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[1] The Kalman filter data assimilation technique is applied to a distributed three-
dimensional soil moisture model for retrieval of the soil moisture profile in a 6 ha
catchment using near-surface soil moisture measurements. A simplified Kalman filter
covariance forecasting methodology is developed based on forecasting of the state
correlations and imposed state variances. This covariance forecasting technique, termed
the modified Kalman filter, was then used in a 1 month three-dimensional field
application. Two updating scenarios were tested: (1) updating every 2 to 3 days and (2) a
single update. The data used were from the Nerrigundah field site, near Newcastle,
Australia. This study demonstrates the feasibility of data assimilation in a quasi-three-
dimensional distributed soil moisture model, provided simplified covariance forecasting
techniques are used. It also identifies that (1) the soil moisture profile cannot be retrieved
from near-surface soil moisture measurements when the near-surface and deep soil layers
become decoupled, such as during extreme drying events; (2) if simulation of the soil
moisture profile is already good, the assimilation can result in a slight degradation, but if
the simulation is poor, assimilation can yield a significant improvement; (3) soil moisture
profile retrieval results are independent of initial conditions; and (4) the required update
frequency is a function of the errors in model physics and forcing data. INDEX TERMS:
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1. Introduction

[2] An ability to retrieve the soil moisture profile for a
one-dimensional soil column by assimilation of near-surface
soil moisture measurements using the Kalman filter (KF)
has been demonstrated in one-dimensional synthetic studies
[e.g., Entekhabi et al., 1994; Galantowicz et al., 1999;
Hoeben and Troch, 2000; Walker et al., 2001a; Walker
and Houser, 2001; Reichle et al., 2002] and one-dimen-
sional field applications [e.g., Galantowicz et al., 1999;
Walker et al., 2001b]. However, the one-dimensional nature
of these studies has restricted the application of this work to
saturation excess catchments, where lateral flow and thus
spatial coupling is known to be a dominant physical
process. Critical challenges in this spatially coupled prob-
lem include the lack of adequate spatially distributed field
data and the computational demands of applying the KF
within a distributed model. This paper, the third in a series
on hydrologic data assimilation, presents a simplified KF

covariance forecasting approach to the distributed problem,
thus making the distributed covariance forecasting problem
computationally tractable, and demonstrates its use in a
catchment scale field application using a distributed soil
moisture model.
[3] System state covariance forecasting is widely recog-

nized as being the most computationally expensive aspect of
the KF algorithm [Dee, 1991; Todling and Cohn, 1994;
Dee, 1995], with system state covariance forecasting cost-
ing roughly 2N times (where N is the number of system
states) the cost of the mean system state forecast [Dee,
1991]. The cost of covariance forecasting is such that
implementation of the KF as a scheme for data assimilation
by ‘‘brute-force’’ is recognized as being unfeasible for large
systems because of both its extensive computational
requirements and a lack of complete knowledge of its
required statistical inputs [Todling and Cohn, 1994]. Com-
putational requirements for the updating step of the KF are
less severe but nontrivial.
[4] Todling and Cohn [1994] noted that the lack of

complete information concerning statistics of model errors,
and even observation errors, makes the effort of evolving
the complete forecast covariance matrix as dictated by the
KF not worthwhile. Furthermore, as a consequence of the
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assumptions in the KF and the linearization of state fore-
casting equations, even a full-fledged application of the
Extended KF can only roughly approximate the actual
system state covariance evolution [Dee, 1991, 1995].
[5] Accordingly, we view the covariance forecasting

equation as simply a means for representing the forecast
covariances, which approximately accounts for the effects
of error propagation by the forecast model as well as for
additional effects of model error. It follows that other
approximations for the KF forecast covariance evolution
can be legitimately introduced, particularly in the computa-
tionally expensive propagation term [Dee, 1995].
[6] A number of alternatives for estimating the forecast

covariance matrix have been presented in the literature and
are reviewed by Todling and Cohn [1994]. They divided
these simplified covariance estimation schemes into six
main categories: (1) Covariance modeling assumes a speci-
fied form for the forecast covariance matrices, with no
dynamics of these matrices taken into account. (2) Dynam-
ics simplification uses approximate system state dynamics
to evolve the forecast covariances. (3) Reduced resolution
decreases the dimensionality of the problem by computing
the forecast covariances with a coarser resolution model
than the model used to forecast the states. A hybrid of the
dynamics simplification and reduced resolution schemes
may also be considered. (4) Local approximation evolves
the forecast covariance structure only for points separated
by reasonably small distances. (5) Limiting filtering com-
putes a fixed gain matrix and an asymptotic system state
covariance structure. (6) Monte Carlo methods estimate the
forecast covariance matrix by integrating an ensemble of
states between observation times.
[7] Previous work by the authors has demonstrated a

computationally feasible methodology for one-dimensional
soil moisture assimilation, firstly with synthetic data
[Walker et al., 2001a], and then using field data [Walker
et al., 2001b]. This paper extends the previous work to
situations where lateral flows are important and spatial
coupling of soil moisture must be considered. The spatial
coupling necessitated development of a computationally
efficient methodology for forecasting the system state
covariances. The approach taken is based on dynamics
simplification, but we don’t derive simplified model dynam-
ics for the covariance forecasting. The same model physics
used for state forecasting are used for the covariance
forecasting procedure, except that we forecast only the
correlation between the states and impose the standard
deviations based on observed model fit to data without data
assimilation.

2. Soil Moisture Model

[8] A schematic of the distributed soil moisture model
used in this paper is given in Figure 1. Layer 1 is of constant
thickness over the entire catchment and would be set
commensurate with the approximate remote sensing obser-
vation depth [Walker et al., 1997] when used in a remote
sensing application. At least one additional layer is modeled
to represent the remaining soil profile. As soil depth is
spatially variable, the lower layer(s) are of varying thickness
in order to maintain the same number of soil layers
throughout the model domain. Thus layer thickness is
modeled as a fixed proportion of the soil depth.

[9] Unsaturated flow through porous media is modeled
by the Buckingham-Darcy equation as

Q ¼ Kr yþ zð Þ; ð1Þ

where Q is the volumetric flux of liquid water, positive
downward, K is the unsaturated hydraulic conductivity, r is
the gradient operator, y is the matric suction and z is the
elevation, positive downward. Using the approximation of
Walker et al. [2001b], the soil moisture fluxes in the vertical
(perpendicular to soil surface) and lateral (parallel to soil
surface) directions respectively are

QV ¼ K � VDF þ K � 1� SLOPEð Þ ð2aÞ

QL ¼ K � LDF þ K � SLOPE; ð2bÞ

where the vertical (VDF ) and lateral (LDF ) distribution
factors for grid element j,k,l are given by

VDF ¼ GRADjþ1=2;k;l

qj;k;l � qrj;k;l
fj;k;l � qrj;k;l

�
qjþ1;k;l � qrjþ1;k;l

fjþ1;k;l � qrjþ1;k;l

 !
ð3aÞ

LDF ¼ GRADj;kþ1=2;l

qj;k;l � qrj;k;l
fj;k;l � qrj;k;l

�
qj;kþ1;l � qrj;kþ1;l

fj;kþ1;l � qrj;kþ1;l

 !
; ð3bÞ

and

GRADjþ1=2;k;l ¼
0:5

DZ

MGRADj;k;l þMGRADjþ1;k;l

qj;k;l � qrj;k;l
� �2þ qjþ1;k;l � qrjþ1;k;l

� �2
 !

ð4aÞ

GRADj;kþ1=2;l ¼
0:5

DX

MGRADj;k;l þMGRADj;kþ1;l

qj;k;l � qrj;k;l
� �2þ qj;kþ1;l � qrj;kþ1;l

� �2
 !

: ð4bÞ

MGRAD is the maximum matric suction gradient for a unit
change in moisture content [Walker et al., 2001b], q is the
volumetric soil moisture, f is the soil porosity, qr is the
residual soil moisture content, DZ is the perpendicular
distance between the midpoints of layer j and j + 1 and DX
is the lateral slope distance between the midpoints of grid
cell k,l and k + 1,l. SLOPE is the topographic slope between
the midpoints of the soil layer (m m�1) in the drainage
direction (maximum downslope direction), however, for
simplicity, it may be taken as the surface slope. This
simplification avoids the possibility of different layers in the
same grid cell draining to different grid cells. Hence, the soil
moisture model is a quasi three-dimensional model, with
redistribution of soil moisture only occurring in two
directions for any given grid element, i.e., vertically and
laterally in the maximum downslope direction.
[10] Substitution of (3) and (4) in (2) yields the vectorized

soil moisture flux equations:

QVj;k;l
¼

GRADjþ1=2;k;l � Kjþ1=2; k; l

fj;k;l � qrj;k;l
� � ;�

GRADjþ1=2;k;l � Kjþ1=2;k;l

fjþ1;k;l � qrjþ1;k;l

� �
+

qj;k;l
qjþ1;k;l

)(*

þ
Kjþ1=2;k;l � 1� SLOPEð Þ�

GRADjþ1=2;k;l � Kjþ1=2;k;l
qrj;k;l

fj;k;l�qrj;k;l
þ qrjþ1;k;l

fjþ1;k;l�qrjþ1;k;l

	 
+*
(5a)
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QLj;k;l ¼
GRADj;kþ1=2;l � Kj;kþ1=2;l

fj;k;l � qrj;k;l
� � ;�

GRADj;kþ1=2;l � Kj;kþ1=2;l

fj;kþ1;l � qrj;kþ1;l

� �
* +

qj;k;l
qj;kþ1;l

� �

þ
Kj;kþ1=2;l � SLOPE�

GRADj;kþ1=2;l � Kj;kþ1=2;l
qrj;k;l

fj;k;l�qrj;k;l
þ qrj;kþ1;l

fj;kþ1;l�qrj;kþ1;l

	 
* +
;

where the intermediate hydraulic conductivities are calcu-
lated as the arithmetic means.
[11] Applying continuity in both the vertical and lateral

directions and the Crank-Nicholson scheme [Gerald and
Wheatley, 1989] yields the implicit forecast equation

qnþ1
j;k;l �

1

2

QVj�1;k;l
� QVj;k;l

 �
�t
�z

þ QLj;k;l�1
� QLj;k;l

 �
�t
�x

0
@

1
A

nþ1

¼ qnj;k;l þ
1

2

QVj�1;k;l
� QVj;k;l

 �
�t
�z

þ QLj;k;l�1
� QLj;k;l

 �
�t
�x

0
@

1
A
n

:

ð6Þ

Substituting the soil moisture flux equations from (5) and
assembling the soil moisture state equation in matrix form
we obtain

�nþ1
1 �X̂nþ1=n þ �nþ1

1 ¼ �n
2 �X̂

n=n þ �n
2; ð7Þ

where � is the matrix of coefficients for the vector of
moisture values X and � is the vector of nonmoisture
dependent terms. The notation n + 1/n is used to identify a
forecast at time step n + 1 given the forecast at time step n.
As (7) is an implicit equation, iteration is required until
convergence is obtained for each time step. The advantage
of writing the soil moisture equation in an implicit form
rather than an explicit form, as traditionally used in KF
covariance forecasting, is that much larger time steps may
be made, allowing the model to run much more quickly than
the explicit form.

[12] The lateral soil moisture flux at the catchment outlet
is estimated by assuming that only gravity drainage occurs
(i.e., zero lateral moisture gradient), as there is no knowl-
edge of the soil moisture content of the downhill grid cell.
Moreover, the soil moisture content at the catchment outlet
is often high, meaning that capillary effects will be minimal.
[13] The mass balance for each of the grid elements is

ensured by upwelling any forecast soil moisture storage in
excess of the soil porosity to the soil layer above. Starting
from the lowest soil layer in each grid cell, this procedure is
repeated until there is no longer a soil moisture storage
forecast in excess of the soil porosity, or the soil surface is
reached. If the soil surface is reached, the excess soil
moisture storage is added to the ponding depth (return
flow), and is available for surface runoff if the ponding
depth exceeds the depression storage. Surface runoff Qs

from each grid cell is allowed in any one of the eight
directions, whichever is the maximum downslope direction,
and is modeled using the Manning equation. The reader is
referred to Walker et al. [2001b] for further details on the
application of boundary conditions at the surface and base
of the soil column.

3. Covariance Forecasting

[14] After algebraic manipulation of (7) we can obtain the
linear state-space equation in the explicit form required for
the KF covariance forecasting

X̂
nþ1=n ¼ An �X̂n=n þ Un; ð8Þ

where

An ¼ �nþ1
1

 ��1� �n
2

 �
ð9aÞ

Un ¼ �nþ1
1

 ��1� �n
2 � �nþ1

1

 �
: ð9bÞ

Figure 1. Schematic representation of the distributed soil moisture model.

(5b)
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The reader is referred to Walker et al. [2001a] for the KF
forecasting and updating equations in the context of a one-
dimensional problem.
[15] Once convergence of (7) has been achieved, the

system state covariances may be forecast using the con-
verged value for A from (9a). Using this approach, iteration
is performed only for forecasting the system states, with
evaluation of A and forecasting of the system state cova-
riances performed only once (after convergence of the
system states), using a single large time step. As forecasting
of the system state covariance matrix is the most computa-
tionally demanding step of the KF, this approach minimizes
the computational effort required to forecast the system
states and the associated covariances. However, in our
application the computation time for forecasting the cova-
riance matrix was still very large. The reasons for this were:
(1) evaluation of A(9a) required inversion of �1 and then
multiplication by �2, resulting in a nonsymmetric nonsparse
matrix; and (2) forecasting of the covariances required a
triple matrix product with rather large (720 � 720 in our
application) nonsparse, nonbanded, nonsymmetric matrices.
Hence, a computationally efficient procedure for forecasting
the covariances is developed below. While an explicit model
would limit some of the computational expense in cova-
riance forecasting due to additional matrix multiplication
and inversion, the time step size required to ensure stability
made model operation impracticable.

3.1. Covariance Forecasting by the Modified
Kalman Filter

[16] An example of state covariance forecasting by
dynamics simplification is the simplified KF of Dee
[1991]. The simplified KF predicts the forecast covariance
evolution by a simplified version of the forecast model,
unlike the KF in which the full forecast model is used for
evaluation. Moreover, the contribution to forecast cova-
riance evolution due to model error forcing is approximated
only as a final step at the end of the forecast cycle.
[17] This paper takes a slightly different approach. As the

magnitude of variances in the forecast covariance matrix
using the KF is controlled primarily by the system noise
covariance matrix Q, which is generally poorly estimated,
we forecast only the correlation between system states. With
a forecast correlation structure and estimated system state
variances (for instance, a standard deviation equal to 5% of
the state value), the forecast covariance matrix can be easily
assembled. This is termed the modified Kalman filter
(MKF) in this paper. If the essential aspects of the forecast
system state dynamics can be captured by this simplified
error model, the resulting loss of accuracy in estimating the
forecast covariances should be acceptable, in view of the
many other approximations and lack of information in the
KF.
[18] Forecasting of the system state covariance matrix

with the KF is performed by �n+1 = A��n�AT (excluding the
model error term). Thus the A matrix is obviously the
driving force in forecasting the temporal (and spatial)
evolution of the covariance matrix �, so we use just A�AT

to estimate the temporal evolution of correlations between
the states. However, the A matrix is rather noisy from one
time step to the next, due to the nonlinearity in soil moisture
modeling (particularly during infiltration events) and
switching of sign from infiltration to exfiltration, thus an

autoregressive smoothed value of A has been used to
smooth the evaluation of A�AT.
[19] Evaluating A at every time step using (9a) is in itself

computationally demanding, as a result of the matrix
inversion and multiplication. A much more efficient way
of obtaining an autoregressive smoothed value of A is to
evaluate the autoregressive smoothed values of �1 and �2

(used to compute A) by

��nþ1 ¼ a��n þ 1� að Þ�nþ1; ð10Þ

where �� is the autoregressive smoothed � and a is a
smoothing value close to 1. The autoregressive smoothed
value of A, �A, is then evaluated when required by

A ¼ �1

 ��1
�2

 �
; ð11Þ

The correlations r between states i and j are then estimated
from

� ¼ A � AT ð12Þ

after scaling � to a ‘‘correlation’’ matrix (i.e. 1 on the
diagonal by treating the unscaled � as if it were a variance-
covariance matrix and dividing the ‘‘variances’’ by
themselves and the ‘‘covariances’’ by their respective
‘‘standard deviations’’) by

rXi;Xj
¼ exp bð Þ; ð13Þ

where

b ¼ 1� 1

�i;j

� �a
 !

� b: ð14Þ

�i,j is the i, jth element of the scaled �, while a and b are
empirical coefficients: when �i, j is 1 then b equals 0 and the
correlation is 1; when �i, j is 0 then b equals �1 and the
correlation is 0.
[20] In order to estimate the correlations between system

states using the approach outlined above, it was necessary to
evaluate appropriate values for the empirical coefficients a,
a and b. This was achieved by calibrating the MKF to the
original KF estimate of the correlations for a synthetic one-
dimensional data set (soil type 1, Table 1). Soil type 1
represents a uniform clay profile.
[21] The coefficients a, a and b were satisfactorily

calibrated as 0.995, 0.1, and 0.01, respectively (Figure
2a). The value of a equal to 0.995 was chosen as a
compromise between noise in the correlation estimate dur-
ing periods of lower correlation, correct modeling of the
overall shape of the time evolution of correlation, and
correct estimation of correlation during periods of high
correlation. It can be noted that the correlation between
the near-surface soil layer and the deeper soil layers was
high when the soil profile was wet, and decreased as the soil
profile dried. Moreover, this decrease in correlation with the
near-surface layer increased with depth.
[22] To investigate whether the calibrated parameters

were applicable for other soils, the correlations were esti-
mated using both the MKF and KF for two different soil
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types (soil types 2 and 3, Table 1). Soil type 2 has a
gradational soil profile with a sandy loam at the surface
and clay at depth, while soil type 3 is a clay with uniform
hydraulic conductivity, but depth varying soil porosity and
residual soil moisture content.
[23] The time series of correlation associated with soil

types 2 and 3 are given in Figures 2b and 2c. Figure 2b
shows that correlations from the MKF are overpredicted
relative to KF estimates by as much as about 0.2 for soil
type 2, while Figure 2c shows that correlations from the
MKF are underpredicted relative to KF estimates by only as
much as about 0.05 for soil type 3 (neglecting the few
spurious values).
[24] Given that the correlation between soil moisture in

the near-surface soil layer and the deep soil layer during the
dry period was so low (approximately 0.5) for soil type 2,
the fact that the correlation was overpredicted by about 0.2
was not as important as it would be if the correlation was

Figure 2. Comparison of the predicted (p) correlations (open symbols) using the MKF and KF estimate
of correlations (solid symbols) between the near-surface soil layer (1) and soil layers 2 to 5 (i.e., p1-4 is
the predicted correlation between soil layers 1 and 4) for (a) soil type 1, (b) soil type 2, and (c) soil type 3.

Table 1. Soil Parameters and Initial Soil Moisture Values for Soil

Moisture Profile Simulation

Soil
Type Layer

Thickness,
mm

qI,
% v/v

KS,
mm/h

f,
% v/v

qr,
% v/v n MGRAD

1 1 10 25 10.5 54 20 1.8 280
1 2 90 27 10.5 54 20 1.8 280
1 3 200 29 10.5 54 20 1.8 280
1 4 300 32 10.5 54 20 1.8 280
1 5 400 35 10.5 54 20 1.8 280
2 1 10 25 100 50 5 1.8 300
2 2 90 27 25 48 8 1.6 250
2 3 200 29 15 45 9 1.4 200
2 4 300 32 7 42 10 1.2 100
2 5 400 35 5 38 10 1.1 50
3 1 10 25 10.5 54 5 1.8 280
3 2 90 27 10.5 50 8 1.8 280
3 3 200 29 10.5 45 10 1.8 280
3 4 300 32 10.5 42 12 1.8 280
3 5 400 35 10.5 38 15 1.8 280
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much closer to 1. The important point is that the approach
predicted the strong correlations very well, and at least
qualitatively tracked the decrease in correlation during the
drying periods. Moreover, the KF is itself only an estimate
of the correlations, being dependent on the initial correla-
tions specified, linearization of the forecasting model, and
the application of model noise. This limits us from making
any quantitative comparison between the two approaches,
as a poor agreement between correlations from the MKF
and KF would not necessarily mean that correlations
estimated from the MKF are poor, only that it is a poor
approximation of the KF and its assumptions.

3.2. Evaluation of the Modified Kalman Filter

[25] The important issue is not how well the MKF can
reproduce the correlations predicted by the KF, but rather
the ability to make improvements to the forecasting of soil
moisture profiles when using the MKF. To evaluate this, the
MKF was applied to the synthetic one-dimensional soil
column with soil type 2, and compared with true, open loop
(i.e. no updating) and original KF simulations. Soil type 2
was used for this demonstration as it had resulted in the
worst match between the MKF and the KF.
[26] The ‘‘true’’ soil moisture profiles are synthetic data

generated from the one-dimensional model, while the open
loop refers to the situation where no observations were used

to update the soil moisture model. Synthetic data has been
used, so that the MKF could be evaluated against the KF
independent of the effects from model error on the retrieval
of the true soil moisture profile. The MKF was only
evaluated for a one-dimensional soil column due to com-
putational constraints and the presumption of stronger
correlations between soil layers than between grid cells.
Nevertheless, the results from this investigation should be
indicative of the results to be observed by application of the
MKF to the spatially distributed problem.
[27] The aim of these simulations was to evaluate the

MKF when the forecast correlations differed most from
those of the KF, and the initialization of the soil moisture
profile was poor. Hence, the simulations were commenced
during the dry summer period when the prediction of
correlations by MKF was comparatively poor. The retrieval
and open loop simulations were initialized with a poor guess
of 38% v/v uniform throughout the profile. The results from
these simulations are given in Figure 3 and suggest that the
MKF is a good approximation to the KF, despite differences
in correlation forecasts.
[28] Simulations of the soil moisture profile for soil type

2 showed a poor retrieval of the soil moisture content at
deeper soil layers during the dry period when using both the
MKF and KF assimilation schemes. While the near-surface
soil layers came on track with the true soil moisture content

Figure 3. Comparison of soil moisture retrieval for soil type 2 using the MKF and KF assimilation
schemes with near-surface soil moisture observations over 1 cm depth once every 5 days.
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after only 1 update, the deeper soil layers were overcor-
rected in the first update, and did not come on track until the
wetting up period. The reason for this was that soil moisture
content in the top most observation layer followed the
observed soil moisture content almost exactly, even though
the soil moisture content of deeper soil layers was incorrect.
This did not occur when the simulation was commenced
during the wetter winter months, with the true profile being
retrieved after 10 days (2 updates).
[29] The reason why no improvement was made in the

deeper soil layers when the soil moisture model accurately
forecast the near-surface soil moisture content may be seen
from the KF update equation. The KF update equation
adjusts the system state forecast by adding a correction
term, which is the KF gain multiplied by the difference
between the observations and the system state forecast, with
the KF gain evaluated as a function of the observation and
system state covariance matrices. Hence, if there is no
discrepancy between the forecast system states and the
observations, then the KF update equation cannot make
any adjustment to the state forecast of deeper depths,
irrespective of the assumptions made in evaluating the
observation and system state covariance matrices, and hence
KF gain.
[30] The phenomenon of decoupling between the near-

surface soil moisture content and that of deeper soil layers
has been observed in the field by Capehart and Carlson
[1997], as a result of divergence between the drying rates at
the surface and deeper levels. The significance of this is that
when the near-surface soil layer becomes decoupled from

the deep soil layers, the near-surface soil layer does not
reflect the soil moisture status of deeper soil layers. Hence,
under decoupled conditions, there can be no meaningful
updating of the soil moisture profile once the near-surface
soil layer correctly tracks the near-surface soil moisture
content. This decoupling is indicated in Figure 2b by the
low correlation between deeper soil layers and the near-
surface soil layer.
[31] This phenomenon of decoupling suggests that if an

update is performed too soon after initialization of the
forecasting model and the associated covariance matrix,
then the KF may update the near-surface soil layer cor-
rectly, but incorrectly for the deeper soil layers, as the
forecast covariances are still affected by the initial con-
ditions. If the near-surface layer and deep soil layers are
decoupled, then estimation of the soil moisture profile will
continue to be poor.

4. Field Data

[32] Having demonstrated the MKF on a one-dimensional
case study, we now move to the three-dimensional field
study. The field data used in this study is from the 6 ha
‘‘Nerrigundah’’ experimental catchment (Figure 4), located
in a temperate region of eastern Australia. A detailed
description of the entire data set is given by Walker et al.
[2001c], so only the pertinent details are given here. The
main objective of this rangeland experimental catchment
was to enable a soil moisture assimilation study at the
catchment scale.

Figure 4. Plan of the Nerrigundah catchment showing the seven uniform soil type regions, 13 soil
moisture profile monitoring sites, and the model grid cells used for comparison with soil moisture profile
observations.
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4.1. Catchment Monitoring

[33] The Nerrigundah catchment was instrumented to
monitor evapotranspiration, precipitation and soil moisture
from 22 August 1997 to 20 October 1998, with an intensive
soil moisture mapping campaign from 27 August 1997 to 22
September 1997. During the intensive field campaign, near-
surface soil moisture measurements were made using 15cm
connector time domain reflectometry (TDR) probes on a
20 m � 20 m every 2 to 3 days, to replicate remote sensing
observations. These near-surface soil moisture mappings
were undertaken on a total of 12 days. The soil moisture
profile was monitored at 13 locations throughout the catch-
ment on the same days as near-surface measurements during
the intensive field campaign, and on a less frequent basis at
other times, to provide model evaluation and calibration
data. Precipitation was monitored with two pluviometers
and four collecting rain gauges to quantify spatial variability
in precipitation across the catchment.

4.2. Soil Moisture Considerations

[34] Soil moisture variations at the 13 profile locations
were monitored using connector TDR probes of nominal
length 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100 cm, to the
lesser of 100 cm or bedrock. Comparison of connector TDR
data with thermogravimetric measurements showed that the
standard calibration was adequate for the 10 and 15 cm
probe lengths, while the 5 cm probe lengths yielded a noisy
response [Walker, 1999]. The calibration of longer TDR
probes was not evaluated due to the destructive nature and
labor intensiveness of the testing, the number of calibration
data values required to make conclusive statements regard-
ing accuracy, and the good agreement for the shorter probes.
In addition, literature suggests that longer probes should not
result in a further loss of accuracy.
[35] In modeling soil moisture content, it is necessary to

have an idea of both the subgrid and intergrid variability in
the system being modeled. For a grid resolution of 20 m,
subgrid variability is the variability in soil moisture content
over distances less than 10 m, while intergrid variability is
the variability in soil moisture content over distances greater
than 20 m.
[36] To investigate the subgrid variability, soil moisture

measurements for 25 m transects (with measurements every
0.5 m) and 5 m transects (with measurements every 0.1 m)
were assessed. Intergrid variability was estimated by assess-
ing the differences between grid point measurements of soil
moisture content from the soil moisture mappings on the
different days. These results showed that apart from satu-
rated conditions, the subgrid variability was approximately 1
to 2% v/v with a standard deviation of ±1 to 2% v/v. This
variability was constant within the ±10 m, but started to
increase for greater distances. Hence the subgrid variability
was approximately that of the measuring device. The inter-
grid variability was approximately 5% v/v for a distance of
20 m and increased to approximately 10% v/v at a distance
of 400 m, with a standard deviation of ±5% v/v. This
intergrid variability was more than double that of the subgrid
variability, which would suggest that a grid resolution of
20 m was appropriate for the Nerrigundah catchment.

4.3. Soil Characterization

[37] The Nerrigundah soil was characterized by a combi-
nation of field and laboratory tests. Field tests included

Guelph permeameter and double ring infiltrometer tests for
saturated hydraulic conductivity, while laboratory tests on
19 minimally disturbed soil cores included the determina-
tion of soil depth, soil horizons, soil bulk density and
porosity, and particle size analysis.

4.4. Evapotranspiration

[38] Actual evapotranspiration was estimated from Pen-
man-Monteith potential evapotranspiration and a soil mois-
ture stress index. The soil moisture stress index is used to
limit the potential evapotranspiration rate as a function of
the available water in the soil. The soil moisture stress index
used in this study was the average column soil moisture
content divided by the average column porosity. Measure-
ments of actual evapotranspiration using the eddy correla-
tion technique on 6 days were used to verify the linear soil
moisture stress index used.

5. Field Application

[39] In this section, the distributed soil moisture model is
calibrated and evaluated against the soil moisture profile
measurements made in the Nerrigundah catchment. The
calibrated model is then used for retrieval of the soil
moisture profile by assimilation of the near-surface soil
moisture measurements using the MKF.
5.1. Calibration of Model

[40] The soil moisture profile measurements provided the
data for calibration and evaluation of the soil moisture
forecasting model. As the soil moisture model was to be
applied to data collected during the intensive field cam-
paign, calibration of the model was performed for the period
following this campaign (14 October 1997 to 22 July 1998).
Thus the forecasting model was calibrated to data that was
independent of that used for soil moisture profile retrieval.
5.1.1. Observed Model Parameters
[41] During model calibration, both residual soil moisture

content and soil porosity were inferred from soil moisture
measurements at the 13 soil moisture profiles. Soil porosity
was also inferred from laboratory tests on the 19 soil cores.
Other parameters, such as total soil depth, saturated
hydraulic conductivity and depression storage (5 mm), were
inferred from field measurements. A Manning’s n value of
0.2 [Streeter and Wylie, 1983] was used as representative for
rangeland. The only parameters requiring calibration were
the maximum gradient parameter MGRAD and the van
Genuchten soil parameter n. The model assumed isotropy
within each grid element but allowed different parameters
for each individual grid element. The calibration period was
initialized with soil moisture values interpolated from the
soil moisture profile measurements made on 14 October
1997.
[42] To reduce the number of soil parameters to be

estimated, the Nerrigundah catchment was divided into a
number of ‘‘uniform’’ soil type regions (Figure 4). These
regions had different soil properties in each model layer, but
the same layer properties for each grid cell within the
uniform soil type region. Delineation of the regions was
based on soil porosity, residual soil moisture content and
saturated hydraulic conductivity within the four soil hori-
zons. Model layer thicknesses were defined from observed
soil horizon thicknesses as a proportion of the total soil
depth.
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5.1.2. Calibrated Model Parameters
[43] Calibration of the three-dimensional model was

undertaken using a series of one-dimensional calibrations.
Each of the 13 soil moisture monitoring sites was consid-
ered as an independent one-dimensional soil profile, and the
unknown soil parameters calibrated independently. Simu-
lated soil moisture contents were fitted to the connector
TDR depth integrated soil moisture measurements for
various depths using the Bayesian nonlinear regression
program NLFIT. The program suite NLFIT [Kuczera,
1994] is an interactive optimization package, employing
the SCE-UA (Shuffled Complex Evolution Method devel-
oped at the University of Arizona) of Duan et al. [1994].
This approach implicitly assumes that the effects from
lateral redistribution were negligible relative to vertical
redistribution. Apart from soil moisture profiles located in
the main drainage lines and steeper sections of the catch-
ment, this assumption was found to be valid, with very little
difference displayed between one-dimensional and three-
dimensional simulation results. As soil moisture measure-
ments with the 5 cm connector TDR probes had a wide
range of variation when compared with thermogravimetric
measurements, calibration was only performed for soil
moisture measurements of horizons A1 and A2, A1 to B1
and A1 to B2 (i.e. model layers 1 to 3, 1 to 4 and 1 to 5).
The averaged soil parameters assigned to each of the uni-
form soil type areas are given in Table 2.

Table 2. Soil Properties Used for the Seven Uniform Soil Type

Areas

Soil
Type

Soil
Horizon

f,
% v/v

qr,
% v/v

KS,
mm/h

MGRAD,
mm n

1 A1 50 5 80 340 2.1
1 A2 46 7 20 70 1.2
1 B1 32 8 5 15 1.8
1 B2 32 10 0.5 350 2.0
2 A1 60 6 35 490 2.5
2 A2 45 8 10 400 1.9
2 B1 42 12 3 145 2.0
2 B2 40 15 1 50 1.9
3 A1 60 4 25 315 2.3
3 A2 54 4 20 58 1.6
3 B1 38 4 15 40 2.0
3 B2 36 6 5 130 2.1
4 A1 50 9 30 497 2.4
4 A2 47 9 5 9 2.5
4 B1 42 9 3 119 1.2
4 B2 31 11 1 34 2.0
5 A1 50 60 5 320 2.4
5 A2 46 50 6 245 1.5
5 B1 32 38 10 260 1.3
5 B2 32 38 18 360 1.5
6 A1 60 10 15 500 2.5
6 A2 37 13 3 104 1.2
6 B1 34 16 1 2 1.4
6 B2 32 20 0.5 88 2.5
7 A1 60 6 35 500 2.5
7 A2 46 8 15 1 1.7
7 B1 44 9 2 375 1.3
7 B2 34 16 0.1 320 2.0

Figure 5. Calibration results from profile 7. Connector TDR observations (open circles) are compared
against one-dimensional simulation results with calibrated parameters (solid line) and averaged
parameters (short-dashed line), and three-dimensional simulation results with averaged parameters (long-
dashed line). The difference between the solid line and the short dashed line is the effect of averaging
calibrated soil parameters for the uniform soil type, while the difference between short dashed and long
dashed lines is the effect of lateral redistribution.
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[44] Figure 5 shows a comparison of calibration results
and data at profile 7. This profile was typical of the results
from other profiles, with midrange soil depth (520 mm) and
a midslope location. In Figure 5, simulation results from the
one-dimensional model using the calibrated parameters are
compared with results from the one-dimensional model
using the averaged soil parameters (for uniform soil type
regions containing more than one soil moisture profile), and
results from the three-dimensional model. There is only a
slight difference between the three simulations, and a very
good agreement with the observations, particularly for
deeper depths.
[45] The good agreement between one-dimensional sim-

ulations when using both the calibrated and averaged soil
parameters, indicated that averaging of the soil moisture
profile monitoring site calibrations within a uniform soil
type area had a minimal impact on the calibration of the
one-dimensional model. Moreover, the good agreement
between the one-dimensional and three-dimensional simu-
lations indicates that neglecting the lateral redistribution of
soil moisture in the model calibration had a minimal impact
on the calibration results. The implication of this is that
vertical redistribution was more important than lateral
redistribution in the Nerrigundah catchment.

5.2. Soil Moisture Profile Retrieval

[46] The ability to retrieve the spatial and temporal
variation of soil moisture profiles from near-surface soil
moisture measurements under field conditions using the
MKF assimilation scheme was evaluated during the period
of the intensive field campaign; 22 August to 22 September
1997. Soil moisture profile observations were made at all
profile monitoring sites on 22 August, but observations of
near-surface soil moisture were not made until 27 August.
Hence updating of the forecasting model could not com-
mence until 27 August. Near-surface soil moisture obser-
vations on 19 September were not used for updating of the
model, due to the rainfall that fell during that day. However,
these latter soil moisture profile observations are presented
for comparison with the model output of soil moisture.
[47] The near-surface soil moisture observations used

were the 15 cm connector TDR measurements on the 20 m
� 20 m grid. The 15 cm connector TDR observations of
near-surface soil moisture content have been applied as
observations of the top 15 cm of the soil profile, as it is
important that the near-surface soil moisture observations be
applied to the depth for which they relate. However, results
from updating with an observation depth of 15 cm can be
considered indicative of the results that would be obtained
from observations over a much shallower depth, as Walker
et al. [2001a] have illustrated that one-dimensional soil
moisture profile retrieval with the KF was insensitive to
the near-surface soil moisture observation depth. In updat-
ing the forecast model, a system state standard deviation of
5% v/v, based on observed model fit to data during the
model evaluation period (Table 3, case I), and an observa-
tion error of 2% v/v for the near-surface soil moisture
observation, based on an estimate of instrument error and
subgrid variability from field measurements, were used.
[48] Five cases were examined: (1) measured initial soil

moisture profile with no updating; (2) poor initial guess of
the soil moisture profile with no updating; (3) poor initial

guess of the soil moisture profile with updating every few
days; (4) measured initial soil moisture profile with updat-
ing every few days; and (5) poor initial guess of the soil
moisture profile with only the first update.
5.2.1. Case I
[49] Results from the evaluation of the model calibration

are given in Figure 6 for profile 7, with a good agreement
between the model and observations. This is a true test of
the model and its calibration as this data was not used
during the model calibration. Initial soil moisture values
were interpolated between the 13 profile measurements
made on 22 August 1997. While there was only a limited
range of soil moisture contents during this test period, the
evaluation confirms that the calibration was adequate for
forecasting the soil moisture profiles. The RMS errors
were generally less than about 5% v/v for all profiles (see
Table 3). Simulation of soil moisture content in the A1
horizon had the highest RMS error, believed to result from
the noisy observations using the 5 cm connector TDR
probes. Profile 12 had the largest RMS error across all
depths (see maximum values in Table 3). This is a result
of the monitoring site being located in a depression but,
due to the grid resolution, is not identified as such in the
model (see Figure 4).
5.2.2. Case II
[50] A simulation was performed for a poor guess of the

initial soil moisture on 22 August 1997, being 12, 15, 18
and 20% v/v for the A1, A2, B1 and B2 soil horizons
respectively, uniform across the catchment. A comparison
of the results from this simulation with field measurements
is given in Figure 7 for profile 7. The RMS errors for this
simulation were much greater than for case I; around 15%
v/v for all profiles (Table 3). This was to be expected
given the poor initial condition used.
5.2.3. Case III
[51] This simulation used the same poor initial conditions

as case II, but assimilated the near-surface soil moisture
observations using the MKF. A comparison of the results
from this simulation with field measurements is also given
in Figure 7 for profile 7, where an obvious improvement can
be seen in the retrieved soil moisture profile compared to
case II, the open loop simulation. The RMS errors for this
simulation were reduced to around 7% v/v for all profiles
(Table 3). This highlights the obvious benefit that may be
obtained from assimilating near-surface soil moisture obser-
vations into the forecasting model. A comparison of cases I
and III (see Table 3) would suggest that initialization of the
forecast model is not an important aspect of the soil
moisture profile retrieval algorithm when using the MKF

Table 3. Comparison of Minimum, Mean, and Maximum RMS

Errors in Soil Moisture Across All Profile Monitoring Sites From

27 August Until 22 September

Scenario

Soil Horizons, % v/v

A1 A1–A2 A1–B1 A1–B2

Case I 2.8, 9.6, 20.2 2.2, 5.9, 13.4 1.6, 4.6, 11.0 1.1, 4.3, 6.2
Case II 5.3, 20.8, 29.0 5.5, 15.8, 26.2 3.7, 14.2, 22.8 4.7, 13.4, 19.8
Case III 5.1, 9.3, 17.2 3.5, 7.9, 11.6 4.7, 6.7, 10.1 3.9, 6.2, 10.8
Case IV 4.0, 9.1, 17.5 4.1, 7.7, 11.1 4.1, 6.4, 8.5 3.3, 6.3, 9.1
Case V 3.9, 9.4, 15.0 3.7, 7.5, 12.5 3.6, 6.4, 11.2 2.0, 6.1, 11.8
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assimilation scheme, with RMS errors being only about 2%
v/v greater than for case I.
[52] Figure 7 shows that the MKF actually degraded the

retrieved soil moisture profile at some update times when
compared with measurements. We believe that this was a
result of lateral correlations in the update, as a result of

model predictions for adjacent grid cells having a poor
comparison with the near-surface soil moisture observa-
tions. Furthermore, simulation results have suggested that
when near-surface soil moisture observations are of low
quality, and this is not reflected by the observation varian-
ces, the soil moisture profile retrieval may be poor. Hence,

Figure 6. Evaluation of soil moisture simulation at profile 7 during the intensive field campaign.
Connector TDR observations (open circles) are compared against three-dimensional simulation results
with calibrated parameters (solid line).

Figure 7. Evaluation of soil moisture retrieval at profile 7. Connector TDR observations (open circles)
are compared against the retrieved soil moisture profile (solid line) and open loop simulation results
(dashed line) for simulations with a poor initial guess of the soil moisture content.
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updates for these times may be improved by using a non-
constant system state variance and a spatially uniform
observation error. Moreover, there is the difficulty of relat-
ing point measurements to the spatially averaged estimates
from a soil moisture model.
5.2.4. Case IV
[53] This is the same as for case III, with the exception

that the initial soil moisture values used were the same as
those for case I. When comparing the RMS errors from case
III and case IV (Table 3), there is perhaps a very slight
improvement for this simulation. This would again suggest
that initialization of the forecast model is not an important
aspect of the soil moisture profile retrieval algorithm when
using the MKF assimilation scheme. It may also be seen
from a comparison of the RMS errors for cases I and IV
(Table 3) that when the forecast model was initialized with
an accurate estimate of the soil moisture profile, soil
moisture profile retrieval using the MKF was slightly
degraded from the open loop simulation (approximately
2% v/v). The conclusion that may be drawn from this is
that assimilation yields an improved estimate of the soil
moisture profile when simulation results are poor, while
only slightly degrading the soil moisture profile estimation
when simulation results are good.
5.2.5. Case V
[54] To evaluate the effect of update frequency on soil

moisture profile retrieval, the simulation with a poor guess
of initial soil moisture was run with only the first set of
near-surface soil moisture observations used for updating.
Figure 8 shows a clear improvement in the profile retrieval
when compared with the open loop simulation (case II).
Furthermore, simulation results are comparable (see Table
3) to the results when all data are assimilated (case III).
Thus updating interval is relatively unimportant for correct
retrieval of the soil moisture profile when there is accurate

model forcing data and a good calibration of the model, and
where poor simulation of soil moisture profiles is solely a
result of a poor initialization of the forecasting model. When
the model is poorly calibrated or there are substantial errors
in the forcing data, we believe correct estimation of the soil
moisture profile will be more dependent on the updating
interval.

6. Conclusions

[55] The single most difficult operation in applying the
Kalman Filter (KF) to the spatially distributed assimilation
problem is the computation time required for forecasting of
the model covariance matrix. Moreover, a full-fledged
application of the Extended KF is, at best, a crude approx-
imation to the actual forecast covariance matrix, as a result
of model linearization errors, lack of statistics concerning
model error, and the initial system state covariances. In
overcoming the computational limitations of the KF assim-
ilation scheme, a modified KF (MKF) was developed, based
on simplified covariance forecasting techniques. The MKF
forecasts the system state covariances through a dynamics
simplification approach. Using this approach, the system
state correlations are estimated from the dynamics of the
forecast model and the covariances assembled at update
times using specified system state variances. Simulations
using both the MKF and KF have shown good agreement
between the forecasting of correlations by the two filters.
Despite differences in forecast correlation between the
system states, the MKF predicted the higher correlations
adequately and qualitatively tracked the decrease in corre-
lation during drying periods, with a significant decrease in
computational effort.
[56] Simulations of soil moisture profile retrieval using

both the KF and MKF assimilation schemes showed that the

Figure 8. Same as Figure 7 but only the first set of near-surface soil moisture observations are used in
the soil moisture profile retrieval.
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MKF performed as well as the KF, despite specifying the
system state variances and differences in correlation fore-
casts between the two approaches. Moreover, these simu-
lations showed that when the near-surface soil layer
becomes decoupled from the deep soil layer the soil
moisture profile cannot be retrieved. This decoupling occurs
during extended drying periods as a result of a divergence
between the drying rates at the soil surface and deeper
levels. Thus during extreme drying events the KF (and its
variants) is likely to perform poorly.
[57] Application of the MKF assimilation scheme to the

Nerrigundah catchment showed that soil moisture profile
estimates are degraded slightly (average RMS error increase
of 2% v/v for the total soil moisture storage) if simulation
and observation values are already close, as a result of noise
in the near-surface soil moisture observations and spurious
lateral correlations. However, when the simulation of the
soil moisture profile is poor, assimilation of near-surface
soil moisture into the forecasting model will make a
significant improvement in the soil moisture profile estima-
tion (average RMS error decrease of 7% v/v for the total soil
moisture storage). This means that assimilation of near-
surface soil moisture into the forecasting model will provide
an improved estimate of the soil moisture profile on average
for all simulation times.
[58] This study has also shown that, when using the MKF

assimilation scheme, initialization of the model states was
not important for adequate retrieval of the spatial distribu-
tion of soil moisture profiles. Moreover, it has been shown
that the updating interval is relatively unimportant for
correct retrieval of the soil moisture profile when the
forecasting model has a good calibration and forcing data
has a high level of accuracy. When model calibration is poor
and/or there are significant errors in the model forcing data,
the adequacy of soil moisture profile retrieval from low
temporal resolution near-surface soil moisture measure-
ments will be a function of the timescale over which the
dynamics of the forecasting model cause a departure from
the true soil moisture profile.
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