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Investigation of SMAP Active–Passive Downscaling
Algorithms Using Combined Sentinel-1 SAR and

SMAP Radiometer Data
Lian He , Yang Hong , Xiaoling Wu , Nan Ye , Jeffrey P. Walker , and Xiaona Chen

Abstract— The aim of this paper was to test the capabilities
of the Sentinel-1 radar data in downscaling Soil Moisture
Active Passive (SMAP) radiometer data for high-resolution soil
moisture estimation. Three different active–passive downscaling
algorithms, including the brightness temperature-based down-
scaling algorithm (BTBDA), the soil moisture-based downscaling
algorithm (SMBDA), and a change detection method (CDM),
were analyzed using pairs of Sentinel-1 active and SMAP passive
observations collected over a semiarid landscape in southeastern
Australia from May 2015 to May 2016. While these algorithms
have been tested previously, this is the first study to evaluate
the three algorithms using real Sentinel-1 radar and SMAP
radiometer data. The SMAP passive observations were disag-
gregated to 9-, 3-, and 1-km scales and then compared with
ground soil moisture measurements. The results suggest that
the root-mean-square error (RMSE) in downscaled soil moisture
at 9-km resolution was 0.057, 0.056, and 0.067 cm3/cm3 for
the BTBDA, SMBDA, and CDM, respectively. The accuracy
of downscaling methods was generally decreased when applied
at the finer spatial resolution. The SMBDA had overall better
performance in terms of correctly detecting the soil moisture
pattern and relatively lower RMSE values, and is, therefore,
recommended for the combined Sentinel-1 radar and SMAP
radiometer setup for soil moisture monitoring. The influence
of incidence angle normalization of Sentinel-1 SAR data on
downscaled soil moisture was also investigated and found to be
minimal.

Index Terms— Active–passive, downscaling algorithm,
Sentinel-1, soil moisture, Soil Moisture Active Passive (SMAP).

I. INTRODUCTION

SOIL moisture is a key variable in controlling the exchange
of water and heat energy between the land surface and

the atmosphere [1]. Microwave remote sensing has been
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widely accepted as the preferred approach to remotely sense
the near-surface soil moisture variations at regional and
global scales. Several global microwave soil moisture products
have been produced with the availability of satellite-based
active and passive microwave sensors, such as the Advanced
Microwave Scanning Radiometer for the Earth Observing
System [2], the Advanced Scatterometer [3], the Soil Moisture
and Ocean Salinity mission [4], the Soil Moisture Active
Passive (SMAP) mission [5], and the Sentinel-1 mission [6].
Among these active and passive microwave sensors, passive
microwave sensors enable accurate soil moisture estimates but
with a spatial resolution of several tens of kilometers, which
is not sufficient for applications associated with hydromete-
orology, hydrology, and agriculture [7]. Therefore, a spatial
downscaling to several kilometers or even tens of meters
is required for many regional hydrological and agricultural
applications.

Many studies have explored the utilization of high-
resolution optical/thermal data to spatially disaggregate coarse
soil moisture products and a number of downscaling methods
have been developed, including the empirical polynomial
fitting method [8]–[13], the semiphysical evaporation-based
method [14]–[19], and the smoothing filter-based inten-
sity modulation (SFIM) downscaling method [20]–[23].
These methods exploit the relationships that exist between
microwave-based soil moisture and optical-/thermal-derived
estimates of land surface temperature and vegetation indices.
Since optical and thermal remote sensing have the advantage
of providing land surface parameters at very high spatial
resolution, it is possible to obtain disaggregated soil moisture
at a spatial resolution much finer than 1 km. However, due to
masking of optical/thermal data by cloud, these downscaling
approaches are only applicable under clear-sky condition, lim-
iting their application in areas where clouds are frequent [24].

The alterative downscaling approaches are based on a
combination of coarse resolution passive microwave data and
high-resolution active microwave data. Passive microwave
observations show a higher sensitivity to soil moisture than
active microwave data, allowing for more accurate estimation
over large spatial scales, whereas active microwave observa-
tions offer increased spatial detail although the soil moisture
retrieval accuracy is more strongly affected by the surface
roughness and vegetation [25]. To overcome the individual
limitations of each observation type, NASA developed the
SMAP mission, which aimed to utilize fine-scale (3 km) active
microwave observations to downscale the coarse-scale (36 km)
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passive microwave observations to a medium-scale (9 km)
resolution [5].

In preparation for the SMAP mission, several active–
passive downscaling approaches were proposed. The SMAP
baseline downscaling algorithm [26] proposes to down-
scale low-resolution (36 km) brightness temperature TB

to an intermediate resolution (9 km) using high-resolution
(1 km) radar backscatter σ 0, with the final soil mois-
ture product being retrieved from the downscaled bright-
ness temperature at 9-km spatial resolution. Alternatively,
the SMAP optional downscaling approach [27] directly dis-
aggregates 36-km radiometer-based soil moisture with radar
backscatter to retrieve the intermediate resolution soil mois-
ture product. A further candidate downscaling approach is
based on the change detection method (CDM), using the
assumption of an approximately linear dependence of radar
backscatter and brightness temperature change on soil mois-
ture change [28]–[30]. Another totally different downscaling
approach proposed in [31] downscales radiometer observations
using radar measurements through the synergy of the active
and passive data in a Bayesian framework. Some of these
active–passive downscaling techniques have been evaluated
using airborne observations in different regions that present
with different surface and land cover conditions [32]–[34].

Unfortunately, SMAP’s L-band radar stopped working on
July 7, 2015, which seriously hampers the proposed soil
moisture estimation at high resolution. One of the feasi-
ble approaches to recover the high-resolution soil mois-
ture capability of the SMAP mission is to substitute the
failed SMAP’s L-band radar with the European Space
Agency (ESA)’s Sentinel-1 C-band SAR and apply the same
proposed active–passive downscaling algorithms [35]. Since
the SMAP and Sentinel-1 satellites have similar orbit config-
uration and the Sentinel-1 SAR could provide co-polarization
and cross-polarization observations, the active–passive down-
scaling methods will be applicable. A few attempts have been
made to downscale L-band radiometer data using C-band
SAR data. Rüdiger et al. [36] synergistically used C-band
SAR and L-band radiometer data to achieve a high-resolution
(1–2 km) brightness temperature product for soil moisture
estimation and found that it was promising for using C-band
high-resolution radar data for downscaling of L-band radiome-
ter data. Santi et al. [37] attempted to enhance the SMAP
radiometer resolution up to the Sentinel-1 radar resolution
through the SFIM downscaling method proposed in [20].
Das et al. [38] illustrated and discussed the possibility of an
SMAP–Sentinel combined product for recovery of the SMAP
mission post radar failure, with preliminary results showing
great promise.

Despite the promising results, integration of C-band active
and L-band passive observations for soil moisture retrieval
still needs more comprehensive investigations being applied
in practice. The objective of this paper is, therefore,
to test the capabilities of the combined Sentinel-1 radar and
SMAP radiometer setup for soil moisture monitoring. Three
active–passive downscaling algorithms, including the SMAP
baseline downscaling method [26], the optional downscaling
method [27], and a CDM [28], [30], were analyzed using pairs

Fig. 1. Overview of the study area, validation area, and regional soil moisture
sampling points within the Murrumbidgee river catchment. Sentinel-1 SAR
image in VV-polarization acquired on July 28, 2015 of the study region is
shown as well and indicates the coverage of Sentinel-1 SAR data. The study
area is represented by 6 × 6 36-km EASE-2 grids while the validation area
is indicated by square.

of Sentinel-1 active and SMAP passive observations collected
over a semiarid landscape in southeastern Australia from
May 5, 2015 to May 23, 2016. The SMAP passive observa-
tions were downscaled to spatial resolutions of 9, 3, and 1 km
using high-resolution Sentinel-1 SAR data, and the accuracy
of these products assessed through comparison with ground
measurements collected by a network of 75 individual stations
located within the Yanco core validation site [39], [40].

II. STUDY AREA AND DATA SET

A. Study Area

The study area is located in the Murrumbidgee catchment
in southeastern Australia and represented by 6 × 6 S-km
EASE-2 (Equal Scalable Earth version 2.0) grids (Fig. 1).
Land use in the study area is predominantly agricultural with
the exception of some forest areas in the eastern part of the
study area [41], [42]. Agricultural land use varies greatly
in intensity and includes pastoral, more intensive grazing,
broad-acre cropping, and intensive agriculture. An area of
approximately 60 km × 60 km near the township of Yanco
(long 146° 10’ E, lat 34° 50’ S) is selected as the validation
area (represented by the solid rectangle in Fig. 1). This region
is a flat semiarid agricultural area with elevation changes of
only a few meters.

In the Murrumbidgee river catchment, a soil
moisture monitoring network has been maintained since
September 2001 [41]. Among the monitoring network,
37 stations (indicated by solid points in Fig. 1) located
within the Yanco validation area were selected for this study.
At each station, near-surface (0–5 cm) and root-zone soil
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Fig. 2. (a) Averaged daily near-surface (0–5 cm) soil moisture measured
across the 37 soil moisture monitoring stations located in the Yanco region,
and associated averaged daily rainfall from May 1, 2015 to May 31, 2016.
(b) Averaged NDVI obtained from MODIS 16-day synthesized NDVI product
(MOD13A2) across the Yanco region from May 1, 2015 to May 31, 2016.
Gray dashed lines indicate seasonal separation in Australia.

moisture, soil temperature, and precipitation were measured.
In order to characterize the vegetation conditions of the study
area, the normalized difference vegetation index (NDVI)
was introduced, and the MODIS 16-day synthesized NDVI
product (MOD13A2) [43] at 1-km resolution was downloaded
from the USGS website for the period from May 1, 2015 to
May 31, 2016.

Fig. 2 shows the temporal dynamics of soil moisture and
vegetation conditions over the study area from May 1, 2015 to
May 31, 2016. In Fig. 2(a), the average soil moisture values
calculated from the 37 monitoring stations of soil moisture
measurements are presented along with the average daily
rainfall amounts. It can be seen that rainfall could directly
increase the near-surface soil moisture and a dry-down event
could be observed with no rainfall experienced. Each season
was composed of multiple complete wetting–drying periods,
resulting in large dynamics in soil moisture. Fig. 2(b) displays
the time series of the mean NDVI values for the study area.
In the growing season (the late autumn and winter of 2015),
NDVI increased as vegetation grew and finally reached to a
maximum value of about 0.7 at the end of winter. As the
vegetation began to mature and dry, NDVI decreased gradually
from about 0.7 to 0.3 in the spring of 2015. During the summer
and mid-autumn (from September 1, 2015 to April 20, 2016),
NDVI fluctuated around 0.3 and exhibited a narrow dynamic
range (<0.05). After the mid-autumn of 2016, NDVI increased
as the vegetation grew and reached to 0.5 at the end of the
autumn of 2016.

B. SMAP Radiometer Data

The SMAP mission [5] was launched on January 31, 2015,
and characterized by the unique feature of carrying on board
both active radar and passive radiometer instruments at L-band

for simultaneous data acquisition. The SMAP satellite is in a
sun-synchronous near-polar orbit at an altitude of 685 km,
with a local time of ascending node of 6 P.M. and a revisit
time of 2–3 days. Data are collected in 1000-km swaths at a
constant incidence angle of 40°.

In this paper, the SMAP Level-1C brightness temperature
(L1C_TB) product and the standard Level 2 Passive Soil
Moisture Product (L2_SM_P) on the 36-km EASE-2 grid were
obtained. In the L2_SM_P product, five soil moisture retrieval
algorithms are implemented [44] with the single-channel
algorithm at vertical polarization (SCA-V) selected as the
postlaunch baseline retrieval algorithm for the beta release
due to its best overall soil moisture performance metrics [39].
Therefore, the L1C_TB product at vertical polarization and the
L2_SM_P product from the SCA-V algorithm were utilized in
the following analyses.

C. Sentinel-1 SAR Data

Sentinel-1, part of the ESA Copernicus program, consists of
two satellites (A and B) that were launched on April 3, 2014
and April 22, 2016, respectively. The satellites are in opposite
polar sun-synchronous orbits at an altitude of 693 km, with a
mean solar local time of the ascending node of 6 P.M. and a
repeat cycle of 1–2 weeks. The SAR system operates within
C-band (5.405 GHz) frequencies in one of four acquisition
modes: stripmap, interferometric wide swath (IW), extra-wide
swath, and wave, with IW being the main operational mode
over land and coastal areas. Data are collected in 250-km
swaths at incidence angles ranging from 29.1° to 46°, pro-
viding a ground resolution of 5 m × 20 m (range × azimuth).

In this paper, Level-1 multilooked ground range detected
Sentinel-1 data collected in IW mode were used. The Sentinel-
1A SAR data acquired over the study area consist of seven
descending IW images in dual polarizations (VV and VH) with
a mean temporal resolution of about 14 days for the study
area from May 5, 2015 to May 23, 2016. These data were
radiometrically calibrated, terrain corrected, and normalized
to 40° using the cosine correction [45]. To downscale the
coarse soil moisture, the Sentinel-1 SAR data were finally
aggregated (in power units) from their native resolution to the
1-km EASE-2 grid.

The Sentinel-1 SAR data are appealing for combining with
the SMAP radiometer data in two ways [38]: 1) the two
satellites have a similar orbit configuration which allows
overlapping of their swaths with minimal time difference
and 2) the main acquisition mode of Sentinel-1 could pro-
vide dual-polarized (VV/VH or HH/HV) observations. Both
are key to the SMAP active–passive downscaling algo-
rithms. However, the Sentinel-1 and SMAP satellites were
not designed to have synchronized overpasses, so the closest
overpass time to the SMAP acquisitions was chosen with the
aid of precipitation data. In the case of significant precipitation
events, the closest date without precipitation interference was
chosen. A total of 28 pairs of Sentinel-1 SAR and SMAP
radiometer data were collected over the study region and are
listed in Table I. Of the 28 data pairs, 13 pairs were acquired
at the same day with time gap between the two acquisitions
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TABLE I

LIST OF SENTINEL-1 SAR DATA AND SMAP RADIOMETER DATA USED IN THIS PAPER

less than 1 h. For the other 15 pairs, the time gaps were
around 24 h. During these time gaps, no rainfall was recorded
according to the precipitation data.

III. METHODOLOGY

A. Downscaling Algorithms

Several approaches have been proposed for downscaling
the coarse resolution passive microwave-based soil mois-
ture products through combination with high-resolution active
microwave observations. In this paper, three active–passive
downscaling algorithms were analyzed, including the bright-
ness temperature-based downscaling algorithm (BTBDA)
(the SMAP baseline downscaling algorithm) [26], the soil
moisture-based downscaling algorithm (SMBDA) (the SMAP
optional downscaling algorithm) [27], and a CDM [28], [30].
This section provides a brief summary of each downscaling
method.

1) Brightness Temperature-Based Downscaling Algorithm:
The SMAP active–passive baseline downscaling algorithm
first disaggregates the brightness temperature at coarse res-
olution C to fine resolution F by radar backscatter, and
subsequently converts the downscaled brightness temperature
to soil moisture, and thereby it is referred to as the BTBDA.
This method is based on the assumption of a near-linear
relationship between radar backscatter (σ 0

pp) and brightness
temperature (TBp) at different scales [26], [44]

TBp(C) = α1(C) + β1(C) · σ 0
pp(C) (1)

TBp(Fj ) = α1(Fj ) + β1(Fj ) · σ 0
pp(Fj ) (2)

where p indicates the polarization (h- or v-polarization),
pp represents co-polarization of radar observations σ 0

(hh or vv), C represents coarse scale (36 km), F represents
fine scale (9, 3, or 1 km), α1 and β1 are the intercept and
slope of the linear regression between radar backscatter (σ 0

pp)
and brightness temperature (TBp), respectively, TBp(Fj ) is the
brightness temperature value of a particular pixel “ j” of res-
olution F , and σ 0(Fj ) is the corresponding radar backscatter

value of pixel “ j .” The radar backscatter value σ 0
pp(C) (in the

unit of dB) at coarse scale can be obtained by aggregating
high-resolution Sentinel-1 SAR data (in power units) within
the coarse footprint C .

By subtracting (1) from (2), the disaggregated bright-
ness temperature TBp(Fj ) at fine scale F can be rewritten
as [26], [44]

TBp(Fj ) = TBp(C) + β1(C) · [σ 0
pp(Fj ) − σ 0

pp(C)
]

+ {[α1(Fj )−α1(C)]+[β1(Fj )−β1(C)]·σ 0
pp(Fj )

}
.

(3)

There are three terms on the right-hand side of (3). The first
term TBp(C) is the radiometer-measured brightness tempera-
ture at coarse scale C . The second term {β1(C) · [σ 0

pp(Fj ) −
σ 0

pp(C)]} can be calculated based on the regression parameter

β1(C) that is estimated through the time series of radiometer
brightness temperature measurements and SAR measurements
aggregated to scale C . The third term {[α1(Fj ) − α1(C)] +
[β1(Fj ) − β1(C)] · σ 0

pp(Fj )} accounts for the deviations of
α1 and β1 within the grid cell C . This term is in units
of brightness temperature and represents the subgrid scale
heterogeneity effects.

Since the cross-polarization radar backscatter measurements
at fine resolution F are principally sensitive to vegetation and
surface roughness, the subgrid heterogeneity in vegetation and
surface characteristics within resolution C can be captured as
[σ 0

pq(C)−σ 0
pq(Fj )], where pq represents vh- or hv-polarization,

i.e., the cross-polarization backscatter at scale Fj deviations
from its coarse-scale aggregate. This heterogeneity indicator
[σ 0

pq(C)−σ 0
pq(Fj )] can be further converted to variations in

co-polarization backscatter by multiplying a sensitivity para-
meter �, which is defined as � = [δσ 0

pp(Fj )/δσ 0
pq(Fj )]C for

each particular grid cell C . The term � · [σ 0
pq(C) − σ 0

pq(Fj )]
is the projection of the variations due to the heterogene-
ity in α1 and β1 in the SAR co-polarization space, and
it can be converted to brightness temperature units through
multiplication by β1(C) in (3). Therefore, the third term
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{[α1(Fj ) − α1(C)] + [β1(Fj ) − β1(C)] · σ 0
pp(Fj )} on the

right-hand side of (3) can be approximated as [26], [44]
{[α1(Fj ) − α1(C)] + [β1(Fj ) − β1(C)] · σ 0

pp(Fj )
}

≈ β1(C) · � · [
σ 0

pq(C) − σ 0
pq(Fj )

]
. (4)

By combining (3) and (4), the disaggregated brightness tem-
perature at fine resolution F can be written more compactly
as [26], [44]

TBp(Fj ) = TBp(C) + β1(C) · {[
σ 0

pp(Fj ) − σ 0
pp(C)

]
.

+ � · [
σ 0

pq(C) − σ 0
pq(Fj )

]}
. (5)

β1(C) (in the unit of K/dB) can be obtained through a
linear regression of the time series of TBp(C) and σ 0

pp(C).
This parameter depends on vegetation cover and type as well
as surface roughness, and a moving window of β estimation
should be adopted when applying this algorithm to a long time
period [26], [46], [47]. One of the assumptions by performing
a time regression is that the soil roughness and vegetation
conditions do not change greatly over a specified temporal
window [48]. � is a sensitivity parameter for each particular
grid cell C and season defined as � = [δσ 0

pp(Fj )/δσ 0
pq(Fj )]C .

It can be estimated using high-resolution σ 0
pp(F) and σ 0

pq(F)
measurements through statistical regression. The term � ·
[σ 0

pp(C) − σ 0
pq(Fj )] is used to capture the subgrid het-

erogeneity of vegetation/surface characteristics within grid
cell C [26], [44].

The downscaled brightness temperature TBp(Fj ) at fine
scale is an intermediate product that is then converted to soil
moisture using the SCA in conjunction with high-resolution
ancillary data [44], [49], which can be expressed as

θ(Fj ) = SC A(TBp(Fj )) (6)

where θ(Fj ) indicates the retrieved soil moisture for a partic-
ular pixel “ j” at fine scale, and TBp(Fj ) is the corresponding
downscaled brightness temperature of pixel “ j”; SCA is the
single-channel soil moisture retrieval algorithm as described
in [44] and [49].

The SCA can be applied to brightness temperature TB

at both vertical and horizontal polarizations. For the SMAP
mission, it was found that the SCA-V yielded the best overall
soil moisture performance metrics [39] and is selected as the
postlaunch baseline retrieval algorithm. Therefore, only the
SMAP brightness temperature TB at vertical polarization is
tested in this paper.

2) Soil Moisture-Based Downscaling Algorithm: The
optional downscaling algorithm [27] for SMAP mission
directly disaggregates the coarse soil moisture θ(C) estimated
from coarse passive radiometer data by active microwave data.
Therefore, it is referred to as the SMBDA). This method uti-
lizes the near-linear relationship between radar backscatter σ 0

and volumetric soil moisture θ (rather than brightness temper-
ature TB). Derivation and implementation of the SMBDA is
similar to that of the BTBDA, but uses the soil moisture θ
instead of brightness temperature TBp in (5). The downscaled
soil moisture can be obtained by

θ(Fj ) = θ(C) + β2(C) · {[
σ 0

pp(Fj ) − σ 0
pp(C)

]
.

+ � · [
σ 0

pq(C) − σ 0
pq(Fj )

]}
(7)

where θ(Fj ) is the downscaled soil moisture of a particular
pixel “ j” of fine resolution F , θ(C) is the radiometer-based
soil moisture at coarse resolution C , β2(C) (in the unit
of cm3/cm3/dB) can be obtained through a linear regression
of the time series of θ(C) and σ 0

pp(C) and is also assumed
to be time invariant and homogenous over the entire 36-km
pixel, and � is the same to that in the baseline algorithm.

The SMBDA is similar to the BTBDA. However,
the SMBDA does not require high-resolution ancillary data,
such as ground temperature and vegetation water con-
tent (VWC), which are necessary for soil moisture inversion
and usually difficult to obtain. This would be an advantage of
the SMBDA over the BTBDA.

3) Change Detection Method: The CDM assumes a linear
relationship between the temporal change of radar backscatter
and temporal change of soil moisture at the same spatial scale.
This method uses the previous radiometer-scale soil moisture
retrieval updated with the moisture change evident in the
higher resolution radar backscatter change as [30]

θ(Fj , t) = θ(C, t − tR)

+ β3(C) · [σ 0
pp(Fj , t) − σ 0

pp(Fj , t − tR)
]

(8)

where θ(Fj , t) is the soil moisture of a particular pixel “ j” of
resolution F acquired at time t , θ(C , t−tR) is the soil moisture
of resolution C acquired at time t − tR , tR is the revisit time
of the observations, and β3(C) (in the unit of cm3/cm3/dB)
is also the sensitivity of volumetric soil moisture θ to radar
backscatter σ 0, and can be obtained through the time series
of θ(C) and σ 0

pp(C).

B. Incidence Angle Normalization of Sentinel-1 SAR data

Sentinel-1 IW data are collected at incidence angles ranging
from 29.1° to 46° [6]. This angular variability would induce
radar backscatter differences [50], which may be corrected
by normalizing the backscatter observations with respect to
a reference incidence angle. Several approaches have been
developed for incidence angle normalization [45], [50], [51].
One of the most often used techniques is cosine correction,
which was based on Lambert’s law for optics and initially
introduced by [52]. The measured radar backscatter σ 0

θi
at an

incidence angle θi can be normalized toward a reference angle
θref according to [45]

σ 0
ref = σ 0

θi
cosn(θref)

cosn(θi )
(9)

where σ 0
ref is the backscatter normalized to a reference

angle θref , and n is the power index characterizing the type
of scattering mechanism and ultimately the land cover char-
acteristics [53], [54] with values of n = 1 or n = 2 often
applied.

Previous research has shown that the theoretical assign-
ment of n = 1 and n = 2 applies when the target area
behaves as or approaches the behavior of a volume scat-
terer. It was found that the best n values varied between
0.2 and 3.4 depending on vegetation type and season for
L-band HH polarization data [50]. In the following analyses,
the Sentinel-1 σ 0 normalized with n = 2 was employed and
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Fig. 3. Time series of (a) average correlation R2 across the whole study
area at all days for the three downscaling algorithms along with the average
soil moisture dynamic ranges within the temporal window, and (b) average
β across the whole study area for β1 of the BTBDA and β2 and β3 of the
SMBDA and the CDM.

the impact of the power index n on the soil moisture retrievals
was discussed.

IV. RESULTS AND DISCUSSION

A. Estimation of β

In order to estimate β of each downscaling scheme,
the radar observations from Sentinel-1 SAR data on 1-km
EASE-2 grids were spatially aggregated (in power units) to
36 km and compared with the SMAP radiometer brightness
temperature TB or the SMAP radiometer-based soil mois-
ture θ . For a particular pixel at 36-km resolution, β was deter-
mined as the slope of the linear equation fit to a time series of
σ 0 and TB or θ . For the BTBDA, β1 was estimated from σ 0

and TB , while for the SMBDA and the CDM, β2 and β3 were
estimated from σ 0 and θ . Since both β2 and β3 represent the
sensitivity of soil moisture θ to radar backscatter σ 0, the same
value was used.

As β was estimated from time series of σ 0 and TB or θ
at 36 km, it is expected that using more data pairs would
attribute to a more accurate linear regression so as to make it
statistically significant. However, more date would require a
longer window that could also introduce error due the change
of land cover condition. Since β varies over time due to change
in soil and vegetation conditions [26], [32], [47], a moving
window of β estimation should be adopted when applying the
downscaling algorithms to a long time period.

In this paper, the length of data window was determined
according to the NDVI values [Fig. 2(b)]. More specifically,
during the periods of day 1–day 14 and day 26–day 28 when
the NDVI changed rapidly over time, a moving window was
used with the number of data window set as 6, resulting

in a length of temporal window about two months. For the
period of day 15–day 25, the NDVI value fluctuated around
0.3 and exhibited a narrow dynamic range, indicating that the
vegetation condition remained almost unchanged. Therefore,
this period was treated separately and the length of data
window was set as 11.

Fig. 3 displays the time series of average correlation
R2 and β across the whole study area for the three downscaling
algorithms. The soil moisture dynamic range defined as the
difference between the largest and the smallest soil moisture
values within a moving window was also calculated and
displayed. In Fig. 3(a), it can be seen that in most cases
the correlation R2 between σ 0 and TB or θ was high with
some exceptions. During the periods of day 1–day 14 and
day 26–day 28 when the soil moisture dynamic range was
above 0.20 cm3/cm3, the R2 values were high with average
values of 0.80 and 0.77, respectively, for the BTBDA and
SMBDA/CDM. The high R2 values confirm the fidelity of
the linear functional relationship between σ 0 and TB or θ ,
indicating that the Sentinel-1 SAR data show great potential
in downscaling the L-band TB or soil moisture θ . However,
relatively low correlation R2 values were found from day
15 to day 25, when the R2 values were about 0.24 and 0.32,
respectively, for the BTBDA and SMBDA/CDM. Reasons for
this could be associated with relatively low dynamic range in
soil moisture (about 0.10 cm3/cm3), which agrees well with
the finding in [26].

Fig. 3(b) illustrates the variations of β over time. The
observed sensitivity of brightness temperature or soil moisture
to radar backscatter was much higher than that obtained
in previous studies. For example, β1 from BTBDA varied
from −14 to −4 K/dB, and its magnitude was generally
larger than that of previous studies obtained at L-band (from
−8 to 0 K/dB) [26], [32], [33], [46]. Meanwhile, β2/β3 from
SMBDA and CDM ranged from 0.031 to 0.093 cm3/cm3/dB,
being much higher than that of previous study obtained at
L-band (from 0.0293 to 0.0332 cm3/cm3/dB) [54]. Reasons
for these are more related to the relatively large dynamic range
of soil moisture [see Fig. 3(a)] within each data window.

Previous studies have demonstrated that β is dependent on
soil and vegetation conditions [26], [32], [47]. Fig. 3 illustrates
that the dependence of β on soil and vegetation conditions
varied over time. From day 6 to day 9, the soil moisture
dynamic range remained relatively stable and around 0.23.
During this period, β1 increased and β2/β3 decreased as the
NDVI increased rapidly since the dense vegetation cover could
mask the brightness temperature or soil moisture sensitivity of
radar measurements [55]. During the period of day 10–day 13,
the NDVI decreased gradually as the vegetation began to
mature and dry [see Fig. 2(b)] and the surface scattering
was expected to increase. Therefore, β1 decreased and β2/β3
increased as the soil moisture dynamic range increased from
0.20 to 0.35 cm3/cm3 [see Fig. 3(a)]. The dependence of β
on soil moisture dynamic range can also help to explain the
decrease in β1 and the increase in β2/β3 from day 26 to day 28.
During the period of day 15–day 25, the NDVI was relatively
low and the sensitivities of brightness temperature or soil
moisture sensitivity to radar backscatter were expected to be
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Fig. 4. Histogram of (a) correlation coefficient R2 values between
σ 0

vv and σ 0
vh and (b) � values obtained over the whole study area for all

acquisition dates.

high (i.e., low β1 value and high β2/β3 value). However,
since the soil moisture dynamic range was relatively low,
the sensitivities were not high.

B. Estimation of �

For the BTBDA and the SMBDA, � defined as the sen-
sitivity of radar co-polarization σ 0

vv to cross-polarization σ 0
vh

needed to be calculated. The � parameter represents the
subgrid scale heterogeneity effects [26]. For each 36-km grid,
the value of � was calculated using the snapshots of all
σ 0

vv−σ 0
vh pairs at 1-km resolution contained within each 36-km

grid.
Fig. 4 displays the histograms of correlation R2 values

between σ 0
vv and σ 0

vh, and � values obtained over the whole
study area for all days. The mean value of correlation R2

is about 0.54, and about 75% pixels have correlation R2

values greater than 0.40, indicating that the co- and cross-
polarizations are strongly correlated. Consequently, � can be
accurately estimated. The obtained � values mostly range
between 0.50 and 0.90 with a mean value of about 0.74 and
a standard deviation value of about 0.20, which is in good
agreement with the results presented in [26] and [33].

Fig. 5 displays the time series of the mean and standard
deviation values of � calculated over the whole study area for
all acquisition dates. The mean value of � varies according
to different seasons and shows a positive correlation with
NDVI [see Fig. 2(b)] with a correlation R2 value of being
about 0.51. There was a slight upward trend in mean �
value in the late autumn and winter period of 2015 (day
1–day 8) as the NDVI value increased continuously from
0.3 to 0.7 [see Fig. 2(b)], and a clear downward trend during
the spring of 2015 (day 9–day 14) as the NDVI value gradually

Fig. 5. Time series of mean and standard deviation of � calculated from
36 pixels over the whole study area.

decreased from 0.7 to 0.3 [see Fig. 2(b)]. This is likely
associated with changes in vegetation conditions. High NDVI
values may result in an increase in volume scattering, and
thus an increase in cross-polarized radar backscatter σ 0

vv.
Meanwhile, the radar cross-polarization σ 0

vh measurements are
very sensitive to the vegetation information since the surface
backscattering does not generate significant cross-polarization
signal [56]. Therefore, increased NDVI leads to higher volume
scattering and hence higher � values, and vice versa, which is
in good agreement with the results presented in [26] and [33].
In summer season (day 15–day 21), the NDVI was stable and
around 0.27, and the � fluctuated slightly around 0.68. During
the autumn of 2016 (day 22–day 28), the � fluctuated a lot
and no obvious trend was observed in � value even the NDVI
demonstrated an obvious increase. More specifically, the �
dropped from 0.80 to 0.55 from day 25 to day 26 without the
NDVI increased a lot. This may be caused by the changes in
the soil conditions due to rainfalls or soil tillage.

The standard deviation of � value at each day was fairly
large and may be caused by the heterogeneity within the
whole study area. Since the study area was covered by
several land types (i.e., cropland, pasture, and forest), the large
standard deviation was more associated with variations in land
cover. Moreover, rainfall could change the soil roughness and
vegetation conditions, which could also change the hetero-
geneity within the study area, particularly when it did not rain
each time over the whole domain [47].

C. Soil Moisture Maps

The soil moisture downscaling results for the BTBDA,
SMBDA, and CDM are presented in Fig. 6 on June 9, 2015 and
in Fig. 7 on July 27, 2015 as examples of dry and wet
conditions, respectively. Pixels outside the coverage area of
Sentinel-1 SAR data or having missing values caused by
the failure of retrieval algorithm appear white. In this paper,
the typical range of volumetric soil moisture was set as from
0.02 to 0.60 cm3/cm3. The downscaling algorithms would fail
if the estimated soil moisture value fell outside this typical
range. Moreover, for the BTBDA, it requires high-resolution
ancillary data, such as soil temperature, soil texture, and VWC.
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Fig. 6. Example of soil moisture maps on June 9, 2015. (a) S-km radiometer-based soil moisture. (b) and (c) Downscaled soil moisture at 1-km resolution
for SMBDA and CDM. (d)–(f) Downscaled soil moisture at 3-km resolution for BTBDA, SMBDA, and CDM. (g)–(i) Downscaled soil moisture at 9-km
resolution for BTBDA, SMBDA, and CDM. The S-km EASE-2 grids are also outlined by gray lines.

Therefore, errors in these ancillary data may accumulate
through the inversion model [44], [49] and may lead to the
failure of this method. Due to the lack of 1-km resolution
ancillary data, soil moisture maps were not available at 1-km
resolution for the BTBDA. To evaluate the spatial distribution
of the downscaled soil moisture, the SMAP radiometer-based
soil moisture at 36 km is also displayed.

In terms of comparison among different downscaling algo-
rithms, the three approaches yielded quite different results.
The CDM demonstrated much less spatial heterogeneity within
each 36-km grid cell when compared to the BTBDA and
SMBDA. In addition, the CDM failed to capture the wet
conditions on July 27, 2015, in the bottom right area of the
study area where soil moisture values from this method were
about 0.30 cm3/cm3, significantly lower than that from the
S-km soil moisture product (about 0.40 cm3/cm3). This failure
is probably due to the dense vegetation over the bottom right
area where the NDVI value was about 0.75. A close look
into the radar and soil moisture measurements shows that the
radar backscatter remained almost unchanged while the soil
moisture increased from about 0.30 to around 0.40 cm3/cm3

from day 6 to day 7, indicating that the radar backscatter
sensitivity to soil moisture has been attenuated by the dense
vegetation. Conversely, both BTBDA and SMBDA were able
to effectively capture the dry and wet soil moisture conditions
observed by the S-km soil moisture product and reproduced
them at the higher spatial resolutions of 1, 3, and 9 km.
Soil moisture maps from the BTBDA and SMBDA showed a
similar spatial pattern. However, the SMBDA appeared to be
better correlated with the S-km soil moisture product over the
entire study area, which is due to the fact that the downscaling
method relies on the passive microwave soil moisture product
as benchmark.

It can also be observed that soil moisture from the BTBDA
appeared to be more scattered within the Sentinel-1 data
coverage, especially at dry conditions [Fig. 6(d) and (e)].
In contrast, the SMBDA and the CDM could obtain more
spatially complete soil moisture maps, with a very small
numbers of pixels having missing values due to the failure of
retrieval algorithm. Hence, the spatially complete soil moisture
map appears to be an advantage of the SMBDA over the
BTBDA.
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Fig. 7. Example of soil moisture maps on July 27, 2015. (a) S-km radiometer-based soil moisture. (b) and (c) Downscaled soil moisture at 1-km resolution
for SMBDA and CDM. (d)–(f) Downscaled soil moisture at 3-km resolution for BTBDA, SMBDA, and CDM. (g)–(i) Downscaled soil moisture at 9-km
resolution for BTBDA, SMBDA, and CDM. The S-km EASE-2 grids are also outlined by gray lines.

D. Validation of Soil Moisture Retrievals in Yanco Area

The soil moisture retrievals from the SMAP radiometer-
based soil moisture product and the three downscaling algo-
rithms were evaluated using ground measurements in the
Yanco area, as shown in Fig. 1 at four spatial scales (i.e., 36, 9,
3, and 1 km). The satellite products were compared with soil
moisture values obtained through averaging the measurements
of all stations within a grid cell. Only the grid cells with a
sufficient number of ground measurements are selected for
validation. The threshold number of ground soil moisture
measurements within a pixel was set as 8, 3, 2, and 1,
respectively, for 36-, 9-, 3-, and 1-km spatial scales. From the
matchups, the bias, coefficient of determination (R2), root-
mean-square error (RMSE), and unbiased root-mean-square
error (ubRMSE) were calculated and are listed in Table II,
while Fig. 8 shows the scatterplots of soil moisture retrievals
compared with ground measurements.

For the SMAP radiometer-based soil moisture product at
36 km, overall good agreement was found between ground
measurements and satellite products. The satellite products
were highly correlated with the ground measurements with
R2 value being 0.85. A positive bias of 0.013 cm3/cm3 was
observed, indicating slightly higher values for the retrieved

TABLE II

STATISTICS COMPUTED BETWEEN THE RETRIEVED AND GROUND

MEASURED SOIL MOISTURE AT 36-, 9-, 3- AND 1-km
RESOLUTIONS; N IS THE NUMBER OF SAMPLES.

THESE RESULTS ARE OBTAINED WITH � �= 0

than the measured soil moisture. The ubRMSE value was
about 0.047 cm3/cm3, which is close to the target accuracy
of the SMAP products of 0.040 m3/m3. While these results
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Fig. 8. Scatterplots of retrieved and measured soil moisture values at
(a) 36-, (b) 9-, (c) 3-, and (d) 1-km scales. BTBDA, SMBDA, and CDM
represent the brightness temperature-based downscaling algorithm, the soil
moisture-based downscaling algorithm, and the change detection method,
respectively.

were only based on 28 days of monitoring, the findings are
comparable to the results reported in [39] for a longer period.

The retrieval accuracy in terms of RMSE, ubRMSE, and
R2 was gradually decreased as the spatial resolution became
finer for all three downscaling algorithms. For example,
for the SMBDA the RMSE value increased from 0.056 to
0.072 cm3/cm3 to 0.092 cm3/cm3 and the R2 value decreased
from 0.76 to 0.60 to 0.44 when the spatial resolution going
from 9 to 3 km to 1 km. This result is consistent with
the findings in [46], which reported that the accuracy of
downscaled brightness temperature reduced as the spatial
resolution became finer. This is likely associated with the
increased heterogeneity and high level of noise in the radar
data. Moreover, it is reasonably expected that the retrieval
accuracy would decrease when downscaling the soil moisture
to increasingly finer spatial resolution.

The performance of the three downscaling methods differed
from each other. The CDM exhibited the poorest performance
at all three scales (i.e., 9, 3, and 1 km) with RMSE values
ranging from 0.067 to 0.100 cm3/cm3, while RMSE results for
the BTBDA and the SMBDA being much smaller. Since the
CDM uses the previous radiometer-scale soil moisture retrieval
updated with the moisture change evident in the higher reso-
lution radar backscatter change, the poor performance of the
downscaling scheme is likely associated with the accumulating
errors from the relatively more noisy radar measurements,
which has been pointed out in [30]. The SMBDA presented
relatively smaller RMSE and ubRMSE values and higher R2

values with respect to the BTBDA at 9- and 3-km resolutions.
In order to analyze the influence of � on the resulting

downscaled soil moisture, the BTBDA and the SMBDA were
applied with � = 0, with the validation results presented
in Table III. By comparing Tables II and III, it can be seen
that there was an obvious reduction of RMSE, ubRMSE, and
R2 from using � = 0 (Table III) to using � �= 0 (Table II)

TABLE III

STATISTICS COMPUTED BETWEEN THE RETRIEVED SOIL MOISTURE AND
THE GROUND MEASUREMENTS AT 36-, 9-, 3- AND 1-km

RESOLUTIONS; N IS THE NUMBER OF SAMPLES.
THESE RESULTS ARE OBTAINED WITH � = 0

for both BTBDA and SMBDA methods at 1-, 3-, and 9-km
scales, confirming that the � term can be used to compensate
the influence of vegetation conditions and help to improve the
accuracy of finer resolution soil moisture. In addition, the poor
performance of the CDM is likely due in part to not utilizing
the � term in (4).

It should be mentioned that the size of the Yanco study
area was relatively small, thus limiting the number of pixels
that could be analyzed. Therefore, more ground measurements
are needed to fully evaluate the performance of downscaling
algorithms for fusion of Sentinel-1 SAR data and SMAP
radiometer data. Moreover, the Yanco study area was dom-
inated by cropping areas and grassland [42]. Since the land
cover type is known to affect the performance of the down-
scaling algorithms [46], more extensive testing of the three
algorithms over different land covers is also needed.

E. Impact of Incidence Angle Normalization

In order to investigate the influence of incidence angle nor-
malization on the soil moisture retrieval results, 10 differently
normalized Sentinel-1 σ 0 data sets were tested in this paper
using a range of discretized n values (from 0.5 to 5.0 with
interval steps of 0.5) in the cosine correction. The range of n
values was wide enough to ensure that it covered all possible n
values for different land cover types in [50]. For each pixel, 10
soil moisture retrieval results were obtained and the maximum
difference defined as the difference between the largest and the
smallest soil moisture values was calculated. The maximum
difference represented the variability in soil moisture retrievals
due to n value.

Fig. 9 displays the cumulative probability distribution of the
maximum difference value over the entire study area for all
days at three scales (i.e., 9, 3, and 1 km) for the different
downscaling algorithms. It can be observed that for all three
downscaling algorithms, about 98% pixels had maximum
difference value below a threshold value of 0.010 cm3/cm3 at
three scales. This result clearly demonstrated that the retrieved
soil moisture was almost uninfluenced by the n value selected
for the incidence angle normalization, which agrees well
with the finding in [54]. It is also observed that for each
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Fig. 9. Cumulative probability distribution of the maximum difference value
defined as the difference between the largest and the smallest soil moisture
values from different n values selected for the incidence angle normalization
for all days for different downscaling algorithms at (a) 9-, (b) 3-, and (c) 1-km
scales. BTBDA, SMBDA, and CDM represent the brightness temperature-
based downscaling algorithm, the soil moisture-based downscaling algorithm,
and the change detection method, respectively.

downscaling method, the cumulative percent value decreased
when the spatial resolution went from 9 to 1 km, indicating
that the coarser the spatial resolution, the less influence the
incidence angle normalization had on the retrieval accuracy.

Among the three downscaling methods, the CDM was
almost unaffected by the incidence angle normalization since
almost all pixels had a maximum difference value below
0.001 cm3/cm3. This result is not surprising since for each
pixel the incidence angle almost remained constant at all
Sentinel-1 SAR acquisition dates and the influence of inci-
dence angle on radar backscatter was canceled out through the
differencing of radar backscatter. The influences of incidence
angle normalization on the BTBDA and SMBDA were very
similar since their cumulative distribution functions were very
close to each other.

In summary, the accuracy of the downscaling algorithm
was almost independent on the choice of n value selected for
incidence angle normalization. However, the incidence angle
of Sentinel-1 SAR data was around 40° over the Yanco area
so that the validation results in Section IV-D would not be
influenced by incidence angle normalization to 40°.

V. CONCLUSION

This paper provided an extensive analysis of three down-
scaling algorithms for high-resolution soil moisture estimation
using combined Sentinel-1 radar and SMAP radiometer data.
These algorithms include the BTBDA (the SMAP baseline
algorithm), the SMBDA (the SMAP optional algorithm), and
a CDM. The Sentinel-1 SAR data were used to disaggregate
the SMAP radiometer data at spatial resolutions of 9, 3, and
1 km over a semiarid landscape in southeastern Australia from
May 2015 to May 2016. The downscaled soil moisture was

validated by ground soil moisture measurements collected by
a network of 37 individual points in the study area.

The results indicated that the RMSE values of downscaled
soil moisture at 9-km resolution were 0.057, 0.056, and
0.067 cm3/cm3 for the BTBDA, the SMBDA, and the CDM,
respectively. The RMSE value of each algorithm generally
decreased from 9 to 1 km due to the increased heterogeneity
captured from observations at finer spatial scale and the higher
noise of the radar observation at finer scale. Among the three
downscaling methods tested, the SMBDA showed the best
performance in terms of correctly detecting the soil mois-
ture pattern and relatively lower RMSE values. In addition,
the SMBDA could generate more spatially complete soil mois-
ture maps compared to the BTBDA. Therefore, the SMBDA
is recommended for the combined Sentinel-1 radar and SMAP
radiometer setup for soil moisture monitoring.

It was shown that the � term can be used to compensate
the influence of vegetation conditions to some degree, and
the inclusion of � can significantly improve the accuracy of
the three downscaling algorithms, which is in good agreement
with previous findings. This result emphasizes the requirement
for cross-polarized SAR data as available from Sentinel-1.

Since Sentinel-1 SAR data are collected at multiple inci-
dence angles within its swath, correction for σ 0 differences
due to this angular variability is needed. In this paper,
the cosine correction was employed and the influence of
incidence angle normalization on downscaled soil moisture
was investigated. The results demonstrate that the soil moisture
downscaling accuracy is not significantly influenced by the n
value selected for the incidence angle normalization.

One limitation for this paper was that the study area was
relatively small, limiting the number of pixels that could be
analyzed. In addition, the dominant land cover types of the
study area were cropland and pasture, making it important to
further investigate these downscaling algorithms for a compre-
hensive range of land surface conditions in future studies.
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