The P-band Radiometer Inferred Soil Moisture Experiment 2019

WORKPLAN

Xiaoling Wu, Nan Ye, Jeff Walker, In-Young Yeo, Thomas Jackson, Yann Kerr, Edward Kim, and Andrew McGrath

September-October 2019
CONTENTS

1. OVERVIEW AND OBJECTIVES ... 1
 1.1 OVERVIEW ... 1
 1.2 OBJECTIVES .. 2
 1.3 GENERAL APPROACH .. 3

2. AIRBORNE AND GROUND-BASED OBSERVING SYSTEMS 5
 2.1 AIRCRAFT ... 5
 2.2 PASSIVE MICROWAVE SENSORS .. 6
 2.3 OPTICAL SENSORS ... 8

3. STUDY AREA ... 10
 3.1 MURRUMBIDGEE ... 10
 3.2 YANDANG REGION DESCRIPTION .. 11
 3.3 SOIL MOISTURE NETWORK DESCRIPTION 12
 OzNet network .. 12
 SMAPEX network .. 14

4. AIRBORNE MONITORING ... 17
 4.1 FLIGHT LINE RATIONALE ... 17
 Flight type 1: Soil Moisture Retrieval Flight (SM) 17
 Flight type 2: Downscaling Flight (DS) .. 19
 Flight type 3: Multi-angular Flight (MA) 20
 4.2 CALIBRATION .. 21
 4.3 FLIGHT SCHEDULE .. 22

5. GROUND MONITORING ... 24
 5.1 SUPPLEMENTARY MONITORING STATIONS 24
 5.2 INTENSIVE SOIL MOISTURE SAMPLING 26
 5.3 VEGETATION SAMPLING ... 28
 5.4 ROUGHNESS SAMPLING ... 29
 5.5 SUPPORTING DATA .. 30
 Land cover classification .. 31
 Canopy height .. 32
 Dew ... 32
 Gravimetric soil samples .. 32
 Soil textural properties ... 33

6. CORE GROUND SAMPLING PROTOCOLS .. 34
 6.1 GENERAL GUIDANCE ... 35
 6.2 SOIL MOISTURE SAMPLING ... 36
 Field equipment .. 38
 Hydraphobe Data Acquisition System (HDAS) 39
6.3 Vegetation sampling
Surface reflectance observations ... 41
Leaf area index observations ... 42
Vegetation destructive samples .. 43
Laboratory protocol for biomass and vegetation water content determination 44
6.4 Soil gravimetric measurements .. 45
6.5 Surface roughness measurements ... 47
6.6 Data archiving procedures
Downloading and archiving HDAS data .. 50
Archiving soil roughness data .. 50
7. Logistics... 52
7.1 Teams ... 52
7.2 Operation base .. 53
7.3 Accommodation ... 53
7.4 Meals .. 55
7.5 Internet ... 55
7.6 Daily activities
On soil moisture sampling days ... 55
On vegetation and roughness sampling days ... 55
7.7 Training sessions ... 57
7.8 Farm access and mobility .. 57
7.9 Communication ... 57
7.10 Safety... 57
7.11 Travel logistics ... 57
8. Contacts... 63
8.1 Primary contacts for PRISM .. 63
8.2 Participants .. 63
8.3 Emergency .. 63
8.4 Farmers .. 64
8.5 Accommodation and logistics .. 64
References .. 66
Appendix A. Equipment List ... 67
Appendix B. Operating the HDAS .. 69
Appendix C. Operating the Cropscan MSR16R ... 71
Set up .. 71
Configure MSR .. 71
Calibration ... 71
Memory card usage ... 71
Taking readings in the field .. 72
Appendix D. Operating the LAI-2000 ... 77
Clear the memory of the logger ... 77
General items .. 77
To begin ... 77
Downloading LAI-2000 files to a PC using HyperTerminal 77
| APPENDIX E. | TEAM TASKS SHEET | .. | 82 |
| APPENDIX F. | SAMPLING FORMS | ... | 83 |
| APPENDIX G. | SAMPLING AREAS MAPS AND DIRECTIONS | ... | 88 |
| | Focus area YA4 – approx. driving time (30min) | ... | 88 |
| | Focus area YA7 – approx. driving time (30min) | ... | 88 |
| | Focus area YE – approx. driving time (45min) | ... | 88 |
| APPENDIX H. | PRISM FLYER | ... | 97 |
| APPENDIX I. | SAFETY | ... | 99 |
| APPENDIX J. | HOW TO PREVENT SNAKE BITES GUIDELINES | ... | 101 |
| APPENDIX K. | OFF-CAMPUS ACTIVITIES INFORMATION AND CONSENT FORM | .. | 103 |
| APPENDIX L. | OFF-CAMPUS ACTIVITIES VOLUNTEERS INFORMATION SHEET | .. | 104 |
1. OVERVIEW AND OBJECTIVES

The P-band Radiometer Inferred Soil Moisture project (PRISM) comprises a series of tower and airborne campaigns across Victoria and New South Wales, commencing from 2017. The overall objective of PRISM is to develop algorithms and techniques to demonstrate that the top ~15cm layer of soil moisture can be remotely sensed using a new state-of-art P-band radiometer capability. Timely soil moisture information on this near-surface layer is critical to improve water management for food production in the face of extreme climate variability. Current satellite technologies are limited to the top ~5cm layer of soil using an L-band radiometer.

The PRISM airborne campaigns involve collecting airborne P-band data together with L-band and/or K-band data, with concurrent ground observations of soil moisture and ancillary data for a diverse range of conditions. The campaigns will be conducted in the Yanco area, with the aims to

i) develop and evaluate the models for soil moisture retrievals from P- (and L-band) radiometer observations, and

ii) develop a downscaling algorithm by combining L- and K-band radiometer observations.

The first campaign (PRISM-1) will take place in the austral spring from 28th September–18th October 2019, while the second campaign (PRISM-2) will take place in the austral autumn during May 2020. Based on historical data records, it is expected that these are the best possibility to experience a range of soil moisture and vegetation biomass conditions during three-week long experiments.

The PRISM campaigns have been made possible through infrastructure (LE0453434, LE150100047) and research (DP170102373) funding from the Australian Research Council. Initial setup and maintenance of the study catchment were funded by research grants (DP0343778, DP0557543, DP140100572 and DP0879212, and DP170102373) from the Australian Research Council, and the CRC for Catchment Hydrology. PRISM also relies upon the collaboration of interested scientists from throughout Australia and around the world.

1.1 Overview

Economic, social and environmental planning for a water-limited future requires a capacity to provide information on soil moisture content in a way that is useful for such applications. Of particular importance is meeting the world’s growing demand for food production, which is limited primarily by the soil moisture available for germination and growth of crops and pasture. Timely soil moisture status and forecasts are therefore critical for (i) grain growers to make informed decisions on what and when to plant based on likely germination rates and crop yield, (ii) graziers to be proactive in their management of stocking rates based on likely pasture growth, and (iii) dairy and other high water use agriculture to undertake more efficient irrigation scheduling practices. With agriculture being by far the largest water user in Australia, even a moderate water saving of 10% in that sector would lead to a water saving equivalent to one-third of the total consumptive use by Australian capital cities. Moreover, soil moisture information is essential to providing information on drought severity and extent to support relief claims for drought exceptional circumstances, and to predict likely flow-on effects in food availability. Soil moisture is also an important boundary condition in weather and climate prediction, providing important information on both short and
long-term rainfall and heat-waves. Furthermore, monitoring of soil moisture data will afford a greater understanding of the water resource impacts from global climate change and variability.

Over the past three decades there have been numerous ground-, air- and space-based near-surface soil moisture remote sensing studies using visible, thermal-infrared (surface temperature) and microwave (passive and active) electromagnetic radiation. Of these, L-band microwave has proven to be the most promising approach due to its all-weather capability and direct relationship with soil moisture through the soil dielectric constant, and due to it being in a protected Earth observation band. However, it suffers from being a low-resolution measurement, which has led to research on enhancement of spatial resolution by downscaling the passive microwave measurements at L-band. Moreover, another current fundamental limitation is that L-band remote sensing technology can only provide moisture information on the top approximately 5 cm layer of soil at most, being one-tenth to one-quarter of the wavelength (21 cm at L-band; 1.4 GHz) using the current soil moisture dedicated missions of NASA and ESA. Consequently, this project will demonstrate a new state-of-the-art satellite concept that will provide soil moisture data for the top 15 cm layer (rather than 5 cm) of soil at high spatial resolution, by combining P-band (40 cm; 750 MHz). Moreover, it will demonstrate the potential for downscaling the L-band radiometer measurements using K-band (Ka: 0.08 cm, 36.5 GHz).

Not only would P-band provide soil moisture information on a soil layer thickness that more closely relates to that affecting crop and pasture growth, but it is expected to produce greater spatial coverage with improved accuracy to that from L-band. This is because P-band should be less affected by surface roughness conditions and have a reduced attenuation by the overlying vegetation. The PRISM project will demonstrate the expected improvements in applications, by contrasting results from the use of L- and P-band constraint in model simulations, as well as evaluating the downscaling algorithm from the combination of L- and K-band radiometers. Therefore, this project seeks to undertake a complete end-to-end evaluation of P-/L-/K-band radiometer soil moisture remote sensing readiness for the next-generation soil moisture satellite missions. It also represents Australia’s commitment to Earth observation and a realisation that we cannot rely on others to determine the future of such an important observing capability for us.

The PRISM field campaigns stem from the availability of a dedicated airborne remote sensing capability, which allows us to have a sensor combination on a single aircraft, that provides high resolution multi-frequency passive microwave remote sensing capabilities at P-/L- and K-band. The facility includes the Polarimetric P-band Multi-beam Radiometer (PPMR), Polarimetric L-band Multi-beam Radiometer (PLMR) and the Polarimetric K-band Scanning Radiometer (PKSR).

1.2 Objectives

The overall objective of this project is to establish and evaluate a new national capability for passive microwave remote sensing in environmental research that will provide unprecedented information on soil moisture, surface temperature, and vegetation, and allow for a new satellite concept to be demonstrated. Specifically, by combining different radiometers, data can be collected at P-, L- and K-bands, with increasing spatial resolutions accordingly for the same flying height. Apart from the airborne observations, simultaneous ground observations of soil moisture and ancillary data will be conducted for soil moisture retrieval.
The PRISM data sets will provide multi-temporal data to:

- Evaluate soil moisture retrieval at 100m resolution using PPMR brightness temperature observations.
- Evaluate soil moisture retrieval at 100m resolution using combined PPMR/PLMR brightness temperature observations.
- Evaluate downscaled brightness temperature from PLMR and PKSR observations.
- Determine the relationship between looking angles and soil moisture retrieval from PPMR/PLMR brightness temperature observations individually and collectively.

1.3 General approach

PRISM comprises a series of tower (2017-2020) and airborne campaigns (2017-2018) conducted in Cora Lynn Victoria, and will additionally include two extensive experiments in the Yanco study area within the Murrumbidgee catchment (see Figure 1-1) in south-eastern Australia in 2019-2020. The first campaign in Yanco for this project will take place in the austral spring in September-October 2019. The time was selected based on historical surface conditions to maximise the chance of capturing a drying down period of soil moisture together with increased vegetation biomass through the main growing season.

All flights will be operated out of Narrandera Airport, with the ground team undertaking daily activities at the ground sampling areas shown in Figure 1-2. The operations base is the Yanco Agricultural Institute, providing both lodging and laboratory support.

![Figure 1-1. Location of the PRISM study area within the Murrumbidgee catchment.](image-url)
Data collected during PRISM will mainly consist of:

- airborne P-/L-/K-band passive microwave observations, together with ancillary optical cameras;
- continuous near-surface (top 5 cm) soil moisture and soil temperature monitoring at 35 permanent stations across the study area. Of these stations, 11 will also provide profile (0-90 cm) soil moisture and soil temperature data;
- additional intensive measurements of near-surface (top 5 cm) soil moisture spatial variation, vegetation biomass, water content and reflectance, and surface roughness across three approximately 3 km × 3 km focus farms.

Figure 1-2. Overview of the PRISM ground sampling areas. The map shows the study area, ground sampling focus farms, land use and soil moisture monitoring sites across the study area.
2. AIRBORNE AND GROUND-BASED OBSERVING SYSTEMS

During PRISM, airborne measurements will be made using a small single engine aircraft. The aircraft (see Figure 2-1) will include, in the nominal configuration, the PPMR or PLMR and PKSR radiometers, and thermal infrared and multi-spectral sensing instruments (see Figure 2-2). This infrastructure will allow three different flight types including: i) soil moisture retrieval flight using P- or L-band radiometer; ii) downscaling flight using L- and Ka-band radiometers; and iii) multi-angular flight using P- or L-band radiometer.

2.1 Aircraft

The aircraft can carry a typical science payload of up to 250kg (120kg for maximum range) with cruising speed of 150-270 km/h and range of 9 hrs with reserve (5hrs for maximum payload). The aircraft ceiling is 3000 m or up to 6000 m with breathing oxygen equipment, under day/night VFR or IFR conditions. The aircraft can easily accommodate two crew; pilot/scientist plus scientist.

Aircraft instruments are typically installed in an underbelly pod or in the wingtips of this aircraft. Aircraft navigation for science is undertaken using a GPS driven 3-axis autopilot together with a cockpit computer display that shows aircraft position relative to planned flight lines using the OziExplorer software. The aircraft also has an OXTS (Oxford Technical Solutions) Inertial plus GPS system (two along-track antennae on the fuselage) for position (georeferencing) and attitude (pitch, roll and heading) interpretation of the data. When combined with measurements from a base

Figure 2-1. Experimental aircraft showing a wingtip installation in the left inset, and the cockpit with cockpit computer display in the right inset.
station, the RT3003 can give a positional accuracy of 2 cm, roll and pitch accuracy of 0.03° and heading accuracy of 0.1°.

2.2 Passive microwave sensors

L-band: Polarimetric L-Band Multibeam Radiometer (PLMR)

The PLMR (see Figure 2-3) measures both V and H polarisations using a single receiver with polarisation switch at incidence angles ±7°, ±21.5° and ±38.5° in either across track (push broom) or along track configurations. In the normal push broom configuration the 3dB beam width is 17° along

Figure 2-2. View of PPMR, PLMR, PKSR, the multispectral unit (12 multi-spectral radiometers in the blue box and 6 TIRs in the red box), and visible cameras including Canon EOS-1DS Mark 3, video camera and FLIR A65 thermal infrared camera.

Figure 2-3. View of PLMR with the cover off.
track and 14° across track resulting in an overall 90° across track field of view. The instrument has a centre frequency of 1.413GHz and bandwidth of 24MHz, with specified NEDT and accuracy better than 1K for an integration time of 0.5s, and 1K repeatability over 4 hours. It weighs 46kg and has a size of 91.5 cm × 91.5 cm × 17.25 cm. Calibrations will be performed before, during and after each flight. The before and after flight calibrations are achieved by removing PLMR from the aircraft and making brightness temperature measurements of a calibration target and the sky. The in-flight calibration is accomplished by measuring the brightness temperature of a water body (Lake Wyangan).

P-band: Polarimetric P-band Multibeam Radiometer (PPMR)

PPMR measures brightness temperature at H and V polarisations (see Figure 2-4). It has a frequency band of 742-752MHz and is composed of a 4x4 array of dual polarized microstrip patches, with incidence angles of ±15° and ±45°. The nominal beam width is 30°. As for PLMR calibrations will be performed before, during and after each flight. The before and after flight calibration is achieved by
removing PPMR from the aircraft and making brightness temperature measurements of a calibration target and the sky. The in-flight calibration is accomplished by measuring the brightness temperature of a water body (Lake Wyangan).

K-band: Polariometric K-band Scanning Radiometer (PKSR)

The operating frequency of PKSR can be switched between Ku (18.7 GHz center, 800 MHz bandwidth) and Ka-band (36.5 center, 1.8 GHz bandwidth), see Figure 2-5. In this study only Ka-band will be used. This radiometer measures brightness temperature at both V and H polarisations. This horn-shape radiometer can scan from 0° to 360° with a minimum scan step angle of 0.36°. The maximum scan speed limit is 120°/sec. The PKSR antennas are made up of a scalar feed horn at Ka and Ku band and a shared 90° metal mirror. The scalar feed horns were standard off the shelf components with 22.5° and 23.5° half power beamwidths at Ka and Ku-band respectively. The antenna parameters are tabulated below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ka</th>
<th>Ku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror Diameter</td>
<td>8.5” (216 mm)</td>
<td></td>
</tr>
<tr>
<td>Feed 3dB Beam-Width (deg.)</td>
<td>22.5</td>
<td>23.5</td>
</tr>
<tr>
<td>Mirror Edge Taper (dB)</td>
<td>16.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Feed Beam-Width @ Mirror Edge</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Feed-Mirror Illumination Efficiency (%)</td>
<td>96.4</td>
<td>94.6</td>
</tr>
<tr>
<td>Radiometer 3 dB Beam-Width (deg.)</td>
<td>3.9</td>
<td>7.2</td>
</tr>
<tr>
<td>Radiometer 99% BE Beam-Width (deg.)</td>
<td>10.5</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Warm calibration of PKSR will be performed before and after each flight by making brightness temperature measurements of a calibration target. A long warm and sky calibration will be conducted before and after this campaign. Water calibration will be accomplished by measuring the brightness temperature of a water body (Lake Wyangan) during each flight.

2.3 Optical sensors

Optical camera

A high resolution digital SLR camera and a NDVI camera as well as a FLIR camera are available to the campaign (Figure 2-5).

The digital camera is a Canon EOS-1Ds Mark III that provides 21MegaPixel full frame images. It has a 24 mm (23°) to 105 mm (84°) variable zoom lens. The digital video camera is a JVC GZ-HD5 with 1920 × 1080 (2.1 MegaPixel) resolution and 10× optical zoom. The optical photos will be collected over the entire sampling area once.
The FLIR A65 is a compact thermal infrared (7.5 – 13 µm) camera measuring temperatures between –40°C and +550°C. It has 45° x 37° Field-Of-View and provides 640 x 512 pixels resolution temperature observations with an accuracy of ±5°C. The FLIR A65 will be installed on the aircraft and used to map centre swath skin temperature during each flight.

Figure 2-5. Canon EOS-1DS Mark 3 (left), video camera (centre), and FLIR A65 thermal infrared camera (right).
3. STUDY AREA

PRISM will be undertaken in the Yanco intensive study area located in the Murrumbidgee Catchment (see Figure 1-1), New South Wales. The Yanco study area is a semi-arid agricultural and grazing area which has been monitored for remote sensing purposes since 2001 (http://www.oznet.org.au), as well as being the focus of previous SMAP pre- and post-launch campaigns: the SMAP Experiment 1 to 5 (SMAPEX-1 to 5, http://smapex.monash.edu), and algorithm development studies for the SMOS mission: the National Airborne Field Experiment 2006 (NAFE’06, http://www.nafe.unimelb.edu.au) and the Australian Airborne Cal/Val Experiments for SMOS (AACES, http://www.moisturemap.monash.edu.au/aaces). It therefore constitutes a very suitable study site in terms of background knowledge and data sets, scientific requirements, and logistics.

Due to its distinctive topography, the Murrumbidgee catchment exhibits a significant spatial variability in climate, topography, soil, vegetation and land cover. The diversity within this confined area, the large amount of complementary catchment data from long-term monitoring sites, and the past airborne field experiment makes this region an ideal test bed for the comprehensive validation of a new satellite concept described here, and is highly complementary to the current study sites in other countries.

The following sections give a general introduction of the Murrumbidgee Catchment and the operational soil moisture network. Further details on the Yanco and Kyeamba areas can be found in Walker et al. (2006).

3.1 Murrumbidgee

The Murrumbidgee River catchment covers 80,000 km² and is located in southeast Australia with latitude ranging from 33S to 37S and longitude from 143E to 150E. There is significant spatial variability in climate (alpine to semi-arid), soils, vegetation, and land use. Soils in the Murrumbidgee vary from sandy to clayey, with the western plains being dominated by finer-textured soils and the

Figure 3-1. Proportions of total irrigated area sown to various crops within the CIA (source: Coleambally Irrigation Annual Compliance Report, 2009).
eastern half of the catchment being dominated by medium-to-coarse textured soils. Land use in the
catchment is predominantly agricultural with the exception of steeper parts of the catchment, which
are a mixture of native eucalypt forests and exotic forestry plantations. Agricultural land use varies
greatly in intensity and includes pastoral, more intensive grazing, broad-acre cropping, and intensive
agriculture in irrigation areas along the mid-lower Murrumbidgee.

The Murrumbidgee catchment is equipped with a wide-ranging soil moisture monitoring network
(OzNet) which was established in 2001 and upgraded with 20 additional sites in 2003 and an
additional 24 surface soil moisture only probes in 2009 and 2019 in the Yanco region (see Figure 3-1).

3.2 Yanco region description

The Yanco area is a 60 km × 60 km area located in the western flat plains of the Murrumbidgee River
catchment where the topography is flat with very few geological outcroppings. Soil types are
predominantly clays, red brown earths, transitional red brown earth, sands over clay, and deep
sands.

According to the Digital Atlas of Australian Soils, the dominant soil is characterised by “plains with
domes, lunettes, and swampy depressions, and divided by continuous or discontinuous low river
ridges associated with prior stream systems--the whole traversed by present stream valleys; layered
soil or sedimentary materials common at fairly shallow depths: chief soils are hard alkaline red soils,
grey and brown cracking clays”.

The area covered by the PRISM airborne mapping will be a ~40 km × 40 km area within the Yanco
area (145°50’E to 146°21’E in longitude and 34°40’S to 35°0’S in latitude). Approximately one third
of the PRISM study area is irrigated. The Coleambally Irrigation Area (CIA) is a flat agricultural area of
approximately 95,000 hectares (ha) that contains more than 500 farms. The principal summer crops
grown in the CIA are rice, corn, and soybeans, while winter crops include wheat, barley, oats, and
canola. Rice crops are usually flooded in November by about 30 cm of irrigation water. However,
due to the extended drought, summer cropping has typically been limited with very few rice crops
planted for recent years (source: Coleambally Irrigation Annual Compliance Report, 2017). The
average CIA cropping areas for 2017 are listed in Table 3-1.

There will be intensive ground sampling activities performed concurrently with airborne
observations. The ground experiment will be conducted on two focus areas, each of 3 km x 3 km size,
being a cropping area YA and a grassland YE as seen in Fig. 1-2.
3.3 Soil moisture network description

OzNet network

Each site of the monitoring network (Smith et al., 2012) measures the soil moisture at 0-5 cm, 0-30 cm, 30-60 cm and 60-90 cm with water content reflectometers (Campbell Scientific). Detailed information about the instruments installed and the data archive can be found at http://www.oznet.org.au.

Reflectometers consist of a printed circuit board connected to two parallel stainless steel rods that act as wave guides. They measure the travel time of an output pulse to estimate changes in the bulk soil dielectric constant. The period is converted to volumetric water content with a calibration equation parameterised with soil type and soil temperature. Such sensors operate in a lower range of frequencies (10-100 MHz) than Time Domain Reflectometers TDR (700-1000 MHz).

Soil moisture sites also continuously monitor precipitation (using the tipping bucket rain gauge TB4-L) and soil temperature. Moreover, Time Domain Reflectometry (TDR) sensors are installed and have been used to provide additional calibration information and ongoing checks on the reflectometers. All the stations, except for one in Yanco and five stations in Kyeamba were installed throughout late 2003 and early 2004 (new sites); the eighteen other stations have been operated since late 2001 (original sites).

Figure 3-3. Typical equipment at the original (2001) and new (2004) soil moisture sites in the Murrumbidgee catchment. Each site provides continuous data of rainfall, soil moisture at 0-5 cm (or 0-7 cm), 0-30 cm, 30-60 cm and 60-90 cm and soil temperature and accommodates periodic measurements of gravity, groundwater and TDR soil moisture measurements.

Figure 3- illustrates the differences between the original and new sites. The original sites use the water content reflectometer CS615 (Campbell, http://www.campbellsco.com/cs615-l) while the new sites use the updated version CS616 (Campbell, http://www.campbellsco.com/cs616-l), which operates at a somewhat higher measurement frequency (175MHz compared with 44MHz). The original sites monitor soil temperature and soil suction (in the 60-600kPa range) at the midpoint of the four layers 0-7 cm, 0-30 cm, 30-60 cm and 60-90 cm, whereas the new sites only monitor 15 cm soil temperature from T-107 thermistors (Campbell, http://www.campbellsco.com/107-l). All new sites have been upgraded since April 2006 to include a 0-5 cm soil moisture from a Hydraprobe.
Sensor response to soil moisture varies with salinity, density, soil type and temperature, so a site-specific sensor calibration has been undertaken using both laboratory and field measurements. The

Figure 3-4. Schematic layout of the SMAPEX monitoring site and photo of site YAS.

Figure 3-5. Layout of the SMAPEX soil moisture network in the study area.
on-site calibration consisted of comparing reflectometer measurements with both field gravimetric samples and occasional TDR readings. As the CS615 and CS616 sensors are particularly sensitive to soil temperature fluctuations (Rüdiger et al., 2010) the T-107 temperature sensors were installed to provide a continuous record of soil temperature at midway along the reflectometers. Deeper temperatures are assumed to have the same characteristics across the Yanco sites and are therefore estimated from detailed soil temperature profile measurements made at the original soil moisture sites.

The 10 OzNet soil moisture monitoring sites in the Yanco area are all new sites installed throughout late 2003 and early 2004, located on a grid-based pattern within the 60 km × 60 km area allowing for measurement of the sub-grid variability of remote sensed observations such as near-surface soil moisture from AMSR-2, SMOS, and SMAP. All of these sites fall within the area covered by the PRISM airborne coverage. These sites are divided between the 3 main land uses in the region—irrigated cropping (including the major rice growing region of the Coleambally Irrigation Area), dryland cropping (typically wheat and fallow), and grazing (typically perennial grass type vegetation). The characteristics of the OzNet soil moisture stations in the PRISM study area are listed in Table 3-

<table>
<thead>
<tr>
<th>ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>Land use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>-34.6288</td>
<td>145.8490</td>
<td>120</td>
<td>Dryland crop/grazing</td>
</tr>
<tr>
<td>Y2</td>
<td>-34.6547</td>
<td>146.1103</td>
<td>130</td>
<td>Grazing</td>
</tr>
<tr>
<td>Y3</td>
<td>-34.6208</td>
<td>146.4239</td>
<td>144</td>
<td>Grazing</td>
</tr>
<tr>
<td>Y4</td>
<td>-34.7194</td>
<td>146.0200</td>
<td>130</td>
<td>Irrigated crop/grazing</td>
</tr>
<tr>
<td>Y5</td>
<td>-34.7284</td>
<td>146.2932</td>
<td>136</td>
<td>Dryland cropping</td>
</tr>
<tr>
<td>Y6</td>
<td>-34.8426</td>
<td>145.8669</td>
<td>121</td>
<td>Irrigated crop</td>
</tr>
<tr>
<td>Y7</td>
<td>-34.8518</td>
<td>146.1153</td>
<td>128</td>
<td>Grazing</td>
</tr>
<tr>
<td>Y8</td>
<td>-34.8470</td>
<td>146.4140</td>
<td>149</td>
<td>Grazing</td>
</tr>
<tr>
<td>Y9</td>
<td>-34.9678</td>
<td>146.0163</td>
<td>122</td>
<td>Irrigated crop</td>
</tr>
<tr>
<td>Y10</td>
<td>-35.0054</td>
<td>146.3099</td>
<td>119</td>
<td>Grazing</td>
</tr>
</tbody>
</table>

The 24 additional soil moisture sites were installed in late 2009 to support the Soil Moisture Active Passive Experiment (SMAPEx) project. These continuously monitor soil moisture at 0-5 cm with a Hydraprobe and soil temperature at 1, 2.5 and 5 cm depths (Unidata® 6507A/10 Sensors). Figure 3- shows a schematic of the installation, while Figure 3- shows the locations of the SMAPEx sites within the study area. The sites were installed to monitor as much of the variety of land cover conditions in the area as possible. Table 3- lists the main characteristics of the SMAPEx sites. The network is equally distributed between irrigated cropping land (occupying approximately 1/3 of the PRISM study area) and grazing dry land.

Temporal stability of Yanco stations was analysed using long-term soil moisture measurements. All sites were ranked from the smallest to the largest MRD, with error bars indicating the SDMRD (Figure 3-). The RMSEs for each station is indicated by the shaded bars. The position of the station within the graph indicates whether the station systematically underestimates (negative MRD) or overestimates (positive MRD) the area average soil moisture. SDMRD indicates the rank stability, whereby a low SDMRD indicates a time or rank stable locations. As RMSEs takes into account both
the MRD and SDMRD, a station with a low RMSEs would have a near zero MRD and a small SDMRD. Considering MRD, SDMRD, and RMSEs, the result shows that YA4c and YA7d are most representative stations at 3 km scale. Moreover, YA5 is also the most representative for PRISM ~40km by 40km area and the entire Yanco area.

Table 3-3. Characteristics of the SMAPEx semi-permanent monitoring sites. NOTE: the crop types listed are those observed during SMAPEX-2 and 3. The list will be updated with the actual ground conditions in an addendum to this document produced after the campaign.

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Landuse</th>
<th>Vegetation Type</th>
<th>Irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>YA1</td>
<td>146.0897</td>
<td>-34.68425</td>
<td>Fallow</td>
<td>Stubble</td>
<td>No</td>
</tr>
<tr>
<td>YA3</td>
<td>146.1397</td>
<td>-34.67715</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YA4a</td>
<td>146.07937</td>
<td>-34.70600</td>
<td>Cropping</td>
<td>Barley</td>
<td>Yes</td>
</tr>
<tr>
<td>YA4b</td>
<td>146.10529</td>
<td>-34.70306</td>
<td>Cropping</td>
<td>Cotton</td>
<td>Yes</td>
</tr>
<tr>
<td>YA4c</td>
<td>146.09425</td>
<td>-34.71421</td>
<td>Cropping</td>
<td>Wheat</td>
<td>Yes</td>
</tr>
<tr>
<td>YA4d</td>
<td>146.07506</td>
<td>-34.71420</td>
<td>Cropping</td>
<td>Maize</td>
<td>Yes</td>
</tr>
<tr>
<td>YA4e</td>
<td>146.10297</td>
<td>-34.72139</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YA5</td>
<td>146.12771</td>
<td>-34.71285</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YA7a</td>
<td>146.08197</td>
<td>-34.73520</td>
<td>Cropping</td>
<td>Rice</td>
<td>Yes</td>
</tr>
<tr>
<td>YA7b</td>
<td>146.09867</td>
<td>-34.73783</td>
<td>Cropping</td>
<td>Wheat</td>
<td>Yes</td>
</tr>
<tr>
<td>YA7d</td>
<td>146.07777</td>
<td>-34.7544</td>
<td>Fallow</td>
<td>Stubble</td>
<td>No</td>
</tr>
<tr>
<td>YA7e</td>
<td>146.09493</td>
<td>-34.75072</td>
<td>Fallow</td>
<td>Grass</td>
<td>No</td>
</tr>
<tr>
<td>YA9</td>
<td>146.15364</td>
<td>-34.74137</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB1</td>
<td>146.27654</td>
<td>-34.94124</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB3</td>
<td>146.34015</td>
<td>-34.94269</td>
<td>Cropping</td>
<td>Wheat</td>
<td>No</td>
</tr>
<tr>
<td>YB5a</td>
<td>146.30262</td>
<td>-34.96526</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB5b</td>
<td>146.31843</td>
<td>-34.96337</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB7b/YB5d</td>
<td>146.29299</td>
<td>-34.98483</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB5e</td>
<td>146.32052</td>
<td>-34.97971</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB7a</td>
<td>146.26941</td>
<td>-34.98845</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB7c</td>
<td>146.27852</td>
<td>-34.99837</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB7d</td>
<td>146.26853</td>
<td>-35.00497</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB7e</td>
<td>146.28805</td>
<td>-35.00773</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
<tr>
<td>YB9</td>
<td>146.33978</td>
<td>-35.00216</td>
<td>Grazing</td>
<td>Perennial grass</td>
<td>No</td>
</tr>
</tbody>
</table>
Figure 3-6. Rank-ordered MRD for stations within YA4, YA7, YB5 and YB7 3 km pixels; YA and YB 9 km pixels, the 36 km SMAP pixel and the Yanco study area. Squares: Mean relative difference, MRD; Error bars: Standard deviation of MRD, ±SDMRD; Shaded bars: Root mean square error of MRD and SDMRD, RMSEs.
4. AIRBORNE MONITORING

The PPMR, PLMR, PKSR and supporting instruments (optical cameras) will be flown on-board a high performance single engine aircraft (see Section 2.1) to collect airborne data across the PRISM study area approximately five times per week, making a total of 15 flights over the 3 weeks experiment period. All flights will be followed by specific low altitude passes of Lake Wyangan for in-flight calibration of the P-/L-/K-band radiometers. For detailed flight line coordinates see Appendix N. These flights will provide brightness temperatures at different frequency bands to develop soil moisture retrieval and downscaling algorithms.

All flights will be operated out of Narrandera Airport. The ferry flights to and from the airport were designed such that the aircraft will pass over at least one permanent monitoring station before and after covering the monitored area. This will allow identifying any changes in microwave emission between the start and the end of each flight associated to diurnal soil temperature variation rather than soil moisture changes. The criteria used in designing the flight lines are explained in the following section, after which each flight type is described in detail.

4.1 Flight line rationale

Flight type 1: Soil Moisture Retrieval Flight (SM)

L-band Soil Moisture Retrieval Flight

Soil moisture will be retrieved from PLMR at 100m resolution using across-track configuration (Figure 4-2). Details on flying altitude, speed, flight lines, and flight time can be found from Appendix N. There will be 6 flight lines to cover an area of 3km x 20km; see Figure 4-3. The total flight time is

![Figure 4-1. Nominal viewing configuration on the aircraft for PLMR, PPMR and PKSR; PKSR can make full 360° observations at a minimum step angle of 0.36°.](image-url)
approximately 1.08hrs.

P-band Soil Moisture Retrieval Flight

Soil moisture will be retrieved from PPMR at 100m resolution using across-track configuration (Figure 4-4). The flying altitude is 985ft (ASL) and flying speed is 130 knot (240km/h). There will be 15 flight lines to cover an area of 3km x 20km, see Figure 4-3. The total flight time is approximately 2.15hrs.

After each soil moisture retrieval flight, the aircraft will be landed for changing to another...
instruments (between P- and L-band radiometer).

Flight type 2: Downscaling Flight (DS)

The downscaling flight will be performed using PKSR (Ka-band) and PLMR together. There are two

Figure 4-4. Soil moisture retrieval flight from PPMR: flight design (left) and coverage area (right)

Figure 4-5. Downscaling flight using PLMR and PKSR (Ka-band) with two configuration: 1km resolution and 250m resolution.
configurations for downscaling:

i. Downscaling to 1km: 36km PLMR will be downscaled to 1km using 1km PKSR, and validated against 1km PLMR brightness temperature. The flying altitude is 10,258ft (ASL) and flying speed is 130 knot (240km/h). There will be 8 flight lines to cover an area of 40km x 50km, with ground resolution of 1km, see Figure 4-5.

ii. Downscaling to 250m: 1km PLMR will be downscaled to 250m using 250m PKSR, and validated against 250m PLMR brightness temperature. The flying altitude is 2,877ft (ASL) and flying speed is 130 knot (240km/h). There will be 2 flight lines to cover an area of 3km x 40km, with ground resolution of 250m, see Figure 4-5. After finish two configurations, the total flight time is approximately 2.77hr.

Please note: change between two configurations do not need to land, but need to reduce to the required resolution and stabilise.

Flight type 3: Multi-angular Flight (MA)

The multi-angular flight is designed for retrieving soil moisture from different incidence angles for PPMR and PLMR individually or collectively. Both flights use across-track configuration.

L-band Multi-angular Flight

![Image](image-url)

Figure 4-6. Multi-angular flight using PLMR and PPMR.
Soil moisture will be retrieved from PLMR at 100m resolution at a range of incidence angles (Figure 4-6). The flying altitude is 1,401ft (ASL) and flying speed is 130 knot (240km/h). There will be 9 flight lines to cover an area of 3km x 20km. The total flight time is approximately 1.88hrs.

P-band Multi-angular Flight

Soil moisture will be retrieved from PPMR at 150m resolution at a range of incidence angles (Figure 4-6). The flying altitude is 985ft (ASL) and flying speed is 130 knot (240km/h). There will be 9 flight lines to cover an area of 3km x 20km. The total flight time is approximately 1.88hrs.

4.2 Calibration

The normal operating procedure for calibration is to perform a “warm” and “cold” calibration before and after flight, with an in-flight calibration check. The before and after flight calibrations are achieved by removing the radiometer from the aircraft and making brightness temperature measurements of a blackbody calibration target at ambient temperature, and the sky (see Figure 4-). The in-flight calibration check is accomplished by flying over a water body and ground stations. Lake Wyangan (Figure 4-8) will be used as the cold in-flight calibration target of P-/L-/K-band radiometers. Given the relatively small size of the water storage, the aircraft will be flown at the lowest permissible altitude (500ft) within the lake boundary along a distance of around 1 km.

Ground requirements for over-water flights include monitoring of the water temperature and salinity within the top 1 cm layer of water. Both quantities will be monitored continuously during the campaign using a UNIDATA 6536B® temperature and salinity sensor connected to a logger, located.

![Figure 4-7. Upper left: undertaking a sky cold point calibration; upper right: undertaking a warm point calibration with the calibration box shown in the inset; lower left: the buoy used to monitor water temperature and salinity; lower right: undertaking a boat transect of water salinity and temperature.](image)
at 146°1.32’ E and 34°13.14’ S at Lake Wyangan. Furthermore, transects of water temperature and salinity in the top 1 cm layer will be undertaken with a handheld temperature and salinity meter (Hydralab Quanta®) at the start and end of PRISM campaign (see Figure 4-). This will involve making north-south and east-west transects at 100 m spacing centred on the monitoring station. The purpose of these measurements is to check for spatial variability. Kiri Mason will be the responsible person for these measurements.

4.3 Flight schedule

PRISM flights will be undertaken over a 21 day period according to the schedule in Table 4-1. A total of five flights for each type of flight (SM, DS or MA) will be conducted across the 3-week time period so as to capture the changes in soil moisture and vegetation.

Figure 4-8. Calibration flight (red line) and boat transects (white lines) over Lake Wyangan.
Table 4-1. Schedule of flight and ground sampling activities: P-PPMR, L-PLMR, Ka-PKSR, SM-Soil moisture retrieval flight, DS-Downscaling flight, and MA-Multi-angular flight.

<table>
<thead>
<tr>
<th>Local Day</th>
<th>Flight</th>
<th>Soil moisture Team A</th>
<th>Soil moisture Team B</th>
<th>Veg./Roughness Team A</th>
<th>Veg./Roughness Team B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>F1 - P&L (SM)</td>
<td>YA*</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D2</td>
<td>F2 - P&L (MA)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>F3 - L/Ka (DS)</td>
<td>-</td>
<td>-</td>
<td>YA</td>
<td>YE</td>
</tr>
<tr>
<td>D4</td>
<td>F4 - P&L (SM)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D5</td>
<td>F5 - P&L (MA)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D6~D7 Day off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>F6 - L/Ka (DS)</td>
<td>-</td>
<td>-</td>
<td>YA</td>
<td>YE</td>
</tr>
<tr>
<td>D9</td>
<td>F7 - P&L (SM)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D10</td>
<td>F8 - P&L (MA)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D11</td>
<td>F9 - L/Ka (DS)</td>
<td>-</td>
<td>-</td>
<td>YA</td>
<td>YE</td>
</tr>
<tr>
<td>D12</td>
<td>F10 - P&L (SM)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D13~D14 Day off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>F11 - P&L (MA)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D16</td>
<td>F12 - L/Ka (DS)</td>
<td>-</td>
<td>-</td>
<td>YA</td>
<td>YE</td>
</tr>
<tr>
<td>D17</td>
<td>F13 - P&L (SM)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D18</td>
<td>F14 - P&L (MA)</td>
<td>YA</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D19</td>
<td>F15 - L/Ka (DS)</td>
<td>-</td>
<td>-</td>
<td>YA</td>
<td>YE</td>
</tr>
</tbody>
</table>
5. GROUND MONITORING

This chapter should be read in conjunction with Chapter 6 where ground sampling protocols are presented, and Chapter 7 where logistics are discussed. Ground monitoring for the PRISM campaign is designed with the following objectives:

- Calibrating the aircraft observation from P-/L-/K-band radiometers; and
- Providing supporting ground data for validation of P- and L-band soil moisture retrievals.

In addition to the network of continuous soil moisture monitoring stations described in Section 3.3, the ground monitoring component of the PRISM campaign will focus on parts of several of the 3 km × 3 km areas of the SMAPEx campaigns. Within each area, ground monitoring will include:

- Supplementary monitoring stations (soil moisture, soil temperature and leaf wetness);
- Intensive spatial sampling of the top 5 cm soil moisture;
- Intensive spatial vegetation sampling (destructive VWC and spectral); and
- Intensive spatial monitoring of supporting data (land cover type, soil surface roughness, and soil gravimetric samples).

5.1 Supplementary monitoring stations

Permanent monitoring stations are supplemented by two identical temporary monitoring stations, one at each of the northern and southern focus areas. These short-term monitoring stations are instrumented with a rain gauge, thermal infrared sensor (Apogee), leaf wetness sensor (MEA LWS v1.1), two soil moisture sensors (Hydraprobe; 0-5 cm, 5-10 cm, 10-15cm, 15-20cm, 20-25cm and 25-30 cm) and four soil temperature sensors (MEA6507A; 2.5 cm, 5 cm, 15 cm and 40 cm depth) in order to provide time series data during the sampling period (Figure 5-1).

Such measurements will be used for identifying the presence or absence of dew, and verifying the assumptions that (i) effective temperature has not changed significantly throughout the course of the aircraft measurements; (ii) vegetation and soil temperature are in near-equilibrium condition; and (iii) soil moisture has not changed significantly during ground sampling. The supplementary stations are distributed across the study area to monitor vegetation and soil temperature in representative areas on the basis of dominant vegetation type. This means that their location depends on the land cover conditions at the time of the campaign, in addition to logistical constraints. The proposed locations of supplementary monitoring stations and the vegetation type covered are indicated in Figure 5-2. The actual locations will be communicated in an addendum to this document. Supplementary monitoring station data will be recorded in UTC time reference.
Figure 5-1. Schematic of the temporary monitoring station.

Figure 5-2. Proposed locations of the PRISM temporary monitoring stations (blue).
5.2 Intensive soil moisture sampling

Intensive spatial ground soil moisture sampling will focus on two 3 km × 3 km focus farms to cover the representative land cover conditions within the study area. Figure 5-3 gives an overview of the locations of the focus areas within the study area. The characteristics of the focus areas are listed in Table 5-1.

Table 5-1. Characteristics of the intensive ground sampling areas. Soil texture data are derived from *soil particle analysis of 0-30 cm gravimetric samples

<table>
<thead>
<tr>
<th>Area Code</th>
<th>Land Use</th>
<th>Vegetation Type (s)</th>
<th>Mean Elevation</th>
<th>Soil texture (%C/%S/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YA4</td>
<td>Irrigated cropping (90%); Grazing (10%)</td>
<td>wheat, barley, naturalised pasture</td>
<td>131 m</td>
<td>Clay loam (31/48/20)*</td>
</tr>
<tr>
<td>YA7</td>
<td>Irrigated cropping (90%); Grazing (10%)</td>
<td>Wheat and barley stubble; Naturalised pasture</td>
<td>130 m</td>
<td>Clay loam (31/48/20)*</td>
</tr>
<tr>
<td>YE</td>
<td>Grazing (100%)</td>
<td>Native or naturalised pasture</td>
<td>127 m</td>
<td>Silty clay loam (39/43/17)*</td>
</tr>
</tbody>
</table>
Table 5-1.

Soil moisture will be monitored concurrently with each SM flight and MA flight using the Hydraprobe Data Acquisition System (HDAS). Spatial soil moisture data will be recorded in local (UTC+10) time reference.

During each of the two flight days (SM and MA), focus areas will be sampled by two dedicated teams. For the both SM and MA flights, parts of each 3km × 3km focus area will be monitored using a north-south oriented regular grid of sampling locations at 50 m spacing, see Figure 5-4 and Figure 5-5. Due to the limited number of samplers (5 for each team), fewer points will be selected across the focus area according to different land cover types. The coordinates of the focus area boundaries are shown in Appendix G.

Team A and will be responsible for YA (YA4 / YA7) dominated by cropping area while Team B will be responsible for YE dominated by grazing area, ensuring that a wide range of soil moisture conditions are encountered for both land cover types. Local scale (1m) soil moisture variation will be accounted for by taking a minimum of three surface soil moisture measurements within a radius of 1 m at each sampling location until a consensus measurement is achieved; more specific details follow. This will allow the effect of random errors in local scale soil moisture measurements to be minimised.

Figure 5-4. Locations of the intensive spatial soil moisture sampling sites on SM or MA flight day at focus areas YA4 (left) or YA7 (right) (mostly cropped).
5.3 Vegetation sampling

The objective of the vegetation monitoring is to characterise the paddocks monitored for soil moisture in the individual 3km × 3km focus areas, so as to describe all dominant vegetation types at various stages of maturity and vegetation water content. Vegetation sampling activities will be conducted on the Downscaling Flight (DS) days when the ground soil moisture truth is not needed.

Figure 5-5. Schematic of vegetation sampling strategy for one example focus area.

Figure 5-6. Locations of the intensive spatial soil moisture sampling sites on SM or MA flight day at focus area YE (mostly grazing mixed partly cropped)
for validation purposes. Below are some recommendations of the general approach to be followed. Full details on sampling procedures at each sampling location are given in section 6.3.

- The vegetation sampling strategy will be based on the assumption that the changes in vegetation (biomass, VWC and plant structure) are negligible within a few days, and therefore the same paddock will be sampled on each day when the Downscaling Flight is conducted.

- Vegetation samples for biomass, vegetation water content, soil surface reflectance and LAI measurements will be collected on each Downscaling Flight day.

- Vegetation sampling will be repeated at approximately the SAME locations as the previous sampling, to accurately track temporal changes in vegetation biomass.

- Within each focus area, ALL major vegetation types will be monitored. In the eventuality that different growth stages of the same vegetation type exist within the sampling area, they will be independently sampled.

- Each major vegetation type (or growth stage of the same vegetation type) will be characterised by making measurements at a minimum of 5 sampling locations distributed within “homogeneous” crops/paddocks. Figure 5-5 illustrates the rationale of the vegetation sampling locations for an example 3km × 3km sampling area.

- All vegetation measurements should be prioritised between approximately 10am and 2pm Australian Eastern Standard Time to optimise the ground spectral observations.

- To assist with interpolation of vegetation water content information and derivation of a land cover map of the region, the vegetation type and vegetation canopy height will be recorded for each vegetation type sampled. In the case of crops, additional information on row spacing, plant spacing and row direction (azimuth angle) will be recorded.

The objective of the intensive vegetation sampling during the PRISM campaign is to collect detailed plant structural parameters for selected vegetation types (agricultural and grazing) and to track the evolution of such parameters across the entire campaign period, for the purpose of soil moisture retrieval algorithm development. The list of crop parameters that will be monitored during the intensive sampling is shown in Table 5-2. Intensive monitoring of the crop areas will be performed by Team A and Team B one to two times per week.

5.4 Roughness sampling
Soil surface roughness affects the radiometric observations by effectively increasing the surface area of electromagnetic wave emission. Its effect on observations at P- and L-band frequencies is difficult to quantify, and is therefore a critical parameter to be spatially characterised across the different land cover types. During PRISM, surface roughness will be characterized at 3 locations within each of the sampled paddocks, representing major land cover type and roughness conditions in the 3km x 3km focus areas. At each of the locations two 3m-long surface profiles will be recorded. In non-tilled areas, one oriented parallel to flight line (North-South) and one perpendicular (East-West). Over furrowed areas, sampling along and across the row direction will be undertaken. Each team will be conducting the surface roughness measurements in their respective focus areas. Further details on the procedure for roughness measurements with the pin profiler are included in Section 6.5 where measurement protocols are presented.

5.5 Supporting data

In addition to spatial soil moisture measurements, the ground teams will be in charge of collecting a range of supporting data, which are needed as input to soil moisture retrieval algorithm. Such data include:

- Land cover type;
- Vegetation canopy height;
- Visual observation of dew presence and characteristics;
- Gravimetric soil moisture samples; and
- Soil texture samples.

<table>
<thead>
<tr>
<th>Field parameters</th>
<th>Leaf parameters</th>
<th>Stalk parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density</td>
<td>Leaves water content</td>
<td>Stalk VWC</td>
</tr>
<tr>
<td>Row orientation (crops)</td>
<td>Leaves width</td>
<td>Stalk length</td>
</tr>
<tr>
<td>Row spacing (crops)</td>
<td>Leaves length</td>
<td>Stalk diameter (bottom, mid, top)</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>Leaves thickness</td>
<td>Stalk angle (bottom)</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>Leaves angle (bottom, mid, top)</td>
<td>Plant height</td>
</tr>
<tr>
<td></td>
<td>Nr of leaves per plant</td>
<td></td>
</tr>
</tbody>
</table>
Land cover type, vegetation canopy height and visual observations of dew presence will be electronically recorded in the HDAS systems at each location where soil moisture measurements are taken. Soil gravimetric and textural samples will be sampled only at certain selected locations. Further details on this supporting data are included below and in Chapter 6 where measurement protocols are presented.

Land cover classification

Land cover information will be used to support the interpretation of remotely sensed data in various ways. In particular, it will be used to interpolate vegetation water content information. It is therefore important to characterise the main land cover types in the study area at the time of the campaign, to help in deriving a land cover map from satellites like LandSat through supervised classification. Land cover will be characterised by visual observation and electronically recorded in the HDAS systems,
assigning every sample location to one of the predefined subclasses. Photographs of the typical vegetation types found in the study area are included in Figure 5-7, which may be a useful reference for identifying the vegetation types encountered in the focus areas.

Canopy height
Information on canopy height can also be used to interpolate vegetation water content information. In particular, it gives an estimate of vegetation biomass and/or crop maturity. Consequently, canopy height will be estimated to the nearest decimetre and electronically recorded in the HDAS systems. To this end, height reference marks with 10 cm precision are provided on the HDAS vertical pole.

Dew
The presence of dew on vegetation is likely to affect the passive microwave observation made in the early hours of the morning and hence the subsequent retrieval of soil moisture. In order to support the leaf wetness measurements made by the supplementary monitoring stations, the soil moisture sampling team will make a visual estimate of the leaf wetness conditions and record it in the HDAS systems.

Gravimetric soil samples
While a generic calibration equation has been derived for the conversion of Hydraprobe voltage readings into a soil moisture value based on data collected at this site over the past years, the calibration will be further confirmed by comparison of Hydraprobe readings with gravimetric measurements.

Volumetric soil samples will be collected for each focus area, with the water content computed from the weight of a known soil sample volume before and after oven drying. The leader of each ground sampling team will be in charge of collecting the gravimetric samples. Preferably, the Hydraprobe readings are made in the sample taken. If this proves not to be possible due to moist soil sticking to the probe, a minimum of 3 Hydraprobe readings should be made at not more than 10 cm from the soil sample (see Figure 5-8). The objective of the sampling is to represent the range of soil types and soil moisture conditions encountered in each focus area. The best way to achieve this will be left to the ground sampling teams. However, following are some recommendations of the general approach to be followed. Full details on sampling procedures at each sampling location are given in Chapter 6.
At least one gravimetric sample will be ideally collected for each soil type at each of three wetness levels encountered in the focus area on the sampling day.

For every focus area a minimum of 3 soil samples will be collected per day.

Soil textural properties

Information on soil textural properties is very important for modelling soil microwave emission, as it strongly affects the dielectric behaviour of the soil. Moreover, the information from available soil texture maps is typically poor. Consequently, soil gravimetric samples will be archived for later laboratory soil textural analysis determination of fraction of sand, clay and silt if required.
6. CORE GROUND SAMPLING PROTOCOLS

Field work during PRISM will consist of collecting data in the Yanco Region and archiving the information collected during the sampling days. Most of the ground data collection will be applied using the Hydraprobe Data Acquisition System (HDAS). The HDAS system will be used both to store the observations and to visualize the real-time position via a GPS receiver and GIS software.

The ground crew will be comprised of two teams (A and B). On the SM and DS flight days, ground teams A and B will be responsible for soil moisture sampling using the HDAS system to collect soil gravimetric samples at their respective focus farms. On DS flight days, Teams A and B will be responsible for intensive vegetation and roughness sampling in their respective focus areas. A list of team participants is included in Chapter 7 together with a daily work schedule. It is important to note that all sampling devices and field notes should be referenced in Coordinated Universal Time (UTC); local time in the Yanco area is UTC+10 during PRISM.

The campaign is comprised of approximately 15 sampling days. Team A and B will work independently on their assigned areas, according to the sampling schedule shown in Appendix E. A measurement grid will be uploaded on the HDAS screen to improve the accuracy and efficiency of the ground sampling; see also guidelines on farm mobility in Chapter 7. The soil moisture measurements will take place along 50m spaced regular grids. Soil moisture sampling will involve navigating from one point to the next and taking a series of three measurements at each predefined sampling location. Sampling will be assisted by use of a GPS receiver (in-built in the HDAS), which displays the real-time position on the HDAS screen together with the predefined locations. Once the sampling site has been located, the ground measurements of soil moisture and observations of related data (presence of dew, vegetation height and type) are automatically stored into a GIS file on the HDAS storage card. Gravimetric samples will be collected at selected locations along the same grids and transects, with position and other pertinent information stored in the HDAS system. Detailed training on how to use the HDAS system will be given during the scheduled training session (for training times and locations see Chapter 7). See also Appendix B for more details on how to use the HDAS.

On each DS flight days, between 10am and 2pm (AEST) is the optimal time for spectral measurements, so this time will be prioritised to vegetation destruction sampling and coincident spectral sampling.

At the end of each day, all teams will independently return to the Yanco Agricultural Institute for soil and vegetation sample weighing in the laboratory, data downloading, and archiving. The GIS files stored in the HDAS systems will be downloaded on a laptop computer, the soil gravimetric and vegetation samples will be weighed for wet weight and put in the ovens to dry overnight, and the samples from the day before re-weighed for dry weight. Moreover, the completed vegetation, soil gravimetric and surface roughness forms will be entered into a pre-populated excel spreadsheet proforma. Team leaders will be responsible to coordinate these operations for each respective team and to ensure that all data are properly downloaded, archived and checked, and that all equipment are cleaned and checked. Any damaged equipment should be handed to the team leader for fixing overnight. Please see Appendix E for detailed tasks of each team.
This chapter describes the protocols that will be used for the soil moisture and vegetation sampling in order to ensure consistency in collecting, processing and archiving the data. Measurement record forms are provided in Appendix F for logging data other than the HDAS measurements.

6.1 General guidance

Sampling activities are scheduled, but may be postponed by the ground crew coordinator if it is raining, there are severe weather warnings, or some other logistic issue arises. In this case the remaining campaign schedule may be revised, including moving of sampling to “break” days. Any changes are to be recorded and will be reported in an addendum to this document.

Each team will make use of a campaign vehicle to access the farms. Members of Team A and B will walk along pre-established grids in the focus area, in order to take HDAS readings on the soil moisture sampling grid. They will be dropped off at a location in the focus areas strategically selected and agreed by all team members, and will return to the designated location for pick up at the end of the sampling. Remember to walk to sampling points where driving is not feasible or practical; only qualified personnel are permitted to drive the 4WDs across the farms and 4WDs are not to be driven off the farm tracks or on farm tracks following rain.

Some general guidance is as follows:

- Leave all gates as you found them; i.e., open if you found it open, closed if you found it closed, and locked in the same way you found it.

- When sampling on cropped areas, always move through a field along the row direction to minimise impact on the canopy.

- Do not drive on farm tracks if the soil is wet, because this will mess up the track.

- Do not drive through crops or even across grassed paddocks.

- When sampling on regular grids try to first cover all the points falling within the paddock (area enclosed by a fence) where you currently are. When you have covered ALL points, move to the next paddock.

- **PROTECT YOURSELF FROM THE SUN AND DEHYDRATION.** It is recommended that you bring at least 2L of water with you, since you’ll be sampling for the entire day, possibly under the sun. Each team will be assigned a water jerry can of 25L. You should remember to also wear a hat, sturdy shoes (preferably above ankle), and long, thick pants to avoid snake bites.

- All farmers in the area are aware of our presence on their property during the campaign. However, if anyone questions your presence, politely answer identifying yourself as a “scientist working on a Monash University soil moisture study with satellites”. Accordingly, please also wear your Monash branded shirts on each sampling day. If you encounter any difficulties just leave and report the problem to the ground crew leader. A copy of the campaign flyer distributed to farmers is included in Appendix H to assist you should this situation arise.
• Count your paces and note your direction using a distant object. This helps greatly in locating sample points and gives you something to do while walking.

• Although gravimetric and vegetation sampling are destructive, try to minimize your impact by filling holes and minimizing disturbance to surrounding vegetation. Please leave nothing behind you; that includes food scraps (rubbish bags will be provided in the cars).

• Please be considerate of the landowners and our hosts at Yanco Agriculture Institute. Don’t block roads, gates, and driveways. Keep sites, labs and work areas clean of trash and dirt.

• Watch your driving speed, especially when entering towns (town speed limits are typically 50 km/h and highway speeds 100 km/h). Be courteous on dirt and gravel roads, lower speed means less dust and stone.

• Do not drive through grass fields as hidden boulders, trunks or holes are always a danger. and vegetation accumulation on the radiator can cause overheating, or grass in contact with the exhaust can start fires. Importantly, the farmers have requested that we not do this.

• Some of the sampling sites may have livestock. Please be considerate towards the cattle and do not try to scare them away. They may be curious but are typically harmless.

• For your own security, carry a mobile phone and/or a UHF radio (provided to each team member). Check the mobile phone coverage over your sampling area and be aware of the local UHF security frequencies (if relevant) as well as the team frequency (typically channel 38).

• In case of breakdown of any part of the sampling equipment, report as soon as practical to the Team leader; not later than the end of the day.

6.2 Soil moisture sampling

Both Team A and Team B are in charge of collecting:

• 0-5 cm soil moisture data using the HDAS instrument at each sampling location (minimum of three independent measurements per location if readings vary widely take more) with coordinates automatically given by the HDAS system;

• Information about land use and vegetation type at each sampling location (only required once per site);

• Information about canopy height and presence of dew at each sampling location;

• GPS location at each sampling location; and

• Additionally, team leaders are in charge of collecting soil gravimetric samples.

The HDAS measurements will be made across regular grids of 50m. The planned sampling locations for each focus area will be loaded onto the HDAS, and visible on your screen via the ArcPad GIS software. Sampling involves navigating along the sampling transect through the use of the GPS in-built in the GETAC that forms part of the HDAS system, which displays the real-time position on the
same ArcPad screen as the sampling locations. Once the GPS cursor is located at the predefined sampling point, HDAS measurements can be made and stored in the GETAC.

The information about vegetation type, canopy height and presence of dew will be stored in the HDAS by prompting the values into forms, following the Hydraprobe readings. For further details on the HDAS operation see Appendix B. For the sake of quality of the data collected please pay attention to the following:

1. Complete the forms for each of the three measurements (i.e., do not leave “vegetation type” blank at one point assuming that we will work out the vegetation type from the nearby point).

2. Check your Hydraprobe at each sample site to ensure it is clean and straight. In wet soils, this is particularly important as a lot of soil will stick!

3. Note in the comment box any anomalous issue you might find at the sampling site (i.e. near a tree or a clay pan, one out of the three soil moisture samples per location differs from the other two but has been checked and the reading is correct because of a difference in vegetation cover etc).

4. Check the soil moisture readings obtained before saving the points and make a reasonable judgment as to whether the value indicated by the probe is consistent with the conditions you can observe visually (i.e., if the soil looks very wet and the reading is 0.1m³/m³, cancel the point and try again by moving the probe a few cm and checking there is nothing between the tines).

5. The predefined sampling locations are laid down automatically using a GIS software, therefore some of them might fall on unusual ground (paved road, house, canal). In this case, feel free to move the sampling to a nearby location (~10-20m) which is REPRESENTATIVE OF THE DOMINANT CONDITIONS IN THE SURROUNDING 250m.

6. In all cases keep in mind that (i) the predefined sampling location can be shifted within 10-20 m to fall on more representative ground and (ii) the selected location must be representative of an area of ~25 m radius surrounding it.

7. The shape files visible on the HDAS screen (irrigation channels, roads, farm boundaries etc.) can be wrongly located by up to 50 m from their real location. Therefore use them more as a guideline and always check your surroundings visually.

8. If a predefined sampling point seems to fall just outside the sampling area assigned to you (e.g., 10 m on the other side of the fence) take a reading anyway. This will avoid points being missed by two Team members.

9. In case of doubt about the vegetation type or a mistake, make a note of the point ID and communicate to the Team leader. Once back at the operations base you will be able to modify the data manually.
Field equipment
Each ground team will be equipped with the items listed below:

- 4WD vehicle
- 1x hardcopy of the workplan
- 1x hardcopy map of each focus area with the sampling grids and useful topographic information.
- 1x 25 L water Jerry can
- 1x first aid kit
- 1x first aid book
- 1x sunscreen bottle
- 1x gravimetric sampling kit
- 1x spare HDAS system
- 1x spare GETAC unit or equivalent
- 1x CROPSCAN device
- 1x LAI-2000 device
- 1x vegetation destructive sampling kit
- 1x field book
- 1x pair of gloves
- Pens, permanent markers
- Portable toilets and privacy screen

The gravimetric sample kit will be assigned to the team leader, who is responsible for collecting the soil gravimetric samples. Each individual in the team will be equipped with the items listed below:

- 1x HDAS system
- 1x hardcopy map of each focus area with the sampling grids and useful topographic information and vegetation ID chart
- 1x UHF radio

Each person will be individually responsible for the use and care of their assigned equipment throughout the campaign, and must report any damaged or lost item to the team leader immediately so that actions can be taken to find, repair or substitute as appropriate. Each person is also responsible for putting their own GETAC unit to recharge each day and downloading/uploading
their own GETAC data (see also Appendix E for detailed team tasks sheet). Each team member will be assigned his/her own HDAS system and for the duration of the campaign. **Please do not interchange equipment of your own accord.**

Hydraprobe Data Acquisition System (HDAS)

Step-by-step information on the operation of the HDAS system, including file upload and download procedures, sampling commands and troubleshooting is included in Appendix B.

Each HDAS system is composed of:

- 1x GETAC unit (with ID marked)
- 1x HDAS battery
- 1x GETAC pencil
- 1x GETAC power cable
- 1x GETAC USB download cable
- 1x HDAS pole (with ID marked)
- 1x Hydraprobe

The GETAC unit has been programmed to automatically read the Hydraprobe at the desired sampling location when a specific command is sent from the GETAC screen, and store the probe readings in a file together with the GPS coordinates provided by the in-built GPS in the GETAC unit. This is achieved with the “ArcPad” software; a geographic information system for handheld devices. The ArcPad program stores the readings of the probe with the coordinates given by the GPS. All the necessary commands will be directly displayed through the ArcPad screen, with basically no need to access any ArcPad menu items. On the ArcPad screen there will be a series of visible layers in addition to the GPS position indicator:

- Boundaries of the daily sampling area;
- Main roads (paved and unpaved);
- Properties and lot boundaries;
- Property main entrance;
- Locations of known gates and canal bridges;
- Irrigation canals;
- Grid of planned sampling locations;
- Grid of actual sampling locations: this is the file that will be edited every time a soil moisture reading is taken.

MONASH University
It is important to check daily, BEFORE sampling starts, that the GETAC time is set to the correct UTC time as the time information will be used to interpret the data. Additionally, it is essential to recharge each GETAC and HDAS battery at the end of each sampling day, in order to avoid any malfunctions and sampling delays during the subsequent sampling days.

At each sampling location the following information will be selected from pre-defined drop down lists, in addition to a free-form comment if desired. The vegetation canopy height is selected from a list with 10 cm increments up to a maximum height of 1.5 m, while vegetation type and dew amount selected from the lists below:

Vegetation Type (dryland, irrigated:drip, irrigated:spray, irrigated:flood):

- bare soil
- fallow
- grass: native
- grass: pasture
- crop: barley
- crop: canola
- crop: lucerne
- crop: maize
- crop: oats
- crop: rice
- crop: sorghum
- crop: soybean
- crop: wheat
- crop: other
- orchard
- vineyard
- woodland: open
- woodland: closed
- water body
- building
- other

Dew Amount

- none
- small droplets
- medium droplets
- large droplets
- film

At the end of each sampling day, the team leader needs to check there is NO missing data points before leaving the field. A plot of soil moisture sampling data is to be produced each evening.
6.3 Vegetation sampling

Both Team A and Team B are in charge of collecting the following (see also Appendix E for detailed team tasks sheet):

- Vegetation and litter destructive samples;
- Vegetation canopy reflectance measurements (Cropscan);
- Vegetation canopy LAI measurements;
- Information about vegetation type, canopy height, crop row spacing and direction, and
- GPS location of the actual vegetation sampling site.

The teams will be equipped with a GETAC unit or equivalent in order to navigate through the focus areas using GPS positioning like for the soil moisture sampling. The GETAC will contain information on main roads, property boundaries and irrigation canals, to aid the navigation and selection of the sampling locations.

Surface reflectance observations

The CROPSCAN is an instrument that has up-and-down-looking detectors and the ability to measure reflected sunlight at different wavelengths. The basic instrument is shown in Figure 6-1. The CROPSCAN multispectral radiometer systems consist of a radiometer, data logger controller (DLC) or A/D converter, terminal, telescoping support pole, connecting cables and operating software. The radiometer uses silicon or germanium photodiodes as light transducers. Matched sets of the transducers with filters to select wavelength bands are oriented in the radiometer housing to measure incident and reflected irradiation. Filters of wavelengths from 450 up to 1720nm are available. For PRISM a MSR16R unit will be used with the set of bands indicated in Table 6-1. These bands approximate channels of the MODIS instruments. Channels were chosen to provide NDVI as well as a variety of vegetation water content indices under consideration.

Reflectance data will be collected at each vegetation sampling location (see Figure 6-1) just prior to vegetation removal using the following sampling scheme. Making sure that the radiometer is well above the canopy, take a reading every meter for 5m. Repeat, for a total of 5 replications located 1m or 1 row apart. See Appendix C for detailed instructions on how to operate the CROPSCAN.
Leaf area index observations

The LAI-2000 (see Figure 6-2) will be set to average 4 points into a single value with one observation taken above the canopy and 4 beneath the canopy; in the row, ¼ of the way across the row, ½ of the way across the row and ¾ of the way across the row in the case of row crops. These should be made just before taking the biomass sample. For short vegetation, LAI will be derived from the destruction samples as described below.

If the sun is shining, the observer needs to stand with their back to the sun so that they are shading the instrument. Moreover, they must put a black lens cap that blocks ¼ of the sensor view in place, and be positioned so that the sun and the observer are never in the view of the sensor. The observer should always note if the sun was obscured during the measurement, irrespective of whether the sky is overcast or if it is partly cloudy but with the sun behind the clouds. If no shadows could be seen during the measurement, then the measurement is marked “cloudy”, if shadows could be seen during the measurement then it is marked “sunny”. Conditions should not change from cloudy to

Table 6-1. CROPSCAN vs. MODIS and Skye sensors bands

<table>
<thead>
<tr>
<th>MODIS</th>
<th>SKYE</th>
<th>CROPSCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>Bandwidth (nm)</td>
<td>Bandwidth (nm)</td>
</tr>
<tr>
<td>1</td>
<td>620 - 670</td>
<td>620 - 670</td>
</tr>
<tr>
<td>2</td>
<td>841 - 876</td>
<td>841 - 876</td>
</tr>
<tr>
<td>3</td>
<td>459 - 479</td>
<td>459 - 479</td>
</tr>
<tr>
<td>4</td>
<td>545 - 565</td>
<td>545 - 565</td>
</tr>
<tr>
<td>5</td>
<td>1230 - 1250</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1628 - 1652</td>
<td>1628 - 1652</td>
</tr>
<tr>
<td>7</td>
<td>2105 - 2155</td>
<td>2105 - 2155</td>
</tr>
<tr>
<td></td>
<td>2026 - 2036</td>
<td>2026 - 2036</td>
</tr>
<tr>
<td></td>
<td>2026 - 2216</td>
<td>2026 - 2216</td>
</tr>
<tr>
<td></td>
<td>704 - 716</td>
<td>704 - 716</td>
</tr>
<tr>
<td></td>
<td>965 - 975</td>
<td>965 - 975</td>
</tr>
</tbody>
</table>
sunny or sunny to cloudy in the middle of measurements for a sample location. Also, it is important to check the LAI-2000 internal clock each day to verify they are recording in UTC. See Appendix D for detailed instructions on how to operate the LAI-2000.

Vegetation destructive samples

At least five vegetation samples concurrently with reflectance/leaf area index observations will be taken for each major vegetation type represented by the chosen paddocks in the focus areas, making sure that all significant vegetation types and growth stages encountered are included. These vegetation samples will be weighed at sample check-in on return to the operations base, and then left in the oven over several days for drying at 45°C until no further change in mass is observed.

Note: Vegetation samples should only be taken AFTER the spectral and LAI measurements have been made.

Vegetation destructive sampling kit

- 1x GETAC unit or equivalent
- 1x 0.5 m × 0.5 m quadrant to obtain vegetation samples
- 1x vegetation clipper
- 1x scissors
- 1x pair of gloves
- plastic bags
- paper bags
- rubber bands
- permanent markers

Figure 6-2. The LAI-2000 instrument.
Vegetation destruction sampling protocol

The procedure for vegetation biomass sampling is as follows:

1. Note on the vegetation sampling form the type of vegetation sampled (e.g. wheat, corn, native grass, etc) using the predefined list in the HDAS, its height and row spacing and direction if relevant.

2. Randomly place the 0.5 m × 0.5 m quadrant on the ground within the area sampled by Cropscan/ASD/LAI-2000.

3. Label the bag provided using a permanent marker with the following information: Area_ID / DD-MM-YY / Sample_ID. Take a photo of area to be sampled prior to removal of vegetation.

4. Record sample location with GPS and sample location reference number in GETAC.

5. Remove all above-ground biomass within the 0.5 m × 0.5 m quadrants using vegetation clippers and scissors provided.

6. Place vegetation sample into labelled paper bag provided.

7. Close paper bag with sample using rubber bands provided and place this bag into a second plastic bag to ensure that no moisture will be lost.

8. Take a photo of sample plot following removal of above-ground biomass.

9. Fill up the vegetation sampling form with all the required information (a copy of the vegetation sampling form is given in Appendix F).

It is the responsibility of each team to deliver the vegetation samples to the operations base at the end of the day for determination of wet and dry weight (see protocol below) and placement in the dehydrators.

Laboratory protocol for biomass and vegetation water content determination

All vegetation samples are processed to obtain a wet and dry weight. Vegetation samples will be processed at the YAI. The YAI facilities that will be used for the processing of vegetation samples are electronic balances and large dehydrators (max 70°C).

Wet Weight Procedure

1. Turn on electronic balance.

2. Tare.

3. Remove the paper bags with vegetation for a given field from the large plastic bag. Note any excessive condensation on the inside of the plastic trash bag and record this on the vegetation drying form.
4. Record wet weight (sample + bag) of each paper bag with veg on the vegetation drying form. Record wet weight (sample + bag) in the computer excel vegetation drying form.

5. Put the sample + bag in the oven for drying. Try to keep all bags for a given field on the same shelf in the oven. Note the time that the bags were placed in the oven on the drying form (see procedure below).

Drying Procedure

1. Place the samples in the dehydrator to dry. Record the location of the sample in the dehydrator (dehydrator ID and shelf ID) together with date and time on the vegetation drying form when you start and end the drying.

2. Dry samples in oven at > 45° C until constant weight is reached (typically 2-3 days), and leave it to dry until a constant weight is reached (typically 2-3 days depending on how wet the vegetation is to start with – very dense wet vegetation could take longer to dry)

3. Turn on balance.

4. Tare.

5. Remove samples from dehydrator one at the time, close the dehydrator and put samples immediately on the electronic scale.

6. Record dry weight (sample + bag) on the vegetation drying form

NOTE: once out of the dehydrator, the vegetation sample will absorb moisture from the air surprisingly quickly. The dry weight should be recorded within not longer than 10 seconds from removing the sample from the oven.

Taring of plastic bags

At some point during the field experiment (preferably at the beginning), weigh a reasonable number (20-30) of dry new paper bags under normal room conditions, place in the ovens at the vegetation drying temperature (usually 65° C), and weigh again (taking them out of the oven one at a time) after 2-3 days of drying. The difference between the average before-drying weight of a bag and the after-drying weight of a bag is the amount of weight lost by the bags themselves during the oven drying process. This value needs to be considered in converting the wet & dry weights of the vegetation into an estimate of vegetation water content (VWC).

6.4 **Soil gravimetric measurements**

At least three soil gravimetric samples should be collected per day in each focus area. It will be the responsibility of the team leader to collect these samples, making sure that all soil types and the complete range of soil moisture encountered in the focus area on that day are included. These gravimetric soil samples will be weighed at sample check-in on return to the operations base.

Gravimetric soil moisture sampling kit

- 1x Sampling ring (approximately 7.5 cm diameter and 5 cm depth)
• 1x Crate medium size
• 1x Garden trowel
• 1x Blade
• 1x Spatula
• 1x Hammer
• 1x Metal base for hammering rings
• Plastic bags
• Rubber bands
• Print out of soil recording form
• Pens
• Markers

Gravimetric soil moisture sampling protocol

1. Take a minimum of 3 soil moisture readings with the Hydraprobe immediately adjacent to the soil to be sampled, plus 1 reading in the soil sample if conditions permit. Indicate the gravimetric sample ID in page 3 “Other” of the HDAS screen. The gravimetric sample ID will be the same for the 3 measurements taken adjacent to the soil sample and will correspond to the ID indicated on the sample bag. Also indicate if the measurement is taken in the sample.

2. Remove vegetation and litter.

3. Place the ring on the ground.

4. Put the metal base horizontal on top of the ring and use the hammer to insert the ring in the ground, until its upper edge is level with the ground surface but without compacting the ground.

5. Use the garden trowel to dig away the soil at the side of the ring. The hole should reach the bottom of the ring (5 cm) and should be sufficiently large to accommodate the spatula for ring removal.

6. Use the spatula to cut the 0-5 cm soil sample at the bottom of the ring.

7. Place the 0-5 cm soil sample in the plastic bag ensuring that no soil is lost.

8. Write Area_ID / TEAM_ID/ DD-MM-YY / Sample_ID on the carton tag provided and place it in the bag.

9. Seal the bag with the rubber band provided then place this bag into a second bag and seal the second bag.
Gravimetric soil moisture determination

All gravimetric samples are processed to obtain a wet and dry weight. Gravimetric samples will be processed at the YAI, where an electronic balance and an oven will be available. It is the responsibility of each team leader to deliver the gravimetric samples to the operations base at the end of the day, determine wet weight, oven-dry and determine dry weight of the samples. All the information are to be recorded in the Gravimetric_Drying.xls (one form per day, see templates in Appendix F).

Wet weight determination

1. Turn on balance.
2. Tare.
3. Record wet weight (sample + bags + rubber bands) into the gravimetric drying form.
4. Record bags and rubber bands weight into the gravimetric drying form.
5. Record aluminium tray weight on the gravimetric drying form.
6. Label the aluminium tray uniquely based on the sample ID using a permanent marker.
7. Place the used bags in order. The labelled bags will be used for permanently storing the samples after the drying procedure is finished.

Dry weight determination

1. Place the samples in the oven to dry at 105°C for 24 hours. Record the date and time (local) on the gravimetric drying form when you start and end the drying.
2. Turn on balance.
3. Tare.
4. Remove samples from oven one at the time, close the oven and put samples immediately on the electronic scale. These samples will be hot! Use the gloves provided.
5. Record dry weight (sample + tray) on the gravimetric drying form
6. Return soil into the original plastic bag, close bag with a rubber band and store samples

6.5 Surface roughness measurements

Both Team A and Team B will be responsible for the surface roughness measurements during PRISM. Three surface roughness profiles will be acquired within each paddock representing a major land use and land cover type in each focus area. Each measurement will consist of two, 3m-long profiles. In non-furrowed fields, one will be oriented parallel to the flight line and one perpendicular to it. In furrowed fields, the measurement will follow along the row and across and row. The 3 measurements should cover the variability of surface conditions observed within the land cover patch of interest.
Surface roughness sampling kit

- 1x GETAC unit
- 1x roughness profiler (pin profiler or auto-scanning one)
- 1x Built-in level
- 1x Field book
- 1x Pencil
- 1x Roughness sampling recording form
- 1x Digital camera
- 4x Wooden blocks
- 1x Marker

Surface roughness sampling protocol

Soil roughness measurements will be made using a 1 m long drop pin profiler with a pin separation of 5 mm (see Figure). Photos of the pin profile will be taken at each sampling location and the images post-processed to extract the roughness profiles and thus roughness statistics. At each soil roughness sampling location, 3 lots of consecutive readings (to simulate a 3 m long profile) will be performed. In non-furrowed areas, North-South and East-West orientations measurements will be made. For furrowed crop areas, the pin profiler will be placed along/across rows. A 3 m profile has been shown to provide stable correlation lengths in previous campaigns.

The procedure for one roughness measurement is as follows:

1. Note in the roughness sampling form date, the sample ID, the UTC time, the focus area ID, the coordinates (from GPS), the land cover type (from the classification provided in Section 7.2), the vegetation type, the row direction (if crops) the orientation (determined using the compass) of the roughness measurements as well as the name of the person sampling.

2. Select an area for a 3 m roughness transect (N-S or E-W). Assure that the sun will be at your back when taking roughness photos. Position the profiler parallel to the transect.

3. Place the roughness profiler vertically above the first 1 m of the desired transect (the right one, defined from perspective of photograph), avoiding stepping over the area chosen for the remaining 2 m profile.

4. Use the compass to align the profiler exactly N-S or E-W, depending on the transect. Clear vegetation if necessary from the proposed transect.

5. Release the profiler legs using the controls at the back of the profiler. Level the profiler horizontally.

6. When the profiler is horizontal, extend the lateral legs to sustain the profiler.
7. Mark the position of the profiler left foot on the side of the pin profiler adjacent to the next meter of the desired transect using a stick, or mark position BEHIND the profiler (left and right defined from perspective of photograph).

8. Release the pins. Make sure that all the profiler pins touch the soil surface. The pins MUST NOT be inserted into the ground or be resting on top of vegetation.

9. Extend the camera bar and position the camera, making sure the lens plane is parallel to the profiler board.

10. Take a photograph (#1) of the profiler clearly showing the level of all pins. Pay particular attention that ALL the pins are included in the photograph. Note the photo identification number in the roughness sampling form.

11. After retracting the camera bar and the lateral legs, lift the profiler and move it to behind and parallel to the transects.

12. Lift the profiler on to its back, retract the pins and block them using the bottom enclosure.

13. Shift the profiler over 1 m so that its right foot is now in front of the marker which was used to flag the profiler left foot (left and right defined from perspective of photograph).

14. Repeat procedure in Step #3-12 above to take photograph and note photo ID #2.

15. Repeat steps #13-14 for photograph #3 of the transect. Note that the 3 photographs for the 3-m transect are always taken left to right (as you face the profiler with the camera).

16. Repeat steps #1-15 for the 3, 1-m long profiles in the perpendicular direction.

This protocol should produce 2 continuous 3m-long profiles (without gaps between photographs #1 and #2, and between photographs #2 and #3) in each direction.
6.6 Data archiving procedures

All the data collected during the daily sampling will be saved onto a field laptop which will be available at the operation base. The exact location of the laptop will be communicated during the training session. Team A and Team B will use the laptop for data downloading and archiving for the campaign duration. The aircraft team will archive data independently. The data archived will be backed up daily on an external hard drive. It is the responsibility of each team member to download and properly archive the data collected with their HDAS system following the procedures outlined below. Data must be downloaded and archived immediately at the end of the sampling, upon returning to the Yanco Agricultural Institute. It is the responsibility of each team leader to make sure that every team member has downloaded their data onto the field laptop. It is the responsibility of the ground crew leader to back up daily on external hard drive.

Download and archiving HDAS data

This section explains how to save the data collected in the field to the data archive in the field laptop

1. Connect the GETAC unit to the field laptop using the GETAC USB cable.
2. The GETAC unit will be added as a new drive in the “My Computer” (same as for a normal USB pen).
3. Click on the drive icon in the Windows Explorer.
4. Navigate in the GETAC file system to the folder named “SD Card” in the root directory.
5. Copy and paste all the files with root name “hydra” or “hydraGRID” (extensions .dbf, .shb, .shx, .prj and .apl). Put the files into the field laptop folder named “Desktop\PRISM\Ground_Data\DD-MM-YY\Area_ID\HDAS\TEAM_S\UserName_PoleID” where DD is day, MM is month, YY is the year (Please note: date/time must be AET), Area_ID is the focus area identification code, S is the team identification letter (A, B, or C), UserName is the Family name of the team member whose HDAS is being downloaded and PoleID is the ID of the HDAS system being downloaded.
6. Make a backup of the HDAS data as follows: Once the files have been properly saved on the laptop, go to folder “SD Card” on the GETAC unit, make a copy of the folder “SD Card” and rename the copied folder as “DD-MM-YY _UserName_PoleID”
7. Finally, empty the content of the folder “SD Card” by deleting all the files with prefix “hydra” or “hydraGRID”.

Step-by-step information on the operation of the HDAS system, including file upload and download, sampling commands and troubleshooting is included in Appendix B.

Archiving soil roughness data

Soil roughness data will be archived both in hardcopy and electronically by each ground team:

- The data from the roughness sampling form will be entered at the end of the day in the pre-populated file Roughness.xls, and stored on the data laptop folder
“Desktop\PRISM\Ground_Data\DD-MM-YY\ Area_ID\Roughness\” where DD is day, MM is month, YY is the year (Please note: date/time must be AET) and Area_ID is the focus area identification code. These data must be typed up at the end of the sampling day or at latest the subsequent day. The photos must also be stored in the same directory as the xls file, renamed as Roughness_DD-MM-YY_.jpg where # is the photo identification number provided by the camera and crossed-referenced in the hardcopy form.

- The roughness sampling form will be submitted to each team leader at the end of the sampling day after completing the step above.
7. LOGISTICS

PRISM activities will be supported by a ground crew, aircraft crew and support crew, overseen by Prof Jeff Walker. The aircraft activities will be conducted from Narrandera Airport, while the ground and support crew will be based in the Yanco Agricultural Institute (YAI), which will provide lab space and equipment for pre-sampling and post-sampling operations. Dr Nan Ye and Kiri Mason will be responsible for instrument repair and general technical support. Breakdowns and instrument faults must be reported to one of them (as well as your team leader) at the end of each day. Your HDAS data and ground samples MUST be archived according to the instruction in this work plan promptly at the end of each sampling day, either directly or via your team leader, so he/she can further process the data/samples, thus ensuring the early identification of sampling issues and availability of quality data at the end of the campaign.

7.1 Teams

Ground sampling operations will be undertaken by two teams acting independently, and will be coordinated by Dr Xiaoling Wu. Teams A and B will be responsible for soil moisture monitoring, vegetation and roughness sampling five days per week. Each of the two ground soil moisture teams have been assigned one of the two focus areas. The aircraft crew (Team C) will operate from the Narrandera airport and be coordinated by Prof Jeff Walker.

<table>
<thead>
<tr>
<th>Team</th>
<th>A</th>
<th>Team Leader</th>
<th>Nan Ye</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus Area</td>
<td>YA (YA4 or YA7)</td>
<td>Nan Ye*, Liujun Zhu*/Nguyen Thi Mai, Linlin Zhang*, Jeremy Johnston, Jiewei Feng/Chaoxun Hang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team Members</td>
<td>Nan Ye*, Xiaoling Wu*, Xiaoji Shen*, Rahuh Raj, Tasnuva Rouf, Amir Tophel/Louis Jalenques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>Intensive soil moisture sampling, vegetation and roughness sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team</th>
<th>B</th>
<th>Team Leader</th>
<th>Xiaoling Wu</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus Area</td>
<td>YE</td>
<td>Xiaoling Wu*</td>
<td>Xiaoling Wu*, Xiaoji Shen*, Rahuh Raj, Tasnuva Rouf, Amir Tophel/Louis Jalenques</td>
<td></td>
</tr>
<tr>
<td>Team Members</td>
<td>Xiaoling Wu*, Xiaoling Wu*, Xiaoji Shen*, Rahuh Raj, Tasnuva Rouf, Amir Tophel/Louis Jalenques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>Intensive soil moisture sampling, vegetation and roughness sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team</th>
<th>C</th>
<th>Team Leader</th>
<th>Jeff Walker</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus Area</td>
<td>YA and YE</td>
<td>Jeff Walker*</td>
<td>Jon Johansson*, Nithy Boopathi*/Ying Gao*</td>
<td></td>
</tr>
<tr>
<td>Team Members</td>
<td>Jeff Walker*, Jon Johansson*, Nithy Boopathi*/Ying Gao*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>Airborne sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team</th>
<th>D</th>
<th>Team Leader</th>
<th>Kiri Mason</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus Area</td>
<td>YA, YE, Lake</td>
<td>Kiri Mason*</td>
<td>Kiri Mason*</td>
<td></td>
</tr>
<tr>
<td>Team Members</td>
<td>Kiri Mason*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>Lake transects sampling, equipment maintenance, monitoring station checking, and data downloading</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The composition of the teams and the focus areas of each are listed in Table 7-1. Contact details for all participants are given in Chapter 8.

7.2 Operation base

The Yanco Agricultural Institute (YAI, http://www.agric.nsw.gov.au/reader/yanco) is an 825ha campus located at Yanco, in the Murrumbidgee Irrigation Area. The centre is just 10 min drive from Leeton, and 20 min drive from Narrandera, junction of the Sturt and Newell Highways (see location in Figure 7-2). YAI shares the site and resources with Murrumbidgee Rural Studies Centre (MRSC, http://www.mrsc.nsw.edu.au), formerly known as Murrumbidgee College of Agriculture. Both MRSC and YAI are run by the NSW Department of Primary Industries (NSW DPI). A map of the YAI and the facilities available to PRISM participants is provided in Figure 7-1.

Facilities available during the campaign include: lab space, storage shed, two types of accommodation and a conference room. Air crew will also be based in YAI and operate out of Narrandera Airport.

7.3 Accommodation

Accommodation costs will be covered by Monash University or individual’s institutions according to agreed arrangements. Participants who have accommodation and meals expenses paid by the PRISM project will be staying at Inga or Amaroo.

Figure 7-1. Map of the Yanco Agricultural Institute.
‘Amaroo’ motel-style accommodation

Amaroo, meaning ‘a quiet place’, features 15 bed and breakfast (continental) motel-style rooms (see location in Figure 7-1). Each room has a queen bed and a single bed, ensuite, TV, toaster, tea and coffee making facilities, bar fridge, and heating and cooling and wi-fi internet access, and are fully serviced except on weekends. The motel rooms are organised around a central courtyard with barbecue facilities. Price is $110/night/room for double room (incl. breakfast).

‘Inga’ bunk house accommodation

Figure 7-2. Location of the YAI at Yanco.

Table 7-2. Accommodation logistics for PRISM participants.

<table>
<thead>
<tr>
<th>Name of participant</th>
<th>Accommodation type</th>
<th>Check in</th>
<th>Check out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiri Mason</td>
<td>Inga 1</td>
<td>28-Sep</td>
<td>TBC</td>
</tr>
<tr>
<td>Xiaoling Wu</td>
<td>Inga 2</td>
<td>28-Sep</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Nithy Boopathi</td>
<td>Inga 3</td>
<td>28-Sep</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Nan Ye</td>
<td>Inga 4</td>
<td>23-Sep</td>
<td>21-Oct</td>
</tr>
<tr>
<td>Liujun Zhu</td>
<td>Inga 5</td>
<td>23-Sep</td>
<td>12-Oct</td>
</tr>
<tr>
<td>Nguyen Thi Mai</td>
<td>Inga 5</td>
<td>14-Oct</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Xiaoji Shen</td>
<td>Inga 6</td>
<td>28-Sep</td>
<td>21-Oct</td>
</tr>
<tr>
<td>Amir Tophel</td>
<td>Inga 7</td>
<td>28-Sep</td>
<td>05-Oct</td>
</tr>
<tr>
<td>Louis Jalenques</td>
<td>Inga 7</td>
<td>14-Oct</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Linlin Zhang</td>
<td>Inga 8</td>
<td>28-Sep</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Rahul Raj</td>
<td>Inga 9</td>
<td>28-Sep</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Jeremy Johnston</td>
<td>Inga 10</td>
<td>14-Sep</td>
<td>28-Sep</td>
</tr>
<tr>
<td>Tasnuva Rouf</td>
<td>Inga 11</td>
<td>28-Sep</td>
<td>28-Sep</td>
</tr>
<tr>
<td>Jon Johansson</td>
<td>Inga 12</td>
<td>28-Sep</td>
<td>28-Sep</td>
</tr>
<tr>
<td>Jiewei Feng</td>
<td>Inga 13</td>
<td>28-Sep</td>
<td>8-Oct</td>
</tr>
<tr>
<td>Chaoxun Hang</td>
<td>Inga 13</td>
<td>14-Oct</td>
<td>19-Oct</td>
</tr>
<tr>
<td>Jeff Walker</td>
<td>Inga 14</td>
<td>28-Sep</td>
<td>19-Oct</td>
</tr>
</tbody>
</table>
Inga has 14 rooms (see location in Figure 7-1). Rooms have a double bunk, wardrobe and desk. Linen and towels are provided. The bunk house has a kitchen with microwave, kettle and fridge. A free laundry, lounge room and separate-sex bathroom facilities are also featured. Cost is $50/night/person. Accommodation arrangements for all participants are listed in Table 7-2.

7.4 Meals

Meal costs will be covered by Monash University or the individual’s institutions according to agreed arrangements (ie. participants fully funded by the PRISM project up to a reasonable limit; note that purchase of alcohol attracts FBT and consequently will be supplied only at the individuals own expense). Detailed meal arrangements are as per below.

Breakfast: A variety of breakfast choices (cereals, milk, toasts, jams) will be made available in the Inga kitchen for PRISM funded participants (please advise Xiaoling Wu of any particular dietary requirements upon arrival). A fridge and range of kitchen supplies are available in the Inga kitchen for this purpose.

Lunch: No facilities will be open in time on sampling days for buying lunch prior to departure for the field. Moreover, there are typically no facilities near to the sampling areas themselves for buying lunches, nor are you likely to pass any shops on the way to your sampling site. Therefore lunches must be pre-packed for carrying with you into the field; remember to also pack a water bottle. Similar to breakfast arrangements described above, guests staying at Inga and funded by the PRISM project will be provided with a selection of fillings for making sandwiches in the Inga kitchen (please advise Xiaoling Wu of any particular dietary requirements upon arrival). Opportunities to visit the supermarket will be provided at least twice per week. As the kitchens are rather small, participants should consider making his/her own lunch the night before (especially if you are not a morning person) or getting up sufficiently early so that there is no undue kitchen congestion leading to delayed departures for the field.

Dinner: When at YIA the only options for dinner are to drive into Yanco (2 km), Leeton (5 km) or Narrandera (20 km). Typically meals are purchased from the Leeton Soldiers Club or Leeton Hotel; other venues do not allow split bills.

7.5 Internet

Wireless Internet access will be available to PRISM participants. Wifi vouchers will be provided to each participant free of charge. The vouchers have to be activated within two days of printing. Please note that signal strength in Inga may be poor.

7.6 Daily activities

Field work during PRISM will consist of collecting data in the Yanco Region and archiving the information collected during the sampling days. Table 7-3 lists the campaign schedule. Team leaders will in turn report to Nan Ye or Kiri Mason for technical/equipment repairs. Team leaders will also be responsible for confirming ALL data is appropriately recorded/archived at the end of EACH sampling day.
The daily schedule during sampling days is shown in Table 7-5. At the end of the day, each team member will need to coordinate with their team leader (as relevant).

Table 7-5. RPISM schedule.

<table>
<thead>
<tr>
<th>Date</th>
<th>Flight</th>
<th>Time</th>
<th>Location</th>
<th>Activity</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat, 28/09/2019</td>
<td></td>
<td>7:30-11:00</td>
<td>-</td>
<td>Travel Melbourne-Yanco</td>
<td>N. Ye, X. Wu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:45-14:00</td>
<td>YAI</td>
<td>Check in at YAI</td>
<td>X. Wu, N. Ye</td>
</tr>
<tr>
<td>Sun, 29/09/2019</td>
<td></td>
<td>9:00-17:30</td>
<td>YAI, farms</td>
<td>Seminar/Training-Theory</td>
<td>N. Ye</td>
</tr>
</tbody>
</table>

Mon, 30/09/2019	Flight 1-SM	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Tue, 01/10/2019	Flight 2-MA	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Wed, 02/10/2019	Flight 3-DS	Teams A and B: intensive vegetation sampling and roughness sampling on Farms YA and YE, respectively;			
Thu, 03/10/2019	Flight 4-5SM	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Fri, 04/10/2019	Flight 5-MA	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Sat, 05/10/2019		Scheduled day-off			
Sun, 06/10/2019		Scheduled day-off			
Mon, 07/10/2019	Flight 6-DS	Teams A and B: intensive vegetation sampling and roughness sampling on Farms YA and YE, respectively;			
Tue, 08/10/2019	Flight 7-5M	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Wed, 09/10/2019	Flight 8-MA	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Thu, 10/10/2019	Flight 9-DS	Teams A and B: intensive vegetation sampling and roughness sampling on Farms YA and YE, respectively;			
Fri, 11/10/2019	Flight 10-5M	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Sat, 12/10/2019		Scheduled day-off			
Sun, 13/10/2019		Scheduled day-off			
Mon, 14/10/2019	Flight 11-MA	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Tue, 15/10/2019	Flight 12-DS	Teams A and B: intensive vegetation sampling and roughness sampling on Farms YA and YE, respectively;			
Wed, 16/10/2019	Flight 13-5M	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Thu, 17/10/2019	Flight 14-MA	Teams A and B: soil moisture sampling on Farms YA and YE, respectively;			
Fri, 18/10/2019	Flight 15-DS	Teams A and B: intensive vegetation sampling and roughness sampling on Farms YA and YE, respectively;			
Sat, 19/10/2019		8:30-14:30	-	Travel Yanco - Melbourne	X. Wu, Y. Gao
On soil moisture sampling days

- Download their HDAS data and have it checked for completeness;
- Review the schedule for the following day;
- Check-in their gravimetric samples and any associated information (see Section 7); samples must be weighed, details entered on the hardcopy pro-forma (see Appendix F) provided (any additional information should be written down and attached to the check-in sheet and not simply passed word-of-mouth) AND entered in the excel pro-forma provided;
- Check-in the instruments used, ensuring ALL electronic devices are recharged overnight and any repairs needed reported to BOTH your team leader and Nan Ye or Kiri Mason (please, do not wait until the next sampling day!!); and
- Ensure all electronic devices are put to recharge (GETAC, HDAS batteries, UHF radios).

On vegetation and roughness sampling days

- Record data from field forms to electronic format.
- Re-charge batteries for electronic equipment used in the field.
- Save photos to a backup media (different folders for LAI photos and plot photos).
- Oven dry leaf samples, measure dry weight, calculate the moisture content, record data in electronic form, store dry samples.
- Check-in all vegetation samples and spectral data etc. information; samples must be weighed and details entered on the hard copy pro-forma provided (see Appendix F) as well as entered in the excel pro-forma provided.
- Check-in their roughness data; must be typed in the excel pro-forma provided (hard copy pro-forma is also to be submitted).

Table 7-4. PRISM sampling day schedule.

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00~6:30</td>
<td>Gathering of the teams at the laboratory</td>
</tr>
<tr>
<td></td>
<td>Review of the activity of the day</td>
</tr>
<tr>
<td></td>
<td>Preparation of the instruments for the sampling</td>
</tr>
<tr>
<td>6:30 (sunrise)</td>
<td>Teams departure for the sampling location</td>
</tr>
<tr>
<td>6:30~7:30</td>
<td>Travel to the focus areas</td>
</tr>
<tr>
<td>7:30~16:00</td>
<td>Sampling operations</td>
</tr>
<tr>
<td>16:00~17:00</td>
<td>Travel to the YAI</td>
</tr>
<tr>
<td>17:00~18:00</td>
<td>Teams return to the lab</td>
</tr>
<tr>
<td></td>
<td>Report to the project leaders</td>
</tr>
<tr>
<td></td>
<td>Data downloading on the computers</td>
</tr>
<tr>
<td></td>
<td>Soil and vegetation samples check in</td>
</tr>
<tr>
<td></td>
<td>Recharge of electronic devices</td>
</tr>
<tr>
<td>18:00</td>
<td>Depart for dinner is at 18:00 sharply from Inga</td>
</tr>
<tr>
<td>18:00-onward</td>
<td>Dinner</td>
</tr>
<tr>
<td></td>
<td>Refuel vehicles</td>
</tr>
<tr>
<td></td>
<td>Visit supermarket</td>
</tr>
</tbody>
</table>
7.7 Training sessions

Two training sessions have been scheduled to ensure all PRISM participants are familiar with the project objectives, the sampling strategy and the use of all the instruments involved in the sampling. The theoretical training session is scheduled for the afternoon/evening on 28 September in YAI, while the practical training session and visit to the sampling areas are scheduled for 29 September 2019 on farms, with the detailed schedule and activities indicated in Table 7-5.

Theoretical training sessions will cover:

- Overview of the campaign logistics, ground sampling and flight schedule;
- End-of-day data download and housekeeping procedures;
- Overview of the “code of conduct” on farms, first aid, driving on unsealed farm tracks;
- Use of the Hydraprobe Data Acquisition System (HDAS);
- Vegetation height estimation;
- Vegetation type recognition;
- Dew amount recognition; and
- Vegetation sampling procedures.

7.8 Farm access and mobility

Farms will be accessed regularly for the ground sampling operations. Transport from the ground operations base to the farm (and in some case across the farm) for sampling will be done using the team 4WD vehicle. Please note that 4WD driving on off-road areas and farm tracks can lead to injury and death, and therefore requires extreme attention and care and should only be undertaken after appropriate training. Driving through cultivated areas and grasslands should be avoided at all times, due to the serious damage the transit could cause to crops or to the vehicle. As there will be poor or no mobile phone coverage at many farms, each team member will be issued with a small UHF radio for team communication, as an additional security measure (Please take care not to lose it!).
The sampling locations have been organised so that only reasonably accessible areas will be the object of the sampling.

It is left to the team leader to agree a sampling strategy with the team members. However, it is recommended to follow these guidelines:

- Before starting the sampling, the team should agree and identify clearly on the map a meeting point and a meeting time where to gather at the end of the sampling. NOTE: the UHF radio provided and mobile phones might not always be effective due to various factors, so it is important that each team member is able to locate the meeting point on the map and return to it.

- At the beginning of the sampling, team leaders will define a sampling approach with the team members. Each pair of team members will be assigned a number of sections of the 3km × 3km area, and will be solely responsible for sampling the entire section. Each section will be identified on the hardcopy maps provided using clearly visible features, such as irrigation canals, paddock fences and roads. The sections should be defined and agreed to avoid having two groups accidentally sampling the same location at different times during the day, or worse, being entirely missed.

- Each group should then identify an access point to their section from the main roads. The team leader will drive the team members to their access location, and leave the car at the agreed meeting point before starting his/her own sampling.

- It is highly recommended that each group of 2 people sample their own section by “area” rather than by “line”, i.e., once you enter an area delimited by a fence, canal or road, sample all the locations falling within the delimited area along transects, keeping your group mate always in sight. Only move to the adjacent area after fully completing the first area.

- When sampling on cropped areas, always move through a field along the row direction to avoid impact on the canopy.

- The team leader is to do an in-field inspection of sample locations on the GETAC prior to returning to YAI to ensure that NO points have been missed.

7.9 Communication

Communication between team members, teams and experiment coordinators is essential both from a logistic and safety point of view. In every team there will be at least one mobile phone with the team leader. Moreover, each team member will have a hand-held UHF radio on a pre-agreed channel; normally channel 38. Additionally, working together as a team, or at least in pairs, will ensure that contact within the individual team members is maintained. Ensure that each team member can be accounted for each half an hour. If a team member cannot be accounted for, search initiation should be immediate. On most farms the mobile phone coverage is extensive, while on some it is poor, and thus use of UHF radio, visual contact, and other means of communication will be more important. Contact information of the PRISM participants is listed in Chapter 8.
7.10 Safety

There are a number of potential hazards in doing field work. Common sense can avoid most problems. However, the following has some good suggestions. Remember to:

- Always work in teams of two.
- Carry a phone and/or UHF radio.
- Please keep unnecessary UHF communication (jokes, chit-chat, etc.) to a minimum. Your team mate might be trying to communicate if he/she is in trouble.
- Know where you are. Keep track of your position on the provided farm map.
- Do not approach, touch or eat any unidentified objects in the field.
- Dress correctly; long pants, long sleeves, hiking boots, hat, etc.
- Use sunscreen.
- Carry plenty of water with you in a backpack for hydration.
- Notify your Team mate and Team leader of any pre-existing conditions or allergies before going into the field.
- Beware of harvesting machinery and crop dusters. When sampling on crop, always make sure your presence is noted and watch out for moving harvesting machines.
- Beware of snakes. Always wear sturdy hiking boots and long work pants to avoid penetrating bites. Refer to http://www.australianfauna.com/australiansnakes.php for detailed info about the most common Australian snake species. Treat all Australian snakes as potentially deadly. In 99.9% of all encounters, the snake will try to avoid any human contact. For detailed information on how to avoid a snake bite and how to treat a person who has been bitten, see Appendix J.
- Do not run through high grass or uneven ground to avoid injuries.
- The temperature used for the soil drying ovens is 105°C. Touching the metal sample cans or the inside of the oven may result in burns. Use the safety gloves provided when placing cans in or removing cans from a hot oven. Vegetation drying is conducted at lower temperatures that pose no hazard.

7.11 Travel logistics

Getting there

In terms of booking flights etc., international participants should fly into Melbourne (or Sydney). To travel to Yanco there are three options below:

- Get a lift to Yanco on the "Melbourne shuttle" (see below; please contact Dr Xiaoling Wu if you want to join the shuttle to or from Yanco),
• Get a connecting flight to Narrandera with Regional Express (REX), where there will be somebody waiting to pick you up and take you to Yanco which is ~20min drive away (please give your arrival details to Dr Xiaoling Wu if that is the case) or

• If you are planning to have a rental car for your own purposes, arrange to pick it up in Sydney/ Melbourne/elsewhere and drive direct to Yanco/Leeton (~5-7hrs; some people may want to car pool and do this); see detailed driving directions below. You may also wish to take a connecting flight to Canberra (~4hrs from Yanco) with Qantas, Virginblue or Jetstar, or to Wagga Wagga (~1hr from Yanco) with REX and drive from there.

• If you are planning to take the public transportation, you may take the train from Melbourne Southern Cross train station to Wagga Wagga station (4hrs40min), and then take the bus from Wagga Wagga bus stop to Yanco bus stop at Main Ave (1hr50in). We will have someone picking you up at the Yanco bus stop if we are given the arriving date/time beforehand.

NOTE: All ground crew are expected to attend the training sessions on both Saturday 28 and Sunday 29 September. Those arriving mid-experiment are expected to have a detailed safety and first aid briefing, and to study how to conduct field sampling with their instruments from their campaign “buddy” who they are switching with. A short quiz will be provided to ensure competency.

The travel itinerary and detailed driving instructions from Melbourne, Sydney, Canberra and Wagga Wagga to Yanco can be found on Googlemaps.

Melbourne shuttle

A "Melbourne shuttle" will be organized to transport interested participants from Melbourne to Yanco on Sat, 28 Sep (Meeting point: 17 Alliance Lane, Monash Clayton Campus at 7:30am) and return to Melbourne on Sat, 19 Oct (arrival sometime in the afternoon/evening). The "Melbourne shuttle" will consist of 3 vehicles (Monash 4WD #1, Monash 4WD #2 and Monash Compact car #1, see Table 7-6). Details on seat allocations are TBD. Dr Xiaoling Wu will coordinate the shuttle from Melbourne to Yanco, and from Yanco back to Melbourne.

Getting to the farms

Each ground sampling team will use their vehicle to drive to the focus areas in the morning and return to the YAI at the end of the sampling. The team leaders will have knowledge of the routes to/from the focus areas to the YAI. However, driving directions from the YAI to the focus areas are provided in Appendix G.

Vehicles
Table 7-6 provides useful information on pick-up and drop-off dates, and responsible person for Team A, B and C vehicles during PRISM. Team D (Kiri Mason) will make their own arrangements for renting their vehicle.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Rental company</th>
<th>Responsible person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monash Rental 4WD #1</td>
<td>Pick-up 20/09</td>
<td>Off Road Rentals</td>
<td>Nan Ye</td>
</tr>
<tr>
<td></td>
<td>Drop-off 21/10</td>
<td></td>
<td>Nan Ye</td>
</tr>
<tr>
<td>Monash Rental 4WD #2</td>
<td>Pick-up 26/09</td>
<td>Off Road Rentals</td>
<td>Xiao Ling Wu</td>
</tr>
<tr>
<td></td>
<td>Drop-off 19/10</td>
<td></td>
<td>Xiao Ling Wu</td>
</tr>
<tr>
<td>Monash Rental 4WD #3</td>
<td>Pick-up TBC</td>
<td>Off Road Rentals</td>
<td>Kiri Mason</td>
</tr>
<tr>
<td></td>
<td>Drop-off TBC</td>
<td></td>
<td>Kiri Mason</td>
</tr>
<tr>
<td>Trailer</td>
<td>Pick-up 25/09</td>
<td>TRIK Bayswater</td>
<td>Xiao Ling Wu</td>
</tr>
<tr>
<td></td>
<td>Drop-off 21/10</td>
<td></td>
<td>Xiao Ling Wu</td>
</tr>
<tr>
<td>Monash Rental Compact car #1</td>
<td>Pick-up 26/09</td>
<td>Budget</td>
<td>Xiao Ji Shen</td>
</tr>
<tr>
<td></td>
<td>Drop-off 19/10</td>
<td></td>
<td>Xiao Ji Shen</td>
</tr>
</tbody>
</table>
8. CONTACTS

8.1 Primary contacts for PRISM

The primary contacts for this experiment are:

Professor Jeffrey Walker Phone: 03 990 59681
Mobile: 0413 023 915
Email: jeff.walker@monash.edu

Dr Nan Ye Phone: 03 990 54950
Mobile: 0410 168 213
Email: nan.ye@monash.edu

Dr Xiaoling Wu Phone: 03 990 54950
Mobile: 0425 118 055
Email: xiaoling.wu@monash.edu

Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia

The satellite phone numbers are **0011 872 761 151 283** and **0011 872 762 482 911**. Those are only used for emergencies. For any other call, please contact the participants via the accommodation in the evening.

8.2 Participants

Contact details for all participants are listed below:

<table>
<thead>
<tr>
<th>Person</th>
<th>Organization</th>
<th>Phone number</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaoling Wu</td>
<td>Monash</td>
<td>0425118055</td>
<td>xiaoling.wu@monash.edu</td>
</tr>
<tr>
<td>Liujun Zhu</td>
<td>Monash</td>
<td>0404375295</td>
<td>liujun.zhu@monash.edu</td>
</tr>
<tr>
<td>Rahul Rahul Raj</td>
<td>IITB</td>
<td>0431544508</td>
<td>rahul.rahulraj@monash.edu</td>
</tr>
<tr>
<td>Nithy Boopathi</td>
<td>IITB</td>
<td>0470658946</td>
<td>Nithyapriya.Boopathi@monash.edu</td>
</tr>
<tr>
<td>Tasnuva Rouf</td>
<td>GMU</td>
<td>1-919-917-170</td>
<td>trouf@gmu.edu</td>
</tr>
<tr>
<td>Ye Nan</td>
<td>Monash</td>
<td>0410168213</td>
<td>nan.ye@monash.edu</td>
</tr>
<tr>
<td>Xiaoji Shen</td>
<td>Monash</td>
<td>0410981365</td>
<td>xiaoji.shen@monash.edu</td>
</tr>
<tr>
<td>Linlin Zhang</td>
<td>Monash</td>
<td>0433699823</td>
<td>linlin.zhang@monash.edu</td>
</tr>
<tr>
<td>Jeremy Johnson</td>
<td>GMU</td>
<td>1-(434)-981-2934</td>
<td>jjohns60@gmu.edu</td>
</tr>
<tr>
<td>Jiewei Feng</td>
<td>Monash</td>
<td>0410227007</td>
<td>jiewei.feng1@monash.edu</td>
</tr>
<tr>
<td>Chaoxun Hang</td>
<td>Monash</td>
<td>04 8175 5016</td>
<td>chaoxun.hang@monash.edu</td>
</tr>
<tr>
<td>Jeff Walker</td>
<td>Monash</td>
<td>0413023915</td>
<td>jeff.walker@monash.edu</td>
</tr>
<tr>
<td>Jon Johansson</td>
<td>Monash</td>
<td>0419554656</td>
<td>jonj@flymore.com.au</td>
</tr>
<tr>
<td>Ying Gao</td>
<td>Monash</td>
<td>0433329610</td>
<td>ying.gao@monash.edu</td>
</tr>
<tr>
<td>Kiri Mason</td>
<td>Monash</td>
<td>0421994190</td>
<td>kiri.mason@monash.edu</td>
</tr>
<tr>
<td>Amir Tophel</td>
<td>Monash</td>
<td>0410891150</td>
<td>Amir.tophel@monash.edu</td>
</tr>
<tr>
<td>Louis Jalenques</td>
<td>Monash</td>
<td></td>
<td>Louis.jalenques@monash.edu</td>
</tr>
<tr>
<td>Nguyen Thi Mai</td>
<td>Monash</td>
<td></td>
<td>mainguyencrsr@g.ncu.edu.tw</td>
</tr>
</tbody>
</table>

8.3 Emergency

Emergency number in Australia 000 or 112 on a mobile phone

NSW poisons information centre 131 126
Leeton district hospital

Address: Cnr Wade and Palm Avenue,
Leeton, NSW, 2705
Phone: (02) 6953 1111

Narrandera district hospital

Address: Cnr Douglas and Adams Streets
Narrandera, NSW 2700
Phone: (02) 6959 1166

<table>
<thead>
<tr>
<th>8.4 Farmers</th>
<th>Focus Area</th>
<th>Farmer Name (Farm Nr.)</th>
<th>Home Phone</th>
<th>Mobile Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YA4</td>
<td>John Wallace (4, 26)</td>
<td>02 6954 1220</td>
<td>0428 696 330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phillip Burge (3)</td>
<td>N/A</td>
<td>0429013392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ian Scifleet “Herbie” (5)</td>
<td>02 6954 1504</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tom Rawson (14)</td>
<td>02 6954 1229</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jason Chirgwin (1012)</td>
<td>N/A</td>
<td>0427 756324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brendan Murray (1016, 1004)</td>
<td>N/A</td>
<td>0428576251</td>
</tr>
<tr>
<td></td>
<td>YA7</td>
<td>Greg Kelly (6, 7,13,15,16,25)</td>
<td>N/A</td>
<td>0427 412 217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lance Harland (17)</td>
<td>02 6954 1261</td>
<td>0427 541 262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tom Rawson (14)</td>
<td>02 6954 1229</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graeme Rawson (24)</td>
<td>N/A</td>
<td>0427 541277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Wallace (26)</td>
<td>02 6954 1220</td>
<td>0428 696 330</td>
</tr>
<tr>
<td></td>
<td>YE</td>
<td>Justin Buchanan (2023)</td>
<td>N/A</td>
<td>0427 544 522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malcolm Wiseman (96)</td>
<td>N/A</td>
<td>0429 642 501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alec Wiseman (95)</td>
<td>02 6954 1527</td>
<td>N/A</td>
</tr>
</tbody>
</table>

8.5 Accommodation and logistics

Yanco Agricultural Institute (YAI)
Mail: Narrandera Road, PBM, Yanco NSW 2703 Australia
Contact person: George Stevens
Phone: (02) 6951 2652
Fax: (02) 6955 7580
Email: georges.stevens@dpi.nsw.gov.au
Web: http://www.dpi.nsw.gov.au
General ground access contact person: Joe Valenzisi
Phone: 0417 274 344
Dehydrator, oven and scales access contact person: Brian Dunn
Phone: 0428 860 204

Murrumbidgee Rural Studies Centre (MRSC)
Mail: Murrumbidgee Rural Studies Centre, PMB Yanco NSW, 2703 Australia
Phone: 1800 628 422 (From overseas: +61 2 6951 2696)
Fax: (02) 6951 2620
Email: mrsc@dpi.nsw.gov.au

Accommodation in the MRSC
Contact person: Charmaine Lee
Phone: (02) 6951 2696
Fax: (02) 6951 2620
Email: charmaine.lee@dpi.nsw.gov.au

Off road rentals
Contact person: Greg Lack
Address: 1370 North Road, Huntingdale VIC 3166
Phone: (03) 9543 7111
Fax: (03) 9562 9205
Email: manager@offroadrentals.com.au
Web: http://www.offroadrentals.com.au
Narrandera Airport

Council person in charge: Andrew Pearson

Phone: (02) 6959 5550

Email: Andrew.pearson@narrandera.nsw.gov.au

Airport groundsman: Quinton Young

Phone: 0428 690 518

REFERENCES

APPENDIX A. EQUIPMENT LIST

General (2x) per team

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove pair</td>
<td>1</td>
</tr>
<tr>
<td>25 litres water Jerry can</td>
<td>1</td>
</tr>
<tr>
<td>Sunscreen Bottle</td>
<td>1</td>
</tr>
<tr>
<td>First aid kit</td>
<td>1</td>
</tr>
<tr>
<td>First aid book</td>
<td>1</td>
</tr>
<tr>
<td>Field book</td>
<td>1</td>
</tr>
<tr>
<td>PRISM workplan</td>
<td>1</td>
</tr>
<tr>
<td>Pens</td>
<td>2</td>
</tr>
<tr>
<td>Hardcopy whole area map</td>
<td>1</td>
</tr>
<tr>
<td>Radios</td>
<td>6</td>
</tr>
</tbody>
</table>

HDAS (16x)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GETAC</td>
<td>16</td>
</tr>
<tr>
<td>Poles with probe</td>
<td>20</td>
</tr>
<tr>
<td>Batteries</td>
<td>16</td>
</tr>
<tr>
<td>Gel cell battery charger</td>
<td>16</td>
</tr>
<tr>
<td>GETAC power cable</td>
<td>16</td>
</tr>
<tr>
<td>GETAC download cable</td>
<td>16</td>
</tr>
</tbody>
</table>

Gravimetric sampling kits (2x) per kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil sampling ring (5 cm)</td>
<td>5</td>
</tr>
<tr>
<td>Crate medium size</td>
<td>1</td>
</tr>
<tr>
<td>Garden trowel</td>
<td>1</td>
</tr>
<tr>
<td>Blade</td>
<td>1</td>
</tr>
<tr>
<td>Spatula</td>
<td>1</td>
</tr>
<tr>
<td>Hammer</td>
<td>1</td>
</tr>
<tr>
<td>Metal base for hammering rings</td>
<td>1</td>
</tr>
<tr>
<td>Plastic bags</td>
<td>100</td>
</tr>
<tr>
<td>Rubber bands</td>
<td>200</td>
</tr>
<tr>
<td>Print out of soil recording form</td>
<td>5</td>
</tr>
<tr>
<td>Pens</td>
<td>2</td>
</tr>
<tr>
<td>Markers</td>
<td>1</td>
</tr>
</tbody>
</table>

Vegetation sampling kits (2x) per kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crate in medium size</td>
<td>1</td>
</tr>
<tr>
<td>Getac</td>
<td>1</td>
</tr>
<tr>
<td>Large vegetation clipper</td>
<td>2</td>
</tr>
<tr>
<td>Small vegetation clipper</td>
<td>2</td>
</tr>
<tr>
<td>Scissors</td>
<td>1</td>
</tr>
<tr>
<td>Quadrant</td>
<td>1</td>
</tr>
<tr>
<td>Serrated Knife</td>
<td>1</td>
</tr>
<tr>
<td>Plastic bags</td>
<td>200</td>
</tr>
<tr>
<td>Large trash bags</td>
<td>20</td>
</tr>
<tr>
<td>1xmetered sticks</td>
<td>1</td>
</tr>
<tr>
<td>CROPSCAN+pole</td>
<td>1</td>
</tr>
<tr>
<td>LAI2200</td>
<td>1</td>
</tr>
<tr>
<td>Print-out of vegetation recording form</td>
<td>5</td>
</tr>
<tr>
<td>Paper bags with flat bottoms</td>
<td>30</td>
</tr>
<tr>
<td>Pencils</td>
<td>2</td>
</tr>
<tr>
<td>Permanent markers</td>
<td>1</td>
</tr>
<tr>
<td>Surface Roughness Sampling (2x)</td>
<td></td>
</tr>
<tr>
<td>Getac</td>
<td>1</td>
</tr>
<tr>
<td>Roughness profiler</td>
<td>1</td>
</tr>
<tr>
<td>Level built in</td>
<td>2</td>
</tr>
<tr>
<td>Field book</td>
<td>1</td>
</tr>
<tr>
<td>Roughness sampling recording form</td>
<td>80</td>
</tr>
<tr>
<td>Digital camera</td>
<td>2</td>
</tr>
<tr>
<td>Wooden blocks</td>
<td>4</td>
</tr>
<tr>
<td>Markers</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Lake station (UNIDATA salinity and temperature sensor, gel cell battery, floating station, field book, GPS unit, handheld salinity and temperature sensor, boat and oars, laptop, and life jacket)</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX B. OPERATING THE HDAS

HDAS Quick Instruction!

1. HDAS setup
- Connect the GETAC unit to the field laptop using the GETAC USB cable (if the operating system on the laptop is Windows XP, Microsoft ActiveSync will have to be installed to follow these steps).
- The GETAC unit will be added as a new drive in the “My Computer” (same as for a normal USB pen).
- Click on the drive icon in the windows explorer.
- Copy and paste all the files provided in the HDAS software package (“Applets folder”) to the GETAC subdirectory “My Mobile DeviceProgram Files\ArcPad\Applets”. These files are required to display the HDAS custom toolbar and perform the hydrographic reading commands.
- Create a folder named “SD Card” in the device root folder “Y”. This is the folder where the files with the point recorded (“hydro” and hydroGRID) will be saved by the software.
- Copy and paste the ArcPad layers (or map files) you want to have as a background on the ArcPad screen into a folder of your choice.
- If it is the first time the unit is being used go to “Start” (see Figure 1) -> “Settings” -> “System” -> “GPS” -> set GPS program port to COM8.

2. Hydra Probe
- Make sure that the power cable (black socket) is connected to the battery.
- Make sure that the connection cable (gray socket) is connected and secured to the bottom port of the GETAC.
- Check Hydra-Probe sensor probe regularly to see if they are straight and not broken. Clean the sensor probe after each measurement.

3. ArcPad
- Tap on start icon to see the menu. Tap on ArcPad 7.1.1 icon to open the program (see Figure 1).
- If there is no ArcPad 7.1.1 icon in the menu, go to Programs and load the software from there.
- Press the “Add layers” icon to load the ArcPad layers (or map files) you want to have as a background on the ArcPad screen.

- Tap the icon in the second toolbar to activate the HDAS file system.
- Wait for the “Hydra Files loaded successfully” message window and hit the OK button.
- The first icon in the second (HDAS) toolbar should now be active. This means HDAS is ready to take a reading.
- The general commands of ArcPad are illustrated below in Figure 3.

Figure 1: Starting ArcPad software

Figure 3: Custom toolbar for HDAS in ArcPad

- The first icon in the second toolbar should now be active. This means HDAS is ready to take a reading.
- The Symbol indicates your GPS position is lost or is not accurate. You need to wait until you have a fixed position (symbol) before sampling.

- If you don’t have a fixed position symbol, check that the GPS is activated by pressing the GPS icon . If the GPS icon is active but you still have the symbol , you will have to wait until the GPS establishes a fixed position .

- Before taking a reading tap on the HydroProbe icon to prepare the HydroProbe for reading (unless the hydroprobe icon is already active).

- Put the Hydro Probe into the ground at the sampling point, tap wherever within the map area of the screen (don’t tap on the toolbar) and wait for a few seconds (NOTE: the exact point on the map area where you tap does not matter, since the coordinates will be taken from the GPS).

- Tapping on touchscreen will start a few seconds event procedure that will communicate with the Hydro Probe and GPS to gather both position and soil moisture related data.

- After a few seconds, a form with collected data will appear on the screen.

- Fill out each of the pages in the form as described in Figure 4.

Figure 4. IDEAS data entry page with instructions

- press the icon to save the point or press the red cross icon to delete the point.

- to check the data you have saved at a particular point, activate the information icon and tap on the desired point.

4. Troubleshooting

- “Error 15: Your connection to GPS has not been established”. This means that the wrong communication port is set for the GPS. To correct problem, from the desktop “Start” (see Figure 1) → “Settings” → “System” → “GPS” → set GPS program port to COM3. Then go back to IDEAS.

- “Hydro Probe Reading Error: Check connection cable between GETAC and Hydro Probe”. Make sure that the connection cable (gray socket) is connected and secured to the bottom port of the GETAC.

- In case the GETAC freezes for a long time, reboot the GETAC by pressing and holding the power button (bottom right button in the GETAC keypad).

5. Data downloading

This section explains how to save the data collected in the field to the data archive in the field laptop (if the operating system on the laptop is Windows XP, Microsoft ActiveSync will have to be installed to follow these steps)

- Connect the GETAC unit to the field laptop using the GETAC USB cable.

- The GETAC unit will be added as a new drive in the “My Computer” (same as for a normal USB pen).

- Click on the drive icon in the window explorer.

- Navigate to the GETAC file system to the folder names “SD Card” in the root directory.

- Copy and paste all the files with root name “hydro” or “hydroGRID” (extensions .db, .dbi, .dbh, .sz, .pj and .ap)

- Paste the files into the desired folder on the field laptop.

- empty the folder of the “SD Card” folder by deleting all “hydro” and hydroGRID” subdirectories.

6. Checking out

- Disconnect the GETAC from the laptop.

- Put the GETAC to exchange overnight using the GETAC power cable.

- Turn off the GETAC by pressing and holding the power button (bottom right button in the GETAC keypad).

- Return all GETAC components (GETAC unit, power cable, USB cable, pouch) to the boxes with the same label.
APPENDIX C. OPERATING THE CROPSCAN MSR16R

In the field the radiometer is held level by the support pole above the crop canopy. The diameter of the field of view is one half of the height of the radiometer above the canopy. It is assumed that the irradiance flux density incident on the top of the radiometer (upward facing side) is identical to the flux density incident on the target surface. The data acquisition program included with the system facilitates digitizing the voltages and recording percent reflectance for each of the selected wavelengths. The program also allows for averaging multiple samples. Ancillary data such as plot number, time, level of incident radiation and temperature within the radiometer may be recorded with each scan.

Each scan, triggered by a manual switch or by pressing the space key on a terminal or PC, takes about 2 to 4 seconds. An audible beep indicates the beginning of a scan, two beeps indicate the end of scan and 3 beeps indicate the data is recorded in RAM. Data recorded in the RAM file are identified by location, experiment number and date.

The design of the radiometer allows for near simultaneous inputs of voltages representing incident as well as reflected irradiation. This feature permits accurate measurement of reflectance from crop canopies when sun angles or light conditions are less than ideal. Useful measurements of percent reflectance may even be obtained during cloudy conditions. This is a very useful feature, especially when traveling to a remote research site only to find the sun obscured by clouds.

Three methods of calibration are supported for the MSR16R systems.

2-point Up/Down - Uses a diffusing opal glass (included), alternately held over the up and down sensors facing the same incident irradiation to calibrate the up and down sensors relative to each other (http://www.cropscan.com/2ptupdn.html).

Advantages:

• Quick and easy.
• Less equipment required.
• Radiometer may then be used in cloudy or less than ideal sunlight conditions.
• Recalibration required only a couple times per season.
• Assumed radiometer is to be used where radiance flux density is the same between that striking the top surface of the radiometer and that striking the target area, as outside in direct sunlight.

White Standard Up & Down - Uses a white card with known spectral reflectance to calibrate the up and down sensors relative to each other.

Advantages:
• Provides a more lambertian reflective surface for calibrating the longer wavelength (above about 1200 nm) down sensors than does the opal glass diffuser of the 2-point method.

• Radiometer may then be used in cloudy or less than ideal sunlight conditions.

• Recalibration required only a couple times per season.

• Assumed radiometer is to be used where radiance flux density is the same between that striking the top surface of the radiometer and that striking the target area, as outside in direct sunlight.

White Standard Down Only - Uses a white card with known spectral reflectance with which to compare down sensor readings.

Advantages:

• Only down sensors required, saving cost of purchasing up sensors.

• Best method for radiometer use in greenhouse, under forest canopy or whenever irradiance flux density is different between that striking the top of the radiometer and that striking the target area.

Disadvantages:

• White card must be carried in field and recalibration readings must be taken periodically to compensate for sun angle changes.

• Less convenient and takes time away from field readings.

• Readings cannot be made in cloudy or less than ideal sunlight conditions, because of likely irradiance change from time of white card reading to time of sample area reading.

There are six major items you need in the field -

1. MSR16 (radiometer itself)
2. Data Logger Controller & Cable Adapter Box (carried in the shoulder pack, earphones are to hear beeps)
3. CT100 (hand terminal, connected to the DLC with a serial cable)
4. Calibration stand and opal glass plate
5. Memory cards

6. Extension pole (with spirit level adjusted so that the top surface of the radiometer and the spirit level are par level)

Set up

1. Mount the radiometer pole bracket on the pole and attach the radiometer.
2. Mount the spirit level attachment to the pole at a convenient viewing position.
3. Lean the pole against a support and adjust the radiometer so that the top surface of it is level
4. Adjust the spirit level to center the bubble (this will insure that the top surface of the radiometer and the spirit level are par level)
5. Attach the 9ft cable MSR87C-9 to the radiometer and to the rear of the MSR Cable Adapter Box (CAB)
6. Connect ribbon cables IOARC-6 and IODRC-6 from the front of the CAB to the front of the Data Logger Controller (DLC)
7. Plug the cable CT9M9M-5 into the RS232 connectors of the CT100 and the DLC (the DLC and CAB may now be placed in the shoulder pack for easy carrying)
8. Mount the CT100 on the pole at a convenient position
9. Adjust the radiometer to a suitable height over the target (the diameter of the field of view is one half the height of the radiometer over the target)

Configure MSR

1. Perform once at the beginning of the experiment, or if the system completely loses power
2. Switch the CT100 power to on
3. Press ENTER 3 times to get into main menu
4. At Command * Press 2 then ENTER to get to the ReconFig. MSR menu
5. At Command * Press 1 then ENTER, input the correct date, Press ENTER
6. At Command * Press 2 then ENTER, input the correct time, Press ENTER
7. At Command * Press 3 then ENTER, input the number of sub samples/plot (5), Press ENTER
8. At Command * Press 6 then ENTER, input a 2 or 3 character name for your sampling location (ex OS for Oklahoma South), Press ENTER; input the latitude for your location, Press ENTER; input the longitude for your location, Press ENTER
9. At Command * Press 9 then ENTER, input the GMT difference, Press ENTER
10. At Command * Press M then ENTER until you return to the main menu

Calibration

1. We are using the 2-point up/down calibration method
2. Calibrate everyday before you begin to take readings
3. Switch the CT100 power to on
4. Press ENTER 3 times to get into main menu
5. At Command * Press 2 then ENTER to get to the ReconFig. MSR menu
6. At Command * Press 11 then ENTER to get to the Calibration menu
7. At Command * Press 3 then ENTER to get to the Recalibration menu
8. At Command * Press 2 then ENTER for the 2-point up/down calibration
9. Remove the radiometer from the pole bracket and place on the black side of the calibration stand, point the top surface about 45° away from the sun, press SPACE to initiate the scan (1 beep indicates the start of the scan, 2 beeps indicate the end of the scan, and 3 beeps indicate the data was stored)
10. Place the separate opal glass plate on top of the upper surface and press SPACE to initiate scan
11. Turn the radiometer over and place it back in the calibration stand, cover it with the separate opal glass plate and press SPACE to initiate scan
12. CT100 will acknowledge that the recalibration was stored
13. At Command * Press M then ENTER until you return to the main menu
14. Return the radiometer to the pole bracket
15. Store configuration onto the memory card

Memory card usage

1. Switch the CT100 power to on
2. Press ENTER 3 times to get into main menu
3. At Command * Press 7 then ENTER to get to the Memory Card Operations menu
4. Memory Card Operations menu is:
 a. Display directory
 b. Store data to memory card (use to save data in the field)
 c. Load data from memory card (use first to download data from memory card)
d. Save program/configuration to card (use to save after calibrating)

e. Load program/configuration from card (use when DLC loses power)

f. Battery check

g. M. Main menu

5. There are 2 memory cards, 64K for storing the program/configuration and 256 for storing data in the field

Taking readings in the field

- Switch the CT100 power to on
- Press ENTER 3 times to get into main menu
- At Command * Press 2 then ENTER to get to the ReconFig. MSR menu
- At Command * Press 5 then ENTER, input your plot ID (numbers 1-999 only), Press ENTER
- Press M to return to the MSR main menu
- At Command * Press 8 then ENTER to get to the MSR program
- Press ENTER to continue or M to return to the MSR main menu
- Enter beginning plot number, ENTER
- Enter the ending plot number, ENTER, record plot numbers and field ID in field notebook
- Adjust the radiometer to a suitable height (about 2 meters) over the target, point the radiometer towards the sun, center the bubble in the center of the spirit level and make sure that there are no shadows in the sampling area
- Do not take measurements if IRR < 300
- Initiate a scan by pushing SPACE, the message ‘scanning’ will appear on the screen and a beep will be heard
- When the scan is complete (about 2 seconds) ‘***’ will be displayed and 2 beeps will be heard
- Now, you can move to the next area
- 3 Beeps will be heard when the data has been stored
- Press SPACE to start next scan, R to repeat scan, P to repeat plot, S to suspend/sleep, M to return to the MSR main menu, W to scan white standard, and D to scan Dark reading
• When you are done scanning at that field location, press M to return to the MSR main menu, then press 10 to put the DLC.
APPENDIX D. OPERATING THE LAI-2000

Plug the sensor cord into the port labelled “X” and tighten the two screws.

Place a black view-cap over the lens that blocks 1/4 of the sensor view; that 1/4 that contains the operator. Place a piece of tape on the view cap and body of the sensor so if the cap comes loose it will not be lost.

Turn on the logger with the “ON” key (The unit is turned off by pressing “FCT”, "0", "9".)

Clear the memory of the logger

- Press “FILE”
- Use “↑” to place “Clear Ram” on the top line of display
- Press “ENTER”
- Press “↑” to change “NO” to “YES”
- Press “ENTER”

General items

When changing something on the display, get desired menu item on the top line of display and then it can be edited.

Use the “↑” and “↓” to move items through the menu and the “ENTER” key usually causes the item to be entered into the logger.

When entering letters, look for the desired letter on the keys and if they are on the lower part of the key just press the key for the letter; if the desired letter is on the upper part of the key then press the “↑” and then the key to get that letter.

Press “BREAK” anytime to return to the monitor display that contains time, file number or sensor readings on one of the five rings that are sensed by the LAI-2000.

Do not take data with the LAI-2000 if the sensor outputs are less than 1.0 for readings above the canopy.

To begin

- Press “SETUP”
- Use “↑” to get “XCAL” on the top line of the display and press “ENTER”
- Following XS/N is the serial number of the sensor unit, enter appropriate number
- Check or put appropriate cal numbers from LICOR cal sheet into the 5 entries.
- Final press of “ENTER” returns you to “XCAL”
• Use “↑” to get to “RESOLUTION”
• Set it to “HIGH”
• Use “↑” to get to “CLOCK”
• Update the clock (set to local time using 24 hr format)
• Press “OPER”
• Use “↑” to get “SET OP MODE” on top line of display
• Choose “MODE=1 SENSOR X”
• Enter “↑”, “↓”, “↓”, “↓”, “↓” in “SEQ”
• Enter “1” in “REPS”
• Use “↑” to get to “SET PROMPTS”
• Put “SITE” in first prompt
• Put “LOC” in second prompt 144
• Use “↑” to get to “BAD READING”
• Choose “A/B=1”
• Press “BREAK”
• Display will contain the two monitor lines

Use “↑” and “↓” to control what is displayed on the top line in the monitor mode, time, file number or sensor ring output 1 through 5 for the × sensor. (If FI is selected, then the file number is displayed)

Use the “→” and “←” to control what is displayed on the bottom line of the monitor mode, time, file number or sensor ring output 1 through 5 for the × sensor. (If X2 is selected, then ring #2 output is displayed)

Press “LOG” to begin collecting data

Type in the response to the first prompt (if “ENTER” is pressed the same entry is kept in response to the prompt).

Type in the response to the second prompt (if “ENTER” is pressed the same entry is kept in response to the prompt).

Place the sensor head in the appropriate position above the canopy, level the sensor and press the black log button on the handle of the sensor (a beep will be heard when the black button is pushed). Hold the sensor level until the second beep is heard.
PRISM2019 Workplan | 79

For grasslands:

1. Place the sensor head in the appropriate position above the canopy, level the sensor and press the black log button on the handle of the sensor (a beep will be heard when the black button is pushed). Hold the sensor level until the second beep is heard.

2. Place the sensor below the plant canopy in one corner of your sampling area level the sensor and press the black log button on the sensor handle and keep level until the second beep.

3. Repeat for the other 3 corners

Repeat steps 1-3 so that you have a total of 5 sets of measurements.

For row crops:

1. Place the sensor head in the appropriate position above the canopy, level the sensor and press the black log button on the handle of the sensor (a beep will be heard when the black button is pushed). Hold the sensor level until the second beep is heard.

2. Place the sensor below the canopy in the row of plants, level the sensor and press the black log button on the sensor handle and keep level until the second beep.

3. Place the sensor one-quarter (1/4) of the way across the row and record data again.

4. Place the sensor one-half (1/2) of the way across the row and record data again.

5. Place the sensor three-quarters (3/4) of the way across the row and record data again.

Repeat steps 1-5 so that you have a total of 5 sets of measurements.

The logger will compute LAI and other values automatically. Using the “↑” you can view the value of the LAI.

NOTE: You will record the “SITE” and “LOC” along with the LAI value on a data sheet.

The LAI-2000 is now ready for measuring the LAI at another location. Begin by pressing “LOG” twice. The file number will automatically increment. When data collection is complete, turn off the logger by pressing “FCT”, "0", "9". The data will be dumped onto a laptop back at the Field Headquarters.

Downloading LAI-2000 files to a PC using hyperterminal

Before beginning use functions 21 (memory status) and 27 (view) to determine which files you want to download. Make a note of their numbers.

1. Connect wire from LAI-2000 (25pin) to PC port (9 pin).

2. Run HyperTerminal on the PC (Start | Programs | Accessories | Communications | HyperTerminal | LAI2000.ht)

3. On the LAI-2000, go to function 31 (config i/o) and conFig. I/O options. Baud=4800, data bits=8, parity=none, xon/xoff=no.
4. On the LAI-2000, go to function 33 (set format) and setup format options. First we use SpdSheet and take the default for FMT.

5. In HyperTerminal go to Transfer | Capture text. Choose a path and filename (LAIMMDDDFL.SPR, where MM is month, DD is day, FL is first and last initials of user and SPR for spreadsheet data files) to store the LAI data. Hit Start. HyperTerminal is now waiting to receive data from the LAI-2000.

6. On the LAI-2000, go to function 32 (print) and print the files. „Print“ means send them to the PC. You will be asked which file sequence you want. Eg. Print files from:1 thru:25 will print all files numbered 1-25. Others will not be downloaded.

7. Once you hit enter in function 32, lines of text data will be sent to HyperTerminal. The LAI-2000 readout will say „Printing file 1, 2, etc“. Check the window in HyperTerminal to ensure the data is flowing to the PC. This may take a few minutes, wait until all the desired files have been sent.

8. In HyperTerminal go to Transfer | Capture text | Stop.

9. On the LAI-2000, go to function 33 (set format) and setup format options. Now set to Standard, Print Obs = yes

10. In HyperTerminal go to Transfer | Capture text Choose a path and filename (LAIDDMMFL.STD, where DD is day, MM is month, FL is first and last initials of user and STD for standard data files) to store the LAI data. Hit Start. HyperTerminal is now waiting to receive data from the LAI-2000.

11. On the LAI-2000, go to function 32 (print) and print the files. „Print“ means send them to the PC. You will be asked which file sequence you want. Eg. Print files from: 1 thru 25 will print all files numbered 1-25. Others will not be downloaded.

12. In HyperTerminal go to Transfer | Capture text | Stop.

13. Using a text editor (like notepad) on the PC, open and check that all the LAI data has been stored in the text file specified in step 3. Make a back-up of this file according to the archiving instructions later in this chapter.

14. Once you are sure the LAI values look reasonable and are stored in a text file on the PC, use function 22 on the LAI-2000 to delete files on the LAI-2000 and free up its storage space.

Note: The above instructions assume that HyperTerminal has been configured to interface with the LAI-2000, i.e. the file LAI2k.ht exists. If not, follow these instructions to set it up.

1. Run HyperTerminal on the PC (Start | Programs | Accessories | Communications | HyperTerminal | Hypertrm

2. Pick a name for the connection and choose the icon you want. Whatever you pick will appear as a choice in the HyperTerminal folder in the start menu later. Hit OK.
3. Connect using com1 or com2. Choose which your com port is, hit OK. Setup Port settings as follows: Bits per second = 4800, Data Bits = 8, Parity = none, Stop bits = 1, Flow control = Hardware. Say OK.

4. Make sure the wire is connected to the LAI-2000 and the PC and then proceed with step 3 in the download instructions above. When finished and leaving HyperTerminal you will be prompted to save this connection.
APPENDIX E. TEAM TASKS SHEET

Table F-1. Soil moisture sampling task sheet (Team A and B).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Extent</th>
<th>Point Spacing</th>
<th>Nr. of Samples</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAS</td>
<td>3 km × 3 km</td>
<td>50 m</td>
<td>3 per point</td>
<td>All team members</td>
</tr>
<tr>
<td>Land Use</td>
<td>3 km × 3 km</td>
<td>50 m</td>
<td>3 per point</td>
<td>All team members</td>
</tr>
<tr>
<td>Vegetation Type</td>
<td>3 km × 3 km</td>
<td>50 m</td>
<td>3 per point</td>
<td>All team members</td>
</tr>
<tr>
<td>Vegetation Height</td>
<td>3 km × 3 km</td>
<td>50 m</td>
<td>3 per point</td>
<td>All team members</td>
</tr>
<tr>
<td>Presence of Dew</td>
<td>3 km × 3 km</td>
<td>50 m</td>
<td>3 per point</td>
<td>All team members</td>
</tr>
<tr>
<td>Gravimetric Soil Samples</td>
<td>3 km × 3 km</td>
<td>variable</td>
<td>Min. 3 per focus area</td>
<td>Team leader</td>
</tr>
</tbody>
</table>

Table F-2. Vegetation sampling task sheet (Team A and B).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Extent</th>
<th>Point Spacing</th>
<th>Nr. of Samples</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation Destructive Sample</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
<tr>
<td>LAI</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
<tr>
<td>CROPSCAN</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
<tr>
<td>Vegetation Height</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
<tr>
<td>Row crop spacing</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
<tr>
<td>Row crop direction</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>5 per vegetation type</td>
<td>All team members</td>
</tr>
</tbody>
</table>

Table F-3. Roughness sampling task sheet (Team A and B).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Extent</th>
<th>Point Spacing</th>
<th>Nr. of Samples</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface roughness</td>
<td>3 km × 3 km area</td>
<td>variable</td>
<td>3 per surface type</td>
<td>All team members</td>
</tr>
</tbody>
</table>
APPENDIX F. SAMPLING FORMS

The following tables are the pro-forma sheets to be used for vegetation water content, gravimetric sampling and surface roughness.
Vegetation sampling form

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Local Time (HH:MM)</th>
<th>Coordinate</th>
<th>Focus Area:</th>
<th>Team:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lat.</td>
<td>Veg. Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long.</td>
<td>Canopy Height (cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Row Spacing (cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plant Spacing (cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Row Direction (°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Rows</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight before drying (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight after drying (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tare (g)</td>
<td>VWC (kg/m²)</td>
</tr>
</tbody>
</table>

Comments: Label bag as Area_ID/DD MM YY/Sample_ID and time
Vegetation sample drying form

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Oven ID</th>
<th>Weight before drying (g)</th>
<th>Oven In & Out Date (DD/MM/YY) and Time (HH:MM)</th>
<th>Weight after drying (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Date in Oven</td>
<td>Starting time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/ /</td>
<td>:</td>
</tr>
</tbody>
</table>

Comments:
Gravimetric soil moisture sample drying form

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Pre-Weighing (g)</th>
<th>Weight before drying (g)</th>
<th>Drying date (DD/MM/YY) and Time (HH:MM)</th>
<th>Weight after drying (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet sample + bags</td>
<td>Operator name</td>
<td>Wet sample + bags</td>
<td>Bags</td>
<td>Tray</td>
</tr>
</tbody>
</table>

Comments:
Surface roughness sampling form

<table>
<thead>
<tr>
<th>Local Date</th>
<th>Focus Area ID</th>
<th>Name of Person</th>
<th>Team ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD/MM/YY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Local Time</th>
<th>Lat.</th>
<th>Long.</th>
<th>Land Cover</th>
<th>Veg. Type*</th>
<th>Row Direction**</th>
<th>Photo ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N-S-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N-S-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N-S-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E-W-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E-W-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E-W-3</td>
</tr>
</tbody>
</table>

Comments: * Select from the Getac list
** express in degree from North clockwise
APPENDIX G. SAMPLING AREAS MAPS AND DIRECTIONS

Directions to get from the Yanco Agricultural Institute to the two focus areas:

Focus area YA4 – approx. driving time (30min)
1. From the YAI, turn right on irrigation way and immediately left on Euroley Rd.
2. After approx. 8 km turn right left into Euroley Rd
3. After approx. 5 km turn right into Sturt Hwy (20)
4. Continue on Sturt Hwy for approx. 20 km
5. After having crossed the Coleambally Main Canal, turn left into Main Canal Rd
6. After approx. 7 km turn left into Wallace Rd
7. YA4 is west of Main Canal Rd. Wallace Rd crosses YA4 at middle latitude

Focus area YA7 – approx. driving time (30min)
1. As per YA4 (point 1-5)
2. YA7 is west of Main Canal Rd., 1.5 km south of Wallace Rd until Eulo Rd.

Focus area YE – approx. driving time (45min)
1. As per YA4 (point 1-5)
2. Continue south on Main Canal Rd past Wallace Rd.
3. Turn left into unpaved Morundah Rd. (or Old Morundah Rd.)
4. YEis west of Morundah Rd., after approx. 8 km from Main Canal Rd.
5. Go through Stockyards keeping the river flow on your right side
6. To get to YB7, turn left at the next gate after stockyards and continue westward on track for 2 km, entering YB7 from the east. For YB5, go straight until the next gate after stockyard and follow the track along the river, entering YB5 from the south.
H-1. Road map over the ground sampling area.
Figure H-2. Road map over the YA4.
Figure H-3. Road map over the YA7.
Figure H-4. Road map over the YE.
High-resolution Measurement of Soil Moisture and Vegetation

Ground sampling activities for the P-band Radiometer-Inferred Soil Moisture Experiment (PRISM)

Background

Timely soil moisture status and forecasts are critical for (i) grain growers to make informed decisions on what and when to plant based on likely germination rates and crop yield, (ii) graziers to be proactive in their management of stocking rates based on likely pasture growth, and (iii) high water use agriculture to undertake more efficient irrigation scheduling practices. Remote sensing technology has been used to monitor the soil moisture conditions for Australia but has limitations in terms of sensing depth and spatial resolution. Consequently, researchers at Monash University are planning to undertake two experiments in the Yanco-Coleambally area to develop new technologies for mapping the soil moisture content over deeper depth and at higher spatial resolution, and your farm has been selected as a ground validation site of interest. The availability of soil moisture information of high resolution will have important implications in water resources management, including better knowledge of the soil moisture distribution across farms.

In order to make sure that the soil moisture information provided by remote platforms (spaceborne, airborne, and drone) is accurate over Australia, researchers at Monash University are planning to make aircraft and drone measurements of the surface soil moisture in the Yanco area. Those measurements will be supported by ground measurement of the surface soil moisture content in carefully selected areas, together with a small number of soil and vegetation samples.

Two three-week long aircraft campaigns are envisaged, Sept/Oct 2019 and May 2020, covering a range of soil moisture and vegetation conditions during different seasons in the Yanco/Coleambally area. Airborne sampling will be made across a 40km × 40km area including the Coleambally irrigation district and surrounding areas, while the main ground measurements will be conducted within three 3km × 3km sampling areas (Fig. 1). In return for granting us access to your farm, you will have access to all the data collected in the
campaigns. More importantly, you will contribute to the development of leading-edge technology needed in Australia to achieve a sustainable and efficient use of our natural resources.

Ground Measurements of Surface Soil Moisture
The ground measurement undertaken on your farm will be conducted by a small team of researchers carrying non-destructive soil moisture probes. Using an integrated GPS, the field technicians will navigate to predefined sampling points at 75m spacing at representative paddocks within a 3km × 3km sized focus area (Fig. 2).

Vegetation Sampling
Vegetation sampling is required to determine the vegetation water content of the plants in order to estimate soil moisture from the aircraft and drone. Assuming that vegetation conditions are relatively uniform across the sampling area, only two sampling locations will be required for each paddock. Both non-destructive spectral measurements and complete removal of vegetation to ground level from within a 30cm × 30cm area (Fig. 3) once each week will be required at each location. This will allow calibration of the spectral data for estimating the vegetation water content at other locations.

Surface Roughness Sampling
Surface roughness affects the airborne and drone observations by effectively increasing the surface area of electromagnetic wave emission. Its effect on observations is difficult to quantify, and is therefore a critical parameter to be spatially characterized across the different land cover types. During the field experiment, surface roughness will be characterized at two locations at each major land cover type and roughness conditions in the 3km × 3km focus areas. At each of the locations, two 3m-long surface profiles will be recorded.

General Note on Property Access
Permission to access your property for these campaigns will be treated with the utmost respect, minimising any impact on the soil and vegetation. You may recall that our team has undertaken similar ground monitoring campaigns in your farm, the last one being in 2015, and we hope to continue our good working relationship into the future. Moreover, all participants are aware of the requirements for a good collaboration with local property owners and will be trained and closely supervised during the planned campaign activities.

Contact Details
If you have further questions, please don’t hesitate to contact us:

Professor Jeffrey Walker – Monash University
(Principal Investigator)
Ph: 03 9905 9681 Mobile: 0413 023 915
Email: jeff.walker@monash.edu

Dr. Xiaoling Wu
Monash University
(Project Co-ordinator)
Ph: 03 9905 3685 Mobile: 0423 118 055
Email: xiaoling.wu@monash.edu

Dr. Nan Ye
Monash University
(Project Co-ordinator)
Ph: 03 9905 3685 Mobile: 0410 169 213
Email: nan.ye@monash.edu

Ms Kiri Mason
Monash University
(Technical Support Engineer)
Ph: 03 9905 5567 Mobile: 0421 994 190
Email: kiri.mason@monash.edu

Fig. 3: Typical vegetation sampling within a 30cm × 30cm area and example of non-destructive spectral measurements.

Fig. 4: Surface roughness sampling using a pin board profiler.
APPENDIX I. SAFETY

Field Work Safety Form

Safety Briefing – Surveying Fieldwork

Please ensure all necessary paperwork has been completed prior to commencing the Fieldwork.
- EHS Field Work Form
- Off Campus Medical Questionnaire
- Risk Assessment

FIELDWORK SAFETY BRIEFINGS SHOULD BE CONDUCTED ON-SITE AND HELD DAILY TO ENSURE IMPORTANT INFORMATION CONCERNING EHS IS COMMUNICATED AND UNDERSTOOD BY ALL FIELDWORK PARTICIPANTS.

1. All Fieldwork participants should ensure an ‘In case of Emergency’ (ICE) number is stored in their mobile phone. (Name: ICE, Number: (Area Code) (Phone Number)
2. All participants should have access to a mobile phone. If a member of the group does not have a mobile phone then a ‘buddy system’ should be established.
3. Any participant who requires medication as declared on their Off Campus Medical Questionnaire, must ensure that they have sufficient amounts for the duration of the trip.
4. All Fieldwork participants must ensure that they have appropriate Personal Protective Equipment (as identified on the Risk Assessment).
5. All Participants should make themselves aware of the exact location (Street name, nearest cross-roads, suburb etc) at which they are working each day. You will need this information if you have the need to contact any of the Emergency Services.
6. A First Aid procedure should be in place. If a First Aid Officer is unavailable to attend the trip then alternative arrangements such as, familiarising yourself with the local medical facilities, is vital.
7. Continuous communication shall be established at all times of the Fieldwork. This can be verbal/visual – staying within sight and hearing distance of the group or via communication devices – mobile phones, two-way radios etc. Alternative arrangements can be set up if appropriate.
8. If an incident occurs, all participants must take the following action:
 a. Assess the medical requirements
 b. If serious, call the emergency services (000 or 112 from mobile phones) for assistance
 c. Notify the individual’s contact person (their ICE contact)
 d. Complete an S3 Incident report as soon as possible
 e. Notify the Supervisor of the incident as soon as possible
10. If a dangerous situation (natural disaster, personal threat, animal presence) occurs and you believe you need to evacuate the area, take the following action:
 a. Remove any persons from immediate danger
 b. Notify all members of the group for the need to leave the area
 c. Contain or eliminate the problem, if possible
 d. Evacuate yourself and others if you cannot contain the problem
11. Remember to adopt safe work practices and look out for each other
12. All participants are responsible for their own health and safety and that of others who may be affected by their conduct, including members of the public.
13. If there is something you are not sure of, seek clarification from your Supervisor before commencing the task
14. Do not operate/use equipment that you are not familiar with
15. Ensure appropriate clothing is worn AT ALL TIMES when required, this includes, enclosed footwear, high-visibility vests, sunscreen, hats, long sleeved, long legged clothing etc.
16. Ensure water and snacks are available at all times
17. Conduct regular rest breaks
18. Report any unsafe conditions or hazards to your Fieldwork Supervisor
19. Treat all other members of Fieldwork with respect and courtesy
20. Clean up after yourselves – leave the Fieldwork environment in the same (or better) condition than when you arrived.
21. Notify all members of any planned rest breaks or lunch breaks and where your meeting spot is, i.e. the car, the cafe etc
22. Work hard and have fun!
APPENDIX J. HOW TO PREVENT SNAKE BITES GUIDELINES

Step 1

Prior to your hike, familiarize yourself with the local species of snakes: knowing their habits and habitats may help you avoid coming into contact with them unexpectedly. Plan your route in advance and let someone know where you will be located in case of an emergency.

Step 2

For your hike, wear heavy, knee-high socks, high-top boots, and long pants tucked into your shoes. Stay on the trail, if one is available and keep out of tall grass unless you wear thick leather boots, chaps or gaiters. Walk around logs or large stones, instead of stepping over them.

Step 3

During your hike, bang a walking stick against the ground. The vibrations will coax the snake out of your path. Take special care not to reach or step into places that you cannot see and be especially careful when climbing rocks, whose crevices may house quiet, venomous tenants.

Step 4

If you come across a snake, stay as far away from it as possible, at least six feet or more than the snake's body length. If you find yourself close to a snake, take at least two giant steps back. Leave the snake alone as they can strike much faster and farther than most people think. Stay away even from dead snakes because their reflexes can still cause a bite for an hour after death.

Read more: How to Prevent Snakebites While Hiking | eHow.com
http://www.ehow.com/how_2279574_prevent-snakebites-hiking.html#ixzz0rRUq1Qjk
http://www.ehow.com/how_2282699_prevent-snakebites-camping.html
Snake Bites First Aid Instructions

First in First Aid

SNAKE BITES

MANAGING A SNAKE BITE

1) Check for signs of life:
 • if casualty is unconscious, follow DRABCD (Danger, Response, Airway, Breathing, CPR, Defibrillation).

2) Calm casualty.

3) Apply pressure immobilisation bandage:
 • apply a firm roller bandage starting just above the fingers or toes and moving up the limb as far as can be reached
 • the bandage needs to be very firm.

4) Immobilise casualty:
 • apply a splint to immobilise the bitten limb
 • check circulation in fingers or toes
 • ensure casualty doesn’t move.

5) Call 000 for an ambulance.

WARNING

Do not wash venom off the skin as retained venom will assist identification.

Do not cut bitten area or try to suck venom out of the wound.

Do not use a constrictive bandage (i.e. arterial tourniquet).

Do not try and catch the snake.

SIGN & SYMPTOMS

• puncture marks
• nausea, vomiting, diarrhoea
• headache
• double or blurred vision
• breathing difficulties
• drowsiness, giddiness
• pain or tightness in chest or abdomen
• respiratory weakness or arrest.

Carry the Bites and Stings first aid kit with you when camping or bushwalking. Call St John on 1300 360 455 for further information about the full range of first aid kits.

© St John Ambulance Australia, June 2007. This information may not be copied or reproduced without prior permission. This information is not a substitute for first aid training. St John recommends that everyone is trained in first aid.

For more information on St John first aid training and kits, visit www.stjohn.org.au or call Toll free 1300 360 455.
APPENDIX K. OFF-CAMPUS ACTIVITIES INFORMATION AND CONSENT FORM

Off-campus activities
Information and consent form

The purpose of this form is to have your (or if under 18 years old, your parents/guardians) authorisation to attend the off-campus activity. The information will be used to indicate to the person in charge of the activity of any medical condition(s) which may be aggravated by the activity, affect your ability to participate in the activity and inform them of any special needs so that measures can be taken to facilitate safe participation.

Should you wish not to utilise the form below, you can speak directly with the activity organiser, the university’s Disability Liaison Unit (DLU) or Occupational Physician who will work with the university to accommodate your needs.

SCHOOL/DEPARTMENT:

OFF CAMPUS ACTIVITY:

DESTINATION:

DATE(S):

Student details

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Number</td>
<td>Phone number:</td>
</tr>
<tr>
<td>Name and relationship of emergency contact</td>
<td>Phone number:</td>
</tr>
</tbody>
</table>

Relevant Medical Information

Please list any pre-existing medical conditions or allergies that might impact on your ability to undertake the off-campus activity. Eg: Hernia, back pain, recent injury, heart condition, asthma, diabetes, epilepsy, food allergies, pollen sensitivity etc.

Please list any medication that might impair your ability to undertake duties whilst engaged in the activity. Eg: Medication which causes drowsiness and may impact in ability to operate machinery or vehicles.

Special Request

Are there any special needs or requests, including dietary requirements applicable to your participation in this activity?

Authorisation

I have read the information provided for this activity and agree to abide by the guidelines and procedures and the directions provided by supervisors during the activity.

I acknowledge that acceptable standards of behaviour will be expected during this activity. I understand that, in the event of serious misbehaviour during the activity, I will be informed and that I may be sent home and that any costs associated with this return will be my responsibility.

Signature:

Date:

The information on this form is collected for the primary purpose of enabling you to undertake the off-campus activity. Your personal information may be disclosed to a third party involved in the activity and in the event of an emergency. You have a right to access personal information that Monash holds about you, subject to any exceptions in relevant legislation. If you wish to seek access to your personal information or inquire about the handling of your personal information, please contact the Monash University Privacy Officer on 9903 5683.
Off campus activities Volunteer information sheet

SCHOOL/DEPARTMENT OF

Details of Volunteer

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
</tbody>
</table>

Emergency Contact

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

Details of activity

<table>
<thead>
<tr>
<th>Date(s):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location(s):</td>
<td></td>
</tr>
<tr>
<td>Monash student/staff member present (name):</td>
<td></td>
</tr>
</tbody>
</table>

Declaration: I have volunteered to accompany the Monash University student/staff member named above on the activity as specified. I have been informed of the risks involved in doing this work and have read the risk assessment. I have been informed of the risk controls that have been implemented and I agree that I will comply with the risk control measures to the best of my ability. I have read and will comply with the following university policies, procedures & guidelines:

- Conduct and Compliance policies:
 - Unacceptable behaviour in the workplace
 - Staff/student relationships

- OHS procedures & guidelines:
 - Off-campus activities procedure
 - Guidelines for management of alcohol and other drug issues amongst staff and students

- Monash University student charter
- Monash University discrimination and harassment grievance procedures

Signature: _____________________________ **Date:** _____________________________

The information on this form is collected for the primary purpose of enabling you to undertake the field activity. Your personal information may be disclosed to a third party involved in the activity and in the event of an emergency. You have a right to access personal information that Monash holds about you, subject to any exceptions in relevant legislation. If you wish to seek access to your personal information or inquire about the handling of your personal information, please contact the Monash University Privacy Officer on 9902 9585.