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Abstract: - In this paper, an Artitifial Neural Network (ANN) model was developed to downscale the soil moisture 

content from low resolution L-band passive microwave observation.  Using the relationship between soil evaporative 

efficiency derived from MODerate resolution Imaging Spectroradiometer (MODIS) and soil moisture, the ANN model 

was used to downscale from 20 km×20 km observation to 1 km×1 km resolution over the whole area of 40 km×40 km.  

The method is tested using data collected during the National Airborne Field Experiment in 2005 (NAFE’05).  The 

soil moisture variability in term of mean and standard deviation for the pixel to be disaggregated were proposed to be 

used in the ANN model for downscaling purpose.  In this demonstration study, soil moisture data derived from 1 km 

resolution from the Polarimetric L-band Multibeam Radiometer (PLMR) were aggregated to 20 km resolution pixels, 

and subsequently downscaled using soil moisture statistics estimated from 1 km resolution data.  The overall Root 

Mean Square Error (RMSE) difference between the measured and predicted soil moisture values varied between 1.8% 

v/v and 3.5% v/v across the complete range of typically experienced soil moisture conditions. The challenge of this 

model for real life practicality is presented in this paper and the suggestions are made at the end of this paper.   

 

Key-Words: - Artificial Neural Network (ANN), Passive microwave, soil moisture, downscaling  

 

1   Introduction 
Passive microwave at L-band (1.4 Ghz) has been proved 

to be more sensitive to soil moisture profile up to 5cm 

and more direct comparing to radar backscatter and 

thermal data [1, 2].  The Soil Moisture and Ocean 

Salinity (SMOS) mission, which is the first L-band soil 

moisture dedicated satellite launched in 2009, provides 

data at around 40 km resolution globally.  While this 

spatial resolution is suitable for some broad scale 

applications, it is not useful for small scale applications 

such as on-farm water management, flood prediction or 

meso-scale climate and weather prediction [3]. To better 

utilize the low spatial resolution data, downscaling (or 

disaggregation) algorithms need to be matured. 

 For the problem of soil moisture retrieval, 

ancillary data are usually surface parameters which can 

provide valuable information.  To obtain this 

information, field experiment will need to be conducted.  

Over larger area, such information might not be 

available.  To overcome such issue, there is a choice of 

using statistical method, eg. Regresson and the Bayes’ 

law.  With regression method, the slope of the linear law 

is not exactly constant from one watershed to another 

and calibration is needed each time when this method is 

applied.  Bayesian method, on the other hand, requires 

prior probabilities distribution, which are estimated from 

the training data sets, in order for the Bayes’ law to find 

a posterior.   

Compare to statistical methods, ANN has the 

advantages of being able to identify subtle and non-

linear patterns, which is not always the case for 

traditional statistical methods.  In addition to this, ANNs 

do not require normally distributed continuous data and 

may be used to integrate data from different source with 

poorly defined or unknown contributions [4].     

 

2   Study Area and Data Set 
The brightness temperature observations used in 

this study have been collected during the month-long 

NAFE field campaign held in November 2005.  The 

campaign included extensive airborne passive 

microwave observations together with spatially 

distributed and in-situ ground monitoring of near-

surface soil moisture.  For the purpose of this analysis, 

only pertinent detail of the data will be presented.  A 

more detailed description of the data can be obtained in 

[5].  The study area is situated at the northern part of the 

Goulburn River catchment, located in a semiarid area of 

south-eastern Australia.  This catchment extends from 

31
0
46’S to 32

0
51S and 149

0
40’E to 150

0
36’E with 

elevations ranging from 106 m in the floodplains to 

1257m (Fig. 1).  The area monitored during NAFE’05 

was a square area of approximately 40km×40km, 
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centered in the northern part of the catchment. Much of 

the original vegetation has been cleared to the north of 

the Goulburn River, where the dominant land uses are 

grazing and cropping.  The southern part of the 

catchment is largely uncleared with extensive areas 

covered by forest.  This 40km area is chosen for its 

moderate-to-low vegetation cover condition, and can be 

logistically divided into two sub-areas, the “Merriwa” 

area in the east and the “Krui” area in the west.  The 

regional data measured on the 7
th
 , 14

th
 and 21

st
 Nov 

2005 was the target dataset for this study. 

 

 
Fig. 1. Overview of NAFE’05 focus farms within Krui 

and Merriwa areas. 

 

2.1  L-band derived soil moisture 
Soil moisture data for the 40km×40km study area was 

derived at 1km nominal resolution from the L-band data 

using the L-MEB (L-band Microwave Emission of the 

Biosphere) model. A detailed description of this 

retrieval is presented in [6], so only pertinent details are 

repeated here.  The 40km×40km study area was 

corresponding to one SMOS pixel.  

Soil moisture was retrieved for each 1 km brightness 

temperature (Tb) pixel using the L-MEB model together 

with the ancillary data of land cover, soil texture, soil 

temperature and canopy temperature. The soil moisture 

output of the L-MEB algorithm was limited to a 

maximum soil moisture value of 58%v/v, derived from 

analysis of the maximum soil moisture achieved at the 

monitoring stations. Conversely, no lower limit was 

imposed on the retrieved soil moisture. The average 

accuracy of soil moisture retrieval at 1 km resolution 

using L-MEB was 3.8%v/v and in all cases better than 

6%v/v over a variety of land surface conditions in the 

study area [6].  

 

2.2  MODIS data 
The MODIS data used in the downscaling algorithms 

are composed of MODIS/Aqua Surface Reflectance 

Daily L2G Global 250 m and MODIS/Aqua Land 

Surface Temperature and Emissivity Daily L3 Global 1 

km products.  The MODIS NDVI (Normal Difference 

Vegetation Index) was calculated using Band 1 and 

Band 2 of the MODIS/Aqua Surface Reflectance L2G 

Global 250 m product.  The MODIS/Aqua data were 

selected since there is no significant discrepancies 

between the NDVI values derived from Terra and Aqua 

satellites of MODIS [7] and all the data during the 

regional observations were available from this satellite.  

The NDVI was derived from cloud-free products.  

During the three regional observations dates (7th Nov 

2005, 14th Nov 2005 and 21st Nov 2005), the MODIS 

surface temperatures images were not totally cloud free, 

each with 31%, 13% and 15% cloud cover respectively. 

 

3   Methodology 
In this paper, the linear downscaling relationship by [8] 

is applied in the ANN model.  Based on data available 

from MODIS and physical based model predictions of 

soil evaporative efficiency derived from MODIS surface 

temperature and NDVI,  [8] developed a deterministic 

model for downscaling soil moisture from SMOS scaled 

observations according to: 

MODISCSMOS SMP   (1) 

where,   : downscaled soil moisture,  

  SMOS : SMOS-scale soil moisture,  

  

minTT

TT
SMP

MODIS

MODISSMOS
MODIS




   (2) 

with MODIST : soil skin temperature derived from MODIS 

data at the time of interest, SMOST : the areal average of  

MODIST  and minT : soil temperature at maximum soil 

moisture,  

The characteristic volume fraction, C , of water 

is computed as: 

  ahcC r/10     (3) 

where,  0c  (% v/v) and  (s m
-1

) being two soil 

dependent parameters and ahr ( s m
-1

) the aerodynamic 

resistance over bare soil, given the roughness and the 

wind speed.  The empirical parameter 0c  controls the 

soil capacity to retain moisture in optimal evaporative 

condition, i.e. when wind speed is zero or ahr  is infinite.  

In other words, the higher the 0c , the slower the soil 

dries.  C  is the most important parameter to be 

estimated [8].   



 

3.1  ANN downscaling approach 
In this study, ANN is used to learn the 

relationship between  , SMOS  and MODISSMP  without 

the value of C , which is not available directly from the 

data of the field experiment used, and maps a function 

between these three variables through the learning 

process during ANN training.  An analogy for this 

phenomena is a set of data of a function 3mxy .  For 

a particular situation, let the value of 2m . By 

supplying the values of x and the value 3 as the inputs, 

and the calculated y values for the corresponding x  

values, the ANN can map a function between the inputs 

and output using a linear model.  This simple scenario 

becomes more complicated when m  is a parameter, 

which is dependent on other factors, i.e. the value of m  

will change.  The value of C  
is related to wind speed 

and two soil dependent parameters, and hence the 

“complicated” scenario in the analogy happens when 

this linear relationship is adopted in the ANN model 

without having the value of C .  To account the 

variability of C , the mean and standard deviation of 

soil moisture at a finer resolution is used.  This is 

explained in detailed in Section 3.1.2. 

 

3.1.1  Data preparation 

The data on 7
th
 Nov 2005 is selected for the training of 

the ANN model.  To increase the number of data for this 

demonstration, the 40 km×40 km area is divided into 

many 20 km×20 km grids.  A total of seven 20 km areas 

are randomly selected.  After the ANN model manages 

to build a relationship with the lowest Root Mean 

Square Error (RMSE), this ANN model is tested with 

data on 14
th
 and 21

st
 Nov 2005. On each of these dates, 

four 20 km×20 km grids are used.   

 

3.1.2  Spatial variability of soil moisture 

To account for the unavailability of the most important 

parameter C  in equation (1), the variability of this 

variable is “approximated” using the mean and 

standard deviation of the soil moisture values at a finer 

resolution.  In this demonstration study, this is done by 

calculating the mean and standard deviation soil 

moisture values from the 1 km soil moisture data, 

described in Section 2.1.  For real-life application, these 

values could be approximate from radar data which 

offers higher resolution data.  The mean and standard 

deviation of the soil moisture data are used for the 

normalization and de-normalization of the soil moisture 

values.  In a study by [9], standard deviation was used as 

an indicator for selection of similarity data between the 

training and testing data in order to achieve a good 

retrieval accuracy.  The study by [9] had limited the use 

of ANN for time and site specific purpose, which would 

not be very useful when the retrieval is needed to be 

done covering a wider range of time scale, as shown in 

this demonstration study.  

 

4   Results and Discussion 
4.1  ANN architecture 

The inputs of the ANN are SMOS  and MODISSMP , while 

the output is  . The number of nodes in the input and 

output layers are determined by the number of input and 

output parameters. However, a decision needs to be 

made regarding the number of hidden layers and the 

number of hidden neurons in each of the hidden layers. 
There is currently no theoretical reason to use neural 

networks with more than two hidden layers [10]. For 

this reason, the ANN architecture being determined has 

either one or two hidden layers. Using too few or too 

many hidden neurons may undermine the application. 

Too few hidden neurons will cause underfitting to occur, 

whereby complicated signals within the data are poorly 

represented by simple models in the ANN. On the other 

hand, using too many hidden neurons will cause 

overfitting whereby the neural network has too much 

information processing capacity to build complex 

models, such that the limited amount of information 

contained in the training set is not enough to train all of 

the neurons in the hidden layers. Moreover, if too many 

hidden neurons are used, the amount of training time 

will increase. Currently, the best way to optimize the 

number of hidden layers and the number of hidden 

neurons is simply through trial and error [11].   
The Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) training algorithm chosen was based on the 

previous study in [12].   

 

4.2  Window size selection  
As the surface soil moisture variance observed within a 

square metre can be as large as a whole field [13], there 

is a need to determine the size of the area (hereafter, 

referred as “window”) whereby the ANN can capture 

better the spatial variability within this smaller region 

comparing to the 20 km×20 km grid.  The mean and 

standard deviation of the soil moisture values within the 

windows are calculated.  Within the 20 km×20 km grid, 

the prediction of the soil moisture at 1 km is done within 

the selected window size.  The prediction is next moved 

to the window that is to the right of this current window, 

i.e. prediction will be done from left to right, top to 

bottom within the 20 km×20 km grid.   

To select the optimum window size, the sizes 

of: 2 km×2 km, 3 km×3 km. 4 km×4 km and 5 km×5 km 

are used (hereafter these sizes are known as window).  A 

sub-set of data on 7
th
 Nov 2005 is used for this purpose.  



The cells of the smaller grids are the sub-sets of the 

bigger grids.  For example, the grid of 2 km×2 km is the 

sub-sets of the other windows (Fig. 2). With such 

relationships, the variances of the results obtained, if 

any, are caused by the new cells in the larger window. 

Moreover, the new cells added in the larger windows are 

close to the smaller sub-set of the larger window. The 

topography, land uses, and soil texture conditions of the 

new cells are expected to be similar to those for the 

smaller sub-sets. 

 

 
Fig.2. The different window sizes used for the purpose 

of selecting the optimum window size. 

 

4.3 Optimum ANN architecture and window size  

For the one hidden layer, number of hidden neurons 

being tested are: 2, 4, 6, 8, 10, 20, 50, 100 while for two 

hidden layers, each hidden layer with the same hidden 

neurons of: 2, 4, 5, 10, 20.  Note: for two hidden layers, 

notation 2:2, 3:3, …, are used.    

  From Tab. 1, it can be seen that, the prediction 

results deteriorate as the window size increases. For 

example, for single layer of two hidden neurons, the 

RMSE values deteriorate from 4.09% v/v for 2km×2km 

grid to 4.69%v/v at 3km×3km, to 6.47%v/v and 

6.48%v/v for 4km×4km and 5km×5km, respectively. 

This is as expected, as for a bigger window size, the soil 

moisture variance will be higher comparing to a smaller 

window size because of a lack of homogeneity. As the 

variance increases, the ANN is unable to capture this 

variability, causing the retrieval accuracy to deteriorate. 

For a single hidden layer of 10 neurons, the best RMSE 

obtained is 3.56% v/v with a correlation coefficient, R
2
 

= 0.46 for the 2km×2km “window” size. For two hidden 

layers of 10 neurons in each layer, it is 3.67% v/v with 

R
2
 = 0.40 for the 2km×2km window. The results show 

that the use of two hidden layers gives little 

improvement in the accuracy of predictions, indicating 

that a more complex model is unnecessary. In addition 

to this, when the window size increases, the RMSE 

values increase. 

The lowest RMSE (3.56% v/v) was obtained 

with one hidden layer of 10 neurons and at window of 2 

km×2 km.   

 

4.4  Evaluation cases  
With this architecture (number of neurons and hidden 

layer) and the size of the window defined, this 

methodology is evaluated using the data of the 14
th
 and 

21
st
 Nov 2005. 

      Using this methodology, the RMSE between the 

actual and predicted values for each of the four grids of 

20 km×20 km on the 14
th
 and 21

st
 Nov 2005 are shown 

in Tab. 2. It can be seen that the RMSE values range 

from 1.8% v/v to 3.5% v/v.  The correlations of the 

actual and predicted soil moisture are shown using 

scatter plots in Fig. 3. The actual and predicted soil 

moisture maps shown in Fig. 4 show reasonable 

correspondence between the actual and predicted maps. 

From the spatial difference of the soil moisture map, 

generally, the predicted soil moisture using this 

methodology is slightly lower compared to the actual 

soil moisture as evidenced by the large number of cells 

of positive difference. 

 

 

5.0 Conclusions 
This demonstration work has shown that the ANN is 

able to downscale from 20 km brightness temperature 

data to 1 km soil moisture data with encouraging 

accuracy, provided that the spatial variability of soil 

moisture data, i.e. the mean and standard deviation data, 

at 2 km×2 km can be obtained.  The main benefit of this 

methodology is in term of the minimum number of input 

data required. In this approach, besides the mean and 

standard deviation of the soil moisture data at 2 km×2 

km, only the SMOS  and MODISSMP , which can be 

obtained from satellites, are used as input variables.  

One possible solution in obtaining the mean and 

standard deviation could be using radar data which 

provides higher resolution data.     
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Tab. 1.  The effects of using different architecture and window sizes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Hidden 

Neuron 

RMSE (%v/v) (R
2
) for Different Window Sizes 

2×2 km 3×3 km 4×4 km 5×5 km 

O
n

e 
L

a
y

er
 

2 4.09 (0.29) 4.69 (0.22) 6.47 (0.05) 6.48 (0.12) 

4 4.07 (0.55) 4.84 (0.20) 6.50 (0.002) 6.52 (0.02) 

6 3.89 (0.54) 4.84 (0.15) 6.60 (0.20) 6.49 (0.0002) 

8 3.80 (0.55) 4.76 (0.18) 6.56 (7.3E-06) 6.51 (0.02) 

10 3.56 (0.46) 4.59 (0.22) 6.45 (0.003) 6.21 (0.02) 

20 5.55 (0.13) 6.24 (0.18) 7.43 (0.13) 7.42 (0.13) 

50 6.02 (0.12) 6.93 (0.24) 6.31 (1E-08) 6.31 (0.12) 

100 5.08 (0.26) 5.77 (0.26) 6.37 (0.10) 6.60 (0.14) 

T
w

o
 L

a
y

er
s 

2:2 4.44 (0.17) 4.90 (0.25) 6.48 (0.09) 6.57 (0.13) 

4:4 3.84 (0.38) 4.49 (0.27) 6.64 (0.08) 6.69 (0.11) 

5:5 5.00 (0.11) 5.63 (0.15) 6.66 (0.10) 6.88 (0.04) 

10:10 3.67 (0.40) 4.46 (0.27) 6.54 (0.05) 6.62 (0.05) 

20:20 4.67 (0.04) 5.33 (0.19) 6.37 (0.11) 6.49 (0.14) 



Tab. 2. The RMSE values obtained for each 20 km×20 

km grids. 

 

 

 

 

 

 

 

 

Fig. 3.  The actual and predicted soil moisture values 

after applying the downscaling methodology. 

 

 

 

 
Fig. 4. The actual and predicted soil moisture maps at 1 km resolution after applying the downscaling 

methodology. The difference between the actual and predicted soil moisture for each date is also 

shown. 

Date Grid (20 km×20 km) RMSE 

(%v/v) 

14
th

 Nov 2005 Grid 1 3.5 

 Grid 2 3.4 

 Grid 3 2.3 

 Grid 4 1.8 

21
st
 Nov 2005 Grid 1 2.7 

 Grid 2 2.9 

 Grid 3 2.0 

 Grid 4 2.3 

 

 
a. 

 

b. 


