operational implementation remains significantly challenging. As an example, consider the 

Global Flood Awareness System or GloFAS, the only global flood forecasting system currently 

in existence hosted by the European Centre for Medium Range Weather Forecasting, which 

uses an ensemble of 51 hydrological model runs (Alfieri et al. 2013; Dottori et al. 2016; Hirpa 

et al. 2018b). In contrast, hydrological data assimilation studies have considered even up to a 

million ensemble members as the main objective is towards research (e.g., Moradkhani et al., 

2005b), while in an operational scenario the trade-off between computational time and accuracy 

becomes critical. Accordingly, the experiments in this thesis were executed with the current 

best estimate for particle filters in literature of 128 model runs (Plaza Guingla et al. 2013). 
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As mentioned earlier, the success of any synthetic data assimilation experiment is 

largely dependent on the skill of the generated ensembles and the sensibility of the ensemble 

spread (Nester et al. 2012) Ensemble skill is in turn a function of the ensemble size and the 

perturbation technique chosen. Accordingly, the ensemble generation parameters were tuned to 

ensure sensible spread as suggested by Moradkhani et al. (2005), especially as the ensemble 

size could not be increased further due to operational applicability considerations. Forecast skill 

was evaluated using the Normalized RMSE Ratio (NRR) proposed by Moradkhani et al. (2005), 

where an NRR value of ~1 is ideal, while values of NRR>>1 indicate too little spread and 

NRR<<1 represents too much spread (Matgen et al. 2010). NRR is estimated according to,  

𝑁𝑅𝑅 =
𝑅𝑎

𝐸[𝑅𝑎]
 ,      (7-6) 

where 𝑅𝑎 is the ratio of the time-averaged RMSE of the ensemble mean, and the mean RMSE 

of the ensemble members. If the observation is statistically indistinguishable from the 

ensemble, the expectation of 𝑅𝑎 is given by, 

𝐸[𝑅𝑎] = √
(𝑛+1)

2𝑛
 ,     (7-7) 

where 𝑛 is the ensemble size considered. For an in-depth description of the forecast evaluation 

methods used in this study, readers are referred to Moradkhani et al. (2005) and Matgen et al. 

(2010). The value of 𝑁𝑅𝑅 for the forecast inflow ensemble was ~0.99 which is almost equal to 

the ideal value of unity, indicating sufficient ensemble spread and skill (Moradkhani et al. 

2005).  

7.2.3 Synthetic Satellite Observation Simulation 

In order to assimilate a SAR-derived flood extent, a probabilistic map objectively 

representing the sum of uncertainties from instrument error, flood classification, and 

orthorectification errors was necessary. Therefore, the neuro-fuzzy flood mapping algorithm 

developed in Chapter 4 was used to derive probabilistic flood maps from the Cosmo-Skymed 

SAR images. Synthetic observations were also simulated at the corresponding time steps, using 

an approach similar to Cooper et al. (2019). Backscatter distributions of flood and non-flood 

classes were assumed to follow the form of Gaussian Mixture Models (GMM). Parameters for 

each Gaussian curve in the observed SAR image histograms, were estimated using non-linear 

curve fitting. Values were identified using both SAR images available to this thesis and 
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averaged to incorporate information from both images. The parameters finally used for the 

synthetic observation simulation are summarized in Table 7.1.  

The water depth rasters simulated by the truth model at the assimilation time steps were 

then converted to binary flood extents using a minimum water depth threshold of 1cm. For each 

pixel in the modelled flood and non-flood classes, a backscatter value was sampled from the 

corresponding normal distribution defined based on the observed mean and standard deviation, 

to generate a synthetic SAR image corresponding to the actual SAR image. The synthetic and 

real SAR images for each assimilation time step are illustrated in Fig. 7.2. Subsequently, the 

synthetic SAR images were translated into probabilistic flood maps using the Bayesian 

approach proposed by Giustarini et al. (2016). The pixel-wise conditional probabilities of 

flooding given a particular backscatter value 𝑝(𝐹|𝜎0) were calculated according to 

𝑝(𝐹|𝜎0) =
𝑝(𝜎0|𝐹)𝑝(𝐹)

𝑝(𝜎0)
             (7-8) 

𝑝(𝜎0) = 𝑝(𝜎0|𝐹)𝑝(�̅�) + 𝑝(𝜎0|𝑁𝐹)𝑝(𝑁𝐹̅̅ ̅̅ )              (7-9) 

𝑝(𝐹|𝜎0) =
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 , (7-10) 

 

where 𝑝(𝜎0|𝐹) is the conditional probability of observing a specific backscatter value given 

that the pixel is flooded, and 𝑝(𝜎0) is the marginal probability distribution of backscatter values 

at a given pixel. The flood and non-flood classes are denoted by F and NF respectively and 

subscripted symbols represent the class specific Gaussian mixture model parameters defined in 

Table 7.1. The terms 𝑝(�̅�) and 𝑝(𝑁𝐹̅̅ ̅̅ ) denote the prior probabilities of observing each class, 

which were assumed to be 0.5 as recommended by the authors in the absence of any ancillary 

information (Schlaffer et al. 2017).  

As the flood mapping algorithm developed in Chapter 4 of this thesis was specifically 

designed to reduce uncertainties in flood classification from a single SAR image in operational 

settings, it was not used to process the synthetic images. The objective here was to just generate 

flood probabilities from synthetic backscatter, for which the optimized texture based 

enhancement procedure was deemed unnecessary. As the requirement of observed flood 
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probabilities for the synthetic assimilation experiment was met through the simple approach of 

Giustarini et al. (2016), it was considered adequate and thus there was no need to improve upon 

some benchmark flood mapping accuracy. 

7.2.4 Performance Metrics 

Model performance metrics are defined as mathematical measures designed to quantify 

the fit between simulated behaviour and real world observations (Krause and Boyle 2005). The 

nature of the observed data can be considered as one of the key determinant in designing a 

 

Fig. 7.2 Synthetic and real SAR images juxtaposed in columns (a) and (b), respectively, for assimilation time 

steps 1 and 2. 

Table 7.1 Summary table of the backscatter distribution parameters used in this thesis, 

estimated from 8-bit Cosmo-Skymed SAR flood observations. 

Class 
Mixing proportion 

(𝛼𝐹/𝛼𝑁𝐹) 
Mean (µ) 

Standard deviation 

(s) 

Flood (F) 781.512 39.495 6.491 

Non-flood (NF) 1391.190 125.994 29.458 
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suitable model performance evaluation strategy (Beven 2012). The choice of an efficiency 

criterion can significantly impact the final performance ranking of model realizations (Stephens 

et al. 2014). As different likelihood measures prioritize different behavioural errors, it follows 

that the choice of a particular criterion should then be guided by the downstream purpose of the 

modelling exercise (Pappenberger et al. 2007). However, due to unavoidable subjectivity in the 

choice of an appropriate performance statistic, hydrodynamic model evaluation should ideally 

be treated as a multi-objective optimization problem (Gupta and Kling 2011). Note that the 

results were interpreted by comparing objective function values obtained by evaluating the open 

loop and the assimilated ensemble, against the truth model. 

In this study, the focus is on improving operational flood forecasts through flood extent 

assimilation, and performance metrics were carefully selected to reflect model accuracy in 

simulating relevant inundation dynamics correctly. For the synthetic case, the impact on 

simulated flood extents was quantified through contingency maps and contingency matrix 

based statistics. Simulated water levels were evaluated spatially through water depth difference 

maps, and a spatial mean Root Mean Squared Error (RMSE) statistic was used to quantify 

overall performance. The spatially distributed impact of the assimilation on x- and y-direction 

flow velocities was then evaluated through flow velocity difference maps, while the percentage 

improvement in RMSE was used to compare the relative impact of the two assimilated images. 

The relative performance of the assimilation with respect to the open loop was examined 

through the Brier Skill Score (BSS), using hydrographs from the truth model at river gauging 

sites. Absolute errors in the channel performance were evaluated using RMSE and hydrograph 

plots. Finally, the impact on inflow uncertainties was quantified through hydrograph 

comparisons. 

The flood extents were evaluated using the Critical Success Index (CSI) and the Kappa 

statistic, both of which were calculated based on the contingency matrix illustrated in Table 7.2. 

Choices of the metrics were guided by sensitivity to accurate flooded area prediction and 

comparability across literature. The following equations were used to calculate 

𝐶𝑆𝐼 =
𝐴

𝐴+𝐵+𝐶
,               (7-11) 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
,              (7-12) 

where 𝑃𝑜 and 𝑃𝑒 refer to observed and expected agreement, respectively, and the meanings of 

A, B, C, and D are as per the contingency table given in Table 7.2. 
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𝑃𝑒 =
((𝐴+𝐵)∗(𝐴+𝐶)+(𝐶+𝐷)∗(𝐵+𝐷))

(𝐴+𝐵+𝐶+𝐷)
,             (7-13) 

𝑃𝑜 = 𝐴 + 𝐷,               (7-14) 

As evident from Equations 7-11, the CSI measure ignores the correctly simulated non-flooded 

areas to eliminate the disproportionate impacts of the typically larger non-flooded areas in the 

model domain on the value of the metric. Similarly, the Kappa statistic allows for the evaluation 

of flood simulation capabilities, independent of the impacts of random chance agreements 

between the modelled and observed image classes. Spatial comparisons were also included 

through the contingency maps, which illustrate the locations of the classes in Table 7.2. For the 

synthetic case, these comparisons were made against flood extents derived from the truth 

model, while aerial photographs were used to evaluate simulated flood extents for the real world 

application. 

For the modelled water depth assessment, a global measure of error was required to 

quantify the overall model performance in absolute terms. The RMSE statistic was preferred 

for this purpose, due to its ubiquity in hydraulic data assimilation literature. Therefore, it can 

facilitate benchmarking vis-à-vis other studies (García-Pintado et al. 2013, 2015; Cooper et al. 

2018). In the context of the present research, the RMSE was calculated between the weighted 

ensemble mean 𝐸[𝑊𝐷𝑘], and the water depths simulated by the truth model 𝑊𝐷𝑘
𝑡𝑟𝑢𝑡ℎ, at select 

time steps according to  

𝑊𝐷𝑅𝑀𝑆𝐸 = √
∑ (𝐸[𝑊𝐷𝑘]−𝑊𝐷𝑘

𝑡𝑟𝑢𝑡ℎ)
2𝑃

𝑖=1

𝑃
 ,         (7-15) 

Table 7.2 Contingency matrix used for the calculation of binary pattern matching based flood 

extent performance measures. The green colour specifies where the model and observation are 

in agreement, while the red and blue, refer to under and overprediction respectively. 

Contingency 

Matrix 

Modelled 

Flooded Non-flooded 

Observed 

Flooded A) Correct Flooded  

(Hits) 

C) Underprediction  

(Misses) 

Non-

flooded 

B) Overprediction  

(False Alarms) 

D) Correct Non-flooded  

(Correct Rejects) 
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where P is the total number of model grid cells. Similarly, water depth difference (WDD) maps 

were chosen to understand the spatial patterns in forecast error. As Cooper et al. (2018) show, 

these can provide valuable insights into spatiotemporal error propagation through the model 

domain, which lumped statistics like the RMSE are unable to detect. For each pixel, the WDD 

map contains the deviation of the ensemble mean from the true WD at the corresponding 

location, given by 

𝑊𝐷𝐷𝑘 = 𝐸[𝑊𝐷𝑘] −𝑊𝐷𝑘
𝑡𝑟𝑢𝑡ℎ.            (7-16) 

Flow velocities were evaluated in the exact same way as water depths. Both absolute errors and 

their spatial distribution were considered, through RMSE and flow velocity difference maps 

(FVD). Metrics were computed for the x- and y-directions, by changing the variable from water 

depth to flow velocity in Equations 7-15 and 7-16. These assessments were only possible for 

the synthetic case, as spatially distributed observations of water depth and flow velocity were 

unavailable. 

The model performance within the channel was evaluated using hydrometric gauges. 

River gauges recording water depth and discharge were considered at the locations where real 

gauges along the Clarence River already exist. Synthetic gauges were also added at a few 

locations to enable a more comprehensive gauge based evaluation. The relative skill of the 

assimilated ensemble with respect to the open loop was quantified through the Brier Skill Score 

(BSS), calculated according to 

𝐵𝑆𝑆 = 1 −
(𝑨𝒔𝒔𝒊𝒎.−𝑻𝒓𝒖𝒕𝒉)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑶𝑳−𝑻𝒓𝒖𝒕𝒉)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,            (7-17) 

where the variables in bold denote state vectors while the overline denotes an average. Values 

of 𝐵𝑆𝑆 ∈ (−∞, 1], where 𝐵𝑆𝑆 = 0 indicates no change in forecast skill with respect to the open 

loop while 𝐵𝑆𝑆 = 1 is the ideal score. RMSE and Kling Gupta Efficiency plots were also 

considered for the gauge evaluation, to quantify the absolute errors in addition to a comparison 

of the truth, open loop, and assimilated water level and discharge hydrographs. The RMSE 

metric allowed for a simple lumped measure of the absolute error in the forecasts, while the 

KGE was chosen for a more holistic evaluation of the forecast hydrograph. The KGE metric 

was calculated according to 

𝐾𝐺𝐸 =  1 −  𝐸𝐷,              (7-18) 

𝐸𝐷 = √(𝑟 − 1)2 + (𝛼𝑟 − 1)2 + (𝛽 − 1)2,           (7-19) 
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where 𝐸𝐷 is the Euclidean Distance from the ideal point in objective space,  

𝑟 = 𝛼𝑟 = 𝛽 = 1, and 𝑟 is the Pearson’s correlation coefficient between observed and simulated 

hydrometric time series, while 𝛼𝑟 is a measure of relative variability in the simulated and 

observed values using a ratio of the standard deviations, and 𝛽 is the ratio of the mean of the 

simulated and observed values. KGE quantifies the errors in the simulated versus observed flows 

from a multi-objective perspective, by simultaneously focusing on the correlation, variability 

error, and bias error as separate criteria to be optimised (Gupta et al. 2009). Each of these criteria 

are equally important from a hydrological perspective, as 𝛼 and 𝛽 relate to the ability of the 

model to reproduce the first two moments of the observation distribution, while 𝑟 relates to the 

model’s ability to reproduce the timing and shape (of the hydrograph, for example). The KGE 

metric was preferred over the more popular Nash Sutcliffe Efficiency (NSE), as it is known to 

be biased towards models which underestimate the variability in flows (Gupta et al. 2009). The 

various metrics used to assess the model performance in terms of the different simulated flood 

variables are summarized in Table 7.3. 

Table 7.3 Summary table of the performance evaluation metrics used in this thesis to assess 

the accuracy of different flood variables. 

Modelled Variable Evaluation Metrics 

Flood extent Critical Success Index, Cohen’s Kappa 

Floodplain Water Depth 
Root Mean Squared Errors, Water Depth 

Difference Maps 

Floodplain Flow Velocities 
Root Mean Squared Errors, Flow Velocity 

Difference Maps 

Flood Hazard (𝐷 × 𝑉) 
Root Mean Squared Errors, Hazard 

Difference Maps 

Channel Discharge and Water Levels 
Root Mean Squared Errors, Kling Gupta 

Efficiency, Brier Skill Scores 
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7.3 Results and Discussion  

The impacts of assimilating synthetic SAR observations on the open loop ensemble 

generated by propagating erroneous simulated forecast inflow errors through Lisflood-FP are 

summarized here. The key difference between the synthetic and the real-world experiments 

implemented in this thesis was the spatial coverage of the observations, which in the synthetic 

case extended to the entire catchment. The timing of the synthetic images was assumed to be 

 

Fig. 7.3 Contingency maps comparing the forecast versus true flood extents, for the open loop and assimilation 

runs, at the first assimilation time step. 

 

Fig. 7.4 As for Fig. 7.3 but at the second assimilation time step after considering both images 

together. 
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identical to the actual SAR acquisitions. This chapter allowed an examination of the impacts of 

spatial coverage of the observation. Forecast performance was first evaluated in terms of flood 

extent, followed by a spatial analysis of water depth errors. The distributed impacts on 

floodplain flow velocity and flood hazard (𝐷 × 𝑉), were then assessed by this study for the first 

time in assimilation literature. Finally, the impacts on in-channel performance were quantified 

in terms of discharge and water level estimation capabilities.  

7.3.1 Impact on Simulated Inundation Extent 

Contingency maps were used to quantify the differences between the true flood extent 

versus the open loop and assimilated forecasts at the assimilation time steps. Maps resulting 

from assimilating the first image are displayed in Fig. 7.3, while Fig. 7.4 shows the results from 

assimilating both images together with forward weight multiplication. It is important to note 

that all references to the assimilation of the second image in this Chapter inherently include 

information from the first image as well, according to the multiple image assimilation design 

where weights are multiplied forward.  

From the figures, it is evident that the open loop consistently overestimated the true 

inundated area and there were no missed pixels, due to the positively biased inflow errors used 

 

Fig. 7.5 Percentage improvement in Critical Success Index before and after the assimilation, for different lead 

times from the time of assimilation. 
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in this experiment. This overprediction was expected, as there was a twenty percent 

multiplicative bias imposed on the model domain through the inflow error model used to 

generate the open loop ensemble. The closed loop, or otherwise known as the assimilated 

ensembles, exhibited lower numbers of false alarm pixels as a consequence of the assimilation. 

The assimilation of synthetic “observed” flood extents generated from the true flood 

extents should pull the simulation towards the truth, with more observations helping to constrain 

the forecast and resulting in fewer false alarms. The largest reductions in overprediction (Boxes 

1 and 2 in both contingency maps) seem to be centred within the catchment in this study. A 

limited number of pixels changed their wet-dry status in the topographically constrained 

upstream part of the reach, between Lilydale to Rogan’s Bridge (See Fig. 7.8 for locations). 

This was in line with expectations as the assimilation of extent can only have limited impact in 

regions where flood extents are not sensitive to subtle changes in the water depth.  

Similarly, the assimilation was not expected to produce large impacts near the 

downstream boundary between Brushgrove to Yamba, where the inundation is dominated by 

tidal backwater effects which are identical for the truth and the open loop ensembles used in 

this experiment. The main shift observed in pixels after the assimilation was from the false 

alarm class to correct rejects, while the number of hits remained fairly consistent. This is not 

unusual as the open loop constantly overestimated the extent with most of the true extent being 

correctly simulated and the performance of the ensemble members differing primarily in terms 

 

Fig. 7.6 As for Fig. 7.5 but for Cohen’s Kappa. 
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of false alarms. The percentage improvement in the CSI (Fig. 7.5) and the Kappa (Fig. 7.6) 

were therefore expected to primarily be a function of the reduction in false alarms.  

In terms of the temporal positions of the images with respect to the hydrograph, 

assimilating the first image ~6h after the peak reduced false alarms by ~2%, while adding the 

second image ~18h post peak reduced overestimation by ~5% at the assimilation time steps. 

The percentage improvement in the Kappa as well as the CSI values with increasing lead time 

was fairly consistent and exhibited similar slightly decreasing trends. As the assimilated images 

were acquired in the falling limb, the multiplicative error also started to reduce with time after 

the peak with decreasing input inflow values. At this time during the event, observations can 

be more informative and thus better constrain the forecast as the correlation between time steps 

is relatively higher. Adding the second image nearly doubled the percentage improvement for 

both the objective functions for all the lead times examined here, indicating that more 

observations could potentially further improve the forecast. Improvements from the 

assimilation were retained at least up to the examined lead time of 3 days.  

 

Fig. 7.7 As for Fig. 7.5 but for spatially averaged RMSE in water depth. 
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7.3.2 Impact on Floodplain Water Depth Simulation 

On comparing the lumped spatial RMSE values between the assimilation and the open 

loop forecasts, the errors in simulated floodplain water depth consistently reduced over time. 

In fact, the percentage improvement in spatial mean RMSE (Fig. 7.7), revealed that the 

assimilation achieved average improvements ~30% for up to 72 hours. Assimilating Image I 

led to an average improvement of ~20% in the RMSE statistic, while adding Image II nearly 

doubled it to ~37%. It is possible that the images available to this study were at favourable 

temporal positions with respect to the flood hydrograph, and consequently proved to be 

informative for the inundation forecast. As post peak images are usually characterised by 

transitioning flows, the inundation patterns are typically dominated by flood propagation 

mechanisms during this time. In contrast, during the rising limb inflow errors dominate and 

therefore result in inconsistent improvements due to the continuous addition of more 

unpredictable errors to the domain. This finding is in keeping with those of earlier studies which 

have found flood extent observations acquired just after the peak flow to have higher 

information content for hydraulic model parameterization (Gobeyn et al., 2017; Wood, 2016; 

Wood et al., 2016a). 

 

Fig. 7.8 The location of the gauges used for the discussion on the WDD maps. 
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Fig. 7.9 Forecast ensemble mean minus true water depth for different *lead times measured from the 

first assimilation time step after assimilating only the first image. 
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Fig. 7.10 As for  

Fig. 7.9 but for time after the second assimilation time step when both images were assimilated. Note 

that the time steps shown here are different from the ones shown in the previous figure. 
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In order to better understand the spatial evolution of forecast errors, the water depth 

difference between the forecast ensemble mean and the truth at each grid was calculated, and 

presented here for an assimilation experiment based on real topography for the first time. The 

forecast minus true water depth difference (WDD) is shown in Fig. 7.9 and Fig. 7.10 for the first 

and second assimilation time steps, respectively. Therefore, the positive errors imply that the 

forecast overestimates the true water depth, while the converse is true for the negative errors 

where the forecast underestimates the truth. The colours ranging from rust to indigo refer to the 

direction of the deviation from truth; i.e. yellow is within ±10cm of the truth, the different 

shades of green through to indigo represent excess water, and the shades going from orange to 

rust indicate a lack of water. The intensity of colours in each direction is representative of the 

magnitude of the deviation from the truth. WDD maps were computed for lead times of 12, 24, 

48, and 72h to assess the spatiotemporal evolution of errors in the domain after the assimilation.  

The first observation that can be made from these figures is that the open loop was 

positively biased for most of the domain throughout; again this was expected due to the nature 

of the inflow errors used here. There seemed to be a significant reduction in the magnitude of 

errors after the assimilation of both images, in comparison to the assimilation of only one image, 

as expected due to increased information content of the forecast with the integration of more 

observations. 

For each lead time the assimilated forecast was able to reduce the errors by at least one 

(~20cm) and up to several orders of magnitude. As an example, if the central portion of the 

catchment is considered, it is easy to observe that a large number of pixels moved to lower 

intensity hues between the left and the right columns - showing the open loop and the 

assimilated forecast, respectively - implying a definitive nudge towards the truth. As expected, 

the assimilation had limited impact in the upstream part of the catchment. Interestingly, the 

downstream part of the catchment exhibited notable reductions in uncertainty even after the 

assimilation of only one image, although the effect was more pronounced when both images 

were considered together. 

If the temporal locations of the images and the individual impact of each considered, it 

is evident that the magnitude of change in WDD was greater for the second image with 

noticeable improvements retained for ~3 days. For instance, on assimilating the first image, the 

positive errors in the region starting from Rogan’s Bridge down to the outlet at Yamba were 

consistently reduced by at least one order of magnitude for all lead times examined up to 48h. 
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In the 72h case, the error reduction was only noticeable downstream of Maclean, but this 

apparent lack of improvement could also be due to the colour discretization used here, which 

lumped larger error values within a single class. However, when the second image was 

assimilated, there were consistent improvements up to lead times of 72h. Even after 72h from 

the second assimilation time step, the WDD map for the assimilated forecast reduced the errors 

by one order of magnitude in all areas downstream of Grafton. In general, there seemed to be a 

greater impact when both images were considered, in keeping with the general expectation and 

the observations from the lumped spatial RMSE plot, although the closely spaced post-peak 

temporal position of these images may have been a contributing factor. For the assimilation of 

single as well as multiple images, clear reductions in uncertainty were visible for large areas, 

highlighting the usefulness of the proposed algorithm for improving flood inundation forecasts 

7.3.3 Impact on Floodplain Flow Velocity Simulation 

In this section, the distributed impact of flood extent assimilation on flow velocities is 

estimated through flow velocity difference (FVD) maps, which were computed as the pixelwise 

difference between the forecast mean and the truth at different lead times from the assimilation 

similar to the WDD maps. Lumped impact on simulated floodplain flow velocities was also 

estimated through an examination of the spatially averaged RMSE in flow velocities, as in the 

previous section.  

 

Fig. 7.11 As for Fig. 7.7 but for RMSE in flow velocities. 
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Fig. 7.12 Difference between the forecast mean flow velocities and the truth computed at each grid cell, 

shown here for different lead times following the first assimilation time step. The difference is calculated 

as forecast minus truth, so positive errors represent overestimation while negative errors show 

underestimation. 
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Fig. 7.13 As for Fig. 7.12, but for the assimilation of both images together at the second assimilation time step. 
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The cell velocities were computed by combining the cell edge velocities disaggregated 

in the x- and y- directions, the intermediate model states output by Lisflood-FP. The colour 

scheme used here is identical to the previous section, although it is important to note that the 

discretisation of classes differs slightly based on the range of bias values observed. The 

minimum error class of ±0.01m/s is represented by the colour yellow in this section as well.  

It could be argued that the simulation of flow velocities is not as accurate in hydraulic 

models as it should be, primarily as momentum is not conserved in channel floodplain 

connections, for example. However, as this was a synthetic experiment and the flow velocities 

used as benchmark for the evaluation were also simulated using the same model, this 

comparison was expected to yield useful information about the impact of assimilation on 

floodplain flow velocities, which has not yet been studied. Channel velocities are implicitly 

considered when evaluating against gauge discharge, but floodplain flow velocities have never 

been spatially examined in the past, primarily due to a lack of appropriate observations to 

facilitate such a comparison. Since most high value assets are typically located in the floodplain, 

such analyses are invaluable to a comprehensive spatiotemporal characterization of the 

hydrodynamic model errors and the impact of assimilation on their subsequent propagation.  

The first and most obvious observation from the FVD maps illustrated in Fig. 7.12 and 

Fig. 7.13 is that the assimilation improved the forecast for all examined lead times, evident from 

the increase in the number of yellow cells. Although overall error reductions were observed, it 

is interesting to note that the assimilation was able to correct for both under- and over-

estimation, which was locally introduced in some regions by the inflow errors in the open loop. 

There was a general trend of overestimation in velocities in the open loop which reduced after 

the assimilation, although the extent of the overestimation was much lesser in magnitude than 

the water depths. This is due to the fact that errors were only introduced in the magnitude of the 

hydrograph and not explicitly in the timing of the flows, implying that the errors in velocity 

were primarily a consequence of trying to hydraulically move larger quantities of water across 

the floodplain. The impact of the assimilation remained consistent across all examined lead 

times, after the assimilation of one as well as both images, as evident from the percentage 

improvement in spatial mean RMSE in flow velocity illustrated in Fig. 7.11. In fact, after 

assimilating both images together at the second assimilation time step, >30% improvements 

were observed consistently for at least 72 hours, which is significant for better estimating flood 

hazard.  
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Assimilating the first image did not reveal large spatial impacts although the lumped 

RMSE metric suggested ~20% improvements over the open loop. After assimilating the second 

image, the assimilation consistently improved velocity estimates over the entire domain, visibly 

bringing more pixels to lower uncertainty classes. One possible reason for this could be the 

temporal position of Image II, which was almost a day after the observed peak. At this time 

during the flood, the flows are out of bank and rapidly transitioning, leading to model 

propagation driven inundation patterns. As the error from the inflows is not dominant at this 

time, the assimilation of a “true” flood extent observation was able to effectively constrain the 

model trajectory for larger durations. Moreover, the errors in velocity are primarily a function 

of the propagation, rather than the synthetically introduced uncertainties as previously noted. 

It therefore naturally follows that the relative improvements in water depth simulations 

would exceed the velocity error reductions as a consequence of the assimilation. However, this 

assessment illustrated that the assimilation improved all model states and did not negatively 

impact the delicate equilibrium between them by pulling the model trajectory in a certain 

direction. This implies that the proposed flood extent assimilation algorithm has the potential 

to reduce flood inundation forecasting uncertainties with significant implications for the 

Table 7.4 Flood hazard classification according to human safety, given by the Australian Rainfall Runoff Revision 

conducted by Engineers Australia in 2010 (Cox and Shand, T.D.Blacka 2010). The green colour refers to the safe 

category, with colours going towards red signifying increasing values of flood hazard 

D.V 

m2/s 

Infants/young children (H.M < 

25 m.kg) and frail old persons 

Children (H.M = 25 

to 50 m.kg) 

Adults (H.M > 50 

m.kg) 

0-0.4 

Extreme Hazard; Dangerous to all 

Low Hazard 

Low Hazard 0.4-

0.6 

Significant Hazard; 

Dangerous to most 

0.6-

0.8 

Extreme Hazard; 

Dangerous to all 

Moderate Hazard; 

Dangerous to some 

0.8-

1.2 

Significant Hazard; 

Dangerous to most 

>1.2 
Extreme Hazard; 

Dangerous to all 
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estimation of flood hazard. Flood hazard is a function of flood depth and velocity, and better 

hazard estimates could potentially better inform preparedness and help to create more resilient 

societies.  

7.3.4 Impact on Flood Hazard Simulation 

Anthropogenic activity in floodplains is inevitable and therefore, the hazard posed by 

floods needs to be accurately quantified in order to minimise risk. Human safety is 

compromised when exposed to flows exceeding their capability to remain standing (National 

Flood Risk Advisory Group and Australia-New Zealand Emergeny Management Committee 

2014). Australian Rainfall and Runoff (ARR) guidelines stipulate that “to prevent pedestrians 

being swept along streets and other drainage paths during major storm events, the product of 

velocities (V) and depths (D) in streets and major flow paths generally should not exceed  

𝐷 × 𝑉 =  0.4 m2/s” (Cox and Shand, T.D.Blacka 2010). Relationships between the height and 

mass of a person (H.M; m.kg) and the tolerable flow value (D.V; m2/s), have been defined 

according to general guidelines, which classifies adults (H.M > 50 m.kg) and children (H.M = 

25 to 50 m.kg). Infants and very young children (H.M < 25 m.kg) are considered unsafe in any 

flow without adult support. The safety guidelines provided by Engineers Australia in 

accordance with ARR 2015 have been summarized in Table 7.4.  

 

Fig. 7.14 As for Fig. 7.11 but for flood hazard estimates. 
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Fig. 7.15 As for Fig. 7.12 but for the product of flow velocities and depth for different lead times from the first 

assimilation time step. 
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Fig. 7.16 As for Fig. 7.15 but for the second assimilation time step. 
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Although it should also be noted that loss of stability could occur in milder flow 

conditions when problems like uneven, slippery, or obstacles in bottom conditions, or flow 

conditions like floating debris, low temperature, poor visibility, unsteady flow and strong winds 

exist. Moreover, the training and musculature of the human subject might also be relevant, in 

addition to disability and psychological factors. 

The lumped improvement in the spatial mean RMSE in hazard estimates is quantified 

as percentages in Fig. 7.14. Additionally, Fig. 7.15 and Fig. 7.16 show the hazard difference 

maps, which have been calculated exactly as the maps from the preceding sections, as forecast 

hazard (product of velocity and depth) minus truth. Accordingly, positive values signify 

overestimation of flood hazard, while the converse is true for the negative values. The colour 

scale and discretisation used for the figures is identical to the previous section on flow 

velocities. Both figures show that on average the open loop forecast slightly overestimated the 

hazard, which was expected due the positively biased inflows used for the simulation. However, 

the assimilation was able to reduce the difference between forecast and true hazard estimates, 

especially in the floodplains, for all lead times but with decreasing impact through time.  

Assimilating the first image was able to correct for both positive and negative errors in 

hazard estimates, but the improvements were marginal and not immediately apparent in the 

spatially distributed error maps. On assimilating both images, the overall positive impacts were 

larger and the hazard estimates consistently improved around the Grafton area, which is 

significant from a flood management perspective. The assimilation exhibited positive effects at 

least up to the last examined lead time of 72h, illustrated by the increase in the number of yellow 

pixels (minimum error category) in the right hand side panels of Fig. 7.15 and Fig. 7.16. 

Importantly, the estimation of flood hazard in the areas with human settlements in the floodplain 

such as Grafton, Ulmarra, and Maclean, was considerably improved after the assimilation. 

These results suggest that flood preparedness and planning in this catchment could significantly 

benefit from the proposed assimilation strategy. 

7.3.5 Impact on Channel Flow and Water Level Simulation 

The assimilation results for the channel discharge and water levels, at eleven gauging 

stations (four synthetic and seven real gauges; Locations in Fig. 7.8) along the main stem of the 

river are shown in Fig. 7.17 and Fig. 7.18, respectively. The open loop is always shown in red, 

the truth in green and the assimilation of image one and that of both images is depicted by blue 
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and a dashed magenta line, respectively. The gauges have been arranged upstream to 

downstream in the different rows of the figures, with the final subplot illustrating the gauge 

locations as a reference. A cursory examination of both figures reveals that the assimilation 

always improved the estimation of flow and depth in the channel, with two images exhibiting 

stronger impacts than the assimilation of only image one as expected.  

From the discharge plots of Fig. 7.17, it appears as though the overall impacts were not 

significant at the upstream gauges, with the impacts increasing downstream of Rogan’s Bridge 

to Palmer’s Island Bridge, especially following the the assimilation of both images. Another 

 

Fig. 7.17 Channel discharge time series at the synthetic and real gauge locations along the main stem of 

the Clarence River, with the open-loop expectation (red), assimilation experiment expectation (blue-I 

and dashed magenta-I+II), and the truth (green). 
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observation that can be made from the figures is that in spite of the positively biased inflow 

errors introduced, there are some portions of the hydrograph where the open loop under 

predicted the flow at a few upstream gauges. The gauges SG1, SG2, and SG3 where this 

phenomenon occurred, exhibited limited sensitivity to the assimilation. However, the 

assimilation was able to pull the state trajectory upwards towards the truth by increasing the 

discharge during the update. This is interesting, primarily as the truth was consistently lower 

than the open loop for all the other gauges, where the assimilation resulted in lower discharge 

values, showcasing the ability to deal with positive as well as negative errors quite effectively.  

 

Fig. 7.18 As for Fig. 7.17 but for simulated channel water levels. 
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For the water levels, this effect is observable from the first gauge at the upstream end 

i.e. SG1. The water level hydrograph of the open loop simulation was consistently higher than 

the truth, even for gauges SG1, SG2, and SG3, suggesting that the negative bias observed in 

the discharge at these locations could be dominated by the contribution of the velocity. One 

possible reason for this is the placement of the synthetic gauges, as the shape of these particular 

synthetic gauge hydrographs also differs from the others. The two peaks exhibited by the 

hydrographs observed at SG1, SG2, and SG3, suggest that the placement might be close to a 

 

Fig. 7.19 Illustration of the channel evaluation efficiency metrics, (a) RMSE, (b) KGE, and (c) BSS for 

the simulated discharge, at the gauges along the main stem of the river (Locations shown in Fig. 7.8).  
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tributary, and the rise and fall of the water in the inlet may be responsible for the second peak 

observed.  

Since, Lisflood-FP calculates discharge as a function of the water crossing over a given 

cross-section in a specified direction, i.e. a gauge location needs to be specified and the cross-

section needs to be defined from this point in a particular direction (N, E, W, or S only). As 

channel flows cannot be effectively separated in the four Cartesian directions alone, therefore, 

placing the gauge at a tributary inlet could explain this two peak effect. This hypothesis was 

 

Fig. 7.20 As for Fig. 7.19, but for the simulated channel water levels. 
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also corroborated by the volume of the hydrograph at SG3, which was significantly lower than 

all the other hydrographs, implying that it might primarily be illustrating the flow within a small 

tributary rather than the main channel. Another interesting thing to note from the channel 

hydrographs is that the improvements persist for several days (~7) after the assimilation, 

especially downstream of Grafton where the flood peak actually arrived after both images had 

been assimilated, which can be crucial from an emergency management perspective.  

Next, the channel flow and water level time series was statistically evaluated using the 

RMSE, KGE, and the BSS statistics, shown in Fig. 7.19 and Fig. 7.20, as sub-figures (a), (b), 

and (c), respectively. The BSS implicitly compared the forecast skill of the assimilated 

ensemble with the open loop, with values ranging from -∞ to an ideal value of 1.  

The RMSE values for the open loop were high for the water level time series at the 

upstream synthetic gauges, but the real gauges located downstream from Rogan’s Bridge 

exhibited lower errors with respect to the truth. The converse was true of the RMSE values for 

the channel discharge, which were low at the first three upstream synthetic gauges and then 

consistently high for the rest of the channel. This seems like a function of the simulated velocity, 

especially as the trends are noticeably contrary to those observed in the channel water level 

assessment. Lisflood-FP can effectively compute velocities in the upstream topographic reaches 

but perhaps the simulation of velocities in the more hydrodynamic reaches varies with changing 

water volumes introduced in the domain. The errors as well as the corresponding percentage 

improvement as a consequence of the assimilation were consistent from upstream to 

downstream. This is typically true for errors propagated upstream to downstream, since one 

uncertain value is used to calculate the next, purely as a function of the numerical model domain 

discretisation. Since, the errors are introduced as inflows at the upstream boundary, the 

improvements from assimilation can be sustained for longer durations downstream (Cooper et 

al. 2018).  

The KGE metric displays almost similar trends for the discharge and water level time 

series and is generally quite high. Improvements seem consistent from upstream to downstream 

with only a marginal increase noticeable in the case of water depths. The simultaneous impact 

of assimilating both images was nearly double in comparison to the assimilation of only the 

first image for the gauge evaluation, as evident from the Brier Skill Score plots for the discharge 

and water levels. An assessment of the BSS plots also revealed that the forecast always strongly 

benefited from the assimilation, with more consistent improvements visible in the water depth 



C h a p t e r  7  – S y n t h e t i c  S t u d y    P a g e  | 7-37 

 

 

hydrographs relative to the discharge. There was a general increasing trend in assimilation 

benefits from upstream to downstream in the discharge statistics, although the magnitude of the 

trend was marginal. This is expected to be a function of the forecast velocity improvements 

achieved due to the assimilation, as the water levels do not exhibit this trend. Moreover, velocity 

errors amplify across the domain during flood propagation as a consequence of numerical 

modelling and the grid-wise domain discretisation. It therefore follows that the impacts of 

correcting the forecast would be more evident as the errors increase from upstream to 

downstream. The assimilation of images one and that of one and two together with weight 

multiplication, resulted in average improvements of about ~20% and ~40%, respectively, for 

both simulated discharge and water depth. Overall the proposed flood extent assimilation 

algorithm had a positive impact, demonstrating the potential for improving flood inundation 

forecasting capabilities, especially in ungauged catchments. 

7.4 Chapter Summary 

This chapter evaluated the performance of the flood extent assimilation algorithm 

proposed in this thesis through a synthetic experiment. First, the experimental design and 

ensemble generation were described, followed by a description of the methods used to generate 

the synthetic satellite SAR observations and the performance metrics used for the evaluation of 

the forecasts. Assimilation impacts were evaluated in terms of the simulated flood extent, 

floodplain water depth, floodplain flow velocities, and the channel flow and depth for the 

synthetic case. Overall the effects of the assimilation were strongly positive, with the magnitude 

of improvements generally increasing on assimilating additional observations and from 

upstream to downstream. An evaluation of the channel performance revealed that the 

assimilation is able to handle unsystematic bias, as the assimilation is able to pull the model 

trajectory towards the truth when the true state is higher or lower than the forecast. 

Subsequently, Chapter 8 evaluates algorithm sensitivity towards observation spatiotemporal 

characteristics, while Chapter 9 describes the impacts of implementing the proposed 

assimilation algorithm for a real world application.



 

 

 
 

CHAPTER EIGHT 

 

“In one word, to draw the rule from experience, one must generalize; this is a necessity that 

imposes itself on the most circumspect observer.”   

 

- Henri Poincaré, La valeur de la science. In Anton Bovier, Statistical Mechanics of 

Disordered Systems (2006), 186. 
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8.   Sensitivity to Observation Characteristics 

The experimental results obtained in Chapter 7 demonstrated the potential of the flood 

extent assimilation framework proposed in Chapter 6 of this thesis. In this chapter, the 

sensitivity of the proposed assimilation technique to the spatiotemporal characteristics of the 

satellite-based flood observation is examined. The primary objective of this investigation is to 

find the most informative spatiotemporal SAR-acquisition scenario for flood forecasting to 

facilitate the design of a targeted observation system. Those sub-regions of the domain where 

the model is unable to predict the real-world flow dynamics are expected to enable maximum 

improvements in forecast accuracy, if independent satellite flood extent observations are 

integrated through assimilation at the appropriate time and location. 

8.1 Introduction 

Multiple studies in literature have examined the relationship between SAR-acquisition 

timing and the usefulness of information relevant to flood modelling applications (García-

Pintado et al. 2013; Wood et al. 2016; Gobeyn et al. 2017). However, there has been little 

attention given to the spatial location of the Earth observations, with only two studies that have 

explicitly investigated this issue (Andreadis and Schumann 2014; Schumann and Andreadis 

2016). The seminal study by Andreadis and Schumann (2014) which highlighted the possibility 

of forecast degradation through assimilation for the first time, used a Localised Ensemble 

Transform Kalman Filtering approach, to pre-emptively estimate the spatiotemporal impacts of 

assimilating observations of water surface elevation, channel top width, and inundated area. 

Specifically, lumped values of each variable (for example, inundated area in sq. kms.) were 

compared using a cost function, to quantify the impact of observations that were not spatially 

coincident with the forecast reach.  
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This investigation was of interest as the spatial coverage of satellite observations might 

be partial relative to the model domain depending on the specific sensor, orbit, and imaging 

mode chosen for image acquisition. This assumption typically holds true for high resolution 

satellite SAR observations (Boni et al. 2016). In fact, the experiments of Andreadis and 

Schumann (2014) specifically examined the impacts of updating the entire model trajectory, 

based on observations located at a single reach. Through a sequential implementation of this 

assimilation framework to localized 5km sub-reaches of the Ohio River, the most valuable 

observation locations for improved forecast skill were identified. In a similar study Schumann 

and Andreadis (2016) were the first to investigate the potential of assimilating improved 

topography, using a targeted observation system in reaches characterised by hydraulic 

behaviour. This study was novel in quantitatively evaluating the humanitarian and 

socioeconomic impact of the improved forecasts as a consequence of the assimilation. 

However, the study again examined impacts on inundated area in a lumped fashion, limiting 

insights into the spatial evolution of forecast errors after the assimilation. 

Although these studies presented the first steps towards an investigation of the impacts 

of spatiotemporal observation characteristics on flood extent assimilation performance, the use 

of a lumped value for inundated area did not allow for spatial comparison. Specifically, as the 

locations of the inundation of the models and observations were not compared in the particular 

implementation of assimilation employed by the aforementioned studies, the quantified 

disagreement cannot be considered representative of spatial patterns of flooding. The 

assimilation framework of Chapter 6 used in this experiment does utilize a lumped statistic for 

comparison of extents, however, the calculation of this lumped value is rooted in pixel-wise 

spatial comparisons of flood inundation. Multiple studies have only examined the 

spatiotemporal impact of assimilating SAR-derived water levels, while the spatiotemporal 

sensitivity of direct flood extent assimilation has largely been ignored (Lai et al. 2014). 

Inundation extents can be good proxies for correcting forecast errors, but characteristics of flood 

extent assimilation, especially in terms of model response, can be starkly different to water level 

assimilation as it is not an actual model state. Through spatially lumped assessments of 

inundated area, Andreadis and Schumann (2014) discovered that the assimilation impact might 

be a function of temporal variability. As the recent spate of high-resolution SAR sensors can 

only observe a small part of the catchment, acquisition planning can significantly benefit from 

knowledge on which part of the catchment can lead to maximum reductions in forecast 

uncertainty (Boni et al. 2016).  
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SAR acquisitions are fairly expensive; it is therefore, imperative that the utilization and 

downstream impact of each image be optimized through studies on designing targeted 

observation strategies (García-Pintado et al. 2013). Accordingly, the spatiotemporal sensitivity 

of flood extent assimilation was critically examined in this chapter, through a series of synthetic 

numerical experiments. In order to ensure transferability of results to other catchments, a reach-

wise spatial domain discretization was chosen following Schumann and Andreadis (2016), 

allowing findings that could be generalised to other hydraulically similar reaches. Synthetic 

observations generated in reach-specific model sub-domains using the approaches outlined in 

Chapter 7 were assimilated using the DA framework of Chapter 6, into the forecast inflow open 

loop ensemble described in Chapter 7. The following sections exclusively describe those 

components of the experimental design and performance metrics, which differ from the 

previous chapter.  

8.2 Methods 

Designing a targeted observation system first requires a preliminary investigation of 

reach hydraulic behaviour, to understand which parts of the model domain may benefit most 

from the assimilation. This section describes the methodology used to formulate the 

experimental design and the performance criterion used to evaluate the spatiotemporal 

observation sensitivity. 

8.2.1 Experimental Design 

One approach for identifying hydraulically similar reaches is to simulate the channel 

flow and observe the resulting water surface profile, whereby hydraulically uniform reaches 

will exhibit consistent water surface slopes. However, this requires running the hydraulic model 

once pre-emptively to evaluate the reach hydraulic behaviour, which adds to the computational 

expense of the modelling exercise, even though the resulting sub-reach characterization would 

be quite reliable. In this chapter, the reach hydraulic characterization approach of Schumann 

and Andreadis (2016) was employed, and the results evaluated against a water surface profile 

simulated using the Full-2D Lisflood-FP inertial acceleration model implementation at 30m. 

Using the bank height variations of the SRTM DEM, Schumann and Andreadis (2016) 

identified hydraulically similar sub-reaches of the Zambezi River, by computing the deviations 
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of the piecewise linear regression trends and from the reach linear trend. The reach linear trend 

was assumed to match the kinematic wave profile and the differences from this linearity were 

expected to represent hydrodynamic flow behaviour. In keeping with the hypothesis, the study 

revealed that the impacts of assimilating observations in reaches exhibiting more diffusive flow 

behaviour was indeed greater than in those which could be characterized by a linear 

approximation. In fact, those sub-reaches which departed from the kinematic wave by more 

than two standard deviations were found to be ideal spots for targeted observation of better 

floodplain topography.  

  The approach of Schumann and Andreadis (2016) was slightly modified in this chapter, 

by replacing the SRTM-derived derived bank heights with surveyed and interpolated 

bathymetric data for this first-order in-channel hydraulic analysis. Elevations were sampled at 

every 1-km along the thalweg line, being the point of lowest elevation in a channel cross-

section, for the entire modelled reach of the Clarence River. The elevations were plotted 

 

Fig. 8.1 Spatial locations of the three model sub-domains covering the three identified sub-reaches are 

shown in red squares, along with the locations of the real and synthetic gauges considered for 

performance assessment. 
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upstream to downstream with respect to chainage, and piecewise linear regression and ordinary 

linear regression used to evaluate the sub-reach and reach linear trends respectively. Results of 

this assessment were verified against a model simulated water surface profile, and used to 

define the model sub-regions for the targeted observation assimilation experiment. At each 

assimilation time step, synthetic SAR images generated using the methods detailed in Chapter 

7 were assimilated into the hydraulic model forecasts, using the flood extent assimilation 

algorithm of Chapter 6. Images were individually assimilated at each of the previously 

identified sub-reaches, and impacts evaluated for the entire domain, at the sub-domains where 

the images were assimilated, and at the point gauge locations.  

The experimental design of this study was identical to Chapter 7, with variations only 

in the spatial location, timing, and interval of the observations. Identifying the optimum 

spatiotemporal image acquisition scenario in each sub-reach was the primary objective here. 

Accordingly, the particle weights were computed through local comparisons of the model 

simulated and synthetic observed flood extents but applied to the model as global weights as in 

the synthetic experiments and real case study of Chapter 7. For this analysis, observations were 

assimilated in all the model sub-domains identified previously, with the maximum possible 

frequency of 12 h starting at the rising limb of the flood hydrograph. The first test considered 

all the images independently, i.e. observation information was not carried over from one time 

step to the next and each image was treated as a single available observation of the event. This 

experiment allowed answering the question, where and when should a flood observation be 

acquired, if the satellite can be tasked with only a single image acquisition. All the images were 

simultaneously considered, carrying weights forward by multiplication in the multiple image 

assimilation case. This implied that when examining the impact of a particular image, it was 

assumed that all the images acquired before this had been assimilated. The reason for 

establishing this experimental design was to answer the question, if a richly detailed temporal 

coverage of a flood event was available or to be curated, what would be the optimum 

combination of spatial location, first visit time, and revisit interval for improved flood forecast 

quality. 

8.2.2 Performance Metrics  

The sensitivity of channel flow forecasts to the first visit and revisit frequency was 

evaluated through Brier Skill Scores. Plots of BSS values obtained for different first visit and 
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revisit combinations for all the gauges were evaluated, to identify the optimum temporal 

satellite acquisition scenario for each sub-reach, and also for the single image assimilation 

scenario. The spatiotemporal mean RMSE in water depth, (i.e. the RMSE value averaged across 

all the model cells and the time window under consideration) was used to quantify algorithm 

sensitivity to spatial location both locally and globally. More specifically, the global analysis 

was similar to the previous chapters where the weights assigned using the real world 

observation location, were used to calculate the weighted ensemble mean and subsequently 

evaluated across the entire domain. In contrast, the local analysis assessed the impacts only 

within the observed area using the same RMSE metric. This metric, albeit lumped over space 

and time, was chosen to illustrate the mean error trends in the spatial domains with time, which 

could be simultaneously plotted and inter-compared. Previous studies such as the one by 

García-Pintado et al. (2013), have looked at the impact of observation timing for water level 

assimilation on channel flow and water level forecasts. The impacts on the spatial simulation 

of water depths, has largely been ignored in this regard. This study therefore provides a first 

insight into the optimum selection of image location, timing, and imaging interval, with respect 

to the accurate simulation of floodplain water depths.  

8.3 Results and Discussion  

This section summarizes the results obtained from the observation spatiotemporal 

sensitivity analysis. Specifically, each section was designed to address the following research 

questions: 

1. Is a purely DEM-based approach adequate for the characterization of reach hydraulic 

behaviour? 

2. If only one image can be acquired for assimilation, when and where should it be 

acquired to obtain maximum improvements in the consequent forecast? 

3. How does the first visit time and the revisit interval, with respect to reach hydraulic 

characteristics, impact the efficiency of flood extent assimilation? 

4. How much reduction in forecast error is possible through flood extent assimilation, if 

observation spatiotemporal characteristics are optimized? 

The following sections present quantitative results to answer each of the abovementioned 

questions. 
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8.3.1 Sub-reach Hydraulic Characterization 

This section addresses the first research question, with the results from the sub-reach 

hydraulic characterization illustrated in Fig. 8.2. The plots show the thalweg bathymetric 

elevations and the water surface elevations at the corresponding locations, each 1km along the 

river chainage. Based on the deviation from reach linear/kinematic behaviour, as suggested by 

Schumann and Andreadis (2016), three sub-reaches could clearly be recognized through the 

DEM-based approach presented in Fig. 8.2 (a). The plot of the model simulated water surface 

elevations shown in Fig. 8.2 (b) corroborated the identified reaches with the identified sub-

reaches retained for the further experiments presented in this chapter.  

In terms of reach hydraulic behaviour, the first sub-reach (0 to ~40 km) exhibits nearly 

linear flow, while the second (~40 to ~90 km) and third (~90 to ~150 km) display more complex 

flow behaviour. Note that all distances are expressed in terms of chainage measured from the 

upstream inflow boundary at Lilydale. The model analysis showed considerable backwater 

effects in the downstream part of the reach which the DEM analysis also implied, suggesting 

that sub-reach identification is possible using bathymetric elevations. Moreover, the sub-

reaches that were identified through the DEM- and model-based approaches were characterized 

by nearly similar chainage distances. This implied that the DEM-based methods outlined here 

have the potential to guide future assimilation studies and facilitate targeted satellite acquisition 

planning for improved flood forecasts. 

8.3.2 Impact of Assimilating a Single Image on Forecast Accuracy 

This experiment was designed to advise the timing and location of a single SAR image 

during a flood event for maximum assimilation impact, in terms of the catchment morphology 

and hydrograph dynamics. Accordingly, single SAR images were assimilated at different times 

across the hydrograph, with images at 12h intervals starting from 6th Jan 2011. Impacts were 

evaluated for assimilation in different sub-domains of the catchment in terms of Brier skill 

scores (BSS) for channel water level simulations at synthetic as well as real gauge locations 

(shown in Fig. 8.1), and in terms of the spatiotemporal mean RMSE in water depth in Fig. 8.4. 

The main difference between the BSS and the spatiotemporal mean RMSE both computed for 

the simulated water depth, is that the latter computes a spatial average over the entire domain 

in the global case and in the smaller assimilation sub-domains in the local case. As a 
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consequence, the spatiotemporal impact of the assimilation on floodplain water level 

simulations for different observational configurations, could be evaluated to identify an 

optimum targeted observation design for the catchment which had never been previously 

investigated.  

The BSS values for all single image assimilation time steps considered are shown in 

Fig. 8.3, for each of the three gauge locations falling within each sub-domain. In all the BSS 

plots shown in this chapter, the scores are calculated based on a discharge hydrograph 

comparison, which implicitly includes information on flow velocities. The water level BSS, 

which was also examined but not included here for brevity, exhibited nearly identical trends in 

terms of assimilation impacts to the discharge plots shown here. As the statistic is representative 

 

Fig. 8.2 Shows (a) thalweg bathymetric elevations extracted from a LiDAR DEM (30m) and (b) maximum water 

surface elevations simulated by the hydrodynamic model LISFLOOD-FP, at each 1km of downstream flow 

distance, along with their deviation from a sub-reach linear approximation (red lines) and the kinematic wave 

approximation plotted along the entire main stem of the Clarence River (mustard line).  
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of the improvement in the mean squared error of the forecast water levels with respect to the 

open loop, the patterns observable in the relative improvement as a consequence of the flood 

extent assimilation at point gauge locations were quite similar to discharge as expected. 

The first thing that can be observed from Fig. 8.3 is that the optimum timing of a single 

image acquisition varied for the three different sub-reaches. This confirmed the hypothesis that 

the assimilation performance is sensitive to the location of the observation. Overall, maximum 

improvements were observed when images were assimilated in sub-reach 2 and 3, confirming 

the hypothesis that the extent assimilation would exhibit larger impacts in reaches exhibiting 

more dynamic flow behaviour. In sub-reach 1, the flood extent assimilation resulted in limited 

improvement in comparison to the other sub-reaches due to a narrow constrained valley where 

 

Fig. 8.3 Brier Skill Scores (BSS) obtained for single image assimilation in each sub-reach, from the time of the 

satellite overpass to the end of the forecast. Observations were independently considered each 12h starting from 

the 6th of Jan with BSS calculated at nine water level gauges along the channel (three in each sub-domain); the 

true stage at the location is shown in all subplots as a reference. Positive values of BSS imply forecast 

improvements, while negative values imply degradation and 0 implies no change from the open loop. Each point 

on each curve is representative of the satellite acquisition time and the corresponding BSS obtained from the time 

of the satellite overpass to the end of the forecast.  
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the extents exhibited low sensitivity to the simulated water depth, and therefore were 

uninformative about model performance once the valley was full. Assimilation efficiency of 

Sub-reach 1 remained almost constant upstream to downstream as the impacts of the 

assimilation were propagated through the domain by the numerical model. In contrast, when 

images were assimilated in sub-reach 2 and 3, the efficiency significantly declined, specifically 

at the upstream gauges located within Sub-reach 1. This effect was most pronounced for the 

images acquired at and around the channel peak in Sub-reach 3. Assimilating single images 

using the proposed algorithm demonstrated a large positive impact as indicated by positive BSS 

values. Except the images acquired in the rising limb before the flood peak, all images 

assimilated in sub-reach 2 and 3 after the 14th of Jan improved the water level forecast by >70%. 

The impact of flood extent assimilation increased in general as the flooded area 

increased in the domain, as evidenced by the increasing BSS with time for sub-reach 2 and 3. 

In Sub-reach 1, the assimilation efficiency increased with time until just after the flood wave 

traversed the reach and then declined rapidly as the valley filling occurred. The overall 

assimilation improvement for each image increased from upstream to downstream in sub-reach 

2 and 3, while the converse was true for sub-reach 1. In terms of the timing, images acquired at 

and around the peak seemed to have the largest improvement on the forecasts, with this effect 

increasing from upstream to downstream. For instance, the assimilation of the images at the 

peak in Sub-reach 2 produced larger improvement at the gauges located downstream in Sub-

reach 3 than for those located within the sub-domain or in Sub-reach 1. The maximum 

improvement (~95%) using a single image was observed in Sub-reach 2 when an image was 

assimilated ~24h after the peak, which was expected due to the dynamic flow behaviour of the 

reach while being independent of backwater effects. Images at and after the peak consistently 

produced large positive impact in line with expectations, as the inflows and the error added at 

each consecutive time step is also diminishing. This allowed the assimilation to a have a more 

consistent positive impact, as the errors became dominated by the flood propagation mechanism 

of the model thereby allowing the selection of well-performing particles across the domain.  

The spatial water depth RMSE evaluation shown in Fig. 8.4 revealed a slightly different 

pattern. The open loop errors peaked when the flood peak entered the domain at Lilydale, and 

the images assimilated in Sub-reaches 2 and 3 when the flood peak was traversing Sub-reach 1 

had the largest improvement in water depth errors across the entire domain (Fig. 8.4 (a)). 

Between 7th and 13th of Jan, the assimilation of flood extents in Sub-reach 3 had the largest 
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improvement followed by Sub-reach 2 and 1, respectively. After Jan 13th relative differences in 

the assimilation impacts of Sub-reach 2 and 3 became nearly negligible, while still remaining 

notably larger than those observed in Sub-reach 1. This finding corroborated the initial 

hypothesis and the findings from the gauge assessment, which highlighted that flood extent 

assimilation impacts were more significant in reaches exhibiting more diffuse flow behaviour. 

As the floodplain neared valley filling towards the end of the flood event, the impact of the 

assimilation on the spatial simulation of water depths also decayed rapidly, due to reduced 

sensitivity of extents to the model diagnostic states. This is in contrast to the observations from 

the point gauge locations in Fig. 8.3, where images after the peak towards the end of the flood 

event continued to exhibit large improvements in Sub-reach 2 and 3 in particular.  

For the local case shown in Fig. 8.4 (b), where the water depth RMSE was locally 

averaged across the specific model sub-domains used for the assimilation, the findings 

remained consistent with the global case. The magnitude of local improvements obtained 

through assimilation in Sub-reach 1 were lower than in the global case. Moreover, for Sub-

reach 1 and 2 the local impacts became negligible after Jan 15th. It is interesting to note that 

Sub-reach 2 continued to demonstrate a global spatial improvement on the water depth RMSE, 

even as the local improvement decayed to zero, matching the global performance of Sub-reach 

3. Assimilation in Sub-reach 3 led to both local and global spatial improvements in RMSE 

consistently, starting from the very early images. In fact, the early images seem to be able to 

better constrain the spatial errors than those acquired after the peak. The largest improvements 

 

Fig. 8.4 As for Fig. 8.3 but for the spatiotemporal mean RMSE in water depth shown in (a) for the global RMSE 

averaged across the entire model domain and (b) for the local RMSE averaged within the model sub-domains used 

for the assimilation.  
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were observed in Sub-reach 3, followed by Sub-reach 2 and 1, where the improvements were 

only marginal in the latter case. A maximum reduction of up to 20cm in the water depth RMSE 

was obtained through early assimilation in Sub-reach 3, which could be quite significant from 

an emergency management perspective. 

8.3.3 Optimizing Multiple Image Assimilation  

This section identified the optimum observation design for this catchment in order to 

achieve maximum improvement in forecast accuracy through the assimilation of observed flood 

extents. Specifically, assessments were made with respect to reach flow behaviour to allow for 

generalization across reaches exhibiting similar flow dynamics. The following research 

questions were investigated:  

1. Which images have the largest positive impact until the next assimilation time step, both 

spatially for the floodplain and for the channel?  

2. How does the assimilation efficiency (the improvements resulting from the assimilation) 

vary with respect to revisit intervals when weights are carried forward by multiplication? 

3. What is the temporal correlation length for observations starting from different revisit times 

i.e. for how long into the future does the observation continue to have a positive impact? 

4. When does the consideration of multiple images produce the largest positive impact? 

8.3.3.1 Maximum Improvements between Assimilation Time Steps 

This section addresses the first research question, regarding the spatial and temporal 

location of the best performing image until the next assimilation time step. Only the impacts on 

the forecast until the next assimilation time step has been computed here for the 12h revisit 

case. As the previous section already demonstrated possible improvements for longer lead times 

by calculating the evaluation metrics until the end of the flood event, this section focused on 

the performance of single images for a multiple image assimilation scenario. Metrics used for 

the assessment were also identical to the previous section, where within channel flow rate 

performance was evaluated through Brier Skill Scores at point gauge locations shown in Fig. 

8.5. Spatial performance was quantified through spatiotemporal mean RMSE water depth 

computed globally (across the entire domain) and locally (within each assimilation sub-

domain), as in the previous section and throughout this chapter, illustrated in Fig. 8.6 (a) and 

(b), respectively.  
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The first observation from Fig. 8.5 is that the magnitude of improvements was 

significantly larger for a lead time of 12h in comparison to the full forecast impacts, as expected. 

The difference obtained in BSS values when assimilating images in Sub-reach 2 and 3 

decreased to almost zero near the channel peak and then increased again as the floodplain 

inundation neared the maxima in Sub-reach 3. Assimilation in Sub-reach 1 consistently 

exhibited lower efficiency than in the other Sub-reaches, which was also expected, due to the 

dominant kinematic flow controls in the region. In other words, the open loop model forecast 

already performed quite well in this region and therefore it was difficult to obtain relative 

improvements. Moreover, the prognostic extents quickly lost sensitivity to the diagnostic water 

depth variable in this region, as the valley filled with the threshold amount of water used for 

the model flood extent calculation. As in the previous case the impacts of assimilation were 

propagated from upstream to downstream, thus explaining the nearly identical BSS curves 

obtained for Sub-reach 1 at all the gauges. In contrast, the efficiency of assimilating in Sub-

reach 2 and 3 reduced at the gauges upstream of the assimilation locations. For instance, the 

 

Fig. 8.5 As for Fig. 8.3 except for the time window used for the BSS calculation. Here BSS is calculated from the 

assimilation time until the next image becomes available. As images are considered every 12 hours, this time 

window is restricted to 12h after each assimilation time step. 
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impact of assimilating in Sub-reach 2 remained consistent between the gauges located in Sub-

reach 2 and further downstream in Sub-reach 3, while the improvement on upstream gauges 

was reduced. Most of the images considered in Sub-reach 2 and 3 between 9th to 20th January, 

produced improvements in the mean squared errors of the assimilated forecast of >90 over the 

open loop (BSS>=0.9, see Fig. 8.5), indicating the feasibility of the proposed methods to reduce 

flood inundation forecast errors. 

The plots of the spatiotemporal mean RMSE in water depth, illustrated in Fig. 8.6, 

revealed that the largest global improvements were produced when assimilating in Sub-reach 

2, followed by Sub-reach 3 and 1. On 13th Jan, just before the flood peak arrived in Sub-reach 

2, the global spatial RMSE in WD reduced by ~40cm on averaged across the ~550,000 

modelled cells. In fact, even for assimilation in Sub-reach 1 the maximum error reduction was 

~20cm, highlighting that the assimilation of flood extent can effectively constrain the forecast. 

Maximum relative improvements were observed when the open loop exhibited higher errors, 

being from the time that the flood peak entered the domain, as also evident from Fig. 8.4. Local 

improvements were again maximum for Sub-reach 2 with a maximum reduction of ~70cm of 

error observed at the peak. Initial assimilation in Sub-reach 2 and 3 reduced the local average 

RMSE in water depth to almost zero until the next assimilation time step, suggesting that the 

12h lead time considered here falls within the window of system memory. Images considered 

after the peak in Sub-reach 1 had negligible impact on both, the global and the local water depth 

RMSE values. The optimum timing of images for assimilation that emerged from a spatial 

evaluation of the forecast, was different from what was identified from the BSS plots at the 

 

Fig. 8.6 As for Fig. 8.4 but for the time window used for the calculation of the spatiotemporal mean RMSE. Here, 

the time window used is the same as in Fig. 8.5, i.e. the 12h between one assimilation time step to the next. 



C h a p t e r  8  – S e n s i t i v i t y  t o  O b s e r v a t i o n s   P a g e  | 8-15 

 

 

point gauge locations. Improvement in the spatial objective function was maximum when the 

flood peak entered the domain and the distributed errors were the largest, i.e. images temporally 

located before and at the peak with respect to the inflow hydrograph. In contrast, those images 

the assimilation of which resulted in maximum improvements for the water level forecast at the 

gauges, were temporally located post peak with respect to the location specific hydrographs 

within the assimilation sub-domains.  

Images assimilated between 12th and 16th of January demonstrated a strong positive 

impact irrespective of the spatial location of the assimilation, although the impact was notably 

greater in the reaches exhibiting more hydrodynamic flow behaviour. In fact the images that 

performed best were those in which the extent varied the most between time steps, being when 

flows are beginning to transition from the channel to the floodplain. The results also support 

the hypothesis that the optimum temporal acquisition scenario would be different for each sub-

domain; specifically, in relation to the location of the assimilated image with respect to the 

catchment and reach hydraulic behaviour. Hydrodynamic sub-reaches with highly variable 

flows which are dominated by the errors of flood propagation but not significantly influenced 

by backwater effects, stand to benefit the most from flood extent assimilation efforts and should 

be targeted for observations. 

8.3.3.2 Impact of Revisit Interval on Multi-image Assimilation 

In this section multiple images were simultaneously considered, starting from different 

first-visit times across the flood event by carrying weights forward through multiplication. 

Moreover, the first-visit times were sequentially shifted forward by one revisit interval. For 

example, for the 12h revisit case first visit times started from 6th Jan 2011, with 33 images 

assimilated simultaneously, to 22nd Jan 2011 where only one image was assimilated. This 

experimental design was chosen to investigate the optimum combination of spatial location, 

first visit time, and revisit interval for improved flood forecast quality, when a rich satellite 

image database is available. The following sections examine the impacts on channel 

performance through Brier Skill Scores and on floodplain water depth simulation through the 

spatiotemporal mean RMSE water depth as in the previous sections. 

The BSS plots for the multiple image assimilation scenarios, with different first visit 

and revisit intervals of 12h, 24h, and 48h are illustrated in this section as Fig. 8.7, Fig. 8.8, and 

Fig. 8.9, respectively. It is evident from these plots that the assimilation of flood extent was 
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extremely sensitive to first visit time and to revisit intervals in this multiple image scenario, as 

particle weights are carried forward through multiplication. The plots represent the BSS values 

obtained when all images for the particular revisit frequency up to 22nd Jan were assimilated; 

the abscissa of each point corresponds to the first visit time, starting from which multiple images 

were considered. This implies that for each consecutive point on the curves the number of 

observations is one less than the predecessor. For the 12h revisit scenario in Fig. 8.7, a total of 

33 images were considered simultaneously at the first point of the curves on 6th Jan in each sub-

reach, although the first improvements were only observed when images were assimilated 

starting from of 9th Jan. The positive impacts of the assimilation increase from upstream to 

downstream. For instance, at the gauges of Sub-reach 1, the first positive impacts were observed 

only when images starting from and after the peak on 13th Jan were assimilated.  

Interestingly, the impacts of the assimilation were most consistently positive for 

assimilation in Sub-reach 1, implying a longer correlation window between extents in that 

region. This seems likely as the shape of the valley in that particular sub-domain does not allow 

for high variability in simulated extents over time. At Sub-reach 1, improvements from the 

 

Fig. 8.7 As for Fig. 8.3 but for the multiple image assimilation case with a revisit interval of 12h and weights 

carried forward by multiplication. Each point on each curve corresponds to the first visit time and the BSS obtained 

from the time of the last image assimilated on 22nd Jan 2011 00:00 until the end of the forecast. 
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assimilation seemed to increase because of using multiple images in comparison to the single 

image case. In contrast, the single image assimilation worked better in Sub-reach 2 and 3, where 

the flood extent is more variable and uncorrelated between time steps, with different particles 

performing well at different times. Simply put, the forward multiplication of weights does not 

work well as different particles perform better at different times throughout the flood event. 

Moreover, these results establish that assimilating images at all times and locations of the model 

domain does not guarantee a better result, and can even be significantly detrimental. 

The results for the 24h and 48h assimilation frequency are shown in Fig. 8.8 and Fig. 

8.9, respectively. Interestingly, the reduction in assimilation frequency from 12h to 24h and 48h 

did not have a large impact on the timing and magnitude of the maximum efficiency achievable 

through the assimilation. While the general pattern of the curves obtained for all of the sub-

reaches remained generally the same, the magnitude of maximum BSS for all the three Sub-

reaches declined. Moreover, the difference in the magnitude of BSS observed for different 

imaging frequencies was greatest for first visit times before the peak and decreased in the post 

peak images. The limited sensitivity to revisit frequency after the channel peak evident here, 

also corroborates the findings of previous studies investigating the optimum timing for SAR-

 

Fig. 8.8 As for Fig. 8.7 but for a revisit interval of 24h. 
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derived water level assimilation (García-Pintado et al. 2013). Assimilation impact for images 

considered within Sub-reach 1 was fairly consistent across all gauges in the domain. Images 

assimilated in Sub-reach 2 generally had a positive impact at the downstream gauges. However, 

at the gauges within the sub-domain or those located upstream, the impact of assimilating 

multiple images together at Sub-reach 2 and 3 was almost consistently negative. This is 

primarily due to the fact that the particles that are selected based on assimilation in these 

hydrodynamic sub-domains, do not perform well in the topography controlled sub-reach, 

implying that different particles perform better at reaches exhibiting different flow behaviour.  

8.3.3.3 Observation Correlation Length 

This section investigated the maximum observation correlation length for flood extent 

assimilation. Here correlation length is defined as the number of different observations which 

continue to select the same particles from the ensemble, implying that the observational 

information is correlated forward in time as some particles consistently perform well. This 

results in a larger positive impact on the forecast accuracy when the images are considered 

together through forward weight multiplication, as the weights of the well performing particles 

 

Fig. 8.9 As for Fig. 8.7 but for a revisit interval of 48h. 
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consistently increase. The maximum correlation length is then the number of observations 

which produce the maximum improvements in forecast accuracy when weights are multiplied 

forward. In other words, maximum correlation length is defined as the set of observations which 

produce the maximum improvement when the same well performing particles are repeatedly 

selected through the assimilation and assigned higher weights as a consequence of the forward 

weight multiplication. The difference between the observation correlation length and the 

maximum observation correlation length is simply that the latter case refers to the maxima 

observed in the former case. More simply, if the correlation between images from one time step 

to the next was temporally plotted, the number of observations which resulted in the largest 

value obtained for the correlation would be the maximum observation correlation length.  

Fig. 8.10 (a) and (b) illustrate the observation correlation length and maximum 

observation correlation length, respectively, with respect to the different first visit times 

considered throughout this chapter. For the purpose of this investigation, forecast improvements 

were quantified through Brier Skill Scores, from the time of the assimilation until the next time 

step. The duration of the time step following the assimilation varied according to the revisit 

intervals considered (ie. 12, 24, and 48h). Observation correlation lengths shown here thus 

quantify the maximum number of images that demonstrate a positive Brier Skill Score over the 

time window following the assimilation. Likewise, the maximum correlation length 

corresponds to the number of images where BSS is maximized. Note that the y-axis of the plots 

are defined in terms of the revisit intervals, therefore, observation correlation in terms of 

number of days can be directly interpreted from the second row of plots or by 

dividing/multiplying by the revisit interval. For example, for revisit intervals of 12h and 48h, 

the correlation length in terms of number of observations needs to be divided or multiplied by 

two respectively, in order to arrive at the time in number of days.  

The first thing that becomes clear from Fig. 8.10 is that the observation correlation 

length differs significantly from maximum correlation length for most times examined. With 

the exception of very early first visit times, the images being assimilated continued to have 

positive impacts for all the images considered together. However, as this plot does not highlight 

the magnitude of the BSS, it is reasonable to assume from the maximum correlation plots that 

the assimilation efficiency increased to a local maxima and then started to decline again.  
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Correlation length also varied with respect to the revisit interval under consideration, as 

well as the spatial location and timing of the observation. For instance, when considering a 

revisit interval of 48h, correlation length extended to the maximum number of images 

considered in the experiment, for all first visit times evaluated in Sub-reach 1 and starting from 

 

Fig. 8.10 Observation correlation lengths with respect to different first visit times and revisit intervals are shown 

in the left column (a) of this plot, with correlation length defined as the number of images for which sequential 

assimilation with weights carried forward through multiplication had a positive impact. Positive impact was 

defined in terms of the next 12h BSS as calculated in Fig. 8.5, with the main difference being that the weights for 

each image were multiplied forward in time. The right column (b) shows the number of images after the first visit 

at which the maximum improvement in the BSS was observed. The true stage at Lawrence is shown as a reference 

in all the sub-plots. 
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10th Jan for all the sub-reaches. However, when the revisit frequency increased such that 

multiple observations covered the highly variable transitioning flows during and after the 

channel peak, different particles were selected which did not perform equally well. Consider 

the 12h revisit case, in which the correlation length for Sub-reach 3 dropped quite noticeably 

for observations with first visit times between 14th and 18th Jan, i.e. during the channel peak. 

This effect reduced to just the 15th and 16th Jan for the 24h revisit and completely disappeared 

for the 48h case, as the number of observations during the channel peak decreased. In Sub-reach 

2, the correlation length fell to just 12h for the first visit on 11th Jan, being when the stage in 

the channel exhibits a steep increase within the next assimilation interval, indicating that the 

selected particles did not continue to perform well. Interestingly, the maximum correlation 

length for the same first visit time in column (b) was significantly longer ~7.5 days, indicating 

that the maximum positive effects from the multiple image assimilation could follow even after 

the first negative impacts were observed. 

For first visit times starting in the rising limb, maximum improvements were 

consistently observed in the falling limb, especially for Sub-reaches 2 and 3 exhibiting more 

hydrodynamic flows. In Sub-reach 1 where flows are predominantly kinematic, observation 

correlation length was higher as the extent contains effectively the same information after valley 

filling. The correlation length in this reach was also nearly equal to the maximum correlation 

length after the 12th of Jan, implying that the assimilation efficiency increases as more images 

are considered together with weight multiplication. This is also corroborated by the multiple 

image efficiency figures in the previous section, illustrating that the BSS in this reach was close 

to 1 for all first visit times starting from 12th Jan. A similar trend was not evident for the other 

two sub-reaches exhibiting more dynamic flows, as the transferability of observational 

information from one time step to the next was rather limited. In general, the maximum 

correlation length was longer in Sub-reach 2 than in Sub-reach 3 for all examined revisit 

intervals, specifically for first visit times starting in the early rising limb. The trend was reversed 

for the first visit times starting at the falling limb of the hydrograph, but this was only noticeable 

for the 12h revisit interval case. With the exception of first visit times starting on 6th Jan in Sub-

reach 3 for the 12h imaging frequency where maximum improvements were evident after ~10 

days, the average time for maximum correlation was ~5-6 days in Sub-reach 3 and ~7-8 days 

in Sub-reach 2. As previously noted, the variability in the values of observation correlation and 

maximum correlation length was maximum for the 12h case where the most number of time 
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slices were observed during the period of most variable flows, being during and around the 

peak. 

8.3.4 Maximum Possible Improvements through Flood Extent Assimilation 

The maximum improvements obtained through flood extent assimilation are quantified 

in Table 8.1. Specifically, for each sub-reach and each revisit interval, the average BSS across 

all the gauges in the catchment was computed. The maximum value obtained was identified 

along with the temporal scenario under which it was observed, for both the single and multi- 

image assimilation cases. Interestingly, the maximum BSS (~1 indicating 100% improvement 

in forecast accuracy over the open loop) that was observed across all cases, was obtained 

through assimilating multiple (11) images with a 12h revisit frequency in Sub-reach 1. 

Although, it should be noted that almost similar maximum BSS values were obtained for the 

12h revisit case in Sub-reaches 2 and 3, after assimilating 11 and 8 images, respectively. For 

Sub-reach 1, the ~100% improvement in the assimilated forecast was only achieved during the 

12h revisit case, while for the other revisit intervals the efficiency declined with increasing gap 

between observations. However, for Sub-reach 2 and 3 the maximum improvement achievable 

in the forecast after assimilating flood extents was only marginally different between the 

different revisit scenarios and was >99% in all cases.  

In general, the best performing first visit time for all sub-reaches was several days before 

the channel peak, for which the maximum improvement in mean squared errors in channel 

water levels represented by the BSS was observed a few days after the peak. Here the timing of 

the peak refers to the time at which the channel peak was observed at the hydrometric gauges 

located within that particular sub-domain. This implies that it would be expedient to consider 

when and where the most improvements in the inundation forecast accuracy are desired, in 

order to identify the optimum targeted observation design strategy for flood extent assimilation. 

In Sub-reach 1 the maximum improvement achieved through single image assimilation was 

only ~65% through an image assimilated in the falling limb. In contrast, a single post-peak 

image considered in Sub-reach 2 produced >95% improvements, while in Sub-reach 3 the 

assimilation of a single image in the rising limb led to >88% improvement. The difference 

between the assimilation of 11 12-hourly images in Sub-reach 2 and assimilating a single image 

was ~5%, which does not justify the expensive acquisition of 10 more images. This implies that 

in a budget-limited scenario, a single image assimilated at the right place (e.g. reaches with 
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hydraulic characteristics similar to Sub-reach 2) and at the right time (e.g. post-peak) can 

produce improvements comparable to assimilating multiple images. The importance of the 

observation spatiotemporal analysis shown here, is further highlighted for catchments with 

significant flood risk by the finding that assimilating a single image can produce improvements 

comparable to multiple images.  

Table 8.1 Summary table of maximum possible improvements in BSS for gauged water level simulations within 

the channel through flood extent assimilation. BSS values were averaged across all gauges 

Sub-

reach 

Reach 

Hydraulic 

Behaviour 

Dominant 

Flow 

Control 

Revisit 
Max. 

BSS 
First Visit 

Time of Max. 

Improvement 

No. of 

Images 

Assimilated 

I Kinematic Topography 

12h 0.9996 
08-01-2011 

12:00 

14-01-2011 

00:00 
11 

24h 0.9825 
10-01-2011 

00:00 

16-01-2011 

00:00 
6 

48h 0.8536 
10-01-2011 

00:00 

18-01-2011 

00:00 
4 

Single 0.6516 
15-01-2011 

12:00:00 
Full forecast 1 

II Hydrodynamic 

Inflows 

during the 

rising limb 

and flood 

propagation 

during the 

falling limb 

12h 0.9992 

09-01-2011  

00:00:00, 

10-01-2011  

00:00:00 

14-01-2011  

00:00:00, 15-

01-2011  

00:00:00 

11 

24h 0.9988 
12-01-2011 

00:00 

20-01-2011 

00:00 
8 

48h 0.9929 
14-01-2011 

00:00 

22-01-2011 

00:00 
4 

Single 0.9529 
15-01-2011  

00:00:00 
Full forecast 1 

III Hydrodynamic 

Tidal 

backwater 

effects 

12h 0.9994 
10-01-2011 

12:00 

14-01-2011 

12:00 
8 

24h 0.9979 
11-01-2011 

00:00 

17-01-2011 

00:00 
7 

48h 0.9955 
06-01-2011 

00:00 

12-01-2011 

00:00 
7 

Single 0.8846 
11-01-2011 

00:00 
Full forecast 1 
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Currently, scientists have limited control on when the image can be acquired, but an 

increasing number of spaceborne SAR sensors are rapidly contributing to changing this 

scenario. Since satellites can be tasked with the acquisition of specific flood observations under 

the International Charter on “Space and Major Disasters”, such spatiotemporal investigations 

are deemed necessary to optimise the benefits from flood extent assimilation in terms of 

improved forecast accuracy. 

8.4 Chapter Summary 

This chapter examined the sensitivity of the assimilation algorithm performance to the 

observation spatiotemporal characteristics. Images were assimilated at different points across 

the flood event in both single and multi-image assimilation scenarios, with spatial coverage 

being for one of the three sub-reach types identified from uniform flow behaviour through a 

DEM-based method. For the multi-image scenario, different first visit and revisit frequencies 

were considered, and impacts on forecast skill evaluated through the Brier Skill Score computed 

at nine gauges along the main stem of the channel. Furthermore, the spatial impact of the 

assimilation was quantified through spatiotemporal mean root mean squared error in the 

forecast floodplain water depth. The experimental results from this chapter demonstrate the 

sensitivity of assimilation performance to the spatiotemporal observation scenario. Results 

illustrated herewith also highlight that based on where the improvements are desired e.g. in the 

channel or in the floodplain, the optimum spatiotemporal observation scenario can differ. This 

chapter presented results concluding the final objective of this thesis. Following this Chapter 9 

implements the methods developed in this thesis to a real-world flood event in the Clarence 

Catchment, to assess the operational potential of the proposed algorithm. 

 



 

 

 
 
 

CHAPTER NINE  

 

“If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can 

equally well be instrumental in preventing a tornado.”  

 

- Edward Lorenz. In a talk presented at the 139th Annual Meeting of the American 

Association for the Advancement of Science, Washington DC, USA, on 29th Dec 1972. 

Press release published in Essence of Chaos (1995), Appendix 1, 181.
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9.   Real-data Application  

Chapter 7 demonstrated the potential of the proposed assimilation algorithm to 

reduce forecast inflow uncertainties, while Chapter 8 established that flood extent 

assimilation performance was sensitive to observation location, timing, and repeat interval. 

Here the ability to improve the modelled flood hydrodynamics when only hydrological 

forecast streamflow and SAR images were available was assessed through a real-world 

application, by applying the proposed flood extent assimilation framework to the 2011 

event in the Clarence Catchment. The fuzzy flood maps were derived using the methods 

developed in Chapter 4 and assimilated into Lisflood-FP in this experiment using the PF-

based flood extent assimilation framework of Chapter 6. Moreover, the real water level 

gauges along the main stem of the channel and the aerial photographs used in Chapter 4 

were used to evaluate the assimilation performance. This chapter concludes the testing of 

the assimilation framework proposed in this thesis, with Chapters 10 and 11 presenting 

conclusions from this thesis and future perspectives. 

9.1 Introduction 

Given that the assimilation of flood extents into hydraulic models is a novel research 

direction with only a few studies that have tested its potential through proof-of-concept 

type studies, the application to real-world scenarios has often been neglected. With the 

notable exception of Hostache et al. (2018), who applied a particle filter based assimilation 

scheme to improve flood forecasts in the Severn Catchment, UK, the direct assimilation of 

flood extents has been restricted to the evaluation of synthetic data and cases. For example, 

Cooper et al. (2019) show that the RMSE between the forecast and the truth can be reduced 

by more than ~95% within an idealised setting with synthetic topography, inflows, and 

observations, using their backscatter operator which directly assimilates SAR intensity. 
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However, they also acknowledge that the approach would only work well where the wet-

dry pixel distributions were well separated i.e. in regions of low SAR backscatter 

uncertainty. While the proposed approach is interesting and provides a new outlook on the 

assimilation of flood extents, the restricted applicability to areas of clear separation between 

flooded and non-flooded pixels, makes the operational potential of the algorithm quite 

limited. For global applications, acknowledging the uncertainty in observations is 

imperative to ensure that the methods can be applied universally. Moreover, studies have 

shown that observation errors may have large impacts on assimilation performance, and are 

also acutely sensitive to the choice of the observation operator chosen (Waller et al. 2018b).  

Synthetic studies are undoubtedly important to assess the potential of newly 

developed assimilation strategies in a controlled environment. However, real-world 

applications reveal the capability of algorithms to deal with the myriad of uncertainties that 

are added when dealing with actual observations, inputs, and boundary data. Accordingly, 

this chapter applies the proposed assimilation algorithm to a real flood event in the Clarence 

Catchment, after verifying its potential and sensitivity to observation characteristics 

through synthetic experiments in Chapters 7 and 8, respectively. The open loop ensemble 

was identical to the one employed for the synthetic experiments, with the assumption that 

during a real flood event, observed inflows will be unavailable. Therefore, the positively 

biased streamflow forecast from a hydrological model simulated for the synthetic 

experiments, will be the only dataset available for the hydraulic flood inundation 

modelling. Consequently, the question investigated through the real-world application 

presented in this chapter was, how close to the observed flow dynamics is it possible to get 

if flood extents are assimilated as and when they become available. The main difference 

from the synthetic experiments lies primarily in the extent and source of the assimilated 

observations, which in this case were the actual Cosmo-Skymed SAR images with limited 

spatial coverage (See Fig. 9.1). The following sections summarize the main findings from 

this experiment. 

9.2 Results and Discussion  

Results from the real-world application of the proposed assimilation strategy are 

presented here. In this experiment, real SAR observations of flood extents having limited 
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spatial coverage were used. The SAR images were converted to fuzzy flood maps using the 

approach outlined in Chapter 4, prior to their assimilation into the hydraulic model 

Lisflood-FP. This facilitated an evaluation of the proposed assimilation strategy for 

operational forecasting applications, by demonstrating its potential through an application 

to a real-world flood hindcasting problem. Forecast performance was first evaluated in 

terms of flood extent, using the optical aerial photographs described in Chapter 3. However, 

only the impact of assimilating Image I could be evaluated due to the timing of the aerial 

image acquisitions. This was followed by an assessment of the impacts on water level 

estimates within the channel using six hydrometric gauges along the main stem of the 

Clarence River available to this study (Locations shown in Fig.7.7). The satellite and aerial 

optical image coverage has been shown in Chapter 3, in Fig. 3.1 and Fig. 3.3, respectively.  

  

 

Fig. 9.1 Schematic of the real-world application of the proposed assimilation algorithm.  
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9.2.1 Impact on channel water levels 

The impact on channel water levels was first investigated, as several water level 

(WL) gauges were available along the main stem of the channel, with WL hydrographs 

presented in Fig. 9.2. The first observation was that the model calibration was inadequate, 

as the flood peak always arrived later than the observations for the open loop and the 

assimilated observations. This is due primarily to the calibration strategy used in this thesis, 

which relied solely on crowdsourced (CS) water levels. Although there is no direct 

relationship between the source of WL observations and the poor calibration, one possible 

reason for the wrongly simulated flood peak arrival time, is the lack of timing information 

on the CS data points. Recall that the water levels were derived from field photographs of 

wrack marks and high water marks, which provided maximum water depths but not the 

time at which they were observed. Consequently, when the maximum pixel-wise water 

depths simulated by the model were extracted and compared at the corresponding locations, 

information on when each of the model realizations should reach that depth value was not 

available. This explains why the shape of the hydrograph and the magnitude of the peak 

flow depth of the open loop and assimilated forecasts was similar to the observed values, 

yet differences of more than a day occurred in the flood peak arrival time.  

Another thing that becomes evident from the hydrograph comparisons is that even 

though a positive bias was enforced on the inflows, the model does not overestimate the 

peak channel water level at all gauges. For instance, at Ulmarra the peak flow depth for the 

open loop as well as the increased value obtained after the assimilation, were lower than 

the observed peak flow. This indicates an underestimated Manning’s, as a higher skin 

friction value would push the water height up. However, the lag in the arrival time indicates 

that the flood wave is travelling slower in the model than in the truth, which means that the 

friction value would most likely need to be calibrated and specified in a distributed fashion 

in this catchment. In fact, it appears as though the similarity observed in the channel water 

level peaks at Grafton, Brushgrove, and Lawrence was a function of the positively biased 

inflows, as otherwise the flows would have been further underestimated. Some of the 

observed differences in the non-uniform over- and under-estimation of flow values at the 

gauges, could also be explained by how the channel cross sections were specified in the 

model and in the real world. The temporal distance between the observed and simulated 

flood peaks increased from upstream to downstream as expected due to flood propagation 
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principles. For example, as the flood wave travelled from cell to cell in the domain and 

encountered the same incorrectly specified Manning’s roughness, the water was further 

decelerated and the momentum dropped, reducing wave propagation speeds with the effects 

compounded from upstream to downstream.  

 

Fig. 9.2 Channel water level time series at the gauge locations along the main stem of the Clarence 

River. 
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For every gauge location examined, the assimilation increased the positive bias on 

the water levels. The main reason for this was that the inundation in the post-peak SAR 

images used for the assimilation was larger than what any of the ensemble members or 

particles exhibited at the corresponding time steps, as the flood peak had not arrived by that 

time for any of the particles. Typically, this can be assumed to be a function of an 

 

Fig. 9.3 Plots showing the (a) Kling Gupta Efficiency or KGE, (b) the percentage improvement in 

the KGE, and (c) the Brier Skill Scores for the six gauges along the main stem of the Clarence 

River.  
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underrepresented ensemble spread, but in this case it was a function of the time lag in the 

model flood wave arrival time, due to which the ensemble could not encapsulate the 

observation at the corresponding time steps. Accordingly, the highest weights were 

assigned to those particles that significantly overestimated the extent based on the observed 

extent. This implied that particles with higher input inflows were selected through the flood 

extent assimilation, pulling the model trajectory up, as evident from the channel water level 

hydrographs. The magnitude of assimilation impact was consistent from upstream to 

downstream, and the observed forecast error degradation was found to be a function of the 

assimilation timing with respect to the gauge specific flood wave arrival time. For example, 

at Rogan’s Bridge where the assimilation time steps were just a few hours before the flood 

peak arrived, the relative degradation visible at each assimilation time step was greater than 

at Maclean where the arrival time was more than two days after the assimilation. There was 

a large difference in the magnitude of assimilation impacts between the first image and 

when both images were considered together (i.e. the distance between the red and the blue 

line versus the blue and dashed line in Fig. 9.2), which was nearly double across all gauges.  

The performance metrics used for the statistical evaluation of gauged water level 

hydrographs – the Kling Gupta Efficiency, the percentage improvement in KGE, and the 

Brier Skill Scores which quantify the improvement in Mean Squared Errors – are shown in 

Fig. 9.3 (a), (b), and (c), respectively . The KGE values for the open loop and assimilated 

forecasts increased from Rogan’s Bridge to Ulmarra and then started decreasing again for 

the gauges located further downstream. The magnitude of the degradation in the KGE 

resulting from the assimilation mirrored the pattern observed in the actual KGE values, and 

decreased until Ulmarra before starting to increase again. In contrast, the BSS plot did not 

exhibit clear trends with respect to the channel flow direction, implying that relative 

increase in assimilated forecast mean squared error with respect to the open loop was fairly 

constant across the domain. Average degradation in KGE values after the assimilation of 

the first image was ~4%, increasing to ~10% after the assimilation of both images on an 

average. Likewise, BSS values which can be interpreted as percentage change in MSE 

values, showed a degradation of ~7.5% at the first assimilation time step, which nearly 

tripled to ~21% after the assimilation of both images at the second time step. 

In order to test the hypothesis that the main reason for the degradation was the 

wrongly simulated flood wave arrival time, the images were assimilated into the open loop 
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after accounting for the lag in the peak and the relative image acquisition timings with 

respect to the hydrograph. The lag was estimated by calculating the time step at which the 

flood extents simulated by the truth model used in the synthetic experiments best matched 

the observed inundation. As the open loop was based on observed inflows, this simple 

method helped to identify the lag in the flood peak arrival time, which was identical across 

all the particles due to the specification of a single common calibrated channel roughness 

value. Based on this analysis the lag time in inundation extent was quantified as ~50h across 

the catchment on average, and accordingly, the images were assimilated lagged by 50h 

from their actual acquisition times for this test. It is important to note that the lag was 

considered in only the time steps where the images were assimilated, meaning that only the 

timing of the particles was shifted to accommodate the observation. It is also possible for 

the assimilation strategy to search across a time window as well as across the particles as 

another way to overcome this problem, and future work should investigate the development 

of an automated framework to accomplish this. Plots identical to the previous figures for 

the gauge assessment were generated to facilitate this assessment. Specifically, the channel 

water level hydrograph comparisons are shown in Fig. 9.4 and the performance evaluation 

metrics are illustrated in Fig. 9.5.  

It is immediately apparent that the flood extent assimilation produces positive 

impacts, confirming the hypothesis that the degradation previously observed is a function 

of the incorrectly simulated flood wave arrival time and not the assimilation algorithm. 

Model state trajectories were pulled down this time, reducing the positive bias in the 

forecast mean as expected. This experiment highlighted the importance of a well calibrated 

model and the need for updating parameters in addition to the states through flood extent 

assimilation. However, many studies have investigated the issue of hydraulic model 

calibration (Mason et al. 2003; Tarpanelli et al. 2013; Domeneghetti et al. 2014b; Wood et 

al. 2016; Gobeyn et al. 2017), and in this thesis the objective was to assess the potential of 

quantitative model calibration using crowdsourced data which had never been used before 

(Assumpção et al. 2018). Moreover, it was also desirable to avoid the use of the same data 

for the model calibration and then the evaluation of the assimilation, which could then bias 

the conclusions from the experiments. Furthermore, having the model perfectly calibrated 

would also have prohibited the assimilation from making any notable improvements, and 

thus restricting a more realistic evaluation of the framework.  
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The other option was to consider parametric uncertainty in the model ensembles, 

through a dual state-parameter assimilation framework. An initial attempt to include 

parametric and topographic uncertainties in the ensemble was made, but the ensemble size 

of 128 particles was inadequate for sampling across the entire state parameter space. To 

ensure that the spread captures the observations, the ensemble size needed to be increased 

substantially, which was not practically possible due to the computational expense of 

running hydraulic models operationally. Accordingly, the assumption that some of the 

particles or their weighted mean are close to the unknown “true” state failed in the case of 

dual state-parameter assimilation. Consequently, even the assimilation of observations was 

unable to nudge the forecast mean trajectory towards the truth because the ensembles did 

not encompass the true value. An investigation of ensemble generation methods which can 

optimize the sampling to ensure that the truth is included, was beyond the scope of the 

present research. Future research should therefore further examine this question and strive 

to develop optimized sampling methods, which can aid the representation of multiple state, 

parameter, and boundary data uncertainties within smaller ensembles. Further details on 

the choice of the ensemble size were provided in Chapter 7 in Section 7.2.2 Ensemble 

Generation. 

For the lagged hydrograph comparison, assimilation of the first image produced a 

large positive impact but adding the second image did not further improve the state 

trajectory by much, as evident from the difference between the solid blue and dashed 

magenta lines. This is also illustrated in the gauge statistics, where the assimilation of image 

one produced an average improvement of ~10% in the KGE and ~20% in the MSE as 

shown by the Brier Skill Scores but adding image two resulted in only a marginal increase 

in improvement. The primary reason for this is expected to be the close temporal spacing 

between the images at a time when the floodplain storage capacity was nearly full. This 

implies that either most of the particles behave similarly in this region of the hydrograph 

or that the same particles were selected by the assimilation of both images. As both the 

images are just after the peak with only a 12h gap between them, the latter is more plausible 

as only a few particles can be expected to perform well during similar flow conditions. 

Therefore, the likelihood of selecting the same particles between assimilation time steps is 

quite high when flows are not changing significantly. The trends observed in the magnitude 

of forecast improvements measured through the KGE from upstream to downstream were 

identical to the patterns demonstrated for the degradation, in the assimilation without the 
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consideration of the peak time lag. As in the previous case, the BSS exhibited no noticeable 

trends with respect to flow distance. Note that even in the lag adjusted case, the temporal 

distance between the observed and simulated flood peaks increased from upstream to 

downstream. 

 

Fig. 9.4 As for Fig. 9.2 but for the flood extent assimilation performed with consideration of the 

flood peak arrival time lag. 
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9.2.2 Impact on simulated inundation extent 

The impact on the forecast inundation extent was assessed using aerial photographs 

acquired close to the image acquisition time after assimilating the first CSK SAR image. 

The contingency maps comparing the open loop and assimilated forecasts to the aerial 

photographs are given in Fig. 9.6 and Fig. 9.7. The binary flood maps derived in Chapter 4 

for the reliability diagram assessment were used for the comparison to maintain consistency 

with the synthetic experiments, and because the model forecast extents were binary. The 

observed flood maps were aggregated from ~10cm to 90m to allow for a one-to-one 

comparison with the model cells. Note that of the 543,222 total modelled cells, the 

maximum wet cells for all model realizations averaged ~63,500, with the coverage of the 

aerial photographs being only 3,929 pixels or 0.7% of the domain.  

Table 9.1 Contingency matrix evaluating the forecast flood extent maps against the corresponding 

extents simulated by the truth model, at the first assimilation time step. 

No Lag Junction Hill  Ulmarra 

  Open Loop Assimilation Open Loop Assimilation 

  MF MNF MF MNF MF MNF MF MNF 

OF 615 2 615 2 1802 3 1804 1 

ONF 465 568 543 490 502 29 507 24 

CSI 0.568 0.530 0.781 0.780 

%age imp. CSI -6.724 -0.106 

Kappa 0.475 0.400 0.079 0.067 

%age imp. 

Kappa 
-15.678 -15.099 

OF=Observed Flooded; ONF=Observed Non-Flooded; MF=Modelled Flooded; 

MNF=Modelled Non-Flooded; CSI= Critical Success Index 
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The contingency maps revealed almost no visible differences between the 

assimilated and open loop forecasts at both Junction Hill and Ulmarra, although closer 

examination revealed some increase in False Alarms at Junction Hill after the assimilation. 

This degradation can be explained by the wrongly simulated flood peak timing as well. Due 

to the selection of particles with higher flows when trying to match the observed post peak 

 

Fig. 9.5 As for Fig. 9.3 but for the lagged assimilation accounting for the delay in the flood peak 

timing.  
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images at a time when the peak had not yet arrived for most particles, the corresponding 

inundation extents were also larger.  

Note that this discussion pertains to the models before the peak lag adjustment. This 

is also evident from the significant over prediction observed at both the evaluation sites, 

and the relative increase in overestimation of extents after the assimilation. The inundation 

in the open loop forecast mean even before the peak was much higher than the observed 

flooded area. The artificially enforced positive bias in the inflows, used to replicate the 

 

Fig. 9.6 Contingency maps comparing the forecast versus observed flood extents derived from the 

aerial photographs of Junction Hill, for the open loop and assimilation runs at the first assimilation 

time step. 

 

Fig. 9.7 As for Fig. 9.6 but for the Ulmarra region. 
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typical nature of errors observed in forecast streamflow obtained from coupled numerical 

weather prediction and hydrological models, led to a large number of false alarms in the 

open loop. 

Examining the pixel statistics from the contingency matrix presented in Table 9.1 

it can be observed that the assimilation had a negative impact for both evaluation sites. At 

Junction Hill, the values of the CSI and Kappa statistics were low and quite close to each 

other. The assimilation of image one introduced degradations of ~6% and ~15%, 

 

Fig. 9.8 Contingency maps comparing the forecast versus observed flood extents derived from the 

aerial photographs of Junction Hill, for the open loop and assimilation runs at the first assimilation 

time step after considering peak time lag. 

 

Fig. 9.9 As for Fig. 9.8 but for the Ulmarra region. 
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respectively. At Ulmarra the CSI values were spuriously high as the extent was 

significantly over predicted and almost the entire area covered by the aerial photograph was 

simulated as wet. This is in line with previous studies on binary pattern matching measures 

and their bias towards models which over estimate extents (Wealands et al. 2005; Stephens 

et al. 2012, 2014; Stephens and Bates 2015; Landuyt et al. 2018). Moreover, the low values 

of Kappa highlight that a large percentage of the match apparent in the simulated and 

observed extents can be explained by random chance because of the skewed class 

distributions in the binary maps. The problems with the statistics notwithstanding, the 

assimilation degraded the values for both the CSI and the Kappa, although due to the CSI 

being positive biased towards models which over predict, the percentage degradation 

observed at Ulmarra was nearly negligible.  

An analysis similar to the water level hydrographs was carried out in this case as 

well. The particle weights obtained by assimilating the images after considering the peak 

time lag were used to compute the weighted mean flood extents, which were then evaluated 

against the inundation observed in the aerial photographs. Fig. 9.8 and Fig. 9.9 show the 

Table 9.2 Contingency matrix evaluating the forecast flood extent maps against the corresponding 

extents simulated by the truth model, at the first assimilation time step after considering peak time 

lag. 

Lagged Junction Hill  Ulmarra 

  
Open Loop Assimilation Open Loop Assimilation 

MF MNF MF MNF MF MNF MF MNF 

OF 594 23 580 37 1802 3 1794 11 

ONF 232 801 188 845 502 29 465 66 

CSI 0.700 0.720 0.781 0.790 

%age imp. CSI 2.980 1.179 

Kappa 0.691 0.722 0.079 0.169 

%age imp. 

Kappa 
4.549 113.660 

OF=Observed Flooded; ONF=Observed Non-Flooded; MF=Modelled Flooded; 

MNF=Modelled Non-Flooded; CSI= Critical Success Index 
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contingency maps for Junction Hill and Ulmarra, respectively, while the confusion matrix 

and the corresponding statistics have been summarized in Table 9.2. Note that the time step 

at which the simulated extents were extracted for the evaluation in this case have also been 

lagged from the actual aerial image acquisition time to account for the flood wave arrival 

lag. The process used to identify the lag was the same as before, the relative position with 

respect to the hydrograph was quantified through comparisons with the synthetic truth or 

calibrated model used in Chapter 7. 

Adjusting the arrival time lag in the model ensembles allowed for a better 

comparison with the evaluation data, as evident from the contingency maps. The previously 

observed large overestimations nearly disappeared at Junction Hill, while at Ulmarra the 

difference was not as obvious but became apparent upon closer examination. The over 

prediction visible next to the channel in the open loop as well as the assimilated forecast at 

junction Hill in the north east quarter of the maps can also be thought to be a function of 

the binarization of the evaluation maps. Recall from the aerial photo figures shown in 

Chapter 4 that this region was most likely covered with floating vegetation. The observed 

values of inundation had therefore been interpolated in this region for the fuzzy image 

matching, as the underlying flooding was uncertain. When the fuzzy aerial flood maps were 

binarized with a 0.5 threshold that embodies the maximum entropy, some of the uncertain 

wet pixels were hard classified as non-flooded whereas in reality their wet-dry status is 

uncertain. Nevertheless, the assimilation reduced false alarms along the eastern edge of the 

maps at Junction Hill and near the river bank at Ulmarra.  

Summary statistics from the confusion matrices corroborate that the false alarms 

were indeed reduced as a consequence of the assimilation, leading to an increased 

agreement with the observed aerial photo based flood maps. Specifically, the assimilation 

of the first image improved the values of the CSI and Kappa statistics at Junction Hill by 

~3% and ~4.5% respectively, while at Ulmara the values improved by ~1% and ~114%, 

respectively. Absolute values of the Kappa were very low at Ulmarra, thus explaining the 

more than hundred percent improvement after the assimilation. The relative increase in the 

Kappa was also greater at Junction Hill, as even though the Kappa corrects for expected 

agreement, the simulation of correct rejects is also given some weightage unlike in the CSI. 

As the assimilation primarily reduced false alarms by correctly rejecting them and even 

introduced some missed pixels, the relative improvements in CSI were limited at both 
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evaluation sites. Nevertheless, the magnitude of the reduction in over prediction was greater 

than the increase in under prediction, resulting in improved values for both statistics at both 

the evaluation sites. Overall the assimilation impacts on the simulated inundation extent 

were verified to be positive by this analysis, establishing the potential of the algorithm 

proposed in this thesis for operational inundation forecasting applications.  

9.3 Chapter Summary 

This chapter applied the flood extent assimilation algorithm proposed in this thesis 

to a real-world situation and evaluated the performance against actual observations. The 

experimental design and the performance metrics used were identical to those used in the 

synthetic experiments for the same variables. Assimilation impacts were evaluated in terms 

of simulated flood extent through aerial photographs and channel water levels through 

hydrometric gauge observations. Due to an inadequate hydraulic model calibration, the 

forecasts could not capture the flood peak timing correctly, however the overall effects of 

the assimilation were positive when the lag in the simulated flood peak arrival time was 

considered. Assimilating the first image which was just after the peak had passed at the 

gauges located within the observational coverage, had a notable and consistent positive 

effect on the channel water level forecast, corroborating the findings from both Chapters 7 

and 8. The relative forecast improvement on adding the second image was not significant, 

in contrast to what was observed in Chapter 7. In terms of the flood extent, only the 

assimilation of the first image could be evaluated due to the acquisition timing of the aerial 

imagery. Estimation of inundation extents was improved at both evaluation sites, after 

considering the peak timing lag. These results demonstrate that the flood extent assimilation 

algorithm proposed in this thesis successfully reduced flood forecast uncertainties for a 

real-world application. 
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CHAPTER TEN  

 

“Our imagination is stretched to the utmost, not, as in fiction, to imagine things which 

are not really there, but just to comprehend those things which 'are' there.” 

 

- Richard P. Feynman, In “Surely You're Joking, Mr. Feynman!” - Adventures of a 

Curious Character (1985). 
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10.   Conclusions 

This thesis investigated the potential of SAR-based flood observations to improve 

hydraulic flood inundation forecasts using a novel particle filter based flood extent 

assimilation scheme. The hydraulic model was initialised using an ensemble of uncertain 

inflows, simulated to imitate those from a hydrological streamflow forecast model, and the 

ensemble of inundation maps generated evaluated against SAR-derived flood extents at 

assimilation time steps when available, using a novel reliability diagram based cost 

function. The assimilation of SAR-derived flood extents was used to update the model 

trajectory to account for forecast inflow and hydraulic flood inundation model errors. The 

principal aim of this thesis was to develop a methodology for improved near real-time 

estimation and forecasting of flood inundation by using a combination of SAR-based flood 

extent and a hydraulic model. Specifically, the following objectives were addressed: 

➢ Improved operational single image SAR-based flood mapping.  

➢ Use of crowd-sourced water levels for quantitative hydraulic model calibration. 

➢ A new cost function for flood extent assimilation.  

➢ The sensitivity of assimilation performance to observation spatiotemporal 

characteristics. 

This thesis is the first to optimize the assimilation of SAR-derived flood extents into 

hydraulic models, to maximize the possible improvements in inundation forecast accuracy. 

Therefore, an effort was made to introduce operational process and/or improvements at 

every major step. This chapter outlines the progress made towards achieving this goal and 

is divided into four parts aligned with the specific objectives above. 
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10.1 SAR-based Flood Extent Mapping 

While texture is often utilized in SAR based flood mapping approaches it has 

seldom been optimized within this context, to derive the maximum possible pattern 

information in a minimum number of bands and reduce subjectivity in window size, 

direction, and texture feature selection. An approach to optimize omnidirectional GLCM-

based image features, derived using the range of the spatial autocorrelation as the window 

size, was proposed through an Independent Component Transform. The optimized texture 

bands were added to the SAR image pre-classification using a Gaussian neuro-fuzzy 

classifier, which resulted in reduced uncertainties. The classification performance was 

evaluated against the addition of arbitrarily selected texture features, and without any 

texture addition to SAR. Results indicate that the texture optimization approach was able 

to extract the most useful texture information, showing drastic error reductions over the 

other approaches tested. The proposed approach was evaluated at two validation sites 

situated in the Clarence catchment, Australia - Junction Hill and Ulmarra - for which aerial 

photographs were available close to the time of acquisition of one of the SAR images. 

Accuracy was evaluated using a fuzzy set approach and through reliability diagrams based 

on pixel count ratios. Pixels for individual land cover classes were subsequently extracted 

and the classification performance within each class quantified. This led to the following 

findings: 

• Texture based image enhancements represent a viable approach to improve flood 

mapping from single SAR images, leading to a reduction in uncertainties particularly 

in water look-a-like regions e.g. smooth urban surfaces like tarmac. The addition of 

optimized texture therefore ensured that linear urban features like roads were not 

wrongly detected as flooded in the Junction Hill region. 

• The addition of optimized texture also led to decreased classifier sensitivity due to 

speckle noise, corroborated by a notable shift in pixels from uncertain to more certain 

bin values in the reliability diagrams. The study also demonstrated that the use of 

randomly selected texture features could actually degrade flood mapping accuracy, 

highlighting the importance of the proposed texture optimization. 
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• The neuro-fuzzy classifier was able to characterize backscatter uncertainties through 

the use of fuzzy membership functions, while the model selection and testing phase 

also explicitly defined the classification uncertainty. 

• A fuzzy set validation approach was introduced, for the first time, to assess SAR-based 

flood maps. While these methods cannot replace more traditional approaches like 

reliability diagrams, which provide a detailed assessment of over- and under-prediction, 

they can complement the evaluation strategy to make the validation more robust. 

Moreover, the fuzzy set approach presents a unique opportunity to represent the 

uncertainties in the validation data and measure the performance while remaining 

cognizant of these errors. 

10.2 Hydraulic Model Calibration using Crowd-sourced Data 

The use of crowd-sourced water levels for a quantitative calibration of a 2D-hydraulic 

flood inundation model has never been attempted before. The channel roughness parameter 

for the hydraulic model Lisflood-FP was calibrated using a collection of 32 distributed 

floodplain water levels, derived from crowd-sourced field photographs of high water marks 

whose timing of acquisition was unknown. Assuming that these were representative of the 

maximum water depth throughout the associated model grid cell, quantitative performance 

measures were used to estimate absolute and relative model errors, to demonstrate the 

potential for application to data sparse regions. As a first step of model verification, the 

calibrated parameter value was inter-compared with similar information derived from 

hydrometric gauges, demonstrating that crowd-sourcing could be a viable data collection 

option. Further, plots of the maximum water depths simulated by the calibrated model 

against those obtained through crowd-sourcing and gauges revealed only minimal 

deviations from the observations. Finally, the inundation extent simulated by the calibrated 

model was evaluated against an optical remote sensing image, demonstrating acceptable 

agreement. The experiments presented in this thesis towards this particular objective, led 

to the following conclusions: 

• This study showed that it is possible to use a limited number of accurate crowd-sourced 

water levels to constrain a 2D-hydraulic model. Crowd-sourcing can thus be used to 

support remote sensing data in ungauged or flashy catchments.  
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• The methods developed in this thesis can easily be extended to large volumes of crowd-

sourced data, albeit the availability of an associated time stamp and geolocation is 

deemed necessary.  

10.3 Flood Extent Assimilation Algorithm  

A novel cost function based on the concept of mutual information was introduced 

in this thesis. This cost function quantified the reduction in uncertainty about the 

observations given the model prediction. Each particle representing a particular model 

realization with a unique erroneous inflow input was evaluated against a probabilistic 

observation and assigned a global weight using the mutual information at each assimilation 

time step. The erroneous inflows were generated based on the 2011 flood event in the 

Clarence Catchment, with the assumption of being generated from a hydrological model. 

Temporally correlated variance changing errors with a positive multiplicative bias were 

thus emulated, to imitate hydrological streamflow forecasts generated from forecast 

precipitation datasets. The efficiency of the proposed assimilation algorithm was 

demonstrated through synthetic and real world experiments. Experiments using synthetic 

observations generated at the same time and with the same error characteristics of the actual 

CSK SAR images, evaluated assimilation impacts on flood extent, floodplain water depths, 

floodplain flow velocities, channel depth, and flow. Results were assessed against the 

“truth” model set up with observed inflows and the best available topography, downstream 

boundary, and parameters. Real experiments using the same open loop ensemble and actual 

SAR-based fuzzy flood maps, evaluated assimilation performance against independent 

aerial photographs and hydrometric water level gauges along the main stem of the Clarence 

River. The following key conclusions could be drawn from this study: 

• Improvements observed in flood extents after the assimilation, assessed through binary 

pattern matching measures, were limited in magnitude. This might be a function of the 

1cm threshold used for the flood extent delineation as not many cells change their wet-

dry status at every time step. Moreover, as the open loop is positively biased the binary 

pattern matching measures also lose sensitivity as all the models over predict.  

• Simulated water depths were evaluated both in the channel and in the floodplain. For 

each case there was an improvement of more than 40% when the cumulative impact of 



C h a p t e r  1 0  –  C o n c l u s i o n s    P a g e  | 10-5 

 

 

both images was considered. The synthetic assessment of forecast flow velocities in the 

floodplain show that the assimilation efficiency increased with lead time, as the 

momentum in the model domain builds over time. Correcting at a point after the peak 

where the images considered here were located, is thus able to effectively constrain the 

model flood propagation which dominates inundation patterns at this stage. Impacts on 

channel discharge and water depth were consistent from upstream to downstream and 

only differed in absolute magnitudes not in relative performance.  

• Improvements on spatial simulation of water levels and velocities were only evaluated 

for lead times of up to 72h, with improvements remaining consistent over the duration 

of the analysis. For the hydrograph assessment of channel flow and depth, minor 

improvements could be observed until up to 7 days after the assimilation time steps, 

although the magnitude decayed with lead time. This was perhaps a consequence of the 

post-peak timing of the observations available, as the inflow errors continuously being 

added to the domain reduce from this point and so the forecast quality is dominated by 

the influence of flood propagation.  

• The assessment of channel discharge revealed that the assimilation was able to correct 

for unsystematic bias, as it pulled the forecast trajectory towards the truth irrespective 

of the direction of the bias. This implies the observation is able to facilitate the selection 

of particles that perform well across the entire domain for post-peak images. The 

confidence in the ensemble size with respect to the uncertainty in the open loop was 

also substantiated, as the assimilation performance revealed adequate sampling within 

the state-space. 

• The assimilation of SAR-derived flood extents is able to improve hydraulic flood 

inundation forecast skill in spite of it being a prognostic state variable of hydraulic 

models. For example, both for the synthetic and real experiments the assimilation was 

able to improve forecast skill consistently and persistently in the channel and in the 

floodplain. This implies that the assimilation of flood extents into hydraulic inundation 

forecasts could be significant from an emergency management perspective.  

• For the real experiment the assimilation degraded the forecast from that of the open 

loop, as the flood wave arrival time was not effectively captured. This was a direct 

consequence of the lack of timing information on the crowd-sourced water depth 

observations used for the channel friction calibration. However, when the lag in the 
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ensemble was considered the assimilation algorithm improved the forecast for both the 

inundation extent as well as the point gauge locations. 

The assimilation algorithm proposed here not only introduced the principles of 

information theory to hydraulic data assimilation, but through a synthetic experiment 

evaluated for the first time the impacts of the assimilation on all of the state variables. 

Moreover, the distributed spatial impact on simulated floodplain water depths and 

velocities, along with the evolution of these errors over different lead times, was examined 

for the first time.  

10.4 Observation Spatiotemporal Sensitivity Analysis 

This section presents the major conclusions from the sensitivity analysis of the 

assimilation performance to the observation spatiotemporal characteristics. Three sub-

reaches of the Clarence River exhibiting uniform flow behaviour, were experimentally 

identified through DEM-based methods. Images were assimilated at each sub-reach at 

different points across the hydrograph. Impacts on the entire model domain and within the 

observed sub-domain were subsequently evaluated. Brier Skill Scores and spatiotemporal 

mean RMSE in floodplain water depth from single and multiple image assimilation 

experiments were presented, implicitly comparing the performance of the assimilated 

forecast to the open loop. Results revealed the following major findings: 

• The assimilation efficiency was extremely sensitive to the spatial location and timing 

of the image. Specifically, the coverage of the images with respect to reach hydraulic 

characteristics and flood wave arrival time were found to be important governing 

factors for the assimilation efficiency. For example, the assimilation of images in Sub-

reach 2 and 3, which exhibit more diffusive flow behaviour, demonstrated an almost 

similar response while the assimilation effects observed in Sub-reach 1 differed 

significantly. 

• Improvements at gauge locations within the assimilation sub-domain were maximum 

when the images were acquired at and after the peak arrival time in the particular sub-

reach. However, for spatial water depth simulation improvements, the best performing 

images were those acquired just before and after the inflow peak timing.  
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• Assimilation efficiency increased from upstream to downstream for the gauges, which 

is in line with expectations. In numerical models, as one erroneous value is computed 

based on another for each subsequent grid cell encountered in the flow direction, errors 

are typically amplified from upstream to downstream. The main reason being that the 

errors are added to the system through the inflow boundary, and are then propagated 

through the numerical model towards the downstream end. This is consistent with the 

synthetic experiments of Cooper et al. (2018) who showed that the assimilation of 

satellite-derived water levels has more persistent impacts in longer domains, especially 

downstream of the observation location. 

• When multiple images were assimilated the timing of the first visit as well as the 

observation correlation length were critical to ensure that the forecast was not degraded 

by the assimilation. In general, the observation correlation length was a function of the 

first visit time and reach hydraulic behaviour. For example, in Sub-reach 1 the 

assimilation resulted in greater improvements when a larger number of observations 

were considered together through weight multiplication However, in the other more 

hydrodynamic sub-reaches, as the inundation response of the floodplain with respect to 

the channel was highly non-linear, this correlation typically dwindled after a few time 

steps. Different particles performed well at different times and were therefore selected 

by the assimilation. The sensibility of multiplying the previous observation weights 

thus decays rapidly during the peak flow as the extent variability in the domain is 

maximized. Moreover, the experiments highlighted that the observation correlation 

length, or the time for which the weight multiplication continued to produce positive 

results, could be starkly different from the time at which the maximum improvements 

were observed. This implies that the temporal observation correlation, increases to a 

local maxima and then starts to drop again. 

• An analysis of the maximum improvements possible through the flood extent 

assimilation revealed that the difference between assimilating a single image and a set 

of eleven images at Sub-reach 2 resulted in only slight differences in the forecast skill. 

This implies that the assimilation performance was mainly limited by the timing and 

the spatial location of the image used for the assimilation. This is an important 

conclusion and implies that optimizing the spatiotemporal observation characteristics 

could potentially result in more cost effective SAR acquisitions to support flood 

forecasts. 
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Overall, this experiment conclusively showed that the assimilation algorithm is 

sensitive to the location, timing, and frequency of the observations. Moreover, the study 

also demonstrated that the assimilation of a single SAR image can produce impacts similar 

to those from multiple acquisitions. 



 

 

 

 

CHAPTER ELEVEN  

 

“Imagination is more important than knowledge.” 

 

Albert Einstein (2015). “Bite-Size Einstein: Quotations on Just About Everything from the 

Greatest Mind of the Twentieth Century”, p.32, St. Martin's Press 
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11.   Perspectives 

This thesis has developed innovative methods to improve the accuracy of flood extent 

delineation from single SAR images and to subsequently use these to enhance hydraulic flood 

inundation forecasting skill. Although the methods presented here are novel, the experimental 

results revealed that many open research questions still remain. This chapter briefly outlines 

some of these scientific challenges, which future studies in this direction should endeavour to 

investigate. The chapter is divided into four sections in line with the stated objectives and 

structure in Chapter 10. 

11.1 SAR-based Flood Extent Mapping 

The texture optimization and neuro-fuzzy classification approach proposed in this 

thesis successfully improved flood detection capabilities when only a single SAR image of the 

event is available. This assumption of data availability is typically true in most operational 

cases. Although the use of a supervised classification technique requires the use of manually 

selected training data at the moment, this can be automated by using a combination of image 

segmentation, thresholding and region growing, by extending the methods proposed by Matgen 

et al. (2011). Once the semivariogram ranges have been precomputed for available SAR 

sensors, and the training process has been automated, the proposed approach could be 

operationally implemented. Moreover, if additional data are available, they can be utilized to 

further refine the resulting flood maps. However, it is important to choose appropriate ancillary 

data for post classification map refinement, to ensure that correctly identified flood pixels are 

not removed from the analysis. For instance, the use of Height Above Nearest Drainage models 

(Rennó et al. 2008; Nobre et al. 2016) to remove areas of “unlikely” flooding based on terrain 
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indicators, risks the removal of pixels inundated through pluvial processes, and therefore 

should be used with caution. Future work towards single SAR-image based flood extent 

mapping should aim towards answering some of the following challenges which still remain: 

• The training of the supervised classifier requires manual intervention at this point 

which could be automated in the future using self-learning convolutional neural 

networks, by extracting sample training pixel locations from global surface water 

extents maps. 

• In the case of some texture bands, the nature of fuzzy membership functions may 

deviate from the Gaussian distribution, and thus the sensitivity of this textured approach 

to the use of different fuzzy membership functions needs to be investigated. 

• Topographic information from the DEM can be added along with the texture bands, 

within the neurofuzzy classifier, to further increase the information content. 

• Contextual information about neighbouring pixel classes can be expected to further 

enhance the classification outputs, and thus misclassifications or fuzziness within 

homogeneous image segments can be further reduced. 

• The potential of the fuzzy kappa statistic needs to be further demonstrated through 

testing different neighbourhood influence functions, different resolution SAR images, 

and different algorithms. 

11.2 Crowdsourced Observations in Hydraulic Modelling  

This study presented a first attempt towards quantitative flood model calibration using 

crowd-sourced water levels. The experiments detailed in this thesis successfully demonstrated 

the utility of crowdsourced data for channel roughness parameterization of hydraulic models. 

Pressing research questions include: 

• The objective quantification of the often subjective uncertainties in crowdsourced data is a 

significant challenge. As the data are usually sourced from human sensor networks, a 

variety of socio-cultural or even mental health factors can alter the accuracy of the data 

eventually acquired. Hydrological data sources, and therefore scientists, have never dealt 

with uncertainties of this nature, which makes the characterization of these uncertainties 
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extremely difficult. In the future, it might help to borrow ideas from the emerging field of 

socio-hydrology or encourage collaborative interdisciplinary investigations to improve the 

value of these data. 

• Another significant challenge is the data collection process itself, which can be classified 

into direct and indirect active citizenship, which as the names suggest respectively refer to 

whether the data was purposefully collected for an experiment or volunteered. As one 

would imagine, the data that is directly collected meets predefined quality standards and 

can immediately be utilised to support experiments. However, the vast multitude of 

volunteered data available on social media sites during an emergency, for instance, is still 

not utilised to its full potential. The primary reason for this is the lack of appropriate 

methods to automatically derive quantitative information, e.g. water levels which can 

directly support hydraulic modelling. Developing maturity in these methods require 

interdisciplinary efforts in collaboration with computer scientists, where there has been 

evolutionary progress in semantic analysis and computer vision, which can help to parse 

text and images respectively into useful information. Tapping into this repository of 

volunteered geographic information, can significantly alter flood preparedness and 

management practices in the dense populated urban centres around the world, where flood 

risk has increased manifold in recent decades (Jha et al. 2011). 

• Finally, methods to deal with the large uncertainties in these crowd-sourced observations 

need to be explored. For example, in case of uncertain data in terms of the water level 

estimates, approaches suggested by Hostache et al. (2009) could be used, where the model 

is forced to lie within observation error limits rather than replicate the measurements. 

While in the presence of geolocation errors, the approach of Schumann et al. (2008) could 

be used to shift the pixel randomly in all directions within the limits of the horizontal 

accuracy. This helps to derive a range of possible uncertain values which can then be 

utilised using the aforementioned technique of Hostache et al. (2009).  

11.3 Optimizing Flood Extent Assimilation 

This thesis presented a first attempt towards optimizing flood extent assimilation to 

maximize forecast skill improvements in inundation patterns generated by hydraulic models. 
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First, a novel flood extent assimilation algorithm was designed and then its sensitivity to 

observation spatiotemporal characteristics was evaluated. Results demonstrated the potential 

of the proposed flood extent assimilation algorithm to reduce forecast uncertainty, with 

persistent improvements for up to a week. Research on hydraulic data assimilation of flood 

extents is very new and many scientific challenges remain:  

• Ways to interpret modelled water depths as fuzzy flood extents need to be developed so 

that the fuzziness can be incorporated into the assimilation cost functions. Binarization of 

the water depth maps into extents reduces the available information content. For example, 

for areas in which high resolution DEMs are available over the entire domain, this could 

be achieved by fitting a linear function to the elevation values observed in each modelled 

grid cell, and used to assign fuzzy values of flooding to each pixel (Pappenberger et al. 

2007b).  

• Methods to adequately encompass larger uncertainties within smaller model ensembles 

need to be developed, due to the computational effort required to run hydraulic flood 

inundation simulations. This inhibits the inclusion of uncertainties from channel geometry, 

floodplain topography, and distributed friction parameters, as then the size of the state 

parameter space would become too large to sample from efficiently using just 128 particles. 

Any assimilation efforts can only be as good as the quality of the particles, as the 

assumption is that the truth is somewhere included in the ensemble representation. This 

may require the use of forward state sensitivity methods which allow the estimation of 

optimum state-parameter perturbations dynamically in an online fashion (Lakshmivarahan 

and Lewis 2010). Such investigations will be especially relevant for operationalizing these 

flood extent assimilation techniques on global flood forecasting platforms. 

• The integration of hydraulic flood inundation forecasts with other alternative data sources 

such as, point observations of water levels and velocities from crowdsourcing, depth 

Doppler maps of inundation from GNSS reflectometry, and water level maps from SWOT 

also needs to be considered when designing future assimilation frameworks. 

• Machine learning can offer several advantages when applied to the problem of model-data 

integration, particularly in terms of computational efficiency in real-time (once the 

integration model has “learned” the data characteristics) as compared to some advanced 

filtering techniques. However, since the algorithm has no knowledge of the model physics, 
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a key benefit of data assimilation which lies in the bridging of observations using system 

dynamics might be lost (Lahoz 2010; Keith Beven, personal communication). Indeed, this 

might lead to negligible impacts in practice, but extensive benchmarking against 

established assimilation methods is necessary to evaluate the universality and potential of 

such methods.  

11.4 Observation Spatiotemporal Sensitivity 

The critical impact of observation location, timing, and interval on flood extent 

assimilation performance was also demonstrated in this thesis. Synthetic experiments were 

designed where flood extent was assimilated at hydraulically uniform reaches at different times 

across the hydrograph. Impacts on the entire model domain were quantified, which revealed 

that observations acquired at the peak or earlier could be significantly detrimental to the flood 

forecast quality. Moreover, reaches with high variable hydrodynamic flows were identified as 

locations of interest for flood extent assimilation, i.e. the inundation forecast quality could 

benefit most from observations in these reaches. This investigation was the first of its kind for 

flood extent assimilation, and future research should also examine: 

• The impacts of different input data and parametric uncertainties on the optimum satellite 

acquisition location, timing, and frequency need to be quantified. Intuitively, the reaches 

which exhibit hydrodynamic out of bank flows, should benefit most from the assimilation 

in any scenario. However, in the case of localized errors in topography and/or channel 

geometry, model forecasts can be degraded if the observations are centred over a highly 

erroneous sub-region, as Andreadis and Schumann (2014) found for water level 

assimilation. It will especially be interesting to understand how targeted observation 

designs should change to accommodate the dominant sources of uncertainty in a catchment. 

This could lead to more tailored and accurate flood inundation forecasts.  

• Methods to pre-emptively select only the most informative observations for the 

assimilation should be explored, as the coverage of flood events from satellite data is only 

expected to increase in the future. When multiple images are available, incorporating them 

all within the forecasting chain, does not necessarily lead to forecast improvements as this 

thesis demonstrated. Accordingly, the utilization of a limited number of optimal 
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observations, is expected to have a larger overall impact on flood forecast accuracy, and 

therefore objective methods should be designed to identify them a priori.
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Appendix A Impact of Different Observation 

Operators  

The impact of using different observation operators on the model ranking is quite 

significant. Several cost functions for extent comparison were tested before selecting the 

mutual information based agreement metric. This appendix summarizes the impacts of 

using different observation operators on the assimilation efficiency through the 

experimental setup used in Chapter 8. Synthetic observations were assimilated in the three 

hydraulically uniform sub-reaches using different observation operators, and the Brier Skill 

Scores (BSS) were computed for the assimilated forecast for a lead time of 12h until the 

next assimilation time step. Recall that BSS values represent the change in Mean Squared 

Errors after the assimilation, implying that negative values indicate an increase in errors 

while positive values signify an error reduction. First, deterministic cost functions were 

tested to assess whether the extent-based ranking of models (particles) results in forecast 

improvements. Then probabilistic cost functions for the flood extent assimilation were 

developed and tested.  

The ideal cost function was expected to result in forecast improvements for a 12h 

window for all cases. In a synthetic experiment, since observations are simulated based on 

the “truth” model, for a 12h lead time the assimilation should have no effect in the worst-

case scenario. This is because the particle weights will not change as a consequence of the 

assimilation if the observation is not informative. Negative impacts of the assimilation then 

imply that the cost function is not weighting the particles correctly and cannot discriminate 

between models effectively. Cost functions that result in strongly negative impacts are 

actually ranking the models based on errors, i.e. models with higher errors get higher 

weights and thus the overall forecast quality degrades. The following sections show the 

impacts of using both deterministic and probabilistic observation operators and then discuss 

the choice of the cost function in this thesis. 
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A.1 Deterministic Observation Operators 

The operators tested in this section were primarily tested to ensure that updating 

inundation forecasts using flood extents has positive impacts, with the understanding that 

they cannot be used for assimilation due to their inability to account for observational 

uncertainty. As a first sanity check, the Critical Success Index was used for comparing the 

models and the synthetic observations at the assimilation time steps. Due to its ubiquity in 

flood modelling and mapping literature, this evaluation metric was chosen to serve as a 

benchmark in spite of its limitations highlighted in literature (Stephens et al. 2014). The 

objective was to identify a cost function which performed at least as well as the CSI driven 

“assimilation”.  

The CSI and different powers of the CSI (4 and 8), were tried to assess the sensitivity 

of the rankings to the metric used. As evident from the figures Fig. A.1, Fig. A.2, and Fig. 

 

Fig. A.1 Brier Skill Scores (BSS) obtained for single image assimilation in each sub-reach, for a lead time of 

12h from the time of the satellite overpass. Observations were independently considered each 12h starting 

from the 6th of Jan with BSS calculated at three water level gauges along the channel (one in each sub-

domain); the true stage at the location is shown in all subplots as a reference. Positive values of BSS imply 

forecast improvements, while negative values imply degradation and 0 implies no change from the open loop. 

Each point on each curve is representative of the satellite acquisition time and the corresponding BSS. The 

cost function used here is the Critical Success Index or CSI. 

 

Fig. A.2 As for Fig. A.1 but using CSI^4 as a cost function for the assimilation. 
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A.3 flood extent assimilation results in forecast improvements. Increasing the power of the 

function, does increase sensitivity and the resulting improvements at the location of the 

assimilation, but degrades at gauges further upstream. This confirmed that an extent based 

ranking does improve the forecast but increasing the sensitivity of the cost function 

artificially using a power function, has several limitations and results in inconsistent 

performance. Next probabilistic functions were tested. 

A.2 Probabilistic Observation Operators 

In this section the metrics based on reliability diagrams and probability binning are 

illustrated. Reliability diagrams allow the unique advantage of comparing the binary model 

outputs with a probabilistic observation or vice versa, by plotting the proportion of wet 

cells in each probability bin. The deviation from the 1:1 line is then the error in the model 

or the classification algorithm. In this regard, root mean squared errors (RMSE) have been 

recommended (Horritt 2006) to quantify this deviation, and more recently the RMSE 

weighted by bin sizes has gained popularity (Giustarini et al. 2016; Schlaffer et al. 2017). 

The weighted RMSE was found to be insensitive to subtle changes in extent as due to the 

 

Fig. A.3 As for Fig. A.1 but using CSI^8 as a cost function for the assimilation. 

 

Fig. A.4 As for Fig. A.1 but using the fuzzy CSI as a cost function. The fuzzy CSI is calculated as the ratio 

of True Positives and the sum of True Positives, False Positives, and False Negatives in each probability class 

in the reliability diagram.  
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weighting using bin sizes, it results in asymmetric penalties for the usually larger non-

flooded area. Some new metrics were calculated and tested for the reliability diagrams. 

Mean bias, mean percent bias, and the CSI, which are all commonly used statistics but have 

not been explored for reliability diagrams were tested here. The main reason for testing 

these was to increase the sensitivity of the cost function.  

As evident from the plots of the fuzzy CSI shown in Fig. A.4 and the plots of error 

based rankings based on the RMSE and Bias shown in Fig. A.5, it seems that the lumped 

metrics calculated based on the reliability diagrams are inadequate for extent comparison. 

In fact, the forecast seems to improve for most images when ranked based on errors, with 

the exception of a few images at and around the peak, which means that the errors are not 

being correctly characterized. The fuzzy CSI based ranking fails because the assumption 

of proportion of simulated wet cells in each observed probability class being equal to the 

mean bin value does not consistently hold. In other words, the CSI exclusively works for 

 

Fig. A.5 As for Fig. A.1 but using the product of RMSE and Mean Bias calculated from the Reliability 

Diagrams. Note that the product is a measure of errors and therefore, the cost function used here ranks the 

models with higher errors higher. This is by design, to assess whether the metrics work well for the 

quantification of errors. 

 

Fig. A.6 As for Fig. A.1 but using the absolute value of the log of the product of the RMSE and Mean Bias 

to rank the models. Here the errors are compressed by using the log function, but not inverted into accuracies 

as the value of the error product exceeds unity. Absolute values are used to convert the negative values from 

the log function into positive values of probability.  
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binary maps and the threshold of 0.5 representing the maximum uncertainty or entropy of 

the observation is the only one that results in a useful assessment. Different thresholds were 

also tried (0.4-0.6) but the CSI fails to accurately quantify model performance in all other 

cases.  

Fig. A.6 used the absolute values of the log of the error product as the cost function but 

did not invert the error scale into accuracies as the values were larger than unity. The error 

ranges were compressed and hence the rankings are different from Fig. A.5, thus a different 

pattern is evident in the graphs. Here too the error based ranking results in improvements, 

implying that the lumped metrics from the reliability diagrams do not actually correct 

quantify the errors of classification. Fig. A.7 shows the plots for when the error metric is 

effectively translated into accuracies, and as evident from the plots, the forecast 

performance is consistently degraded. This implies that the metrics are not able to 

characterize errors at all as the ranking based on the “errors” results mostly in 

improvements and when the ranking is inverted based on accuracies, the forecast degrades 

every time. There are several reasons which might be responsible for this. The first, is that 

the assumption that the ideal model should predict a proportion identical to the predicted 

probability class is wrong. The second possibility is that the lumping of the metrics, or the 

 

Fig. A.7 As for Fig. A.6 but with the values of the error product restricted to less than unity, resulting in an 

inversion into accuracies using the absolute value of the logarithm. 

 

Fig. A.8 As for Fig. A.1 but using Mutual Information (MI) as a cost function for the assimilation.  
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mean error values like mean bias and RMSE are not representative due to the aggregation. 

Here it appears as though lumped metrics based on the reliability diagrams are actually 

quite dangerous to use when assessing models or flood classification algorithms as they 

work only in select cases. This does not mean that reliability diagrams are not useful, given 

that they are the only evaluation method which allow the assessment of over and under 

estimation for probabilistic versus binary mapping and modelling. However, the lumped 

metrics do not provide useful information, as was also observed in Chapter 4 where the 

weighted RMSE reliability could not capture the improvement in the fuzzy maps, which 

was visually apparent through the figures.  

The next test was for the mutual information based metric, which is an almost similar 

approach to the reliability diagrams when comparing binary and probabilistic outputs. The 

key difference being that the number of bins for the analysis can be increased and are 

evaluated for non-linear relationships as well. Take the reliability diagram for example, it 

uses a scatter plot of the simulated proportion and observed probabilities. This works well 

when the relationship between the two variables is linear. Mutual information on the other 

hand, plots a 2D histogram by dividing the scatterplot into squares, and counting the 

number of points inside each square. Here the number of “squares” or bins for the analysis, 

can be increased indefinitely but for this case increasing the bin size beyond 256 ceased to 

have notable impacts. As evident from Fig. A.8, the mutual information based cost function 

results in consistent improvements. In order to test the sensitivity enhancements through 

the use of a power function, the MI based metric raised to the power of 4 was tested, 

illustrated here in Fig. A.9. However, on increasing the power, the global consistency of 

forecast improvements in the domain declined, and images which performed well 

downstream resulted in model degradation in the upstream. Based on all of these tests, a 

mutual information based cost function was chosen for this thesis.  

 

Fig. A.9 As for Fig. A.1 but using MI^4 as a cost function for the assimilation. 



 

 

 




