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Abstract

Due to its long-term persistence, accurate initialization of land surface soil moisture in
fully-coupled global climate models has the potential to greatly increase the accuracy of
climatological and hydrological prediction. To improve the initialization of soil moisture in the
NASA Seasonal-to-Interannual Prediction Project (NSIPP), a one-dimensional Kalman filter has
been developed to assimilate near-surface soil moisture observations into the catchment-based
land surface model used by NSIPP. A set of numerical experiments was performed using an
uncoupled version of the NSIPP land surface model to evaluate the assimilation procedure. In
this study, “true” land surface data were generated by spinning-up the land surface model for
1987 using the International Satellite Land Surface Climatology Project (ISLSCP) forcing data
sets. A degraded simulation was made for 1987 by setting the initial soil moisture prognostic
variables to arbitrarily wet values uniformly throughout North America. The final simulation run
assimilated the synthetically generated near-surface soil moisture “observations” from the true
simulation into the degraded simulation once every 3 days. This study has illustrated that by
assimilating near-surface soil moisture observations, as would be available from a remote sensing
satellite, errors in forecast soil moisture profiles as a result of poor initialization may be removed,
and the resulting predictions of runoff and evapotranspiration improved. After only 1 month of
assimilation the root mean square error in the profile storage of soil moisture was reduced to
3%v/v, while after 12 months of assimilation the root mean square error in the profile storage

was as low as 1%v/v.



1 INTRODUCTION

Due to the long-term persistence of moisture content in the land surface, its accurate
initialization in fully-coupled global climate models has the potential for significant improvement
in climatological and hydrological prediction. Knowledge of soil moisture content in the top few
meters has been shown to influence the prediction of precipitation [Koster and Suarez, 1995] and
atmospheric circulations [Fast and McCorcle, 1991], through its control on partitioning of the
available energy into latent and sensible heat exchange [Delworth and Manabe, 1989; Shukla and
Mintz, 1982]. Furthermore, the effects of evaporative dependence on soil moisture content have
been observed up to 1km above the earth’s surface [Fast and McCorcle, 1991]. The presence of
horizontal gradients in soil moisture content have been found by Fast and McCorcle [1991] to
induce circulations similar to sea breezes in the absence of synoptic forcing, which feedback to
modify both the spatial distribution and intensity of precipitation. Moreover, Koster and Suarez
[1995] have found that sea surface temperatures have a much smaller effect on precipitation
prediction over land than the land surface soil moisture content, particularly in the tropics and
mid-latitudes. The effect of land surface soil moisture content on variation in annual precipitation
over continents has been found to be particularly strong during summer when moist convection
dominates. In addition, Delworth and Manabe [1989] have found that spring-time soil moisture

content can have a substantial influence on the summer climate at mid-latitudes.

The current soil moisture content and its distribution influence not only the current
climatic conditions, but also future climate through its long-term persistence or memory effect
[Beljaars et al., 1996]. Because anomalies of soil moisture content are persistent on seasonal-to-

interannual time scales, they create persistent anomalous fluxes of latent and sensible heat,



thereby increasing the persistence of near-surface atmospheric relative humidity and temperature
[Delworth and Manabe, 1989]. Such persistence has been observed by Koster and Suarez [1995]
in areas of high soil moisture content with high evaporation rates. In these areas, high soil
moisture content instigates increased precipitation and thereby amplifies precipitation anomalies.
Delworth and Manabe [1988, 1989] have found that smaller values of potential evaporation
(which typically decreases poleward) are correlated with more slowly changing anomalies of soil
moisture content (with longer time scales). In the tropics and during the summer season,
however, larger values of potential evaporation allow fluctuations of soil moisture content to
have a substantial effect on the variability of the lower atmosphere [Delworth and Manabe,

1989].

Soil moisture content and its spatial distribution clearly influences land surface processes
with the potential to severely impact atmospheric variability, which can have a major influence
on climate forecasts. Thus, there is a demonstrated need for routine observations of soil moisture
content and its distribution, particularly for initialization of climate predictions with a global
climate model. The collection of routine soil moisture observations has been curtailed primarily
by the extreme heterogeneity of soil properties, topography, land cover, evaporation and
precipitation, causing soil moisture content to be highly variable both spatially and temporally.
Consequently, the value of operational monitoring of soil moisture content by in-situ methods is
rather limited for global scale problems. Currently, remote sensing methods provide the most
feasible capability for providing the necessary soil moisture measurements for initialization of the
soil moisture states in global climate models, as they average out small-scale variability to better

sample the climate-relevant soil moisture patterns.



Global measurements of soil moisture content have been made with the C-band
radiometer on the Scanning Multifrequency Microwave Radiometer (SMMR) instrument [M.
Owe, personal comunication, 2001] that flew during 1978 to 1987. Current passive microwave
satellite instruments, Special Sensor Microwave Imager (SSM/I) and Tropical Rainfall
Measuring Mission (TRMM), have only higher frequency radiometers, making soil moisture
measurement problematic. However, the Advanced Microwave Scanning Radiometer for the
Earth observing system (AMSR-E) instruments due for launch in the near future on the EOS
Aqua and ADEOS-II satellites will have C-band radiometers, once again making global
measurement of soil moisture possible. An L-band radiometer, the optimal wavelength for soil
moisture measurement, is not likely to be in space before 2005. Whilst passive microwave
instruments currently have a large footprint, 150 km for SMMR and 60 km for AMSR-E, global
measurement of soil moisture content from these instruments is less problematic than for the
active microwave instruments with footprints on the order of 10’s m. Furthermore, due to over-
sampling, the passive microwave measurements may generally be interpolated to a finer
resolution (50km for SMMR and 25km for AMSR-E). Moreover, the land surface component of
current-day global climate models are typically run with a spatial resolution on the order of 50 to

100 km, which is compatible with the scale of passive microwave measurements.

Soil moisture remote sensing, however, is limited to measurement of soil moisture
content in the near-surface layer of soil, consisting of the top few centimeters at most. These
upper few centimeters in the soil are the most exposed to the atmosphere, and vary rapidly in soil
moisture content, on the order of hours [Raju et al., 1995; Capehart and Carlson, 1997] in
response to rainfall and evaporation. In fact, the soil surface may change from wet to dry within a

period of 1 or 2 days [Jackson et al., 1976], with deeper soil moisture content changing more



slowly. Thus to be useful for climatic and meteorological studies, remote sensing information
must be related to the complete soil moisture profile in the unsaturated zone, as any individual
observation will largely reflect the climatic effects of the last few hours, rather than the average
for the inter-observation period. Therefore, for remote sensing observations to be valuable in
applications, methods must be developed to estimate the soil moisture profile (top few meters of
soil) using the near-surface (top few centimeters) measurements of soil moisture content that

these sensors provide.

Only a small number of studies have used remotely sensed near-surface soil moisture
measurements as either input to a land surface model [Jackson et al., 1981; Prevot et al., 1984;
Bruckler and Witono, 1989; Lin et al., 1994; Ottlé and Vidal-Madjar, 1994; Saha, 1995; Houser
et al., 1998], or as verification data [Giacomelli et al., 1995]. The reasons for this are: (i) that
remote sensing data is just beginning to gain acceptance in the hydrologic community as an
operational tool for measuring the near-surface soil moisture content; (ii) assimilation of remote
sensing data requires the development of land surface models that simulate soil moisture for a
thin near-surface layer which is compatible with the nature of the remote sensing observations
[Lakshmi and Susskind, 1997], and (iii) routine remote sensing of soil moisture content is not yet
available. In addition, techniques for updating the land surface model with remote sensing data
require investigation, and the near-surface soil moisture observations must be proven useful when

used with land surface models [Georgakakos and Baumer, 1996].

This paper illustrates, using a numerical experiment with synthetic observation data, how
remote sensing data might be used to initialize the soil moisture states in a global climate model.

Moreover, it is shown how the soil moisture content, evapotranspiration and runoff forecasts



from a land surface model are improved when near-surface soil moisture data is assimilated into
the land surface model. Furthermore, we observe that the structure of the land surface model

modifies the effectiveness of the assimilation method.

2 MODELS

Previous studies have illustrated that an assimilation scheme having the characteristics of
the Kalman filter is most effective for updating of the forecast land surface states [eg. Houser et
al., 1998; Walker et al., 2001]. Such schemes have the advantage of being able to update more
than just the observed state value, through the correlation with other states and state values in
other locations. In this study, the Kalman filter assimilation scheme is used to update the soil
moisture prognostic variables in the land surface model of Koster et al. [2000] with synthetic

“observations” of the near-surface soil moisture content.

2.1 The (Extended) Kalman Filter

The Kalman filter assimilation method is a linearized statistical scheme that provides a
statistically optimal update of the system states based on the relative magnitudes of the model
system state estimate and observation covariances. The principal advantage of this approach is
that the Kalman filter provides a framework within which the entire system is modified, with

covariances representing the reliability of the observations and model prediction.

The Kalman filter algorithm [Kalman, 1960] tracks the conditional mean of a statistically
optimal estimate of a state vector X, through a series of forecasting and update steps. To apply
the Kalman filter, the equations for evolving the system states must be written in the linear state

space formulation of (1). When these equations are non-linear, the Kalman filter is called the



extended Kalman filter, and is a first-order linearization approximation of the non-linear system.

The forecasting equations are [Bras and Rodriguez-lturbe, 1985]
)'\(n+l/n:An D'\(n/n_i_Un_i_(Wn) (1)
Zr:(ﬂ/n = A" [Er:(/n D\nT +Qn (2),

where A is the state propagation matrix relating the system states at times n+1 and n, U is a

vector of forcing, W is the model error, X, is the covariance matrix of the system states and Q is

the covariance matrix of the system noise (model error), defined as E[WM/T]. The notation n+1/n
refers to the system state estimate at time n+1 from a forecasting step, and n/n refers to the

system state estimate from either a forecasting or updating step at time n.

The covariance evolution equation consists of two parts: (i) propagation by model
dynamics, and (ii) forcing by model error. The first, which is computationally the most
demanding step in the Kalman filter algorithm, expresses how the dynamical processes in the
forecast model affect the error covariance matrix. The second part of the covariance evolution
equation represents the cumulative statistical effect of all processes that are external to, or not

accounted for in the forecast model [Dee, 1991, 1995].

For the update step, the observation vector Z must be linearly related to the system state

vector X through the transformation matrix H.

Z=HIX+Y +(v) ),



where Y is the vector of state independent terms and V accounts for observation and linearization

errors.

The best estimate of the system state vector X is updated through the observation vector
Z by means of Bayesian statistics. The system state vector and associated covariances are

updated by the expressions [Bras and Rodriguez-lturbe, 1985]

)A( NN+ )"( ntlin o K (Z n+l _ (H n+1 DA( nHl/n % n+1)) (4)
Zr)'.(+l/ n+l _ (I -K n+l H n+1)|:zr)1(+1/n [ﬁl -K n+l H n+1)T +K n+l R n+l K n+1" (5)1

where | is the identity matrix. The Kalman gain matrix K™ weights the observations against the

model forecast. Its’ weighting is determined by the relative magnitudes of model uncertainty

embodied in 0" with respect to the observation covariances R"*, defined as E[VIN']. The

Kalman gain is given by

K n+l — Z':(”l/n M n+1" [ﬁR nHl H n+1 [Er;ﬂ/n H n+1" )_l (6)

The key assumptions in the Kalman filter are that: (i) the continuous time error process W
is a Gaussian white noise stochastic process with mean vector equal to the zero vector and
covariance matrix equal to Q; and (ii) the discrete-time error sequence V is a Gaussian

independent sequence with mean equal to zero and covariance equal to R. The initial state vector

>0/0 - . . 5 . .
X°"° is also assumed Gaussian with mean vector X%'° and covariance matrix £%°.
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The Kalman filter model error forecasting equation in (2) is dependent upon: (i) an initial

system state error covariance matrix >%9. (ii) a model error forcing term Q; and (iii) the system

state forecasting equation described by the linear state space formulation in (1). The system state
error covariance matrix is often initialized using degree-of-belief estimates of the errors in initial
states to specify the diagonal elements (variances) of the initial covariance matrix, with the off-
diagonal elements (covariances) set to zero [Georgakakos and Smith, 1990]. The model error
forcing term Q results from inaccurate specification of the model structure as a result of: (i)
linearization of the model physics (including sub-grid variability); (ii) estimation errors in the
values of model parameters; and (iii) measurement errors in the model input (eg. errors in
precipitation). This is the most difficult component of the Kalman filter to identify correctly
[Georgakakos and Smith, 1990]. Hence, this term is generally chosen ad-hoc [Ljung, 1979]. The
variance of the observations R can be identified reliably in most cases, since it depends on the

characteristics of the measuring device [Georgakakos and Smith, 1990].

2.2 The Land Surface Model

The land surface model used in this study is the catchment-based land surface model of
Koster et al. [2000], illustrated schematically in Figure 1. It is a non-traditional land surface
modeling framework that includes an explicit treatment of sub-grid soil moisture variability and
its effect on runoff and evaporation. A key innovation in this approach is the shape of the land
surface element. Koster et al., [2000] abandon the traditional approach of defining quasi-
rectangular land surface elements with boundaries defined by the overlying atmospheric grid.
Instead, they define the fundamental land surface element to be the hydrological catchment, with
boundaries defined by the topography. The catchments used in this application are at level 5 in

the Pfafstetter system [Verdin and Verdin, 1999] with an average catchment area of 4400 km?.
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This land surface model uses TOPMODEL [Beven and Kirkby, 1979] concepts to relate
the water table distribution to the topography. The consideration of both the water table
distribution and non-equilibrium conditions in the root zone leads to the definition of three bulk
moisture prognostic state variables (catchment deficit, root zone excess and surface excess) and a
special treatment of moisture transfer between them. The framework of this land surface model
provides a method for calculating the saturated, stressed (wilting) and unstressed fractions of the
catchment and their respective soil moisture content from the three prognostic variables.

Alternatively, the catchment average soil moisture content may be evaluated.

The catchment deficit is defined as the average amount of water per unit area that must be
added to the catchments’ soil to bring the entire catchment to saturation, assuming equilibrium
conditions in the unsaturated zone. If equilibrium conditions could be assumed in the unsaturated
zone, the catchment deficit by itself would be sufficient to characterize the catchments complete
moisture state. To account for such non-equilibrium behavior, root zone and surface zone excess
storages are introduced. These “excess” storages are the amount by which the moisture in the root
and surface zones deviate from the moisture content implied by the local equilibrium moisture
profile. While the catchment deficit distribution is described by the distribution of topographic
index, there is no distribution presumed for the excess in the root and surface zones. However, as
a result of the catchment deficit distribution, the root zone and surface zone soil moisture

contents are spatially variable according to topography.

The catchment-based land surface model soil moisture prognostic variable forecasting

equations are given by
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srfexc™ = srfexc” — srflow+i —es )
rzexc™ =rzexc" + srflow—rzflow—ev 8)
catdef " = catdef " - rzflow + baseflow + et ©)

where srfexc (m) is the surface excess, rzexc (m) is the root zone excess, catdef (m) is the
catchment deficit and the superscript n is the time tag. The redistribution between the surface
excess and root zone excess, Srflow (m), and between the root zone excess and catchment deficit,

rzflow (m), are given by

srflow = srfexc ﬁrt (10)
1
r low = rzexc A (11),
T2

where At (s) is the time step size, and r=f(srfexc,rzexc) and n=f(rzexc,catdef) are empirical
moisture transfer timescale functions (s). The baseflow (m) is given by baseflow="f(catdef), while
the soil infiltration i (m), bare soil evaporation es (m), transpiration ev (m), and
evapotranspiration et (m) are all described by functions of the form f(srfexc,rzexc,catdef). A

complete description of this model is given in Koster et al. [2000] and Ducharne et al. [2000].

2.3 Application of the Kalman Filter

In this study, we have used a one-dimensional Kalman filter for updating the soil moisture
prognostic variables of the catchment-based land surface model. A one-dimensional Kalman
filter was used because of its computational efficiency and the fact that at the scale of catchments

used, correlation between the soil moisture prognostic variables of adjacent catchments is only
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through the large-scale correlation of atmospheric forcing. Moreover, all calculations for soil
moisture in the land surface model are performed independent of the soil moisture in adjacent

catchments.

2.3.1 Covariance Forecasting

Forecasting of the soil moisture covariance matrix using Kalman filter theory requires a
linear forecast model. However, forecasting of the soil moisture prognostic variables (surface
excess, root zone excess and catchment deficit) in the catchment-based land surface model is
non-linear. Hence, forecasting of the soil moisture prognostic variables covariance matrix was
achieved through linearization of the soil moisture forecasting equations. The linearization was
performed by a first order Taylor series expansion of the non-linear forecasting equations (7-9).

Using this approach, the covariance forecasting matrix is given by

n+l n+l n+l ]

[ dsrfexc dsrfexc dsrfexc

osrfexc” orzexc" dcatdef "

n+l n+l n+l
A= orzexc orzexc drzexc (12).
osrfexc” orzexc" ocatdef "

ocatdef " dcatdef "*  Ocatdef "™
| Osrfexc” drzexc"  Ocatdef " |

Calculation of these derivatives may be done numerically, relieving the need for deriving
analytical expressions. However, this results in an increased computational cost of approximately
m times the analytical solution, where m is the number of dependent prognostic variables to be

included in the assimilation.

For the initial covariance matrix, diagonal terms were specified to have a standard

deviation of the maximum difference between the initial prognostic state value and the upper and
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lower limits. This represents a large uncertainty in the initial soil moisture prognostic state
values. In fact, the true initial soil moisture prognostic variable could be anywhere within the
possible range. Off diagonal terms were specified to be zero initially, suggesting a zero
correlation between the initial error in the three soil moisture prognostic state variables. The
diagonal terms of the forecast model error covariance matrix Q were taken to be the predefined
value given in Table 1, with the off diagonal terms taken to be zero. The assumption that errors in
the three soil moisture prognostics resulting from errors in the model physics are independent is
valid as the physics used for forecasting these three prognostic state variables are independent.
This is unlike typical land surface models that vertically discretize the soil and apply the same

physics to the soil moisture prognostic variables for each of the soil layers.

2.3.2 Kalman Filter Observation Equation

In order to perform an update of the soil moisture prognostic variables with the Kalman
filter, the observation of near-surface soil moisture content must be linearly related to the soil
moisture prognostic variables. In the land surface model used in this study, the soil moisture
prognostic variables are the surface excess, root zone excess, and catchment deficit, and are
related to the observed soil moisture of the surface layer 8,s (v/v) through a complicated non-

linear function:

srfexc
A

6.

srf

= f,,(rzexc, catdef ) + (13),

where 2 is the surface layer thickness (0.02 m). The complete expansion of this function is given
in the Appendix. A first order Taylor series expansion of the non-linear function f,, allows for

evaluation of the surface soil moisture equation
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srfexc
{esrf}: 1 A - rzexc |+
z, OJrzexc Odcatdef
catdef (14),

f, - M Gzexc —— M gardef”
orzexc dcatdef

where the * refers to prognostic variable values about which the Taylor series expansion is

evaluated.

3 NUMERICAL EXPERIMENTS

A set of numerical identical twin experiments have been undertaken for the entire
continent of North America, in order to illustrate the effectiveness of the assimilation scheme in
providing an accurate estimate of the soil moisture storage throughout the entire soil profile given
periodic near-surface soil moisture observations. Such an estimate may then be used for the
initialization of a global climate model. The corresponding influence of errors in soil moisture
content on the forecast of evapotranspiration and runoff has also been illustrated. Finally, we
observe that the structure of the land surface model and its linearization for covariance

forecasting modifies the effectiveness of the assimilation.

3.1 Model Input Data

In this study, atmospheric forcing data and soil and vegetation properties from the first
International Satellite Land Surface Climatology Project (ISLSCP) initiative [Sellers et al., 1996]
have been used as model input for the year 1987. Such data includes: air temperature and
humidity at two meters, surface wind speed, atmospheric pressure, precipitation, downward solar
and longwave radiation, greenness, leaf area index, surface roughness length, surface snow free

albedo, zero plane displacement height, vegetation class, soil porosity, soil depth and soil texture.
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Soil properties not defined by ISLSCP were taken to be uniform across North America with the
values given in Table 2. Catchment boundaries and topographic parameters were derived from a
30-arc-second (=1 km) digital elevation model of North America from the United States
Geological Survey EROS Data Center [Ducharne et al., 2000]. The initial model states for 1987
in each of the 5018 catchments used to model the entire North America were determined by
driving the model to equilibrium at the beginning of 1987 to avoid a non-equilibrated spin-up
signal.
3.2 Observation and Evaluation Data

Using the land surface model of Koster et al. [2000], the initial conditions from spin-up,
and the model input data described above, the temporal and spatial variation of soil moisture
content across North America was forecast for 1987. The forecasts of near-surface soil moisture
content were output once every 3 days to represent the near-surface soil moisture measurements
from remote sensing satellites. In addition to soil moisture content (Figures 2 to 4), the land
surface model provided estimates of total evaporation and runoff (Figure 11) for each of the
catchments. This simulation provided the “true” soil moisture content and water balance data for
comparison with degraded simulations both with and without assimilation. Moreover, it allowed
evaluation of the effectiveness of assimilating near-surface soil moisture data for improving the
land surface model forecasts of soil moisture content and water budget components, when

initialized with poor initial conditions.

3.3 Results and Discussion

To illustrate the effect of soil moisture initialization errors on the model’s prediction, and
the effectiveness of the Kalman filter assimilation scheme, comparisons are made with a

degraded simulation. In the degraded simulation, the initial conditions were taken from the spin-
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up described above, with the exception that soil moisture prognostic variables were set to
arbitrarily wet values uniformly across the entire North America. Using the degraded soil
moisture initialization, the land surface model was run with the same atmospheric forcing data as
used to derive the observation and evaluation data above. Two separate simulations were
undertaken. The first used only the degraded initial conditions and forcing data, while the second
assimilated the near-surface “observations” from the true simulation once every 3 days. The soil
moisture forecasts from both of these simulations are compared with the true simulation in
Figures 2 to 4, at the end of January, July and December, respectively. The limitation of using the
same model to forecast the land surface states as is used to derive the observation and evaluation
data (identical twin experiment) is the implied assumption that you have a perfect model and the
observations are unbiased, which is rarely if ever the case in reality. By using a different model to
derive the observation and evaluation data than that used to forecast the land surface states
(fraternal twin experiment), this assumption may be offset. However, such a study was beyond

the scope of this paper.

Figure 2a illustrates how poor the degraded soil moisture initial conditions were
compared to the true simulation (Figure 2b), and that even after 1 month there was very little
improvement of the degraded simulation towards the true simulation. Apart from the near-surface
layer, there was very little change in the spatial distribution of soil moisture. This, however, may
be contrasted with the soil moisture forecast using assimilation of near surface “observations”
(Figure 2c). This simulation shows a very close agreement between the near-surface layers of the
true simualtion and the assimilated forecast, as would be expected. Moreover, apart from a small
portion of the North American interior, there is a good agreement between the soil moisture

contents in both the root zone and entire soil profile.



18

By the end of July there was some improvement in the soil moisture forecast of the
degraded simulation (Figure 3a) towards the true simulation (Figure 3b), but even after 12
months of simulation (Figure 4a) there was still a large portion of North America with significant
errors in the soil moisture forecast. This improvement in the degraded simulation of soil moisture
content was only observed for catchments located in the low latitudes, where evapotranspiration
rates are high year round. The difference between the degraded and true soil moisture simulations
is entirely due to the error introduced in the initial conditions. So the improvement in the
degraded simulation is purely a result of land surface model spin-up. This is because soil
moisture content is a bounded variable, with the effects of wrong initialization being lost
whenever the soil dries out or becomes fully wet. In contrast to the degraded simulation, the soil
moisture forecast with assimilation (Figure 3c) continued to track the true simulation for regions
where the true soil moisture was already retrieved. Some small localized errors in the soil
moisture forecast persisted at the end of July, but by the end of December (Figure 4c) very little

error remained.

The location, magnitude, and persistence of errors in the soil moisture forecast can be
seen more clearly in Figure 5. Errors in the soil moisture forecasts have persisted longer in some
regions of North America than others, even though they are in the same climatic regime and had
the same amount of initialization error. The correlation of each model parameter with the spatial
distribution of error in soil moisture in the entire soil profile at the end of January was analyzed.
It was found that the distribution of soil depth had the greatest correlation with this residual soil

moisture error.
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Figure 6 shows a plot of soil depth for North America. When comparing with Figure 5a
(bottom row), particularly for soil depth greater than 3m, there is a distinct relationship between
soil depth and error in soil moisture retrieval, especially for drier regions where the initial error
was greater. Thus, the fact that deeper soil moisture is less physically connected with the surface
soil moisture, leads to a reduced impact of surface soil moisture assimilation on the forecast of
total soil moisture content. Although the correlation between a near-Surface soil moisture
measurement and that of the entire soil profile is small for regions with very deep soil, it is still
greater than for traditional land surface models which use a vertical discretization of the soil
profile [Houser et al., 1998]. This is a result of the equilibrium profile assumption used in the
catchment-based land surface model, where the catchment deficit prognostic variable is the basis
for calculating the near-surface soil moisture content (see Appendix). Departures from this
equilibrium profile are accounted for by the surface and root zone excess storages, which
typically account for a much smaller contribution in the calculation of soil moisture content both

near the soil surface and at depth.

The temporal evolution of error for the entire North American continent is given in
Figures 7 and 8 for the degraded simulations without and with assimilation respectively. Figure 7
shows a slow but clear and consistent improvement in the soil moisture profile of the degraded
simulation as a result of the land surface model spinning-up to the true initialization. However,
even after twelve months there are still significant errors in soil moisture content for the entire
soil profile. In contrast, Figure 8 shows a rapid initial improvement over the first month of
assimilation, followed by a more gradual but none-the-less persistent improvement in soil
moisture forecasts for both the root zone and entire soil profile. The assimilation scheme over-

corrects the soil moisture forecast in the near-Surface layer and root zone at the first update, but
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this is rectified at the second update. After the second update, the assimilation scheme tracks the
soil moisture content in the near-surface layer almost exactly. Moreover, the error in soil

moisture forecasts for the three soil depths is negligible after around eight months of simulation.

A common approach to forecasting the model error covariance matrix using the Kalman
filter is dynamics simplification [Todling and Cohn, 1994]. Using such an approach, only the
dominant physical processes are used in forecasting of the error covariance matrix. In our
application of the Kalman filter, the most obvious application of the dynamics simplification
approach was to ignore the infiltration and evaporative terms from the prognostic equations (as
these are the most difficult to linearize), focusing only on the redistribution of moisture within the
soil. This assumes that the correlation between near-surface and deep soil moisture is strongly
dependent on the redistribution between soil moisture storages and only weakly dependent to the
external forcing. An alternative way to view this is to consider that infiltration and exfiltration is

prescribed solely by the atmospheric conditions, and is independent of the soil moisture content.

The effect of using the dynamics simplification approach to forecasting the error
covariance matrix in the catchment-based land surface model is demonstrated in Figure 9. The
first 50 days of the time series is almost identical to that of Figure 8. However, beyond that both
the root mean square error and mean error increase until about day 300. Moreover, the mean error
time series shows a systematic error in the soil moisture forecasts of the near-surface layer, with

the near-surface layer consistently drying too much and being topped up by the assimilation.

This deterioration in assimilated soil moisture is well correlated to the period of most
active evapotranspiration in the Northern Hemisphere. The temporal variation of average

evapotranspiration across North America is shown in Figure 10. Hence, the assumption that
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correlation between near-surface soil moisture and the deeper soil moisture stores is only weakly

dependent on the evapotranspiration is invalid.

The improvement in evapotranspiration and runoff prediction from the assimilation of
near-surface soil moisture observations, over the simulation with degraded soil moisture content,
is shown in Figure 11 for the month of July. Table 3 gives the mean daily evapotranspiration and
runoff rates across North America for these simulations. The results show a large impact of
incorrect soil moisture content on the prediction of evapotranspiration, which is the main
feedback from the land surface model to the atmospheric model used in coupled runs of climate
prediction. However, through the assimilation of near-surface soil moisture observations alone,
we have illustrated that errors in evapotranspiration forecasts may be significantly reduced.

Moreover, errors in the runoff component, which feeds back to the ocean model, may also be

reduced.

4 CONCLUSIONS

A methodology for generating soil moisture initialization states for global climate models
that does not rely on spinning-up the land surface model has been described. Rather, this
methodology relies on the assimilation of remotely sensed observations of near-surface soil
moisture content using a one-dimensional Kalman filter. A series of numerical experiments using
the proposed methodology has illustrated that the true soil moisture content may be retrieved for
the entire soil profile from remote sensing observations of the near-surface soil moisture content.
Moreover, the effect of errors in soil moisture forecasts on the partitioning of atmospheric forcing

into evapotranspiration and runoff has been illustrated.
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This study found that the assimilation of near-surface soil moisture content works best for
regions with shallower soils, particularly depths less than 3m. The soil moisture retrieval through
assimilation still works for regions with greater soil depth, it just occurs more slowly. This is a
direct result of the correlation between near-surface soil moisture content and soil moisture
content at depth decreasing as the separation increases. Furthermore, we observe that the
structure of the land surface model modifies the effectiveness of the assimilation method. The
unique physics used in the catchment-based land surface model is well suited to the assimilation
of near-surface soil moisture observations, as its dominant prognostic moisture state variable
(catchment deficit) has a significant correlation with near-surface soil moisture content, except in
very deep soils. Traditional land surface models generally have a vertical layering structure
whose correlation is comparatively modest. This approach still works for other land surface

models, but the improvement with depth occurs more slowly.
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APPENDIX: Surface soil moisture calculations

The minimum soil wetness (volumetric soil moisture divided by porosity) @, (-) in the

root zone soil moisture distribution at equilibrium based on the catchment deficit

catdef (m), with physical constraints 0< catdef <&, , is given by

(1+y, [catdef,)
7) (15),
[eatdef, + y, [Eatdef,’)

Wy, :y4+(1_y4)(1+y
2

where J,  (m) is the maximum catchment deficit, ) are topography related parameters defining

the minimum root zone wetness to construct the root zone soil moisture wetness distribution

[Ducharne et al., 2000] and

catdef,, = min(catdef 3, ) (16).

The parameter J; (m) is a moisture threshold above which soil moisture is no longer controlled

by TOPMODEL assumptions.

Integrating the root zone soil moisture distribution from ¢,  to infinity, the mean root

zone soil wetness a):zeq (—) at equilibrium, based on catdefy being below

Cdji, *

is given by

_ afra,, ) .2 2
W, =e w, -1 o +a@, +E (17),

where @ is a shape parameter used to construct the root zone soil wetness distribution as a

function of catdefy and topography related parameters [Ducharne, et al., 2000]. If the catchment
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deficit is such that a water table no longer exists, the equilibrium mean root zone soil wetness

cdrzeq is ramped by a scaling factor such that

catdef >3, (18a)

catdef <9, (18b),

where @, (-) is the wilting point soil wetness.

The mean non-equilibrium root zone soil wetness @), (—) is calculated by adding the root

zone excess storage rzexc (m), with physical constraints &, -4, <rzexc<d, -4, ., such

that
rzexc

W, :a)rzeq + 9 (19)’

where ‘9rzm-n (m) and Z9rzm (m) are the minimum and maximum soil moisture storage limits in the
root zone respectively. Extrapolating the root zone soil wetness to the surface using an
equilibrium profile assumption and then adding the surface excess storage srfexc (m), the surface

soil moisture content &,7(v/v), with physical constraints 6,,, <6, < @, may be calculated by

-1

gsrf — gotﬁl/lr‘za_ 22 ] b + Sr'IZXC (20)1
sat
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where 8y (v/v) is the wilting point soil moisture, @ (v/v) is the soil porosity, b (-) is the Clapp
and Hornberger [1978] soil texture parameter, z; (m) is the thickness of the surface layer, z, (m)
is the distance from the midpoint of the surface layer to the midpoint of the root zone layer,

(st (m) is the saturated soil matric potential and ¢, (M) is the root zone matric potential given by

l//rz :l//sat I—_d()rz_b (21)
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Figure 1: Schematic of the catchment-based land surface model soil moisture prognostics.

Figure 2: Comparison of soil moisture (v/v) simulations on 30 January 1987 in the near-surface
layer (top row), root zone (middle row) and entire soil profile (bottom row) from: a) degraded
initial conditions for soil moisture; b) spin-up initial conditions (true simulation); and c¢) degraded
soil moisture initial conditions with assimilation of synthetic near-surface soil moisture

observations from the true simulation once every 3 days.

Figure 3: Comparison of soil moisture (v/v) simulations on 31 July 1987 in the near-surface layer
(top row), root zone (middle row) and entire soil profile (bottom row) from: a) degraded initial
conditions for soil moisture; b) spin-up initial conditions (true simulation); and c) degraded soil
moisture initial conditions with assimilation of synthetic near-surface soil moisture observations

from the true simulation once every 3 days.

Figure 4: Comparison of soil moisture (v/v) simulations on 29 December 1987 in the near-
surface layer (top row), root zone (middle row) and entire soil profile (bottom row) from: a)
degraded initial conditions for soil moisture; b) spin-up initial conditions (true simulation); and
c) degraded soil moisture initial conditions with assimilation of synthetic near-surface soil

moisture observations from the true simulation once every 3 days.

Figure 5: Errors in soil moisture (v/v) (true simulation minus assimilation) in the near-surface
layer (top row), root zone (middle row) and entire soil profile (bottom row) for: a) 30 January

1987; b) 31 July 1987; and c) 29 December 1987.
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Figure 6: Spatial variation in total soil depth (mm) across the North American continent.

Figure 7: Temporal variation of error in soil moisture simulation with degraded initial conditions

for soil moisture.

Figure 8: Temporal variation of error in soil moisture simulation with degraded initial conditions

for soil moisture and assimilation of synthetic near-surface soil moisture observations.

Figure 9: Temporal variation of error in soil moisture simulation with degraded initial conditions
for soil moisture and assimilation of synthetic near-surface soil moisture observations with only

partial covariance forecasting.

Figure 10: Temporal variation of average evapotranspiration for North America.

Figure 11: Comparison of monthly average evapotranspiration (mm/d) for July 1987 from:
a) degraded initial conditions for soil moisture; b) spin-up initial conditions (true simulation); and
c) degraded initial conditions for soil moisture with assimilation of synthetic near-surface soil
moisture observations from the true simulation once every 3 days. Comparison of monthly
average runoff (mm/d) for July 1987 from: d) degraded initial conditions for soil moisture;
e) spin-up initial conditions (true simulation); and f) degraded initial conditions for soil moisture
with assimilation of synthetic near-surface soil moisture observations from the true simulation

once every 3 days.
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Table 1: Values for standard deviations of the forecast model error covariance matrix Q (mm/min).

srfexc 0.0025
rzexc 0.025
catdef 0.25

Table 2: Uniform soil properties specified for North America.

Saturated surface hydraulic conductivity — 2.2x10°m s

Transmittivity decay factor 326m™
Saturated soil matric potential, s —-0.281 m
Soil texture parameter, b 4

Root zone depth I m
Wilting point wetness, typ 0.148/ ¢

Table 3: Mean daily evaporation and runoff rates from the three simulations of North America in

July 1987 (mm/d)

Evapotranspiration  Runoff

Degraded simulation 2.95 0.79
True simulation 1.95 0.65
Degraded simulation 2.01 0.65

with assimilation
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