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Abstract The ensemble Kalman filter (EnKF) has been proved as a useful algorithm to merge
coarse-resolution Gravity Recovery and Climate Experiment (GRACE) data with hydrologic model results.
However, in order for the EnKF to perform optimally, a correct forecast error covariance is needed. The
EnKF estimates this error covariance through an ensemble of model simulations with perturbed forcing
data. Consequently, a correct specification of perturbation magnitude is essential for the EnKF to work
optimally. To this end, an adaptive EnKF (AEnKF), a variant of the EnKF with an additional component
that dynamically detects and corrects error misspecifications during the filtering process, has been applied.
Due to the low spatial and temporal resolutions of GRACE data, the efficiency of this method could be
different than for other hydrologic applications. Therefore, instead of spatially or temporally averaging the
internal diagnostic (normalized innovations) to detect the misspecifications, spatiotemporal averaging was
used. First, sensitivity of the estimation accuracy to the degree of error in forcing perturbations was
investigated. Second, efficiency of the AEnKF for GRACE assimilation was explored using two synthetic
and one real data experiment. Results show that there is considerable benefit in using this method to
estimate the forcing error magnitude and that the AEnKF can efficiently estimate this magnitude.

1. Introduction
It has been proven that the ensemble Kalman filter (EnKF) can improve the accuracy of hydrologic models
by merging observations with model predictions. Such observations include soil moisture (e.g., Aubert et al.,
2003; Crow & Ryu, 2009; Houser et al., 1998; Pauwels et al., 2001; Reichle et al., 2004, 2008; Walker & Houser,
2001), snow water equivalent (e.g., Barrett, 2003; Slater & Clark, 2006; Sun et al., 2004), streamflow (e.g.,
Lee et al., 2011; Clark et al., 2008), groundwater levels (e.g., Hendricks Franssen et al., 2017), turbulent
heat fluxes (e.g., Bateni & Entekhabi, 2012; Pipunic et al., 2013; Xu et al., 2018) , microwave radiances (e.g.,
Dechant & Moradkhani, 2011), and terrestrial water storage (TWS; e.g., Ellett et al., 2006; Forman & Reichle,
2013; Forman et al., 2012; Girotto et al., 2016; 2017; Houborg et al., 2012; Khaki, Ait-El-Fquih, et al., 2017;
Khaki, Hoteit, et al.,2017; Khaki, Schumacher, et al., 2017; Kumar et al., 2016; Li et al., 2012; Li & Rodell,
2015; Smith, 2013; Tian et al., 2017; van Dijk et al., 2014; Zaitchik et al., 2008). The idea behind the EnKF is
to combine observations and model estimates of state variables considering their relative error covariances.

Although the effect of accurately determining the observation and model error specifications is significant,
it is difficult in real-world problems to accurately determine their correct values. One possibility is to find
the optimal error specification off-line using a calibration approach (Reichle et al., 2008; Reichle et al.,
2002a), requiring a considerable number of computationally expensive assimilation runs. Moreover, the
error characteristics may vary during the simulation, and thus identifying the spatiotemporal variations of
error characteristics could be challenging.

Adaptive filtering provides a tool to analyze the EnKF internal metrics, such as innovations and increments,
to understand if there is any misspecification in error characteristics, for example, identifying a correction
to improve the accuracy of the error specification for the next assimilation time step. Different variations
of these approaches have been developed in previous studies (e.g., Berry & Sauer, 2013; Hong et al., 2009;
Mehra, 1970; Moghaddamjoo & Kirlin, 1993). These tools have also been successfully applied to a number
of land data assimilation applications (e.g., Crow & Van Loon, 2006; Daley, 1992; De Lannoy et al., 2009;
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Reichle et al., 2008; Van Geer et al., 1991; Zhang et al., 2004). However, such approaches have not yet been
applied to a Gravity Recovery And Climate Experiment (GRACE) data assimilation framework.

The idea behind the Adaptive EnKF (AEnKF) is that the expected value of a number of metrics, calculated
based on internal diagnostics (e.g., innovations), should be consistent with the values that are expected
from the assumed error specification. Any difference indicates a misspecification in error characteristics
and therefore provides an opportunity to suggest corrections. Since the internal diagnostics are very noisy,
different approaches have been adopted to obtain a usable expected value depending on circumstances.
Some of these assume that the error characteristics are spatially homogeneous. Therefore, using a spatial
averaging approach, a single expected value of the metrics can be calculated. Other studies assume that the
error characteristics are temporally stable, and thus they have averaged the metrics across time.

The methodology of the current paper is adopted from Crow and Van Loon (2006). Their study addressed a
synthetic soil moisture data assimilation problem with high temporal and spatial resolution. They showed
that the methodology performs well in such an information-rich situation, and after data assimilation there
was enough information in the internal diagnostics to correct the assumed error magnitudes. One of the
challenges they identified was choosing an approach to filter the noise in the adaptive measure (normalized
innovations) to provide an appropriate modification coefficient. Crow and Van Loon (2006) used a tem-
poral averaging approach. However, GRACE TWS assimilation has to address the situation, with far less
information in the observations, due to their coarse temporal and spatial resolution, and vertical integra-
tion. Moreover, GRACE retrievals represent TWS anomalies from a temporal average rather than absolute
values. It is not clear that the methodology developed by Crow and Van Loon (2006) can correctly extract
the assumed error magnitudes under these conditions. Our objective was to determine if their methodol-
ogy can improve estimation skill of the model system. The averaging approach of the original methodology
was altered as well, by aggregating the information across the domain and over time. Moreover, the method
here was tested in both synthetic and real-world experiments. The objective of this paper was therefore to
assess if there is any possibility to remove the effect of error misspecification in GRACE assimilation using
this approach.

2. Study Area, Model, and Data Set
2.1. The Study Area
The Murray-Darling basin (MDB) has been selected as the study domain. This basin, located in southeastern
Australia, covers approximately 1 × 106 km2 including parts of New South Wales, Victoria, the Australian
Capital Territory, South Australia, and Queensland (Figure 1). The basin contains 23 major rivers provid-
ing water for approximately 4 million people. This catchment receives 6% of total Australian precipitation
producing 24 × 109 m3 of runoff per year on average (Pigram, 2007).

2.2. The Model
Following Tian et al. (2017) and Shokri, Walker, van Dijk, and Pauwels (2018), the hydrological model
used here was the AWRA-L version 0.5 (van Dijk, 2010). This model simulates a variety of state and flux
variables on a daily basis. The variables include groundwater, streamflow, evapotranspiration, and soil mois-
ture content in three different layers; specifically, in the surface (0–10 cm), shallow (10–100 cm), and deep
(100–500 cm) layers. AWRA-L is a parsimonious model that has been applied successfully in Australia.

This model is a grid-based model (with a grid size of approximately 0.05◦). Each grid consists of two
hydrological response units (HRU), representing the deep and shallow-rooted vegetation landscape parts,
respectively. Each HRU contains three soil layers, and the groundwater and runoff storage is shared between
each pixel. The soil water balance and heat flux are simulated separately for each HRU, and the groundwater
is simulated for each pixel. In this model, shallow-rooted vegetation has access to just shallow soil moisture
and deep-rooted vegetation has access to both shallow and deep soil moisture. The groundwater storage is
also simulated as a linear storage without any lateral flow between pixels. Surface and groundwater storage,
soil moisture of different layers, evapotranspiration, and the flux between different storages are the model
outputs (for more details refer to van Dijk et al., 2012, 2011; Renzullo et al., 2014; Shokri, Walker, van Dijk
& Pauwels ; Shokri et al., 2018; Van Dijk & Warren, 2010).
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Figure 1. The Murray-Darling basin study area and its location in southeast Australia. The circle shows the location of
the example time series of Figure 7.

2.3. The Data
The resolution of the model is 0.05◦. The model was forced with meteorological data from the Australian
Water Availability Project (AWAP; http://www.bom.gov.au/jsp/awap/index.jsp), including daily precipita-
tion, minimum and maximum temperature, and radiation. The remaining input data, including wind and
land use, are identical with those of Shokri, Walker, van Dijk, and Pauwels (2018). The model was calibrated
using the patient rule induction method parameter estimation (Shokri, Walker, van Dijk, Wright & Pauwels,
2018) using streamflow observations from 190 unregulated catchments within the MDB (Zhang et al., 2013)
from 1990 to 2000. Similar to Shokri, Walker, van Dijk, and Pauwels (2018), two independent “good enough”
parameter sets were found. One of them was used to generate the truth data (in the synthetic experiments),
while the other was used for the simulation (for more details refer to Shokri, Walker, van Dijk, Wright &
Pauwels 2018; Shokri, Walker, van Dijk & Pauwels 2018).

2.4. The Data Assimilation Experiments
A variety of different synthetic observations were assimilated into the AWRA-L model. To generate synthetic
observations, a set of simulations were performed with perturbed forcing data, and a good enough parameter
set to provide what was then considered as the synthetic “truth.” We refer to this parameter set as the “true”
parameter set. The synthetic TWS observations were generated by spatiotemporally upscaling and adding
synthetic observation noise to the TWS estimates from a model with the true parameter set. The target syn-
thetic observations match with the GRACE pixel sizes (3× 3 degree) and temporal resolution (monthly). To
validate and compare the results of different approaches, the root-mean-square error (RMSE), correlation
coefficient (R2), and exceedance ratio (ER95; Moradkhani et al., 2006) were used. The ER95 is the fraction
of the observations which fall outside the estimated 95% confidence bounds. For a perfect ensemble and
noiseless observations, the expected value of ER95 is 5%. Therefore, in this study, the ER95 was calculated
using noiseless observations (the aggregated TWS before the perturbation). The main reason for using syn-
thetic data was that it is impossible to determine accurate in situ TWS values for an area similar in size to
the very large GRACE footprints. However, the different filtering approaches were also evaluated using real
observations including observed groundwater levels, streamflow, and soil moisture values.

The GRACE observations used here were the NASA Jet Propulsion Laboratory‘s (JPL) RL05M (Watkins
et al., 2015; Wiese et al., 2016 https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACE_MASCON_CRI_
GRID_RL05_V2). This product is a monthly 3◦ × 3◦ TWS anomaly (TWSA) relative to a long-term TWS aver-
age of 2004–2009. So the TWSA were converted to TWS by adding the average TWS from a model simulation
over the same period. The observation error is also provided with a monthly interval.
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The streamflow observations were from the same gauges used in the calibration process but for a different
period (from 2000 to 2018). The groundwater observations were level measurements at 14,903 bores across
the MDB, selected from 260,186 monitoring points (http://www.bom.gov.au/water/groundwater/explorer/)
based on their data availability (bores with less than 24 observations were ignored) during the simulation
period. The soil moisture observations were obtained from OZnet (http://www.oznet.org.au/ A. B. Smith
et al., 2012). OZnet measures the soil moisture for a 0- to 90-cm profile so the surface and root zone soil
moisture can be validated using these observations. The model provides the water states in millimeters of
extractable water, while the observations of the groundwater are the standing water level, and the soil mois-
ture observations are volumetric wetness in m3

m3 . Therefore, to evaluate the accuracy of different in real-world
experiments, the correlation coefficient (R) was used. Eight state variables per pixel per day were updated
in the data assimilation experiments, which were the surface (s0), shallow (ss), and deep (sd) soil moisture
for both HRUs of each pixel, and the surface (sr) and groundwater storages (sg).

3. EnKF
The EnKF (Evensen, 2003) is a Monte Carlo variant of the Kalman Filter (KF) which was developed to
deal with nonlinear assimilation problems while bypassing the computational challenge of the extended
Kalman filter. The computational feasibility and simplicity of the EnKF make it one of the more popular
Data Assimilation (DA) approaches. In the EnKF, a relatively small ensemble of model integrations is used
to represent the error of the (potentially nonlinear) forward model. These ensembles are formed by adding
randomly generated errors to the model inputs and model error covariance estimated from the spread of the
resulting state variables. These matrices are then used to determine the model correction. The error char-
acteristics have significant effects on the model error estimation, and consequently the amount of update
is highly sensitive to them. Therefore, it is crucial to accurately specify the error characteristics to have an
optimal filter.

An EnKF consists of two main steps which are performed sequentially: (1) a forward model which forecasts
an ensemble of the state variables by using an ensemble of perturbed forcing data and (2) an update step
in which the error covariances inferred from the first step and the estimates of observation errors are used
to modify the forecasted state variables. For GRACE assimilation, different variants of the EnKF are devel-
oped. Shokri, Walker, van Dijk, and Pauwels (2018) compared different variants of the EnKF for a synthetic
GRACE TWS data assimilation and concluded that an EnKF structure which distributes the observation
innovation into all state variables during the month had the most reliable performance in terms of reducing
the error. The adaptive error tuning strategy was combined with this approach: After finding the predicted
observation of each member, all state variables inside each GRACE pixel and during the days of the month
were used to calculate the covariance matrix. Therefore, the Kalman gain will have a length equal to the
number of model pixels inside a GRACE pixel times the number of time steps (days) of a month. The forward
model (first step) can be written as

xi−
𝜏

= F(xi+
𝜏−1,q

i
𝜏
), (1)

where xi−
𝜏

is the forecast state vector of member i at time 𝜏 derived by a nonlinear forecast model F(.). The
model propagates the updated state vector from the previous time step, xi+

𝜏−1, and imposes an ensemble of
model errors qi

𝜏
, with covariance of Q𝜏 . Once an observation becomes available (one a month in the case of

the GRACE retrievals) the observation operator, M(.), predicts the observation based on the forecast state
vectors, xi−

𝜏
. Such that

M(xi
𝜏
) = 1

Npixel

Npixel∑
k=1

(
1
3

∑
d∈{5,15,25}

TWSi
𝜏,d,k

)
, (2)

where Npixel is the number of model pixels in the observation grid, TWSi
T,d,k is the TWS of the kth model pixel

at the dth day of the Tth monthly time window of the ith member. The reason that the TWS is averaged for
3 days (5, 15, 25) is to mimic the three overpasses of the GRACE satellites used to measure the TWS change
in each month. The increments to update the forecast state vector can then be calculated as

Δxi
𝜏
= K𝜏 [yi

𝜏
− M(xi

𝜏
)], (3)

where yi
𝜏

is a vector that contains the perturbed observations, and K𝜏 is the Kalman gain at 𝜏 observation
time step. The Kalman gain, K𝜏 , converts the innovations (yi

𝜏
− M(xi

𝜏
)) into increments Δxi

𝜏
that are then

SHOKRI ET AL. 4

http://www.bom.gov.au/water/groundwater/explorer/
http://www.oznet.org.au/


Water Resources Research 10.1029/2018WR024670

used to correct the state vector forecast. The relative weight of the observation and model are determined
during the update step by adjusting the magnitude of increments based on the error covariance between
state variables and model observation predictions (CxM,𝜏 ), the error covariance of the model observation
prediction (CMM,𝜏 ) and the observation error covariance (Cyy,𝜏 ). The Kalman gain is calculated as

K𝜏 = CxM,𝜏 .(CMM,𝜏 + Cyy,𝜏 )−1, (4)

where CxM and CMM are calculated based on the ensemble simulation results and Cyy reflects the uncer-
tainty (or error) of the observations (Reichle et al., 2002b).

4. Adaptive EnKF
The optimality of the Kalman gain is subject to assumptions, including that the error characteristics are
accurately quantified. It is difficult to satisfy this condition in a hydrological model data assimilation frame-
work with limited observations. Adaptive EnKF strategies can help to mitigate the effect of the potential
error misspecification on the performance of the filter.

Adaptive filtering strategy aim to detect the misspecification in error characteristics and modify them using
internal diagnostics. Usually, the innovations [yi

𝜏
− M(xi

𝜏
)] are used for correction. Crow and Van Loon

(2006) modified the adaptive EnKF approach from Dee (1995) for land data assimilation systems. This
method is adapted to a GRACE retrieval data assimilation system. This approach is based on the mean of
the innovations across the ensemble, v𝜏,m, which can be calculated as

v𝜏,m = 1
nr

nr∑
r=1

v𝜏,r,m, (5)

where nr is the size of the ensemble and v𝜏,r,m is the innovation of ensemble member r at time step 𝜏 for the
mth observation grid. In an optimal filter,

E[v𝜏,mvT
𝜏,m] = CMM,𝜏 + Cyy,𝜏 , (6)

should be satisfied, where vT
𝜏,m is the transpose of v𝜏,m. Based on this equation, Dee (1995) defined the nor-

malized innovation mean, 𝜒𝜏,m, as a measure to assess the error characteristics correctness by rearranging
equation (6) as

𝜒𝜏,m =
E[v𝜏,mvT

𝜏,m]
CMM + Cyy

. (7)

In an EnKF which is running optimally, the expected value of 𝜒𝜏,m is one and its temporal autocorrelation
is 0. If the expected value of 𝜒𝜏,m is more than unity, it can be inferred that the model error magnitudes are
underestimated relative to observation errors, and if it is less than unity, the error magnitudes are overesti-
mated. There are two challenges in using𝜒𝜏,m to modify the error magnitudes. First,𝜒𝜏,m is noisy and finding
its expected value needs numerous realizations. To address this challenge, Q and consequently v𝜏,m are usu-
ally assumed to be temporally or spatially fixed, so that the expected value can be calculated by averaging
(v𝜏,mvT

𝜏,m) over the domain or period. The temporal and spatial resolution of the GRACE retrievals are coarse,
so the results of either spatial or temporal averaging is expected to be noisy. Therefore, the (v𝜏,mvT

𝜏,m) values
were first averaged spatially across the catchment. Next, the averaged values smoothed using a temporally
exponential moving average. To find the 𝜒𝜏,m, they were then divided by the similarly averaged (CMM +Cyy)
over the same domain and time period.

The second challenge is, although 𝜒𝜏,m shows the direction of the misspecification appropriately, it is diffi-
cult to specify the exact amount of required modification in a nonlinear system. To overcome this challenge,
a dynamic modification process has been applied in previous studies. Here, instead of trying to correct all
errors in one attempt, the error magnitudes were fixed by a small amount of modification toward the direc-
tion suggested by 𝜒𝜏,m at each time step. We used this approach for applying the temporal exponential
moving average which can be formulated as

Q𝜏 = 𝛼𝜏 × Q0, (8)
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where Q0 is the assumed initially model error covariance and 𝛼𝜏 is a scale coefficient calculated dynamically
for each time step as

𝛼𝜏 = 𝛼𝜏−1 × 𝑓𝜏 , (9)

where 𝛼𝜏 evolves during the time by being multiplied with f𝜏 which is calculated as

𝑓𝜏 =
⎧⎪⎨⎪⎩
(1 + 𝛿)−1 , 𝜒𝜏,. < (1 + 𝛿)−1

𝜒𝜏,. , (1 + 𝛿)−1 ⩽ 𝜒𝜏,. ⩽ (1 + 𝛿)
(1 + 𝛿) , (1 + 𝛿) < 𝜒𝜏,.

, (10)

where f𝜏 considered to be equal to the averaged normalized innovation mean, 𝜒𝜏,., which is constrained by
a narrow range. This range is defined with 𝛿 which should be a very small number. The dot shows that the
variable is averaged over ensemble members. 𝜒𝜏,. can be calculated according to

𝜒𝜏,. = 𝛽
MA((v2

𝜏,.
))

MA(C𝜏 )
= 𝛽

(
(v2

𝜏,.
)
)
𝛾 +

(
(v2

𝜏−1,.)
)
(1 − 𝛾)

(C𝜏 )𝛾 + (C𝜏 − 1)(1 − 𝛾)
, (11)

C𝜏 = CMM,𝜏 + Cyy,𝜏 , (12)

where MA(.) is the exponential moving average operator, and 𝛾 is the parameter which determines how
smooth the moving average is and should be chosen small enough to ensure that noise is removed properly.
(v2

𝜏,.
) is the spatial average of (v𝜏,mvT

𝜏,m) which is calculated as

v𝜏,.vT
𝜏,.

= (v2
𝜏,.
) = 1

nm

nm∑
m=1

v2
𝜏,m, (13)

where v2
𝜏,m is the mean of innovations across the ensemble which are calculated using equation (5). The

other parts of the AEnKF structure used in the current paper are identical to the EnKF structure explained
in the previous section.

5. Results
Two synthetic and one real experiment sets were conducted to explore the feasibility of using adaptive filter-
ing approaches for GRACE TWS assimilation to mitigate potentially misspecified error characteristics. The
first and second experiments investigated the effect of error magnitude and accuracy, respectively.

The feasibility of using the AEnKF to mitigate the impact of error misspecification was investigated. Finally,
the performance of the AEnKF was evaluated in an experiment with the real GRACE observations. These
experiments were conducted on the MDB at a resolution of 0.05◦ over a 19-year time frame (from 1 January
2000 to 31 December 2018).

An error model similar to Shokri, Walker, van Dijk, and Pauwels (2018) was used here to generate
cross-correlated noise fields for the forcing data which are temporally and spatially autocorrelated. Error
model parameters are listed in Table 1. Following Shokri, Walker, van Dijk, and Pauwels (2018), an ensem-
ble size of 20 was selected for all DA experiments. To test this number was sufficiently large enough, one of
the experiments (EnKF with correct error magnitude and Q𝛼 = 1) was tested for different ensemble sizes
(between 5 to 50 members). The conclusions did not change when the ensemble members increased from
20 to 50.

5.1. Impact of Error Magnitude
For the first set of experiments, nine open loop (OL) ensembles (with perturbed meteorological data and
without assimilation) were generated. Each of these OL ensembles had a specific error magnitude which
was controlled by a scale factor 𝛼Q. A set of nominal error characteristics was considered as the center point
(Table 1), and by multiplying them with 𝛼Q different spreads of the OL ensemble were obtained. Figure 2
shows three samples of the simulated TWS using 𝛼Q = {0.5, 1, 2}, averaged across the catchment. For each
𝛼Q, the TWS time-series of a random member was selected as the reference (true) value. The synthetic obser-
vations were generated by adding observation white noise to the reference coarse TWS. These observations
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Table 1
Perturbation Parameters Used in Generating Spatiotemporal Correlated Meteorological Forcing Ensembles (Adopted From Shokri, Walker, van Dijk &
Pauwels, 2018)

Cross correlation
Standard Spatial Temporal Minimum Maximum

Parameter Typea deviation correlation correlation Precipitation temperature temperature Radiation
Precipitation M 0.50 2◦ 3 days n/a −0.8 −0.2 −0.1
Radiation M 0.30 2◦ 3 days −0.8 n/a 0.6 0.5
Minimum temperature A 0.30 (◦ C) 2◦ 3 days −0.2 0.6 n/a 0.7
Maximum temperature A 0.25 (◦ C) 2◦ 3 days −0.1 0.5 0.7 n/a
aThe symbols A and M indicate additive and multiplicative perturbations.

were then used to the EnKF with correct error magnitude specifications. The nine synthetic problems (𝛼Q =
{0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00}) were generated and solved.

As an example, Figure 3 shows the improvement in the TWS estimate accuracy for the problem with 𝛼Q =
1.00. According to this figure, the mean absolute error (MAE) and root-mean-square error (RMSE) between
the true and estimated TWS were reduced considerably when the EnKF with an accurate error magnitude
was applied. A similar conclusion was obtained for all other scaling factors. A summary of these results is
shown in Figure 4 as using spatiotemporally averaged RMSE for the OL and EnKF. The temporal average
lines in Figure 3a provide a single point in Figure 4.

As can be expected, their RMSE increases monotonically by increasing the error magnitude. The RMSE TWS
estimates of the OL ensemble with 𝛼Q = 0.1 was 1.51, and by increasing the error magnitude, it reached
to 22.75 (for 𝛼Q = 2.0). The rate of the increase was not constant and for a smaller value of 𝛼Q a slightly
higher sensitivity of the RMSE was observed. Meanwhile, the EnKF reduces the RMSE by approximately
20% for all tests with different values of 𝛼Q. These results indicate that the skill of an optimal EnKF (with
correct error specification) in removing the error for the designed experiments. The tests were repeated with
the same conditions except with incorrect error magnitudes introduced to the EnKF, which were doubled.
More specifically, for each run in this new experiment set, the observations were generated based on the
resulting TWS of a single ensemble member, perturbed with a specific 𝛼Q, but using twice this value in the
EnKF. Deliberately feeding wrong information to the EnKF move the filter to a suboptimal operation. Due
to the lack of knowledge about specific characteristics of uncertainties associated with different parts of
the system, in a real-world problem this suboptimality can easily occur. The results indicate that the RMSE
of the EnKF with deliberately wrong error characteristics was considerably degraded and with accuracy
of the result becoming even worse than the OL runs (Figure 4). This illustrates the importance of using
correct error characteristics in the EnKF applications. The fourth set of experiments were conducted with
the same (doubled) error magnitudes, but this time with the AEnKF method applied. The AEnKF reduces
the sensitivity of the filtering procedure to the accuracy of the error specification. Results confirmed the
capability of the AEnKF in recovering the correct error magnitudes from deliberately misspecified errors. As
depicted in Figure 4, the RMSE of the results obtained from the AEnKF, even with doubled error magnitudes,

Figure 2. Mean (OL) and spread (OL Ensemble) of the ensemble open loop (with perturbation but without
assimilation). Prediction of TWS anomaly for 𝛼Q = {0.5, 1, 2}. Simulation starts from 1 January 2000. OL = open loop;
TWS = terrestrial water storage.
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Figure 3. Spatially averaged (a) root-mean-square error (RMSE) and (b)
cumulative mean absolute error (MAE) for monthly and coarse scale
terrestrial water storage (TWS) estimates with 𝛼Q = 1. Simulation starts
from from 1 January 2000. OL = open loop; EnKF = ensemble Kalman
filter.

were approximately similar to apply the EnKF with correct error specifi-
cations. This is also reflected in the spatial RMSE maps (Figure 4c).
5.2. Impact of Error Accuracy
The previous section investigated, the impact of introducing double the
optimal error magnitude to the EnKF. However, the impact of a differing
levels of inaccuracy was not tested. To do so, a single scaling factor (𝛼Q =
1) was used to generate one set of synthetic observations. Nine different
deliberately wrong error magnitudes then introduced to the OL, EnKF,
and AEnKF runs. Figure 5a shows the TWS RMSE of the ensemble OL
and EnKF with different degrees of misspecification in error magnitudes
are compared with the truth. Figure 5 also shows the impact of different
𝛽 values (equation (11)). As expected the RMSE of both the EnKF and OL
were increased when the error magnitudes were over or underestimated.
In operational systems, this sensitivity is problematic as these parameters
are difficult to measure and will likely be misspecified. The results of the
experiments using the AEnKF suggest that this approach can correct the
results of using an erroneous value of 𝛼Q. As is illustrated in Figure 5a,
the RMSE of the TWS estimation is almost independent of the assigned
error magnitude.

A notable feature in Figure 5 is the shift of the minimum RMSE in the regular EnKF toward the left. Ide-
ally, the highest efficiency is expected to correspond to the correct error specification, in this case 𝛼Q = 1.
However, it is not uncommon in hydrological DA for similar patterns with reported in Crow and Van Loon
(2006) and Durand and Margulis (2008). The reason for this shift is not simply due to the selection of random
numbers. Durand and Margulis (2008) have prove this by investigating the problem using three different
random seed numbers. The results of the current study confirm this claim by reproducing a similar pat-
tern (not shown here) when using several random number seeds. Since the EnKF was originally designed

Figure 4. (a) Absolute, (b) normalized spatiotemporally averaged relative to the open loop simulations (for different
levels of 𝛼Q), and (c) temporally averaged maps (for 𝛼Q=1.0) of terrestrial water storage RMSE. Plot compares different
filtering approaches. EnKF = ensemble Kalman filter; OL = open loop; AEnKF = adaptive EnKF;
RMSE = root-mean-square error.
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Figure 5. (a) Terrestrial water storage root-mean-square error values of the open loop, ensemble Kalman filter, and
adaptive ensemble Kalman filter with deliberately wrong initial 𝛼Q values. (b) Root-mean-square error of the
model using different 𝛼 and 𝛽. OL = open loop; EnKF = ensemble Kalman filter; AEnKF = adaptive EnKF;
RMSE = root-mean-square error.

for linear systems, the nonlinearity of the hydrological model may be the reason for this shift. The effects
of nonlinearity on the effect of the filter have been discussed in several studies (e.g., Evensen, 1994, 1997;
Verlaan & Heemink, 2001; Yang et al., 2012).

In the current AEnKF approach a tuning factor (𝛽) was embedded in equation (12) to compensate for non-
linearity. A value less than one intentionally forces the adaptive procedure to underestimate the magnitude
of the errors. A range of different 𝛽 values were tested with the results shown in Figure 5a.

These results indicate that both large and small values of 𝛽 lead to a suboptimal performance of the AEnKF,
while for values closer to the optimal value (between 0.6 and 0.9) the AEnKF performs similar to the optimal
EnKF. It should also be noted that the values of 𝛼Q and 𝛽 can compensate for each other. For a value of 0.1
for 𝛼Q the use of a value of 1.5 for 𝛽 improved the performance of the AEnKF, while for a value of 2 for 𝛼Q a
value of 0.25 for 𝛽 improved the AEnKF filter performance.

Equation (11) shows that 𝛽 forces the value of 𝛼Q toward its optimal value. For an initially low 𝛼Q a high
value for 𝛽 assists the adaption procedure achieve a quicker retrieval of its correct value. Similarly, if 𝛼Q is
initially too high, a low value for 𝛽 will again help the adaption procedure to more quickly retrieve its correct
value.

These experiments demonstrate the importance of an adequate estimation of 𝛽. However, it should be
emphasized that without this factor (or 𝛽 = 1) the results marginally degraded compared to the optimal
EnKF but still the filter is working efficiently.

Figure 6. The 95% exceedance ratio for (a) ensemble Kalman filter, and (b)
adaptive ensemble Kalman filter with deliberately wrong initial 𝛼Q values.
ER95 = 95% exceedance ratio.

To find the optimal 𝛽, 19 different values of 𝛽 for each of the nine different
assumed 𝛼Q (in total 171 combinations) were tested. Figure 5b shows the
RMSE of these experiments. The results showed that the optimal value
of 𝛽 is between 0.6 and 0.9. However, the relatively constant RMSE val-
ues indicate that the estimation efficiency is not sensitive to this value
between these limit. Therefore, a value of 0.75 was selected as the optimal
𝛽. Reichle et al. (2008) also used the 𝛽 parameter in the adaptive filter-
ing. Also an optimal 𝛽 improved the results marginally but the filter was
able to improve the majority of estimations with 𝛽 = 1. Only the optimal
value 𝛽 was different (𝛽 = 1.06 comparing to 0.75) which can be a result
of the difference in the hydrological model structure. Therefore, based on
the degree and form of the nonlinearity, the optimal 𝛽 value is expected
to be case specific.

In addition to the deterministic measures used to assess the performance
of the EnKF and AEnK, we also used a probabilistic measure, the ER95.
Figure 6 shows the ER95 for different degrees of misspecification in error
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Figure 7. Daily increments obtained by different data assimilation approaches from 2007 to 2009 for a sample location
(indicated with a cross in Figure 1). The values of hydrological response units (shallow-rooted and deep-rooted
vegetation area inside each pixel) were averaged. s0 = surface soil moisture; ss = shallow soil moisture; sd+sg = deep
soil moisture and groundwater; sr = surface storage.

magnitude of the EnKF (Figure 6a) and AEnKF (Figure 6b) and 𝛽 = 1. Each boxplot in this figure represents
12 ER95 values from 12 pixels.

The results support the conclusion from the deterministic measures. An ER95 greater than 5% indicates that
the ensemble spread is too wide, while a smaller value suggests an ensemble with too narrow spread.

Similar as for RMSE, the EnKF showed sensitivity to error misspecification in terms of ER95. ER95 was
very high when 𝛼 was underestimated, then decreased to approximately 5% (its ideal value) when assumed
𝛼 was closer to its correct value, and when 𝛼 was overestimated small values of ER95 resulted. Conversely,
the results from AEnKF suggests that the approach can correct the incorrect error misspecification.

Figure 7 shows that in comparison with EnKF with correct error magnitude, the magnitude of the incre-
ments was considerably higher when a doubled error magnitude was used. However, applying the adaptive
strategy even with this double error magnitude generated increments in a range similar to the EnKF with
correct error magnitudes. The same figure was generated for six more points across Australia, supporting
the conclusion. The increment sign could change from month to month when a new observation was intro-
duced to the model. The largest impacts were observed for the deep soil moisture and groundwater store,

Figure 8. Spatiotemporally averaged 𝜒 for test problems with different
degrees of error misspecification. The vertical dotted line shows the correct
value of error magnitude (𝛼Q = 1).

while the surface soil moisture store received the smallest update from
the observation.

5.3. Adequacy of 𝝌
The expected value of normalized innovation means,𝜒 , was used to deter-
mine any misspecification in error magnitude. So far it was shown that
using this measure and the AEnKF approach, the negative effect of error
misspecification is mitigated. However, to gain a better understanding
about the adequacy of 𝜒 , its temporally averaged values for nine different
values for 𝛼Q was calculated (Figure 8). This figure shows the 𝜒 obtained
from the EnKF integrations (averaged across the domain and over the
simulation period). The correct magnitude of errors to generate the obser-
vations was 𝛼Q = 1, but different deliberately erroneous 𝛼Q values were
introduced to the filter. In theory, for a linear system, a value for 𝛼Q lower
than its optimal value should lead to a value of 𝜒 greater than unity. Con-
versely, when 𝛼Q is too high, 𝜒 should be smaller than unity. Figure 8
shows that 𝜒 is obtained with an 𝛼Q equal to approximately 1.25. This can
be explained by the nonlinearity of the system. This observation is also
consistent with the optimal value of 0.75 for 𝛽 and explains the need for
the tuning factor.

5.4. Tuning of the AEnKF Parameters
In the process of AEnKF, in addition to 𝛽, two more parameters were
included, 𝛿f and 𝛾 (equations (10) and (11)). These parameters control the
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Figure 9. Performance of the Adaptive EnKF with different combinations of 𝛾 and 𝛿f with a wrong initial error
magnitude 𝛼Q (twice the correct 𝛼Q). (a) The response surface of the model with the dashed line contour showing the
performance of the regular ensemble Kalman filter (with the wrong 𝛼Q). (b) Three different 𝛼Q time series being tuned
from using different sets of 𝛾 and 𝛿f (the parameters are color coded as per the points in the left panel).

convergence speed and smoothing degree of the error magnitude tuning. A higher value of 𝛾 leads to a longer
memory of the moving average operator, removing the noise more efficiently, but with slower convergence
speed.

To avoid a negative effect of spikes in the 𝜒 values, 𝛿f was embedded in the process to filter them out. Larger
values of 𝛿f increased the speed of convergence, but the large spikes negatively affected the tuning process.
Therefore, the sensitivity of the estimation accuracy to these parameters was analyzed, and the optimal val-
ues found (Figure 9). These parameters do not necessarily have to be constant in time; they can change
during the simulation period. The analysis has showed that a higher value of 𝛿f and consequently a nonre-
stricted tuning of the error magnitude at initial steps, can be helpful in experiments with high inaccuracy
in the assumed error magnitudes. The reason is that the initial high values of the correction factor (f𝜏 ) are
likely to be real and not random spikes. However, after removing the large potential gap between the true
and assumed 𝛼Q, a more restricted correction is achieved. Therefore, in the current analysis, a time-varying
𝛿f was used. The pattern of this variation was inspired by the simulated annealing optimization algorithm
(Kirkpatrick et al., 1983; Černý, 1985). In the current approach, 𝛿f started from a high value and during a
number of predefined steps reaches a final value and retains this for the remaining time steps. This gradual
reduction is achieved by

𝛿𝑓𝜏 = max[𝛿𝑓𝜏−1(
1
k
)

1
n , 𝛿𝑓T], (14)

where 𝜏 and T refer to time steps and target values of 𝛿f, n is the number of time steps required to reach to
the target value, and k is the ratio of the initial to target value of 𝛼Q. After some trial and error, we selected
process values k = 16 and n = 40. To select these parameters, different combinations of k in the range of 2
to 32 and n in a range of 1 to 80 were tested and the best combination in terms of accuracy of the estimates
was selected.

Figure 9a shows the response surface for an experiment with correct 𝛼Q = 1 and assumed 𝛼Q = 2. In this
figure, the RMSE of the regular EnKF (without adaptive error tuning) is shown as a dashed line. Figure 9b
illustrates the time series of the error magnitude using three samples of AEnKF parameter sets. Most param-
eter sets led to an AEnKF performance that was better than the EnKF. The parameter sets with poor RMSE
all were located in the region with 𝛾 < 0.1. Small 𝛾 values indicate a high memory of the moving average,
suggesting that the filter needs a very long time to forget the initial (wrong) values and thus correct the 𝛼Q.
The green point (in Figure 9a) and line (in Figure 9b), illustrates one sample from this region. The initial
simulated annealing process allowed a rapid change from a high to a low value of 𝛼Q, but after reaching to
the target value of 𝛿f, the restriction caused a slow and smooth convergence Although the 𝛼Q values were
moving toward optimality, the correct 𝛼Q could not be reached within the simulation period. The results
suggest that even using a nonoptimal parameter set, eventually a more suitable 𝛼Q was found. Therefore,
the whole process could be re-applied with the final value of 𝛼Q as a new initial value.
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Figure 10. Boxplot of correlation coefficient between the daily groundwater observations (for all selected observation
bores) and daily modeled storage from the open loop and ensemble Kalman filter with different assumed error
magnitude (𝛼Q).

A region containing the best parameter sets can also be detected in Figure 9. For the target 𝛿f < 0.01 good
performance was observed for a wide range of 𝛾 values. However, for a very large value of 𝛾 (more than 0.6),
the accuracy reduced marginally. The red point and line show the optimal parameter set. A rapid change
and then some limited fluctuation around the optimal 𝛼Q was observed. The restriction from 𝛿f prevents
the fluctuation. It can be compared with the blue point and line which have both high 𝛾 and 𝛿f . Uncon-
trolled fluctuations and short memory degraded the estimation accuracy, but still produce a better result
was achieved than for the EnKF without the adaptation component.

5.5. Application of the Real GRACE Observations
The AEnKF was also evaluated using real GRACE observations. In this case, since the observations were not
generated based on perfectly known state variables, it is more difficult to assess the accuracy of all estimated
state and flux variables. However, the performance of the filter was evaluated against streamflow records,
groundwater level, and soil moisture point measurements. To understand the efficiency of the AEnKF, first,
the error magnitude was manually optimized. The correlation with groundwater levels was selected for this
analysis because previous studies (e.g., Girotto et al., 2016; Shokri, Walker, van Dijk & Pauwels 2018; Zaitchik
et al., 2008) found that this water store was the most strongly influenced by GRACE TWS assimilation.

Figure 10 shows the skill of the OL model and EnKF with different magnitude of errors in terms of the
correlation coefficient for groundwater.

Comparing to the OL, the EnKF generally improved the groundwater estimation. In the experiments with
high overestimation of error magnitudes a slight degradation in the results was observed. An obvious opti-
mum point can also be detected between 𝛼Q = 0.6 and 0.7. This figure shows that an optimization of the
error parameters can improve the filter skill. However, given the computationally demanding process of the
EnKF, it seems inefficient to do the manual optimization in this way. Therefore, the same problem was also
solved with the AEnKF with a wrong error magnitude. As the worst result from the manual error magni-
tude optimization process, the value of 2 was selected for 𝛼Q. Figure 11 shows the AEnKF skill for different
variables. The skill of EnKF with optimal error magnitude (𝛼Q = 0.75), and both EnKF and AEnKF with a
suboptimal initial error magnitude (𝛼Q = 2.00) are shown in Figure 11.

The accuracy of surface and root zone soil moisture estimates were evaluated against OzNet soil moisture
observations (at 0–5 cm and 0–90 cm), streamflow against gauged observations in unregulated catchments
(Zhang et al., 2013), groundwater against bore data, and TWS against the GRACE retrievals. Results indi-
cate that using the EnKF with optimized error magnitude improves the estimation accuracy of groundwater
level, surface and root zone layers, and streamflow. Due to the narrow range of storage dynamics in sur-
face soil moisture, the improvement was less significant in this layer with the groundwater level, as the

SHOKRI ET AL. 12



Water Resources Research 10.1029/2018WR024670

Figure 11. The skill of the open loop, optimal ensemble Kalman filter (EnKF), ensemble Kalman filter with 𝛼Q = 2
(EnKF2), and adaptive EnKF with 𝛼Q = 2 (AEnKF2) in estimating daily streamflow, terrestrial water storage (TWS),
root zone and surface soil moisture, and groundwater.

most significant contributor, receiving the greatest improvement. This corroborates the results from previ-
ous studies (e.g., Girotto et al., 2016; Khaki, Hoteit, et al., 2017; Khaki, Ait-El-Fquih, et al., 2017; Schumacher
et al., 2018; Shokri, Walker, van Dijk & Pauwels 2018; Tian et al., 2017; Zaitchik et al., 2008). Conversely, the
accuracy of the EnKF with initial 𝛼Q = 2 (twice the reference error magnitude) slightly degraded in both
soil layers and groundwater, comparing to OL. The streamflow estimates were not changed significantly.
Finally, the AEnKF with the same wrong assumed error magnitude and without any prior optimization per-
formed similarly to the optimized EnKF. This suggests that deriving the optimal error magnitude does not
require several runs of the model; the optimization could be performed using a limited amount of internal
information and a limited number of time steps in the initial stages of the AEnKF.

6. Conclusion
The EnKF is widely adapted as a reliable tool for assimilating GRACE low spatiotemporal resolution obser-
vations into fine-resolution hydrological models. An EnKF structure to assimilate coarse scale (3◦) monthly
GRACE observations into a fine scale (0.05◦) daily AWRA-L model were applied. Shokri, Walker, van Dijk,
and Pauwels (2018) proposed an optimal structure for assimilating the GRACE observations which was
applied here. The results confirmed that if the EnKF uses optimal error specification it can improve the con-
sistency between modeled TWS and GRACE observation in both synthetic and in a real case scenario. Other
states and flux variables of the model were also improved; groundwater level received the most updates and
consequently improvements, and due to the low impact of the surface soil moisture in the TWS, this storage
was not affected by the assimilation process considerably.

Our experiments clearly showed that poorly determined error magnitudes reduces the accuracy of the model
results. The efficiency reduction in experiments with severely overestimated error magnitudes could lead
to a performance worse than the OL simulations. For example, a twofold increase in the error magnitude
in the EnKF led to worse estimates than the OL. Results showed that the filter performed optimally with
slightly underestimated error magnitudes. This can be explained by the nonlinearity of the model. A tuning
parameter 𝛽 was able to compensate for this effect, leading to a filter performance that is nearly identical to
the performance of the optimal EnKF.
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If an optimal performance of the EnKF is desired, the error magnitudes needed to be estimated manually,
but this would be a very tedious task. The AEnKF can perform this estimation efficiently in one single
assimilation run, being almost insensitive to the initial error estimates, which are adjusted by the AEnKF.
If the 𝛽 parameter is adequately chosen, a model performance similar to the optimal EnKF is obtained.

Here, 𝜒 was selected as the internal diagnostic for the misspecification of error magnitude. The expected
trend of diminishing values of 𝜒 with increasing values of assumed 𝛼Q was confirmed. In addition to 𝜒 other
metrics exist (e.g., three more metrics are introduced by Durand & Margulis, 2008). The investigation of their
application for GRACE TWS retrievals was beyond our objective, but could be considered in future studies.

An important consideration before adding any new process to an estimation system is the impact of sys-
tem complexity. An indicator of the complexity is the number of required parameters. The current adaptive
process imposed three more parameters to EnKF, 𝛿f, 𝛾 , and 𝛽. The first two parameters control the speed
of convergence and the rate of fluctuation of the tuned error magnitudes, while 𝛽 compensates for the non-
linearity of the system. Avoiding the use of 𝛽 marginally affected the filter accuracy, and hence it can be
removed in cases with limited benchmarking or computational resources.

Our overall conclusion is that there is a strong potential to improve GRACE data assimilation systems
through optimization of the error estimates. An adaptive EnKF can be used for this purpose. Moreover,
despite the nonlinearities in hydrologic models, neglecting the nonlinearity (i.e., 𝛽 = 1) within the AEnKF
led to a filter performance that was almost similar to that if a manually tuned optimal filter performance.
These conclusions were confirmed using both a synthetic study and a real-world data assimilation study.
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