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Abstract

The measurement of density or void ratio during the compaction of geomaterials, such as soils
and unbound granular materials, is crucial for ensuring superior performance in road
construction. However, estimating density evolution non-destructively and in real-time during
the compaction process has been a challenging task. This research aims to develop a
methodology that enables the non-destructive estimation of density in geomaterials during

compaction. The research is structured around three objectives, to:

1. Systematically review different density measurement systems and their relationship
with the constitutive behaviour of geomaterials during compaction.

2. Develop a simplified constitutive model to study the behaviour of geomaterials during
compaction.

3. Develop a methodology utilizing advanced instrumentation and analytics to estimate

the density of geomaterials during compaction in a proximal manner.

These objectives guide the development of a new approach to estimate soil density during the

compaction process.

The first objective is addressed by reviewing density estimation and measurement techniques
in earthwork construction, with a focus on the importance of quality assurance (QA) and
quality control (QC) criteria in ensuring the quality and safety of infrastructure projects.
Conventional field-based density measurement techniques are hazardous, slow, and limited to
point-based measurements. Non-invasive surface-based techniques, such as the Moisture and
Density Indicator (MDI), Electrical Resistivity Tomography (ERT), Electrical Density Gauge
(EDG), and Ground Penetrating Radar (GPR), offer alternative approaches. However, these
methods are more influenced by water content than density, limiting their applicability in
certain scenarios. The chapter emphasizes the need for suitable constitutive models and
explores physics-based and machine-learning approaches to address challenges in modelling

unsaturated material behaviour and nonlinear compaction.

The second objective is addressed by developing a constitutive model based on two different
laboratory-scale tests: the constant-stress test and the constant load test. The constant stress
model developed in Chapter 4 is extended to a constant load model by considering the
geometric relationship between contact area and incremental plastic deformation. The effect

of moisture content, plasticity, and initial void ratio on the compaction process is investigated,




and simplified equations for dynamic parameters are proposed. This developed model
provides insights into the behaviour of materials subjected to field compaction and can

determine unknown parameters such as initial density.

To address the third objective, this study introduces a novel methodology that includes
measuring surface deformation using advanced instrumentation. Accurate deformation
measurement is achieved using Light Detection and Ranging (LiDAR) systems attached to
rollers. Laser/LIDAR sensors, roll correction, and signal pre-processing are employed to
minimize measurement errors in deformation. The use of multiple sensors and various models,
such as 1-D compaction and machine learning-based classification, demonstrate the ability to

estimate density with high accuracy.

This novel instrumentation enables the measurement of density during compaction with
unprecedented accuracy, presenting advantages over conventional invasive and pointwise
approaches. This ensures the expeditious construction and satisfactory functioning of roads
while minimizing the occurrence of premature failures. Continual density measurement during
compaction also facilitates the maintenance of density uniformity, reducing the potential for

excessive differential deformations.
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Chapter 1 Introduction

This thesis has developed a methodology to accurately estimate the density of geomaterials'
during the compaction process. The objective was to employ a new and innovative approach
to density estimation using instrumented rollers at different scales. The motivation behind this
research arose from the crucial role of proper compaction in construction and mining activities.
Compaction is critical in ensuring the stability, durability, and performance of various
geomaterials, including soil and unbound granular material layers in construction projects such
as buildings and roads. However, measuring the density of these materials accurately during
compaction can be challenging and time-consuming using traditional methods. This thesis
addressed this challenge by developing a methodology that enabled real-time density
estimation during compaction. The objectives included investigating the feasibility of the
proposed hypothesis, validating its effectiveness through experimental tests, and exploring

various applications and potential benefits of the methodology.
1.1 Importance of Density

Estimating the ground condition competence of a construction area is essential for most
construction works. This includes assessing the quality and characteristics of the geomaterial
layers, such as soil, on which structures like buildings or roads are to be built. Inadequate soil
compaction can lead to unsatisfactory performance of the constructed structure. For example,
loosely compacted soil in road construction can result in a reduced service life and premature
failure (Kodikara et al. 2018).

The geomaterial layers are typically constructed to achieve a designated density to ensure
quality assurance (QA) of engineered soil compaction. Laboratory studies have demonstrated
that higher material density generally improves rutting resistance, thereby enhancing a
pavements' service life (Allen and Thompson 1974; Lekarp and Dawson 1998; Li et al. 2020).
Additionally, minimising variability within the geomaterial layers is crucial to reducing
serviceability failures caused by excessive differential deformations. To achieve the desired
density, materials are compacted in layers using different types of rollers, depending on the
specific material being used. Figure 1-1 depicts a typical cross-section illustrating the layers
of a road section. Compacting loose material reduces air content, densifying the material.

Increased density brings particles closer together, improving load-bearing capacity (Figure




1-2). Higher density also helps prevent settlement/rutting, reduces water seepage, and

minimises contraction.

Not only is under-compaction a concern, but over-compaction can also pose problems. It is
recommended to compact materials close to their maximum dry density (MDD) and optimum
moisture content corresponding to the optimum degree of saturation (S,,,.). Based on
experimental evidence, Tatsuoka and Gomes Correia (2018) highlighted that S..,,; is mostly
unique for a certain soil, regardless of the mode of compaction, whether by Proctor hammer
or by field rollers. Kodikara (2012) and Kodikara et al. (2020) emphasised the significance of
Sropt» When the air phase is trapped in a relatively continuous water phase. Hence, attempts
to compact beyond this state ( S,,,, ) result in the material becoming overly wet, leading to
undesirable effects of "over-compaction”, such as material heaving with multiple shear planes
and loosening of the already compacted material due to chaotic motions of the roller
(Anderegg and Kaufmann 2004; Liu et al. 2019). Furthermore, experimental evidence
indicates that material compacted beyond the optimum saturation generally undergoes
undesirable plastic deformation under repetitive loading, similar to what would be expected
from traffic loading (Brown and Hyde 1975; Monismith et al. 1975; Lekarp and Dawson
1998).

Natural subgrade

Figure 1-1. Typical cross-section of road pavement layers.
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Figure 1-2. Particle packing in the natural subgrade and compacted subgrade.

In the realm of pavement construction, density measurements have traditionally been the
cornerstone of quality control for compaction. Yet, there's an emerging trend where modulus
and stiffness measurement methods are gaining traction. This shift is largely driven by the
convenience and user-friendliness modulus techniques offer over their density counterparts.
Furthermore, modulus-based approaches can determine the necessary material modulus for
the mechanistic-empirical (ME) design of pavement layers. However, the adoption of these
methods as a full-fledged replacement for density measurements in quality control is still in
its infancy. Material properties such as modulus and stiffness often exhibit a non-linear
relationship with density. As the density of a material increases, its modulus and stiffness tend
to increase as well, but not always in a direct proportional manner. Stiff soils are not
necessarily dense and can collapse when wetted. This non-linearity can be attributed to various
intrinsic and extrinsic factors, including atomic arrangements, grain boundaries, and the
presence of impurities or defects. S, is an optimized value that is often used in material
science to describe the optimal relationship between these properties for specific applications.

Further discussion to this topic is discussed in Chapter 5.
1.2 Statement of problem

Despite its importance, no existing methodology can comprehensively estimate the density of
a geomaterial layer during compaction across the entire compacted area. The traditional
quality assurance measurements, such as nuclear density gauge (NDG), sand cone tests, and
gravimetric tests based on field sampling, have limitations and issues. Invasive methods that
require sampling or disturbance of the compacted area can disrupt the compaction process.
These methods, including sand replacement, rubber balloon density, and borehole shear
testing, provide density measurements but have a lag time of around 2-7 days for results to be
available (Lee et al. 2017; Look 2020). The use of NDG involves harmful radiation emission

and is time-consuming due to the need for multiple pointwise measurements over a large area.




With the advancement of mechanistic-empirical (ME) pavement design and performance-
based construction specifications, there is a growing interest in methods that quantify
performance-related soil parameters such as modulus and stiffness. Portable spot test methods,
including lightweight deflectometer (LWD), Clegg hammer, Briaud compaction device
(BCD), static plate load test (PLT), and GeoGauge, have been developed to measure soil
stiffness and moduli. These devices require less time than density measurement methods and
are gaining popularity (Look 2020). Another development is continuous control compaction
(CCC), also known as intelligent compaction (IC), which equips compactors with sensors such
as accelerometers and GPS. These sensors provide measurements related to stiffness or
modulus, referred to as intelligent compaction meter values (ICMVs), overcoming the
limitations of point-based measurement devices. Researchers have explored the correlation
between modulus and density, aiming to eliminate the need for density measurement in the
quality assurance of compacted geomaterials (Mooney and Rinehart 2007; Xu et al. 2012;
Imran et al. 2018; Hu et al. 2020; Look 2020). However, a unique relationship between
stiffness (unit, KN/mm), modulus (unit, kPa), and material properties such as density after
compaction has not been established (Meehan et al. 2012; Lee et al. 2017; Wang et al. 2022),
with further studies being needed. Previous research has also indicated that the relationship
between modulus and density is not unique due to variations in moisture content (Li and Selig
1994; Tatsuoka et al. 2021).

1.3 Research aim and objectives
The aim of the research presented in this thesis was to:

Develop a methodology to estimate the density of a geomaterial during compaction

proximally.
The objectives supporting the project aim are as follows:

Objective 1: Systematically review different density measurement systems and their

geomaterials' constitutive relationship during compaction.

Objective 2: Develop a simplified constitutive model to study the geomaterial

behaviour during compaction.

Objective 3: Develop a methodology using advanced instrumentation and analytics to

estimate the density of a geomaterial during compaction proximally.




1.4 Research context and approach

The primary purpose of this work was to explore an alternative method that could better
estimate geomaterial density in the field in real-time during compaction. The proposed
methodology for estimating the density assumes the thickness (surface deformation) reduction
of the layer during compaction as the vital indicator of the level of compaction achieved
(Figure 1-3). The deformation during compaction is measured with the help of a suitable
distance measurement technique, as shown in Figure 1-4. The diagram illustrates that by using
two LIDAR systems, one at the front of the drum and the other at the rear of the drum, the
plastic deformation during the compaction can be measured, being D, — D,. The density can
then be estimated by correlating the plastic deformation with the density using advanced

analytics, including physics-based and machine learning-based models.

02 — Deformation
AN
P1<pP2<pP3

Figure 1-3. lllustration of material plastic deformation during compaction and the
associated increase in density (p).

Overall, this system is designed for estimating the density of a geomaterial layer resulting from
compaction by a smooth drum compactor. The system comprises a distance sensor system that
continuously measures the plastic deformation of a geomaterial during compaction. It also
includes an electronic processing system that automatically generates/estimates the
geomaterial layer property based on the measured plastic deformation and a pre-defined
constitutive relationship/model.

The system does not require physical contact with the geomaterial, thereby avoiding the
limitations and disadvantages associated with invasive methods. Additionally, the electronic
processing system includes an inertial measurement unit (IMU) to measure the orientation of
the compactor synchronously with the measurements of the distance sensor system. This
information corrects the deformation measurement based on the measured orientations.

Furthermore, the system incorporates a geolocation unit that measures/determines the




geolocation of the geomaterial synchronously with the measurements of the distance sensor
system, allowing for the measurement of the plastic deformation of the entire area along with

associated coordinates.

JE—

Roller moving direction

Uncompacted area

Figure 1-4. Material compaction using roller and plastic deformation measurement
using LiDAR systems during compaction.

1.5  Organisation of thesis
This thesis is divided into five parts, which serve to:

e Introduce and set the context for this research (Part 1),

e Review the current density measurement systems and constitutive model of
geomaterials during compaction (Part 2),

e Develop a simplified constitutive model suitable for a real-time application (Part 3),

e Develop a methodology to measure the deformation and estimate the density during
compaction (Part 4),

e Summarise the research findings in the context of research and practice (Part 5).

The structure of the thesis is illustrated in Figure 1-5.
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Figure 1-5. Thesis structure.

The thesis aims to advance density estimation during compaction and comprehensively
overview the topic. The thesis is presented in a total of eight chapters, the contents of which

are summarised below:

Part 1: Introduction

Chapter 1 - Introduction (this chapter)

Part 2 : Quantitative Literature Review

Chapter 2 - Literature Review: Density measurement systems

Chapter 2 provides a literature review of current density estimation and measurement
techniques used in the field. It also discusses non-density-based quality assurance (QA) and

quality control (QC) criteria.

Chapter 3 - Literature Review: Constitutive model




Chapter 3 summarizes the literature on constitutive models for capturing the complex

compaction process. It includes a detailed explanation of the model referred to in this thesis.
Part 3: Theoretical Model Development
Chapter 4 - Constitutive model for constant peak stress test

Chapter 4 introduces a Theory-Guided Machine Learning (TGML) framework that combines
a theoretical model with machine learning to predict compaction density under cyclic loading.
It develops a constitutive model suitable for real-time applications by replicating roller loading
conditions and conducting laboratory tests with constant peak stress loading.

Chapter 5 - Constitutive model for constant load test

Chapter 5 focuses on the challenges of variable stress in roller compaction and proposes a
simplified constitutive model, which relates density to load level instead of stress. It uses the
relationship between contact width and incremental plastic deformation to predict compaction
density accurately. Experimental data from laboratory-scale steel foot compactor tests are

employed in model development.
Part 4: Instrumentation and Field Study
Chapter 6 - Instrumentation used to measure deformation

Chapter 6 discusses the instrumentation required for accurate deformation measurement
during compaction. It outlines the use of precise equipment and advanced data analysis
techniques. The instrumentation and methodology are developed in stages, including an indoor

trial and subsequent outdoor field experiment.
Chapter 7 - Deformation to density calculation

Chapter 7 expands on the instrumentation and field study, concentrating on estimating density
using deformation data. Various approaches, such as 1-D compaction and a machine learning-
based classification model, are explored to improve density estimation accuracy. The chapter
highlights the potential of the models from Chapters 4 and 5.

Part 5: Implications and Conclusions

Chapter 8 - Conclusions and future direction




Chapter 8 presents the implications of the developed methodology for estimating density

during compaction. It also identifies future research directions for advancing the methodology.

Overall, the thesis comprehensively explores density estimation during compaction, covering

a literature review, theoretical model development, instrumentation, and field study.
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Chapter 2 Literature review: Density measurement systems

This is the first chapter of Part 2: Quantitative Literature Review. The chapter provides a
literature review of current density estimation and measurement techniques used in the field.
It also discusses non-density-based quality assurance (QA) and quality control (QC) criteria.

Also, it highlights the advantages and disadvantages associated with their use.

2.1 QA/QC criteria for earthwork

Earthwork construction is a vital process in civil engineering involving excavation,
embankment, grading and compaction of soil to construct infrastructure such as roads,
railways, and buildings. The quality of the earthwork construction is critical to ensure the
infrastructure's safety, stability, and durability. One essential aspect of quality assurance (QA)
and quality control (QC) in earthwork construction is to check the material state and compare
it with design specifications to ensure compliance. During the construction of road pavement
layers, geomaterials are compacted using rollers to reach a target dry density or void ratio
close to optimum moisture content (OMC) and maximum dry density (MDD) to ensure
satisfactory performance over time as shown in Figure 2-1. The Density measurement has also
been recommended by most road authorities in Australia and the Department of Transportation
(DoT) worldwide. Different tests in QA/QC for Australia for measuring density are shown in
Table 2-1.

With the advancement of mechanistic-empirical (ME) pavement design and performance-
based construction specifications, methods that quantify performance-related soil parameters,
such as modulus and stiffness, are gaining popularity in the field. So, as per Figure 2-2, the
QA/QC can be divided into density-based and stiffness/modulus-based measurements, which
can be further divided into invasive, non-invasive surface-based, and proximal measurements.
Invasive or destructive approaches are methods that require sampling or disturbing the area by
hammering or inserting the measurement system. Non-invasive tests are done on the surface
of the compacted area but do not disturb the soil. They measure properties such as deflection,
deformation, dielectric constant or resistivity for determining the geomaterial properties using
correlation. Proximal measurements are implemented close to the surface but do not touch the

ground to measure the geomaterial properties.
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Table 2-1. QA/QC recommendation by road authorities in Australia.

Standard

Road Authority Test
VicRoads, VIC Nuclear Gauge
Department of Nuclear Gauge

Planning, Transport
and Infrastructure, SA
Main Roads Western ~ Nuclear Gauge and
Australia, WA Sand replacement
Roads and Marine Sand replacement
Services, NSW/ACT and Fixed volume
extractive method

Queensland Relative
Department of compaction,
Transport and Main Density index
Roads

Department of State Nuclear Gauge and

Growth, TAS Sand replacement
Department of Nuclear Gauge
Infrastructure,

Planning, and
Logistics, NT

AS1289.5.8.1 (Standards Australia 2007)
AS1289.5.8.1 (Standards Australia 2007)

WA 324.1 (Main Roads 2012), WA 324.2
(Main Roads 2013)

T119 (Roads and Marine Services
2012a), T165 (Roads and Marine
Services 2012b)

QI140A (Queensland Department of
Transport and Main Roads 2017),
AS1289.5.5.1 (Standards Australia
1998a), AS1289.5.6.1 (Standards
Australia 1998b)
AS1289.5.8.1 (Standards Australia 2007),
AS 1289.5.3.1 (Standards Australia
2004), AS 1289.5.3.2 (Standards
Australia 2002)

NTCP 102.1 (Department of
Infrastructure, Planning, and Logistics)
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Figure 2-1. Family of Proctor curves. The applied energy decreases in the following

order: higher Proctor, modified Proctor, standard Proctor, and reduced Proctor.

13



QA/QC
measurements
\/—\
Density-based Stiffness/modulus
measurements based
measurements
\ /\—"_z

S
. Non-invasive : Non-invasive i
Invasive surface-based Invasive surface-based Proximal

measurements measurements

measurements
measurements measurements

Figure 2-2. QA/QC measurements for field compaction.

2.2 Density-based QA and QC measurements

2.2.1 Invasive measurements for density

2.2.1.1 Nuclear Density Gauge (NDG)

The Nuclear Density Gauge (NDG) or Nuclear Gauge (NG) is the most widely used density
test for QA and QC of earthworks. The method involves drilling a hole, driving a rod into the
material, and lowering a source rod into the hole. NDG includes a Cs-137 gamma radiation
source and two gamma detectors (Figure 2-3) (American Portable Nuclear Gauge Association
(APNGA) 2009). The NDG measures the wet density of the soil by counting the radiation
transmitted through the soil. Denser soil absorbs more radiation than loose soil, and thereby
the radiation count can be converted to wet density. NDG can also be used to estimate the
water content of the material. The NDG test also requires a soil sample to be taken and tested,
which takes at least 24 hours to turn around (potentially longer for high plasticity soils), and a

moisture content measurement to determine density ratios.

The main drawback of using the NDG is that it emits harmful rays, so prolonged exposure
harms human bodies. This has led to its limited use and the need for special training and safety

precautions with an additional license requirement (Latter et al. 2019).
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Figure 2-3. Photo of NDG taking the density measurement.

2.2.1.2 Sand replacement or sand cone test

The sand cone test is another common field-testing method used to determine the in-place
density of soils, for materials that can't be tested by NDG for example, coarse soils or mostly
clay soils with a rock content higher than 20 percentage (Standards Australia 2007). It is a
destructive testing method that involves excavating a small hole in the soil to be tested and
then filling the hole with dry sand of a known density. The volume of the hole is determined
by measuring the amount of sand used to fill the hole, and this volume is used to calculate the
in-place density of the soil, as shown in Figure 2-4. The water content and dry mass of the
removed soil are determined in the laboratory by drying the sample using the Microwave or

Convection oven method.

Figure 2-4. Sand cone apparatus.
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2.2.1.3 Rubber balloon density test

The rubber balloon density test is a simple and quick field-testing method that uses destructive
testing to determine soil density in the field. Similar to the sand cone test, it involves
excavating a small hole in the soil to be tested. The volume of the hole is then measured using
a balloon. The balloon is inflated in the hole until it is full. Then the volume of the balloon is
measured using a graduated cylinder, as shown in Figure 2-5. The soil density is calculated by
dividing the mass of the soil in the hole by the volume of the hole. It is a useful tool for
identifying areas of non-uniform soil density in the field and can be used to check the
compaction of soil layers during earthwork projects. However, the rubber balloon density test

may not be as accurate for some geomaterials as NDG and sand cones.

Figure 2-5. Rubber balloon apparatus.
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2.2.1.4 Fixed Volume Extractive (FVE) method

The Fixed Volume Extractive (FVE) method involves excavating a hole in the soil and filling
it with water. The volume of water used to fill the hole is then measured and used to determine
the volume of the soil displaced. The dry mass of the soil is then determined in the laboratory
after measuring the moisture content using a convection or microwave oven. The density is

calculated by dividing the dry mass of the soil by the volume of the hole.

The drawback of the density-based methods is that they are time-consuming and a lag indicator
of the density as it can take around 2-7 days for the result to be available, as the measurement
of MDD in the lab to calculate the relative density or the density index requires time. Moreover

the depth of excavation is limited to 300 mm (Lee et al. 2017).
2.2.2 Non-Invasive surface-based measurements for density

2.2.2.1 Moisture and Density Indicator (MDI)

The Moisture and Density Indicator (MDI) test is a non-destructive testing method used to
measure a geomaterials' in-situ density and moisture content. The test uses a portable device
that measures the material's dielectric constant utilising a series of radio frequency pulses. The
dielectric constant is related to the density and moisture content of the material, allowing for
the calculation of the in-situ density and moisture content. The MDI test is a rapid and non-
destructive testing method that can be used in various soil types, including cohesive and non-
cohesive soils. The device is portable and easy to use, making it ideal for field measurement
(Berney and Kyzar 2012). While MDI offers potential advancements for earthworks, its
adoption has been limited. The device's complex and time-consuming calibration process is
ill-suited for the fast-paced nature of construction. Additionally, its inability to test high
plasticity clay, a common soil type in many regions, further curtails its practicality. These
constraints overshadow the MDI's potential benefits, hindering its widespread use (Lee et al.
2017).

2.2.2.2 Electrical Resistivity Test (ERT)

Electrical Resistivity Tomography (ERT) is a geophysical method used to measure the
apparent electrical resistivity of soil and other subsurface materials. The technique involves
injecting a low-frequency electrical current into the ground through electrodes and measuring
the resulting potential difference at a second pair of electrodes. The measured potential

difference is related to the apparent electrical resistivity of the soil, which is influenced by its
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density and moisture content (Pandey et al. 2015; Neyamadpour 2019; Swileam et al. 2019;
Yuan et al. 2020). ERT can generate a three-dimensional image of the subsurface resistivity
distribution, providing information on the spatial variability of soil density and moisture
content (Laloy et al. 2011). The method is particularly useful for characterising subsurface
structures and variations in soil properties, such as stratigraphy and heterogeneities. ERT can
effectively test a 300mm thick layer by using appropriate electrode spacing, ensuring accurate
data acquisition, and utilizing inversion techniques to interpret the measured data.
Additionally, ERT requires specialised equipment and expertise and can be time-consuming

and expensive compared to other testing methods.

2.2.2.3 Electrical Density Gauge (EDG)

An Electrical Density Gauge (EDG) is a device used in the construction industry to measure
the density of soil and asphalt. It is a handheld device that uses the principle of electrical
impedance to determine the density of the material under test. The device consists of two
electrodes inserted into the soil or asphalt (Anderson et al. 2001). An electrical current is then
passed between the electrodes, and the impedance of the material measured. The impedance
is directly related to the density of the material, and so the EDG can display the density
measurement on a digital screen. EDG offer potential in soil testing, but their limited adoption
stems from a few challenges. Firstly, their complex and time-consuming calibration
procedures can be cumbersome, especially in fast-paced project settings. Additionally, they
require Nuclear Density Meters (NDM) for calibration, adding a layer of dependency and the
need for dual expertise. Furthermore, EDGs struggle with certain soil types, notably their

incapacity to test high plasticity clays accurately (Lee et al. 2017).

2.2.2.4 Ground Penetrating Radar (GPR)

Ground Penetrating Radar (GPR) is a non-invasive geophysical technique that uses
electromagnetic waves to investigate subsurface structures and materials. While GPR is
primarily used to identify and locate buried objects and structures, it can also be used to
measure the density of soil and other subsurface materials. When using GPR to measure soil
density, a high-frequency antenna is typically used to send short pulses of electromagnetic
energy into the soil. As these pulses travel through the soil, they encounter different materials
with varying densities. The waves the antenna receives are then analysed to determine the soil
density (Wang et al. 2018). The soil density is determined by measuring the time it takes for

the electromagnetic wave to travel through the soil and be reflected to the antenna. The longer
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the travel time, the denser the soil. The reflected waves are also affected by the electrical
properties of the soil, such as its moisture content and salinity, which can further aid in
determining soil density. GPR can measure soil density over a large area quickly and non-
invasively, making it a valuable tool in geotechnical investigations and environmental
assessments. It can also identify soil areas with varying densities, which can help plan
construction projects and identify potential hazards, such as sinkholes. However, it should be
noted that GPR is not a precise tool for measuring soil density. It should be used with other
methods, such as the Electrical Density Gauge (EDG), for more accurate measurements.

Non-invasive surface-based measurements, such as MDI, ERT, EDG, and GPR, have also
emerged as practical and effective methods for measuring soil density in situ without
disturbing the soil. These methods offer several advantages over conventional methods,
including their speed, accuracy, and cost-effectiveness. They also provide real-time
measurements to aid decision-making and quality control during construction projects. The
MDI test is particularly useful for measuring the density and moisture content of soils and
compacted materials, making it an ideal tool for assessing soil quality during construction
projects. Conversely, ERT and GPR offer three-dimensional imaging capabilities that can
provide valuable information on the spatial distribution of soil properties, including density
and moisture content. The EDG is a handheld device that is quick and easy to use, making it
a popular choice for construction workers and engineers. Overall, non-invasive surface-based
measurements offer a practical and efficient solution for measuring soil density, allowing for
more accurate and informed decision-making during construction projects. However, it is
important to note that these methods have limitations as they have a relationship with both
water content and density and are affected more heavily by water content than density (Plati
and Loizos 2013).

The conventional approach to measuring soil density involves collecting physical samples,
measuring their mass and volume, and analysing them, which can be time-consuming,
especially when multiple samples are required. This can be problematic for contractors eager
to compact another layer of soil promptly to avoid additional costs for equipment and labour.
As a result, alternative QA/QC criteria have been developed to assess earthwork quality.
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2.3 Stiffness/modulus-based QA/QC measurements

2.3.1 Invasive methods for measuring stiffness/modulus

2.3.1.1 Dynamic Cone Penetration Test (DCPT)

The dynamic cone penetration test (DCPT) is a simple and cost-effective method used to
evaluate the strength and stiffness of soil layers in the field (Abu-Farsakh et al. 2005). It
involves driving a metal cone with a standardised mass and dimensions into the soil using a
hammer and measuring the penetration depth. During the test, the cone is dropped from a
standardised height and allowed to penetrate the soil. The number of blows required to
penetrate a certain depth is then recorded. The number of blows is correlated with the stiffness

or density of the geomaterial; however, there is significant scatter, limiting its use.

2.3.1.2 Clegg Hammer

The Clegg Hammer device works by dropping a standardised weight (typically 2.25 kg) onto
the soil surface and measuring the rebound. The degree of rebound is correlated with the
stiffness and density of the soil, with denser and stiffer soils producing a lower rebound. The

device is portable and easy to use, making it ideal for field measurements (Jaffar et al. 2022).

2.3.1.3 Static plate load test

The static plate load test is a field test used to evaluate the strength and stiffness of soils. The
test involves loading a circular steel plate with a standardised diameter and thickness onto the
surface of the soil and measuring the deformation of the soil surface in response to the applied
load. During the test, a load is applied incrementally to the plate, and the corresponding
vertical deformation of the soil surface is measured using a dial gauge or displacement
transducer. The soil's density and stiffness can be estimated from the static plate load test
results by using empirical correlations between the plate load test load-deformation data and

soil density and stiffness (Tompai 2008).
2.3.2 Non-invasive surface-based measurements for stiffness/modulus

2.3.2.1 Falling Weight Deflectometer (FWD)

The Falling Weight Deflectometer (FWD) is a device used to measure a geomaterials' stiffness
and load-bearing capacity. The device works by dropping a weight onto the pavement or soil

surface and measuring the resulting deflection with sensors. The deflection measurements
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obtained from the FWD can be used to estimate the stiffness and load-bearing capacity related
to their density and other properties (Livneh and Goldberg 2001). The FWD is particularly
useful for evaluating the in-situ density and stiffness of soils beneath pavements and other

structures where access is limited or performing more invasive testing methods is not feasible.

2.3.2.2 Portable Seismic Pavement Analyser (PSPA)

A Portable Seismic Pavement Analyser (PSPA) is a device used to evaluate pavement's
structural integrity and strength on roads. The PSPA uses seismic technology to measure the
velocity of surface waves that propagate through the pavement. By measuring the velocity of
these waves, the PSPA can determine the stiffness and thickness of the pavement layers, as
well as identify any voids or delamination within the pavement structure. The PSPA consists
of a small, portable unit mounted on a cart and rolled over the pavement surface, as shown in
Figure 2-6. The unit contains a seismic source that generates a slight, controlled vibration and

an array of sensors that measure the resulting surface waves. The PSPA's software then

processes the data collected by the sensors to calculate the pavement's structural properties.

Figure 2-6. Schematic of Portable Seismic Pavement Analyzer (PSPA) (Li and Garg
2015).
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2.3.2.3 GeoGauge

The GeoGauge is a device used to measure the in-situ stiffness of soils. It is a non-destructive
testing method that provides rapid and accurate results. The GeoGauge works by measuring
the response of the soil to a small dynamic load applied by a spring-loaded foot attached to
the bottom of the device. The foot is pressed against the surface of the soil, and the device
measures the resulting deformation of the soil surface. The GeoGauge can therefore measure
the deformation at a specified depth within the soil, providing a profile of the soil stiffness
with depth. The GeoGauge device is portable and can be used in various soil types, including

cohesive and non-cohesive soils.

As with all testing methods, the results should be interpreted in the context of the specific site
conditions and in conjunction with other testing methods to understand the soil properties
comprehensively. It should also be noted that correlations to density are typically site-specific
and may not apply to other sites (Caicedo 2019). They are also very complex requiring

extensive operator training (Weber 2018).
2.3.3 Proximal measurements for measuring stiffness/modulus

2.3.3.1 Intelligent Compaction

Intelligent Compaction (IC), developed in the 1970s, utilises roller drums fitted with
accelerometers to measure soil and asphalt compaction through acceleration patterns (White
et al. 2007; Hu et al. 2017, 2020; Foroutan and Ghazanfari 2018; Imran et al. 2018; Liu et al.
2019; An et al. 2020). It has already gained popularity in the United States. It is being accepted
as an alternative QA/QC for density measurement. The IC roller is integrated with sensors
such as temperature, accelerometer, Global Positioning System (GPS), and a display monitor.
The continuous recording of the GPS and accelerometer data provides a user indirectly with
real-time information about the compaction degree. The data from accelerometers, combined
with other equipment parameters such as rolling speed, frequency, and amplitude of the
compaction drum, are analysed. Through this analysis, and by leveraging correlations
established from initial calibration efforts, the degree of compaction is inferred. The recorded
drum response is used to calculate different Intelligent Compaction Measurement Values
(ICMVs), which correlate with density. The correlation between ICMVs and density is poor;
however, the correlation between ICMVs and modulus is good for some range of moisture
content of the material (Zargar and Lee 2019; Hu et al. 2020).
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The stiffness/modulus-based QA is shown to be quicker than density measurement and thus is
preferred by the practitioners over the density-based QA. The modulus, which is considered
to have a unique and direct correlation with density, is considered to replace the density
measurement. However, researchers have also found that the correlation between density and

modulus is not unique, depending also on the water content of the sample (Tophel et al. 2023).
2.4 Summary

Chapter 2 of Part 2: Quantitative Literature Review focuses on density estimation and
measurement techniques in earthwork construction. It emphasizes the importance of quality
assurance (QA) and quality control (QC) criteria for ensuring the quality and safety of
infrastructure projects. Earthwork construction involves activities like excavation, grading,
and soil compaction, which are crucial for developing infrastructure such as roads and
buildings. QA and QC procedures are essential to evaluate and compare the material state with

design specifications.

Density measurement serves as a critical component of QA and QC for road pavement layers.
Various road authorities, including VicRoads in Victoria and the Department of
Transportation (DoT) globally, recommend density-based tests such as the Nuclear Gauge
(NDG) and sand replacement methods. The NDG is widely employed and involves drilling a
hole, inserting a rod into the material, and utilizing gamma radiation to measure the wet density
of the soil which is harmful to human health. Conversely, the sand replacement method is a
destructive test that entails excavating a small hole, filling it with dry sand of known density,

and measuring the volume of the hole to calculate the in-place density of the soil.

In addition to invasive density-based measurements, non-invasive surface-based techniques
are gaining popularity in the field. These methods encompass the Moisture and Density
Indicator (MDI), Electrical Resistivity Tomography (ERT), Electrical Density Gauge (EDG),
and Ground Penetrating Radar (GPR). However, these methods have limitations, as they are

more influenced by water content than density.

The chapter also discusses stiffness/modulus-based QA and QC measurements. Invasive
methods like the Dynamic Cone Penetration Test (DCPT), Clegg Hammer, and static plate
load and non-invasive techniques such as the Falling Weight Deflectometer (FWD) and
Portable Seismic Pavement Analyzer (PSPA) tests are used to assess the strength and stiffness

of soil layers. These, however, do not correlate very well with the density of the material.
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Chapter 3 Literature review: Constitutive model

This is the second chapter of Part 2: Quantitative Literature Review. This chapter explores the
need and importance of a proper constitutive model in the context of proximal density
estimation and presents the current availability and past relevant works. It considers both
physics-based theoretical models and machine learning-based models as potential solutions to
address the challenges of modelling unsaturated material behaviour and capturing the complex
nonlinear elastic-plastic behaviour of field compaction.

Quality assurance requires achieving specified dry density (p;) or void ratio (e) for the

geomaterial layers, along with other properties like stiffness (K) and modulus (E).

The compaction of geomaterial involves increasing p, by reducing e through minimising air

voids through the application of loads using different types of rollers, as shown in Table 3-1.

Table 3-1. Types of roller for various materials (VicRoads 1998).

Material type Roller type
Heavy clay Static tamping foot, Pneumatic multi-tyred, Vibrating sheep foot
Sandy clay Static tamping foot, Pneumatic multi-tyred, Vibrating sheep foot

Crushed rock Smoothed steel drum, Pneumatic multi-tyred, Vibrating smooth drum

Sand and rockfill Grid Roller, Vibrating smooth drum

These rollers can be divided into two major categories, static and vibratory. The static apply
load with their weight only while vibratory apply dynamic load in addition to static load. The
constitutive model for compaction can be divided primarily into two major categories: (a)

physics-based and machine learning-based models.
3.1 Physics-based theoretical model

The compaction process involves cyclic loading and unloading caused by the movement of a
roller. Field compaction of soils using rollers is challenging to analyse due to large
deformations and complex nonlinear elastic-plastic behaviour (Xu and Chang 2020).
Analytical and finite element formulations have been used to model the behaviour of
unsaturated materials under complex cyclic loading (Pestana et al. 2002; Wichtmann 2005;
Modoni et al. 2011; Pasten et al. 2014; Chong and Santamarina 2016; Park and Santamarina
2019; Chen et al. 2021). However, these models often require sophisticated and time-
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consuming tests to determine the model parameters. The interaction among soil, water, and air
phases makes modelling unsaturated material behaviour even more challenging, limiting the

practical use of complex numerical models in real-time field applications.

Constitutive models for unsaturated soils can be classified based on the work input
relationship. Houlsby (1997) introduced thermodynamic work input in the volumetric
deformation of unsaturated soils, considering variables such as void ratio (e), net stress (p,et),
suction (s), moisture ratio (e,,), and degree of saturation (S,.), which is calculated as the ratio
of e, to e. Alonso, Pinyol, and Gens (2013) and Wheeler and Sivakumar (1995) used specific
volume (v), prer, and s as variables in their models, without directly coupling the specific
moisture volume (v,,) or S,.. Other approaches employed effective stress (p + x s) where y is
a function of suction (s) (Loret and Khalili 2002) or used Bishop's effective stress (p + S, s),
considering S, as a separate variable (Wheeler et al. 2003). Recently, based on the MPK
framework, researchers (Kodikara 2012; Kodikara et al. 2020) proposed that net stress and
moisture content or degree of saturation can be used to model volumetric behaviour, without
directly coupling suction (s) when the material is compacted on the dry side of the line of
optimum (LOO). Moreover, Kodikara et al. (2020) reported that Bishop’s effective stress is
applicable for materials compacted on the wet side of LOO which requires the knowledge of
suction. However, measuring suction, especially in field conditions, is challenging. Therefore,
this thesis proposes a constitutive model based on net stress, extending the model proposed by
Sawicki and Swidzinski (1995), which also utilized net stress (total stress) and water content
as input parameters. Since field compaction is typically performed at a constant moisture
content of +2% of the optimum moisture content (OMC), for simplicity, this study utilizes
constant moisture content as one of the input variables for the model development. In addition,
this model, known as the theoretical model (TM), offers simplicity and requires only three
parameters to capture cyclic behaviour. The TM enables real-time use and data processing,

making it a practical choice for compaction analysis.
3.1.1 Cyclic compaction model by Sawicki and Swidzinski (1995)

The work by Sawicki and Swidzinski (1995) aimed to investigate the behaviour of particulate
materials, including soils, grains, and powders, under cyclic loading in uniaxial deformation.
The mechanical behaviour of these materials was analysed under uniaxial cyclic deformation
in oedometric conditions (Figure 3-1). A constitutive equation describing cyclic compaction
was proposed based on the concept of a standard compaction curve.
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Figure 3-1. Figure of the oedometer setup used in the study by Sawicki and Swidzinski
1995.

Each sample underwent ten loading and unloading cycles, with controlled vertical stress and
measurement of lateral stress and vertical strain. The results revealed similarities among
different sands, leading to several general conclusions: compaction increases with the number
of loading cycles but the rate of compaction decreases with the cycle number; compaction is
influenced by the maximum vertical stress with higher stress resulting in greater compaction;
residual lateral stresses generally increase with the number of cycles but the rate of increase
decreases; the value of residual lateral stress depends on the maximum vertical stress with the
initial cycle having a predominant influence. The equation developed for plastic strain (e?)
accumulation with the number of cycles (N) when the sample was subjected to static vertical

stress (o) is

€? = C,In(1 + C,(1 — K)™No™), 1)

where oy is the lateral normal stress and the stress invariant (stress tensor responsible for

compaction) is considered to be (o, — 0,)™, which becomes (1 — K,)™a™* with (K, =
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?) denoting the coefficient of lateral pressure, and C,, C, and m are the material parameters.

Modification of the model for 1D compaction of soil and variation of the parameters with
material properties is presented in Chapter 4 for a constant stress cyclic test carried out in the

laboratory.

Similar to other constitutive models, this model unfortunately requires input parameters such
as stress, which varies during compaction. When using a roller, geomaterial properties
(stiffness, p4, modulus) and geomaterial-compactor interactions (contact width, contact stress)
vary even when the applied load remains constant (Kargl 1995; Hager et al. 2021). For
example, research has shown that the contact width reduces with an increase in p,, leading to
increased contact stress as compaction progresses (Ghorbani et al. 2021). Calculating stresses
using Hertz's theory requires knowledge of either Young's modulus or the contact width, which
changes during compaction. These parameters are difficult to measure or estimate during the
compaction process. Detailed numerical modelling approaches often assume constant
parameters during simulation, limiting their capability (Kenneally et al. 2015). For instance,
some models assume a constant modulus for the geomaterial during compaction, while it has
been demonstrated that the modulus depends on p,; and increases as p, increases (Tatsuoka et
al. 2021). Therefore, it is important to have a constitutive model which can accommodate the

change of material properties during compaction.

Recent developments in data science, such as ML and especially deep learning (DL) models,
including artificial neural network (ANN), support vector machines (SVMs), and Gaussian
process regression (GPR), have allowed the data available from measurements be used for
modelling in various geotechnical applications (Liu et al. 2015; Pooya Nejad and Jaksa 2017,
Makasis et al. 2018; He et al. 2020; Kang et al. 2021; Zhang and Jin 2021; Zhang et al. 2021).
For instance, data-driven models for capturing the complex behaviour of soil compaction in
estimating the material properties for quality assurance (QA) and quality control (QC)
purposes have recently been considered and integrated with IC (Imran et al. 2018). In
particular, the response of the drum reaction (i.e. the acceleration history) of the roller's
vibratory drum is used to estimate the in-situ states of the compacted material (e.g., modulus
and roller-related stiffness) (Commuri et al. 2011; Cao et al. 2021). This study also explored
the use of machine learning (ML) models to capture complex behaviour during compaction.
This is particularly useful when the data collected is very large and requires a model which
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can handle large datasets. For this thesis, a regression-based ML model (ANN) and

classification-based ML model (stochastic gradient descent (SGD) are explored.
3.2 Machine learning-based models
3.2.1 Artificial Neural Networks (ANNSs)

ANNs are an ML tool for modelling and solving nonlinear relationships between input and
output data (Braspenning et al. 1995). They are considered data-driven models with an
unrestricted number of model parameters, and so are very useful when there is a large amount
of data. There are numerous applications of ANNs, and some examples include image
classification (Park et al. 2004), regression (Rezaie-Balf and Kisi 2018), forecasting (Kolarik
and Rudorfer 1994) and real-time optimisation (Wang and Salehi 2015).

A neural network structure consists of three distinct layers: input, hidden, and output. This
multi-layer system is also known as a multi-layer perceptron (MLP), and a typical structure is
shown in Figure 3-2. During ANN model training, the input layer, which can have one or
many nodes, passes the information to the nodes of the hidden layers. The information from a
node is multiplied by a weight matrix, denoted as W, and added to a value called a bias matrix,
denoted as b. The output is then passed to an activation function F. This process continues
between each node until the information reaches the output layer. Function F is the activation
function, which in this study, incorporates a rectified linear unit (ReLU) for the hidden layers,

and a linear function at the output layer (Géron 2017).

The predicted output (Y;,.) is compared to the actual output (Y) by computing the loss
function (L) according to standard metrics such as mean absolute error (MAE) or root mean

squared error (RMSE) and the regularization loss function L,.., as

Loss function (MAE) = L(Y,Yy,) = : Zl-enl(y)w — Yael, (2

len(y) <'1=

Lreg = Areg | W 1, (3)
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1 len(Y)
RMSE(Y, Yyy,) = lon) Z (Y — Yu)?, 4
i=1

where, len(Y) represents the length of matrix Y and 4,., represents the regularization
hyperparameter (Géron 2017). The total loss L + L., is minimised using the back-

propagation algorithm by adjusting the values of W and b. Once training of the model is

achieved, the trained model is used to predict new sets of data.

Hidden layer

Weight
W,

Ja4e) ndynQ

Input layer

Figure 3-2. Architecture of a simple ANN with three input nodes, one hidden layer of
four nodes and two output nodes (the bias nodes are shown but are usually implicit in

the structure).
3.2.2 Stochastic Gradient Descent (SGD) classification model

The Stochastic Gradient Descent (SGD) classification model was explored as part of the study
to capture the complex behaviour during compaction using machine learning (ML) models.
The SGD classification model is an optimization algorithm commonly used in machine
learning for training classification models, especially when dealing with large datasets. The
SGD classification model works by iteratively updating the model's parameters based on the
gradients of the loss function for those parameters. Unlike traditional Gradient Descent, which

considers the entire dataset in each iteration, SGD randomly selects a single training sample
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or a small batch of samples to compute the gradient. During training, the SGD classification
model adjusts its parameters to minimize a predefined loss function, such as the cross-entropy
loss for binary or multiclass classification. The goal was to find the optimal set of parameters
that best fit the training data and generalize well to unseen data. After training, the SGD
classification model could predict new data by applying the learned parameters to the input

features and a decision rule (e.g., thresholding or SoftMax) to determine the predicted class.

However, purely data-driven ML models like SGD have some disadvantages. They do not
adhere to underlying physics, as they are trained on limited data and may produce results that
deviate from known mechanistic behaviour or scientific principles (Karpatne et al. 2017a).
They are prone to overfitting, learning the training data rather than the underlying patterns and
performing poorly on unseen test data (Roelofs et al. 2019). ML models also have limited
interpolation and extrapolation abilities, leading to errors in sparse datasets and challenges in
making correct predictions beyond the range of training data (Rai and Sahu 2020).

3.3 Comparison of theoretical model (TM) and machine learning (ML) model

Developing a TM for complex processes like field compaction requires understanding the
intricate interactions between the material and the roller compactor. However, the availability
of parameters and incomplete technical embodiment can limit the development of such
models. Additionally, calibrating the parameters of a TM can be challenging due to the
combinatorial nature of the search space, which may lead to overly complex models (Karpatne
etal. 2017b).

In contrast to TM algorithms, ML algorithms have been criticized for being "black boxes™ due
to their hidden complexity and the potential for producing outputs that lack physical meaning.
This limitation restricts their use in certain domains (Kumar et al. 2017). It is therefore
beneficial to combine TM and ML algorithms to overcome these challenges, leveraging their
respective strengths and mitigating their drawbacks (Raissi et al. 2017a; Raissi and
Karniadakis 2018; Jia et al. 2018; Rai and Sahu 2020). This approach, known as Theory-
Guided Machine Learning (TGML), involves incorporating theoretical and scientific
knowledge from the TM into the construction and training of ML and Deep Learning (DL)
models (Rai and Sahu 2020).

The TGML framework can be applied to any domain using theoretical and physics-based

knowledge and available data. TGML techniques have been successfully applied in solving
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differential equations (Raissi and Karniadakis 2018) and addressing cyber-physical systems
(Rai and Sahu 2020). However, in the Civil or Geotechnical engineering domains, particularly
in areas like liquefaction assessment and groundwater flow modelling, TGML has been limited
(Zhang et al. 2020; Depina et al. 2021). Chapter 4 of the study presents the TGML framework,

which combines the TM and ML in three ways to predict material density during compaction.

By integrating TM and ML, it is possible to reduce the complexity of ML models while
incorporating valuable theoretical knowledge. This hybrid approach has the potential to
enhance the accuracy and reliability of predictions, addressing the challenges faced by purely

data-driven ML models.
3.4 Summary

The success of civil engineering projects depends on evaluating ground conditions,
particularly geomaterial layers that support structures. Inadequate compaction can lead to poor
performance and premature failure, impacting the infrastructure's lifespan. Ensuring quality
involves achieving specific properties like density and stiffness. The compaction process uses
static or vibratory rollers. Accurate modelling requires a precise constitutive model, but
existing models require complex tests. This chapter explored the need for suitable constitutive
models, considering physics-based and machine-learning approaches to address challenges in
modelling unsaturated material behaviour and nonlinear compaction. This chapter also

discussed the development of a model which can be used for a real-time application.
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Part 3: Theoretical Model Development

Publications:

e Chapter 4: Tophel A, Walker JP, Dutta TT, Kodikara J (2022) Theory-guided machine
learning to predict density evolution of sand dynamically compacted under Ko
condition. Acta Geotechnica. https://doi.org/10.1007/s11440-021-01431-2

e Chapter 5: Tophel A, Walker JP, Dutta TT, Bodin D, Kodikara J (2023) Model
development to predict dynamic interactions of roller and geomaterial using simulated
roller compaction. Transportation Geotechnics 39:100946.
https://doi.org/10.1016/j.trge0.2023.100946
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Chapter 4 Constitutive model for a constant peak stress test

This is the first chapter of Part 3: Theoretical Model Development. The chapter presents a
Theory-Guided Machine Learning (TGML) framework that combines a theoretical model with
machine learning to predict compaction density under cyclic loading. Part 1 of the thesis
emphasized the importance of a simplified constitutive relationship in studying material
behaviour under dynamic load. However, there has been limited investigation into the
behaviour of geomaterials subjected to vibratory load and frequency similar to field
compaction. This study replicated roller loading conditions and conducted a series of constant
peak stress 1D cyclic loading experiments on uniformly graded sand to study its behaviour
and develop a constitutive model with relatively few parameters, making it suitable for real-
time applications. While uniformly graded sand is not a common choice for field compaction,
it was selected in our laboratory testing for its simplicity, primarily to eliminate the effects of
variables such as gradation and fines content. The chapter also introduces a novel TGML
framework that combines the advantages of physics and machine learning. Later in Chapter 7,
the developed TGML framework is used to denoise the deformation data measured from the
sensors. The simplification of models to facilitate machine learning (ML) applications
introduces inherent philosophical challenges. While ML promises to derive patterns from data
autonomously, practical implementations often lean towards guided methodologies, akin to
calibrating theoretical models. This balance between data-driven insights and imposed
constraints is pivotal. It suggests that even as ML tools offer profound insights, their results
remain influenced by the boundaries set. Such considerations are vital when interpreting the

implications and breadth of machine learning outcomes within this domain.
This chapter is based on the published research paper:

e Tophel A, Walker JP, Dutta TT, Kodikara J (2022) Theory-guided machine learning to
predict density evolution of sand dynamically compacted under Ko condition. Acta
Geotechnica. https://doi.org/10.1007/s11440-021-01431-2.

The chapter concludes with a section including the errata and addenda followed by a section
summarizing the findings of this part of the study.

4.1 Theory-Guided Machine Learning to Predict Density Evolution of Sand
Dynamically Compacted Under Ko Condition
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Abstract

This paper introduces a theory-guided machine learning (TGML) framework, which combines a theoretical model (TM)
and a machine learning (ML) algorithm to predict compaction density under cyclic loading. Several 1-D tests were
conducted on uniformly graded fine sand compacted at varying moisture contents (w), stress levels (o.) and loading
frequencies (f), simulating the field compaction of materials using a vibratory roller. The laboratory compaction data were
first analysed using a revised TM and an artificial neural network (ANN), and their performance was measured using mean
absolute error (MAE). Next, the data were analysed using the TGML framework, which involves three different tech-
niques. TGMLI increased the ML’s ability to extrapolate (MAE improved from 2.2 x 107 to 1.2 x 107%); TGML2
ensured ML and TM complemented each other to model observations better (MAE improved from 2.3 x 1073 o
7.9 x 10°%); and TGML3 assisted in regularising the ML with an additional loss function which ensured the model
followed the mechanistic understandings of the underlying physics (MAE improved from 9.2 x 1077 to 2.7 x 107%).
Considering TGML3 during modelling is essential when dealing with noisy field datasets, and this is the highlight of this
paper. TGML frameworks showed less error and lower model uncertainty, estimated using the novel Monte Carlo dropout
technique. Furthermore, the developed TGML framework was used to demonstrate a termination criterion, i.e. the number
of cycles of roller movement required to achieve the desired degree of compaction. Finally, an approach is proposed by
which a simplified TM and ML model can estimate field compaction behaviour during roller movement.

Keywords Compaction - Density - Monte Carlo dropout - Termination criteria - Theory-guided machine learning -
Uncertainty
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Maximum vertical stress
Mean absolute error
Mean of the noise
Median diameter

Model parameters

Moisture content

Multi-layer perceptron

Noisy observations

Normalized relative change in void ratio
Nuclear density gauge

Number of cycles

Optimization rate

Optimum compaction frequency
Optimum degree of saturation
Optimum moisture content
Output after applying activation function
Output matrix

Prediction of ANN

Proctor void ratio

Quality assurance

Quality control

Radial stress

Random forest

Rectified linear unit

Recurrent neural network
Relative change in void ratio
Specific gravity

Static stress

Stochastic gradient descent
Support vector machine
Support vector regression
Target number of passes

Target void ratio

Theoretical model

Theoretical model prediction
Theory-guided machine learning
Duration for vibratory load
Variance of the noise

Vibratory stress

Void ratio

Void ratio after the first cycle
Void ratio at Nth cycle

Weight matrix

1 Introduction

Compaction of materials (soils and unbound granular
materials) in the field is required to ensure satisfactory
performance under external factors such as repeated traffic
loads and environmental effects. Density is an indicator of
the degree of compaction, and is commonly characterised
with respect to the maximum dry density (MDD) deter-
mined at the optimum moisture content (OMC) using
Proctor compaction in the laboratory. Achievement of the
designated dry density (DD) and OMC in the field is cru-
cial, as under-compacted or over-compacted materials lead
to premature failure and/or undesirable permanent defor-
mation or rutting. Various laboratory studies have shown
that in general, greater material density results in better
resistance to rutting, thus enhancing the service life of
pavements [30, 31, 2]. Current density measurement
techniques (nuclear density gauge (NDG), sand cone tests
and gravimetric tests based on field sampling) can only
measure density levels after compaction is complete;
moreover, these measurements are confined to a discrete
location and are time-consuming. It has been reported that
compliance with field specifications following these den-
sity measurements either unacceptably delays construction
or becomes practically difficult to accomplish [29, 34].
Conversely, there is a significant push to adopt continuous
compaction control (CCC) as in intelligent compaction
(IC), but it is limited by the inability to estimate geoma-
terial density proximally. Hence, a genuine need exists to
develop methodologies to predict density during com-
paction using appropriate numerical modelling.

The compaction of material in the field is an example of
cyclic loading and unloading because of the movement of
road compactors. Modelling the response of unsaturated
materials to complex cyclic loading at laboratory scale has
been attempted by various researchers using sophisticated
analytical and finite element formulations [9, 37,
41-43, 69]. These models may capture complex behaviour
well, but require sophisticated and time-consuming tests to
determine the model parameters. Generally, the behaviour
of unsaturated material is more complicated to model than
that of its saturated counterpart because of the interaction
among the three medium phases, i.e. soil, water, and air.
This drawback limits the use of numerical models for field
applications, especially for the real-time prediction of
material behaviour. In the field, compaction using a roller
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involves large deformation with complex nonlinear elastic—
plastic behaviour, limiting the development of an adequate
theoretical solution [71]. A close examination of the
compaction process in the field allows several assumptions
to be made, simplifying the modelling process. First, the
compaction of the material is commonly performed at a
designated moisture content, which is known a priori. The
fact that the material is normally compacted at a moisture
content usually at + 2% of OMC simplifies model devel-
opment [24]. In addition, the 3-D response of the material
under field conditions may be approximated using a 1-D
model discussed in detail in the Discussion section.

The material compaction response is crucial to calculate
the number of passes of the roller required to achieve a
target density. The problem of estimating the number of
passes has been well-identified, and this estimation is
commonly undertaken by trial and error. Figure 1 depicts
the compaction process in the field or laboratory at a target
moisture content, where the density increases (A, B, C, D)
as the energy input to the soil increases, either by increased
number of roller passes or blows of the Proctor hammer. It
can be considered that the material is initially at a low-
density state (point A) corresponding to a nominal pres-
sure. As the energy input increases with the number of
cycles (N) of compaction, the material state moves from
point A to B to C, where the material reaches the line of
optimums (LOO) corresponding to the optimum degree of
saturation (Smp.). On the basis of experimental evidence,
Tatsuoka and Gomes Correia [60] highlighted that LOO is
mostly unique for a certain soil, regardless of the mode of

—— Nominal pressure
-~ Reduced Proctor
Standard Proctor
----- Modified Proctor

Line of optimums - »

S, = 100%

Dry density (Mg/m?)

Moisture content (%)

Fig. 1 Compaction process illustrated with a family of Proctor curves.
The applied energy decreases in the following order: modified
Proctor, standard Proctor, reduced Proctor, and nominal pressure

compaction, whether by Proctor hammer or by field rollers.
Kodikara [23] and Kodikara et al. [25] highlighted the
significance of Syop, When the air phase is trapped in a
relatively continuous water phase. Hence, attempts to
compact beyond this density (i.e. D) cause the material
state to go to the wet side of the LOO, which can have
undesirable effects of “over-compaction”, such as heaving
of the material with multiple shear planes and loosening of
the already compacted material due to chaotic motions of
the roller [4, 33]. Furthermore, experimental evidence
indicates that material compacted to the wet side of LOO
generally undergoes undesirable plastic deformation under
repetitive loading similar to that expected from traffic
loading [6, 30, 38]. It therefore follows that knowledge of
the evolution of the density, and hence the degree of sat-
uration, is beneficial for the development of an effective
termination criterion during field compaction. This aspect
is also addressed in the present paper.

Based on the assumptions noted above, this paper
attempts to simulate the compaction process using a sim-
plified theoretical model (TM) based on the literature. The
compaction behaviour of the material with respect to the
degree of saturation is also highlighted using the simplified
model. The lack of an appropriate constitutive model and a
generalised TM necessitates the development of a data-
driven machine learning (ML) model, as explored in this
study. Further, the fusion of TM and ML models is also
investigated. This paper shows that the fusion of TM and
ML is a better model for noisy data which may come from
data collected from the field because of uncertainties
involved with testing, measurement, limitations of the
equipment used, and human error.

2 Machine learning approaches
2.1 Artificial neural networks (ANNs)

ANNSs are an ML tool for modelling and solving nonlinear
relationships between input and output data [5]. They are
considered to be data-driven models with an unrestricted
number of model parameters, and are very useful when
there is a large amount of data. There are numerous
applications of ANNs, and some examples include image
classification [40], regression [49], forecasting [26] and
real-time optimisation [63].

A neural network structure consists of three distinct
layers: an input layer, hidden layer, and an output layer.
This multi-layer system is also known as a multi-layer
perceptron (MLP). During ANN model training, the input
layer, which can have one or many nodes, passes the
information to the nodes of the hidden layers. The
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information from a node is multiplied by a weight matrix,
denoted as W, and added to a value called a bias matrix,
denoted as b. The output is then passed to an activation
function F. This process continues between each node until
the information finally reaches the output layer. Function F
is the activation function, which in this study, incorporates
a rectified linear unit (ReLU) for the hidden layers, and a
linear function at the output layer [14]. The network
architecture and equations for a fully connected network
can be found in any standard textbook, for example [14].

The predicted output (Yy) is compared to the actual
output (Y) by computing the loss function (L) according to
the mean absolute error (MAE), for this study and the
regularisation loss function Lyeg, as

Loss function (MAE) = L(Y, YuL)
1 len(Y)
=— Y — Y, 1
fon(y) 27 = Youl Q)
chg = ;chg ” 14 ”v (2)

where, len(Y) represents the length of matrix ¥ and A
represents the regularisation hyperparameter [14]. The total
loss L+ Lrg is minimised using the back-propagation
algorithm by adjusting the values of W and b. Once
training of the model is achieved, the trained model is used
to predict new sets of data.

The performance of the models was also measured using
root mean-squared error (RMSE), which is defined as

en(Y)
Z Y an.d ) (3 )

where Yjq in general is the predicted output from any
models.

RMSE(Y, Y,
(¥: Yorea) len(Y

2.2 Machine learning approaches
to geotechnical prediction

Recent developments in data science, such as ML and
especially deep learning (DL) models including ANNs,
support vector machines (SVMs), and Gaussian process
regression (GPR), have helped research scientists and
engineers use the data available from measurements in
various geotechnical applications [16, 19, 32, 35,
44, 73, 75]. For instance, data-driven models for capturing
the complex behaviour of soil compaction in estimating the
material properties for quality assurance (QA) and quality
control (QC) purposes have recently been considered and
integrated with IC [17]. In particular, the response of the
drum reaction (i.e. the acceleration history) of the roller’s
vibratory drum is used to estimate the in situ states of the
compacted material (e.g. modulus and roller-related
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stiffness) [7, 10]. However, the use of the purely data-
driven ML models has the following disadvantages:

(1) Non-adherence to underlying physics Data-driven
ML models are generally not able to follow the
underlying physics, since the models are normally
trained on a limited set of data representing limited
conditions. In other words, they have been found to
produce results which deviate from known mecha-
nistic behaviour or scientific principles [20].

(2)  Prone to overfitting Data-driven models may learn
the training data rather than the underlying patterns
and perform poorly on unseen test data [51]. Various
regularisation techniques address this issue and are
discussed later in this article.

(3) Less interpolation ability ML models tend to have
greater errors in a sparse dataset even when predict-
ing within the range of training datasets [45].

(4)  Less extrapolation ability Similar to all empirically
based models, ML models have found it challenging
to make correct predictions beyond the range of
training data [45].

2.3 Comparison of TM and ML

The development of a TM for a complex process, such as
field compaction, requires an understanding of the complex
interactions between the material and the roller compactor,
and is limited by parameter availability and incomplete
technical embodiment. Calibration of a TM’s parameters
can also be a challenge because of the combinatorial nature
of the search space, which may result in over-complex
models [21]. Conversely, ML algorithms have been con-
sidered a “black box™ because of the models’ hidden
complexity and the fact that they may produce outputs
which lack physical meaning, and this limits their use [27].
Hence, it is prudent to consider combining the TM and ML
algorithms with a view to utilising their respective
strengths and reducing their respective drawbacks
[18, 45-48]. In other words, ML model complexity is
reduced by incorporating theoretical and scientific knowl-
edge through the TM [45]. This approach is known as
theory-guided machine learning (TGML), which uses the-
oretical knowledge or frameworks to guide the construc-
tion and training of ML and DL.

The TGML framework can be applied to any domain
using theoretical and physics-based knowledge and avail-
able data. TGML techniques have been applied to solve
differential equations [46] and cyber-physical systems [45],
but there has been very limited use in the Civil or
Geotechnical engineering domains focused on liquefaction
assessment and groundwater flow modelling [11, 74].
Accordingly, this paper presents the TGML framework,
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combining the use of TM and ML in three other ways to
predict material density during compaction. The first
technique (TGML1) addresses the ability to interpolate and
extrapolate ML models by generating additional observa-
tions using already developed TM models. The second
technique (TGML2) considers TM prediction as an addi-
tional input to ML training, and TGML3 presents a novel
way of training ML models based on the underlying
physics.

2.4 Bias variance trade-off

It is crucial to understand the bias variance trade-off to
understand the workings of models, TM, ML and TGML.
Models are developed on the training data, whereas, test
data are used to evaluate the performance of developed
models. Bias is the difference between a prediction of the
model and the corresponding observed value, while vari-
ance is the variability of the model prediction for a given
dataset, and reflects a measure of the prediction spread. A
high-bias model is an oversimplified model which pays
little attention to the data and thus fits the data poorly.
Similarly, a high-variance model is a complex model
which sometimes models the noise or error in the data,
potentially leading to high error when unseen inputs are
given to the model.

Figure 2 shows three models, A, B and C, representing a
low bias-high variance model, a high bias high variance
model and a low bias low variance model, fitted to a ran-
dom dataset. The X and Y parameters in Fig. 2 represent the
input and output data, respectively, for illustration pur-
poses. Although Model A performs better on the training

(a)
b
X
an " 4 u (b)
> - -
u
[ LI |
X
(©)
>
b'd

Fig. 2 a Model A: Low bias high variance model, b Model B: High
bias high variance model, ¢ Model C: Low bias low variance model
(X and Y represent input and output data for illustration purposes)

dataset, it is very complex, has more parameters, and may
show poor prediction in the test dataset. Additional
parameters imply a greater capacity for memorisation
capacity and therefore perfect mapping with the expected
and predicted values. Conversely, Model B may have a
high bias representing significantly fewer parameters,
producing poor predictive capability and high errors on
both training and test data. Model C, which has low vari-
ance and low bias, is expected to yield better accuracy in
both the training and test datasets.

Both TM and ML can be any of the above models;
usually, ML and highly complex TM fall into the Model A
category. Preferably, a model should fall into the category
of Model C; this concept is further explained and used later
in this paper.

2.5 Uncertainty in ML models

Trained neural network (NN) models produce only a single
set of predictions when fed with test data or new data.
Sometimes it is essential to know the level of confidence of
the model outputs; hence, careful uncertainty quantification
is crucial for practical applications.

Despite being able to handle complex processes with
significant accuracy, NNs are poor at quantifying predic-
tive uncertainty and often produce over-confident predic-
tions [13, 28]. For example, suppose a NN trained on one
dataset is evaluated on a completely different dataset. In
that case, the network outputs high predictive uncertainty
together with the prediction. The uncertainties associated
with the model may also be because of uncertainties with
the estimation of appropriate model weights and biases or
be due to limited data availability. A measure of uncer-
tainty provides users’ confidence in the results obtained.
Bayesian neural networks (BNNs), part of Bayesian
approaches, are used to tackle uncertainties in NNs [22].
However, it has been found that BNNs can be very com-
putationally expensive and require substantial customisa-
tion to training procedures [28, 53]. Recently, Gal and
Ghahramani [12] introduced the Monte Carlo (MC) drop-
out to estimate model uncertainty. MC dropout is a variant
of dropout used to prevent over-fitting [55]. Dropout refers
to the temporary removal of nodes in a NN; as shown in
Fig. 3, the dropped nodes are represented by shaded nodes.
The selection of units to drop is random, with a dropout
rate varying between 0 and 0.5, and the dropout rate refers
to the fraction of nodes to be temporarily deactivated [55].
Uncertainty estimation using MC dropout requires making
multiple predictions with different sets of nodes being
dropped out. After the multiple predictions are completed,
the mean and variance of the prediction are calculated.

@ Springer
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Fig. 3 Comparison between a A standard NN and b NN after dropout (shaded nodes have been dropped) (modified after Srivastava et al. 2014)

3 Materials and testing method

The simulation of field compaction in a laboratory is a
challenge, and very limited data are available in the liter-
ature, as it involves loading the sample up to 2 MPa of
stress at around 18-30 Hz of vibratory loading [39, 50].
Hence, experiments were carried out in the laboratory with
loading conditions which had some essential features of
field compaction by roller. Table 1 shows the physical
properties of the uniformly graded fine sand (FS) used for
this study. One load cycle of repetitive loading simulating
compaction is shown in Fig. 4. The samples were com-
pacted at different initial void ratios (ey) and moisture
contents (w) in a modified Proctor mould (diameter
151.5 mm and height 132.2 mm) and were subjected to
varying loading conditions, as given in Table 2.

All the samples were subjected to a total of 30 cycles
(N). Static stress (o), vibratory stress (a,), duration for
vibratory load (7)), and frequency of vibration (f) were
chosen such that they imitated actual field compaction and
were varied to determine their effects on compaction. The
static stress (o) reflects the stress due to the static weight

Table 1 Geotechnical properties of material FS used in this study

1200 1 b
1000 ~

800 E

600 E

Stress (kPa)

4001

2004 k

0.0 0.5 1.0 1.5 2.0 25
Time (s)

Fig. 4 First cycle loading profile applied to samples showing static
stress (a); vibratory stress (ay): duration of vibratory load (7)

of the roller, whereas o, corresponds to the vibratory load
of the roller. The experimental testing program is given in
Table 2.

Geotechnical property Value Standard

Specific gravity (Gs) 2.61 AS 1289.3.5.2 [56]
Median diameter (Ds;) mm 0.35 AS 1289.3.6.1 [57]
MDD standard Mg/m® 1.69 AS 1289.5.1.1 [58]
OMC standard (%) 11.74 AS 1289.5.1.1 [58]
Optimum degree of saturation (Sp) (%) 57 AS 1289.5.1.1 [58]
Coefficient of uniformity (C,) 227 AS 1289.3.6.1 [57]
Coefficient of curvature (C,) 0.97 AS 1289.3.6.1 [57]
Unified soil classification system (USCS) classification SC AS 1289.3.6.1 [57]
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Table 2 Experimental program undertaken for this study with varying
initial conditions and stress levels

Sample ID w(%) € f(Hz) a(kPa) ay(kPa)
FS_1 0 0.632 18 840 280
FS_2 5 0.789 18 840 280
FS_3 10 0.772 18 840 280
FS_4 5 0.780 18 840 280
FS_5 10 0.747 18 840 280
FS_6 7 0.904 18 840 280
FS_7 7 0.934 18 840 280
FS_8 0 0.645 18 1400 840
FS_9 15 0.871 18 840 280
FS_10 15 0.823 25 1400 840
FS_11 15 0.790 18 1400 840
FS_12 15 0.829 30 1400 840
FS_13 17 0.767 18 1400 840
FS_14 0 0.636 18 1400 840
FS_15 0 0.629 25 1400 840
FS_16 0 0.634 30 1400 840

4 Theoretical model development

The theoretical model used in this study is an extension of
the semi-empirical plastic strain accumulation model pro-
posed by Sawicki and Swidzinski [52], modified for 1-D
zero lateral strain. These researchers developed the rela-
tionship for axial or volumetric plastic strain (¢”) accu-
mulation with N when the sample was subjected to
maximum vertical stress (¢. = gy + a,). Accordingly, for
dry granular materials with different ey and o,

¢ =CyIn(1 + Co(1 — Ko)"Ne?'). (4)

The stress-invariant (the stress tensor responsible for
compaction) for Eq. (4) is considered to be (a. — ay)",
which equals (1 — Ko)"a?', where a, is the radial pressure
and (Ko = ?*) denotes the coefficient of lateral pressure,
while Cy, C5, and m are the material parameters. In the case
of a 1-D oedometric test, since there are no lateral strains,
the external work done on the sample by o, becomes zero,
so the only work done is because of .. Therefore, in the
case of a 1-D condition, the g, term can be removed, and
Eq. (4) can be approximated by Eq. (5). The stress term is
normalised with 1kPa:

P o \"
& = In(l +CZN(@) ) (s)

The evolution of € is then written in terms of the
evolution of the void ratio (e¢) with N,

ey =eo— (1 +90)C|1n(] +C2N(] ii,a)m)e (6)

where ey is the void ratio at the Nth cycle, €y, C; and m as
functions of w, and other loading variables are presented
later.

5 Experimental results

The stress—strain curve for sample ID FS_12 is shown in
Fig. 5, showing that most of the compression occurs in the
first cycle (N = 1) (in this sample 50% of total compres-
sion), and the compression rate then decreases with
increasing N.

The relative change in the void ratio (ep — e3) is an
indicator of the maximum compression the sample under-
goes during loading for N = 30, and is plotted against e; in
Fig. 6. This shows that the degree of compaction, or in
other words, the accumulation of ¢, decreases with an

increase in the packing density (decrease in eg). In addi-

tion, the change in void ratio per cycle % decreases with NV
for all the samples; some examples are shown in Fig. 7.
Figure 7 also shows the effect of stress level and the higher

the stress level the faster the stabilisation of the void ratio.
5.1 Influence of frequency on compaction

Figure 8 shows the normalised relative change in the void

ratio (“";—:‘“) plotted against the vibration frequency,

en—

illustrating that =% displays a peak at what is referred to
0

0
z
as the optimum compaction frequency (fyy). Which gives
the maximum reduction in void ratio or increase in density
(23 Hz for w = 15% and 25 Hz for w = 0%). A similar
observation has been made for field compaction so, ideally,
Jopt should be estimated before soil compaction for optimal

2400

2000 A

1600

1200

Stress (kPa)

800

400

0
0.00

0.04 0.06 0.08 0.10

Strain (%)

0.02 0.12

Fig. 5 Stress—strain curve for sample ID FS_12 subjected to vibratory
loading
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Fig. 6 Variation of ¢y — ey with ¢y for different stress levels
(. = 1120 kPa and g. = 2240 kPa)

operation of the rollers, thus saving energy costs and
minimising potential damage to the rollers [67].

5.2 Effect of degree of saturation (5,)
on compaction

The effect of S, is studied using Fig. 9, showing the vari-
ation of “7£2 with S,. Figure 9 shows that 27 follows a
similar trend to that of the compaction curve with the
minima at around a S, of 57%. This observation is con-
sistent with that of past researchers, who reported that
compaction curves with different compaction energies
follow a similar trend (peak density or minimum e occur-
ring at the same S, as also seen in Fig. 1) irrespective of
where those curves are developed, i.e., in the laboratory or
field [24, 59-61].
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\ I
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T e tt00ee.
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Fig. 7 Evolution of void ratio with number of cycles for different samples a at ¢, = 1120 kPa and b ¢, = 2240 kPa
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Fig. 8 2= is plotted against f for w = 0% (y-axis left) and 15% (y-
axis right)
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5.3 Evaluation of C;,C; and m

The model parameters (Cy, Cy, and m) were found using
the least-squares fitting procedure. Exploratory analyses
using Eq. (6) highlighted that this equation is over-pa-
rameterised, and removing C, helped reduce the standard
error [3] in the estimation of m [72]. This was because the
stress in this study was kept constant and the constant stress
resulted in having a non-unique solution of C, and m.
However, for study where the stress is not constant, C
would be required. The removal of C, reduced model
complexity, this however, increased the model’s bias, but
decreased the model’s variance, which is more advanta-
geous for usage with the test data (not shown). In other
words, Model A is changed to Model C (as discussed in
Fig. 2). Hence, after removing C», Eq. (6) is reduced to

=)"). ()
1 kPa

The value of the exponent m increases with e, as shown

in Fig. 10, with the rate of change differing for different

stress conditions. This indicates that stress dependency

increases with an increase in the egp, implying that loose

samples are more dependent on stress. However, the value

of C; was found to be constant with values varying slightly
within 0.014 =+ 0.003.

ey =ey— (1 +¢9)Cy In(] +N(

6 Machine learning models
6.1 Hyperparameter tuning for ANNs

For this study, ANNs were used to model the dataset which
comprised void ratios with the number of cycles from all
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Fig. 10 Variation of model parameter m with ¢y for different stress
levels (6. = 1120 kPa and o. = 2240 kPa)

the specimens with back-propagation algorithms. The void
ratio at the N th cycle (ey) was the target or output,
whereas N, ¢y, w, f, 6. were the various input parameters
considered with appropriate hyperparameters. The hyper-
parameters of any neural networks are the variables which
govern the training process, speed, and accuracy of any ML
model. There are two different types of hyperparameters:
(a) model hyperparameters, which include the number and
width of hidden layers; and (b) algorithm hyperparameters,
which encompass the learning rate for optimisers such as
stochastic gradient descent (SGD) or the Adam optimiser
for training the model [14]. Since these variables remain
constant over the training process and directly impact the
ML program’s performance, they should be selected before
training any model. Usually, the hyperparameters are
selected by trial-and-error for optimal performance, and the
procedure is generally referred to as hyperparameter tuning
or hyper-tuning. The hyperparameters of the ANN and the
multi-output ANN for this study were selected/tuned using
the Keras tuner and the optimum values obtained are listed
in Table 3.

6.2 Implementation of the ML models

All ML models were implemented in Python software and
additional packages, including Keras, TensorFlow, Pandas,
Numpy, and Seaborn [1, 8, 15, 36, 62, 64]. The Adam
optimisation algorithm was used for performing back-
propagation to evaluate the NNs model parameters with a
maximum number of epochs equal to 10,000.

Various regularisation techniques were used to avoid
over-fitting; first, by dividing the total dataset into training
and test datasets randomly. For this study, 80% of the total
dataset was used for training and 20% of the data for
testing. An early stopping procedure was employed using a
further 20% of the training data for validation to avoid
overfitting. The value of patience for early stopping was
kept equal to 500. L2 regularisation, also called Ridge
regularisation, was also applied to force the weights to take
small values, making weights more regular [14]. The
complete dataset was normalised to zero mean and unity
standard deviation to bring all parameters to the same
scale. This normalisation was essential, because the model

Table 3 Hyperparameter details of the ANN used for this study

Hyperparameter Value

No. of hidden layers (H) |

No. of nodes in the hidden layer 4

Optimiser Adam

Learning rate 0.1
@ Springer
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inputs used different scales and ranges. Since these inputs
are multiplied by the model weights, the scales of the
outputs and gradients were affected by the inputs’ scales.
Although a model might converge without feature nor-
malisation, this normalisation makes training much more
stable.

The fully connected NN architecture comprised three
layers: one input layer, one hidden layer and one output
layer with 5, 4, and 1 nodes, respectively. The values of the
hyper-parameters were kept the same in all models,
demonstrating that no unique tuning of hyper-parameters
was performed for a specific problem.

Figure 11 shows the effect of the different regularisation
techniques used for this study (basic, callback and reg-
uliser). The basic model had 10,000 epochs without any
specific regularisation techniques. For the basic model,
MAE fluctuated with epochs because of the constant
learning rate; therefore, in the callback model, the learning
rate was set to hyperbolically decrease with epochs for
better convergence of MAE. The callback model also
included the early stopping technique by monitoring the
change in MAE; this also helped to save computational
time in comparison with the basic model. The reguliser
model included callback and L2 regularisation, and was
better than the callback function in terms of time and cost,
as shown in Fig. 11, where the model training stopped
early at lower epochs. Henceforth, all the analysis was
conducted based on the reguliser model’s hyperparameters.

6.3 Extrapolation ability of TM and ML

The extrapolation ability of TM and ML was studied by
splitting the experimental data into two parts: 1-20 cycles

0.20 e : : :
N Basic
M Callback
0.15 4 14 Regulizer| 4
2010
= 1\
0.05 '\ E
. AN A oo s besithitinse |
0.00 T ——

T T T
J 10 100 1000 10000

Epoch [log scale]
Fig. 11 MAE comparison of different regularisation models and

variation with number of epochs (basic model, callback model and
reguliser model)
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and 21-30 cycles. As shown in Fig. 12, both models were
developed with data from 1 to 20 cycles, and their pre-
diction accuracy was validated against the data from 21 to
30.

Figure 13 shows that TM and ML predicted unseen data
and extrapolated well, as they have a low MAE and RMSE,
although TM was slightly better than ML. As the model’s
prediction capability has been validated, in the subsequent
sections of this article, the model is developed for the
complete dataset (i.e. cycles 0-30), and the prediction is
presented for cycles 31-50 beyond the measured data to
demonstrate the model’s extrapolation capability.

6.4 Uncertainty estimation of the ANN used
in this study

For the present study, the data for sample FS_10 (randomly
selected) were used to demonstrate the MC dropout. A
different dropout ratio was considered to determine the
effect of the dropout ratio on prediction accuracy and the
95% confidence band. The results of this analysis are
shown in Fig. 14. The results indicate that the dropout
ratios of 0.1 and 0.2 have lower MAE and a narrow con-
fidence band. For the dropout ratios of 0.3 and 0.4, MAE
increases together with the confidence band. Compared
with no dropout (MAE = 2.7 x 1073 ), the dropout ratios
of 0.1 and 0.2 perform better in terms of error, whereas 0.3
and 0.4 perform worse. Figure 14 also reveals that when
predicting the void ratio for cycles 31-50, where training
data were not available, the confidence band is broader
than that for cycles 1-30, showing the model’s higher
uncertainty in extrapolation.
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Fig. 12 Data splitting for model development, prediction validation,
and model prediction
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7 Theory-guided machine learning (TGML)

This section discusses the three techniques of TGML
developed in this research to better predict the evolution of
void ratio and eliminate the limitations associated with a
theoretical model and machine learning-based models (in
this study ANN). Schematic illustrations of the three
TGML models are provided in Fig. 15, and their perfor-
mance is measured and compared in subsequent sections.

7.1 Data augmentation (TGML1)

ML is a complex model which often attempts to learn the
data used for training; it fits very well in the input domain
and gives more substantial error when predicting outside
the domain. Therefore, a complex ML model generally has
a problem with extrapolation. This problem can be over-
come by data augmentation from TM. Data augmentation
is used to create or generate new observations to train an
ML algorithm. Generally, prediction accuracy increases as
the size of the input dataset increases. For example, in
image classification problems, data scientists have man-
aged to augment the data by adding a new image which is a
rotated version of the original image [54]. Similarly, in the
present research, the data augmentation technique using
Eq. (7) was used to produce physics-based new data, as
shown in Fig. 15¢, with the model labelled TGMLI1. To use
TM for data augmentation beyond the input’s domain, the
ability to extrapolate should be superior and was validated
earlier in Fig. 13.

TGMLI saves time and resources in developing addi-
tional experimental data, preventing ML from overfitting,
and improving prediction capability. To compare the effi-
ciency of TGMLI, first, ML was trained with experimental
data of up to 30 cycles, as shown in Fig. 16a. Another
network was trained with data of up to 50 cycles with
observations from 31 to 50 cycles generated using Eq. (7),
as shown in Fig. 16b. A comparison of the results reveals
that the MAE calculated for cycles up to 30 of the TGMLI1
network was less than that of the network without aug-
mentation, and the confidence band was narrow for the
TGMLI network. In this case, because the model was
trained with additional data, the accuracy of the prediction
increased. It should be noted that model improvement
using data augmentation depends on the extrapolation
ability of TM, and in this case, the accuracy improved
because the TM used in this study could extrapolate well.

@ Springer

7.2 Ingesting the output from TM
as an additional input parameter to ML
(TGML2)

In TGML2, the data were first pre-processed with the TM.
The output of the TM was then used as an additional
parameter for ML, as shown in Fig. 15d. In TM, the input
was mapped to output [X] — [Y] by calibrating the model
parameters using the experimental or observed data. Gen-
erally, in TM, assumptions are simplified, and simpler
models are built; thus, TM predicts [Yry] as shown in
Fig. 15a, which is not precisely equal to [Y]. Similarly, any
ML model, when mapped from [X] — [Y] over a set of
training data, predicts [Yy] and is not exactly equal to [Y],
as given in Fig. 15b. By adding the [Yrm] to ML’s input
parameters, ML complements TM and captures the
remaining complexity of the system. If the TM is highly
accurate, then the TGML2 ensures [Yrgmi2] = [Yrum]-

The prediction accuracy of TGML2 is compared in
Fig. 17, indicating that the model which considers the
output of the TM as an additional input (Fig. 17b) is an
improvement over the model which does not consider the
output of the TM as an additional input (Fig. 17a) in terms
of MAE and RMSE.

7.3 Theory-guided regularisation (TGML3)

Theory-guided regularisation involves embedding the TM
details in the loss function of ML. This way of embedding
the TM in the loss function ensures that ML is constrained
to comply with the theoretical model. The new architecture
ensures that it penalises TM constraint violations by
introducing additional regular loss function goals, as shown
in Fig. 15e. The restriction is that with an increase in N, the
ey always decreases, which can be written as
ey — ey > 0. The regular loss function was therefore
modified by adding the TM-based loss function Lyy. The
difference of the predicted void ratio as a pair was calcu-
lated as

Ay = eny1 —en. (8)

A positive value of Ay can be viewed as a violation of
physics. Lty was therefore calculated as a non zero
occurrence of ReLU(Ay) summed over all the cycles,
which is then multiplied by a suitable hyperparameter /.
/phy is evaluated by trial-and-error like other hyperparam-
eters in this study. The final equation for the Ly,

N=30

Ltvi = Jpny »_, ReLU(Ay). )
N=1

The statistical evolution of TGML3 was done with a
noisy dataset and is discussed in the next section.
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7.4 Robustness to noisy input data

In the real world, data are never perfect; they always
contain some noise. Whether the data source is an electrical
signal or collected from the laboratory or field environ-
ment, it is bound to be noisy because of uncertainties
involved with testing, measurement, limitations of the
equipment used, and human error. To evaluate the
robustness of the model against noisy data, Gaussian noise
(A) was added to the experimental data. A is defined with
the mean (y) and variance (s°) as A ~ (u,s%). For this
analysis, the u of the noise was set to zero, whereas 52 was
set at 1% of p of the data collected. A noisy observation
(Yoisy) is written as

Ynoisy = ¥ + N ~ (1,5%). (10)

Figure 18 compares the prediction of models with and
without TGML 3. When calculating the MAE with pre-
diction and noisy dataset, the MAE in the model with
TGML3 shows a higher value. However, when the model’s
prediction is compared with the actual experimental data-
set, the model with TGML3 provides MAE of 2.7 x 1073
and RMSE of 1.5 x 10_5, whereas the model without
TGML3 provides MAE of 9.2 x 107> and RMSE of
1.1 x 107*. In addition, the model with TGML3 follows
theoretical knowledge, and the void ratio decreases with
the number of cycles. TGML3 performs better with noisy
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Fig. 16 Void ratio evolution with the number of cycles of dataset a without augmentation, b with augmentation and their prediction accuracy in

terms of MAE and RMSE (for data up to 30 cycles)
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Fig. 18 Void ratio evolution of noisy dataset and prediction comparison of model a without TGML3, b with TGML3 and their prediction

accuracy in terms of MAE and RMSE (for data up to 30 cycles)

data because combining TM and ML gives more complex
models with high variance and low bias (Model A is
changed to Model C as in Fig. 2). Therefore, when noise
was added, the complex models tried to fit the noise and
gave an error for the noise-free test data.

8 Termination criteria

The termination criteria, which are used to find the required
number of cycles (Nure) to reach a target void ratio
(emge.) or dry density for a given loading condition, can be
measured using TGML in two different ways. First, the
network needs to be trained again, but this time the output
is N, where ey is part of the input parameters. Retraining
requires a substantial amount of time if the dataset is large.
The second method of finding the Ny is by using the
already trained model. This method is faster than the first
method. The trained or learned TGML can be used to
optimise the parameters for compaction using the back-
propagation technique. The optimisation of one or more
input parameters is the reverse of training a model. In
training a model, the network parameters (weights and
biases) are trained with fixed inputs, whereas optimising
one or more input parameters is undertaken with fixed
hyperparameters, which are known once the model is
trained [70]. For the termination criteria, Niyger t0 reach
Crarger 1s needed while the other input parameters and net-
work parameters are fixed. This is a case of back-propa-
gation optimisation where error is minimized to find the
Nurger- The differential equation solution to the optimisa-
tion problem is given by

noE

N' = Ninigial — N

(11)

where Nipiial is the initial guess, E is the error (MAE) after
the initial guess,  is the optimisation rate, and N’ is the
next prediction. The procedure continues until £ is reduced
to a minimum value. The optimisation algorithm was also
executed in Python-based TensorFlowl. A simple illus-
tration of this algorithm with parameters is shown in
Table 4.

Using the data from Table 4 and TGMLI as the trained
model, 41 cycles were required to reach the eyge of 0.62.
The utilisation of TGML to calculate the termination cri-
teria at the site has substantial practical applications. Cur-
rently, the required number of roller passes at the site to
achieve the desired degree of compaction is obtained by
doing some in situ density measurement, such as NDG
testing, sampling, and other destructive testing methods. If
the required number of passes can be estimated using
TGML, the number of tests required can be substantially
reduced, thus reducing the time and cost of the project.
Moreover, as discussed earlier, it eliminates the disadvan-
tages associated with over-compaction.

Table 4 Parameters and target values used for the study of termina-
tion criteria

Parameter Value
€y 0.823
w(%) 15
f(Hz) 30
a,(kPa) 2240
Crarget 0.62
@ Springer
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9 Discussion

The compaction due to a roller in the field is not exactly
1-D compression. Figure 19a demonstrates the initial
condition when the material is placed loosely, while
Fig. 19b displays the instantaneous deformed shape of the
material when a roller is in operation, and Fig. 19¢ illus-
trates the state of the material after compaction. While the
deformation is not exactly 1-D, when the compaction is
completed the overall deformation behaviour of the section
can be approximated as 1-D. Wersill et al. [66] and Wer-
sdll and Larsson [65]concluded that the settlement beha-
viour from rotating mass oscillators, which are similar to
vibratory rollers, is predominately vertical, and horizontal
displacement is negligible. Recent results and the discus-
sion illustrated in Fig. 19 support that deformation is pre-
dominately 1D; therefore, complex 3-D compaction can be
approximated using 1-D equations.

A similar idea of approximating 3-D behaviour with 1-D
equations has been proposed by Raissi and Karniadakis
[46], who showed that any high fidelity data or model can
be simulated using a low fidelity model with corrections.
Likewise, data from field compaction (high fidelity data)
can be well-represented by a low fidelity (1-D model) and
corrections made using appropriate ML techniques.
Therefore, it is believed that void ratio evolution data from
the field can be modelled using a combination of the 1-D
TM developed in the present study and a suitable ML
model.

Laboratory test data on change in the void ratio of a fine
sand during compaction were analysed and modelled using
theoretical and ML approaches. Analysis of the experi-
mental observations using TM showed that the model
parameters and degree of compaction depend on different
initial conditions, such as the initial void ratio (eg), the
degree of saturation (S,), the load level (o), and the fre-
quency of vibration (f), as shown in Figs. 6, 7, 8, 9 and 10.
The highlight of the analysis is shown in Fig. 9, which
shows that the maximum relative compaction occurs when
the sample is prepared close to the optimum degree of
saturation (Syopt) (Sropt Obtained from Proctor compaction
testing). This phenomenological feature emphasises the
importance of S, during compaction, which has also been

h,= Initial thickness

the focus of other recent studies [24, 59-61]. The impor-
tance of the vibration frequency for compaction is also
highlighted in the analysis, i.e. there exists an optimum
frequency at which the compaction is maximum. This
observation is consistent with findings made during the
field compaction of material, which also show an optimum
frequency for maximum compaction [67, 68]. Ideally, this
frequency should be evaluated before compaction starts for
greater efficiency.

As discussed above, since model parameters depend on
different initial conditions, TM cannot be generalised.
Furthermore, with a large dataset, analysis using a TM
would be challenging and computationally expensive.
These issues were addressed with the use of 3-layer ANN
models, which can generalise any loading condition.
However, since ML models are prone to overfitting, dif-
ferent regularisation techniques, including callback and L2
regularisation, were used to reduce the error and decrease
the computational time required to train the network.

It was also highlighted that greater accuracy could be
achieved by combining data-driven ML models and TM
encompassing essential physics, termed theory-guided
machine learning (TGML). TGML increases the ability to
interpolate and extrapolate, which is an essential aspect of
the geotechnical engineering field [75]. TGML also redu-
ces error and increases prediction confidence by reducing
the 95% confidence band estimated using MC dropout.
Noise in the dataset is unavoidable, especially measure-
ments under field conditions. TGML provides much
improved prediction in the case of noisy datasets compared
with marginal improvement when dealing with clean lab-
oratory datasets.

The termination criterion was discussed, which involves
estimating the number of passes required to achieve a
target density or void ratio. This analysis utilised the
already-trained TGML1 model to predict the void ratio at
any particular cycle, rather than re-training the model by
interchanging the parameters, which could result in high
computational cost.

Instantaneous deformed shape

ik * " Compaction

_— e

h; = Final thickness
v

(a) (b)

(c)

Fig. 19 Deformation pattern because of roller compaction; a initial loose soil, b instantaneous deformation pattern during compaction, ¢ final

deformed shape
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10 Conclusions

A series of 1-D tests was conducted on uniformly graded
fine sand with different initial densities and moisture con-
tents. The loading condition simulated actual roller
movement in terms of load level and frequency. The
replication of roller loading conditions is challenging in the
laboratory, as it involves applying loads as high as 2 MPa
at a vibration frequency of 30 Hz, and there is an obvious
lack of such data in the literature.

These data were analysed using a theoretical model
based on the literature and an ANN model; both were
found to be equally efficient in predicting the behaviour
observed in the laboratory testing. Since the TM model
parameters were dependent on initial conditions, TM could
not be generalised. However, ML is more general, as it can
consider all the parameters as an input, but its prediction
lacked physical significance as it also tried to fit the noise
of the data.

The fusion of TM and ML algorithms, termed TGML in
this paper, addresses the disadvantages of TM and ML
alone. The following conclusions on TGML were drawn:

1. TGMLI, a data augmentation technique to improve
ability to extrapolate, is an advantageous technique
which addresses issues with the conduct of complex
and expensive experiments. This technique involves
the conduct of limited experiments for TM and using
the developed TM to create new observations for any
ML model. However, the extrapolation ability of TM
should be

2. TGML2 considers the prediction of the TM as an
additional input to the ML model. This method ensures
that TM and ML complement each other. ML increases
the complexity of a simpler 1-D TM, whereas TM
restricts the prediction of ML to follow the physics
involved in the compaction process.

3. TGML3 involves modification of the loss function of
the ML model to include an additional loss function
based on physical knowledge of the system. This
involves rewriting the training steps to accommodate
the additional loss term, but is very important, as
shown in this paper. For this work, the constraint on
void ratio was applied. This idea can be extended to
other applications using different controls. For exam-
ple, if the behaviour of material changes after Sy, the
constraint could be provided in the model itself, rather
than relying on the model to deduce it, which may not
always be possible.

4. The highlight of this paper is the modelling of a noisy
dataset. The paper shows that when modelling a clean
dataset obtained from laboratory testing, TGML is
marginally better than ML and TM; however, when

dealing with noisy datasets, the prediction of TGML is
far superior to that of ML.

The TGML techniques discussed above could also be
combined if an individual TGML model cannot capture a
complex behaviour. For example, if the dataset is noisy and
the model’s ability to extrapolate needs to be improved,
TGMLI1 and TGML3 can be combined. In this paper, the
application of the TGML is shown for ANNs only; how-
ever, the same concept can be used for other ML algo-
rithms such as support vector regression (SVR) and random
forest (RF). The ML and TM should be carefully selected
for developing the TGML. Accordingly, the ML should be
relatively simple and flexible for merging with the TM,
which should be reasonably accurate. It should be noted
that a very poor-quality TM can cause the hybrid model to
have unsatisfactory performance compared to the ML
model alone.
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4.2 Errata and Addenda for the published paper (Tophel et al. 2022)
4.2.1 Errata

Erratum 1: In Table 1, Unified soil classification system (USCS) classification value is
reported as SC.

Correction: Unified soil classification system (USCS) classification value should be SP.

Erratum 2: In section 6.2 it is written as: “Various regularisation techniques were used to
avoid over-fitting; first by dividing the total dataset into training and test datasets randomly.
For this study, 80% of the total dataset was used for training and 20% of the data for testing.
An early stopping procedure was employed using a further 20% of the training data for

validation to avoid overfitting.”

Correction: This should be modified to: “Various regularisation techniques were used to
avoid over-fitting; first by dividing the total dataset into training and test datasets randomly.
For this study, 80% of the total dataset was used for training and 20% of the data for testing.
An early stopping procedure was employed using a 20% of the training data for validation to

avoid overfitting.”

Erratum 3: At the start of section 7, it is written as: “This section discusses the three
techniques of TGML developed in this research to better predict the evolution of void ratio
and eliminate the limitations associated with a theoretical model and machine learning-based
models (in this study ANN).”

Correction: The text should be modified to: “This section discusses the three techniques of
TGML developed in this research to better predict the evolution of void ratio. These techniques
aim to address the limitations associated with a theoretical model and machine learning-based

models, particularly the ANN model used in this study.”
4.2.2 Addenda

Addendum 1: The grain size distribution of the material used in this study is shown in Figure
4-1.
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Figure 4-1. Grain size distribution of the material used in (Tophel et al. 2022).

Addendum 2:

For FS_10, the parameters were evaluated using Eq. (6) which resulted the value of parameters

as provided in Table 4-1. It can be seen that the error in evaluating C, and m is very high.

Table 4-1. Model parameters obtained for sample FS_10 with equation including C,

Parameter | Value Error
eo 0.82306 | 0.00242
Cy 0.01543 | 0.00060
C, 0.27481 | 415.629
m 0.84874 | 214.834

However, when the model complexity was reduced by eliminating C,, following were the

values and errors obtained.
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Table 4-2. Model parameters obtained for sample FS_10 with equation without

including C,.

Parameter | Value Error
eo 0.82306 | 0.00238
Cy 0.01543 | 0.00028
m 0.66478 | 0.02278

It can be seen that the error in obtaining parameter m reduced when the model complexity was

reduced.

Addendum 3: In section 7.1, coefficients calibrated for Equation 7 and the ML study to 30

cycles were carried out independently.

Addendum 4: In section 7.4, a variance of 1% of mean was chosen as an appropriate amount
of noise based on (Raissi et al. 2017b).

Addendum 5: A detailed discussion on 1D approximation of roller compaction can be found
in Chapter 7.

Addendum 6: In practice, a section of trial compaction will be needed to calibrate TM or ML.
A detailed discussion on this can be found in Chapter 7 of the thesis.

4.3 Summary

The development of a hybrid model called TGML has been presented, combining the strengths
of theoretical models (TM) and machine learning (ML) algorithms to overcome their
individual limitations in predicting noisy datasets. Three different techniques were used to
combine TM and ML, named TGML1, TGMLZ2, and TGML3. TGML1 involves augmenting
the dataset for ML with the limited data from TM, TGML2 uses the prediction of TM as an
additional input to the ML model, and TGML3 modifies the loss function of ML to include
physical constraints. The superiority of TGML over TM and ML in predicting noisy datasets
was highlighted. Importantly, the framework can be extended to other ML algorithms, such as
support vector regression (SVR) and random forest (RF), although the quality of the TM is

crucial for the performance of the hybrid model.
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The framework was tested on fine sand compacted at varying moisture contents, stress levels,
and loading frequencies. The three techniques that were used to improve the framework's
performance were discussed, with the third technique being particularly useful for handling
noisy field datasets. The developed TGML framework was also used to demonstrate a
termination criterion for achieving the desired degree of compaction, and a simplified TM and
ML model were proposed to estimate field compaction behaviour during roller movement.
The TGML framework showed less error and lower model uncertainty than traditional
machine learning methods. In Chapter 7, TGML3 is used to remove the uncertainty associated
with measuring the deformation data.
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Chapter 5 Constitutive model for a constant load test

This is the second chapter of Part 3: Theoretical Model Development. Chapter 4 discussed the
use of a simplified model to study the material behaviour based on constant stress 1D tests for
practical purposes. However, roller compaction involves variable stress due to the gradual
reduction of contact area between the drum and geomaterial, making it difficult to predict the
density using a constant stress test-based model. This study extends the model developed in
Chapter 5 and proposes a simplified constitutive model that uses the geometric relationship
between contact width and incremental plastic deformation to approximate the complex
compaction process with very high accuracy. The simplified model eliminates the need for a

complex model, making it suitable for real-time application.

To simulate roller compaction in the field, this study used a novel laboratory-scale steel foot
compactor to compact four unbound granular materials (UGM) at varying moisture content.
Experimental data were used to develop the model for estimating variable stress conditions
during compaction. This model was then used to predict dynamic properties such as modulus,
stiffness and density during compaction. In Chapter 7, the model was utilized to guess the

initial void ratio of the material with the deformation measurement.

The first part of the chapter is based on the published research paper:

e Tophel A, Walker JP, Dutta TT, Bodin D, Kodikara J (2023) Model development to
predict dynamic interactions of roller and geomaterial using simulated roller
compaction. Transportation Geotechnics 39:100946.
https://doi.org/10.1016/j.trge0.2023.100946.

The chapter then provides errata for the published paper and then details the use of the model
developed and other studies to examine the influence of initial state on modulus and density.

The chapter then concludes with a section summarizing the findings.

51 Model development to predict dynamic interactions of roller and geomaterial

using simulated roller compaction
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ARTICLE INFO ABSTRACT

Keywords:
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Density

Crushed rock or unbound granular materials constitute the top layer of g ial d in a p %
These materials are required to be compacted using compactors or rollers at a designated target density or
modulus for satisfactory performance. Studying the interaction between compactors and geomaterial is impor-
tant for optimising these geomaterial layers’ construction. As field ion is time-c and cumber-
some, the study of material behaviour at a smaller scale is necessary. This study utilises a novel setup simulating
the field compaction better to study the material’s behaviour and dynamic interaction between the material and
the compactor during compaction. A constitutive model was developed utilizing the geometric relationship
between the contact width to plastic deformation during compaction, which can be easily measured. Using
Hertzian theory, the estimation of contact width allows the estimation of contact stress. The developed model
shows that it can model the experimental observation with very high accuracy (R? > 0.98). The model is then
used to predict other geomaterial properties during compaction, showing their dependence on the material state.

Introduction

Construction of roads, dam embankments and bridges are the major
activities in the civil engineering domain. These activities are very
important to cope with the ever-increasing population. All of these
construction activities require an assessment of the suitability of the
ground condition of a construction location, including the geomaterial
layers on which a structure is built. For instance, if the geomaterial is
weakly compacted, a structure built over it will not operate well, and in
the case of a road, the service life of the road is lowered, leading to
premature failure. The construction of geomaterial layers to specified
dry density (p,) or void ratio (e) and other geomaterial properties (e.g.,
stiffness (K), modulus (E)) are typically required for the quality assur-
ance (QA) of engineered compaction.

On top of that, it is also crucial to minimise material variability
within geomaterial layers to prevent structural failures resulting from
excessive differential deformations. The compaction of geomaterial to a
specified property is commonly undertaken using rollers/compactors.
Geomaterial compaction is therefore the process of increasing p; and
thus reducing e by removing air voids by applying loads. When geo-

* Corresponding author.

materials are compacted, the geometry of the particles’ arrangement is
altered, resulting in a better packing arrangement and an increase in p,.
The compaction process is very complex to explain scientifically in
detail. Hence, there are many issues with the current approaches.
First, capturing the cyclic loading and unloading process during
compaction is an ongoing challenge because the material is unsaturated
constituting the three-phase media. Numerous researchers have
attempted to model the behaviour of unsaturated materials under
complicated cyclic loads at the laboratory scale using complex analytical
and finite element models [1-6]. These models capture some of the
complicated behaviour well, but the determination of model parameters
requires complex time-consuming experiments, especially for unsatu-
rated geomaterials. A simplified constitutive model was proposed by
Sawicki et al. [7], which was recently modified by the authors of this
paper [8], who showed that for practical purposes a simplified model
could be used to capture the essential physics of the compaction process.
This model requires fewer material parameters and is advantageous,
especially when aiming at future real-time applications. Unfortunately,
similar to other constitutive models, the model needs applied parame-
ters such as stress as an input, which is variable during compaction.
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Fig. 1. Interaction between cylindrical roller compactor and material with different states: (a) loose state (state 1); (b) dense state (state 2).

The compaction process modelling using rollers is challenging due to
the change in the geomaterial properties (stiffness, pg, modulus) and
geomaterial-compactor interactions (contact width, contact stress)
during compaction [9,10]. For example, Ghorbani et al. [11] used the
advanced mortar-type contact algorithm to model a cylinder and geo-
material contact evolution and found that the contact width reduces
with an increase in p;. Because of this reduction in roller/material
contact area during compaction, the contact stress increases as
compaction progresses even though the load applied due to the
compactor remains pretty much the same. The stresses applied by a
cylindrical compactor can be evaluated approximately using Hertz’s
theory [12], which has been verified using field measurements [13,14].
However, calculating the stresses using the Hertzian approach requires
knowledge of either Young's modulus or the contact width of the com-
pacted material, both of which change during compaction. As these two
parameters are difficult to measure or estimate during the compaction
process, most detailed numerical modelling approaches assume the pa-
rameters are constant during the simulation, which limits the models’
capability. For example, both [15] and [11] considered the modulus of
the geomaterial to be constant during compaction. However, it has been
demonstrated that the modulus depends on the p; and increases as the p,
increases during compaction [16]. This study exploits a geometrical
relationship between the plastic deformation during compaction and the
associated contact width, and, thereby, presents a nonlinear relationship
between the contact stress and the plastic deformation during compac-
tion. The plastic deformation was selected as the independent variable
as this can be measured relatively easily compared to contact width. For
instance, it can be measured by using either contact or non-contact
displacement sensors in the laboratory or in the field using scanning
measurement systems and or advanced instrumentation [17-19]. This
hypothesis allows the estimation of stresses needed for a constitutive (i.
e., stress—strain) relationship using only the load applied, which is easier
to determine during compaction.

The third issue related to compaction is the variation of initial den-
sity (pgo) or initial void ratio (o). Because different techniques are used
to place and spread the geomaterial, the initial placement p, or ey can
vary, even for the same material with a particular moisture content. Due
to the use of different machinery, the initially applied energy can be
different, leading to different e,. Hence, the void ratio evolution (change
in void ratio during compaction) can be different even for the same
applied load during roller compaction. This study also explores the effect
of e on void ratio evolution during simulated roller compaction.

Experimental evidence was used in this paper to develop a model to
study stiffness, modulus, contact area, contact stresses and their evolu-
tion during compaction. The typical variation of these properties is re-
ported, and their relationships with factors such as void ratio, number of

cycles, and initial state are presented. Such information can be used in
constitutive modelling instead of considering them to be constant during
compaction.

On the basis of experiments undertaken on unbound granular ma-
terials (UGM), the model was validated and the issues noted above are
addressed. The compaction was performed using a novel steel foot
compactor simulating drum compaction in the field. The effects of the
initial density, moisture and plasticity of fines on the compaction
characteristics and model parameters were also studied.

Model development

Hertzian contact theory and geometrical relationship between contact
width and plastic deformation

When a stationary cylindrical drum is in contact with geomaterial in
loose condition, the contact width/area is higher than when the same
roller is applied to a denser material as the indentation of the roller at
the material’s surface decreases with the increasing density [12]. Fig. 1
(a) and 1(b) illustrate the difference in the interaction between the roller
and the material when the material is in the loose and dense states,
respectively.

When the material is in a loose state, the contact width (B) is higher,
and hence, under the same vertical load F, the stress is lower. The
contact width keeps reducing with an increase in the number of cycles
(or the number of rollers passes), and the contact stress increases during
compaction even when the load (F) is constant. Constitutive relation-
ships to model the compaction process require knowledge of the stresses.
However, variable contact width and stresses during compaction make
the modelling of the roller compaction process challenging.

For a cylinder contacting the elastic half media, the contact stress can
be evaluated using Hertzian contact theory [12] as

1

2

where, E" is the equivalent modulus of the system, (E;,v1) and (Ez,v2)
are the Young’s modulus and the Poisson’s ratio of the geomaterial and
the cylindrical compactor respectively. F is the load applied by the cy-
lindrical compactor, whereas L is the length of the compactor, R is the
radius of the compactor, and ¢ is the maximum contact stress. For this
study, v1, E> and v, were considered as a constant during compaction
with the values of 0.35, 200 GPa and 0.2 respectively.

Using Equations (1) and (2), the contact stress can be estimated but
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Roller moving direction

Fig. 2. Interaction between cylindrical compactor and geomaterial dur-
ing compaction.

the knowledge of the modulus of the geomaterial is needed. Similar to
the stresses and contact width, the modulus of the geomaterial also
changes during compaction. Accordingly, the contact width (B) can be
determined according to Hertzian theory [12] as

16RF
5=/ (Gez) ®
From Equations (2) and (3), the peak contact stress can be written in

terms of the contact width and the load applied such that

P il
" alB

“)

Fig. 1 depicts an idealised form of interaction between cylinder and
geomaterial when the cylinder is stationary and the load is vertical. But
in reality, the cylinder moves in a horizontal direction while applying
the load vertically (Fig. 2). This study utilises the geometrical relation-
ship between plastic deformation or compaction which is the difference
between the front and back of the compactor (AH,) and contact width
(B) as shown.

From the above figure, the contact width can be written in terms of R
and the internal angles (¢;,6;) that it makes with the contact area with
such that

B = R(sin(6) + sin(6,) ) (5)
and the plastic deformation (AH,) as
AH, = R(cos(6,) — cos(6,)) (6)

Comparing the two variables using the trigonometric identities,
contact width takes the form

B = 2Rsin (01 ; 0:)(.'(”(0' ; 02) @
and the equation for plastic deformation (Equation (6)) is reduced to
AH, = 2Rsin (0' ; 03)“." (@) (8)

Equations (7) and (8) show that B and AH, are related during a
compaction cycle, i.e. BxAH,. Based on the experimental evidence of
this study (shown later), it can be assumed that these two variables are
related using a power function such that

B=aAH! ©

where a and /) are two additional constitutive parameters that depend on
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the geometric properties of the compactor.
Using Hertzian contact theory, the maximum stress due to a cylinder
can be recast based on Equations (4) and (9) such that
4F
6= =
nLadH!,

(10)

It should be noted that when AH, becomes zero the situation cor-
responds to the point loading problem. Because of the point load, the
contact stress becomes infinite and a similar observation can be made
when using the Boussinesq’s equation to estimate the stresses due to
point load. In the field, when compaction process becomes stationary at
the end of the compaction, AH, tends to go to zero at and in turn the
contact stress becomes very high.

Modification of stress-based model to a load-based model

Sawicki et al. [7] developed a constitutive model in 1D compression,
which was later progressed by Tophel et al. [8]. In this work, the cu-
mulative plastic strain (€,) was considered to evolve logarithmically
with the cycle number (N) subjected to a vertical stress (o) such that

ep=c.1n<1+N<:—f[>m), an

where C; and m are model parameters and o, = 1 kPa.
The above equation can then be differentiated to provide incre-

mental plastic strain, i.e. (iffﬁ orAe,) yielding

1

o \" <
Ae, =C; (0—"’) exp(f-c—") (12)

Equation (12) is represented in terms of incremental plastic defor-
mation (AH,) and initial height (H,) and cumulative plastic deformation
(H,) such that

a\" H,
AH, = HoC, [ 2= 2R 1
b WC\ (aw> exp( anl) (13)

As stated earlier, the load is commonly known during compaction,
but not the stress. Therefore, Equation (13) is modified by adding the
two constitutive parameters introduced in Equation (9) such that

4 \" H,
AH, = HyC) | ——— - 14
Bl '(mmyg) e HoCu) e

The stress term is then replaced by the maximum stress applied by
the cylindrical compactor during compaction. The maximum stress is
taken as the shear failure responsible for the plastic deformation is due
to the maximum stress. By rearranging,

m 4F\" H,
(A"’/:)Hﬂ = H,C, (m) e—"l’(——Hoa)

(15)

Equation (15) can be integrated for either a constant or variable load
condition.
If the applied load is not constant, integration of Equation (15) yields

1 A\ N
H"_HGC'(I+ﬁm)["(l+rﬂm(m) A F"dN). (16)

For a constant load, Equation (16) can be integrated to determine the
cumulated material surface deformation

1 4F\"
H, = HyCy(1 +/1m)1n(l+m(a) N). a7)

Assuming the material properties constant with depth in the com-
pacted layer, the void ratio ey at cycle, N can be calculated form the
initial void ratio and height e, and H, respectively using the following
equation approximately:
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Table 1
Evolution of all the parameters (with N and ey) during compaction.
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Parameters General Equation
Contact width (B) N 1] n -
s G () [
b
en /i
2L P (eo — €
B = a(HoCy)! ”""exp(Aicmliﬂm] x 'fH:))
Contact Stress (0) N ey . 1 4\"™ N ’
o = (HoCy)1 ‘/"’"(l'—l‘ﬂm(m) /u I-""dN)
en p
. T+pm s (eo —en)
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R m il
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B = —2f =
m N 25
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Fig. 3. Dimensions of the compaction mould.
e—ey H,

l+e Hy as

Recalling the inverse relation between void ratio (e) and dry density
(pg) can be calculated as

Gy,

Tlte 49

Pa
where G; is the specific gravity and y,, is the unit weight of water.

The plastic stiffness (K) expresses the relationship between the ver-
tical force (F) and the plastic deformation increment (AH,) and is
calculated as follows:

2/
AH,

P

(20)

Similar to the plastic stiffness (K), modulus of the geomaterial rep-
resented by E,, represents the plastic modulus of the geomaterial.
Equation (16) can be used to derive all the material properties during
compaction and is presented in Table 1.

Materials and Testing method
The experimental data comes from the laboratory compaction of

slabs where multiple thin layers are compacted to gradually construct a
300 mm high full depth specimen [20] using the extra-large compactor

Fig. 4. Photo of the

d roller and sp during compaction.

and wheel tracker develop by ARRB for Austroads [21]. The materials
used in this study were unbound granular materials (UGM) as they
constitute the base layer of a flexible pavement and carries most of the
load coming from the traffic.

Each sample was compacted in a mould of dimensions (length = 700
mm, width = 500 mm, and height = 300 mm) in six layers (Fig. 3). Each
sample (300 mm thick) is compacted in 50 mm layers of 6 layers aiming
at producing a uniform specimen with minimum density gradient with
depth. In the field, density gradient will be observed with the spread of
the compaction load with depth. The compaction in sublayers was
developed to allow reducing density gradient even when compacting
material below optimum compaction moisture in order to avoid gener-
ation of high compaction effort and prevent potential particle breakage
during the compaction process when testing weak or marginal fit-for-
purpose materials.The material was first homogenised using a rotary
splitter and dried at a low temperature (80 °C). Before compaction,
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Fig. 5. Loading cycle details for one of the samples.

water was added to the dry aggregates to achieve the desired moisture
content. Mixing with the appropriate mass of water was performed using
an 80-litre concrete mixer. The material was then stored and sealed
before compaction.

Based on the targeted density (void ratio) and moisture content, the
wet mass required was calculated and the material was spread in the
mould. Special care was taken to avoid segregation while spreading. The
material was first spread and compacted using a hand-held tamping
device to ensure even distribution. The material was then pre-
compacted with a load of about 1 kN. The compaction effort or load
applied on the steel compaction foot (Fig. 4) was loaded at 5 kN and
gradually increased with the measured height for density estimation at
the centre of the specimen recorded. by a Linear Variable Differential
Transformer (LVDT) displacement sensor. The LVDT is attached be-
tween the machine frame and the bottom of the mould. The compaction
effort is applied on the specimen mould from underneath pushing the
specimen and the material to be compacted towards the compaction
foot. Change in displacement results from the thickness reduction of the
material in the mould. This interpretation assumes that the deflection of
the machine frame and compaction foot is negligible compared to the
height variation when compacting the granular material due to signifi-
cant modulus difference between the steel and the soil. During the
compaction of the layer i it is assumed that no further compaction is
experienced in the underlying layer i-1 and below, which are already
compacted at the target density. The change of relative position of the
bottom of the mould / compaction foot radius is interpreted as the
change in height of layer i. The single measurement of the height in the
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Fig. 6. Grain size distribution (GSD) of all the materials used in this study.

middle of the slab was used as a measurement of the density. As during
the development of the test method the uniformity of the density ach-
ieved in the compacted resulting from the compaction procedure
(AGPT/T054) was assessed and demonstrated (except edge effects
inherent to compaction of granular materials) as described in ([21]). An
example of one loading scenario is shown in Fig. 5. The loading was
started at 5 kN (stage 1) until a maximum of 20 cycles and increased to
10 kN (stage 2) for a maximum of 20 cycles if the desired height was not
achieved. The loading is further increased to 20 kN (stage 3) and then 30
kN (stage 4) for a maximum of 20 cycles each until the compaction is
achieved. Core samples at the end were obtained to verify the density
calculated using the height measurement.

Testing Program

The test matrix included 14 samples comprising five different ma-
terials and was given different ARRB sample register numbers 2510,
2511, 2512, 2513 and 3850, referred to here simply as materials A, B, C,
D, and E, respectively. The details of the materials are given in Table 2
with the grain size distributions shown in Fig. 6.

Materials A and B were sourced from a quarry in Lysterfield, Victoria,
Australia and a quarry in Tynong, Victoria, Australia, respectively.
Materials C, D, and E were prepared in the lab to study the effect of
plasticity. Material C had 6% Claypro (a clay additive) added to material
A while material D had 30% Class 4 subbase material (VicRoads clas-
sification [22]) added. Material E was planned to be prepared similar to
material C, but because of the incorporation of scalping materials to
improve the grading, the material became more plastic due to the

Table 2
Results of the basic characterisation tests on each material.
Material Granite standard Hornfels standard Granite i d d Granite i d Test
plasticity plasticity plastici plastici plasticity- Standard
Material Number 2510 (A) 2511 (B) 2512 (C) 2513 (D) 3850 (E)
%fines (less than 0.075 mm) 8.8 10.8 10.3 13.4 9.6 [23]
%sand (4.75 mm —0.075 mm) 43.5 44 40 40.6 35.4 [23]
Y%gravel (>4.75 mm) 47.7 45.2 49.7 46 55 [23]
Plastic Limit (PL) (%) 26 23 23 28 28 [24]
Liquid Limit (LL) (%) 19 19 14 20 14 [25]
Plasticity Index (PI) (%) 7 4 9 9 14 [26]
Specific Gravity (Gy) 2.66 2.74 2.79 274 2.66
Optimum Moisture Content (OMC), 6.6 5.6 5.5 6.6 5.9
modified Proctor (%)
Maximum Dry Density (MDD), 2200 2300 2290 2230 2270 [28]
modified Proctor (kg/m?)
5
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Table 3

Test matrix used for this study.
Sample ID Mat. No MC (%)
1 A 3.61
2 A 4.32
3 A 4.93
4 A 4.13
5 B 4.02
6 B 4.05
7 B 4.9
8 C 4.07
9 Cc 4.82
10 C 5.11
11 D 3.94
12 D 5.67
13 E 4.13
14 E 4.9

inclusion of plastic fines.

Different samples of each material were prepared and tested to study
the effect of moisture content. Table 3 shows the test matrix of all the
samples with the moisture content (MC) used for preparation.

As previously stated, each sample was compacted in six layers, with
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the manual tamping during sample preparation creating different e, for
each layer before the actual compaction began. However, these layers
were compacted to approximately the same final void ratio (efinar). Fig. 7
shows that because of the different ey, each sample experienced a
different number of cycles (N) to reach efq. The initial void ratio and
the final/target void ratio matrix for all the samples is shown in Table 4,

Results and discussions:
Prediction ability of the developed model

The prediction model skill was assessed using two metrics, coeffi-
cient of correlation (R?) and mean absolute error (MAE) defined as.

1 fen(¥)
E =
Ien()')z‘:‘
S (1 = )’
oty

where Y is the experimental observation, Y, is the predicted output
from the model, Y is the mean value of all the values of Y, and len(Y)

¥ = Yorea| (1)

(22)
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Fig. 7. Void ratio evolution during compaction for each layer for: (a) sample 4, (b) sample 13.
Table 4

The ey matrix and e, for all the samples tested.

Sample ID Initial Void ratio (e,) Final void ratio (/i)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 0.314 0.516 0.462 0.436 0.490 0.461 0.227 £ 0.007
2 0.394 0.457 0.446 0.471 0.471 0.474 0.227 + 0.006
3 0.389 0.504 0.418 0.484 0.460 0.505 0.228 + 0.005
4 0.376 0.398 0.443 0.504 0.590 0.451 0.201 + 0.003
5 0.399 0.464 0.426 0.439 0.444 0.481 0.227 + 0.003
6 0.416 0.440 0.434 0.498 0.417 0.605 0.226 + 0.005
7 0.335 0.434 0.422 0.415 0.457 0.373 0.223 + 0.007
8 0.452 0.537 0.451 0.457 0.500 0.519 0.225 + 0.006
9 0.424 0.448 0.473 0.472 0.446 0.540 0.226 + 0.012
10 0.395 0.443 0.499 0.484 0.463 0.447 0.228 + 0.002
11 0.427 0.412 0.503 0.543 0.529 0.476 0.240 + 0.009
12 0.409 0.441 0.441 0.429 0.495 0.485 0.242 + 0.009
13 0.410 0.498 0.449 0.344 0.383 0.459 0.244 + 0.010
14 0.370 0.443 0.375 0.400 0.379 0.419 0.228 + 0.004
6
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Fig. 8. Prediction ability of the developed model for two layers each for (a) sample 4 and (b) sample 13.
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Fig. 9. Variation of model parameter C; with moisture content (w).

represents the number of values of Y.

Iig. 8 shows the model prediction ability for two examples (Sample 4
and Sample 13) for two layers (layer 1 and layer 3). Both figures illus-
trate that the model was an excellent predictor for the observed data
even when the load increment was required (cycle number 20 and cycle
number 40 for sample 4 and cycle 20 for sample 13). Only four examples
are shown for clarity, but the proposed model showed excellent pre-
diction skill for the entire dataset with R? >0.98 and MAE of less than
0.3 mm.

Constitutive Parameter

The two new constitutive parameters a and f were estimated as 15
mm and 0.25 respectively for all the materials, for the given compactor
evaluated using the least square method. Parameters C; and m were also
evaluated using the least square method. The parameter C; was found to
be the same for a given material, independent of the initial density of the
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Fig. 10. Effect of plasticity on model parameter C; at moisture content 4.4%.

sample. However, C; was a function of sample moisture content (Fig. 9)
which was also reported in the authors’ previous work for constant stress
1D compaction tests [8].

According to Equation (15), the value of C, is directly proportional to
the strain accumulated for a given stress. Fig. 9 indicates that the value
increases with an increase in moisture content. This is in line with the
Proctor compaction theory, stating that the compaction (i.e. height
reduction) is easier when the moisture is higher (note that all the
compaction moisture content were lower than OMC obtained from the
modified Proctor test) [29,30]. As all the tests were performed dry of
optimum and, therefore, conclusions regarding wet of optimum are not
made in this article. The authors however believe that conclusions made
in previous studies (e.g., (129,311])) that the compaction is difficult with
an increase in the water content when compacted wetter than the op-
timum is valid for this study as well.

Fig. 9 also highlights that the for the materials used, higher the
plasticity index, the better the compaction for the materials used as
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Fig. 11. Variation of model parameter m with initial void ratio (eo).

reflected by the corresponding values of C;. For a better illustration,
Fig. 10 is plotted which shows the variation of model parameter C; for
different materials at one moisture content (4.4%). The variation con-
firms that as the plasticity index increase value of model parameter C,
increases.

The model parameter m was found to be linearly dependent on initial
density (eo), as observed in Fig. 11 for the three example samples. The
values of m on the entire dataset are in Table 5. The linear dependency
between m and e, was also reported in the authors’ previous work [8],
where samples tested under 1D compaction had the model parameter
strongly related to the initial density. The relationship between
parameter m and e, was also evaluated when m was considered inde-
pendent of ey, as shown in the last column of Table 5. When m was
considered independent of e, the prediction error of the model
increased, but this needs to be balanced with the need for parameter
reduction, especially for real-time applications of the developed model.

Evolution of contact width, stress and stiffness parameters during
compaction

In order to demonstrate the parameter evolution with cyclic
compaction, contact width (B), contact stress (s), modulus (E;), and
stiffness (K) due to the dynamic loading, interactions between the roller
and geomaterial were calculated and plotted for sample 4, layers 1 and 5
below. These particular sample and layers were chosen to contrast the
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material properties as they needed 36 and 94 cycles to reach the final
void ratio (efna). Only two stages were applied for layer 1 while all
stages of loading were applied for the layer 5, facilitating a better
illustration of the parameter evolution. The two independent parameters
ey and the cycle number N were chosen because it is easier to track or
measure them in the lab and field. Fig. 12 shows the geomaterial
property variation with ey in the multi-stage loading. The x-axis in all
subfigures is plotted in the reverse order as it decreases during
compaction for easy visualisation. The parameters o, E;, and K increased
during compaction as the material gets stiffer, therefore, having an in-
verse relationship with the ey, which reduces with compaction.

Conversely, the contact width (B) reduced during compaction giving
rise to an increase in the contact stress (¢) and therefore had a positive
relationship with ey. It can be observed that on each occasion the
applied load was increased (as the loading stage is changed), the pa-
rameters E;, B, and ¢ increased and K reduced.

Fig. 13 shows the variation of parameters with the numbers of cycles
of compaction. Since ey and N are inversely related, the variations of all
parameters with ey and N are opposite.

Due to the difference in the loading history, the modulus at the final
void ratio is different and is higher for the sample that had a higher
initial void ratio. The observation could be attributed to the difference in
the load (10 kN for layer 1 and 30 kN for layer 5) at the final loading
stage. At the final compaction cycle, the contact width was around 7 mm
for layer 5, which was lower when compared to layer 1 where the
contact width was 8.2 mm. The other material properties (modulus,
stress and stiffness) were higher for layer 5 compared to layer 1. This
could be because the final load applied was higher for layer 5. The other
possible reason could be the complex non-linear mulit-dimensional
interaction of contact mechanics between the compactor and the ma-
terial, which needs further investigation.

Table 6 presents simplified relationships for all the parameters
including when the applied load (F) is constant with ey and N. Co to Cyo
in the table are model parameters. For example, all the parameters can
be expressed as an exponential function of ey. Conversely, variation of
all parameters can be expressed as a power function of N except for K,
which can be expressed as a linear function of N. These equations can be
used directly to calibrate the model parameters if a similar test setup
involving a roller is used, either in the field or in the lab. And also can be
used for finite element modelling etc., and their variation/evolution
with ey and N can be used instead of considering them constant during
compaction.

Total energy imparted to the sample to achieve the target density

The cumulative energy required to achieve the target density is an
important parameter for the optimal construction of pavement layers. It
dictates the number of passes required to achieve the desired

Table 5

Value of p m ob d for all 14 ples having six layers.
Sample ID Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Void ratio independent
1 2.09 1.96 2.07 1.91 2.02 1.78 1.92
2 1.72 1.69 1.80 1.66 1.76 1.56 1.67
3 0.93 1.82 1.65 1.77 1.58 1.50 1.65
4 1.83 1.77 1.81 1.86 2.08 1.67 1.98
5 0.97 1.29 2.07 1.35 1.39 1.30 1.34
6 1.09 1.37 1.66 1.59 1.64 1.79 1.70
7. 0.44 2.23 1.94 225 1.86 1.39 1.94
8 1.75 1.60 1.40 1.37 1.59 1.50 1.55
9 1.04 1.56 1.33 1.15 1.31 1.59 1.37
10 1.26 1.61 1.41 1.24 1.95 222 1.46
11 0.82 0.97 1.18 1.24 1.01 0.71 1.10
12 1.25 1.80 1.56 1.46 1.98 1.41 1.63
13 1.85 1.74 1.81 212 1.81 235 1.81
14 0.62 2.06 2.05 1.63 1.18 1.74 1.90
" Considering the entire dataset for a sample.
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Fig. 12. Variation of parameters: (a) B.(b) o,

specifications of the geomaterials. The optimal use of energy is also
important for sustainable construction where energy utilization is
optimised. In addition, compacting the material more than required can
cause over-compaction, allowing the material to heave, with multiple
shear planes and chaotic motions of the roller leading to breakdown and
wear and tear of the rollers [32,33]. Over-compaction can also lead to
excessive plastic deformation or rutting during the traffic loading in its
service life [34-36].

The total energy applied per unit volume (&g,) to reach the final
density or void ratio was calculated using the following equation as:

SoF x AH,

HyxBXxL @3

Sapp =

The energy applied, &, to reach the target density (MDD for this
study) was compared to the energy applied in the standard and modified
Proctor tests. It was found that all samples needed less energy than the
modified Proctor (2703 kJ/m® [36]). This was because the material was

(d)

(c) Ey, (d) K with ey during compaction.

provided energy during manual tamping and spreading and therefore
did not start from its loosest state. The manual tamping and spreading
may to some extent replicate the paver spreading in the field; therefore,
careful consideration of the number of delivered passes by the
compactor should be considered. Fig. 14 illustrates the variation of &,
with e, for six samples (three samples for each of material B and material
C). Two observations can be made; first, &, is directly proportional to
ep; second, ., is lower for higher moisture contents (increasing order of
moisture content is sample 8, sample 9 and sample 10) at the same e,
confirming the observation made in Fig. 9. The graph cannot be directly
used for field compaction control using bigger rollers as the energy
transfer mechanism, and energy losses are different in the two settings.
To use the developed graph for field compaction control, a similar graph
should be developed in the field for a particular compaction machine by
measuring the thickness change using external devices such as a total
station scanner and laser scanners.
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Fig. 13. Variation of parameters: (a) B,(b) s, (¢) E;, (d) K with N during compaction.

Conclusions and implications of this study

Construction of any civil engineering structure requires earthwork
activities, including embankment construction for dams and bridges.
The geomaterials used are compacted using rollers to attain the prop-
erties required. To understand and optimise the compaction process, it is
very important to understand the compaction process through model-
ling, and small-scale experiments in the lab, as repeating field-scale
experiments requires a big investment. This study addressed the
following major issues related to understanding the compaction process
by testing UGMs in a simulated wheel tracking apparatus at different
initial conditions (plasticity, moisture content (w) and initial void ratio
(e0)). They are as follows:

(a) Roller compaction modelling has been a challenge throughout.
One reason is that the stress acting on the material properties are
not constant during compaction. As the material gets stiffer
during compaction, the contact area or width (B) between the
drum and the geomaterial gradually reduces. Generally, the

applied load (F) during compaction is constant; and the contact
stress (o) increases due to reduction of B. This is entirely different
from tests usually carried out in a laboratory, where the stress is
kept constant. Hence, the model developed from the constant
stress test cannot be used to model the variable stress compaction
process. This study extended a constant stress model to a constant
load model using the geometrical relationship between B and
incremental plastic deformation (AH,). The excellent predict-
ability of the simplified model shows that the complex compac-
tion can be reasonably approximated using a simple 1D equation.
The proposed model eliminates the requirement of a complex
model, which hinders a real-time application as the computa-
tional time is high.

(b) Equations are presented where the dynamic parameters vary with
the void ratio and the number of cycles. Simplified equations are
also presented, which can be used by Finite element research
instead of considering the stress or contact width as a constant.

(c) The effect of moisture content and plasticity was highlighted in
various parts of this article, showing that moisture aids in
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Table 6
Simplified equations for all the parameters for special case.
Parameter Constant Load Simplified equation with cycle No.  Simplified equation with void ratio
Contact width /] 1 fanNE B = C2Co% (1 + C4F"N) 1 B = GGy exp(Cs x(Cs — en))
B = 1+pm oy
®) B = a(HoCy)1 + /9 (Hnﬂm (KL") N)
Co(n;act Stress ; lli’ 1 4F\™ P 6 = Co % (1 + CF™N) = Co exp( — Csx(Co — ex))
0) = +pm A
o = (HoGr) (”u/rm (m) N)
Modulus (E
(E1) B = B -
By C5Co 25 (1 + C4F"N)* CsCo *“exp( — 2C5 x(Cs — en))
FE — C;Cy (1 + C4P"N)*© FEz — C;Co *“exp( — 2Cs x(Cs — en))
—2p
el 1 (4F\" \¥ IR
1+ pm il fcachd -2
(HoCy) (1 +5 wm(,rm) N) x (5 )52“ 13)
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Fig. 14. Variation of total energy applied with ey for: (a) material B, (b) material C.
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The developed model in this chapter also sheds light into the effect of initial state on other QA
measurement (modulus) and density relationship of geomaterials which is discussed in the next

section.

5.2 Errata and Addenda for the published paper (Tophel et al. 2023)

5.2.1 Errata

Erratum 1: In Table 2, the liquid limit and plastic limit are placed back to front.
Correction: In Table 2, the liquid limit and plastic limit should be interchanged.

Erratum 2: Figure 14, caption of the figure ey is inconsistent with the use of x-axis title e,.

Correction: The caption of the figure should be corrected to: variation of total energy applied

with e, for (a) material B, (b) material C.

Erratum 3: In page 4 of the paper, E; is mentioned as plastic modulus. The original sentence
was: “Similar to plastic stiffness (K), modulus of the geomaterial represented by E;, represents

the plastic modulus of the geomaterial.”

Correction: E; should be elastic modulus. The sentence should be changed to “The plastic
stiffness is represented by K, whereas, the Youngs’ or elastic modulus of the geomaterial is

represented by E;."
53 Influence of initial state on modulus-density relationship

Pavement construction and compaction quality control commonly rely on density
measurements. However, modulus measurement methods are gaining popularity due to their
convenience and ease of use compared to density measurement techniques. Modulus-based
methods can provide the material modulus needed for a pavement layers' mechanistic-
empirical (ME) design. However, these methods have not been widely accepted as a
replacement for density measurement in current quality control practices because a single
modulus measurement does not correspond to a specific density measurement (Meehan et al.
2012; Lee et al. 2017; Wang et al. 2022). The modulus of geomaterials is typically considered
independent of its stress history, depending primarily on moisture content, density, or void
ratio. This section of the chapter examines the non-unique relationship between modulus and

density in the field, even at constant moisture content, using three test setups to study

70



geomaterial behaviour under cyclic loading. Accurately estimating the modulus requires
knowledge of the geomaterial’s initial and current states regardless of the measured modulus
or test type. Variations in initial density, resulting from different paving or spreading methods,
can lead to different residual lateral stress development and affect the modulus. Therefore,
when establishing a correlation between density and modulus, it is important to consider the

different initial densities observed in the field.

This section of the chapter found that even at a constant moisture content, there exists a non-
unique relationship between modulus and density (pg4y) Or void ratio (ey) because of
different initial void ratios (ey). This observation is based on a series of experiments
performed using three experimental setups: extra-large wheel tracker test, constant peak stress
1-D test, and constant radial stiffness triaxial test, testing four different geomaterials under
cyclic loads. The three test setups allow for measuring different modulus types, mimicking the
diverse moduli representative of the field conditions. For instance, the constant peak stress
cyclic 1-D test measures the plastic modulus of the geomaterial, while extra-large wheel
tracker test and constant radial stiffness triaxial test are performed to evaluate the elastic or

unloading modulus, as applicable to traffic loads in pavements.
5.3.1 Materials and Test Methods

Material behaviour subjected to repeated loading was studied in three different experimental
setups. Each scenario provided a different perspective on the material behaviour and allowed
the study of material properties during repeated loading.

5.3.2 Extra-large wheel tracker test

A prototype of the roller compactor (extra-large wheel tracker test) was first employed to
investigate the material properties (as shown in Figure 5-1(a)) under a constant load. The
material under investigation was an unbound granular material (UGM), also known as a
crushed rock with moderate fines, which makes up the base layer of a pavement (referred to
as Material 1 in this chapter). Further details of the test and setup can be found in Bodin et al.
(Bodin et al. 2013).

During the constant load test, the geomaterials were compacted using a compaction foot and
subjected to a load of 5 kN. The deformation during compaction was recorded using linear

variable differential transformers (LVDTSs) attached to the bottom of the mould. In a previous
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study, the authors established a constitutive equation that can calculate the Youngs’ modulus
of the geomaterial (E;) based on the compactor's applied load and other known parameters
(Tophel et al. 2023) using

o (HoCO) ™ Priexp ( Cl(lzfﬂm) x (e eeév)) « (THR) £, 1~ ) .
G E, — (H,C )1jrzﬁ€nexp( 2p x (eg — eN)) % (HLR) E,(1—
s ol1 C;(1+ pm) 1+e

where v; and v, are the Poisson’s ratio of the geomaterial and the cylindrical compactor,
respectively, E is Young's modulus of the steel compactor, F is the load applied by the
compactor, whereas L is the length of the compactor, R is the radius of the compactor; C;, m,
a and £ are material model parameters. The void ratio ey at cycle, N is calculated from the
initial void ratio and height i.e., e, and H,, respectively, using the deformation measured

during compaction.
5.3.3 Constant peak stress cyclic 1-D test

The constant peak stress cyclic vibratory tests under 1-D conditions were conducted using a
modified Proctor mould with dimensions of 150 mm in diameter and 150 mm in height, as
shown in Figure 5-1(b). The setup allowed the study of the materials' properties at stresses
equivalent to those of a roller compactor and a frequency equivalent to vibratory rollers
(Tophel et al. 2022). In this test, the applied peak vertical stress was 1120 kPa, and the
vibration frequency was 18 Hz. The test was performed on a sandy material (named Material
2 in this chapter) at a different moisture content, which forms part of the subgrade layer in the

pavement cross-section. The modulus calculated in this test was the plastic modulus (Ep)

which is defined as the ratio of the vertical stress to the incremental plastic strain during the

constant peak stress cyclic 1-D test compaction.
5.3.4 Constant radial stiffness triaxial test

A Constant Radial Stiffness Triaxial (CRST) test (Figure 5-1(c)) was then carried out on silty
sand, a commonly used material for a pavement subbase and subgrade layer (hamed Material
3 in this chapter). To further validate the observations made for Material 3, a class 2 crushed
rock, commonly used for the base layer of a pavement (named Material 4 in this chapter) was
tested. In contrast to the traditional repeated load triaxial (RLT), the CRST concept provides
radial stiffness against which radial deformation could occur, thereby increasing the radial

stress based on the radial stiffness provided. This boundary condition is considered superior
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to the constant radial stress condition in RLT, better simulating the pavement material
behaviour under traffic loads and facilitating residual radial stress development, which is
commonly responsible for achieving shakedown (Yu 2007). In this instance, a modified
version of the Precision Unbound Material Analyser (PUMA), developed by The University
of Nottingham and Cooper Research Technology, is used (Li et al. 2017; Dutta and Kodikara
2022). The constant radial/lateral stiffness boundary condition was achieved using rubber
bands that offered variable lateral stress conditions in the field. A stainless-steel band equipped
with strain gauges was placed outside the rubber band to measure the lateral strain in the band
while the sample was loaded vertically. The circumferential strain in the band was used to
compute the lateral strain and lateral stress on the soil sample using equations provided by
Dutta and Kodikara (2022). The applied vertical stress for tests on Material 3 was 360 kPa
with a loading time of 0.1 sec and a rest time of 0.9 sec. The initial lateral stress (o;,;) and
stiffness (K;,;) used in these tests were approximately 10 kPa and 7 MPa respectively. In the
case of Material 4 testing, the applied vertical stress was 500 kPa, while the other parameters
were same as for Material 3.

Loading device
Compaction foot

Modified Proctor mould

Geomaterial

LVDT

Steel band with
strain gauge

Figure 5-1. Experimental setup pictures: (a) extra-large wheel tracker apparatus; (b)

constant peak stress cyclic 1-D test; and (c) constant radial stiffness triaxial test.
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Using the information of vertical and lateral stresses and strains, the resilient modulus of

geomaterial (M,) can be calculated as

(Ul,resilient)z + (Ul,resilient) (o-lat,resilient) -2 (O-lat,resilL'ent)2 (6)

- (O_l,resilient)( Ael,resilient) + (Ulut,resilient)( Ael,resilient) - Z(O-Zat,resilient)(A Elat,resilient) ’

M,

WhEre oy resitients Olat resitient re the resilient stresses in the vertical and lateral directions due

to the applied vertical stress, and A€y resitients A€iat resitient are the resilient strains in the
axial/vertical and lateral directions, respectively. The equation is similar to the one developed

in European standard EN 13286-7 (EN 2004).
5.3.5 Materials characterization

The grain size distribution of the four materials used in this chapter is shown in Figure 5-2

with Table 5-1 listing their geotechnical properties.
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Figure 5-2. Grain size distribution of the four materials used in this section.
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54 Results and discussion
5.4.1 Influence of stress history and initial void ratio for constant load test

The incremental plastic deformation (AH,) and incremental (average) plastic strain (Ae,)
variations of samples of Material 1 at a constant 4.13% gravimetric moisture content are
plotted against void ratio at cycle number N (ey), as shown in Figure 5-3(a) and (b),
respectively. It can be observed that both parameters depend not only on the current void ratio
(ey), but also on the initial void ratio (ey) of the sample. At a particular ey, both parameters
are lower for a higher initial void ratio. The small difference in the values of AH, and Ae,,

corresponds to the difference in initial height of the samples.

Table 5-1. Geotechnical properties of each material.

Material Material Material Material Material Test

1 2 3 4 Standard

(Standards

Specific Gravity (Gs) 2.66 2.61 2.70 2.78 Australia
2002)

Optimum Moisture (Standards

Content (OMC), 6.6 9.3 8.0 5.8 Australia
modified Proctor (%) 2003)

Maximum Dry

. (Standards

Density (MDD), 2.2 1.85 2.08 2.35 Australia
modified Proctor 2003)

(t/m?)

. (Standards

_Mean Particle 45 0.45 0.32 6.5 Australia
Diameter (Dso) (mm) 2009)

Percentage passing (Standards

the No. 200 sieve (%) 8.8 0.2 21 10 Agétorg;la

The non-unique relationships between AH, and Ae, with ey were also observed for
geomaterial’s Young’s modulus (E;), as shown in Figure 5-4, where the variation of E;; is
plotted against void ratio. Although all the samples had the same moisture content (w), E; was
found to be dependent on e, of the sample and not unique for the same ey or p, y . It should
be noted that past research (Li and Selig 1994; Tatsuoka et al. 2021) also reported a non-unique
relationship between density and modulus; however, the reason for this discrepancy is due to
the difference in S,.. Referring to Figure 5-4, at a constant void ratio (which implies that the S,
is constant as w is constant), the E; values were higher for samples compacted from a looser

initial state or higher initial void ratio.
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Figure 5-3. Variation of geomaterial properties with ey: (a) AH,, (b) A€, at 4.13%

moisture content for Material 1 in Extra-large wheel tracker test (constant load test).

5.4.2

test under Ko condition

Influence of stress history and initial void ratio for a constant peak stress cyclic

The constant stress test also showed a similar pattern observed in Figure 5-4. The modulus,

plotted against the void ratio for samples of Material 2 at different moisture contents, indicated

that a sample with a higher initial void ratio was stiffer than a sample with a lower initial void

ratio. The tests conducted on different moisture contents revealed the dependence of material

properties on moisture content, void ratio, and initial void ratio, as shown in Figure 5-5.
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Figure 5-4. Variation of geomaterial’s Young’s modulus E; with ey for all six samples
at 4.13% moisture content for Material 1 in Extra-large wheel tracker test (constant
load test).
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Figure 5-5. Variation of plastic modulus with the void ratio for (a) moisture content of

5% and (b) moisture content 7% for Material 2 in constant peak stress cyclic 1-D test.
5.4.3 Influence of stress history and initial void ratio for CRST test

The CRST test showed similar behaviour for resilient modulus to the other two test setups
(Figure 5-6(a)) for moisture content of 8% for Material 3. As stated before, the test setup
allowed measurement of the lateral stress development during repeated cyclic loading which

is shown in Figure 5-6(b).
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Figure 5-6. Variation of (a) resilient modulus with void ratio and (b) lateral stress with

void ratio at 8% moisture content for Material 3 in constant radial stiffness triaxial test.
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Considering the same void ratio (e = 0.336), it can be seen that the values of lateral stresses
are 42 kPa and 32 kPa for e, = 0.389 and e, = 0.354, respectively (from Figure 5-6(b)). This
indicates that the sample with a higher initial void ratio undergo greater cumulative plastic
deformation and therefore requires more cycles to reach a particular void ratio. This results in
higher residual lateral stress development, which increases mean stress for specimens with
higher eqy. This contributes to the higher resilient modulus value of 175 MPa compared to 70
MPa at the same void ratio/density of 0.336.
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Figure 5-7. Variation of (a) resilient modulus with void ratio and (b) lateral stress with
void ratio at 4.9% moisture content for Material 4 in constant radial stiffness triaxial
test.

For Material 4, tested at a moisture content of 4.9%, modulus and lateral stress behaviour are
shown in Figure 5-7. Similar to Material 3, the lateral stresses are higher for a sample having
a higher initial void ratio giving rise to a higher resilient modulus at one particular void ratio.
Considering void ratio, e = 0.201, the values of lateral stresses are 37 kPa and 13 kPa for e, =
0.235and e, = 0.204, respectively (from Figure 5-7(b)). The resilient modulus values are 240
MPa compared to 160 MPa for e, = 0.235 and e, = 0.204, respectively (from Figure 5-7(a)).

These observations can also be explained based on the theoretical model proposed by J. M.
Pestana and Whittle (1995), where the elastic bulk modulus (K) is a function of void ratio (e)

and mean effective stress (p") and as shown below:
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C

K = o (2) (2)° ™

p
p'=p+xs, (8)

where K, c are fitting parameters, p, is atmospheric pressure, p iS mean net stress, s is
suction, and y is the Bishop’s parameter (Bishop 1959) and which is considered equal to the
degree of saturation (S,.) (Schrefler 1984; Houlsby 1997; Borja 2006; Kuczmann and lvanyi
2008; Coussy 2011; Manzanal et al. 2011).

For a particular material having constant moisture and void ratio, the increase in p' is due to
the increase in lateral stress in the sample as S,. is the same. This increase in p' results in an

increase in bulk modulus (K).
55  Conclusions

Different plastic deformation and strain at the same void ratio lead to differing material
properties due to their differing initial states. This was demonstrated in this short
communication through three experiments testing four materials with different loading and
boundary conditions. The results showed that the initial state affected the material's modulus
and other properties due to different residual lateral stress built up during deformation. This
residual lateral stress changes the mean stress, affecting the material's modulus. In the field,
various spreading techniques result in different initial void ratio conditions. The modulus's
dependence on the material's initial state may contribute to the lack of accuracy in the
relationship between Intelligent Compaction (IC) variables and compaction density. This
highlights the need to consider the initial state of the material when establishing any

relationship between material parameters and a material's current state.
5.6 Summary

The importance of understanding the compaction process for civil engineering structures and
the challenges associated with modelling roller compaction, which is complicated by the
variable stress that affects material properties, has been highlighted. To address this issue, the
constant stress model developed in Chapter 4 was extended to a constant load model by

utilizing the geometrical relationship between the contact area and incremental plastic
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deformation. The effect of moisture content, plasticity, and initial void ratio on compaction
process and proposed simplified equations for dynamic parameters that vary with void ratio
and the number of cycles was also investigated. The developed model not only provides an
understanding of the material subjected to stresses equivalent to field compaction but also can
be used to determine unknown parameters, such as initial density during compaction, which
is discussed in Chapter 7 of the thesis. The model’s use in predicting initial density would also

allow to develop a better correlation with modulus and density.

80



Part 4: Instrumentation and Field Study

y

!

| Part 4: Instrumentation and Field Study

Chapter 6: Instrumentation used to measure
deformation

Chapter 7: Dcformation to density
calculation

y

)

81



Chapter 6 Instrumentation used to measure deformation

This is the first chapter of Part 4: Instrumentation and Field Study. The chapter focuses on
developing the methodology to measure deformation during compaction, which is divided into
several sections. The first section introduces the concept of measuring deformation during
compaction, followed by a discussion of factors that could impact the accuracy of those
measurements. The following section explains the steps taken to minimize measurement
errors. The instrumentation and methodology used in two experiments are then demonstrated,
with Experiment 1 being indoors and Experiment 2 being outdoors. The differences in

instrumentation between the two experiments are also discussed.
6.1  Conceptualization of deformation measurement technique during compaction

This study hypothesizes that deformation can be used to estimate density during compaction.
Measuring deformation in the field requires combining highly precise equipment and
advanced data analysis to reduce measurement errors (filtering the noise from the measured
data) as the field environment could be very dynamic. To measure deformation, two
displacement laser sensors are attached to the roller, one in front and one behind the front
drum. The area behind the drum has already been compacted, while the area in front has not

yet been compacted (Figure 6-1).

In an ideal case (see Figure 6-2), deformation can be calculated as representing the difference
between the first range D, (displacement ahead of the roller), the second range D,
(displacement behind the roller), and the initial distance of the sensor from the ground Dg, as

follows:
a. plastic deformation or deformation (Ay) = D, — Dg;
b. total deformation (Ay totq;) = Dr — Dg; and

c. elastic deformation (Ay eiastic) = Dr — Dp.

The total deformation (Ay ¢0rq:) 1S @ measure of sinkage of the roller into ground due to the
application of load, plastic deformation (Ay) is the difference between the surface elevation
difference after and before roller load. Elastic deformation (Ay ¢iqstic) Can be estimated by
subtracting Ay from Ay ¢, Which is the measure of how much soil has rebounded after the
roller has passed over it. For the purpose of calculating the density only plastic deformation

(Ay) is used here.
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-,
Roller moving direction

Uncompacted area

Figure 6-1. Schematic illustrating deformation pattern of geomaterial when a

compactor passes over loose soil.

In order to account for roller deviations from horizontal, caused by an incline/decline in the
surface and/or by bumps resulting in a horizontal rotation of the platform on which the distance
sensor system is mounted, a correction to the measured plastic deformation is necessary. This
correction involves measuring the inclination of the distance sensor system relative to the
geomaterial being measured (denoted as pitch; o) using an orientation unit (inertial
measurement unit (IMU) in this study). The measured pitch is then used to adjust the measured
deformation by using a trigonometric function that considers the mutual distance (Lg) between

the first and second distance sensors, as shown in Figure 6-2, such that

An= (D, — D,) cos(a) + Lg sin(a). 9)

The error in deformation measurement could be very large; for example, if the Ly is 1 metre

an inclination (a) of 1 degree changes the deformation measurement by around 17 mm.
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Figure 6-2. Deformation pattern of geomaterial when a compactor is passing over lose

soil while it is inclined at an angle a because of unlevel ground surface.

Due to the potential for the compactor to also experience a rocking motion and rotation around
an axis parallel to the movement direction of the platform, a roll correction is necessary to
accurately measure the deformation. The roll angle, denoted as 3, can be measured using the
same orientation unit that measures pitch (a). The roll correction involves applying a
trigonometric function to the measured roll angle () and adjusting the measured deformation
accordingly. The corrected deformation is determined by combining the inclination correction
and the roll correction such that

AN = (Dp — Dy) cos(a) cos(B) + Lgsin(a). (10)

The measured signal from all the sensors are pre-processed to remove electrical noise for
improving the measurement accuracy. This includes pre-processing the measured signals to

mitigate electrical noise from the distance sensor system and orientation sensor system:

a. singularity removal (including sudden shifts or abrupt changes in the signal) by
identifying points where the mean value is changing abruptly or above a

selected threshold, and replacing it with the mean of a plurality of selected
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neighbourhood points;
b. detrending to only show differences in values from the trend; and

c. frequency filtering (including band-pass filtering) by removing very low and

very high frequency noise from the signal.

) ( Laser signal (1 kHz) ) ( IMU signal (100 Hz) )

Acceleration signal (1 kHz)

|

Noise Noise Noise
removal removal removal
Double High pass L;I\:/err)a(a;s
integration filter(3Hz)
Hz)
Vibration Angle
correction correction
1 ]
v

Corrected
measurem
ent

Figure 6-3. Flowchart of the deformation correction using accelerometer and IMU.

In the field, the vibration of the vibratory compactor may introduce noise into the distance
data, affecting the accuracy of the deformation measurements. To address this issue, the sensor
data from the distance sensor system are pre-processed to correct for the vibrations/movement.
The displacement noise is calculated from an acceleration signal by double integrating the
acceleration noise, and the system is configured to remove the displacement noise from the
distance measurements. The correction chart is depicted in Figure 6-3. The displacement
sensor system (e.g., the laser systems) is unable to measure signals with frequency less than a
certain lower frequency value (dependent on the geomaterial type, for this study 0.1 Hz), and
the error due to the inclination was around a determined frequency (depending on the
geomaterial type, for this study it was found to be 3 Hz). These two frequencies (lower
frequency and the determined frequency) were determined experimentally for the geomaterial
type. Therefore, the system included a plurality of frequency filters (including bandwidth
filters) to separate the signals from the distance sensor system for undertaking a separate

correction of the motion (vibrations) and the orientation (inclination).
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The instrumentation and methodology were developed in stages. The first trial of the
instrumentation was conducted in an indoor setting (referred to as Experiment 1 hereafter).
Based on the results of this testing, improvements were made, and then an outdoor field
experiment was performed (referred to as Experiment 2 hereafter). As a result, the
instrumentation details differed for both experiments. The details of the instrumentation are

provided in the following sections.
6.2 Roller instrumentation

An overview of the roller instrumentation used for Experiment 1 is illustrated in Figure 6-4.
The complete instrumentation of the roller included two triangulation laser sensors, one
attached in front of the front drum (as the front drum was the vibrating one) and the other
attached to the rear of the front drum. To measure the inclination/rotation of the laser sensors,
an IMU was attached on the top of the front laser. Moreover, the drum and frame vibration
and the overall movement of the roller were monitored in three dimensions using two
accelerometers, attached to each of the drums. The geolocation of the roller was recorded using
a Universal Total Station (UTS).

+— UTS target

DAQ

DC Battery

Front IMU

o

Front Laser ———» :IL

Accelerometer Back Laser

Figure 6-4. Schematic of the instrumented roller for Experiment 1.
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Figure 6-5. Schematic diagram showing the instrumentation and data flow in
Experiment 1.

The accelerometers provided valuable information for detecting and monitoring the rigid body
motion of the roller. The data from all of the sensors were acquired via a 16-bit, 250-kHz data
acquisition (DAQ) system manufactured by National Instruments (NI) connected to a
Windows-based Dell Precision 5530 laptop PC. The PC was equipped with National
Instruments' Laboratory Virtual Instrument Engineering Workbench (LabVIEW), a visual
programming language environment. LabVIEW was used to acquire all the signals and
conduct real-time signal analysis. A schematic diagram of the instrumentation and data flow

for Experiment 1 is shown in Figure 6-5.

For Experiment 2, lasers sensors were installed such that there were three in front and three
behind the rear drum (as the rear drum was the vibrating one), evenly distributed along the
width of the roller; instead of one in the front and one at the back as in Experiment 1. This

helped reduce the deformation measurement error caused by the variability in material surface
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topography along the width of the roller. The laser sensors used in Experiment 2 were also
more precise than those used in Experiment 1 and utilized ethernet for data transmission.
Therefore, a switch was used instead of the DAQ in Experiment 1. The data collection platform
used for Experiment 2 was Python. It was also discovered that the vibration noise could be
removed equally well by taking the average of the signal over a period of time, rather than
using the accelerometer data. This decision was favoured by the fact that the accelerometer
data collection compromised the data collection from six laser sensors, as the PC had
limitations on its bit per second (bps) capacity. The IMU used in Experiment 2 also allowed
for inclination measurement with higher accuracy. The instruments utilized in this study were
pre-calibrated by the manufacturer. The outputs from these instruments, based on this pre-
calibration, were directly used in the study without any further calibration procedures. Details

of all instruments are provided in subsequent sections.
6.3 Laser systems details

In Experiment 1, two triangulation displacement laser line sensors were used. In the
triangulation principle, a beam of light is transmitted by the sensor to the object being
measured, with the reflected light striking the receiver line in the detector at a unique angle.
The distance to the object is calculated based on the angle of incidence. The laser used is a
pulsed red laser diode with a wavelength of 600 nm. Table 6-1 lists its precision and accuracy
when measuring in a vibrating environment, making it a suitable choice for this purpose. The
laser beam is classified as class 2, which ensures its safety. The beam characteristic of the laser
is illustrated in Figure 6-6.

Figure 6-6. Typical beam characteristics of the laser used for Experiment 1 (not drawn

to scale).
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Table 6-1 shows the two different types of laser sensors used for Experiment 1 and Experiment
2 and their descriptions. The major difference between the two systems is that the sensors in
Experiment 2 have a smaller measuring range (500 mm) than in Experiment 1 (900 mm). The

resolution and repeat accuracy of the sensors in Experiment 2 were better than in Experiment
1.

Table 6-1. Description of the laser sensors used for Experiments 1 and 2.

Laser Experiment 1 Experiment 2
Manufacturer OMRON Corporation OMRON Corporation
Model OM70-L1000.HV0700.VI  OM70-L0600.HV0350.EK
Sam?“':;ii:j::)e“y 2.5 kHz 2.0 kHz
Measuring Distance (Sd) 100-1000 mm 100-600 mm
Measuring Range (Mr) 900 mm 500 mm
Resolution 3-63 um 3-24 um
Repeat Accuracy 1-32 pm 1-9 um
Linearity error +0.19 % Mr 10.12 % Mr
Output circuit Analog and RS 485 Ethernet
Voltage(\s/lg)gl)y range +15to +28 +15to0 +28

Output signal

+4 to +20 mA /0 to +10

+4 to +20 mA /0 to +10

VDC VDC
Operating temperature -10 to 50 °C -10to 50 °C
Temperature error 0.065 % Sd/K 0.065 % Sd/K
Light source Pulsed red laser diode Pulsed red laser diode
Wavelength 660 nm 660 nm
Laser class 2 2
Protection class IP 67 IP 67
Dimensions 26x55%74 (mm) 26x55%74 (mm)
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6.4 Inertial Measurement Unit (IMU)

The IMU utilized in this study has six degrees of freedom, combining a triaxial acceleration
sensor and a triaxial gyroscope to provide acceleration, inclination, and rotation rate
measurements. The built-in fusion algorithm is specifically designed for inclination
measurement, and provides adequate compensation for external acceleration disturbances. The
ability of this device to provide reliable measurements, even in noisy environments, made it
suitable for use in this project. The IMU outputs eight elements: acceleration, angular rate,
rotational acceleration, gravity vector, linear acceleration, rotation angles, quaternion, and
temperature. Although the primary purpose of the IMU in this study was to use the rotation

angle data to correct the laser measurement, all other data elements were also recorded.

Data transfer from the IMU was via the integrated controller area network (CAN) SAE J1939
interface, as opposed to the analog interfaces used by the laser and accelerometer. Therefore,
a suitable CAN to USB adapter (PCAN-USB FD from PEAK-System) was used to send the
data to a Windows-based PC. The CAN interface allowed for recording of data from all
elements, including multiple sensors, using just two wires, which is not possible with analog
interfaces. The dynamic inclination measurement technology offers the capability to
simultaneously measure inclination, acceleration, and rotation rate in all three axes, even in
external acceleration. This feature made it suitable for applications that experience external
disturbances, such as vibrations, shocks, and movements. The adjustable ranges compensate
for external accelerations, while the adjustable thresholds enable the detection of measured
value overruns. This provides users with greater flexibility and control over the accuracy and

precision of the measurements

Table 6-2 shows the different IMUs used for Experiments 1 and 2 and their descriptions. The
major difference between the two systems is that the sensors in Experiment 2 had a higher
acceleration measuring range that provided better stability of inclination measurement during

the high vibration of the compactor.
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Table 6-2. Description of the IMUs used for Experiment 1 and Experiment 2.

IMU Experiment 1 Experiment 2
Manufacturer PEPPERL+FUCHS PEPPERL+FUCHS
IMUF99PL-SC3600-
Model IMU360D-F99-B20-V15
0KB20V1501
Sampling Frequency 800 Hz (100 Hz per 800 Hz (100 Hz per
(Maximum) element) element)

Rated capacity/ Measuring

range

Resolution

Output circuit

Voltage supply range
(VDC)
Output signal
(VDC)
Operating temperature

Temperature error

Protection class

Dimensions

acceleration: £2 g
inclination: 0 — 360 °
rotation rate: + 250 °/s
acceleration: 0.001 g
inclination: 0.01 °
rotation rate: 0.01 °/s
CAN bus with SAE J1939

protocol

5to +30

Not Applicable
+15to0 +85 °C
max. + 1.5°

IP 68/ IP 69K
37.5%45%65 (mm)

acceleration: + 4 g
inclination: 0 — 360 °
rotation rate: £ 250 °/s
acceleration: 0.001 g
inclination: 0.01 °
rotation rate: 0.01 °/s
CAN bus with SAE J1939

protocol

5to +30

Not Applicable

+151t0 +85 °C
max. + 1.5° at +15 to +85
°C
IP 68/ IP 69
37.5%45%65 (mm)
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6.5 Accelerometer

In addition to the lasers and IMU, the two most essential sensors used for this study, was an
accelerometer installed to track the rigid body movement and measure the vibration
transmitted from the drum to the sensors. During the trial, typical maximum drum acceleration
amplitudes observed during testing were + 8 g (gravitational force). The critical accelerometer
specifications and the measurement range included high sensitivity, high sampling frequency,
and low-temperature error. The Briel & Kjer type 4506-B-003 Miniature Triaxial
Piezoelectric Constant Current Line Drive (CCLD) Accelerometer with transducer electronic
data sheet (TEDS) was ideal (Table 6-3). To mount the accelerometers, thin polycarbonate
mounting clips were used. The accelerometers were connected to the DAQ with AO-0526
BNC (male) connectors, which are super low-noise cables and conditioned with a signal
conditioner PCB designed in-house and the circuit diagram is shown in Figure 6-7.

|
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Figure 6-7. Circuit diagram for PCB used for accelerometers.
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Table 6-3. Specifications of the accelerometer used in Experiment 1.

Instrument Accelerometer
Manufacturer Briel & Kjeer
Model 4506-B-003
Sampling Frequency (Maximum) 2 kHz
Rated capacity/ Measuring range +14¢
Sensitivity/Resolution 490 + 10% mV/g
Output circuit Analog
Voltagez \s/tg)(p:);y range +24 0 +30
Oupit o 100410
Temperature error X:0.15,Y, Z: 0.12 %/°C
Operating temperature (54 to +100 °C)
Dimensions, mm 17x17x17

6.6 Switch

An Advantech Ethernet switch (EKI-2728-BE) was utilized to create a network to
communicate between the laser sensors and PC in Experiment 2 (Table 6-4). The switch had
8 ports and compatibility with various Ethernet protocols, including Institute of Electrical and
Electronics Engineers (IEEE) 802.3, IEEE 802.3u, and IEEE 802.3ab. The switch is designed
for industrial settings and can function within temperatures ranging from -10°C to 60°C. It
includes multiple features that bolster network reliability and security, such as redundant
power inputs, port-based virtual local area network (VLAN), QoS, and storm control.
Additionally, the switch allows for various management options, such as simple network
management protocol (SNMP), web browser, and command line interface (CLI), rendering it

effortless to configure and monitor.
6.7 Geolocation system

Experiment 1 involved using a Universal Total Station (UTS) SPS930 from Trimble, which is
a surveying instrument that measures angles and distances to determine the location of points

in three-dimensional space. This high-precision total station model is specifically designed for
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challenging surveying applications, utilizing advanced tracking and measuring technology to

ensure accurate measurements.

Table 6-4. Switch specifications used for Experiment 2 to acquire signals from laser

sensors.
Instrument Switch
Manufacturer Advantech
Model EKI-2728/1
Connectors 8 x RJ 45

Transmission speed Up to 1000 Mbps

Voltage( \s/lg)cp:;y range 12 o +48
Operating temperature -10to 60 °C
Protection class IP 30
Dimensions 30 x 140 x 95 mm

Experiment 2 used a global positioning system (GPS) with a fixed real-time kinematic (RTK)
correction for precise positioning of the roller in the outdoor environment rather than the UTS.
GPS is a satellite-based navigation system that provides location information with high
accuracy. RTK is a GPS surveying technique that utilizes a fixed base station to correct errors

in the GPS signal, providing even higher accuracy.
6.8 Other steps to detect and prevent noise in the system

Several studies were conducted to measure the noise sources in the sensors and the DAQ. One
study involved acquiring data from all the sensors mounted on a stationary roller. The lasers,
IMU, and accelerometer data were collected with the stationary machine on the construction

site.

Upon analyzing the samples, it was found that the noise due to electronic interference under
regular operation was minimal, with a standard deviation of approximately 1 milli-g for

accelerometers. Three main factors contributed to this observation:

a) The use of shielded or coaxial cables to connect all the sensors, combined with the
use of differential inputs of the DAQ;
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b) Keeping the cable length as short as possible; and

c) Powering the sensors with two 12V Lithium-ion batteries connected in series to

provide 24V, rather trhan a single 12V battery.
6.9 Installation of all the sensors on the roller

All of the sensors were attached to the compactor using custom-made brackets because off-
the-shelf mounting solutions were not suitable for this application. The brackets were
fabricated by the technical team at the Department of Civil Engineering at Monash University.
Figure 6-8 shows the different brackets used for Experiments 1 and 2. As Experiment 2 used
three sensors instead of one, three attachments were made as represented. Custom-made

brackets allowed the sensors to be attached to any type or size compactor.

(@) (b)

Figure 6-8. Custom designed brackets to install the sensors to the compactor.
6.10 Summary

The instrumentation required to measure deformation accurately during compaction was
determined. Highly precise equipment and advanced data analysis were used to reduce
measurement errors, as the field environment is very dynamic. The deformation was measured
using laser sensors attached before and after the drums. Correction of the measured plastic
deformation was necessary to account for inclination of the roller caused by uneven surfaces,
and a roll correction was needed to address the potential for the compactor to experience
rocking motion and rotation around an axis parallel to the movement direction of the platform.
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Pre-processing signals were also required to remove electrical noise to improve measurement
accuracy. In addition, the distance sensor system data were pre-processed to correct for
vibrations/movement. The instrumentation and methodology were developed in stages, and
the first trial of the instrumentation conducted in an indoor setting, followed by an outdoor

field experiment.

The accurate measurement of deformation is necessary for the precise estimation of compacted
density. The next chapter presents the methodology and analytics developed to convert the
deformation measurements from the instrumentation described here to density, along with the

results from Experiments 1 and 2 mentioned here.
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Chapter 7 Deformation to density calculation

Chapter 7 of the thesis is the second chapter in Part 4: Instrumentation and Field Study. The
preceding chapter provided a detailed account of the instrumentation and methodology
employed to measure deformation during compaction and mitigate data noise; while this
chapter expands upon these foundations by presenting various approaches to estimating
density based on the obtained deformation data. Furthermore, it offers a concise summary of
the experimental procedure conducted during field testing. It also includes details regarding
the materials tested and the diverse rollers utilized. Specifically, the chapter explores different
methods for converting deformation measurements to density values. It explores the potential
of the previously developed model from earlier chapters to enhance density estimation
accuracy.

This chapter constitutes a pivotal element within the overarching focus of the thesis on
estimating density during compaction through advanced instrumentation. The chapter
augments the comprehensiveness of the methods employed and the results obtained during the
field study by encompassing information on estimating density from deformation data and

summarising the experimental procedure.
7.1 Methodology to correlate deformation to density

Once the deformation caused by the compactor has been measured, it can be utilized to
estimate density. The relationship between deformation and density depends on factors such
as material type, compactor type, material initial condition, and moisture content. The
influence of material type, different loading conditions, and moisture content has already been
investigated at a laboratory scale and presented in Chapters 4-6. Accordingly, in the field study
here, greater emphasis was placed on studying the effect of the material's initial condition
while keeping other factors constant. Two main methodologies were employed to establish a
correlation between deformation and density: (a) regression-based and (b) classification-

based.
7.1.1 Regression-based method

The regression-based method employs deformation measurements to establish a mathematical
relationship that can estimate the numerical value of density. To assess the accuracy of density

estimation, the performance of the models was evaluated against ground truth density
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measured using nuclear density gauge (NDG). This evaluation involved calculating the mean
absolute error (MAE) between the estimated or predicted density from the deformation

(pp) and measured density from NDG (p,,) as a benchmark according to

MAE = 12n—bel (12)

m

where N,, is the total number of measurements.
7.1.2 Classification-based method

For a geotechnical engineer, comparing measured and predicted densities with regard to MAE
does not provide sufficient information. Therefore, the assessment was also based on
classification accuracy, specifically determining whether the area was correctly classified as
compacted. Classification is a predictive modelling technique that assigns data into discrete
classes or categories based on input variables. In classification, the objective is to learn a
decision boundary that effectively separates the different classes. The prediction process for
this study was divided into four parts, as shown in Figure 7-1: true positive (when both the
predicted and measured densities are above MDD or target density) (marked as area (1) in
Figure 7-1), false negative (when the predicted density is below MDD while the measured
density is above MDD) (marked as area (2) in Figure 7-1), true negative (when both densities
are below MDD) (marked as area (3) in Figure 7-1), and false positive (when the predicted
density is above MDD while the measured density is below MDD) (marked as area (4) in
Figure 7-1). These four outcomes are collectively known as the confusion matrix of a model.
For this study, a false positive is hereafter assumed to be the critical error, as it shows that the
predicted density is more than the target density. However, in reality, the density is inadequate

and less than the target density.
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Figure 7-1. lllustration of classification of the compacted area in terms of predicted and
measured densities: (1) true positive; (2) false negative; (3) true negative; (4) false

positive.
7.1.3 1D compression equation

In the previous chapter, it was discussed that during one compaction pass, the plastic
deformation is estimated as A,. Summing all the plastic deformations from each pass, the total
plastic deformation (hereafter plastic deformation is referred to as deformation) (AHy) until

pass N can be calculated as

N
i=1

In 1D compaction, the material is assumed to deform solely in the vertical direction (see Figure
7-2), with no lateral spreading (thus maintaining a constant cross-sectional area). Recently,
Tophel et al. (2022) proposed that the compaction process of geomaterials could be
approximated as 1D compaction, a hypothesis that was subsequently validated by (Brzezinski
et al. 2022; Yin et al. 2023) using the photogrammetry method. The final density (p;) after

compaction can be calculated using
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Figure 7-2. 1D compression schematic showing the deformed state before and after

compaction.

AI:IiN _ prf Pi , (13)
where H; is the initial layer thickness, AHy, is the total deformation or compaction of the layer
(H; — Hy), Hy is the layer thickness after compaction, and p; is the initial layer density. The
input parameters for this model are: initial height (H;), initial density (p;), and deformation
(AHy). The output is the final density (ps). After the density is estimated, MAE and the
critical error based on the target density can be computed as the percentage of false positives.
The advantage of this model is that it does not require any calibration before it can be used
and does not depend on material or roller type. p; can be either measured or estimated, more

details are provided in section 7.5.
7.1.4 Machine learning models

As described in Chapter 3, machine learning classifier models, such as artificial neural
networks (ANNSs), Random Forest (RF), and Scholastic Gradient Descent (SGD) classifiers,
can be employed to capture non-linear relationships between input and output variables. For
this study, Scikit-Learn's SGD Classifiers were implemented in Python and other required
modules, including Pandas, Numpy, and Seaborn, to develop the model (Van Rossum and
Drake Jr 1995; McKinney 2010; Pedregosa et al. 2011; Harris et al. 2020). The entire dataset
was divided into 80% training data for model development and 20% test data for model
validation. The input parameters remained the same as the 1-D model (initial height, initial

density, and deformation), while the two-classification output values represented i) density
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more than MDD or ii) density less than MDD. These models require initial development and
training with the obtained data before being deployed for prediction. It is also important to
note that this method depends on the material and compactor types, meaning the model would
need to be retrained if any of these parameters changed.

7.2 Materials and Test Methods

As discussed in the preceding chapter, the instrumentation and hypothesis were examined in
two distinct field settings: (a) indoors (Experiment 1) and (b) outdoors (Experiment 2). Each
field setting offered its own advantages and limitations. The indoor field setting of Experiment
1 allowed for testing the instrumentation and demonstrating the proof of concept for the
hypothesis. It also enabled control over the environmental factors influencing data collection
during the tests. Conversely, the outdoor field setting of Experiment 2 provided an opportunity
to scale up the methodology to resemble the actual field conditions. This involved utilizing a
larger roller than the one used in Experiment 1, as illustrated in Table 7-1. Images of the rollers
can be found in Figure 7-3. Further details regarding the experimental setup are provided in

the subsequent sections.

(@) (b)
Figure 7-3. Rollers used for this study (a) 1.5t roller for Experiment 1; (b) 4t roller for

Experiment 2.

The material utilized for Experiment 1 was identified as sand with silty fines (referred to as
Material 1). In contrast, for Experiment 2, a Class 2 UGM classified by VicRoads was
employed (referred to as Material 2) which was selected as it was more representative of the
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base layer of a pavement. The geotechnical properties of these materials and additional details

can be found in Figure 7-4 and Table 7-2.

Table 7-1. Details about the rollers used for this study.

Experiment 1

Experiment 2

Manufacturer
Model

Type

Total length (mm)
Width (mm)
Roller drum width (mm)
Drum diameter (mm)

Speed range (km/h)
Theoretical gradeability

Static Mass (kg)
Static Drum Linear Load,
front/rear (kg/cm)
Vibration frequency (Hz)
Amplitude (mm)
Centrifugal force (kN)

HAMM
HD 10C VV
Articulated tandem roller
with two vibratory drums
2260
1056
1000
620
Oto11
30 % (vibration ON), 40 %
(vibration OFF)
1670

8.1/8.6

52
0.45
16

DYNAPAC
CC1300
Articulated tandem roller
with two vibratory drums
2725
1450
1300
802
Oto 10

37 %
3900
14.5/15.4

52
0.5
33

The test procedure for both experiments consisted of the following steps:

(a) Placing the material using a bobcat.

(b) Spreading the material manually using shovels and rakes and levelling it with a

bubble level.

(c) Compacting the material using the instrumented roller.

(d) Conducting in-situ tests for material density.
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Figure 7-4. Grain size distribution of the two materials used in this study.
The detailed test procedure involved the following steps:

[Step 1] The material was conditioned to an appropriate moisture content (8% w/w) for
site 1 and covered with a tarp for storage, ensuring consistent and ready-to-test

material.

[Step 2] The material was placed into the test setup using a bobcat and spread as evenly

as possible.

[Step 3] Shovels and rakes were used to spread the material further, followed by
levelling using a large spirit level to achieve a smooth finish.

[Step 4] Before compaction, measurements were taken, including density and moisture

measurements using NDG sampling.

[Step 5] The instrumentation system was checked, the signal was zeroed, and the data
acquisition (DAQ) system kept running.
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[Step 6] The instrumented roller was then used to compact the material, dividing the
entire width (approximately three times the width of the compactor) into three lanes
(A, B, and C) shown in Figure 7-5 (d).

[Step 7] The data from the instruments for each lane and pass were saved to the

computer in separate files.

[Step 8] Density data from sampling (sand cone test) were utilized to determine the end

of compaction. NDG tests were performed at the end of compaction for validation.

[Step 9] After compacting one layer, the material for the subsequent layer was placed,

and Steps 2 to 8 mentioned above were repeated.

Table 7-2. Geotechnical properties of each material.

Material Material

Geotechnical property 1 2 Standard
Value Value
- ) AS 1289.3.5.2 (Standards
Specific gravity (Gs) 2.70 2.78 ]
Australia 2002)
_ ) AS 1289.3.6.1 (Standards
Median diameter (Dso) mm 0.32 6.5 )
Australia 2009)
_ AS 1289.3.6.1 (Standards
Fines content (%0) 20 10 ]
Australia 2009)
MDD standard proctor AS 1289.5.1.1 (Standards
1.96 2.28 )
(Mg/m3) Australia 2017)
AS 1289.5.1.1 (Standards
OMC standard (%) 9.8 6.5 )
Australia 2017)
MDD modified Proctor AS 1289 5.2.1 (Standards
2.08 2.35 )
(Mg/m3) Australia 2003)
- AS 1289 5.2.1 (Standards
OMC modified Proctor (%0) 8 5.8 )
Australia 2003)
Optimum degree of 20 - AS 1289.5.1.1 (Standards
saturation (S,4p¢) (%0) Australia 2017)
- AS 1289.3.6.1 (Standards
USCS classification SM GW

Australia 2009)
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7.2.1 Setup for Experiment 1

The site chosen for the experiment was an indoor facility located within the premises of
Monash University. This indoor setting was selected to minimize errors arising from the
outdoor environment. To create the site, a large wooden box was fabricated, measuring 7.5 m
in length, 4 m in width, and 0.8 m in height. Additionally, an open area was included to

accommaodate the ramp for moving the roller into the box, as depicted in Figure 7-5.

The sides of the box were reinforced with bracing, as depicted in Figure 7-5(b) and (c), using
wooden angle brackets spaced at 125 mm intervals. This reinforcement was implemented to
ensure the safety of the box during the vibration caused by the roller during the compaction of
the soil layers inside the box. Moreover, the structural capacity of the box was designed with

a factor of safety exceeding 5 to enhance its stability further.
7.2.2 Results for Experiment 1

The test consisted of compacting five layers. To facilitate NDG measurements for validation,
each layer was divided into three lanes (Lanes A, B, and C). Each lane was subdivided into a
1 m2 grid area comprising five points (the edge points were not taken into consideration as the
roller was not placed entirely to the edge). Consequently, the total number of data points for
one layer amounted to 15. Therefore, the number of data points for the entire test
encompassing five layers was 75. The vertical plastic deformation values obtained from the

instrumentation are depicted in Figure 7-6.
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Figure 7-5. Images of the test site used for this study.

The comparison between the measured and predicted density is illustrated in Figure 7-7,
demonstrating that the predicted density yielded a remarkably low MAE of only 0.08 Mg/m®
when employing the 1-D compaction model. The classification-based differentiation is based
on the MDD, obtained from the standard compaction test, achieving a value greater than 1.96
Mg/m?3, approximately 94% of the MDD.
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Figure 7-7. Comparison of predicted dry density using the 1-D compaction assumption

from the instrumented roller and measured dry density from NDG for Experiment 1.
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Regarding the 1-D model utilized, the confusion matrix comprised 29 true positives, 19 true
negatives, 15 false positives, and 12 false negatives out of the 75 data points. This yielded a
critical error of only 20%, indicating that the 1-D model can predict the field behaviour with
reasonable accuracy, as also discussed in (Tophel et al. 2022). Nevertheless, the accuracy

could be enhanced by considering a non-linear relationship.

The number of data points for the SGD classifier in the confusion matrix was 29 true positives,
25 true negatives, 12 false positives, and 9 false negatives. The aforementioned critical error
for the SGD classifier amounts to only 16%, indicating a 20% improvement compared to the
1-D model. The confusion matrix for both methodologies is presented in Table 7-3. The heat
maps of the area are shown in Figure 7-8. The red area shows a compacted area density of less
than the target density, and the green area shows a compacted area density of more than the
target density.

Table 7-3. Comparison of the density predictions from the 1-D and ML models as a

confusion matrix.

Predicted Values Predicted Values

Positive | Negative Positive | Negative

Actual | True Actual | True

Values | False Values | False

(@) 1-D model (b) ML model

7.2.3 Setup for Experiment 2

As mentioned in Chapter 6, Experiment 1 employed two triangulation laser sensors. One
sensor was attached in front of the front drum, while the other was attached to the rear. In
contrast, Experiment 2 utilized a more advanced roller instrumentation system that
incorporated three triangulation laser sensors at the front and three at the back. This was done
to mitigate the error associated with using only one sensor before and after the roller, allowing
for accurate measurement of deformations over the width of the roller caused by a larger roller
and larger material particle size (Material 2), as depicted in Figure 7-9. The test area for
Experiment 2 measured 8 m in length, 5 m in width, and 0.8 m in depth, surpassing the
dimensions of Experiment 1. An image of the test area can be seen in Figure 7-10. The
procedure followed for this experiment was identical to that of Experiment 1, as was described

in the above section.
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Figure 7-8. Heatmaps of the area characterized using (a) NDG compaction; (b) 1D

compaction model; (c) SGD classifier model.

Figure 7-9. Three laser sensors are attached to the back of the roller.
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Figure 7-10. Test setup for Experiment 2.

7.2.4 Results for Experiment 2

The advantages of using multiple sensors are illustrated in Figure 7-11(a), where it can be
observed that using multiple sensors led to a reduction in standard deviation. Furthermore, the
standard deviation decreased with increasing passes as the surface became smoother.
However, because the mean deformation reduces, the variance increases with number of
cycles (Figure 7-11 (b)). Nevertheless, due to the use of multiple sensors, the variance also
reduced. The comparison between the measured and predicted density is illustrated in Figure
7-12, demonstrating that the predicted density yielded a remarkably low MAE of only 0.06
Mg/m® when employing the 1-D compaction model, being lower than that obtained in

Experiment 1 whereas, Figure 7-13 shows the heatmap.
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Figure 7-12. Comparison of predicted dry density using 1-D compaction assumption

from the instrumented roller and measured dry density from NDG for Experiment 2.
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Figure 7-13. Heatmaps of the area due to (a) NDG compaction; (b) 1D compaction

model; (c) SGD classifier model for Experiment 3.

Regarding the 1-D model utilized, out of the 18 data points, the confusion matrix comprised 9
true positives, 4 true negatives, 3 false positives, and 2 false negatives. This indicates a critical
error of only 16%, indicating again that the 1-D model can predict field behaviour with

reasonable accuracy.

The number of data points for the SGD classifier in the confusion matrix was 9 true positives,
6 true negatives, 3 false positives, and 0 false negatives. The aforementioned critical error for
the SGD classifier amounts to only 16%, indicating that both methods had the same error;
however, the SGD classifier could classify more true positives and negatives than the 1D

model.
7.3 Acceptance criteria based on statistics

Road building materials, whether natural or manufactured, are not perfectly uniform. This
means their physical properties can vary. Therefore, statistical form of specification is
provided to replace the traditional form of specification in which density requirements were
required to be not less than some nominated/specified value. Statistical form of specification
recognises that a proportion of works may have a density less than the specified value and still

the work can be considered satisfactory (Main Roads 2008).

In the statistical form of specification, a characteristics density (R,) is specified which is used
to decide if the work is satisfactory or not. It can be calculated based on the mean density (x),

standard deviation (s) and a multiplier (k) as:
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R.= (x—ks)> L, (14)

where L is the specification limit. The multiplier (k) can be calculated based on total number

of tests (n) carried out, producers’ risk () and proportion defective (p) as following:

3 k,—k
ko = k2 (15)

d+ ()

where k, and k,, is the standard normal variate corresponding to the producer’s risk («) and

proportion defective respectively. The values of a,p, and n are recommended by road
authorities. One such example is described from (Main Roads 2008) recommends number of
test per lot (n) as 6, a of 10% and p of 10% and 15% for freeways and highways respectively.
Using Equation 22 with the value, k is calculated as 0.72 and 0.5 for freeways and highways

respectively.

The value of k decides how stringent is the specification limit and higher the value of k, more
stringent is the specification. A parametric study was conducted to see the effect of number of
tests on proportion defective (p) as shown in Figure 7-14. It can be seen from the figure that
if we conduct more tests in a lot, the allowed proportion defective can be higher for both
freeways and highways. Therefore, this study even though has 16% false positive can be

accepted as it measures density of the entire compacted area.
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Figure 7-14. Parametric study on proportion defective (p) with number of tests (n) for

different values of multiplier (k).
7.4  Application of TGML to remove noise from the deformation measurement

The test plastic deformation AHy measured in the field contains noise because of uncertainties
involved with testing, measurement, equipment limitations, and human error. Therefore, the
raw value of the AHy was de-noised using the TGML3 technique developed in Chapter 4 to
smoothen the behaviour. After the deformation values were de-noised, the corrected
deformation data was used to estimate the density using either a 1-D or ML-based model. As
discussed in Chapter 4, in TGMLZ3, the artificial neural network (ANN) model is informed
about the noise using a restriction relationship/equation as an input to the training. The
restriction relationship/equation represents AHy as increasing monotonically; or in other
words, with an increase in total passes (N), AHy always increases, which can be written as
AHy ., — AHy > 0. The regular loss function of the ANN model was modified by adding a
denoising loss function (Lpy). The denoising loss function depends on a difference in the

predicted deformation as a pair (J), which was calculated as
Jv =AHy —AHy4y (16)

To enforce the restriction relationship/equation, any positive value of ] is defined as a noise
in the measurement, and thus Lpy was calculated as a non-zero occurrence of a Rectified

Linear Unit of the difference of the predicted deformation, ReLU(Jy), summed over all the
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cycles, then multiplied by a hyperparameter A,,, which was decided using trial and error such
that

N
N=1

The technique described above is demonstrated for Experiment 1 data as an example where
all the lanes' measured deformation patterns did not increase monotonically (see Figure 7-6).
TGML3 was used for deformation data to get the corrected deformation measurements. For
demonstration, Lane B deformation data is presented in Figure 7-15. Figure 7-15 (a) shows
the predictions of TGML3 when only 6 passes of data are collected, whereas Figure 7-15 (b)
shows the correction after 8 passes. This was done to demonstrate the recursive correction in
deformation data. As the data are collected, they will be retrained recursively (also known as
online training) to get better predictions.

After deformation correction, the data obtained in Experiment 3 were used to predict the
density using the 1D compaction model in Equation (13). It was found that the prediction
improved slightly with an improved MAE of 0.07 Mg/m?® compared to MAE 0f 0.08 Mg/m?

without correction.
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Figure 7-15. TGML3 predictions for Lane B deformation (a) after 6 passes; (b) after 8

passes.
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75 Use of constitutive model developed to estimate initial density

The 1D compaction model and SGD classifier model described above both require the input
of initial density (p;), measured using the NDG here. But when NDG tests cannot be carried
out before the compaction starts due to restrictions in entering the test site, two possible

methodologies can be followed.

1. Theinitial density is approximately determined by a lookup table for common materials
used for road construction. Such a lookup table can be generated by testing the material
in the laboratory by subjecting the materials to nominal stress conditions. In Chapter 5,
materials were placed and spread manually, and then a nominal load of 1 kN was
applied. It was found that even when trying to maintain the uniform condition, the initial
density or void ratio varied considerably, being from 0.38 to 0.6 (see Chapter 4, Fig. 7).
Therefore, the estimation of initial density using this method can be very erratic.

2. Estimate the initial density using a model such as that developed in Chapter 5, which
provides total plastic deformation (AHy) as a function of initial height (H;) and
compactor force/load (F) with model parameters (a, 3, C; and m) and number of

cycles/pass (N) as

B 1 [ 4F\™
AHy = H,C,(1+ ﬁm)ln(l T (ﬂ) N). (18)

Recalling from Chapters 4 and 5, the model parameters («, 8, and C;) were constant for a given
material at one moisture content, whereas m was found to be a linear function of the initial
void ratio (ey) or initial density. The model was trained with Lanes A and C data of Experiment
1 to evaluate the model parameters listed in Table 7-4. The model parameter m was also found
to be a linear variation of initial density similar to what was found in Chapters 5 and 6 and is
shown in Figure 7-16.

Table 7-4. Model Parameters for Lanes A and C.

Model parameter  Value

C, 0.010
a 0.83
i 0.16
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Figure 7-16. Variation of model parameter m with initial void ratio (eg).

The linear relationship between m and e, was used for Lane B to evaluate the value of
eq,which was then used to calculate the density instead of the initial density using the NDG.
Using this approach, it was found that density could be estimated with MAE of 0.1 Mg/m?.
This error was higher than the density evaluated using the NDG data; however, it removes the

requirement for NDG tests before compaction.
7.6 Application of this study to accurate estimation of density during compaction
7.6.1 W.ith test/correlation strips

The models' training can be carried out in a test strip/correlation strip before a large
compaction area is planned, using, for example, one roller width and around 10 m in length).
The correlation strips can also be used to develop the theoretical model and evaluate the model
parameters measured/determined experimentally using each material type and compactor in
the test strip/correlation strip, for example, one roller width and around 10 m in length. The
developed model can then be used to obtain a better density estimate; however, this method
would be expensive as it involves establishing a prior small-scale testing site. The overall
methodology is shown in Figure 7-17. In step 3, if the initial density using the NDG is not

possible, the methodology described above can approximate the initial density of the material.

117



Corrected
deformation value

Deformation
measurement

Density
estimation

*» Using » Using TGML3 » Using 1D
instrumentatio developed compaction
n proposed from test strip model or

* ML-based
classification
model
developed
from test strip

v o

Figure 7-17. Flow chart of the density estimation with test/correlation strip.
7.6.2 Without test/correlation strips

If the project is small, having a test strip could be costly; therefore, as mentioned in the
previous section, the density can be estimated using a recursive estimation of parameters as
the data are collected. This methodology would be cheaper but less accurate and more
computationally expensive as it involves online training. The overall flow chart is shown in
Figure 7-18. Similar to the test strip, in step 3, if the initial density using the NDG is not
possible, the methodology described above can approximate the initial density of the material.

Corrected

Deformation
measurement

Density

deformation value estimation

» Using » Using TGML3 » Using ID
instrumentatio developed compaction
n proposed using online model or

training + ML-based

classification
model
developed
using online
training

. / . /

Figure 7-18. Flow chart of the density estimation without test/correlation strip involving
online training.
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1.7 Summary

Building upon the previous chapter's discussion on measuring deformation during compaction
and reducing data noise, methods for estimating density based on obtained deformation data
were presented and an overview of the experimental procedure used in field testing was

provided, including details on materials and rollers.

The importance of estimating density during compaction using advanced instrumentation was
emphasized, with different approaches (1-D compaction and ML-based classification model)
to convert deformation measurements into density values were discussed. Moreover, the
potential of a previously developed model to enhance density estimation accuracy was
highlighted.

Two distinct field settings were described: indoor (Experiment 1) and outdoor (Experiment 2).
Experiment 1 focused on testing instrumentation and validating hypotheses. In contrast,
Experiment 2 aimed to replicate real field conditions on a larger scale with two different

materials.

In Experiment 1, a comparison between measured and predicted density demonstrated a low
mean absolute error (MAE) of 0.08 Mg/m?3 using the 1-D compaction model. A classification-
based approach was used to differentiate density based on the Modified Proctor Maximum
Dry Density (MDD), achieving a 64% accuracy with a simplified 1-D model. Minimizing false
positives in density prediction was emphasized, suggesting a non-linear relationship be
considered for improved accuracy. In Experiment 2, using multiple sensors yielded a better
accuracy even with material with larger particle size. Using the 1-D model, the accuracy, MAE
of 0.06 Mg/m® was observed. Instrumentation details and the benefits of using multiple sensors
during compaction were also discussed. Figure 7-1lillustrated the reduction in standard
deviation and variation achieved with multiple sensors and the smoothing effect from
increased passes.

Overall, the chapter demonstrated the ability to estimate density during compaction using
advanced instrumentation with various methodologies, models, and field-testing procedures.
To utilize the approach developed in this chapter, it is recommended to incorporate a test strip
or correlation strip (with a width equivalent to that of one roller and a length of approximately
10m) before compaction over a larger area to get higher accuracy. This test strip serves the

purpose of developing the model specific to the material conditions at the site. Once the model
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has been successfully developed and validated, it can be employed for the actual compaction
process. However, if implementation of the test strip is not possible, TGML3 correction or
recursive estimation of model parameters can be used to estimate density with a slight

reduction in accuracy.
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Chapter 8 Conclusions and future direction

The thesis contributed to the field of compaction by presenting a novel methodology for
estimating density during the compaction of geomaterials for a smoothed drum roller. The
research included theoretical development and practical validation through experimental
investigations. The proposed methodology utilizes non-contact distance sensors, orientation
sensors, and data processing algorithms to measure accurate geomaterial properties during
compaction. The system for estimating density during compaction includes the following

components:

e A distance sensor system for continuously measuring the surface deformation (Ay) of
a geomaterial portion during compaction without physical contact.

e A motion/orientation sensor system is mounted on the compactor to synchronously
measure the motions/orientations of the platform with the deformation measurements.

e An electronic processing system that incorporates the motion/orientation signals to
generate corrected deformation estimates.

e A geolocation unit which measures the geolocation (latitude and longitude) of the
geomaterial portion synchronously with the deformation measurements.

e An electronic processing system that receives deformation signals from the distance
sensor system to generate numerical estimates of the density based on the measured

deformation and a constitutive relationship or model.
8.1 Implications of this study

The accurate measurement of deformation during compaction allows the estimation of density
proximally or non-destructively and in real-time. The suitability of this methodology has been
demonstrated for road construction; however, this method can easily be extended to other
activities involving compaction, such as earthworks in landfills and foundations of buildings
and bridges. Other advantages and implications of this study include:

a. The density estimation covers the entire area to be assessed rather than at discrete

locations;

b. The approach can be used with either a vibratory or static roller as the measurement
system and the methodology has the capability to reduce the noise coming from

vibration;
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c. Alerts are provided the user about problematic or under-compacted areas based on the

geomaterial layer density, e.g., when used for QA/QC purposes.

d. The system indicates compliance with end-result specifications or method
specifications: the end-result specifications are relevant when the compaction takes
place until the material has achieved the required density or value of another
geomaterial layer property. If measurements of the geomaterial layer properties are not
possible because of very large size materials being present, the method specification
is relevant, which requires compaction until a selected compaction (deformation)
threshold is reached—the system and method described herein improves on previous
methods that rely on contractors visually checking whether the deformation has

reached a threshold value;

e. Indicates compliance with performance-based specifications: the performance-based
specification necessitates density as a critical parameter, and therefore, this study has
the potential to transform current design practice and thus make present intelligent

compaction 'truly" intelligent.

f. Indicates compliance during ‘proof rolling’, which is carried out in some parts of the
world after the end of compaction to check if the material has been compacted
sufficiently: proof rolling involves loading the material manually using a water truck
or a suitable vehicle and checking the deformation visually. The system and method

described herein may improve on such methods.

In addition to the advantages above, the deformation measurement system can also be used to
estimate other geomaterial layer properties (layer thickness, stiffness, modulus, and energy

imparted to geomaterial).
8.1.1 Layer thickness measurement

The layer thickness information after a particular pass N (Hy), can be estimated using initial

layer thickness (H;) and a total deformation value until pass N (AHy) as

8.1.2 Stiffness measurement

Different deformations measured during compaction can be used to estimate the stiffness

during compaction as illustrated in Figure 6-1. Two types of stiffness values (K, ) — secant
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stiffness value (K secant) and elastic stiffness value (Ky eqseic) — Of the material at a
particular pass N can be calculated with the information of the applied force (F) due to the
compactor (which includes static and vibratory load), and either the total (Ay ¢o¢q;) OF €lastic

(An erastic) deformation during pass N according to:

F
KN secant = A K (20)
N,tota
F
KN,elastic = T (21)
N,elastic

8.1.3 Modulus measurement

To calculate/generate/estimate/measure the modulus values, e.g., the two moduli of the
material at a particular pass N (My) — secant modulus value (My secqne) OF elastic modulus
value (My ¢1qstic) — Can be calculated using stress applied by the compactor ( o) and the

model developed in Chapter 4 from the total and elastic deformation during pass N (Ay totar

AN,elastic ) as

0z

My secant = Y 22)
(—HN )

0z
MN,elastic =

AN,elastic . (23)
a, )

8.1.4 Total energy imparted by a vibratory roller to the ground

The total energy imparted to the ground (E;,4;) due to a roller, can be represented as a sum of

three terms: rotational energy (E;), static energy (E,), and vibrational energy (E5) as

Etotar = E1 + E; + E5. (24)
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The free body diagram of a drum in contact with the ground is shown in Figure 8-1, with the

roller movement details shown in Figure 8-2.

w

%erewz cos(wt)

Figure 8-1. Simplified free body diagram for soil-drum interaction (modified after
(Anderegg and Kaufmann 2004)).
The terms shown in the figures are defined as:
a. Fs =soil-drum interaction force (N);
b. mg = drum mass (kg);
c. my = frame mass (kg);
d. m = total mass (m, + mg) (Kg);
e. w = 2xmf =circular vibration frequency (rad/s);
f. f =frequency of excitation (Hz);
g. z =displacement of drum (m);
h. Z = acceleration of drum (m/s?);
i. m,r, = eccentric moment of unbalanced mass (kg-m);
j. t=time (s);

k. g = gravitational acceleration (9.81 m/s?);
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I. V¥ =linear velocity (m/s);
m. Al = travel width (m);

n. r=radius of the drum (m);
0. I =moment of inertia%mr2 (kg-m?); and

p. Ay = change in layer thickness (deformation).

> h = Layer thickness

Figure 8-2. Roller movement details.

The energy contributions rotational energy (E;), static energy (E,), and vibrational energy

(E5) is written as:

(25)

(26)

(27)
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8.2 Conclusions

Density, a gravimetric parameter, cannot be measured without taking a sample; hence, most
tests are intrusive. Moreover, the commonly performed NDG test emits harmful rays, and so
appropriate certification is needed to execute such a test. Sampling and performing the test is
time-consuming and thus seen as a drawback. Therefore, the need for a proximal density
estimation methodology in the field arises. The method would allow the contractor or the field

practitioner to asses compaction quality in real-time.

The soil density measurement involves collecting a physical sample and then obtaining the
value by measuring the mass and volume collected from the field. Density measurement tests
take time and often hinders the contractor who wants to compact another layer of soil as soon
as possible, because delaying means paying extra money for the equipment and labour. This
drawback has led to the development of other QA criteria for estimating the earthwork quality;
one of them is modulus-based QA. Modulus-based QA is quicker than density measurement
and is thus advocated to be superior to density-based QA. The modulus, considered to have a
unique and direct correlation with density, is considered to replace the density measurement;
however, it has been found that the correlation between density and modulus is not unique,
depending also on the water content of the sample.

This study proposed a methodology where the density can be measured in real-time by using
surface deformation measurements during compaction and then correlating it to material
density. This study was a proof of concept for the proposed methodology. The results showed
that measuring the density with high accuracy is possible. Two models, 1-D and ML, were
evaluated to estimate the density from measured deformation. It is shown that the nonlinear
ML model was superior to the 1-D model by 20%; however, the 1-D model also yielded a
satisfactory result. The error in density estimation could be attributed to the limitation of the
sensor’s accuracy and measurement error from NDG. In future, the accuracy can be improved

by using advanced sensors, more sophisticated analytics and validation through field trials.
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8.3 Future direction

Based on the research in this thesis, several potential future directions could be pursued:

a. Advanced Sensor Technology: Further advancements in sensor technology for distance

measurement could enhance the accuracy and capabilities of the proposed

methodology. Exploring new sensor designs, improved measurement techniques, and

higher precision sensors with measuring the small deformation during the end of

compaction at faster rate could lead to more accurate density estimations during

compaction.

b. Field Trials and Validation: Conducting extensive field trials to validate the proposed

methodology in different real-world construction scenarios would be beneficial. This

would involve testing the system under various soil conditions, compaction equipment,

and construction practices to ensure its effectiveness and reliability.

c. Expansion to Other Geomaterial Properties: Building upon the success of estimating

density, the methodology could be extended to estimate other important geomaterial

properties. For example, investigating the correlation between deformation

measurements and parameters such as shear strength, permeability, or moisture content

could provide valuable insights for construction and quality control.

d. Integration with Intelligent Compaction: Intelligent compaction techniques involve

using advanced technologies to optimize the compaction process. Integrating the

proposed methodology with intelligent compaction systems could enhance their

capabilities and provide real-time feedback on compaction quality. The data acquired

from field trials, there's potential to delve deeper into the realm of machine learning to

enhance the understanding of Intelligent Compaction (IC). Leveraging this rich dataset,

exploration into machine learning models that juxtapose parameters like ICMV against

deformation measurements is feasible. Such an approach might bridge the uncertainties

associated with traditional IC density estimations. Although this avenue wasn't covered

in the current scope of the thesis, it signifies a promising direction for future research.

Subsequent investigations could focus on developing and validating these machine

learning models, potentially offering a more refined and accurate IC methodology.

e. Development of Standard Guidelines: Collaborating with industry organizations,

regulatory bodies, and researchers to standard guidelines should be developed for

implementing the proposed methodology. Establishing standardized protocols,

calibration procedures, and acceptance criteria would ensure consistent and reliable
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application of the methodology in practice.

f. Cost-Effectiveness Analysis: Conducting a comprehensive cost-effectiveness analysis
of the proposed methodology compared to traditional density measurement methods
would be useful. Evaluating the potential savings in time, resources, and labour costs
could provide a strong economic justification for adopting the new approach.

g. Optimization Algorithms: Exploring advanced data processing algorithms and machine
learning techniques could improve the accuracy and efficiency of density estimation.
Developing algorithms that handle complex soil behaviours and variations would
enhance the methodology's robustness and applicability.

h. Integration with Construction Management Systems: Integrating the proposed
methodology with construction management systems and software could streamline
data collection, analysis, and reporting processes. This integration would facilitate
seamless communication and decision-making during compaction operations.

i. Collaboration and Knowledge Sharing: Encouraging collaboration among researchers,
practitioners, and industry stakeholders would foster knowledge sharing and exchange
of best practices. This could lead to further advancements in compaction techniques
and the broader field of geotechnical engineering.

By pursuing these future directions, the proposed methodology would continue to evolve,
leading to improved compaction practices, enhanced quality control, and more efficient

construction processes in geotechnical engineering.
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