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Abstract A large range of indices and proxies are avail-
able to describe the water stress conditions of an area
subject to different applications, which have varying ca-
pabilities and limitations depending on the prevailing lo-
cal climatic conditions and land cover. The present study
uses a range of spatio-temporally high-resolution (daily
and within daily) data sources to evaluate a number of
drought indices (DIs) for the Riggs Creek OzFlux tower
site in southeastern Australia. Therefore, the main aim of
this study is to evaluate the statistical characteristics of
individual DIs subject to short-term water stress condi-
tions. In order to derive a more general and therefore
representative DI, a new criterion is required to specify
the statistical similarity between each pair of indices to
allow determining the dominant drought types along with
their representative DIs. The results show that the moni-
toring of water stress at this case study area can be
achieved by evaluating the individual behaviour of three
clusters of (i) vegetation conditions, (ii) water availability
and (iii) water consumptions. This indicates that it is not
necessary to assess all individual DIs one by one to derive
a comprehensive and informative data set about the water

stress of an area; instead, this can be achieved by
analysing one of the DIs from each cluster or deriving a
new combinatory index for each cluster, based on
established combination methods.

1 Introduction

Drought indices (DIs) are often applied in proactive man-
agement systems to mitigate the costs of water stress con-
ditions (Meinke and Stone 2005; Bond et al. 2008). DIs
are also known as water stress indices when the temporal
resolution of evaluations are considered weekly and with-
in weekly (Svoboda et al. 2002; Svoboda et al. 2015).
These indices are commonly used indicators and proxies
for detecting the water stress conditions in different parts
of a water system (e.g. plants, soil, rivers). DIs are gen-
erally classified based on the particular application and
type of water stress to which they apply. For example,
Wilhite and Glantz (1985) and later Wilhite (2005) de-
fined four main drought (water stress) types as (1) hydro-
logical droughts (water stress) affecting surface and
ground water levels; (2) meteorological droughts (water
stress) resulting in dry weather patterns dominating an
area, (3) ecological/agricultural droughts (water stress)
which focus on the quantity of plant available water, both
within the ground and the biomass itself; and (4) socio-
economic droughts (water stress), relating the supply and
demand of various commodities to drought. This wide
range of definitions led to the development of a large
number of environmental indices.

By the late 1990s, indicators such as the Palmer indices
(Palmer 1965), Surface Water Supply Index (SWSI) (Shafer
and Dezman 1982), Evaporative Fraction (EF) (Shuttleworth
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et al. 1989), Standardized Precipitation Index (SPI) (McKee
et al. 1993, 1995), and Soil Moisture Drought Index (SMDI)
(Hollinger et al. 1993) were the most commonly used DIs.
While those indices by themselves have the potential to de-
scribe specific types of water stress reasonably accurately, the
main obstacle in detailed water stress evaluations was the lack
of sufficient, and more importantly, accurate data and infor-
mation across different temporal and spatial scales.

Over the past decade, the advancement in remote sensing,
in situ monitoring and modelling technologies has allowed
water experts to gain access to unprecedented levels of spa-
tially consistent, high-resolution data products containing
high-quality and timely information on surface processes,
both in terms of the water and vegetation dynamics, as well
as for the land–atmosphere interactions. In recent years, the
most commonly used DIs are Standardized Runoff Index
(SRI) (Shukla and Wood 2008), Normalized Difference
Vegetation Index (NDVI) (Jackson et al. 2004; Maki et al.
2004), Vegetation-Temperature Condition Index (VTCI)
(Singh et al. 2003; Patel et al. 2012), Perpendicular Drought
Index (PDI) (Ghulam et al. 2007), Soil Moisture Index (SMI)
(Hunt et al. 2009) and Water Surplus Variability Index
(WSVI) (Gocic and Trajkovic 2015).

Previous studies have shown that no single DI is capable of
capturing all weather conditions equally well (Wilhite 2000;
Van Loon and Van Lanen 2012). As an example,
precipitation-based DIs usually detect water stress conditions
as Bwater stress conditions^ in winter in northern Europe;
however, there is a significant amount of precipitation in the
form of snow and ice, which is often not adequately represent-
ed (Van Loon 2013). Therefore, many studies compared dif-
ferent DIs under different land use and or climate conditions to
evaluate the meteorological/climatological behaviours of case
study areas (Bayarjargal et al. 2006; Mpelasok et al. 2008;
Barua et al. 2011; Belal et al. 2012; Liu et al. 2012; Choi
et al. 2013; Song et al. 2013;Maccioni et al. 2014). The results
of those studies have shown that the most reliable solution to
address individual deficiencies of single DIs is to evaluate an
appropriate set of them simultaneously. Despite this conclu-
sion, there is no documented study which considers an appro-
priately large set of spatially and temporally high-resolution
DIs with sufficient data diversity. Consequently, this study
deals with identifying similarities and conflicts between the
nine conventional and contemporary high-resolution DIs to
evaluate short-term water stress conditions of the Riggs
Creek OzFlux tower site in southeastern Australia. Another
objective is to determine a methodology to combine various
drought indices to develop a more robust generalized index.
This is achieved by (i) making use of spatio-temporally high-
resolution data sources to form an appropriate set of DIs, (ii)
assessing the advanced statistical characteristics of the mem-
bers of each individual cluster and (iii) determining the dom-
inant water stress type(s) with its most representative DI.

2 Case study area, variables and data sources

The Riggs Creek OzFlux tower was chosen as the case study
for this investigation as it provides both high temporal and
spatial resolution data sets, as well as a minimum amount of
data gaps across the 1.5 years (from 18 December 2010 to 1
May 2012) of verified within daily data used in this study. The
tower is located within the Goulburn-Broken catchment (36°
38.59′ S, 145° 34.21′ E), in northern Victoria, Australia
(Fig. 1) (Andrykanus 2011; Beringer 2014). Figure 2 illus-
trates two photos of Riggs Creek OzFlux tower site along with
the tower. The site’s elevation is 152 m above sea level, and
the surrounding area is dominated by broadacre farming prac-
tices. The main land use in this region is dryland agriculture,
with a predominant use as pasture. Based on a nearby weather
station operated by the Australian Bureau of Meteorology
(Euroa station, BOM ID 82016), Riggs Creek has a mean
annual precipitation of 650 mm, a mean maximum air tem-
peratures of 12.3 °C in July and 29.7 °C in February and mean
minimum air temperatures between 4.1 °C in July and 15.3 °C
in February. Carbon dioxide, water vapour and latent/sensible
heat are measured via the open-path eddy flux technique (at
height of 2 m). Finally, soil heat flux plates are installed at a
depth of 0.08 m to complement the collection of the soil mois-
ture content (at a depth of 0.1 m) using time domain
reflectometry.

According to the report published in 2011 by the South
Eastern Australian Climate Initiative (SEACI 2011), the
Australian state of Victoria experienced a severe water stress
from 1997 to 2009 with an average precipitation rate of
12.4 % below the twentieth century mean. In 2010–2011,
because of a strong La Niña phenomenon, significantly higher
levels of precipitation were recorded for Victoria with annual

Fig. 1 The geographical location of the Riggs Creek case study site
within Australia
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rates exceeding 810 mm (SEACI 2011), while by early 2012,
no extreme events (flood and severe drought) had been record-
ed (Howden 2012).

Considering the main elements of the hydrological cycle as
well as water stress types, a diverse set of variables/proxies
was taken into consideration to derive DIs for this study
(Table 1). For each DI, the category of the utilized data sources
(in situ observations, satellite information and/or a combina-
tion of them), their spatial and temporal scale and the method
of deriving values for the DIs (direct measurement, measure-
ment calculations) are summarized. The three main data
sources of this study are as follows:

1. OzFlux is an Australian ecosystem research network of 37
sites set up to provide half hourly high-resolution flux

tower measurements of water, energy and carbon. The
variables observed through this network are used in
hydroclimatic research but may also be employed in val-
idating micrometeorological theories of fluxes and air
flows (Finnigan et al. 2003; Finnigan 2004). More infor-
mation can be accessed at http://www.ozflux.org.au.

2. The Asia-Pacific Water Monitor (APWM) (Van Dijk
2010) coordinated by the Commonwealth Scientific and
Industrial Research Organization (CSIRO) provides a da-
tabase of estimated daily hydrological variables such as
precipitation, precipitation, runoff and catchment water
storage. The final data derived from APWM is a combi-
nation of the output of several sources (in situ observa-
tions and satellite data) and models (Australian Water
Resources Assessment Landscape models) to achieve

Fig. 2 Two photos of Riggs
Creek OzFlux tower site located
within a grassland (pasture) along
with the tower. Underground-
based instruments measure soil
moisture at depths of 0.1, 0.2, 0.4,
0.8, 1.2, and 2 m. Ground-based
instruments are data logger and
rain gauge. Mid-height
instruments measure soil
temperature (0.08m) and soil heat
flux (0.1 m). Top-height
instruments measure atmospheric
pressure (2.5 m), net radiation
(4 m), open-path CO2 H2O, sonic
anemometer (2.5 m), air
temperature (2.5 m) and relative
humidity (2.5 m)

Short-term water stress conditions
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the best possible estimations (Van Dijk 2010). More in-
formation is available at http://eos.csiro.au/apwm/apwm.
html.

3. The MODerate resolution Imaging Spectroradiometer
(MODIS) measures 36 bands of spectral reflectance.
The obtained data are used in deriving ecological, hydro-
logical and oceanic products on daily to monthly scales.
The MODIS instrument is installed on board NASA’s
Terra satellite and has been in operation since 18
December 1999. More information about this source can
be found at http://terra.nasa.gov.

Due to the fact that plants are the main elements of the
terrestrial ecosystems and reflect the water stress (wilting
point) with a lag time of around 1 week (especially cultivated
pasture and rainfed agricultural areas), daily data products
show decorrelated results between the indices and the surface
conditions. Moreover, information, with longer time spans
(monthly and seasonally), of water stress monitoring cannot
be practical for ecological water management due to the
wilting point time span (which is around 1 week) of many
species of vegetation (Svoboda et al. 2002; Heim Jr 2002).
Therefore, weekly temporal resolutions were considered for
evaluating water stress conditions in this study.

To derive weekly DIs, first, the few data gaps that occurred
during the considered period were in-filled using a univariate
linear regression, for gaps lasting several hours (in situ obser-
vations), and multivariate linear/nonlinear regressions for day-
long gaps (mainly for the satellite observations). Next, the
time scale of all data was converted to a daily basis using
arithmetic averaging. Then, daily DIs were calculated based
on the latter data set and converted into weekly time scale by
averaging, and finally, weekly DIs were standardized.

3 Standardizing hydroclimatic variables and proxies

As different hydroclimatic variables and proxies represent
different quantities, they are not directly comparable (e.g.
because of different dimensions/units). Moreover, even
though they are measured at the same time, they may
not be related to the same event due to the existence of
lag times. Therefore, in order to compare the different
statistical aspects of the hydroclimatic variables, it is es-
sential to employ a spatio-temporal standardization
approach.

The most practical and acceptable method to standardize
hydroclimatic variables and their proxies, for statistical
comparisons, is based on an equiprobability transformation,
as presented by Panofsky and Brier (1958) (McKee et al.
1993, 1995; Shukla and Wood 2008). The transformation
maintains the probability of a given value within its primary

sample group to be the same probability as in the trans-
formed normally distributed variate (Edwards and McKee
1997). It is worth noting that this method of standardizing
retains the main statistical characteristics (e.g. skewness) of
the primary time series.

To follow this method, first, the most appropriate cumula-
tive distribution function (CDF) of each variable is chosen by
fitting different CDFs over the variable’s data and using two
goodness-of-fit tests, the Anderson-Darling and p value
(Stephens 1974), to evaluate the statistical relationship of each
data pair.

After choosing the most appropriate CDF, the occurrence
probability of each observation is extracted, and finally, the
corresponding value of the extracted probability derived from
a standard Gaussian CDF (μ = 0, σ = 1) (McKee et al. 1993,
1995; Shukla and Wood 2008). After this process, the
hydroclimatic variables and proxies become standardized
drought indices (SDIs). Thus, this standardizing method ade-
quately retains the statistical characteristics of the primary
time series. To analyse normal and extreme conditions, thresh-
olds based on a variety of percentiles of the SDI’s time series
(2.5th, 5th, 25th, 45th, 50th, 55th, 75th, 95th and 97.5th per-
centiles) were considered.

4 Comparison between SDIs

The above statistical/probabilistic comparisons allow deter-
mining the likelihoods of events of a givenmagnitude to occur
under the same climatic conditions. As a result, two more
aspects of the considered variables may be investigated: (i)
the characteristics of the extreme events subject to each SDI
and (ii) the clustering of the SDIs, i.e. the grouping of similar
indices into categories of different water stress types. This
information can eventually be used as an indicator of the sta-
tistical dis-/similarities between SDIs under normal and ex-
treme conditions.

4.1 Extreme events

Extreme events, as identified by SDIs, can be studied for the
behaviour of their three main parameters: duration, severity
and magnitude. Keyantash and Dracup (2002) defined that if
the absolute values of a SDI from time t to t + k (where k is the
continuous duration of an event) are equal or more than the
absolute value of the predefined extreme threshold (ET), then
the severity of such an event (Sev(t,k)) can be derived as:

Sev t; kð Þ ¼ Median Mag ið Þf gð Þ � k; ð1Þ

where

Mag ið Þ ¼ SDIi−NCT ; i ¼ t;…; t þ k; ð2Þ

Short-term water stress conditions
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where Mag(i) is the magnitude of an extreme event at time i;
SDIi the value of the SDI at time i; NCT the normal condition
threshold (50th percentile of the time series of the SDI); and
Median(Mag(i)) the median of all Mag(i) from time t to t + k.
The values of dry and wet extreme thresholds for an SDI were
defined as 2.5th, and 97.5th percentiles of the entire time
series of the SDI, respectively.

4.2 Clustering SDIs

Hydrological and meteorological drought types describe the
availability of water resources in a water system, while
agricultural/ecological drought types describe the water stress
conditions inside plants. Therefore, analysing the performance
of these drought types is necessary for comprehensive water
resource management of a terrestrial ecosystem. It is worth
noting that economy/social water stress type is not considered
here due to a lack of relevant data at the case study area.

Clustering methods are mostly used to categorize the SDIs
into the different water stress clusters. Amongst a variety of
clustering methods, the agglomerative hierarchical clustering
method (AHC) is recommended in temporal and spatial
hydroclimatic classification issues (Santos et al. 2010). The
AHC consists of two main parts: (i) the linkage criterion and
(ii) the distance/similarity function. As such, the linkage
criteria determine how the algorithm and process of the dis-
tance between two clusters are defined and the distance/
similarity functions measure the respective distances. The sin-
gle criterion (distance between two clusters is the minimum
distance between an item in one cluster and an item in the
other cluster), average criterion (distance between two clusters
is the mean distance between an item in one cluster and an
item in the other cluster) and the Ward criterion are linkage
criteria alternatives (criterion for choosing the pair of clusters
to merge at each step based on the optimal value of an objec-
tive function of error sum of squares); similarly, the Euclidean
(Euclidean distance), Pearson correlation (linear correlation)
and Spearman correlation (ranked correlation) are the most
common choice for the distance/similarity functions (Soltani
and Modarres 2006; Santos et al. 2010; Sarmadi and
Shokoohi 2015; Sarmadi and Azmi 2016).

Previous hydroclimatic classification studies have only
used a pair of linkage and distance functions, with their selec-
tion generally based on preconceived expertise ideas and/or
some other case studies (Soltani and Modarres 2006; Santos
et al. 2010; Sarmadi and Shokoohi 2015; Sarmadi and Azmi
2016). However, due to the fact that each combination of these
pairs can change the final clustering (due to linear and nonlin-
ear relationships between SDIs), a variety of combinations
should be considered in the clustering in order to gain a clearer
and more accurate understanding of the general similarities
between different SDIs. In addition, due to the complex

relationships between SDIs, it seems that categorizing SDIs
with deterministic methods like dendrograms is not sufficient
when considering all aspects of the statistical behaviours of
SDIs. Therefore, a probabilistic-based algorithm is proposed
here to derive pairwise similarities between SDIs as follows:

1. Produce two sets of SDIs based on imposed time lags of 1
and 2 on the primary set of SDIs (it is worth noting again
that the temporal scale of the current study is weekly).
These two data sets along with the primary set of SDIs
are considered as input data sets, meaning that the total
number of variables (here primary SDIs are equal to 8
variables and lagged SDIs would be equal to 16 variables)
reaches 24.

2. Use two sizes of clusters equal to 3 (three main water
stress types of hydrological, meteorological and agricul-
tural/ecological) and 4 (to represent an interstitial group
may be located between the main groups).

3. Employ three linkage methods (Single, Average, Ward)
and three distance functions (Euclidean, Pearson correla-
tion, Spearman correlation).

4. Consider all different combinations of cluster sizes, link-
age methods and distance functions (2 cluster sizes × 3
linkage methods × 3 distance functions = 18 different
combinations). Obviously, subject to considering differ-
ent cluster sizes, linkage methods and distance functions,
total number of combinations would be changed.

5. Undertake the clustering of the 24 variables based on the
18 combinations of step 4.

6. Determine the probabilistic similarities between a pair of
variables (with and without time lags) (PSi,j) as follows.

PSi; j ¼ n

N
� 100; ð3Þ

where n is the number of times that two variables (i,j) are
located in the same cluster and N is the total number of all
different combinations of clustering (here, it would be equal to
18 according to the step 4).

7. Calculate the average between all probabilistic similarities
(PSs) of a pair of SDIs (with and without time lags) to
derive a final probabilistic similarity for each pair of SDIs.

8. Develop a deterministic clustering for SDIs by defining
thresholds for PSs: Bstrong similarity^: PSs greater than
60 %; Bmoderate similarity^: PSs between 40 to 60 %; and
Bweak similarity^: PSs less than 40 %.

To define the thresholds, it is first assumed that the degree
of consistency between members of a cluster has a linear cor-
relation with the average PSs of a set of variables. Further, the
PSs between a set of variables statistically follow a standard

Azmi M. et al.



normal probabilistic distribution function. Therefore, Z scores
between −0.67 and +0.67 cover 50 % of all events which are
moderate conditions and the rest can represent extreme con-
ditions. Transferring this range of Z scores to a 0–100 scale,
the values would fall within a band of 40–60 out of 100.
Therefore, PSs between 40 and 60 % (−0.67 < Z < +0.67)
can state moderate condition or in other words Bmoderate
similarity ,̂ and consequently, PSs greater than 60 % (Z > +
0.67) and less than 40 % (Z < −0.67) can show Bstrong and
weak similarities^, respectively (extreme conditions). All
SDIs with a Bstrong similarity^ can definitely be located in
one cluster, while SDIs which have Bweak similarity^ with
others may be considered as a single-member cluster.

9. Validate the results of step 8 by performing Cronbach’s
alpha (α) test (Cronbach 1951). This test shows the con-
sistency between the members of a cluster: α ≥ 0.9 shows
very good consistency; 0.6 ≤ α < 0.9, good consistency;
0.5 ≤ α < 0.6, poor consistency; and finally α < 0.5, an
unacceptable (inconsistent) cluster (Kline 2000).

5 Results and discussions

For the perpendicular drought index (PDI), the slope of the soil
line (M) is determined using all pairwise values of near-infrared-
visible (NIR-VIS) for the location of the Riggs Creek OzFlux
tower from daily MODIS observations on board NASA’s Terra
satellite. In Fig. 3, according to Ghulam et al. (2007), after man-
ually defining the triangular region bounded by the observed
NIR-VIS pairs, the slope of the base of the triangular is drawn
and then considered as the slope of the soil line (M), which is
found to be equal to 1.024 for this data set. Care must be taken,

the height of the soil line (line AD ) describes the vegetation
condition (from full cover at A to bare soil at D), meaning that
A describes the area as fully covered by plants, which will result

in the vegetation to be active for a longer time, while any point
betweenA andD indicates reduced vegetation levels. In addition,
the skewness of a pairwise distribution towards points B and C
shows the conditions of wet and dry surfaces, respectively.
Figure 3 shows for Riggs Creek that the area has received sig-
nificant levels of water during the study period (with its skewness
towards point B). Nonetheless, the area is only partially covered

(relatively short AD line), which can be explained with continu-
ous grazing as well as seasonal harvesting of the pasture areas.

The weekly time series of SDIs are presented in Fig. 4. The
operational functionality of the standardization of the indices is
apparent in the values of SNDVI and SVCI. As VCI is itself a
standardized form of NDVI (Table 1), those two normalized
indices will generally match. Both SNDVI and SVCI are indic-
ative of plant dynamics (growing and senescence seasons), and
therefore, their maximum and minimum values are found at the
beginning and end of growing seasons, respectively (Singh et al.
2003; Jackson et al. 2004). Moreover, the three indices
Standardized Soil Moisture Index (SSMI), Standardized
Runoff and Surface Soil Moisture Index (SRSSMI) and
Standardized Moisture Flux Index (SMFI) follow similar pat-
terns, as they are strongly dependent on precipitation events as
well as different seasonal conditions (air temperature and con-
sequently actual evapotranspiration). STCI shows roughly a
seasonal correlation with air temperature, which was predictable
because they reflect temperature conditions. No particular pat-
tern was describable for the last index (SPDI) which shows the
necessity for advance statistical analyses.

Due to difficulties in accurately measuring and calculating
the real evapotranspiration, it is recommended to benefit from
EFI (Kustas et al. 1993; Nishida et al. 2003). Here, SEFI is the
only index which states the temporal variabilities of water
consumptions, and this is the reason why it has an opposing
behaviour in comparison with indices such as SSMI which
shows the availability of water.

Considering the goodness-of-fit analysis (Anderson-
Darling and p value tests), the lognormal probability function
was determined as the best CDF for most of the SDIs (6 out of
9), the 3-p Gamma probability function was chosen for SPI
and SMFI and the 3-p Weibull probability function was cho-
sen for SPDI (Table 2). It is worth noting that the minimum,
2.5th and 5th percentile values of SPI are identical, which is
due to having a significant amount of zero precipitation values
on the weekly scale. Omitting zero values can remarkably
reduce the skewness of precipitation data; nonetheless, they
need to be kept for representing extreme dry conditions of the
area, in terms of precipitation, throughout the process of water
stress evaluations. With the exception of the SPI, the values of
percentiles of the remaining SDIs were close to each other,
suggesting similar behaviour under extreme conditions. This
finding is discussed in more detail below.

The 2.5th, 50th and 97.5th percentiles defined in
Section 4.1 were used to determine the respective durations
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Fig. 4 Weekly time series of SDIs at Riggs Creek OzFlux Tower from 18-Dec-2010 to 1-May-2012
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of the extreme events. In addition, the severities (Sevs) and
magnitudes (Mags) of the extreme conditions were calculated
using Eqs. (1) and (2). The durations, Sevs and Mags of ex-
treme dry as well as wet events for all SDIs are presented in
Tables 3 and 4, respectively. Table 3 shows that for most of the
cases durations of extreme dry events were 1, meaning that
extreme dry conditions lasted generally 1 week or less. From a
climatological point of view, an extreme event with the dura-
tion of 1 week cannot be considered as a drought or flood
condition. However, 1 week is long enough for pasture and
rainfed agriculture areas to get remarkable damages due to
water stress especially in the growing season. As a result, all
extreme events need to be considered even with duration of
1 week.

Under dry conditions, the variable Mags had a narrow
range from −2.84 to −1.75, however Sevs may range from
−4.88 to −1.75. Table 4 indicates that Mags of extreme wet
events had a range from 1.64 to 2.25, with Sevs ranging from
1.63 to 3.28. To sum up the results of extreme dry/wet condi-
tions, Fig. 5 provides a comparison of all extreme dry and wet
events at Riggs Creek, showing that the area experienced
much more severe extreme dry events in comparison with
extreme wet events. Moreover, the middle box plot (Dry-
SPI) highlights that evenwhen extreme dry events of SPI were
removed from the set of extreme dry events of all SDIs, the
severities of extreme dry events of other SDIs were still larger
than extreme wet events. Put differently, this means that, con-
sidering different drought types, the area generally suffered
more severe extreme dry events in comparison with wet
events during the time period of this study. Actually, because
two dry seasons and one wet season were considered, this was
expectable, and our limited data set reflected appropriate anal-
ysis. While such a figure cannot necessarily be considered as a
definitive decision-making tool, it can help water managers to
gain a more comprehensive understanding of the historical
water conditions of an area, due to its simplicity and potential
to summarize and present data and information descriptively.

The probabilistic similarities between all SDIs considered
in this study are presented in Table 5, and final PS between
each SDI pair is indicated in Table 6. According to Table 6, the
minimum PS (11.11 %) is found between the pairs SEFI-
SNDVI, SEFI-SVCI and SEFI-SMFI, while the maximum
value (87.04 %) is found for the pair SSMI-SRSSMI, as it
would be expected due to their both including soil moisture
observations. Five SDIs of SPDI, SPI, SSMI, SRSSMI and
SMFI with an average PSs of 62 % can be categorized as a
cluster (representing water availability). Three SDIs of STCI,
SNDVI and SVCI with an average PS of 75.3 % can be cat-
egorize as a cluster (representing vegetation conditions). The
index of SEFI with an average PSs of 17.8 % (average of PSs
between SEFI and other SDIs) can be considered as a single-
member cluster (representing water consumption). The
Cronbach alpha (α) test was applied to validate the results ofT
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probabilistic-based clustering. The values of α for first and
second groups were 0.63 and 0.83, respectively, which vali-
dates the derived clusters. To confirm that SEFI is not well
correlated with the other indices, it was located once in cluster
1 and then in cluster 2. For the two cases, the derived values of

α were 0.55 and 0.52, respectively, showing the poor consis-
tency of this variable in relation to others.

Overall, the results show that the monitoring of water stress
at this case study area can be done based on evaluating the
individual behaviour of three clusters: (1) vegetation

Table 3 Magnitude and severity
of SDIs under extreme dry
conditions (2.5th percentile of the
entire time series of the SDI)
calculated based on Eqs. 1 and 2

SDI Duration
(weeks)

Magnitude Severity SDI Duration
(weeks)

Magnitude Severity

SPI 2 −2.32 −4.64 SRSSMI 1 −2.08 −2.08
1 −2.32 −2.32 2 −2.44 −4.88
1 −2.32 −2.32 SNDVI 1 −2.26 −2.26
1 −2.32 −2.32 1 −2.54 −2.54
1 −2.32 −2.32 SVCI 1 −2.26 −2.26
1 −2.32 −2.32 1 −2.48 −2.48
1 −2.32 −2.32 STCI 1 −2.31 −2.31

SSMI 1 −2.15 −2.15 1 −2.09 −2.09
1 −2.04 −2.04 SPDI 1 −1.98 −1.98

SMFI 1 −1.75 −1.75 1 −2.05 −2.05
1 −2.84 −2.84 SEFI 1 −1.98 −1.98

1 −1.90 −1.90

Table 4 Magnitude and severity
of SDIs under extreme wet
conditions (97.5th percentile of
the entire time series of the SDI)
calculated based on Eqs. 1 and 2

SDI Duration
(weeks)

Magnitude Severity SDI Duration
(weeks)

Magnitude Severity

SPI 1 2.25 2.25 SMFI 1 1.63 1.63

1 2.04 2.04 1 1.84 1.84

SSMI 2 1.64 3.28 SRSSMI 1 1.84 1.84

SPDI 1 2.09 2.09 1 2.14 2.14

2 1.89 1.89 SNDVI 1 1.91 1.91

STCI 1 1.85 1.85 2 2.16 2.16

2 1.92 1.92 SVCI 1 1.89 1.89

SEFI 1 2.18 2.18 2 2.15 2.15

1 2.03 2.03

DRY DRY-SPI WET

Minimum 1.75 1.75 1.63

First Quar�le 2.05 1.98 1.87

Median 2.31 2.12 2.03

Third Quar�le 2.32 2.48 2.15

Maximum 4.88 4.88 3.28

Severity

DRY

DRY-SPI

WET

1.5 2 2.5 3 3.5 4 4.5 5

Fig. 5 Box plot of comparison between extreme dry and wet events severities at Riggs Creek Flux Tower site from 18-Dec-2010 to 1-May-2012

Azmi M. et al.



conditions (STCI, SNDVI, SVCI), (2) water availability (SPI,
SSMI, SRSSMI, SPDI and SMFI) and (3) water consump-
tions (SEFI). This indicates that it is not necessary to assess
all SDIs one by one to derive a comprehensive and

informative information set about water stress of an area but
rather by analysing one of the SDIs from each cluster (e.g.
SVCI from group 1, SSMI from group 2 and SEFI from group
3) or deriving a new index for each group, based on

Table 5 The probabilistic similarities between SDIs without time lags, as well as with time lags 1 and 2 calculated based on Eq. 3 (values are in
percentage)

STCI SNDVI SVCI SPDI SPI SSMI SRSSMI SMFI SEFI

STCI 88.9 88.9 33.3 61.1 72.2 72.2 66.7 11.1

SNDVI 100.0 33.3 72.2 83.3 83.3 77.8 11.1

SVCI 33.3 72.2 83.3 83.3 77.8 11.1

SPDI 22.2 33.3 33.3 27.8 33.3

SPI 88.9 88.9 83.3 0.0

SSMI 100.0 94.4 11.1

SRSSMI 94.4 11.1

SMFI 11.1

SEFI

STCI-1 SNDVI-1 SVCI-1 SPDI-1 SPI-1 SSMI-1 SRSSMI-1 SMFI-1 SEFI-1

STCI 44.4 55.6 55.6 33.3 50.0 66.7 66.7 66.7 11.1

SNDVI 55.6 66.7 66.7 33.3 61.1 77.8 77.8 77.8 11.1

SVCI 55.6 66.7 66.7 55.6 61.1 77.8 77.8 77.8 11.1

SPDI 33.3 44.4 11.1 11.1 44.4 33.3 33.3 55.6 33.3

SPI 44.4 55.6 55.6 44.4 66.7 77.8 77.8 83.3 0.0

SSMI 55.6 66.7 66.7 38.9 66.7 88.9 88.9 94.4 11.1

SRSSMI 55.6 66.7 66.7 38.9 66.7 88.9 88.9 94.4 11.1

SMFI 50.0 61.1 61.1 38.9 61.1 83.3 83.3 100.0 11.1

SEFI 16.7 11.1 11.1 11.1 22.2 22.2 22.2 11.1 100.0

STCI-2 SNDVI-2 SVCI-2 SPDI-2 SPI-2 SSMI-2 SRSSMI-2 SMFI-2 SEFI-2

STCI 50.0 55.6 55.6 44.4 38.9 66.7 38.9 66.7 11.1

SNDVI 44.4 66.7 66.7 33.3 38.9 77.8 38.9 77.8 11.1

SVCI 44.4 66.7 66.7 33.3 38.9 77.8 38.9 77.8 11.1

SPDI 33.3 44.4 11.1 33.3 50.0 33.3 50.0 50.0 33.3

SPI 33.3 55.6 55.6 88.9 33.3 77.8 33.3 83.3 0.0

SSMI 44.4 66.7 66.7 100.0 38.9 88.9 38.9 94.4 11.1

SRSSMI 44.4 66.7 66.7 100.0 38.9 88.9 38.9 94.4 11.1

SMFI 38.9 61.1 61.1 94.4 33.3 83.3 33.3 100.0 11.1

SEFI 11.1 11.1 11.1 11.1 61.1 22.2 61.1 11.1 100.0

SDIs-1 SDIs with time lag equal to 1, SDIs-2 SDIs with time lag equal to 2

Table 6 Final probabilistic
similarities derived from the
average between all probabilistic
similarities of a pair of SDIs
mentioned in Table 5 (values are
in percentage)

STCI SNDVI SVCI SPDI SPI SSMI SRSSMI SMFI SEFI

STCI 70.37 70.37 48.77 43.21 56.17 51.23 51.85 12.96

SNDVI 85.19 53.70 52.47 70.99 60.49 66.67 11.11

SVCI 53.70 52.47 70.99 60.49 66.67 11.11

SPDI 37.65 53.70 46.91 53.70 18.52

SPI 67.28 65.43 59.26 27.78

SSMI 78.40 87.04 18.52

SRSSMI 70.37 31.48

SMFI 11.11

SEFI

Short-term water stress conditions



established combination methods (Svoboda et al. 2002;
Keyantash and Dracup 2004; Balint and Mutua 2011; Barua
et al. 2011) can be quite enough. In other words, monitoring,
predicting and finally planning/management of water stress
situations at an area requires the consideration of all derived
information (probabilistic behaviours, extreme dry/wet condi-
tions, etc.) of the representative SDIs.

6 Summary and conclusion

This paper presented a set of statistical methods to evaluate
short term water stress conditions for a study site in southeast-
ern Australia. The required data were obtained from the Riggs
Creek flux tower (OzFlux Network), the APWM and the
MODIS instrument on board NASA’s Terra satellite. A 72-
week period in 2010–2012 was chosen based on the low level
of missing data. The temporal scale of the data was from 0.5 h
to daily, depending on the observed variable, allowing highly
representative data to be derived at the weekly scale. In addi-
tion, the spatial scale of the different data sources was accept-
able and consistent with this case study area, which also had a
high level of homogeneity in its land use and surrounding
topography. This study showed that by using a probabilistic
standardizing method, the main statistical parameters of SDIs
could be derived and analysed. The considered SDIs were
compared in terms of their normal and extreme events.
Then, using a proposedmethodology, probabilistic similarities
between standardized drought indices were presented and
analysed. Finally, dominant water stress types along with pos-
sible representative SDIs were presented. At this study, SDIs
were grouped into three main clusters, first group represented
availability of water, second group reflected reaction of plants
based onwater statuses as well as different seasons and the last
one showed the water consumptions in the water system.

The current paper is the proof-of-concept of a more com-
prehensive water stress study using advanced statistical
methods and sources in which limited point data are available
at the flux stations throughout Australia and definitely will be
applied using longer term satellite data sets in future studies.
Despite the limited length of data, the results are nevertheless
promising and show the value of applied methods in the case
of data shortages. As any approach based on statistics, larger
data sets will make this type of studies more robust in its
predictive skills. In fact, despite the limited amount of avail-
able data for this study, it was shown that by using appropriate
statistical analysis methods, it is possible to derive initial use-
ful information which can be applied for evaluating water
stress issues. Moreover, the results showed that only relying
on few common indices such as standardized precipitation
index cannot be sufficient to evaluate all different aspects of
water stress issues, which this can be quite persuasive why it is
need to consider an appropriate set of indices and proxies from

different drought types. Further, extreme conditions informa-
tion described by descriptive statistical methods can provide
clear, quick and uncomplicated visions to responsible author-
ities to have the better understanding of extreme water stress
situations over an area.
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