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A methodology for initializing soil moisture in a global
climate model: Assimilation of near-surface

soil moisture observations

Jeffrey P. Walker'-2 and Paul R. Houser!

Abstract. Because of its long-term persistence, accurate initialization of land surface soil
moisture in fully coupled global climate models has the potential to greatly increase the
accuracy of climatological and hydrological prediction. To improve the initialization of soil
moisture in the NASA Seasonal-to-Interannual Prediction Project (NSIPP), a one-
dimensional Kalman filter has been developed to assimilate near-surface soil moisture
observations into the catchment-based land surface model used by NSIPP. A set of
numerical experiments was performed using an uncoupled version of the NSIPP land
surface model to evaluate the assimilation procedure. In this study, “true” land surface
data were generated by spinning-up the land surface model for 1987 using the
International Satellite Land Surface Climatology Project (ISLSCP) forcing data sets. A
degraded simulation was made for 1987 by setting the initial soil moisture prognostic
variables to arbitrarily wet values uniformly throughout North America. The final
simulation run assimilated the synthetically generated near-surface soil moisture
“observations” from the true simulation into the degraded simulation once every 3 days.
This study has illustrated that by assimilating near-surface soil moisture observations, as
would be available from a remote sensing satellite, errors in forecast soil moisture profiles
as a result of poor initialization may be removed and the resulting predictions of runoff
and evapotranspiration improved. After only 1 month of assimilation the root-mean-
square error in the profile storage of soil moisture was reduced to 3% vol/vol, while after
12 months of assimilation, the root-mean-square error in the profile storage was as low as

1% volivol.

1. Introduction

Because of the long-term persistence of moisture content in
the land surface, its accurate initialization in fully coupled
global climate models has the potential for significant improve-
ment in climatological and hydrological prediction. Knowledge
of soil moisture content in the top few meters has been shown
to influence the prediction of precipitation [Koster and Suarez,
1995] and atmospheric circulations [Fast and McCorcle, 1991],
through its control on partitioning of the available energy into
latent and sensible heat exchange [Delworth and Manabe, 1989;
Shukla and Mintz, 1982). Furthermore, the effects of evapora-
tive dependence on soil moisture content have been observed
up to 1 km above the Earth’s surface [Fast and McCorcle,
1991]. The presence of horizontal gradients in soil moisture
content have been found by Fast and McCorcle [1991] to in-
duce circulations similar to sea breezes in the absence of syn-
optic forcing, which feedback to modify both the spatial dis-
tribution and the intensity of precipitation. Moreover, Koster
and Suarez [1995] have found that sea surface temperatures
have a much smaller effect on precipitation prediction over
land than the land surface soil moisture content, particularly in
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the tropics and midlatitudes. The effect of land surface soil
moisture content on variation in annual precipitation over
continents has been found to be particularly strong during
summer when moist convection dominates. In addition, Del-
worth and Manabe [1989] have found that springtime soil mois-
ture content has a substantial influence on the summer climate
at midlatitudes.

The current soil moisture content and its distribution influ-
ence not only the current climatic conditions but also the
future climate through its long-term persistence or memory
effect [Beljaars et al., 1996]. Because anomalies of soil moisture
content are persistent on seasonal-to-interannual timescales,
they create persistent anomalous fluxes of latent and sensible
heat, thereby increasing the persistence of near-surface atmo-
spheric relative humidity and temperature [Delworth and
Manabe, 1989]. Such persistence has been observed by Koster
and Suarez [1995] in areas of high soil moisture content with
high evaporation rates. In these areas, high soil moisture con-
tent instigates increased precipitation and thereby amplifies
precipitation anomalies. Delworth and Manabe [1988, 1989]
have found that smaller values of potential evaporation (which
typically decreases poleward) are correlated with more slowly
changing anomalies of soil moisture content (with longer time-
scales). In the tropics and during the summer season, however,
larger values of potential evaporation allow fluctuations of soil
moisture content to have a substantial effect on the variability
of the lower atmosphere [Delworth and Manabe, 1989].

Soil moisture content and its spatial distribution clearly in-
fluences land surface processes with the potential to severely
impact atmospheric variability, which can have a major influ-
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ence on climate forecasts. Thus there is a demonstrated need
for routine observations of soil moisture content and its distri-
bution, particularly for initialization of climate predictions with
a global climate model. The collection of routine soil moisture
observations has been curtailed primarily by the extreme het-
erogeneity of soil properties, topography, land cover, evapora-
tion, and precipitation, causing soil moisture content to be
highly variable both spatially and temporally. Consequently,
the value of operational monitoring of soil moisture content by
in situ methods is rather limited for global scale probiems.
Currently, remote sensing methods provide the most feasible
capability for providing the necessary soil moisture measure-
ments for initialization of the soil moisture states in global
climate models, as they average out small-scale variability to
better sample the climate-relevant soil moisture patterns.

Global measurements of soil moisture content have been
made with the C-band radiometer on the Scanning Multifre-
quency Microwave Radiometer (SMMR) instrument (M. Owe,
personal communication, 2001) which flew during 1978 to
1987. Current passive microwave satellite instruments, Special
Sensor Microwave Imager (SSM/I) and Tropical Rainfall Mea-
suring Mission (TRMM), have only higher-frequency radiom-
eters, making soil moisture measurement problematic. How-
ever, the Advanced Microwave Scanning Radiometer for the
Earth (AMSR-E) observing system instruments due for launch
in the near future on the EOS Aqua and ADEOS-II satellites
will have C-band radiometers, once again making global mea-
surement of soil moisture possible. An L-band radiometer, the
optimal wavelength for soil moisture measurement, is not
likely to be in space before 2005. While passive microwave
instruments currently have a large footprint, 150 km for
SMMR and 60 km for AMSR-E, global measurement of soil
moisture content from these instruments is less problematic
than for the active microwave instruments with footprints on
the order of tens of meters. Furthermore, because of oversam-
pling, the passive microwave measurements may generally be
interpolated to a finer resolution (50 km for SMMR and 25 km
for AMSR-E). Moreover, the land surface component of cur-
rent-day global climate models are typically run with a spatial
resolution on the order of 50 to 100 km, which is compatible
with the scale of passive microwave measurements.

Soil moisture remote sensing, however, is limited to mea-
surement of soil moisture content in the near-surface layer of
soil, consisting of the top few centimeters at most. These upper
few centimeters in the soil are the most exposed to the atmo-
sphere and vary rapidly in soil moisture content, on the order
of hours [Raju et al., 1995; Capehart and Carlson, 1997] in
response to rainfall and evaporation. In fact, the soil surface
may change from wet to dry within a period of 1 or 2 days
[Jackson et al., 1976], with deeper soil moisture content chang-
ing more slowly. Thus to be useful for climatic and meteoro-
logical studies, remote sensing information must be related to
the complete soil moisture profile in the unsaturated zone, as
any individual observation will largely reflect the climatic ef-
fects of the last few hours, rather than the average for the
interobservation period. Therefore for remote sensing obser-
vations to be valuable in applications, methods must be devel-
oped to estimate the soil moisture profile (top few meters of
soil) using the near-surface (top few centimeters) measure-
ments of soil moisture content that these sensors provide.

Only a small number of studies have used remotely sensed
near-surface soil moisture measurements as either input to a
land surface model [Jackson et al., 1981; Prevot et al., 1984,
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Bruckler and Witono, 1989; Lin et al., 1994; Ottlé and Vidal-
Madjar, 1994; Saha, 1995; Houser et al., 1998] or as verification
data [Giacomelli et al., 1995]. The reasons for this are (1) that
remote sensing data are just beginning to gain acceptance in
the hydrologic community as an operational tool for measuring
the near-surface soil moisture content; (2) assimilation of re-
mote sensing data requires the development of land surface
models that simulate soil moisture for a thin near-surface layer
which is compatible with the nature of the remote sensing
observations [Lakshmi and Susskind, 1997], and (3) routine
remote sensing of soil moisture content is not yet available. In
addition, techniques for updating the land surface model with
remote sensing data require investigation, and the near-surface
soil moisture observations must be proven useful when used
with land surface models [Georgakakos and Baumer, 1996].

This paper illustrates, using a numerical experiment with
synthetic observation data, how remote sensing data might be
used to initialize the soil moisture states in a global climate
model. Moreover, it is shown how the soil moisture content,
evapotranspiration, and runoff forecasts from a land surface
model are improved when near-surface soil moisture data are
assimilated into the land surface model. Furthermore, we ob-
serve that the structure of the land surface model modifies the
effectiveness of the assimilation method.

2. Models

Previous studies have illustrated that an assimilation scheme
having the characteristics of the Kalman filter is most effective
for updating of the forecast land surface states [e.g., Houser et
al., 1998; Walker et al., 2001]. Such schemes have the advantage
of being able to update more than just the observed state value,
through the correlation with other states and state values in
other locations. In this study, the Kalman filter assimilation
scheme is used to update the soil moisture prognostic variables
in the land surface model of Koster et al. [2000] with synthetic
“observations” of the near-surface soil moisture content.

2.1. Extended Kalman Filter

The Kalman filter assimilation method is a linearized statis-
tical scheme that provides a statistically optimal update of the
system states based on the relative magnitudes of the model
system state estimate and observation covariances. The prin-
cipal advantage of this approach is that the Kalman filter pro-
vides a framework within which the entire system is modified,
with covariances representing the reliability of the observations
and model prediction.

The Kalman filter algorithm [Kalman, 1960] tracks the con-
ditional mean of a statistically optimal estimate of a state
vector X, through a series of forecasting and update steps. To
apply the Kalman filter, the equations for evolving the system
states must be written in the linear state space formulation of
(1). When these equations are nonlinear, the Kalman filter is
called the extended Kalman filter and is a first-order lineariza-
tion approximation of the nonlinear system. The forecasting
equations are [Bras and Rodriguez-Iturbe, 1985]

Xt = A7 X 4+ U7+ (W), 1)

2g+1/n = A" E;M . A"T + Q", (2)

where A is the state propagation matrix relating the system
states at times # + 1 and n, U is a vector of forcing, w is the

model error, 3, is the covariance matrix of the system states,
and Q is the covariance matrix of the system noise (model
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error), defined as .f'.'Iw '\lr|-T|'|-: nataiseon o + 10 refers to the
qysliem stale estomate o bme v + 1 from a l'|1n=4.::|x|ing_ step,
and n/r relers o the syslem state sstimate from either a
forecasting or an upchating step at tme .

The covarance evolulion equation consises of e parts: (1)
propagation by model dynamies and (2] forcing by musdel er-
ror. The firtl, which % |:|:r|1'|r.||JL:|I:in:_|n|1.'||||'_|.I ihe mast -ljt:rna.mling
slep in the Kalman filter algorithm, expresses how the dynam-
el processes in the forecast model affect the ermor covariance
matrix. The second part of the covarance evolution i:qwu;ﬁ:_:m
represenls the comulatnee statistical effect of all processes thint
are extermnal 1o or not accounted for in the forecast modsl |I'.|'|;'-|;'r
14991, ]ﬂ‘-lﬁ].

For the wpdate step, the ohservation vector £ must be lin-
early related to the svstem stafte vector X through the trams-
formation matrix H,

Z=H-X+Y+ v, (1

where ¥ s the veclor of state-mdependent terms and v ac-
cowits for observation and lnearzatson ermors,

The best estimate of the system state vector X is updated
through the observation vector & by means of Bavesian statis-
tice. The system state vector and asocialed covananoes are
updated by the cxpressom [Bas and Rodrigaes-ferhe, 1985)

irﬂhﬂ - 't-"‘llﬂ + Eﬂ'rll:zrnl . “_lnll_il'll + 'l'r.lulII]I [4}
I.I!l-”l‘:l:l:l _Hul-l_Hu-I'I.E.:-I-llll “--IIH:-- ]|"
PR R R (5)

where 1is the identity matris. The Kalman pain mateiz K°*'
weights the obhservations against the maodel forecast. (15 weight-
ing is determined by the relative magnitudes of model uncer-
tainty embodicd in 7" with respect 1o the observation
covariances B!, defined as E[v - +7]. The Kalman gain is
given by
Kl = !;:"I.'ﬂ . '"l-l'”:ll il H" 1. Ir-l.\r_ H" I'] 1 I;ﬁ]

The key assumptions in the Kolman filker are that (1) the
SoOnUALOEE Hme Ermor prices w is o Cinussian white naoise
stochastic process with the mean vector equal to the zern
vector and covinance matrix equal to O and (2] the discrede-
lime ervor sequence v s a Ganssian-independent sequence
with the mean equal b zere and the covariance equal to K. The
initinl state vector X" is also assumed Gaussian with mean
vector X7 and covariance matrix 17

The Kalman filter meodel error forecasting equation in equa-
tion (2] B dependent wpon (1) an initial system stitle error
covariance mateix £ (2) a model error forcing term 0 and
{3} the system state forecasting equation described by the lin-
car state space formulation in equation {1} The system state
CITOT cOvarance matnx is often initialized u\.irlg_ chmc-qﬂ-
beliel estimates of the errors in initial states to specify the
diagemal elements (variances) of the initiol covarionce matris,
wilh the off-duagonal elements {covariances) set io zero |[Gear
pakakoyr and South, 199%1], The model error forcing term
resalts from inaccurate specification of the maodel structure as
a result of (1) linearization of the model physics (including
subgrid wariability); (2) estimation errors o the values of
model parameters; and (3) measurement errors in the model
||'|pu[ {E.g.., ETTOTS in prﬁ‘:ipiﬂ;tiun}. Thes is the most diffcult
compoment of the Kalman filter o identify correctly [Geor
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Fipure 1. Schematic of the catchment-based land surfacs
mincel sl maistung prognestics,

gikakers cmd Smids, 1990, Henoe this term is generally chosen
ad hoe [Luerg, 19749). The vamance of the observations B can be
identilied reliably in most cases, since it depends on the char-
acteristics of the measuring device [Geongmkakos o Sevith,
15a0).

LL  Land Surfsce MModel

The lamd surface moxel used in this study is the catchmeni-
based Tand surface masdel of Koster of af, [ 2000], illestrated
schematically in Figure 1, It is a nontraditional lond surface
maleling framework that includes an explicit treatment of
subgrid soil moisture variability and its effect on runoff and
evaporation, A key innovation in this approsch i the shope of
the land surface element, Koster o of, [2000] abandon the
traditiomal approach of defining quasi-rectangular land surface
elements with boundaries defined by the overlying atmospheric
grid, Instead, they define the fundamental land surface ehe-
ment 1o be the hydrological catchment, with boundaries de-
fimed by the topography. The catchments used in this applica-
tion are at level 5 in the Plafsteter system [Mardin mnd Ferdin,
1909) with an average catchment area of 4400 km”.

This land surfece model uwses TOPMODEL [Seven and
Kirkhy, 1979] concepts to relate the water table distribution to
the topography. The consideration of both the water table
dasiribution and the nonequilibriom conditions in the root
zome leads to the definition of three bulk moisture prognostic
stafe varinhles [catchment deticit, rood zone excess, and surface
expess) oand a special treatment of mosture transfer betacen
them, The framework of this land surface model provides a
method for caleulating the saturated, siressed (wilting), and
unsiressed fractions of the catchment and their respective sodl
maisturg content from the three prognostic variables. Alterna-
tiwely, the catchment average soll asolstire content may be
evaluated.

The catchment deficit is defined as the average amount of
witler per unit ares that muost be added to the soil of the
cofchments to bring the entire catchment to saturation, assum-
ing equilibrium conditions in the unsaturaied zone. If equilib-
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rium conditions could be assumed in the unsaturated zone, the
catchment deficit by itself would be sufficient to characterize
the complete moisture state of the catchments. To account for
such nonequilibrium behavior, root zone and surface zone
excess storages are introduced. These “excess” storages are the
amount by which the moisture in the root and surface zones
deviate from the moisture content implied by the local equi-
librium moisture profile. While the catchment deficit distribu-
tion is described by the distribution of topographic index, there
is no distribution presumed for the excess in the root and
surface zones. However, as a result of the catchment deficit
distribution, the root zone and surface zone soil moisture con-
tents are spatially variable according to topography.

The catchment-based land surface model soil moisture prog-
nostic variable forecasting equations are given by

srfexc"*! = srfexc” — srflow + i — es, N

n+l _

rzexc'™! = rzexc" + srflow — rzflow — ev, €3]
catdef™! = catdef” — rzflow + baseflow + et,  (9)

where srfexc (m) is the surface excess, rzexc (m) is the root
zone excess, catdef (m) is the catchment deficit, and the su-
perscript n is the time tag. The redistribution between the
surface excess and the root zone excess srflow (m) and between
the root zone excess and the catchment deficit rzflow (m) is
given by

(10)
(11)

where At (s) is the time step size, and 7, = f(srfexc, rzexc) and
7, = f(rzexc, catdef) are empirical moisture transfer timescale
functions (s). The baseflow (m) is given by baseflow = f(cat-
def), while the soil infiltration i (m), bare soil evaporation es
(m), transpiration ev (m), and evapotranspiration et (m) are all
described by functions of the form f(srfexc, rzexc, catdef). A
complete description of this model is given by Koster et al.
[2000] and Ducharne et al. [2000].

srflow = srfexc(At/Ty),

rzflow = rzexc(At/t,),

2.3. Application of the Kalman Filter

In this study we have used a one-dimensional Kalman filter
for updating the soil moisture prognostic variables of the
catchment-based land surface model. A one-dimensional Kal-
man filter was used because of its computational efficiency and
the fact that at the scale of catchments used, correlation be-
tween the soil moisture prognostic variables of adjacent catch-
ments is only through the large-scale correlation of atmo-
spheric forcing. Moreover, all calculations for soil moisture in
the land surface model are performed independent of the soil
moisture in adjacent catchments.

2.3.1. Covariance forecasting. Forecasting of the soil
moisture covariance matrix using Kalman filter theory requires
a linear forecast model. However, forecasting of the soil mois-
ture prognostic variables (surface excess, root zone excess, and
catchment deficit) in the catchment-based land surface model
is nonlinear. Hence forecasting of the soil moisture prognostic
variables covariance matrix was achieved through linearization
of the soil moisture forecasting equations. The linearization
was performed by a first-order Taylor series expansion of the
nonlinear forecasting equations (7)-(9). Using this approach,
the covariance forecasting matrix is given by
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Table 1. Values for Standard Deviations of the Forecast
Model Error Covariance Matrix Q (mm/min)
Value
srfexc 0.0025
IZEXC 0.025
catdef 0.25
dsrfexc’™  gsrfexc’™!  gsrfexc’t!
asrfexc” arzexc” dcatdef”
drzexc"™!  drzexc"!  drzexc''!
A= 1. (12
dsrfexc” arzexc” dcatdef
dcatdef"*! gcatdef**! scatdef”*!
dsrfexc” Jdrzexc” dcatdef”

Calculation of these derivatives may be done numerically, re-
lieving the need for deriving analytical expressions. However,
this results in an increased computational cost of ~m times the
analytical solution, where m is the iumber of dependent prog-
nostic variables to be included in the assimilation.

For the initial covariance matrix, diagonal terms were spec-
ified to have a standard deviation of the maximum difference
between the initial prognostic state value and the upper and
lower limits. This represents a large uncertainty in the initial
soil moisture prognostic state values. In fact, the true initial soil
moisture prognostic variable could be anywhere within the
possible range. Off-diagonal terms were specified to be zero
initially, suggesting a zero correlation between the initial error
in the three soil moisture prognostic state variables. The diag-
onal terms of the forecast model error covariance matrix Q
were taken to be the predefined value given in Table 1, with the
off-diagonal terms taken to be zero. The assumption that er-
rors in the three soil moisture prognostics resulting from errors
in the model physics are independent is valid as the physics
used for forecasting these three prognostic state variables are
independent. This is unlike typical land surface models that
vertically discretize the soil and apply the same physics to the
soil moisture prognostic variables for each of the soil layers.

2.3.2. Kalman filter observation equation. To perform
an update of the soil moisture prognostic variables with the
Kalman filter, the observation of near-surface soil moisture
content must be linearly related to the soil moisture prognostic
variables. In the land surface model used in this study, the soil
moisture prognostic variables are the surface excess, root zone
excess, and catchment deficit and are related to the observed
soil moisture of the surface layer 6, (vol/vol) through a com-
plicated nonlinear function

srfexc

04 = f.(rzexc, catdef) + o
1

(13)

where z, is the surface layer thickness (0.02 m). The complete
expansion of this function is given in Appendix A. A first-order
Taylor series expansion of the nonlinear function f,, allows for
evaluation of the surface soil moisture equation

srfexc
rzexc
catdef

af,

dcatdef

1 9f, of. >
(00 = (3 o e

- rzexc* — catdef*} , (14)

-

drzexc
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Table 2, Uniform Soil Properties Specified for North
America

Sail Property Walue

Saturated surface hydraulic comdwctivity

2wt ms!

Transmiitivity decay factor 20 m "
Satwrated sodl matric potential, 4, —L251 m
S0l rexture pornmeter, b 4

Foot zome depth 1
Wikting point wetness, w,, (1,145

where the asterisk refers to prognostic variable values about
which the Taylor series expansion is evaluated.

3. Numerical Experiments

Acger of pumerical identical twin experiments hive been
undertaken for the entire continent of NMorth Americs, in order
1 illustrate the effectivensss of the assimilation scheme m
providing an accurate estimate of the sl moislure storage
throughout the entire soil profile given periodic near-surface
soll suedeture observations, Such an estimate may then be wed
fior the initialization of a global climate model. The cosre-
sponding influence of errors in soil moisture content o the
forecast of evapotranspiration and runoll has also been lbus-
trated. Finally, we observe that the structure of the land sur-
face model and its linearization for covartance forecasting
miodifies the effectiveness of the assimilation.

AL  Model Input Data

In this study, atmospheric forcing dota and soil and vegeta-
tion propertics from the first International Satellive Land Sur-
face Climatology Project (ISLSCP) initistive [Sellers o al,
1996] kave been used as model input for the year 1987, Such
data inelude air temperatore and humidity a8 2 m, surface wind
speed, atmospheric pressure, precipitation, downward solar
and longwave radiation, gresnmess, leaf aren index, surface
roughness length, surface spow-free albedo, zero pline dis-
placement beight, vegetation class, soil porosity, soal depth,
and ol texture, S0l properties not defined by TSLSCF were
Laken o be uniform scross Norh America with the values
grven in Table 2, Catchment boundaries and topographic pa-
rameters were derved from a 30 arc sec (=1 km) digital ¢le-
vation model of Morth Amernca from the United States Geo-
logical Survey EROS Data Center [Ducharne ef al., 200, The
initial model states for 1987 in each of the 5018 catchments
wsed o model the entire North Americn were determised by
driving the model to equilibrivm at the begmning of 1987 ©
avosd a noncquilibrated spin-up signal.

32, Ohservation amd Evaluation Daia

Using the land surface model of Koser ef af, [2000], the
imitial conditions from splo-up, and the model input data de-
seribed above, the tempaoral and spatial variation of soil mods-
ture confent noross Morth America was forecast for 1987, The
forecasis of near-surface soil modslure conlenl werfe outpul
onee every 3 days to represent the near-surface o0l modstuse
measurements from remote sensing satellibes. In addition o
sl mosture content (Plates 1-3) the land surface model pro-
vidded eutimates of total evaporation and runoff (Plate 5) for
gach of the catchmenis. This simulation provided the “trus”
sl mnisture comtent and water balance data for comparison

WALKER AND HOUSER: INITIALIZING S0IL MOISTURE 1N A GCM

with depraded simulations both with and without assimilation.
Wloreover, it allowed evaluation of the effectivencss of assim-
ilating nenr-surface soil moswre data for improving the land
surface masdel forecasts of soil molsture content and water
hudget components, when initalized with peor initial condi-
fhoms,

LY Resualts and Disoussion

Ta illestrate the effect of soil moisteee indtlalization ermors
on the model’s prediction, and the effectivencss of the Kalman
filter assimilation scheme, comparisons are made with a de-
graded simulation. I the degraded simulation the initial con-
ditions were taken from the spin-up described above, with the
cxceplion that soil moisture prognostic variables were set to
arbitrarily wet values uniformly across the entire Morth Amer-
ica. Using the degroded soil mossture initialization, the land
surface model was run with the same atnsospheric forcing data
as used to derive the observation and cvaluation data above
Two separate simulations were undertaken. The first used only
the degraded mitial conditions and forcing data, while the
secomd assimilated the near-surface “ohservations” from the
true simulation once every 3 days, The soil mossture forecasts
from both of these simulations are compared with the true
simulation in Flates 1-3, at the end of Janwary, July, and
December, reapectively. The limitation of wsing the same
muodel o forecast the land surface states as s used to derve the
observaton and evaluation data (identical twin experiment) i4
the imglied assumption that you hive a perfect model and the
observations are unbiased, which is rarely, if ever, the case in
reality. By using a different model to derive the observation
and evaluation data than that used 1o forecast the land surfac:
atates (fraternal win experiment), this assumption may e
offset. However, such a study was beyoned the scope of this
aper.

Plate la illustrates how poor the degroded sl mosture
imitial conditions were compared to the frue simualation (Plae
Thy and that even after 1 month, there was very little improse-
ment of the degraded simulation toward the true simulation,
Apart from the pear-surface layer, there was very little change
in the spatial distribution of soil maoisture. This, hoeever, may
e comtrasted with the soil moisture forecast wsing assimilation
of near-surface “observations” (Plate Ich. This simulation
showes @ very e agreement between the near-surface layers
of the true simulation and the assimilated forecast, as woukd be
expected, Moreover, apart from a small portion of the North
American interior, there is a good agreement between the soil
moksture contents in both the root sone and the entire soil
prodile.

By the end of July there was some improvement in the soil
moasture forecast of the degraded simulation {Plate 2a) twoward
the true smulbation (Plate Zb), but even after 12 months of
simulation {Plate 3a), there was still a large portion of Morth
America with significant errors in the sodl moisture forecast,
This improsvement in the degraded simulation of soil modsture
content was only ofserved for catchments located in the low
latitudes, where evapolranspiration rates are high year-round,
The difference between the degraded and the true soil mods-
ture simulations is entirely due to the error introduced in the
indtial conditions, so the improvement in the degraded simu-
lation & purcly a result of land surface model spin-up. This is
becawe soil modsiore content is 8 bounded varinble, with the
effects of wrong inltalization being lost whenever the soil dries
out or hecomes fully wet. In contrast to the degraded simula-
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Figure I.

tion, the soil moisture forecast with assimilation {Flae Ic)
continued o track the true simulation for regions where the
true soil moisture was alrendy retrieved, Some small localized
errors in the soil moisture forecass persisted at the end of July,
but by the end of December (Plate 3¢). wery litle error re-
mained,

Thie location, magnitude, ond persistence of erroes in the soil
modsiure forecast con be seen maore clearly m Place 4. Errors in
the soil moisture forecasts have perested longer in some re-
gioms of Morth America thon in others, even though they are in
the same climatic regime and had the some amount of initial-
ization error. The correlation of ench model parameter with
the spatial distribution of error in seil moistune m s entire
woil profile at the end of January was anahsed. 10 was found
that the distribution of soil depth had the greatest correlation
with this residual soil moisture ermor,

Flgure 2 shows a plot of soil depth for Morth Amenc, When
coemparing with Plate 4a (bottom row), particularly for soal
depth greater than 3 m, there is a distinet relationship between
gl depth and error in soil moisture retrieval, especially for
drier regions where the initial error was greater, Thus the fict
thal deeper sodl moisture is less physically connected with the
surface soil modstare, leads o a redoced impact of surface soil
maisture pimilaton o the forecast of total so0il moisture
content. Although the correlation between a near-surface soil
moisture measurement and that of the entire soll profile is
small for regions with very deep soil, it is stll greater than for
raditional land surface models that use a vertcal discretiza-
tion of the soil profile [Houser of af., 1998). This is a resalt of
the equilibrium profile assumption wsed mo the calelment-
based land surface model, where the catchment deficil prog-
nostic vasiable is the basis for calculating the near-surface soil
moisture content (see Appendis A). Drepartures from this
equilibrivm profile are acoounted for by the surface and ool
Fone excess storages, which wypically account for a much
smalber contributiom in the caleulation of soil maoisture content
haih near the soil surface and at depth.

The temporal evolution of error for Uee entire Morth Amer-
ican continent is given in Figures 3 and 4 for the degraded
simulations without and with assimilation, respectively. Figune
3 shows a slow but clear and consistent improvement in the sol
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Spatial variation in total soil depth (mm) across the North American continent.

mosture profile of the degraded simulation as a resalt of the
land surface model spinning-up to the true initialization, How-
gwer, even after 12 months, there are stll significant errors in
il maisture content for the entive sodl profile. In contrast,
Figure 4 shows i rapid initial improvement over the first month
of assimilation, followed by a mwore gradual but nonctheless
persisient improvement in soil meisture forecasts for bath the
rood zone andd the entire sl prodile. The assimilation schems
overcomects the =oil moddure forecast in the near-surface Iag.r-:r
and rood zone of the first update, but this is rectified at the
second update, After the second update, the assimilation
scheme tracks the sodl moisture content in the near-surfaee
Layer almaost exactly. Moreover, the error in soil modsiune fore-
casts for the three soil depths is negligibde after around 8
enonths of simulation,

A common approach to forecasting the model error covarsi-
ance matrix using the Kalman flter s dynamics simplification
[ Tencdlineg wnid Codeor, 1994]. Using such an approach, only the
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Figare 5. Temporal variation of error in soul mosiere sim-
lation with degraded imitial conditions for soil moisiure,
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dominant physical processes are used in forecasting of the
error covariance matrix. In our application of the Kalman
filter, the most obvious application of the dynamics simplifica-
tion approach was to ignore the infiltration and evaporative
terms from the prognostic equations (as these are the most
difficult to linearize), focusing only on the redistribution of
moisture within the soil. This assumes that the correlation
between near-surface and deep soil moisture is strongly de-
pendent on the redistribution between soil moisture storages
and only weakly dependent to the external forcing. An alter-
native way to view this is to consider that infiltration and
exfiltration is prescribed solely by the atmospheric conditions
and is independent of the soil moisture content.

The effect of using the dynamics simplification approach to
forecasting the error covariance matrix in the catchment-based
land surface model is demonstrated in Figure 5. The first 50
days of the time series is almost identical to that of Figure 4;
however, beyond that both the root-mean-square error and
mean error increase until about day 300. Moreover, the mean
error time series shows a systematic error in the soil moisture
forecasts of the near-surface layer, with the near-surface layer
consistently drying too much and being topped up by the as-
similation.

This deterioration in assimilated soil moisture is well corre-
lated to the period of most active evapotranspiration in the
Northern Hemisphere. The temporal variation of average
evapotranspiration across North America is shown in Figure 6.
Hence the assumption that correlation between near-surface
soil moisture and the deeper soil moisture stores is only weakly
dependent on the evapotranspiration is invalid.

The improvement in evapotranspiration and runoff predic-
tion from the assimilation of near-surface soil moisture obser-
vations, over the simulation with degraded soil moisture con-
tent, is shown in Plate 5 for the month of July. Table 3 gives the
mean daily evapotranspiration and runoff rates across North
America for these simulations. The results show a large impact
of incorrect soil moisture content on the prediction of evapo-

0.1 T T T T T L T ]
< 008 Surface B
3 =+~ Root Zone | ]
o006 e Profile 3
=
W 6,04
(7]
=
@ 002

ok

0 50 100 150 200 250 300 350
Day of Year

14

=3

=4
I

Mean Error (viv)
o

Surface |

-0.01 =+~ Root Zone 14
--------- Profile

-0.02 PP 1, ¢ 1 L - T 1.3

0 50 100 150 200 250 300 350

Day of Year

Figure 4. Temporal variation of error in soil moisture simu-
lation with degraded initial conditions for soil moisture and
assimilation of synthetic near-surface soil moisture observa-
tions.
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Figure 5. Temporal variation of error in soil moisture simu-
lation with degraded initial conditions for soil moisture and
assimilation of synthetic near-surface soil moisture observa-
tions with only partial covariance forecasting.

transpiration, which is the main feedback from the land surface
model to the atmospheric model used in coupled runs of cli-
mate prediction. However, through the assimilation of near-
surface soil moisture observations alone, we have illustrated
that errors in evapotranspiration forecasts may be significantly
reduced. Moreover, errors in the runoff component, which
feeds back to the ocean model, may also be reduced.

4. Conclusions

A methodology for generating soil moisture initialization
states for global climate models which does not rely on spin-
ning-up the land surface model has been described. Rather,
this methodology relies on the assimilation of remotely sensed
observations of near-surface soil moisture content using a one-
dimensional Kalman filter. A series of numerical experiments
using the proposed methodology has illustrated that the true
soil moisture content may be retrieved for the entire soil pro-
file from remote sensing observations of the near-surface soil
moisture content. Moreover, the effect of errors in soil mois-
ture forecasts on the partitioning of atmospheric forcing into
evapotranspiration and runoff has been illustrated.

This study found that the assimilation of near-surface soil
moisture content works best for regions with shallower soils,
particularly depths less than 3 m. The soil moisture retrieval
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Figure 6. Temporal variation of average evapotranspiration
for North America.
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Tabde X Mean Daily Evaporation and Runoft Bates From
Three Simulations of Morth America in July 14987 {mm/d)

Evapalranspiration FumoiT
Dhegraded simulation 245 e
Trwe smulation 185 165
Dhegraded simulation 211 .65

with assimilation

throegh assimulation stll works lor regons with greater soil
1l=p|:h. it just oocurs more slowhy, This is a direct rewlt of the
correlation betwesn near-surface soil modsture content and soil
mioisture conlent at rJl:]'.!ﬂ'l. dema.'-ii:ng s the m:pnnl.ﬁun =
creases, Furthermore, we observe that the structure of the lund
surface model modifies the effectiveness of the aimilation
msethod, The undgue physics used in the catchment-based land
surface model @5 well suited to the assimilation of near-surface
soll molsture observations, as its dominant progostic maodsture
state variabbe {catchment deficit) has a significant correlation
with near-surface soil moisture content, cxcept in very deep
spils. Traditional land surface models penerally have a vertical
layering structure whose correlation is comparatively modest.
This approach still works for odher land surface maodels, but the
improvement with depth occurs more showly,

Appendix A: Surface Soil Moisture Calculations
The minimurm soil wetness (volumetric sl moisture divided
by porosity) w,, (=) in the root zone soil moisture distribu-
tion at equilibrium based on the catchment deficit catdef (m},
with physical constraints F = catdef = &, __, is given by

(1 + ¥ - catdef,)
{1 + ¥+ cotdel, + y.- catdef?) *

W, = i+ 11— 34l (15}
where ©.,__ (m) & the maximum catchment deficit, y, are
topography-related parameters defining the minkmum rool
FoNe welness o construct the roof 2one sodl modsture welness
distribution [Ouechaerme @ ol 2000], and

catdef, = min [cardef, 4,,_). [1&])

The parameter 4, (m) & a moisture threshold above which
soil mokture B no loager controlled by TOPMODEL asump-
Rpis,

Inteprating the rood some soil modsture distribution from
o, 10 infinity, the mean root zone soil wetness w;, {(—) at
equilibrium, based on catdef, being below &, ., is given by

2

, z
A e (W B RIS R ()

where « is a shope parameter used to construct the root zons
soil wetness distribution as a function of caidef, and topogra-
phy-related parameters [Duchamse o al, 20000 If the catch-
ment deficit &5 such that a water table no longer exists, the
cquilibrium mean rool 2ome sodl welness n.r',:l‘ o ramped by &
acaling Factor sech that

oy, = w i, — catdel)
ol Fro — Tor

catdef = &_, . {18a)

11,773

catdef = 4., {186)

e, = W5,
where s, {—) is the wilting point soil wetness,

The mean nonequilibrium root zone soil wetness w, (—) 5
calculated by adding the rood zome excess storage roexc (m),
with physical constraints &, — &, = mew = &, -
.., . such that

rZexc
N,r-mﬂhfa. i

= -

(19}

where &, (m) and & (m) are the minimum and maxi-
mum 3o moasiure slorage lemits im the rossd mome, rerpq-:tiw:lr.
Extrapolating the root zone soil wetness (o the surfuce using an
equilibrium profile asumption and then adding the surface
extess storage srfexc (m), the surface soil moisture content 8,
{volvol), with physical constraints 8, = #., = o may be
calculated by

_ i
B = ¢f_ij} o = 20)

i i

where 8, (volvol) & the wilting point soil modsture, & (vol/
vol) B the soil porosity, B (=) is the Clapp and Hormberger
[1978] sodl texture parameter, =, (m) is the thickness of the
surface layer, z: (m) i the distancs from the midpoint of the
surface bayer 1o the midpoint of the root zone laver, 4., (m) &
the spturated soil matric potential, and & (m) is the root 2one

matric potential given by

"n = iyt “I.-Ial

(21)
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