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Abstract 

The measurement of density or void ratio during the compaction of geomaterials, such as soils 

and unbound granular materials, is crucial for ensuring superior performance in road 

construction. However, estimating density evolution non-destructively and in real-time during 

the compaction process has been a challenging task. This research aims to develop a 

methodology that enables the non-destructive estimation of density in geomaterials during 

compaction. The research is structured around three objectives, to: 

1. Systematically review different density measurement systems and their relationship 

with the constitutive behaviour of geomaterials during compaction. 

2. Develop a simplified constitutive model to study the behaviour of geomaterials during 

compaction. 

3. Develop a methodology utilizing advanced instrumentation and analytics to estimate 

the density of geomaterials during compaction in a proximal manner. 

These objectives guide the development of a new approach to estimate soil density during the 

compaction process. 

The first objective is addressed by reviewing density estimation and measurement techniques 

in earthwork construction, with a focus on the importance of quality assurance (QA) and 

quality control (QC) criteria in ensuring the quality and safety of infrastructure projects. 

Conventional field-based density measurement techniques are hazardous, slow, and limited to 

point-based measurements. Non-invasive surface-based techniques, such as the Moisture and 

Density Indicator (MDI), Electrical Resistivity Tomography (ERT), Electrical Density Gauge 

(EDG), and Ground Penetrating Radar (GPR), offer alternative approaches. However, these 

methods are more influenced by water content than density, limiting their applicability in 

certain scenarios. The chapter emphasizes the need for suitable constitutive models and 

explores physics-based and machine-learning approaches to address challenges in modelling 

unsaturated material behaviour and nonlinear compaction. 

The second objective is addressed by developing a constitutive model based on two different 

laboratory-scale tests: the constant-stress test and the constant load test. The constant stress 

model developed in Chapter 4 is extended to a constant load model by considering the 

geometric relationship between contact area and incremental plastic deformation. The effect 

of moisture content, plasticity, and initial void ratio on the compaction process is investigated, 
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and simplified equations for dynamic parameters are proposed. This developed model 

provides insights into the behaviour of materials subjected to field compaction and can 

determine unknown parameters such as initial density. 

To address the third objective, this study introduces a novel methodology that includes 

measuring surface deformation using advanced instrumentation. Accurate deformation 

measurement is achieved using Light Detection and Ranging (LiDAR) systems attached to 

rollers. Laser/LiDAR sensors, roll correction, and signal pre-processing are employed to 

minimize measurement errors in deformation. The use of multiple sensors and various models, 

such as 1-D compaction and machine learning-based classification, demonstrate the ability to 

estimate density with high accuracy. 

This novel instrumentation enables the measurement of density during compaction with 

unprecedented accuracy, presenting advantages over conventional invasive and pointwise 

approaches. This ensures the expeditious construction and satisfactory functioning of roads 

while minimizing the occurrence of premature failures. Continual density measurement during 

compaction also facilitates the maintenance of density uniformity, reducing the potential for 

excessive differential deformations. 
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Chapter 1 Introduction 

This thesis has developed a methodology to accurately estimate the density of geomaterials' 

during the compaction process. The objective was to employ a new and innovative approach 

to density estimation using instrumented rollers at different scales. The motivation behind this 

research arose from the crucial role of proper compaction in construction and mining activities. 

Compaction is critical in ensuring the stability, durability, and performance of various 

geomaterials, including soil and unbound granular material layers in construction projects such 

as buildings and roads. However, measuring the density of these materials accurately during 

compaction can be challenging and time-consuming using traditional methods. This thesis 

addressed this challenge by developing a methodology that enabled real-time density 

estimation during compaction. The objectives included investigating the feasibility of the 

proposed hypothesis, validating its effectiveness through experimental tests, and exploring 

various applications and potential benefits of the methodology.  

1.1 Importance of Density 

Estimating the ground condition competence of a construction area is essential for most 

construction works. This includes assessing the quality and characteristics of the geomaterial 

layers, such as soil, on which structures like buildings or roads are to be built. Inadequate soil 

compaction can lead to unsatisfactory performance of the constructed structure. For example, 

loosely compacted soil in road construction can result in a reduced service life and premature 

failure (Kodikara et al. 2018).  

The geomaterial layers are typically constructed to achieve a designated density to ensure 

quality assurance (QA) of engineered soil compaction. Laboratory studies have demonstrated 

that higher material density generally improves rutting resistance, thereby enhancing a 

pavements' service life (Allen and Thompson 1974; Lekarp and Dawson 1998; Li et al. 2020). 

Additionally, minimising variability within the geomaterial layers is crucial to reducing 

serviceability failures caused by excessive differential deformations. To achieve the desired 

density, materials are compacted in layers using different types of rollers, depending on the 

specific material being used. Figure 1-1 depicts a typical cross-section illustrating the layers 

of a road section. Compacting loose material reduces air content, densifying the material. 

Increased density brings particles closer together, improving load-bearing capacity (Figure 
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1-2). Higher density also helps prevent settlement/rutting, reduces water seepage, and 

minimises contraction. 

Not only is under-compaction a concern, but over-compaction can also pose problems. It is 

recommended to compact materials close to their maximum dry density (MDD) and optimum 

moisture content corresponding to the optimum degree of saturation (𝑆𝑟𝑜𝑝𝑡) .  Based on 

experimental evidence, Tatsuoka and Gomes Correia (2018) highlighted that  𝑆𝑟𝑜𝑝𝑡 is mostly 

unique for a certain soil, regardless of the mode of compaction, whether by Proctor hammer 

or by field rollers. Kodikara (2012) and Kodikara et al. (2020) emphasised the significance of 

 𝑆𝑟𝑜𝑝𝑡, when the air phase is trapped in a relatively continuous water phase.  Hence, attempts 

to compact beyond this state ( 𝑆𝑟𝑜𝑝𝑡 ) result in the material becoming overly wet, leading to 

undesirable effects of "over-compaction", such as material heaving with multiple shear planes 

and loosening of the already compacted material due to chaotic motions of the roller 

(Anderegg and Kaufmann 2004; Liu et al. 2019). Furthermore, experimental evidence 

indicates that material compacted beyond the optimum saturation generally undergoes 

undesirable plastic deformation under repetitive loading, similar to what would be expected 

from traffic loading (Brown and Hyde 1975; Monismith et al. 1975; Lekarp and Dawson 

1998).  

 

 

Figure 1-1. Typical cross-section of road pavement layers. 
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Figure 1-2. Particle packing in the natural subgrade and compacted subgrade. 

In the realm of pavement construction, density measurements have traditionally been the 

cornerstone of quality control for compaction. Yet, there's an emerging trend where modulus 

and stiffness measurement methods are gaining traction. This shift is largely driven by the 

convenience and user-friendliness modulus techniques offer over their density counterparts. 

Furthermore, modulus-based approaches can determine the necessary material modulus for 

the mechanistic-empirical (ME) design of pavement layers. However, the adoption of these 

methods as a full-fledged replacement for density measurements in quality control is still in 

its infancy. Material properties such as modulus and stiffness often exhibit a non-linear 

relationship with density. As the density of a material increases, its modulus and stiffness tend 

to increase as well, but not always in a direct proportional manner. Stiff soils are not 

necessarily dense and can collapse when wetted. This non-linearity can be attributed to various 

intrinsic and extrinsic factors, including atomic arrangements, grain boundaries, and the 

presence of impurities or defects. 𝑆𝑟𝑜𝑝𝑡 is an optimized value that is often used in material 

science to describe the optimal relationship between these properties for specific applications. 

Further discussion to this topic is discussed in Chapter 5. 

1.2 Statement of problem 

Despite its importance, no existing methodology can comprehensively estimate the density of 

a geomaterial layer during compaction across the entire compacted area. The traditional 

quality assurance measurements, such as nuclear density gauge (NDG), sand cone tests, and 

gravimetric tests based on field sampling, have limitations and issues. Invasive methods that 

require sampling or disturbance of the compacted area can disrupt the compaction process. 

These methods, including sand replacement, rubber balloon density, and borehole shear 

testing, provide density measurements but have a lag time of around 2-7 days for results to be 

available (Lee et al. 2017; Look 2020). The use of NDG involves harmful radiation emission 

and is time-consuming due to the need for multiple pointwise measurements over a large area. 
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With the advancement of mechanistic-empirical (ME) pavement design and performance-

based construction specifications, there is a growing interest in methods that quantify 

performance-related soil parameters such as modulus and stiffness. Portable spot test methods, 

including lightweight deflectometer (LWD), Clegg hammer, Briaud compaction device 

(BCD), static plate load test (PLT), and GeoGauge, have been developed to measure soil 

stiffness and moduli. These devices require less time than density measurement methods and 

are gaining popularity (Look 2020). Another development is continuous control compaction 

(CCC), also known as intelligent compaction (IC), which equips compactors with sensors such 

as accelerometers and GPS. These sensors provide measurements related to stiffness or 

modulus, referred to as intelligent compaction meter values (ICMVs), overcoming the 

limitations of point-based measurement devices. Researchers have explored the correlation 

between modulus and density, aiming to eliminate the need for density measurement in the 

quality assurance of compacted geomaterials (Mooney and Rinehart 2007; Xu et al. 2012; 

Imran et al. 2018; Hu et al. 2020; Look 2020). However, a unique relationship between 

stiffness (unit, kN/mm), modulus (unit, kPa), and material properties such as density after 

compaction has not been established (Meehan et al. 2012; Lee et al. 2017; Wang et al. 2022), 

with further studies being needed. Previous research has also indicated that the relationship 

between modulus and density is not unique due to variations in moisture content (Li and Selig 

1994; Tatsuoka et al. 2021).  

1.3 Research aim and objectives 

The aim of the research presented in this thesis was to: 

Develop a methodology to estimate the density of a geomaterial during compaction 

proximally. 

The objectives supporting the project aim are as follows: 

Objective 1: Systematically review different density measurement systems and their 

geomaterials' constitutive relationship during compaction. 

Objective 2: Develop a simplified constitutive model to study the geomaterial 

behaviour during compaction. 

Objective 3: Develop a methodology using advanced instrumentation and analytics to 

estimate the density of a geomaterial during compaction proximally. 
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1.4 Research context and approach 

The primary purpose of this work was to explore an alternative method that could better 

estimate geomaterial density in the field in real-time during compaction. The proposed 

methodology for estimating the density assumes the thickness (surface deformation) reduction 

of the layer during compaction as the vital indicator of the level of compaction achieved 

(Figure 1-3). The deformation during compaction is measured with the help of a suitable 

distance measurement technique, as shown in Figure 1-4. The diagram illustrates that by using 

two LiDAR systems, one at the front of the drum and the other at the rear of the drum, the 

plastic deformation during the compaction can be measured, being 𝐷𝑏 − 𝐷𝑎. The density can 

then be estimated by correlating the plastic deformation with the density using advanced 

analytics, including physics-based and machine learning-based models.  

 

Figure 1-3. Illustration of material plastic deformation during compaction and the 

associated increase in density (𝝆). 

Overall, this system is designed for estimating the density of a geomaterial layer resulting from 

compaction by a smooth drum compactor. The system comprises a distance sensor system that 

continuously measures the plastic deformation of a geomaterial during compaction. It also 

includes an electronic processing system that automatically generates/estimates the 

geomaterial layer property based on the measured plastic deformation and a pre-defined 

constitutive relationship/model. 

The system does not require physical contact with the geomaterial, thereby avoiding the 

limitations and disadvantages associated with invasive methods. Additionally, the electronic 

processing system includes an inertial measurement unit (IMU) to measure the orientation of 

the compactor synchronously with the measurements of the distance sensor system. This 

information corrects the deformation measurement based on the measured orientations. 

Furthermore, the system incorporates a geolocation unit that measures/determines the 
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geolocation of the geomaterial synchronously with the measurements of the distance sensor 

system, allowing for the measurement of the plastic deformation of the entire area along with 

associated coordinates. 

 

Figure 1-4. Material compaction using roller and plastic deformation measurement 

using LiDAR systems during compaction. 

1.5 Organisation of thesis 

This thesis is divided into five parts, which serve to: 

• Introduce and set the context for this research (Part 1), 

• Review the current density measurement systems and constitutive model of 

geomaterials during compaction (Part 2), 

• Develop a simplified constitutive model suitable for a real-time application (Part 3), 

• Develop a methodology to measure the deformation and estimate the density during 

compaction (Part 4), 

• Summarise the research findings in the context of research and practice (Part 5). 

The structure of the thesis is illustrated in Figure 1-5. 
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Figure 1-5. Thesis structure. 

 

The thesis aims to advance density estimation during compaction and comprehensively 

overview the topic. The thesis is presented in a total of eight chapters, the contents of which 

are summarised below: 

Part 1: Introduction 

Chapter 1 - Introduction (this chapter) 

Part 2 : Quantitative Literature Review 

Chapter 2 - Literature Review: Density measurement systems 

Chapter 2 provides a literature review of current density estimation and measurement 

techniques used in the field. It also discusses non-density-based quality assurance (QA) and 

quality control (QC) criteria. 

Chapter 3 - Literature Review: Constitutive model 
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Chapter 3 summarizes the literature on constitutive models for capturing the complex 

compaction process. It includes a detailed explanation of the model referred to in this thesis. 

Part 3: Theoretical Model Development 

Chapter 4 - Constitutive model for constant peak stress test 

Chapter 4 introduces a Theory-Guided Machine Learning (TGML) framework that combines 

a theoretical model with machine learning to predict compaction density under cyclic loading. 

It develops a constitutive model suitable for real-time applications by replicating roller loading 

conditions and conducting laboratory tests with constant peak stress loading. 

Chapter 5 - Constitutive model for constant load test 

Chapter 5 focuses on the challenges of variable stress in roller compaction and proposes a 

simplified constitutive model, which relates density to load level instead of stress. It uses the 

relationship between contact width and incremental plastic deformation to predict compaction 

density accurately. Experimental data from laboratory-scale steel foot compactor tests are 

employed in model development. 

Part 4: Instrumentation and Field Study 

Chapter 6 - Instrumentation used to measure deformation 

Chapter 6 discusses the instrumentation required for accurate deformation measurement 

during compaction. It outlines the use of precise equipment and advanced data analysis 

techniques. The instrumentation and methodology are developed in stages, including an indoor 

trial and subsequent outdoor field experiment. 

Chapter 7 - Deformation to density calculation 

Chapter 7 expands on the instrumentation and field study, concentrating on estimating density 

using deformation data. Various approaches, such as 1-D compaction and a machine learning-

based classification model, are explored to improve density estimation accuracy. The chapter 

highlights the potential of the models from Chapters 4 and 5. 

Part 5: Implications and Conclusions 

Chapter 8 - Conclusions and future direction  
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Chapter 8 presents the implications of the developed methodology for estimating density 

during compaction. It also identifies future research directions for advancing the methodology. 

Overall, the thesis comprehensively explores density estimation during compaction, covering 

a literature review, theoretical model development, instrumentation, and field study. 
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Part 2: Quantitative Literature Review 
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Chapter 2 Literature review: Density measurement systems 

This is the first chapter of Part 2: Quantitative Literature Review. The chapter provides a 

literature review of current density estimation and measurement techniques used in the field. 

It also discusses non-density-based quality assurance (QA) and quality control (QC) criteria. 

Also, it highlights the advantages and disadvantages associated with their use. 

2.1 QA/QC criteria for earthwork 

Earthwork construction is a vital process in civil engineering involving excavation, 

embankment, grading and compaction of soil to construct infrastructure such as roads, 

railways, and buildings. The quality of the earthwork construction is critical to ensure the 

infrastructure's safety, stability, and durability. One essential aspect of quality assurance (QA) 

and quality control (QC) in earthwork construction is to check the material state and compare 

it with design specifications to ensure compliance. During the construction of road pavement 

layers, geomaterials are compacted using rollers to reach a target dry density or void ratio 

close to optimum moisture content (OMC) and maximum dry density (MDD) to ensure 

satisfactory performance over time as shown in Figure 2-1. The Density measurement has also 

been recommended by most road authorities in Australia and the Department of Transportation 

(DoT) worldwide. Different tests in QA/QC for Australia for measuring density are shown in 

Table 2-1. 

With the advancement of mechanistic-empirical (ME) pavement design and performance-

based construction specifications, methods that quantify performance-related soil parameters, 

such as modulus and stiffness, are gaining popularity in the field. So, as per Figure 2-2, the 

QA/QC can be divided into density-based and stiffness/modulus-based measurements, which 

can be further divided into invasive, non-invasive surface-based, and proximal measurements. 

Invasive or destructive approaches are methods that require sampling or disturbing the area by 

hammering or inserting the measurement system. Non-invasive tests are done on the surface 

of the compacted area but do not disturb the soil. They measure properties such as deflection, 

deformation, dielectric constant or resistivity for determining the geomaterial properties using 

correlation. Proximal measurements are implemented close to the surface but do not touch the 

ground to measure the geomaterial properties. 
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Table 2-1. QA/QC recommendation by road authorities in Australia. 

Road Authority Test Standard 
VicRoads, VIC Nuclear Gauge AS1289.5.8.1 (Standards Australia 2007) 
Department of 

Planning, Transport 

and Infrastructure, SA  

Nuclear Gauge AS1289.5.8.1 (Standards Australia 2007) 

Main Roads Western 

Australia, WA  
Nuclear Gauge and 

Sand replacement 
WA 324.1 (Main Roads 2012), WA 324.2 

(Main Roads 2013) 
Roads and Marine 

Services, NSW/ACT 
Sand replacement 

and Fixed volume 

extractive method  

T119 (Roads and Marine Services 

2012a), T165 (Roads and Marine 

Services 2012b) 
Queensland 

Department of 

Transport and Main 

Roads 

Relative 

compaction, 

Density index  

Q140A (Queensland Department of 

Transport and Main Roads 2017), 

AS1289.5.5.1 (Standards Australia 

1998a), AS1289.5.6.1 (Standards 

Australia 1998b) 
Department of State 

Growth, TAS 
Nuclear Gauge and 

Sand replacement 
AS1289.5.8.1 (Standards Australia 2007), 

AS 1289.5.3.1 (Standards Australia 

2004), AS 1289.5.3.2 (Standards 

Australia 2002)  
Department of 

Infrastructure, 

Planning, and 

Logistics, NT 

Nuclear Gauge NTCP 102.1 (Department of 

Infrastructure, Planning, and Logistics) 

 

Figure 2-1. Family of Proctor curves. The applied energy decreases in the following 

order: higher Proctor, modified Proctor, standard Proctor, and reduced Proctor. 
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Figure 2-2. QA/QC measurements for field compaction. 

2.2 Density-based QA and QC measurements 

2.2.1 Invasive measurements for density 

2.2.1.1 Nuclear Density Gauge (NDG) 

The Nuclear Density Gauge (NDG) or Nuclear Gauge (NG) is the most widely used density 

test for QA and QC of earthworks. The method involves drilling a hole, driving a rod into the 

material, and lowering a source rod into the hole. NDG includes a Cs-137 gamma radiation 

source and two gamma detectors (Figure 2-3) (American Portable Nuclear Gauge Association 

(APNGA) 2009). The NDG measures the wet density of the soil by counting the radiation 

transmitted through the soil. Denser soil absorbs more radiation than loose soil, and thereby 

the radiation count can be converted to wet density. NDG can also be used to estimate the 

water content of the material. The NDG test also requires a soil sample to be taken and tested, 

which takes at least 24 hours to turn around (potentially longer for high plasticity soils), and a 

moisture content measurement to determine density ratios. 

The main drawback of using the NDG is that it emits harmful rays, so prolonged exposure 

harms human bodies. This has led to its limited use and the need for special training and safety 

precautions with an additional license requirement (Latter et al. 2019). 
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Figure 2-3. Photo of NDG taking the density measurement. 

2.2.1.2 Sand replacement or sand cone test 

The sand cone test is another common field-testing method used to determine the in-place 

density of soils, for materials that can't be tested by NDG for example, coarse soils or mostly 

clay soils with a rock content higher than 20 percentage (Standards Australia 2007). It is a 

destructive testing method that involves excavating a small hole in the soil to be tested and 

then filling the hole with dry sand of a known density. The volume of the hole is determined 

by measuring the amount of sand used to fill the hole, and this volume is used to calculate the 

in-place density of the soil, as shown in Figure 2-4. The water content and dry mass of the 

removed soil are determined in the laboratory by drying the sample using the Microwave or 

Convection oven method.  

 

Figure 2-4. Sand cone apparatus. 
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2.2.1.3 Rubber balloon density test 

The rubber balloon density test is a simple and quick field-testing method that uses destructive 

testing to determine soil density in the field. Similar to the sand cone test, it involves 

excavating a small hole in the soil to be tested. The volume of the hole is then measured using 

a balloon. The balloon is inflated in the hole until it is full. Then the volume of the balloon is 

measured using a graduated cylinder, as shown in Figure 2-5. The soil density is calculated by 

dividing the mass of the soil in the hole by the volume of the hole. It is a useful tool for 

identifying areas of non-uniform soil density in the field and can be used to check the 

compaction of soil layers during earthwork projects. However, the rubber balloon density test 

may not be as accurate for some geomaterials as NDG and sand cones. 

 

Figure 2-5. Rubber balloon apparatus. 
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2.2.1.4 Fixed Volume Extractive (FVE) method 

The Fixed Volume Extractive (FVE) method involves excavating a hole in the soil and filling 

it with water. The volume of water used to fill the hole is then measured and used to determine 

the volume of the soil displaced. The dry mass of the soil is then determined in the laboratory 

after measuring the moisture content using a convection or microwave oven. The density is 

calculated by dividing the dry mass of the soil by the volume of the hole.  

The drawback of the density-based methods is that they are time-consuming and a lag indicator 

of the density as it can take around 2-7 days for the result to be available, as the measurement 

of MDD in the lab to calculate the relative density or the density index requires time. Moreover 

the depth of excavation is limited to 300 mm (Lee et al. 2017). 

2.2.2 Non-Invasive surface-based measurements for density 

2.2.2.1 Moisture and Density Indicator (MDI) 

The Moisture and Density Indicator (MDI) test is a non-destructive testing method used to 

measure a geomaterials' in-situ density and moisture content. The test uses a portable device 

that measures the material's dielectric constant utilising a series of radio frequency pulses. The 

dielectric constant is related to the density and moisture content of the material, allowing for 

the calculation of the in-situ density and moisture content. The MDI test is a rapid and non-

destructive testing method that can be used in various soil types, including cohesive and non-

cohesive soils. The device is portable and easy to use, making it ideal for field measurement 

(Berney and Kyzar 2012). While MDI offers potential advancements for earthworks, its 

adoption has been limited. The device's complex and time-consuming calibration process is 

ill-suited for the fast-paced nature of construction. Additionally, its inability to test high 

plasticity clay, a common soil type in many regions, further curtails its practicality. These 

constraints overshadow the MDI's potential benefits, hindering its widespread use (Lee et al. 

2017). 

2.2.2.2 Electrical Resistivity Test (ERT) 

Electrical Resistivity Tomography (ERT) is a geophysical method used to measure the 

apparent electrical resistivity of soil and other subsurface materials. The technique involves 

injecting a low-frequency electrical current into the ground through electrodes and measuring 

the resulting potential difference at a second pair of electrodes. The measured potential 

difference is related to the apparent electrical resistivity of the soil, which is influenced by its 
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density and moisture content (Pandey et al. 2015; Neyamadpour 2019; Swileam et al. 2019; 

Yuan et al. 2020). ERT can generate a three-dimensional image of the subsurface resistivity 

distribution, providing information on the spatial variability of soil density and moisture 

content (Laloy et al. 2011). The method is particularly useful for characterising subsurface 

structures and variations in soil properties, such as stratigraphy and heterogeneities. ERT can 

effectively test a 300mm thick layer by using appropriate electrode spacing, ensuring accurate 

data acquisition, and utilizing inversion techniques to interpret the measured data. 

Additionally, ERT requires specialised equipment and expertise and can be time-consuming 

and expensive compared to other testing methods.  

2.2.2.3 Electrical Density Gauge (EDG) 

An Electrical Density Gauge (EDG) is a device used in the construction industry to measure 

the density of soil and asphalt. It is a handheld device that uses the principle of electrical 

impedance to determine the density of the material under test. The device consists of two 

electrodes inserted into the soil or asphalt (Anderson et al. 2001). An electrical current is then 

passed between the electrodes, and the impedance of the material measured. The impedance 

is directly related to the density of the material, and so the EDG can display the density 

measurement on a digital screen. EDG offer potential in soil testing, but their limited adoption 

stems from a few challenges. Firstly, their complex and time-consuming calibration 

procedures can be cumbersome, especially in fast-paced project settings. Additionally, they 

require Nuclear Density Meters (NDM) for calibration, adding a layer of dependency and the 

need for dual expertise. Furthermore, EDGs struggle with certain soil types, notably their 

incapacity to test high plasticity clays accurately (Lee et al. 2017). 

2.2.2.4 Ground Penetrating Radar (GPR) 

Ground Penetrating Radar (GPR) is a non-invasive geophysical technique that uses 

electromagnetic waves to investigate subsurface structures and materials. While GPR is 

primarily used to identify and locate buried objects and structures, it can also be used to 

measure the density of soil and other subsurface materials. When using GPR to measure soil 

density, a high-frequency antenna is typically used to send short pulses of electromagnetic 

energy into the soil. As these pulses travel through the soil, they encounter different materials 

with varying densities. The waves the antenna receives are then analysed to determine the soil 

density (Wang et al. 2018). The soil density is determined by measuring the time it takes for 

the electromagnetic wave to travel through the soil and be reflected to the antenna. The longer 
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the travel time, the denser the soil. The reflected waves are also affected by the electrical 

properties of the soil, such as its moisture content and salinity, which can further aid in 

determining soil density. GPR can measure soil density over a large area quickly and non-

invasively, making it a valuable tool in geotechnical investigations and environmental 

assessments. It can also identify soil areas with varying densities, which can help plan 

construction projects and identify potential hazards, such as sinkholes. However, it should be 

noted that GPR is not a precise tool for measuring soil density. It should be used with other 

methods, such as the Electrical Density Gauge (EDG), for more accurate measurements.  

Non-invasive surface-based measurements, such as MDI, ERT, EDG, and GPR, have also 

emerged as practical and effective methods for measuring soil density in situ without 

disturbing the soil. These methods offer several advantages over conventional methods, 

including their speed, accuracy, and cost-effectiveness. They also provide real-time 

measurements to aid decision-making and quality control during construction projects. The 

MDI test is particularly useful for measuring the density and moisture content of soils and 

compacted materials, making it an ideal tool for assessing soil quality during construction 

projects. Conversely, ERT and GPR offer three-dimensional imaging capabilities that can 

provide valuable information on the spatial distribution of soil properties, including density 

and moisture content. The EDG is a handheld device that is quick and easy to use, making it 

a popular choice for construction workers and engineers. Overall, non-invasive surface-based 

measurements offer a practical and efficient solution for measuring soil density, allowing for 

more accurate and informed decision-making during construction projects. However, it is 

important to note that these methods have limitations as they have a relationship with both 

water content and density and are affected more heavily by water content than density (Plati 

and Loizos 2013).  

The conventional approach to measuring soil density involves collecting physical samples, 

measuring their mass and volume, and analysing them, which can be time-consuming, 

especially when multiple samples are required. This can be problematic for contractors eager 

to compact another layer of soil promptly to avoid additional costs for equipment and labour. 

As a result, alternative QA/QC criteria have been developed to assess earthwork quality. 
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2.3 Stiffness/modulus-based QA/QC measurements 

2.3.1 Invasive methods for measuring stiffness/modulus 

2.3.1.1 Dynamic Cone Penetration Test (DCPT) 

The dynamic cone penetration test (DCPT) is a simple and cost-effective method used to 

evaluate the strength and stiffness of soil layers in the field (Abu-Farsakh et al. 2005). It 

involves driving a metal cone with a standardised mass and dimensions into the soil using a 

hammer and measuring the penetration depth. During the test, the cone is dropped from a 

standardised height and allowed to penetrate the soil. The number of blows required to 

penetrate a certain depth is then recorded. The number of blows is correlated with the stiffness 

or density of the geomaterial; however, there is significant scatter, limiting its use. 

2.3.1.2 Clegg Hammer  

The Clegg Hammer device works by dropping a standardised weight (typically 2.25 kg) onto 

the soil surface and measuring the rebound. The degree of rebound is correlated with the 

stiffness and density of the soil, with denser and stiffer soils producing a lower rebound. The 

device is portable and easy to use, making it ideal for field measurements (Jaffar et al. 2022). 

2.3.1.3 Static plate load test 

The static plate load test is a field test used to evaluate the strength and stiffness of soils. The 

test involves loading a circular steel plate with a standardised diameter and thickness onto the 

surface of the soil and measuring the deformation of the soil surface in response to the applied 

load. During the test, a load is applied incrementally to the plate, and the corresponding 

vertical deformation of the soil surface is measured using a dial gauge or displacement 

transducer. The soil's density and stiffness can be estimated from the static plate load test 

results by using empirical correlations between the plate load test load-deformation data and 

soil density and stiffness (Tompai 2008).  

2.3.2 Non-invasive surface-based measurements for stiffness/modulus 

2.3.2.1 Falling Weight Deflectometer (FWD) 

The Falling Weight Deflectometer (FWD) is a device used to measure a geomaterials' stiffness 

and load-bearing capacity. The device works by dropping a weight onto the pavement or soil 

surface and measuring the resulting deflection with sensors. The deflection measurements 
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obtained from the FWD can be used to estimate the stiffness and load-bearing capacity related 

to their density and other properties (Livneh and Goldberg 2001). The FWD is particularly 

useful for evaluating the in-situ density and stiffness of soils beneath pavements and other 

structures where access is limited or performing more invasive testing methods is not feasible. 

2.3.2.2 Portable Seismic Pavement Analyser (PSPA) 

A Portable Seismic Pavement Analyser (PSPA) is a device used to evaluate pavement's 

structural integrity and strength on roads. The PSPA uses seismic technology to measure the 

velocity of surface waves that propagate through the pavement. By measuring the velocity of 

these waves, the PSPA can determine the stiffness and thickness of the pavement layers, as 

well as identify any voids or delamination within the pavement structure. The PSPA consists 

of a small, portable unit mounted on a cart and rolled over the pavement surface, as shown in 

Figure 2-6. The unit contains a seismic source that generates a slight, controlled vibration and 

an array of sensors that measure the resulting surface waves. The PSPA's software then 

processes the data collected by the sensors to calculate the pavement's structural properties. 

 

Figure 2-6. Schematic of Portable Seismic Pavement Analyzer (PSPA) (Li and Garg 

2015). 
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2.3.2.3 GeoGauge 

The GeoGauge is a device used to measure the in-situ stiffness of soils. It is a non-destructive 

testing method that provides rapid and accurate results. The GeoGauge works by measuring 

the response of the soil to a small dynamic load applied by a spring-loaded foot attached to 

the bottom of the device. The foot is pressed against the surface of the soil, and the device 

measures the resulting deformation of the soil surface. The GeoGauge can therefore measure 

the deformation at a specified depth within the soil, providing a profile of the soil stiffness 

with depth. The GeoGauge device is portable and can be used in various soil types, including 

cohesive and non-cohesive soils.  

As with all testing methods, the results should be interpreted in the context of the specific site 

conditions and in conjunction with other testing methods to understand the soil properties 

comprehensively. It should also be noted that correlations to density are typically site-specific 

and may not apply to other sites (Caicedo 2019). They are also very complex requiring 

extensive operator training (Weber 2018).  

2.3.3 Proximal measurements for measuring stiffness/modulus 

2.3.3.1 Intelligent Compaction 

Intelligent Compaction (IC), developed in the 1970s, utilises roller drums fitted with 

accelerometers to measure soil and asphalt compaction through acceleration patterns (White 

et al. 2007; Hu et al. 2017, 2020; Foroutan and Ghazanfari 2018; Imran et al. 2018; Liu et al. 

2019; An et al. 2020). It has already gained popularity in the United States. It is being accepted 

as an alternative QA/QC for density measurement. The IC roller is integrated with sensors 

such as temperature, accelerometer, Global Positioning System (GPS), and a display monitor. 

The continuous recording of the GPS and accelerometer data provides a user indirectly with 

real-time information about the compaction degree. The data from accelerometers, combined 

with other equipment parameters such as rolling speed, frequency, and amplitude of the 

compaction drum, are analysed. Through this analysis, and by leveraging correlations 

established from initial calibration efforts, the degree of compaction is inferred. The recorded 

drum response is used to calculate different Intelligent Compaction Measurement Values 

(ICMVs), which correlate with density. The correlation between ICMVs and density is poor; 

however, the correlation between ICMVs and modulus is good for some range of moisture 

content of the material (Zargar and Lee 2019; Hu et al. 2020). 
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The stiffness/modulus-based QA is shown to be quicker than density measurement and thus is 

preferred by the practitioners over the density-based QA. The modulus, which is considered 

to have a unique and direct correlation with density, is considered to replace the density 

measurement. However, researchers have also found that the correlation between density and 

modulus is not unique, depending also on the water content of the sample (Tophel et al. 2023). 

2.4 Summary 

Chapter 2 of Part 2: Quantitative Literature Review focuses on density estimation and 

measurement techniques in earthwork construction. It emphasizes the importance of quality 

assurance (QA) and quality control (QC) criteria for ensuring the quality and safety of 

infrastructure projects. Earthwork construction involves activities like excavation, grading, 

and soil compaction, which are crucial for developing infrastructure such as roads and 

buildings. QA and QC procedures are essential to evaluate and compare the material state with 

design specifications. 

Density measurement serves as a critical component of QA and QC for road pavement layers. 

Various road authorities, including VicRoads in Victoria and the Department of 

Transportation (DoT) globally, recommend density-based tests such as the Nuclear Gauge 

(NDG) and sand replacement methods. The NDG is widely employed and involves drilling a 

hole, inserting a rod into the material, and utilizing gamma radiation to measure the wet density 

of the soil which is harmful to human health. Conversely, the sand replacement method is a 

destructive test that entails excavating a small hole, filling it with dry sand of known density, 

and measuring the volume of the hole to calculate the in-place density of the soil. 

In addition to invasive density-based measurements, non-invasive surface-based techniques 

are gaining popularity in the field. These methods encompass the Moisture and Density 

Indicator (MDI), Electrical Resistivity Tomography (ERT), Electrical Density Gauge (EDG), 

and Ground Penetrating Radar (GPR). However, these methods have limitations, as they are 

more influenced by water content than density. 

The chapter also discusses stiffness/modulus-based QA and QC measurements. Invasive 

methods like the Dynamic Cone Penetration Test (DCPT), Clegg Hammer, and static plate 

load and non-invasive techniques such as the Falling Weight Deflectometer (FWD) and 

Portable Seismic Pavement Analyzer (PSPA) tests are used to assess the strength and stiffness 

of soil layers. These, however, do not correlate very well with the density of the material. 



 

24 

 

Chapter 3 Literature review: Constitutive model 

This is the second chapter of Part 2: Quantitative Literature Review. This chapter explores the 

need and importance of a proper constitutive model in the context of proximal density 

estimation and presents the current availability and past relevant works. It considers both 

physics-based theoretical models and machine learning-based models as potential solutions to 

address the challenges of modelling unsaturated material behaviour and capturing the complex 

nonlinear elastic-plastic behaviour of field compaction. 

Quality assurance requires achieving specified dry density (𝜌𝑑)  or void ratio (𝑒) for the 

geomaterial layers, along with other properties like stiffness (𝐾) and modulus (𝐸). 

The compaction of geomaterial involves increasing 𝜌𝑑 by reducing 𝑒 through minimising air 

voids through the application of loads using different types of rollers, as shown in Table 3-1.  

Table 3-1. Types of roller for various materials (VicRoads 1998). 

Material type Roller type 

Heavy clay Static tamping foot, Pneumatic multi-tyred, Vibrating sheep foot 

Sandy clay Static tamping foot, Pneumatic multi-tyred, Vibrating sheep foot 

Crushed rock Smoothed steel drum, Pneumatic multi-tyred, Vibrating smooth drum 

Sand and rockfill Grid Roller, Vibrating smooth drum 

These rollers can be divided into two major categories, static and vibratory. The static apply 

load with their weight only while vibratory apply dynamic load in addition to static load. The 

constitutive model for compaction can be divided primarily into two major categories: (a) 

physics-based and machine learning-based models.  

3.1 Physics-based theoretical model 

The compaction process involves cyclic loading and unloading caused by the movement of a 

roller. Field compaction of soils using rollers is challenging to analyse due to large 

deformations and complex nonlinear elastic-plastic behaviour (Xu and Chang 2020). 

Analytical and finite element formulations have been used to model the behaviour of 

unsaturated materials under complex cyclic loading (Pestana et al. 2002; Wichtmann 2005; 

Modoni et al. 2011; Pasten et al. 2014; Chong and Santamarina 2016; Park and Santamarina 

2019; Chen et al. 2021). However, these models often require sophisticated and time-
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consuming tests to determine the model parameters. The interaction among soil, water, and air 

phases makes modelling unsaturated material behaviour even more challenging, limiting the 

practical use of complex numerical models in real-time field applications. 

Constitutive models for unsaturated soils can be classified based on the work input 

relationship. Houlsby (1997) introduced thermodynamic work input in the volumetric 

deformation of unsaturated soils, considering variables such as void ratio (𝑒), net stress (𝑝𝑛𝑒𝑡), 

suction (𝑠), moisture ratio (𝑒𝑤), and degree of saturation (𝑆𝑟), which is calculated as the ratio 

of 𝑒𝑤 to 𝑒. Alonso, Pinyol, and Gens (2013) and Wheeler and Sivakumar (1995) used specific 

volume (𝑣), 𝑝𝑛𝑒𝑡, and 𝑠 as variables in their models, without directly coupling the specific 

moisture volume (𝑣𝑤) or 𝑆𝑟 . Other approaches employed effective stress (𝑝 + 𝜒 𝑠) where 𝜒 is 

a function of suction (𝑠) (Loret and Khalili 2002) or used Bishop's effective stress (𝑝 +  𝑆𝑟 𝑠), 

considering 𝑆𝑟  as a separate variable (Wheeler et al. 2003). Recently, based on the MPK 

framework, researchers (Kodikara 2012; Kodikara et al. 2020) proposed that net stress and 

moisture content or degree of saturation can be used to model volumetric behaviour, without 

directly coupling suction (𝑠) when the material is compacted on the dry side of the line of 

optimum (LOO). Moreover, Kodikara et al. (2020) reported that Bishop’s effective stress is 

applicable for materials compacted on the wet side of LOO which requires the knowledge of 

suction. However, measuring suction, especially in field conditions, is challenging. Therefore, 

this thesis proposes a constitutive model based on net stress, extending the model proposed by 

Sawicki and Swidzinski (1995), which also utilized net stress (total stress) and water content 

as input parameters. Since field compaction is typically performed at a constant moisture 

content of ±2% of the optimum moisture content (OMC), for simplicity, this study utilizes 

constant moisture content as one of the input variables for the model development. In addition, 

this model, known as the theoretical model (TM), offers simplicity and requires only three 

parameters to capture cyclic behaviour. The TM enables real-time use and data processing, 

making it a practical choice for compaction analysis. 

3.1.1 Cyclic compaction model by Sawicki and Swidzinski (1995) 

The work by Sawicki and Swidzinski (1995) aimed to investigate the behaviour of particulate 

materials, including soils, grains, and powders, under cyclic loading in uniaxial deformation. 

The mechanical behaviour of these materials was analysed under uniaxial cyclic deformation 

in oedometric conditions (Figure 3-1). A constitutive equation describing cyclic compaction 

was proposed based on the concept of a standard compaction curve. 
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Figure 3-1. Figure of the oedometer setup used in the study by Sawicki and Swidzinski 

1995. 

Each sample underwent ten loading and unloading cycles, with controlled vertical stress and 

measurement of lateral stress and vertical strain. The results revealed similarities among 

different sands, leading to several general conclusions: compaction increases with the number 

of loading cycles but the rate of compaction decreases with the cycle number; compaction is 

influenced by the maximum vertical stress with higher stress resulting in greater compaction; 

residual lateral stresses generally increase with the number of cycles but the rate of increase 

decreases; the value of residual lateral stress depends on the maximum vertical stress with the 

initial cycle having a predominant influence. The equation developed for plastic strain (𝜖𝑝) 

accumulation with the number of cycles (𝑁) when the sample was subjected to static vertical 

stress (𝜎𝑧) is  

 𝜖𝑝 = 𝐶1 ln(1 + 𝐶2(1 − 𝐾0)𝑚𝑁𝜎𝑧
𝑚), (1) 

where 𝜎x  is the lateral normal stress and the stress invariant (stress tensor responsible for 

compaction) is considered to be (𝜎𝑧 − 𝜎x)𝑚 , which becomes (1 − 𝐾0)𝑚𝜎𝑧
𝑚  with (𝐾0 =
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𝜎𝑥

𝜎𝑧
) denoting the coefficient of lateral pressure, and 𝐶1, 𝐶2 and 𝑚 are the material parameters. 

Modification of the model for 1D compaction of soil and variation of the parameters with 

material properties is presented in Chapter 4 for a constant stress cyclic test carried out in the 

laboratory.  

Similar to other constitutive models, this model unfortunately requires input parameters such 

as stress, which varies during compaction. When using a roller, geomaterial properties 

(stiffness, 𝜌𝑑, modulus) and geomaterial-compactor interactions (contact width, contact stress) 

vary even when the applied load remains constant (Kargl 1995; Hager et al. 2021). For 

example, research has shown that the contact width reduces with an increase in 𝜌𝑑, leading to 

increased contact stress as compaction progresses (Ghorbani et al. 2021). Calculating stresses 

using Hertz's theory requires knowledge of either Young's modulus or the contact width, which 

changes during compaction. These parameters are difficult to measure or estimate during the 

compaction process. Detailed numerical modelling approaches often assume constant 

parameters during simulation, limiting their capability (Kenneally et al. 2015). For instance, 

some models assume a constant modulus for the geomaterial during compaction, while it has 

been demonstrated that the modulus depends on 𝜌𝑑 and increases as 𝜌𝑑 increases (Tatsuoka et 

al. 2021). Therefore, it is important to have a constitutive model which can accommodate the 

change of material properties during compaction. 

Recent developments in data science, such as ML and especially deep learning (DL) models, 

including artificial neural network (ANN), support vector machines (SVMs), and Gaussian 

process regression (GPR), have allowed the data available from measurements be used for 

modelling in various geotechnical applications (Liu et al. 2015; Pooya Nejad and Jaksa 2017; 

Makasis et al. 2018; He et al. 2020; Kang et al. 2021; Zhang and Jin 2021; Zhang et al. 2021). 

For instance, data-driven models for capturing the complex behaviour of soil compaction in 

estimating the material properties for quality assurance (QA) and quality control (QC) 

purposes have recently been considered and integrated with IC (Imran et al. 2018).  In 

particular, the response of the drum reaction (i.e. the acceleration history) of the roller's 

vibratory drum is used to estimate the in-situ states of the compacted material (e.g., modulus 

and roller-related stiffness) (Commuri et al. 2011; Cao et al. 2021). This study also explored 

the use of machine learning (ML) models to capture complex behaviour during compaction. 

This is particularly useful when the data collected is very large and requires a model which 
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can handle large datasets. For this thesis, a regression-based ML model (ANN) and 

classification-based ML model (stochastic gradient descent (SGD) are explored. 

3.2 Machine learning-based models 

3.2.1 Artificial Neural Networks (ANNs) 

ANNs are an ML tool for modelling and solving nonlinear relationships between input and 

output data (Braspenning et al. 1995). They are considered data-driven models with an 

unrestricted number of model parameters, and so are very useful when there is a large amount 

of data. There are numerous applications of ANNs, and some examples include image 

classification (Park et al. 2004), regression (Rezaie-Balf and Kisi 2018), forecasting (Kolarik 

and Rudorfer 1994) and real-time optimisation (Wang and Salehi 2015). 

A neural network structure consists of three distinct layers: input, hidden, and output. This 

multi-layer system is also known as a multi-layer perceptron (MLP), and a typical structure is 

shown in Figure 3-2. During ANN model training, the input layer, which can have one or 

many nodes, passes the information to the nodes of the hidden layers. The information from a 

node is multiplied by a weight matrix, denoted as 𝑊, and added to a value called a bias matrix, 

denoted as 𝑏. The output is then passed to an activation function 𝐹. This process continues 

between each node until the information reaches the output layer. Function 𝐹 is the activation 

function, which in this study, incorporates a rectified linear unit (ReLU) for the hidden layers, 

and a linear function at the output layer (Géron 2017).  

The predicted output (𝑌𝑀𝐿 )  is compared to the actual output (𝑌)  by computing the loss 

function (𝐿) according to standard metrics such as mean absolute error (MAE) or root mean 

squared error (RMSE) and the regularization loss function 𝐿𝑟𝑒𝑔 as  

 Loss function (MAE) =  𝐿(𝑌, 𝑌𝑀𝐿) =
1

𝑙𝑒𝑛(𝑌)
∑ |𝑌 − 𝑌𝑀𝐿|𝑙𝑒𝑛(𝑌)

𝑖=1 , (2) 

 𝐿𝑟𝑒𝑔 = 𝜆𝑟𝑒𝑔 ∥ 𝑊 ∥, (3) 
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 RMSE(𝑌, 𝑌𝑀𝐿) = √
1

𝑙𝑒𝑛(𝑌)
∑ (𝑌 − 𝑌𝑀𝐿)2

𝑙𝑒𝑛(𝑌)

𝑖=1

, (4) 

where, 𝑙𝑒𝑛(𝑌)  represents the length of matrix 𝑌  and 𝜆𝑟𝑒𝑔  represents the regularization 

hyperparameter (Géron 2017). The total loss 𝐿 + 𝐿𝑟𝑒𝑔 is minimised using the back-

propagation algorithm by adjusting the values of 𝑊  and 𝑏. Once training of the model is 

achieved, the trained model is used to predict new sets of data. 

 

Figure 3-2. Architecture of a simple ANN with three input nodes, one hidden layer of 

four nodes and two output nodes (the bias nodes are shown but are usually implicit in 

the structure). 

3.2.2 Stochastic Gradient Descent (SGD) classification model 

The Stochastic Gradient Descent (SGD) classification model was explored as part of the study 

to capture the complex behaviour during compaction using machine learning (ML) models. 

The SGD classification model is an optimization algorithm commonly used in machine 

learning for training classification models, especially when dealing with large datasets. The 

SGD classification model works by iteratively updating the model's parameters based on the 

gradients of the loss function for those parameters. Unlike traditional Gradient Descent, which 

considers the entire dataset in each iteration, SGD randomly selects a single training sample 
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or a small batch of samples to compute the gradient. During training, the SGD classification 

model adjusts its parameters to minimize a predefined loss function, such as the cross-entropy 

loss for binary or multiclass classification. The goal was to find the optimal set of parameters 

that best fit the training data and generalize well to unseen data. After training, the SGD 

classification model could predict new data by applying the learned parameters to the input 

features and a decision rule (e.g., thresholding or SoftMax) to determine the predicted class. 

However, purely data-driven ML models like SGD have some disadvantages. They do not 

adhere to underlying physics, as they are trained on limited data and may produce results that 

deviate from known mechanistic behaviour or scientific principles (Karpatne et al. 2017a). 

They are prone to overfitting, learning the training data rather than the underlying patterns and 

performing poorly on unseen test data (Roelofs et al. 2019). ML models also have limited 

interpolation and extrapolation abilities, leading to errors in sparse datasets and challenges in 

making correct predictions beyond the range of training data (Rai and Sahu 2020). 

3.3 Comparison of theoretical model (TM) and machine learning (ML) model 

Developing a TM for complex processes like field compaction requires understanding the 

intricate interactions between the material and the roller compactor. However, the availability 

of parameters and incomplete technical embodiment can limit the development of such 

models. Additionally, calibrating the parameters of a TM can be challenging due to the 

combinatorial nature of the search space, which may lead to overly complex models (Karpatne 

et al. 2017b). 

In contrast to TM algorithms, ML algorithms have been criticized for being "black boxes" due 

to their hidden complexity and the potential for producing outputs that lack physical meaning. 

This limitation restricts their use in certain domains (Kumar et al. 2017). It is therefore 

beneficial to combine TM and ML algorithms to overcome these challenges, leveraging their 

respective strengths and mitigating their drawbacks (Raissi et al. 2017a; Raissi and 

Karniadakis 2018; Jia et al. 2018; Rai and Sahu 2020). This approach, known as Theory-

Guided Machine Learning (TGML), involves incorporating theoretical and scientific 

knowledge from the TM into the construction and training of ML and Deep Learning (DL) 

models (Rai and Sahu 2020). 

The TGML framework can be applied to any domain using theoretical and physics-based 

knowledge and available data. TGML techniques have been successfully applied in solving 
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differential equations (Raissi and Karniadakis 2018) and addressing cyber-physical systems 

(Rai and Sahu 2020). However, in the Civil or Geotechnical engineering domains, particularly 

in areas like liquefaction assessment and groundwater flow modelling, TGML has been limited 

(Zhang et al. 2020; Depina et al. 2021). Chapter 4 of the study presents the TGML framework, 

which combines the TM and ML in three ways to predict material density during compaction. 

By integrating TM and ML, it is possible to reduce the complexity of ML models while 

incorporating valuable theoretical knowledge. This hybrid approach has the potential to 

enhance the accuracy and reliability of predictions, addressing the challenges faced by purely 

data-driven ML models. 

3.4 Summary 

The success of civil engineering projects depends on evaluating ground conditions, 

particularly geomaterial layers that support structures. Inadequate compaction can lead to poor 

performance and premature failure, impacting the infrastructure's lifespan. Ensuring quality 

involves achieving specific properties like density and stiffness. The compaction process uses 

static or vibratory rollers. Accurate modelling requires a precise constitutive model, but 

existing models require complex tests. This chapter explored the need for suitable constitutive 

models, considering physics-based and machine-learning approaches to address challenges in 

modelling unsaturated material behaviour and nonlinear compaction. This chapter also 

discussed the development of a model which can be used for a real-time application.  
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Part 3: Theoretical Model Development 
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Chapter 4 Constitutive model for a constant peak stress test 

This is the first chapter of Part 3: Theoretical Model Development. The chapter presents a 

Theory-Guided Machine Learning (TGML) framework that combines a theoretical model with 

machine learning to predict compaction density under cyclic loading. Part 1 of the thesis 

emphasized the importance of a simplified constitutive relationship in studying material 

behaviour under dynamic load. However, there has been limited investigation into the 

behaviour of geomaterials subjected to vibratory load and frequency similar to field 

compaction. This study replicated roller loading conditions and conducted a series of constant 

peak stress 1D cyclic loading experiments on uniformly graded sand to study its behaviour 

and develop a constitutive model with relatively few parameters, making it suitable for real-

time applications. While uniformly graded sand is not a common choice for field compaction, 

it was selected in our laboratory testing for its simplicity, primarily to eliminate the effects of 

variables such as gradation and fines content. The chapter also introduces a novel TGML 

framework that combines the advantages of physics and machine learning. Later in Chapter 7, 

the developed TGML framework is used to denoise the deformation data measured from the 

sensors. The simplification of models to facilitate machine learning (ML) applications 

introduces inherent philosophical challenges. While ML promises to derive patterns from data 

autonomously, practical implementations often lean towards guided methodologies, akin to 

calibrating theoretical models. This balance between data-driven insights and imposed 

constraints is pivotal. It suggests that even as ML tools offer profound insights, their results 

remain influenced by the boundaries set. Such considerations are vital when interpreting the 

implications and breadth of machine learning outcomes within this domain. 

This chapter is based on the published research paper: 

• Tophel A, Walker JP, Dutta TT, Kodikara J (2022) Theory-guided machine learning to 

predict density evolution of sand dynamically compacted under Ko condition. Acta 

Geotechnica. https://doi.org/10.1007/s11440-021-01431-2. 

The chapter concludes with a section including the errata and addenda followed by a section 

summarizing the findings of this part of the study.  

4.1 Theory-Guided Machine Learning to Predict Density Evolution of Sand 

Dynamically Compacted Under Ko Condition 

https://doi.org/10.1007/s11440-021-01431-2
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4.2 Errata and Addenda for the published paper (Tophel et al. 2022) 

4.2.1 Errata 

Erratum 1: In Table 1, Unified soil classification system (USCS) classification value is 

reported as SC. 

Correction:  Unified soil classification system (USCS) classification value should be SP. 

Erratum 2: In section 6.2 it is written as: “Various regularisation techniques were used to 

avoid over-fitting; first by dividing the total dataset into training and test datasets randomly. 

For this study, 80% of the total dataset was used for training and 20% of the data for testing. 

An early stopping procedure was employed using a further 20% of the training data for 

validation to avoid overfitting.” 

Correction: This should be modified to: “Various regularisation techniques were used to 

avoid over-fitting; first by dividing the total dataset into training and test datasets randomly. 

For this study, 80% of the total dataset was used for training and 20% of the data for testing. 

An early stopping procedure was employed using a 20% of the training data for validation to 

avoid overfitting.” 

Erratum 3: At the start of section 7, it is written as: “This section discusses the three 

techniques of TGML developed in this research to better predict the evolution of void ratio 

and eliminate the limitations associated with a theoretical model and machine learning-based 

models (in this study ANN).” 

Correction: The text should be modified to: “This section discusses the three techniques of 

TGML developed in this research to better predict the evolution of void ratio. These techniques 

aim to address the limitations associated with a theoretical model and machine learning-based 

models, particularly the ANN model used in this study.” 

4.2.2 Addenda 

Addendum 1: The grain size distribution of the material used in this study is shown in Figure 

4-1. 
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Figure 4-1. Grain size distribution of the material used in (Tophel et al. 2022). 

Addendum 2:  

For FS_10, the parameters were evaluated using Eq. (6) which resulted the value of parameters 

as provided in Table 4-1. It can be seen that the error in evaluating 𝐶2 and 𝑚 is very high. 

Table 4-1. Model parameters obtained for sample FS_10 with equation including 𝑪𝟐. 

Parameter Value Error 

𝑒0 0.82306 0.00242 

𝐶1 0.01543 0.00060 

𝐶2 0.27481 415.629 

𝑚 0.84874 214.834 

 

However, when the model complexity was reduced by eliminating 𝐶2, following were the 

values and errors obtained.  
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Table 4-2. Model parameters obtained for sample FS_10 with equation without 

including 𝑪𝟐. 

Parameter Value Error 

𝑒0 0.82306 0.00238 

𝐶1 0.01543 0.00028 

𝑚 0.66478 0.02278 

 

It can be seen that the error in obtaining parameter 𝑚 reduced when the model complexity was 

reduced. 

Addendum 3: In section 7.1, coefficients calibrated for Equation 7 and the ML study to 30 

cycles were carried out independently. 

Addendum 4: In section 7.4, a variance of 1% of mean was chosen as an appropriate amount 

of noise based on (Raissi et al. 2017b). 

Addendum 5: A detailed discussion on 1D approximation of roller compaction can be found 

in Chapter 7. 

Addendum 6: In practice, a section of trial compaction will be needed to calibrate TM or ML. 

A detailed discussion on this can be found in Chapter 7 of the thesis. 

4.3 Summary 

The development of a hybrid model called TGML has been presented, combining the strengths 

of theoretical models (TM) and machine learning (ML) algorithms to overcome their 

individual limitations in predicting noisy datasets. Three different techniques were used to 

combine TM and ML, named TGML1, TGML2, and TGML3. TGML1 involves augmenting 

the dataset for ML with the limited data from TM, TGML2 uses the prediction of TM as an 

additional input to the ML model, and TGML3 modifies the loss function of ML to include 

physical constraints. The superiority of TGML over TM and ML in predicting noisy datasets 

was highlighted. Importantly, the framework can be extended to other ML algorithms, such as 

support vector regression (SVR) and random forest (RF), although the quality of the TM is 

crucial for the performance of the hybrid model. 
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The framework was tested on fine sand compacted at varying moisture contents, stress levels, 

and loading frequencies. The three techniques that were used to improve the framework's 

performance were discussed, with the third technique being particularly useful for handling 

noisy field datasets. The developed TGML framework was also used to demonstrate a 

termination criterion for achieving the desired degree of compaction, and a simplified TM and 

ML model were proposed to estimate field compaction behaviour during roller movement. 

The TGML framework showed less error and lower model uncertainty than traditional 

machine learning methods. In Chapter 7, TGML3 is used to remove the uncertainty associated 

with measuring the deformation data. 
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Chapter 5 Constitutive model for a constant load test  

This is the second chapter of Part 3: Theoretical Model Development. Chapter 4 discussed the 

use of a simplified model to study the material behaviour based on constant stress 1D tests for 

practical purposes. However, roller compaction involves variable stress due to the gradual 

reduction of contact area between the drum and geomaterial, making it difficult to predict the 

density using a constant stress test-based model. This study extends the model developed in 

Chapter 5 and proposes a simplified constitutive model that uses the geometric relationship 

between contact width and incremental plastic deformation to approximate the complex 

compaction process with very high accuracy. The simplified model eliminates the need for a 

complex model, making it suitable for real-time application.  

To simulate roller compaction in the field, this study used a novel laboratory-scale steel foot 

compactor to compact four unbound granular materials (UGM) at varying moisture content. 

Experimental data were used to develop the model for estimating variable stress conditions 

during compaction. This model was then used to predict dynamic properties such as modulus, 

stiffness and density during compaction. In Chapter 7, the model was utilized to guess the 

initial void ratio of the material with the deformation measurement. 

The first part of the chapter is based on the published research paper:  

• Tophel A, Walker JP, Dutta TT, Bodin D, Kodikara J (2023) Model development to 

predict dynamic interactions of roller and geomaterial using simulated roller 

compaction. Transportation Geotechnics 39:100946. 

https://doi.org/10.1016/j.trgeo.2023.100946. 

The chapter then provides errata for the published paper and then details the use of the model 

developed and other studies to examine the influence of initial state on modulus and density. 

The chapter then concludes with a section summarizing the findings.  

 

5.1 Model development to predict dynamic interactions of roller and geomaterial 

using simulated roller compaction 
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The developed model in this chapter also sheds light into the effect of initial state on other QA 

measurement (modulus) and density relationship of geomaterials which is discussed in the next 

section.  

5.2 Errata and Addenda for the published paper (Tophel et al. 2023) 

5.2.1 Errata 

Erratum 1: In Table 2, the liquid limit and plastic limit are placed back to front. 

Correction: In Table 2, the liquid limit and plastic limit should be interchanged. 

Erratum 2: Figure 14, caption of the figure 𝑒𝑁 is inconsistent with the use of x-axis title 𝑒0. 

Correction: The caption of the figure should be corrected to: variation of total energy applied 

with 𝑒0 for (a) material B, (b) material C. 

Erratum 3: In page 4 of the paper, 𝐸1 is mentioned as plastic modulus. The original sentence 

was: “Similar to plastic stiffness (𝐾), modulus of the geomaterial represented by 𝐸1, represents 

the plastic modulus of the geomaterial.” 

Correction: 𝐸1 should be elastic modulus. The sentence should be changed to “The plastic 

stiffness is represented by 𝐾, whereas, the Youngs’ or elastic modulus of the geomaterial is 

represented by 𝐸1. " 

5.3 Influence of initial state on modulus-density relationship 

Pavement construction and compaction quality control commonly rely on density 

measurements. However, modulus measurement methods are gaining popularity due to their 

convenience and ease of use compared to density measurement techniques. Modulus-based 

methods can provide the material modulus needed for a pavement layers' mechanistic-

empirical (ME) design. However, these methods have not been widely accepted as a 

replacement for density measurement in current quality control practices because a single 

modulus measurement does not correspond to a specific density measurement (Meehan et al. 

2012; Lee et al. 2017; Wang et al. 2022). The modulus of geomaterials is typically considered 

independent of its stress history, depending primarily on moisture content, density, or void 

ratio. This section of the chapter examines the non-unique relationship between modulus and 

density in the field, even at constant moisture content, using three test setups to study 
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geomaterial behaviour under cyclic loading. Accurately estimating the modulus requires 

knowledge of the geomaterial's initial and current states regardless of the measured modulus 

or test type. Variations in initial density, resulting from different paving or spreading methods, 

can lead to different residual lateral stress development and affect the modulus. Therefore, 

when establishing a correlation between density and modulus, it is important to consider the 

different initial densities observed in the field. 

This section of the chapter found that even at a constant moisture content, there exists a non-

unique relationship between modulus and density (𝜌𝑑,𝑁)  or void ratio (𝑒𝑁)  because of 

different initial void ratios (𝑒0) . This observation is based on a series of experiments 

performed using three experimental setups: extra-large wheel tracker test, constant peak stress 

1-D test, and constant radial stiffness triaxial test, testing four different geomaterials under 

cyclic loads. The three test setups allow for measuring different modulus types, mimicking the 

diverse moduli representative of the field conditions. For instance, the constant peak stress 

cyclic 1-D test measures the plastic modulus of the geomaterial, while extra-large wheel 

tracker test and constant radial stiffness triaxial test are performed to evaluate the elastic or 

unloading modulus, as applicable to traffic loads in pavements.  

5.3.1 Materials and Test Methods 

Material behaviour subjected to repeated loading was studied in three different experimental 

setups. Each scenario provided a different perspective on the material behaviour and allowed 

the study of material properties during repeated loading.  

5.3.2 Extra-large wheel tracker test 

A prototype of the roller compactor (extra-large wheel tracker test) was first employed to 

investigate the material properties (as shown in Figure 5-1(a)) under a constant load. The 

material under investigation was an unbound granular material (UGM), also known as a 

crushed rock with moderate fines, which makes up the base layer of a pavement (referred to 

as Material 1 in this chapter). Further details of the test and setup can be found in Bodin et al. 

(Bodin et al. 2013). 

During the constant load test, the geomaterials were compacted using a compaction foot and 

subjected to a load of 5 kN. The deformation during compaction was recorded using linear 

variable differential transformers (LVDTs) attached to the bottom of the mould. In a previous 
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study, the authors established a constitutive equation that can calculate the Youngs’ modulus 

of the geomaterial (𝐸𝐺) based on the compactor's applied load and other known parameters 

(Tophel et al. 2023) using 

 𝐸𝐺 =
(𝐻0𝐶1)

−2𝛽
1+𝛽𝑚𝑒𝑥𝑝 (

2𝛽
𝐶1(1 + 𝛽𝑚)

×
(𝑒0 − 𝑒𝑁)

1 + 𝑒0
)  × (

𝜋𝐿𝑅
𝐹

) 𝐸𝑠(1 − 𝜈1
2)

𝐸𝑠 − (𝐻0𝐶1)
−2𝛽

1+𝛽𝑚𝑒𝑥𝑝 (
2𝛽

𝐶1(1 + 𝛽𝑚)
×

(𝑒0 − 𝑒𝑁)
1 + 𝑒0

)  × (
𝜋𝐿𝑅

𝐹
) 𝐸𝑠(1 − 𝜈2

2)

 , (5) 

where 𝜈1  and 𝜈2  are the Poisson’s ratio of the geomaterial and the cylindrical compactor, 

respectively, 𝐸𝑠 is Young's modulus of the steel compactor, 𝐹  is the load applied by the 

compactor, whereas 𝐿 is the length of the compactor, 𝑅 is the radius of the compactor; 𝐶1, 𝑚, 

𝛼 and 𝛽 are material model parameters. The void ratio 𝑒𝑁 at cycle, 𝑁 is calculated from the 

initial void ratio and height i.e., 𝑒0  and 𝐻0 , respectively, using the deformation measured 

during compaction. 

5.3.3 Constant peak stress cyclic 1-D test 

The constant peak stress cyclic vibratory tests under 1-D conditions were conducted using a 

modified Proctor mould with dimensions of 150 mm in diameter and 150 mm in height, as 

shown in Figure 5-1(b). The setup allowed the study of the materials' properties at stresses 

equivalent to those of a roller compactor and a frequency equivalent to vibratory rollers 

(Tophel et al. 2022). In this test, the applied peak vertical stress was 1120 kPa, and the 

vibration frequency was 18 Hz. The test was performed on a sandy material (named Material 

2 in this chapter) at a different moisture content, which forms part of the subgrade layer in the 

pavement cross-section. The modulus calculated in this test was the plastic modulus (𝐸𝑝) 

which is defined as the ratio of the vertical stress to the incremental plastic strain during the 

constant peak stress cyclic 1-D test compaction. 

5.3.4 Constant radial stiffness triaxial test 

A Constant Radial Stiffness Triaxial (CRST) test (Figure 5-1(c)) was then carried out on silty 

sand, a commonly used material for a pavement subbase and subgrade layer (named Material 

3 in this chapter). To further validate the observations made for Material 3, a class 2 crushed 

rock, commonly used for the base layer of a pavement (named Material 4 in this chapter) was 

tested. In contrast to the traditional repeated load triaxial (RLT), the CRST concept provides 

radial stiffness against which radial deformation could occur, thereby increasing the radial 

stress based on the radial stiffness provided. This boundary condition is considered superior 
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to the constant radial stress condition in RLT, better simulating the pavement material 

behaviour under traffic loads and facilitating residual radial stress development, which is 

commonly responsible for achieving shakedown (Yu 2007).  In this instance, a modified 

version of the Precision Unbound Material Analyser (PUMA), developed by The University 

of Nottingham and Cooper Research Technology, is used (Li et al. 2017; Dutta and Kodikara 

2022). The constant radial/lateral stiffness boundary condition was achieved using rubber 

bands that offered variable lateral stress conditions in the field. A stainless-steel band equipped 

with strain gauges was placed outside the rubber band to measure the lateral strain in the band 

while the sample was loaded vertically. The circumferential strain in the band was used to 

compute the lateral strain and lateral stress on the soil sample using equations provided by 

Dutta and Kodikara (2022). The applied vertical stress for tests on Material 3 was 360 kPa 

with a loading time of 0.1 sec and a rest time of 0.9 sec. The initial lateral stress (𝜎𝑙𝑎𝑡) and 

stiffness (𝐾𝑙𝑎𝑡) used in these tests were approximately 10 kPa and 7 MPa respectively. In the 

case of Material 4 testing, the applied vertical stress was 500 kPa, while the other parameters 

were same as for Material 3. 

  

(a)  (b)  

 

(c) 

 

Figure 5-1. Experimental setup pictures: (a) extra-large wheel tracker apparatus; (b) 

constant peak stress cyclic 1-D test; and (c) constant radial stiffness triaxial test. 
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Using the information of vertical and lateral stresses and strains, the resilient modulus of 

geomaterial (𝑀𝑟) can be calculated as  

 𝑀𝑟 =
(𝜎1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)

2
+ (𝜎1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)(𝜎𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡) − 2(𝜎𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)

2

(𝜎1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)( 𝛥𝜖1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡) + (𝜎𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)( 𝛥𝜖1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡) − 2(𝜎𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)(𝛥𝜖𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡)
 , (6) 

where  𝜎1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡, 𝜎𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡 are the resilient stresses in the vertical and lateral directions due 

to the applied vertical stress, and  𝛥𝜖1,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡, 𝛥𝜖𝑙𝑎𝑡,𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡 are the resilient strains in the 

axial/vertical and lateral directions, respectively. The equation is similar to the one developed 

in European standard EN 13286-7 (EN 2004). 

5.3.5 Materials characterization 

The grain size distribution of the four materials used in this chapter is shown in Figure 5-2 

with Table 5-1 listing their geotechnical properties. 

 

Figure 5-2. Grain size distribution of the four materials used in this section. 
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5.4 Results and discussion 

5.4.1 Influence of stress history and initial void ratio for constant load test 

The incremental plastic deformation (∆𝐻𝑝) and incremental (average) plastic strain (∆𝜖𝑝) 

variations of samples of Material 1 at a constant 4.13% gravimetric moisture content are 

plotted against void ratio at cycle number 𝑁  ( 𝑒𝑁),  as shown in Figure 5-3(a) and (b), 

respectively. It can be observed that both parameters depend not only on the current void ratio 

(𝑒𝑁), but also on the initial void ratio (𝑒0) of the sample. At a particular 𝑒𝑁, both parameters 

are lower for a higher initial void ratio. The small difference in the values of ∆𝐻𝑝 and ∆𝜖𝑝 

corresponds to the difference in initial height of the samples. 

Table 5-1. Geotechnical properties of each material. 

Material 
Material 

1 

Material 

2 

Material 

3 

Material 

4 

Test 

Standard 

Specific Gravity (Gs) 2.66 2.61 2.70 2.78 

(Standards 

Australia 

2002) 

Optimum Moisture 

Content (OMC), 

modified Proctor (%) 

6.6 9.3 8.0 5.8 

(Standards 

Australia 

2003) 

Maximum Dry 

Density (MDD), 

modified Proctor 

(t/m3) 

2.2 1.85 2.08 2.35 

(Standards 

Australia 

2003) 

Mean Particle 

Diameter (D50) (mm) 
4.5 0.45 0.32 6.5 

(Standards 

Australia 

2009) 

Percentage passing 

the No. 200 sieve (%) 
8.8 0.2 21 10 

(Standards 

Australia 

2009) 

The non-unique relationships between ∆𝐻𝑝  and ∆𝜖𝑝  with 𝑒𝑁  were also observed for 

geomaterial’s Young’s modulus (𝐸𝐺), as shown in Figure 5-4, where the variation of 𝐸𝐺  is 

plotted against void ratio. Although all the samples had the same moisture content (𝑤), 𝐸𝐺 was 

found to be dependent on 𝑒0 of the sample and not unique for the same 𝑒𝑁 or 𝜌𝑑,𝑁 . It should 

be noted that past research (Li and Selig 1994; Tatsuoka et al. 2021) also reported a non-unique 

relationship between density and modulus; however, the reason for this discrepancy is due to 

the difference in 𝑆𝑟. Referring to Figure 5-4, at a constant void ratio (which implies that the 𝑆𝑟 

is constant as 𝑤 is constant), the 𝐸𝐺  values were higher for samples compacted from a looser 

initial state or higher initial void ratio. 
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(a) (b) 

Figure 5-3. Variation of geomaterial properties with 𝒆𝑵: (a) ∆𝑯𝒑, (b) ∆𝝐𝒑 at 4.13% 

moisture content for Material 1 in Extra-large wheel tracker test (constant load test). 

5.4.2 Influence of stress history and initial void ratio for a constant peak stress cyclic 

test under K0 condition 

The constant stress test also showed a similar pattern observed in Figure 5-4. The modulus, 

plotted against the void ratio for samples of Material 2 at different moisture contents, indicated 

that a sample with a higher initial void ratio was stiffer than a sample with a lower initial void 

ratio. The tests conducted on different moisture contents revealed the dependence of material 

properties on moisture content, void ratio, and initial void ratio, as shown in Figure 5-5. 

 

Figure 5-4. Variation of geomaterial’s Young’s modulus 𝑬𝑮 with 𝒆𝑵 for all six samples 

at 4.13% moisture content for Material 1 in Extra-large wheel tracker test (constant 

load test). 
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(a)  (b)  

Figure 5-5. Variation of plastic modulus with the void ratio for (a) moisture content of 

5% and (b) moisture content 7% for Material 2 in constant peak stress cyclic 1-D test. 

5.4.3 Influence of stress history and initial void ratio for CRST test  

The CRST test showed similar behaviour for resilient modulus to the other two test setups 

(Figure 5-6(a)) for moisture content of 8% for Material 3. As stated before, the test setup 

allowed measurement of the lateral stress development during repeated cyclic loading which 

is shown in Figure 5-6(b). 

  

(a)  (b)  

Figure 5-6. Variation of (a) resilient modulus with void ratio and (b) lateral stress with 

void ratio at 8% moisture content for Material 3 in constant radial stiffness triaxial test. 
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Considering the same void ratio (𝑒 = 0.336), it can be seen that the values of lateral stresses 

are 42 kPa and 32 kPa for 𝑒0 = 0.389 and 𝑒0 = 0.354, respectively (from Figure 5-6(b)). This 

indicates that the sample with a higher initial void ratio undergo greater cumulative plastic 

deformation and therefore requires more cycles to reach a particular void ratio. This results in 

higher residual lateral stress development, which increases mean stress for specimens with 

higher 𝑒0. This contributes to the higher resilient modulus value of 175 MPa compared to 70 

MPa at the same void ratio/density of 0.336.  

 
 

(a)  (b)  

Figure 5-7. Variation of (a) resilient modulus with void ratio and (b) lateral stress with 

void ratio at 4.9% moisture content for Material 4 in constant radial stiffness triaxial 

test. 

For Material 4, tested at a moisture content of 4.9%, modulus and lateral stress behaviour are 

shown in Figure 5-7. Similar to Material 3, the lateral stresses are higher for a sample having 

a higher initial void ratio giving rise to a higher resilient modulus at one particular void ratio. 

Considering void ratio, 𝑒 = 0.201, the values of lateral stresses are 37 kPa and 13 kPa for 𝑒0 =

 0.235 and 𝑒0 = 0.204, respectively (from Figure 5-7(b)). The resilient modulus values are 240 

MPa compared to 160 MPa for 𝑒0 = 0.235 and 𝑒0 = 0.204, respectively (from Figure 5-7(a)). 

These observations can also be explained based on the theoretical model proposed by J. M. 

Pestana and Whittle (1995), where the elastic bulk modulus (𝐾) is a function of void ratio (𝑒) 

and mean effective stress (𝑝′) and as shown below: 
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 𝐾 = 𝐾0𝑝𝑎 (
1+𝑒

𝑒
) (

𝑝′

𝑝𝑎
)

𝑐

, (7) 

 𝑝′ = 𝑝 + 𝜒𝑠, (8) 

where 𝐾0, 𝑐  are fitting parameters, 𝑝𝑎  is atmospheric pressure, 𝑝  is mean net stress, 𝑠  is 

suction, and 𝜒 is the Bishop’s parameter (Bishop 1959) and which is considered equal to the 

degree of saturation (𝑆𝑟) (Schrefler 1984; Houlsby 1997; Borja 2006; Kuczmann and Iványi 

2008; Coussy 2011; Manzanal et al. 2011).  

For a particular material having constant moisture and void ratio, the increase in 𝑝′ is due to 

the increase in lateral stress in the sample as 𝑆𝑟 is the same. This increase in 𝑝′ results in an 

increase in bulk modulus (𝐾). 

5.5 Conclusions 

Different plastic deformation and strain at the same void ratio lead to differing material 

properties due to their differing initial states. This was demonstrated in this short 

communication through three experiments testing four materials with different loading and 

boundary conditions. The results showed that the initial state affected the material's modulus 

and other properties due to different residual lateral stress built up during deformation. This 

residual lateral stress changes the mean stress, affecting the material's modulus. In the field, 

various spreading techniques result in different initial void ratio conditions. The modulus's 

dependence on the material's initial state may contribute to the lack of accuracy in the 

relationship between Intelligent Compaction (IC) variables and compaction density. This 

highlights the need to consider the initial state of the material when establishing any 

relationship between material parameters and a material's current state. 

5.6 Summary 

The importance of understanding the compaction process for civil engineering structures and 

the challenges associated with modelling roller compaction, which is complicated by the 

variable stress that affects material properties, has been highlighted. To address this issue, the 

constant stress model developed in Chapter 4 was extended to a constant load model by 

utilizing the geometrical relationship between the contact area and incremental plastic 
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deformation. The effect of moisture content, plasticity, and initial void ratio on compaction 

process and proposed simplified equations for dynamic parameters that vary with void ratio 

and the number of cycles was also investigated. The developed model not only provides an 

understanding of the material subjected to stresses equivalent to field compaction but also can 

be used to determine unknown parameters, such as initial density during compaction, which 

is discussed in Chapter 7 of the thesis. The model’s use in predicting initial density would also 

allow to develop a better correlation with modulus and density. 
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Part 4: Instrumentation and Field Study 
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Chapter 6 Instrumentation used to measure deformation 

This is the first chapter of Part 4: Instrumentation and Field Study. The chapter focuses on 

developing the methodology to measure deformation during compaction, which is divided into 

several sections. The first section introduces the concept of measuring deformation during 

compaction, followed by a discussion of factors that could impact the accuracy of those 

measurements. The following section explains the steps taken to minimize measurement 

errors. The instrumentation and methodology used in two experiments are then demonstrated, 

with Experiment 1 being indoors and Experiment 2 being outdoors. The differences in 

instrumentation between the two experiments are also discussed. 

6.1 Conceptualization of deformation measurement technique during compaction 

This study hypothesizes that deformation can be used to estimate density during compaction. 

Measuring deformation in the field requires combining highly precise equipment and 

advanced data analysis to reduce measurement errors (filtering the noise from the measured 

data) as the field environment could be very dynamic. To measure deformation, two 

displacement laser sensors are attached to the roller, one in front and one behind the front 

drum. The area behind the drum has already been compacted, while the area in front has not 

yet been compacted (Figure 6-1).  

In an ideal case (see Figure 6-2), deformation can be calculated as representing the difference 

between the first range 𝐷𝑎  (displacement ahead of the roller), the second range 𝐷𝑏 

(displacement behind the roller), and the initial distance of the sensor from the ground 𝐷𝑅, as 

follows: 

a. plastic deformation or deformation (∆𝑁) = 𝐷𝑏 − 𝐷𝑎;  

b. total deformation (∆𝑁,𝑡𝑜𝑡𝑎𝑙) = 𝐷𝑅 − 𝐷𝑎; and  

c. elastic deformation (∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐) = 𝐷𝑅 − 𝐷𝑏. 

The total deformation (∆𝑁,𝑡𝑜𝑡𝑎𝑙) is a measure of sinkage of the roller into ground due to the 

application of load, plastic deformation (∆𝑁) is the difference between the surface elevation 

difference after and before roller load. Elastic deformation (∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐) can be estimated by 

subtracting ∆𝑁 from ∆𝑁,𝑡𝑜𝑡𝑎𝑙 which is the measure of how much soil has rebounded after the 

roller has passed over it. For the purpose of calculating the density only plastic deformation 

(∆𝑁) is used here.  
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Figure 6-1. Schematic illustrating deformation pattern of geomaterial when a 

compactor passes over loose soil. 

In order to account for roller deviations from horizontal, caused by an incline/decline in the 

surface and/or by bumps resulting in a horizontal rotation of the platform on which the distance 

sensor system is mounted, a correction to the measured plastic deformation is necessary. This 

correction involves measuring the inclination of the distance sensor system relative to the 

geomaterial being measured (denoted as pitch; α) using an orientation unit (inertial 

measurement unit (IMU) in this study). The measured pitch is then used to adjust the measured 

deformation by using a trigonometric function that considers the mutual distance (𝐿𝑅) between 

the first and second distance sensors, as shown in Figure 6-2, such that  

 ∆N= (𝐷𝑏 − 𝐷𝑎) cos(𝛼) + 𝐿𝑅 sin (𝛼). (9) 

The error in deformation measurement could be very large; for example, if the 𝐿𝑅 is 1 metre 

an inclination (𝛼) of 1 degree changes the deformation measurement by around 17 mm. 
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Figure 6-2. Deformation pattern of geomaterial when a compactor is passing over lose 

soil while it is inclined at an angle 𝜶 because of unlevel ground surface. 

Due to the potential for the compactor to also experience a rocking motion and rotation around 

an axis parallel to the movement direction of the platform, a roll correction is necessary to 

accurately measure the deformation. The roll angle, denoted as β, can be measured using the 

same orientation unit that measures pitch (α). The roll correction involves applying a 

trigonometric function to the measured roll angle (β) and adjusting the measured deformation 

accordingly. The corrected deformation is determined by combining the inclination correction 

and the roll correction such that 

 ∆N = (𝐷𝑏 − 𝐷𝑎) cos(𝛼) cos(𝛽) + 𝐿𝑅sin (𝛼). (10) 

The measured signal from all the sensors are pre-processed to remove electrical noise for 

improving the measurement accuracy. This includes pre-processing the measured signals to 

mitigate electrical noise from the distance sensor system and orientation sensor system: 

a. singularity removal (including sudden shifts or abrupt changes in the signal) by 

identifying points where the mean value is changing abruptly or above a 

selected threshold, and replacing it with the mean of a plurality of selected 
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neighbourhood points;  

b. detrending to only show differences in values from the trend; and  

c. frequency filtering (including band-pass filtering) by removing very low and 

very high frequency noise from the signal. 

Acceleration signal (1 kHz) Laser signal (1 kHz) IMU signal (100 Hz)

Double 
integration

High pass 
filter(3Hz)

Low pass 
filter (3 

Hz)

Noise 
removal

Noise 
removal

Noise 
removal

Vibration 
correction

Angle 
correction

Corrected 
measurem

ent
 

Figure 6-3. Flowchart of the deformation correction using accelerometer and IMU. 

In the field, the vibration of the vibratory compactor may introduce noise into the distance 

data, affecting the accuracy of the deformation measurements. To address this issue, the sensor 

data from the distance sensor system are pre-processed to correct for the vibrations/movement. 

The displacement noise is calculated from an acceleration signal by double integrating the 

acceleration noise, and the system is configured to remove the displacement noise from the 

distance measurements. The correction chart is depicted in Figure 6-3. The displacement 

sensor system (e.g., the laser systems) is unable to measure signals with frequency less than a 

certain lower frequency value (dependent on the geomaterial type, for this study 0.1 Hz), and 

the error due to the inclination was around a determined frequency (depending on the 

geomaterial type, for this study it was found to be 3 Hz). These two frequencies (lower 

frequency and the determined frequency) were determined experimentally for the geomaterial 

type. Therefore, the system included a plurality of frequency filters (including bandwidth 

filters) to separate the signals from the distance sensor system for undertaking a separate 

correction of the motion (vibrations) and the orientation (inclination). 
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The instrumentation and methodology were developed in stages. The first trial of the 

instrumentation was conducted in an indoor setting (referred to as Experiment 1 hereafter). 

Based on the results of this testing, improvements were made, and then an outdoor field 

experiment was performed (referred to as Experiment 2 hereafter). As a result, the 

instrumentation details differed for both experiments. The details of the instrumentation are 

provided in the following sections. 

6.2 Roller instrumentation  

An overview of the roller instrumentation used for Experiment 1 is illustrated in Figure 6-4. 

The complete instrumentation of the roller included two triangulation laser sensors, one 

attached in front of the front drum (as the front drum was the vibrating one) and the other 

attached to the rear of the front drum. To measure the inclination/rotation of the laser sensors, 

an IMU was attached on the top of the front laser. Moreover, the drum and frame vibration 

and the overall movement of the roller were monitored in three dimensions using two 

accelerometers, attached to each of the drums. The geolocation of the roller was recorded using 

a Universal Total Station (UTS). 

 

Figure 6-4. Schematic of the instrumented roller for Experiment 1. 
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Figure 6-5. Schematic diagram showing the instrumentation and data flow in 

Experiment 1. 

The accelerometers provided valuable information for detecting and monitoring the rigid body 

motion of the roller. The data from all of the sensors were acquired via a 16-bit, 250-kHz data 

acquisition (DAQ) system manufactured by National Instruments (NI) connected to a 

Windows-based Dell Precision 5530 laptop PC. The PC was equipped with National 

Instruments' Laboratory Virtual Instrument Engineering Workbench (LabVIEW), a visual 

programming language environment. LabVIEW was used to acquire all the signals and 

conduct real-time signal analysis. A schematic diagram of the instrumentation and data flow 

for Experiment 1 is shown in Figure 6-5. 

For Experiment 2, lasers sensors were installed such that there were three in front and three 

behind the rear drum (as the rear drum was the vibrating one), evenly distributed along the 

width of the roller; instead of one in the front and one at the back as in Experiment 1. This 

helped reduce the deformation measurement error caused by the variability in material surface 
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topography along the width of the roller. The laser sensors used in Experiment 2 were also 

more precise than those used in Experiment 1 and utilized ethernet for data transmission. 

Therefore, a switch was used instead of the DAQ in Experiment 1. The data collection platform 

used for Experiment 2 was Python. It was also discovered that the vibration noise could be 

removed equally well by taking the average of the signal over a period of time, rather than 

using the accelerometer data. This decision was favoured by the fact that the accelerometer 

data collection compromised the data collection from six laser sensors, as the PC had 

limitations on its bit per second (bps) capacity. The IMU used in Experiment 2 also allowed 

for inclination measurement with higher accuracy. The instruments utilized in this study were 

pre-calibrated by the manufacturer. The outputs from these instruments, based on this pre-

calibration, were directly used in the study without any further calibration procedures. Details 

of all instruments are provided in subsequent sections. 

6.3 Laser systems details 

In Experiment 1, two triangulation displacement laser line sensors were used. In the 

triangulation principle, a beam of light is transmitted by the sensor to the object being 

measured, with the reflected light striking the receiver line in the detector at a unique angle. 

The distance to the object is calculated based on the angle of incidence. The laser used is a 

pulsed red laser diode with a wavelength of 600 nm. Table 6-1 lists its precision and accuracy 

when measuring in a vibrating environment, making it a suitable choice for this purpose. The 

laser beam is classified as class 2, which ensures its safety. The beam characteristic of the laser 

is illustrated in Figure 6-6. 

 

Figure 6-6. Typical beam characteristics of the laser used for Experiment 1 (not drawn 

to scale). 
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Table 6-1 shows the two different types of laser sensors used for Experiment 1 and Experiment 

2 and their descriptions. The major difference between the two systems is that the sensors in 

Experiment 2 have a smaller measuring range (500 mm) than in Experiment 1 (900 mm). The 

resolution and repeat accuracy of the sensors in Experiment 2 were better than in Experiment 

1. 

Table 6-1. Description of the laser sensors used for Experiments 1 and 2. 

Laser Experiment 1 Experiment 2 

Manufacturer OMRON Corporation OMRON Corporation 

Model OM70-L1000.HV0700.VI OM70-L0600.HV0350.EK 

Sampling Frequency 

(Maximum) 
2.5 kHz 2.0 kHz 

Measuring Distance (Sd) 100-1000 mm 100-600 mm 

Measuring Range (Mr) 900 mm 500 mm 

Resolution 3-63 µm 3-24 µm 

Repeat Accuracy 1-32 µm 1-9 µm 

Linearity error ±0.19 % Mr ±0.12 % Mr 

Output circuit Analog and RS 485 Ethernet 

Voltage supply range 

(VDC) 
+15 to +28 +15 to +28 

Output signal 
+4 to +20 mA / 0 to +10 

VDC 

+4 to +20 mA / 0 to +10 

VDC 

Operating temperature -10 to 50 ℃ -10 to 50 ℃ 

Temperature error 0.065 % Sd/K 0.065 % Sd/K 

Light source Pulsed red laser diode Pulsed red laser diode 

Wavelength 660 nm 660 nm 

Laser class 2 2 

Protection class IP 67 IP 67 

Dimensions 26×55×74 (mm) 26×55×74 (mm) 
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6.4 Inertial Measurement Unit (IMU) 

The IMU utilized in this study has six degrees of freedom, combining a triaxial acceleration 

sensor and a triaxial gyroscope to provide acceleration, inclination, and rotation rate 

measurements. The built-in fusion algorithm is specifically designed for inclination 

measurement, and provides adequate compensation for external acceleration disturbances. The 

ability of this device to provide reliable measurements, even in noisy environments, made it 

suitable for use in this project. The IMU outputs eight elements: acceleration, angular rate, 

rotational acceleration, gravity vector, linear acceleration, rotation angles, quaternion, and 

temperature. Although the primary purpose of the IMU in this study was to use the rotation 

angle data to correct the laser measurement, all other data elements were also recorded. 

Data transfer from the IMU was via the integrated controller area network (CAN) SAE J1939 

interface, as opposed to the analog interfaces used by the laser and accelerometer. Therefore, 

a suitable CAN to USB adapter (PCAN-USB FD from PEAK-System) was used to send the 

data to a Windows-based PC. The CAN interface allowed for recording of data from all 

elements, including multiple sensors, using just two wires, which is not possible with analog 

interfaces. The dynamic inclination measurement technology offers the capability to 

simultaneously measure inclination, acceleration, and rotation rate in all three axes, even in 

external acceleration. This feature made it suitable for applications that experience external 

disturbances, such as vibrations, shocks, and movements. The adjustable ranges compensate 

for external accelerations, while the adjustable thresholds enable the detection of measured 

value overruns. This provides users with greater flexibility and control over the accuracy and 

precision of the measurements 

Table 6-2 shows the different IMUs used for Experiments 1 and 2 and their descriptions. The 

major difference between the two systems is that the sensors in Experiment 2 had a higher 

acceleration measuring range that provided better stability of inclination measurement during 

the high vibration of the compactor.  
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Table 6-2. Description of the IMUs used for Experiment 1 and Experiment 2. 

IMU Experiment 1 Experiment 2 

Manufacturer PEPPERL+FUCHS PEPPERL+FUCHS 

Model IMU360D-F99-B20-V15 
IMUF99PL-SC3600-

0KB20V1501 

Sampling Frequency 

(Maximum) 

800 Hz (100 Hz per 

element) 

800 Hz (100 Hz per 

element) 

Rated capacity/ Measuring 

range 

acceleration: ± 2 g 

inclination: 0 – 360 ° 

rotation rate: ± 250 °/s 

acceleration: ± 4 g 

inclination: 0 – 360 ° 

rotation rate: ± 250 °/s 

Resolution 

acceleration: 0.001 g 

inclination: 0.01 ° 

rotation rate: 0.01 °/s 

acceleration: 0.001 g 

inclination: 0.01 ° 

rotation rate: 0.01 °/s 

Output circuit 
CAN bus with SAE J1939 

protocol 

CAN bus with SAE J1939 

protocol 

Voltage supply range 

(VDC) 
5 to +30 5 to +30 

Output signal 

(VDC) 
Not Applicable Not Applicable 

Operating temperature +15 to +85 °C +15 to +85 °C 

Temperature error max. ± 1.5° 
max. ± 1.5° at +15 to +85 

°C 

Protection class IP 68/ IP 69K IP 68/ IP 69 

Dimensions 37.5×45×65 (mm) 37.5×45×65 (mm) 
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6.5 Accelerometer 

In addition to the lasers and IMU, the two most essential sensors used for this study, was an 

accelerometer installed to track the rigid body movement and measure the vibration 

transmitted from the drum to the sensors. During the trial, typical maximum drum acceleration 

amplitudes observed during testing were ± 8 g (gravitational force). The critical accelerometer 

specifications and the measurement range included high sensitivity, high sampling frequency, 

and low-temperature error. The Brüel & Kjær type 4506-B-003 Miniature Triaxial 

Piezoelectric Constant Current Line Drive (CCLD) Accelerometer with transducer electronic 

data sheet (TEDS) was ideal (Table 6-3). To mount the accelerometers, thin polycarbonate 

mounting clips were used. The accelerometers were connected to the DAQ with AO-0526 

BNC (male) connectors, which are super low-noise cables and conditioned with a signal 

conditioner PCB designed in-house and the circuit diagram is shown in Figure 6-7. 

 

Figure 6-7. Circuit diagram for PCB used for accelerometers. 
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Table 6-3. Specifications of the accelerometer used in Experiment 1. 

Instrument Accelerometer 

Manufacturer Brüel & Kjær 

Model 4506-B-003 

Sampling Frequency (Maximum) 2 kHz 

Rated capacity/ Measuring range ± 14 g 

Sensitivity/Resolution 490 ± 10% mV/g 

Output circuit Analog 

Voltage supply range 

(VDC) 
+24 to +30 

Output signal 

(VDC) 
-10 to +10 

Temperature error X: 0.15, Y, Z: 0.12 %/°C 

Operating temperature (–54 to +100 °C) 

Dimensions, mm 17×17×17 

 

6.6 Switch 

An Advantech Ethernet switch (EKI-2728-BE) was utilized to create a network to 

communicate between the laser sensors and PC in Experiment 2 (Table 6-4). The switch had 

8 ports and compatibility with various Ethernet protocols, including Institute of Electrical and 

Electronics Engineers (IEEE) 802.3, IEEE 802.3u, and IEEE 802.3ab. The switch is designed 

for industrial settings and can function within temperatures ranging from -10°C to 60°C. It 

includes multiple features that bolster network reliability and security, such as redundant 

power inputs, port-based virtual local area network (VLAN), QoS, and storm control. 

Additionally, the switch allows for various management options, such as simple network 

management protocol (SNMP), web browser, and command line interface (CLI), rendering it 

effortless to configure and monitor. 

6.7 Geolocation system 

Experiment 1 involved using a Universal Total Station (UTS) SPS930 from Trimble, which is 

a surveying instrument that measures angles and distances to determine the location of points 

in three-dimensional space. This high-precision total station model is specifically designed for 
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challenging surveying applications, utilizing advanced tracking and measuring technology to 

ensure accurate measurements. 

Table 6-4. Switch specifications used for Experiment 2 to acquire signals from laser 

sensors. 

Instrument Switch 

Manufacturer Advantech 

Model EKI-2728/I 

Connectors 8 × RJ 45 

Transmission speed Up to 1000 Mbps 

Voltage supply range 

(VDC) 
+12 to +48 

Operating temperature -10 to 60 °C 

Protection class IP 30 

Dimensions 30 × 140 × 95 mm 

Experiment 2 used a global positioning system (GPS) with a fixed real-time kinematic (RTK) 

correction for precise positioning of the roller in the outdoor environment rather than the UTS. 

GPS is a satellite-based navigation system that provides location information with high 

accuracy. RTK is a GPS surveying technique that utilizes a fixed base station to correct errors 

in the GPS signal, providing even higher accuracy.  

6.8 Other steps to detect and prevent noise in the system 

Several studies were conducted to measure the noise sources in the sensors and the DAQ. One 

study involved acquiring data from all the sensors mounted on a stationary roller. The lasers, 

IMU, and accelerometer data were collected with the stationary machine on the construction 

site. 

Upon analyzing the samples, it was found that the noise due to electronic interference under 

regular operation was minimal, with a standard deviation of approximately 1 milli-g for 

accelerometers. Three main factors contributed to this observation: 

a) The use of shielded or coaxial cables to connect all the sensors, combined with the 

use of differential inputs of the DAQ; 



 

95 

 

b) Keeping the cable length as short as possible; and 

c) Powering the sensors with two 12V Lithium-ion batteries connected in series to 

provide 24V, rather trhan a single 12V battery. 

6.9 Installation of all the sensors on the roller 

All of the sensors were attached to the compactor using custom-made brackets because off-

the-shelf mounting solutions were not suitable for this application. The brackets were 

fabricated by the technical team at the Department of Civil Engineering at Monash University. 

Figure 6-8 shows the different brackets used for Experiments 1 and 2. As Experiment 2 used 

three sensors instead of one, three attachments were made as represented. Custom-made 

brackets allowed the sensors to be attached to any type or size compactor. 

  

(a) (b) 

Figure 6-8. Custom designed brackets to install the sensors to the compactor. 

6.10 Summary 

The instrumentation required to measure deformation accurately during compaction was 

determined. Highly precise equipment and advanced data analysis were used to reduce 

measurement errors, as the field environment is very dynamic. The deformation was measured 

using laser sensors attached before and after the drums. Correction of the measured plastic 

deformation was necessary to account for inclination of the roller caused by uneven surfaces, 

and a roll correction was needed to address the potential for the compactor to experience 

rocking motion and rotation around an axis parallel to the movement direction of the platform. 
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Pre-processing signals were also required to remove electrical noise to improve measurement 

accuracy. In addition, the distance sensor system data were pre-processed to correct for 

vibrations/movement. The instrumentation and methodology were developed in stages, and 

the first trial of the instrumentation conducted in an indoor setting, followed by an outdoor 

field experiment. 

The accurate measurement of deformation is necessary for the precise estimation of compacted 

density. The next chapter presents the methodology and analytics developed to convert the 

deformation measurements from the instrumentation described here to density, along with the 

results from Experiments 1 and 2 mentioned here. 
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Chapter 7 Deformation to density calculation 

Chapter 7 of the thesis is the second chapter in Part 4: Instrumentation and Field Study. The 

preceding chapter provided a detailed account of the instrumentation and methodology 

employed to measure deformation during compaction and mitigate data noise; while this 

chapter expands upon these foundations by presenting various approaches to estimating 

density based on the obtained deformation data. Furthermore, it offers a concise summary of 

the experimental procedure conducted during field testing. It also includes details regarding 

the materials tested and the diverse rollers utilized. Specifically, the chapter explores different 

methods for converting deformation measurements to density values. It explores the potential 

of the previously developed model from earlier chapters to enhance density estimation 

accuracy. 

This chapter constitutes a pivotal element within the overarching focus of the thesis on 

estimating density during compaction through advanced instrumentation. The chapter 

augments the comprehensiveness of the methods employed and the results obtained during the 

field study by encompassing information on estimating density from deformation data and 

summarising the experimental procedure. 

7.1 Methodology to correlate deformation to density 

Once the deformation caused by the compactor has been measured, it can be utilized to 

estimate density. The relationship between deformation and density depends on factors such 

as material type, compactor type, material initial condition, and moisture content. The 

influence of material type, different loading conditions, and moisture content has already been 

investigated at a laboratory scale and presented in Chapters 4-6. Accordingly, in the field study 

here, greater emphasis was placed on studying the effect of the material's initial condition 

while keeping other factors constant. Two main methodologies were employed to establish a 

correlation between deformation and density: (a) regression-based and (b) classification-

based. 

7.1.1 Regression-based method 

The regression-based method employs deformation measurements to establish a mathematical 

relationship that can estimate the numerical value of density. To assess the accuracy of density 

estimation, the performance of the models was evaluated against ground truth density 
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measured using nuclear density gauge (NDG). This evaluation involved calculating the mean 

absolute error (MAE) between the estimated or predicted density from the deformation 

(𝜌𝑝) and measured density from NDG (𝜌𝑚) as a benchmark according to 

 MAE = 
|𝜌𝑚−𝜌𝑝|

𝑁𝑚
, (11) 

where 𝑁𝑚 is the total number of measurements.  

7.1.2 Classification-based method 

For a geotechnical engineer, comparing measured and predicted densities with regard to MAE 

does not provide sufficient information. Therefore, the assessment was also based on 

classification accuracy, specifically determining whether the area was correctly classified as 

compacted. Classification is a predictive modelling technique that assigns data into discrete 

classes or categories based on input variables. In classification, the objective is to learn a 

decision boundary that effectively separates the different classes. The prediction process for 

this study was divided into four parts, as shown in Figure 7-1: true positive (when both the 

predicted and measured densities are above MDD or target density) (marked as area (1) in 

Figure 7-1), false negative (when the predicted density is below MDD while the measured 

density is above MDD) (marked as area (2) in Figure 7-1), true negative (when both densities 

are below MDD) (marked as area (3) in Figure 7-1), and false positive (when the predicted 

density is above MDD while the measured density is below MDD) (marked as area (4) in 

Figure 7-1). These four outcomes are collectively known as the confusion matrix of a model. 

For this study, a false positive is hereafter assumed to be the critical error, as it shows that the 

predicted density is more than the target density. However, in reality, the density is inadequate 

and less than the target density. 
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Figure 7-1. Illustration of classification of the compacted area in terms of predicted and 

measured densities: (1) true positive; (2) false negative; (3) true negative; (4) false 

positive. 

7.1.3 1D compression equation 

In the previous chapter, it was discussed that during one compaction pass, the plastic 

deformation is estimated as ∆𝑁 . Summing all the plastic deformations from each pass, the total 

plastic deformation (hereafter plastic deformation is referred to as deformation) (∆𝐻𝑁) until 

pass 𝑁 can be calculated as 

 ∆𝐻𝑁 = ∑ ∆𝑁

𝑁

𝑖=1

. (12) 

In 1D compaction, the material is assumed to deform solely in the vertical direction (see Figure 

7-2), with no lateral spreading (thus maintaining a constant cross-sectional area). Recently, 

Tophel et al. (2022) proposed that the compaction process of geomaterials could be 

approximated as 1D compaction, a hypothesis that was subsequently validated by (Brzeziński 

et al. 2022; Yin et al. 2023) using the photogrammetry method. The final density (𝜌𝑓) after 

compaction can be calculated using  
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Figure 7-2. 1D compression schematic showing the deformed state before and after 

compaction. 

 
∆𝐻𝑁

𝐻𝑖
=

𝜌𝑓 − 𝜌𝑖

𝜌𝑓
 , (13) 

where 𝐻𝑖 is the initial layer thickness, ∆𝐻𝑁 is the total deformation or compaction of the layer 

(𝐻𝑖 − 𝐻𝑓), 𝐻𝑓 is the layer thickness after compaction, and  𝜌𝑖 is the initial layer density. The 

input parameters for this model are: initial height (𝐻𝑖), initial density  (𝜌𝑖), and deformation 

(∆𝐻𝑁). The output is the final density (𝜌𝑓). After the density is estimated, MAE and the 

critical error based on the target density can be computed as the percentage of false positives. 

The advantage of this model is that it does not require any calibration before it can be used 

and does not depend on material or roller type. 𝜌𝑖 can be either measured or estimated, more 

details are provided in section 7.5. 

7.1.4 Machine learning models 

As described in Chapter 3, machine learning classifier models, such as artificial neural 

networks (ANNs), Random Forest (RF), and Scholastic Gradient Descent (SGD) classifiers, 

can be employed to capture non-linear relationships between input and output variables. For 

this study, Scikit-Learn's SGD Classifiers were implemented in Python and other required 

modules, including Pandas, Numpy, and Seaborn, to develop the model (Van Rossum and 

Drake Jr 1995; McKinney 2010; Pedregosa et al. 2011; Harris et al. 2020). The entire dataset 

was divided into 80% training data for model development and 20% test data for model 

validation. The input parameters remained the same as the 1-D model (initial height, initial 

density, and deformation), while the two-classification output values represented i) density 
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more than MDD or ii) density less than MDD. These models require initial development and 

training with the obtained data before being deployed for prediction. It is also important to 

note that this method depends on the material and compactor types, meaning the model would 

need to be retrained if any of these parameters changed.  

7.2 Materials and Test Methods 

As discussed in the preceding chapter, the instrumentation and hypothesis were examined in 

two distinct field settings: (a) indoors (Experiment 1) and (b) outdoors (Experiment 2). Each 

field setting offered its own advantages and limitations. The indoor field setting of Experiment 

1 allowed for testing the instrumentation and demonstrating the proof of concept for the 

hypothesis. It also enabled control over the environmental factors influencing data collection 

during the tests. Conversely, the outdoor field setting of Experiment 2 provided an opportunity 

to scale up the methodology to resemble the actual field conditions. This involved utilizing a 

larger roller than the one used in Experiment 1, as illustrated in Table 7-1. Images of the rollers 

can be found in Figure 7-3. Further details regarding the experimental setup are provided in 

the subsequent sections. 

  

(a) (b) 

Figure 7-3. Rollers used for this study (a) 1.5t roller for Experiment 1; (b) 4t roller for 

Experiment 2. 

The material utilized for Experiment 1 was identified as sand with silty fines (referred to as 

Material 1). In contrast, for Experiment 2, a Class 2 UGM classified by VicRoads was 

employed (referred to as Material 2) which was selected as it was more representative of the 
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base layer of a pavement. The geotechnical properties of these materials and additional details 

can be found in Figure 7-4 and Table 7-2. 

Table 7-1. Details about the rollers used for this study.  

 Experiment 1 Experiment 2 

Manufacturer HAMM DYNAPAC 

Model HD 10C VV CC1300 

Type 
Articulated tandem roller 

with two vibratory drums 

Articulated tandem roller 

with two vibratory drums 

Total length (mm) 2260 2725 

Width (mm) 1056 1450 

Roller drum width (mm) 1000 1300 

Drum diameter (mm) 620 802 

Speed range (km/h) 0 to 11 0 to 10 

Theoretical gradeability 
30 % (vibration ON), 40 % 

(vibration OFF) 
37 % 

Static Mass (kg) 1670 3900 

Static Drum Linear Load, 

front/rear (kg/cm) 
8.1/8.6 14.5/15.4 

Vibration frequency (Hz) 52 52 

Amplitude (mm) 0.45 0.5 

Centrifugal force (kN) 16 33 

The test procedure for both experiments consisted of the following steps: 

(a) Placing the material using a bobcat. 

(b) Spreading the material manually using shovels and rakes and levelling it with a 

bubble level. 

(c) Compacting the material using the instrumented roller. 

(d) Conducting in-situ tests for material density. 
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Figure 7-4. Grain size distribution of the two materials used in this study. 

The detailed test procedure involved the following steps: 

[Step 1] The material was conditioned to an appropriate moisture content (8% w/w) for 

site 1 and covered with a tarp for storage, ensuring consistent and ready-to-test 

material. 

[Step 2] The material was placed into the test setup using a bobcat and spread as evenly 

as possible. 

[Step 3] Shovels and rakes were used to spread the material further, followed by 

levelling using a large spirit level to achieve a smooth finish. 

[Step 4] Before compaction, measurements were taken, including density and moisture 

measurements using NDG sampling. 

[Step 5] The instrumentation system was checked, the signal was zeroed, and the data 

acquisition (DAQ) system kept running. 
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[Step 6] The instrumented roller was then used to compact the material, dividing the 

entire width (approximately three times the width of the compactor) into three lanes 

(A, B, and C) shown in Figure 7-5 (d). 

[Step 7] The data from the instruments for each lane and pass were saved to the 

computer in separate files. 

[Step 8] Density data from sampling (sand cone test) were utilized to determine the end 

of compaction. NDG tests were performed at the end of compaction for validation. 

[Step 9] After compacting one layer, the material for the subsequent layer was placed, 

and Steps 2 to 8 mentioned above were repeated. 

Table 7-2. Geotechnical properties of each material. 

Geotechnical property 

Material 

1 

Material 

2 
 

Standard 

Value Value  

Specific gravity (GS) 2.70 2.78  
AS 1289.3.5.2 (Standards 

Australia 2002) 

Median diameter (D50) mm 0.32 6.5  
AS 1289.3.6.1 (Standards 

Australia 2009) 

Fines content (%) 20 10  
AS 1289.3.6.1 (Standards 

Australia 2009) 

MDD standard proctor 

(Mg/m3) 
1.96 2.28  

AS 1289.5.1.1 (Standards 

Australia 2017) 

OMC standard (%) 9.8 6.5  
AS 1289.5.1.1 (Standards 

Australia 2017) 

MDD modified Proctor 

(Mg/m3) 
2.08 2.35  

AS 1289 5.2.1 (Standards 

Australia 2003) 

OMC modified Proctor (%) 8 5.8  
AS 1289 5.2.1 (Standards 

Australia 2003) 

Optimum degree of 

saturation (𝑺𝒓𝒐𝒑𝒕) (%) 
70 85  

AS 1289.5.1.1 (Standards 

Australia 2017) 

USCS classification SM GW  
AS 1289.3.6.1 (Standards 

Australia 2009) 
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7.2.1 Setup for Experiment 1 

The site chosen for the experiment was an indoor facility located within the premises of 

Monash University. This indoor setting was selected to minimize errors arising from the 

outdoor environment. To create the site, a large wooden box was fabricated, measuring 7.5 m 

in length, 4 m in width, and 0.8 m in height. Additionally, an open area was included to 

accommodate the ramp for moving the roller into the box, as depicted in Figure 7-5. 

The sides of the box were reinforced with bracing, as depicted in Figure 7-5(b) and (c), using 

wooden angle brackets spaced at 125 mm intervals. This reinforcement was implemented to 

ensure the safety of the box during the vibration caused by the roller during the compaction of 

the soil layers inside the box. Moreover, the structural capacity of the box was designed with 

a factor of safety exceeding 5 to enhance its stability further. 

7.2.2 Results for Experiment 1 

The test consisted of compacting five layers. To facilitate NDG measurements for validation, 

each layer was divided into three lanes (Lanes A, B, and C). Each lane was subdivided into a 

1 m² grid area comprising five points (the edge points were not taken into consideration as the 

roller was not placed entirely to the edge). Consequently, the total number of data points for 

one layer amounted to 15. Therefore, the number of data points for the entire test 

encompassing five layers was 75. The vertical plastic deformation values obtained from the 

instrumentation are depicted in Figure 7-6.  
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Figure 7-5. Images of the test site used for this study. 

The comparison between the measured and predicted density is illustrated in Figure 7-7, 

demonstrating that the predicted density yielded a remarkably low MAE of only 0.08 Mg/m3 

when employing the 1-D compaction model. The classification-based differentiation is based 

on the MDD, obtained from the standard compaction test, achieving a value greater than 1.96 

Mg/m3, approximately 94% of the MDD. 

 

(a) Schematic diagram 

 

 

(b) Fabricated Large soil box (c) AutoCAD diagram of the site 

 

(d) Lanes A, B and C 
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Figure 7-6. Average Deformation vs Pass Number for all the lanes for Experiment 1. 

 

Figure 7-7. Comparison of predicted dry density using the 1-D compaction assumption 

from the instrumented roller and measured dry density from NDG for Experiment 1. 
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Regarding the 1-D model utilized, the confusion matrix comprised 29 true positives, 19 true 

negatives, 15 false positives, and 12 false negatives out of the 75 data points. This yielded a 

critical error of only 20%, indicating that the 1-D model can predict the field behaviour with 

reasonable accuracy, as also discussed in (Tophel et al. 2022). Nevertheless, the accuracy 

could be enhanced by considering a non-linear relationship. 

The number of data points for the SGD classifier in the confusion matrix was 29 true positives, 

25 true negatives, 12 false positives, and 9 false negatives. The aforementioned critical error 

for the SGD classifier amounts to only 16%, indicating a 20% improvement compared to the 

1-D model. The confusion matrix for both methodologies is presented in Table 7-3. The heat 

maps of the area are shown in Figure 7-8. The red area shows a compacted area density of less 

than the target density, and the green area shows a compacted area density of more than the 

target density. 

Table 7-3. Comparison of the density predictions from the 1-D and ML models as a 

confusion matrix. 

  Predicted Values 

  Positive Negative 

Actual 

Values 

True 29 12 

False 15 19 
 

  Predicted Values 

  Positive Negative 

Actual 

Values 

True 29 09 

False 12 25 
 

(a) 1-D model (b) ML model 

7.2.3 Setup for Experiment 2 

As mentioned in Chapter 6, Experiment 1 employed two triangulation laser sensors. One 

sensor was attached in front of the front drum, while the other was attached to the rear. In 

contrast, Experiment 2 utilized a more advanced roller instrumentation system that 

incorporated three triangulation laser sensors at the front and three at the back. This was done 

to mitigate the error associated with using only one sensor before and after the roller, allowing 

for accurate measurement of deformations over the width of the roller caused by a larger roller 

and larger material particle size (Material 2), as depicted in Figure 7-9. The test area for 

Experiment 2 measured 8 m in length, 5 m in width, and 0.8 m in depth, surpassing the 

dimensions of Experiment 1. An image of the test area can be seen in Figure 7-10. The 

procedure followed for this experiment was identical to that of Experiment 1, as was described 

in the above section. 
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

 

(a) NDG compaction 

 

(b) 1D compaction model 

 

(c) SGD classifier model 

Figure 7-8. Heatmaps of the area characterized using (a) NDG compaction; (b) 1D 

compaction model; (c) SGD classifier model. 

 

 

Figure 7-9. Three laser sensors are attached to the back of the roller. 
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Figure 7-10. Test setup for Experiment 2. 

7.2.4 Results for Experiment 2 

The advantages of using multiple sensors are illustrated in Figure 7-11(a), where it can be 

observed that using multiple sensors led to a reduction in standard deviation. Furthermore, the 

standard deviation decreased with increasing passes as the surface became smoother. 

However, because the mean deformation reduces, the variance increases with number of 

cycles (Figure 7-11 (b)). Nevertheless, due to the use of multiple sensors, the variance also 

reduced. The comparison between the measured and predicted density is illustrated in Figure 

7-12, demonstrating that the predicted density yielded a remarkably low MAE of only 0.06 

Mg/m3 when employing the 1-D compaction model, being lower than that obtained in 

Experiment 1 whereas, Figure 7-13 shows the heatmap.  
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(a) (b) 

Figure 7-11. (a) Standard deviation and (b) variance in the deformation measurement 

with the number of passes. 

 

 

Figure 7-12. Comparison of predicted dry density using 1-D compaction assumption 

from the instrumented roller and measured dry density from NDG for Experiment 2. 
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(a) (b) (c) 

Figure 7-13. Heatmaps of the area due to (a) NDG compaction; (b) 1D compaction 

model; (c) SGD classifier model for Experiment 3. 

Regarding the 1-D model utilized, out of the 18 data points, the confusion matrix comprised 9 

true positives, 4 true negatives, 3 false positives, and 2 false negatives. This indicates a critical 

error of only 16%, indicating again that the 1-D model can predict field behaviour with 

reasonable accuracy.  

The number of data points for the SGD classifier in the confusion matrix was 9 true positives, 

6 true negatives, 3 false positives, and 0 false negatives. The aforementioned critical error for 

the SGD classifier amounts to only 16%, indicating that both methods had the same error; 

however, the SGD classifier could classify more true positives and negatives than the 1D 

model.  

7.3 Acceptance criteria based on statistics 

Road building materials, whether natural or manufactured, are not perfectly uniform. This 

means their physical properties can vary. Therefore, statistical form of specification is 

provided to replace the traditional form of specification in which density requirements were 

required to be not less than some nominated/specified value. Statistical form of specification 

recognises that a proportion of works may have a density less than the specified value and still 

the work can be considered satisfactory (Main Roads 2008). 

In the statistical form of specification, a characteristics density (𝑅𝑐) is specified which is used 

to decide if the work is satisfactory or not.  It can be calculated based on the mean density (𝑥), 

standard deviation (𝑠) and a multiplier (𝑘) as: 
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 𝑅𝑐 =  (𝑥 − 𝑘𝑠) ≥  𝐿, (14) 

where 𝐿 is the specification limit. The multiplier (𝑘) can be calculated based on total number 

of tests (𝑛) carried out, producers’ risk (𝛼) and proportion defective (𝑝) as following: 

 𝑘𝛼 =
𝑘𝑝 − 𝑘

(
1
𝑛 + (

𝑘2

2(𝑛 − 1)
)

0.5 , (15) 

where 𝑘𝛼 and 𝑘𝑝 is the standard normal variate corresponding to the producer’s risk (𝛼) and 

proportion defective respectively. The values of 𝛼, 𝑝, and 𝑛  are recommended by road 

authorities. One such example is described from (Main Roads 2008) recommends number of 

test per lot (𝑛) as 6, 𝛼 of 10% and 𝑝 of 10% and 15% for freeways and highways respectively. 

Using Equation 22 with the value, 𝑘 is calculated as 0.72 and 0.5 for freeways and highways 

respectively. 

The value of 𝑘 decides how stringent is the specification limit and higher the value of 𝑘, more 

stringent is the specification. A parametric study was conducted to see the effect of number of 

tests on proportion defective (𝑝) as shown in Figure 7-14. It can be seen from the figure that 

if we conduct more tests in a lot, the allowed proportion defective can be higher for both 

freeways and highways. Therefore, this study even though has 16% false positive can be 

accepted as it measures density of the entire compacted area. 
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Figure 7-14. Parametric study on proportion defective (𝒑) with number of tests (𝒏) for 

different values of multiplier (𝒌). 

7.4 Application of TGML to remove noise from the deformation measurement 

The test plastic deformation ∆𝐻𝑁 measured in the field contains noise because of uncertainties 

involved with testing, measurement, equipment limitations, and human error.  Therefore, the 

raw value of the ∆𝐻𝑁 was de-noised using the TGML3 technique developed in Chapter 4 to 

smoothen the behaviour. After the deformation values were de-noised, the corrected 

deformation data was used to estimate the density using either a 1-D or ML-based model. As 

discussed in Chapter 4, in TGML3, the artificial neural network (ANN) model is informed 

about the noise using a restriction relationship/equation as an input to the training. The 

restriction relationship/equation represents ∆𝐻𝑁  as increasing monotonically; or in other 

words, with an increase in total passes (𝑁), ∆𝐻𝑁 always increases, which can be written as 

∆𝐻𝑁+1 − ∆𝐻𝑁 > 0.  The regular loss function of the ANN model was modified by adding a 

denoising loss function (𝐿𝐷𝑁). The denoising loss function depends on a difference in the 

predicted deformation as a pair (𝐽𝑁), which was calculated as 

 𝐽𝑁 = ∆𝐻𝑁 − ∆𝐻𝑁+1 (16) 

To enforce the restriction relationship/equation, any positive value of 𝐽𝑁 is defined as a noise 

in the measurement, and thus 𝐿𝐷𝑁  was calculated as a non-zero occurrence of a Rectified 

Linear Unit of the difference of the predicted deformation, ReLU(𝐽𝑁), summed over all the 
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cycles, then multiplied by a hyperparameter 𝜆𝐷𝑁 , which was decided using trial and error such 

that 

 𝐿𝐷𝑁 = 𝜆𝐷𝑁 ∑ ReLU(𝐽𝑁).

𝑁

𝑁=1

 (17) 

The technique described above is demonstrated for Experiment 1 data as an example where 

all the lanes' measured deformation patterns did not increase monotonically (see Figure 7-6). 

TGML3 was used for deformation data to get the corrected deformation measurements. For 

demonstration, Lane B deformation data is presented in Figure 7-15.  Figure 7-15 (a) shows 

the predictions of TGML3 when only 6 passes of data are collected, whereas Figure 7-15 (b) 

shows the correction after 8 passes. This was done to demonstrate the recursive correction in 

deformation data. As the data are collected, they will be retrained recursively (also known as 

online training) to get better predictions. 

After deformation correction, the data obtained in Experiment 3 were used to predict the 

density using the 1D compaction model in Equation (13). It was found that the prediction 

improved slightly with an improved MAE of 0.07 Mg/m3 compared to MAE 0f 0.08 Mg/m3 

without correction. 

 
 

(a)  (b) 

Figure 7-15. TGML3 predictions for Lane B deformation (a) after 6 passes; (b) after 8 

passes. 
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7.5 Use of constitutive model developed to estimate initial density 

The 1D compaction model and SGD classifier model described above both require the input 

of initial density (𝜌𝑖), measured using the NDG here. But when NDG tests cannot be carried 

out before the compaction starts due to restrictions in entering the test site, two possible 

methodologies can be followed.  

1. The initial density is approximately determined by a lookup table for common materials 

used for road construction. Such a lookup table can be generated by testing the material 

in the laboratory by subjecting the materials to nominal stress conditions. In Chapter 5, 

materials were placed and spread manually, and then a nominal load of 1 kN was 

applied. It was found that even when trying to maintain the uniform condition, the initial 

density or void ratio varied considerably, being from 0.38 to 0.6 (see Chapter 4, Fig. 7). 

Therefore, the estimation of initial density using this method can be very erratic. 

2. Estimate the initial density using a model such as that developed in Chapter 5, which 

provides total plastic deformation ( ∆𝐻𝑁)  as a function of initial height (𝐻𝑖) and 

compactor force/load (𝐹)  with model parameters ( 𝛼, 𝛽, 𝐶1  and 𝑚 ) and number of 

cycles/pass (𝑁) as  

 ∆𝐻𝑁 = 𝐻𝑖𝐶1(1 + 𝛽𝑚)𝑙 𝑛 (1 +
1

1 + 𝛽𝑚
(

4𝐹

𝜋𝐿𝛼
)

𝑚

𝑁). (18) 

Recalling from Chapters 4 and 5, the model parameters (𝛼, 𝛽, and 𝐶1) were constant for a given 

material at one moisture content, whereas 𝑚 was found to be a linear function of the initial 

void ratio (𝑒0) or initial density. The model was trained with Lanes A and C data of Experiment 

1 to evaluate the model parameters listed in Table 7-4. The model parameter 𝑚 was also found 

to be a linear variation of initial density similar to what was found in Chapters 5 and 6 and is 

shown in Figure 7-16. 

Table 7-4. Model Parameters for Lanes A and C. 

Model parameter Value 

𝐶1 0.010 

𝛼 0.83 

𝛽 0.16 
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Figure 7-16. Variation of model parameter m with initial void ratio (𝒆𝟎). 

The linear relationship between 𝑚  and 𝑒0  was used for Lane B to evaluate the value of 

𝑒0,which was then used to calculate the density instead of the initial density using the NDG. 

Using this approach, it was found that density could be estimated with MAE of 0.1 Mg/m3. 

This error was higher than the density evaluated using the NDG data; however, it removes the 

requirement for NDG tests before compaction. 

7.6 Application of this study to accurate estimation of density during compaction 

7.6.1 With test/correlation strips 

The models' training can be carried out in a test strip/correlation strip before a large 

compaction area is planned, using, for example, one roller width and around 10 m in length). 

The correlation strips can also be used to develop the theoretical model and evaluate the model 

parameters measured/determined experimentally using each material type and compactor in 

the test strip/correlation strip, for example, one roller width and around 10 m in length. The 

developed model can then be used to obtain a better density estimate; however, this method 

would be expensive as it involves establishing a prior small-scale testing site. The overall 

methodology is shown in Figure 7-17. In step 3, if the initial density using the NDG is not 

possible, the methodology described above can approximate the initial density of the material. 



 

118 

 

 

Figure 7-17. Flow chart of the density estimation with test/correlation strip. 

7.6.2 Without test/correlation strips 

If the project is small, having a test strip could be costly; therefore, as mentioned in the 

previous section, the density can be estimated using a recursive estimation of parameters as 

the data are collected. This methodology would be cheaper but less accurate and more 

computationally expensive as it involves online training. The overall flow chart is shown in 

Figure 7-18. Similar to the test strip, in step 3, if the initial density using the NDG is not 

possible, the methodology described above can approximate the initial density of the material. 

 

Figure 7-18. Flow chart of the density estimation without test/correlation strip involving 

online training. 
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7.7 Summary 

Building upon the previous chapter's discussion on measuring deformation during compaction 

and reducing data noise, methods for estimating density based on obtained deformation data 

were presented and an overview of the experimental procedure used in field testing was 

provided, including details on materials and rollers. 

The importance of estimating density during compaction using advanced instrumentation was 

emphasized, with different approaches (1-D compaction and ML-based classification model) 

to convert deformation measurements into density values were discussed. Moreover, the 

potential of a previously developed model to enhance density estimation accuracy was 

highlighted. 

Two distinct field settings were described: indoor (Experiment 1) and outdoor (Experiment 2). 

Experiment 1 focused on testing instrumentation and validating hypotheses. In contrast, 

Experiment 2 aimed to replicate real field conditions on a larger scale with two different 

materials. 

In Experiment 1, a comparison between measured and predicted density demonstrated a low 

mean absolute error (MAE) of 0.08 Mg/m3 using the 1-D compaction model. A classification-

based approach was used to differentiate density based on the Modified Proctor Maximum 

Dry Density (MDD), achieving a 64% accuracy with a simplified 1-D model. Minimizing false 

positives in density prediction was emphasized, suggesting a non-linear relationship be 

considered for improved accuracy. In Experiment 2, using multiple sensors yielded a better 

accuracy even with material with larger particle size. Using the 1-D model, the accuracy, MAE 

of 0.06 Mg/m3 was observed. Instrumentation details and the benefits of using multiple sensors 

during compaction were also discussed. Figure 7-11illustrated the reduction in standard 

deviation and variation achieved with multiple sensors and the smoothing effect from 

increased passes. 

Overall, the chapter demonstrated the ability to estimate density during compaction using 

advanced instrumentation with various methodologies, models, and field-testing procedures. 

To utilize the approach developed in this chapter, it is recommended to incorporate a test strip 

or correlation strip (with a width equivalent to that of one roller and a length of approximately 

10m) before compaction over a larger area to get higher accuracy. This test strip serves the 

purpose of developing the model specific to the material conditions at the site. Once the model 
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has been successfully developed and validated, it can be employed for the actual compaction 

process. However, if implementation of the test strip is not possible, TGML3 correction or 

recursive estimation of model parameters can be used to estimate density with a slight 

reduction in accuracy. 
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Part 5: Implications and Conclusions 
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Chapter 8 Conclusions and future direction 

The thesis contributed to the field of compaction by presenting a novel methodology for 

estimating density during the compaction of geomaterials for a smoothed drum roller. The 

research included theoretical development and practical validation through experimental 

investigations. The proposed methodology utilizes non-contact distance sensors, orientation 

sensors, and data processing algorithms to measure accurate geomaterial properties during 

compaction. The system for estimating density during compaction includes the following 

components: 

• A distance sensor system for continuously measuring the surface deformation (∆𝑁) of 

a geomaterial portion during compaction without physical contact. 

• A motion/orientation sensor system is mounted on the compactor to synchronously 

measure the motions/orientations of the platform with the deformation measurements. 

• An electronic processing system that incorporates the motion/orientation signals to 

generate corrected deformation estimates. 

• A geolocation unit which measures the geolocation (latitude and longitude) of the 

geomaterial portion synchronously with the deformation measurements. 

• An electronic processing system that receives deformation signals from the distance 

sensor system to generate numerical estimates of the density based on the measured 

deformation and a constitutive relationship or model. 

8.1 Implications of this study 

The accurate measurement of deformation during compaction allows the estimation of density 

proximally or non-destructively and in real-time. The suitability of this methodology has been 

demonstrated for road construction; however, this method can easily be extended to other 

activities involving compaction, such as earthworks in landfills and foundations of buildings 

and bridges. Other advantages and implications of this study include: 

a. The density estimation covers the entire area to be assessed rather than at discrete 

locations;  

b. The approach can be used with either a vibratory or static roller as the measurement 

system and the methodology has the capability to reduce the noise coming from 

vibration;  
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c. Alerts are provided the user about problematic or under-compacted areas based on the 

geomaterial layer density, e.g., when used for QA/QC purposes. 

d. The system indicates compliance with end-result specifications or method 

specifications: the end-result specifications are relevant when the compaction takes 

place until the material has achieved the required density or value of another 

geomaterial layer property. If measurements of the geomaterial layer properties are not 

possible because of very large size materials being present, the method specification 

is relevant, which requires compaction until a selected compaction (deformation) 

threshold is reached—the system and method described herein improves on previous 

methods that rely on contractors visually checking whether the deformation has 

reached a threshold value;  

e. Indicates compliance with performance-based specifications: the performance-based 

specification necessitates density as a critical parameter, and therefore, this study has 

the potential to transform current design practice and thus make present intelligent 

compaction 'truly' intelligent. 

f. Indicates compliance during ‘proof rolling’, which is carried out in some parts of the 

world after the end of compaction to check if the material has been compacted 

sufficiently: proof rolling involves loading the material manually using a water truck 

or a suitable vehicle and checking the deformation visually. The system and method 

described herein may improve on such methods. 

In addition to the advantages above, the deformation measurement system can also be used to 

estimate other geomaterial layer properties (layer thickness, stiffness, modulus, and energy 

imparted to geomaterial). 

8.1.1 Layer thickness measurement 

The layer thickness information after a particular pass 𝑁 (𝐻𝑁), can be estimated using initial 

layer thickness (𝐻𝑖) and a total deformation value until pass 𝑁 (∆𝐻𝑁) as 

 𝐻𝑁 = 𝐻𝑖 − ∆𝐻𝑁 . (19) 

8.1.2 Stiffness measurement 

Different deformations measured during compaction can be used to estimate the stiffness 

during compaction as illustrated in Figure 6-1. Two types of stiffness values (𝐾𝑁) − secant 
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stiffness value ( 𝐾𝑁,𝑠𝑒𝑐𝑎𝑛𝑡) and elastic stiffness value ( 𝐾𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 ) − of the material at a 

particular pass 𝑁 can be calculated with the information of the applied force (𝐹) due to the 

compactor (which includes static and vibratory load), and either the total (∆𝑁,𝑡𝑜𝑡𝑎𝑙) or elastic 

(∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐) deformation during pass 𝑁 according to:  

 𝐾𝑁,𝑠𝑒𝑐𝑎𝑛𝑡 =
𝐹

∆𝑁,𝑡𝑜𝑡𝑎𝑙
, (20) 

  𝐾𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐹

∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
. (21) 

8.1.3 Modulus measurement 

To calculate/generate/estimate/measure the modulus values, e.g., the two moduli of the 

material at a particular pass 𝑁 (𝑀𝑁) − secant modulus value (𝑀𝑁,𝑠𝑒𝑐𝑎𝑛𝑡) or elastic modulus 

value (𝑀𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐) − can be calculated using stress applied by the compactor ( 𝜎𝑍) and the 

model developed in Chapter 4 from the total and elastic deformation during pass 𝑁 (∆𝑁,𝑡𝑜𝑡𝑎𝑙, 

∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 ) as 

 
𝑀𝑁,𝑠𝑒𝑐𝑎𝑛𝑡 =

𝜎𝑍

(
∆𝑁,𝑡𝑜𝑡𝑎𝑙 

𝐻𝑁
)
, 

(22) 

  
𝑀𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =

𝜎𝑍

(
∆𝑁,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 

𝐻𝑁
)
. 

(23) 

8.1.4 Total energy imparted by a vibratory roller to the ground 

The total energy imparted to the ground (𝐸𝑡𝑜𝑡𝑎𝑙) due to a roller, can be represented as a sum of 

three terms: rotational energy (𝐸1), static energy (𝐸2), and vibrational energy (𝐸3) as 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸1 + 𝐸2 + 𝐸3. (24) 
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The free body diagram of a drum in contact with the ground is shown in Figure 8-1, with the 

roller movement details shown in Figure 8-2. 

 

Figure 8-1. Simplified free body diagram for soil-drum interaction (modified after 

(Anderegg and Kaufmann 2004)). 

The terms shown in the figures are defined as: 

a. 𝐹𝑆 = soil-drum interaction force (N);  

b. 𝑚𝑑 = drum mass (kg);  

c. 𝑚𝑓 = frame mass (kg);  

d. m = total mass (𝑚𝑓 + 𝑚𝑑) (kg);   

e. 𝜔 = 2𝜋𝑓 = circular vibration frequency (rad/s);  

f. 𝑓 = frequency of excitation (Hz);  

g. 𝑧 = displacement of drum (m);  

h. 𝑧̈ = acceleration of drum (m/s2);  

i. 𝑚𝑒𝑟𝑒 = eccentric moment of unbalanced mass (kg-m);  

j. 𝑡 = time (s);   

k. 𝑔 = gravitational acceleration (9.81 m/s2);  

𝜔 

𝑚𝑓𝑔 

𝑚𝑑𝑧̈ 

𝑧 

𝐹𝑆 

𝑚𝑑𝑔 

𝑚𝑒𝑟𝑒𝜔2 cos(𝜔𝑡) 
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l. 𝑉 = linear velocity (m/s);  

m. ∆𝑙 = travel width (m);  

n. 𝑟=radius of the drum (m);  

o. 𝐼 = moment of inertia 
1

2
𝑚𝑟2 (kg-m2); and  

p. ∆𝑁 = change in layer thickness (deformation).  

 

 

Figure 8-2. Roller movement details. 

The energy contributions rotational energy (𝐸1), static energy (𝐸2), and vibrational energy 

(𝐸3) is written as: 

 𝐸1 = (

1
2

𝐼𝑉2

𝑟2
+

1

2
𝑚𝑉2) ×

∆𝑙

2𝜋𝑟
+ 𝑚𝑔∆𝑁𝑓

∆𝑙

𝑉
 (25) 

 𝐸2 = (𝑚𝑔 +
1

2
𝑚𝑒𝑟𝑒𝜔2) × 𝑧𝑓

∆𝑙

𝑉
 (26) 

  𝐸3 = (
1

2
𝑚𝑒𝑟𝑒𝜔2) × ∆𝑁𝑓

∆𝑙

𝑉
. (27) 

 

  

∆𝑙 

𝐿 

𝜔 𝑉 

ℎ = Layer thickness 
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8.2 Conclusions 

Density, a gravimetric parameter, cannot be measured without taking a sample; hence, most 

tests are intrusive. Moreover, the commonly performed NDG test emits harmful rays, and so 

appropriate certification is needed to execute such a test.  Sampling and performing the test is 

time-consuming and thus seen as a drawback. Therefore, the need for a proximal density 

estimation methodology in the field arises. The method would allow the contractor or the field 

practitioner to asses compaction quality in real-time. 

The soil density measurement involves collecting a physical sample and then obtaining the 

value by measuring the mass and volume collected from the field. Density measurement tests 

take time and often hinders the contractor who wants to compact another layer of soil as soon 

as possible, because delaying means paying extra money for the equipment and labour. This 

drawback has led to the development of other QA criteria for estimating the earthwork quality; 

one of them is modulus-based QA.  Modulus-based QA is quicker than density measurement 

and is thus advocated to be superior to density-based QA. The modulus, considered to have a 

unique and direct correlation with density, is considered to replace the density measurement; 

however, it has been found that the correlation between density and modulus is not unique, 

depending also on the water content of the sample.  

This study proposed a methodology where the density can be measured in real-time by using 

surface deformation measurements during compaction and then correlating it to material 

density. This study was a proof of concept for the proposed methodology. The results showed 

that measuring the density with high accuracy is possible. Two models, 1-D and ML, were 

evaluated to estimate the density from measured deformation. It is shown that the nonlinear 

ML model was superior to the 1-D model by 20%; however, the 1-D model also yielded a 

satisfactory result. The error in density estimation could be attributed to the limitation of the 

sensor’s accuracy and measurement error from NDG. In future, the accuracy can be improved 

by using advanced sensors, more sophisticated analytics and validation through field trials.  
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8.3 Future direction 

Based on the research in this thesis, several potential future directions could be pursued: 

a. Advanced Sensor Technology: Further advancements in sensor technology for distance 

measurement could enhance the accuracy and capabilities of the proposed 

methodology. Exploring new sensor designs, improved measurement techniques, and 

higher precision sensors with measuring the small deformation during the end of 

compaction at faster rate could lead to more accurate density estimations during 

compaction. 

b. Field Trials and Validation: Conducting extensive field trials to validate the proposed 

methodology in different real-world construction scenarios would be beneficial. This 

would involve testing the system under various soil conditions, compaction equipment, 

and construction practices to ensure its effectiveness and reliability. 

c. Expansion to Other Geomaterial Properties: Building upon the success of estimating 

density, the methodology could be extended to estimate other important geomaterial 

properties. For example, investigating the correlation between deformation 

measurements and parameters such as shear strength, permeability, or moisture content 

could provide valuable insights for construction and quality control. 

d. Integration with Intelligent Compaction: Intelligent compaction techniques involve 

using advanced technologies to optimize the compaction process. Integrating the 

proposed methodology with intelligent compaction systems could enhance their 

capabilities and provide real-time feedback on compaction quality. The data acquired 

from field trials, there's potential to delve deeper into the realm of machine learning to 

enhance the understanding of Intelligent Compaction (IC). Leveraging this rich dataset, 

exploration into machine learning models that juxtapose parameters like ICMV against 

deformation measurements is feasible. Such an approach might bridge the uncertainties 

associated with traditional IC density estimations. Although this avenue wasn't covered 

in the current scope of the thesis, it signifies a promising direction for future research. 

Subsequent investigations could focus on developing and validating these machine 

learning models, potentially offering a more refined and accurate IC methodology. 

e. Development of Standard Guidelines: Collaborating with industry organizations, 

regulatory bodies, and researchers to standard guidelines should be developed for 

implementing the proposed methodology. Establishing standardized protocols, 

calibration procedures, and acceptance criteria would ensure consistent and reliable 



 

129 

 

application of the methodology in practice. 

f. Cost-Effectiveness Analysis: Conducting a comprehensive cost-effectiveness analysis 

of the proposed methodology compared to traditional density measurement methods 

would be useful. Evaluating the potential savings in time, resources, and labour costs 

could provide a strong economic justification for adopting the new approach. 

g. Optimization Algorithms: Exploring advanced data processing algorithms and machine 

learning techniques could improve the accuracy and efficiency of density estimation. 

Developing algorithms that handle complex soil behaviours and variations would 

enhance the methodology's robustness and applicability. 

h. Integration with Construction Management Systems: Integrating the proposed 

methodology with construction management systems and software could streamline 

data collection, analysis, and reporting processes. This integration would facilitate 

seamless communication and decision-making during compaction operations. 

i. Collaboration and Knowledge Sharing: Encouraging collaboration among researchers, 

practitioners, and industry stakeholders would foster knowledge sharing and exchange 

of best practices. This could lead to further advancements in compaction techniques 

and the broader field of geotechnical engineering. 

By pursuing these future directions, the proposed methodology would continue to evolve, 

leading to improved compaction practices, enhanced quality control, and more efficient 

construction processes in geotechnical engineering. 
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