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Abstract—The aim of this paper was to estimate soil moisture in
agricultural crop fields from fully polarimetric L-band synthetic
aperture radar (SAR) data through the polarimetric decompo-
sition of the SAR coherency matrix. A nonnegative-eigenvalue-
decomposition scheme, together with an adaptive volume scattering
model, is extended to an adaptive model-based decomposition
(MBD) (Adaptive MBD) model for soil moisture retrieval. The
Adaptive MBD can ensure nonnegative decomposed scattering
components and allows two parameters (i.e., the mean orientation
angle and a degree of randomness) to be determined to charac-
terize the volume scattering. Its performance was tested using
airborne SAR data and coincident ground measurements collected
over agricultural fields in southeastern Australia and compared
with previous MBD methods (i.e., the Freeman three-component
decomposition using the extended Bragg model, the Yamaguchi
three-component decomposition, and an iterative generalized hy-
brid decomposition). The results obtained with the newly proposed
decomposition scheme agreed well with expectations based on ob-
served plant structure and biomass levels. The new method was su-
perior in tracking soil moisture dynamics with respect to previous
decomposition methods in our study area, with root-mean-square
error of soil moisture estimations being 0.10 and 0.14 m3/m3,
respectively, for surface and double-bounce components. How-
ever, large variability in the achieved soil moisture accuracy was
observed, depending on the presence of row structures in the
underlying soil surface.

Index Terms—Agricultural fields, polarimetric decomposition,
synthetic aperture radar (SAR) polarimetry, soil moisture.
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I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) is a
promising remote sensing technique for soil moisture

monitoring. The SAR signal is known to contain information
about the properties of scatterers, not only on surface charac-
teristics such as soil moisture and surface roughness [1]–[7] but
also on the structure and properties of the vegetation canopy
[8]–[12]. Moreover, current spaceborne SAR technology allows
the fine spatial resolution (from meters to tens of meters)
and frequent revisit (from days to weeks) that are needed for
soil moisture information to have an impact on agricultural
management and hydrological predictions [13].

The SAR backscattered signal from vegetated areas is in-
fluenced by vegetation cover and soil surface characteristics
such as soil moisture and surface roughness [14]. Soil moisture
retrieval from SAR systems having limited viewing capabil-
ities (i.e., single channel, frequency, and incidence angle) is
therefore an underdetermined problem [15], [16], due to the
lack of sufficient observations for estimating several unknown
parameters (i.e., soil moisture, surface roughness, and veg-
etation elements). Consequently, a priori information or as-
sumptions concerning the characteristics of the vegetation layer
are required to reduce the number of unknowns and success-
fully invert radar backscatter models to estimate soil moisture.
Such a priori information or assumptions are generally in the
form of site-specific or vegetation-specific parameters (such
as vegetation height, phenology, structure, etc.) in empirical
and semiempirical models [17], [18] or, alternatively, highly
detailed information on vegetation parameters for numerical
and theoretical models [19], [20], which are laborious to collect
in the field. Alternatively, a priori assumptions have to be made
on the value, range, or probability distribution of one or more
of the underlying surface characteristic, as in change-detection
methods [21], [22] or statistical probability methods [23], [24].
Multiple-configuration SAR (i.e., concurrent observations at
multiple angles and frequencies) is an efficient way to increase
the number of SAR observables to solve for soil moisture [25],
[26]. Nevertheless, routine time series of multiple-configuration
SAR observations having the high temporal frequency required
for tracking soil moisture changes are still difficult to obtain.

The availability of missions with fully polarimetric SAR
capabilities such as RADARSAT-2 and ALOS PALSAR-1/2
has increased the interest in methods that exploit polarimetric
radar information in order to completely characterize the target
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characteristics [27]–[30]. Fully polarimetric SAR systems
provide, for each pixel, the full complex scattering matrix, in-
cluding amplitude and phase information of the four transmit–
receive channels (HH, HV, VH, and VV). This contains a
wealth of information on the target properties, particularly veg-
etation properties such as size, shape, orientation, and dielectric
constant of leaves, stalks, and fruit [11], [31]. Therefore, in
the context of soil moisture retrieval, fully polarimetric SAR
observations hold tremendous potential for quantifying and
removing the impact of vegetation on the backscattered signal
without (or with limited use of) a priori assumptions and
information on the vegetation structure [26], [32]–[35].

Among the many methods proposed in past decades for
exploiting the information contained in fully polarimetric SAR
data, there are two main approaches: the eigenvalue-based
decomposition approaches and the model-based decomposition
(MBD) approaches, pioneered by Cloude and Pottier [28] and
Freeman and Durden [29], respectively. Both methods decom-
pose the measured complex scattering matrix into a combina-
tion of a few simple components and therefore are referred to
as polarimetric decomposition methods. These components are
then linked to physical scattering mechanisms. The polarimetric
decomposition techniques have shown potential for application
to soil moisture retrieval in agricultural areas. The eigenvalue-
based decomposition method has been used for soil moisture
retrieval through the (extended) Bragg model [3] or the polari-
metric two-scale model (PTSM) [6]. However, these methods
could not separate the individual contributions of the surface
and vegetation layers to the scattering matrix and therefore have
limited applicability in the presence of agricultural crops. A
more promising attempt to retrieve soil moisture under crop
canopies was that of Hajnsek et al. [32] by using a variety of
modified model-based polarimetric decompositions within the
framework of the Freeman–Durden MBD (Freeman MBD) in
[29]. Although results indicated the ability to classify soil mois-
ture into three to five different moisture classes for each crop
type, low spatial inversion rates (the relative amount of pixels in
the image that can be successfully inverted) were observed, and
therefore, these methods could not provide spatially continuous
soil moisture maps. Meanwhile, these methods were confined
to simple volume scattering models. To overcome these limi-
tations, an iterative generalized hybrid MBD (referred to as the
Hybrid MBD) was proposed in [35] by combining model-based
and eigenvalue-based techniques together with a generalized
volume scattering model. The Hybrid MBD demonstrated a
major step forward by achieving high inversion rates for a
variety of vegetation covers. However, the contribution of the
double-bounce component in the Hybrid MBD had to be ne-
glected in order to achieve a physically constrained solution for
the vegetation volume intensity. In the proposed polarimetric
decomposition methods in [32] and [35], scattering reflection
symmetry was assumed (i.e., 〈ShhS

∗
hv〉 = 〈SvvS

∗
hv〉 = 0) to

determine the volume contribution. Additionally, some MBDs
[32] could not ensure nonnegative decomposed powers due to
the overestimation of volume scattering [36], [37].

As an alternative to the previous approaches, an adaptive
volume model (Adaptive VM) was recently proposed in [38],
which does not require the assumption of scattering reflection

symmetry when determining the volume contribution. The
Adaptive VM allows for the variable orientation angle and de-
gree of randomness of the vegetation scattering elements to be
determined without any a priori assumptions. Based upon the
adaptive volume scattering model, an Adaptive MBD scheme
was proposed in [27], which could ensure that all the decom-
posed components have nonnegative powers. Hence, the two
deficiencies (i.e., limited volume scattering model and negative
decomposed powers) faced by the previous approaches could
be avoided in the Adaptive MBD. To our knowledge, the
advanced polarimetric analysis techniques proposed in [27]
and [38] have not yet been tested for soil moisture retrieval
in an agricultural setting. However, this advanced polarimetric
decomposition approach was not designed for soil moisture
inversion since the Adaptive MBD does not account for the fact
that the ground components must be inverted using physically
based models. This paper shows how the Adaptive MBD model
is extended to a novel soil moisture inversion scheme. The
objective of this paper is therefore to assess the advantage in soil
moisture estimation from using a more realistic modeling of the
vegetation layer. This is tested by applying the Adaptive MBD
to airborne SAR and field data and its performance compared
against the previous MBD approaches in [32] and [35].

This paper is organized as follows. Section II provides a
detailed theoretical description of the Adaptive MBD tested.
Section III briefly describes the airborne and ground data sets.
Results and discussion on the comparison between Adaptive
MBD and previous MBD methods, the evaluation of different
volume models, and the soil moisture retrieval are then pre-
sented in Section IV, followed by conclusions in Section V.

II. METHODS

A. Framework of NNED

In model-based polarimetric decomposition, the measured
coherency (or covariance) matrix of vegetated areas is usually ex-
panded by a linear combination of several individual matrices,
which are then interpreted according to their scattering mech-
anisms. The well-known MBDs include a three-component MBD
proposed by Freeman and Durden [29] and a four-component
MBD proposed by Yamaguchi et al. [39]. One of the problems
associated with the MBDs is that the powers of surface and
double-bounce scattering components may become negative
due to the overestimation of volume scattering power [30],
[36] and [37]. However, as pointed out by Van Zyl et al. [36],
each decomposed scattering component represents a physical
scattering process and therefore should never be negative. To
account for this property, a nonnegative eigenvalue decompo-
sition (NNED) model was proposed in [30]. In the NNED, the
measured coherency matrix Tdata is decomposed into surface
scattering Ts, double-bounce scattering Td, and volume scat-
tering Tv components. The general form is [30]

⎡
⎣T11 T12 T13

T ∗
12 T22 T23

T ∗
13 T ∗

23 T33

⎤
⎦ = [Tdata] = fv[Tv] + fs[Ts]

+ fd[Td] + [Tresidual] (1)
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where the superscript ∗ denotes complex conjugation; fv, fs,
and fd are the scattering intensities for volume, surface,
and double-bounce scattering components, respectively; and
Tredidual is the residual component after the volume, surface,
and double-bounce components have been subtracted.

After subtracting the volume component Tv from the ob-
served coherency matrix Tdata, the remainder coherency ma-
trix Tremainder can be generally written as

[Tremainder] = [Tdata]− fv

⎡
⎣V11 V12 V13

V ∗
12 V22 V23

V ∗
13 V ∗

23 V33

⎤
⎦ (2)

where Vi,j are elements for the volume scattering model.
It should be noted that no specific volume scattering model is

assumed in (2) and any physically realizable volume scattering
model can be used in the aforementioned equation. To find the
volume scattering intensity fv, a nonnegative eigenvalue ap-
proach is utilized, in which the largest value of fv that ensures
that all three eigenvalues of the matrix Tremainder would be
greater than or equal to zero is selected in the decomposition.
Van Zyl et al. [30], [36] analytically derived the formula of fv
by using the eigenvalues of Tremainder when the scattering
reflection symmetry holds. When no reflection symmetry is
assumed, the characteristic equation of the remainder matrix
would be a general cubic polynomial, and the maximum fv can
be achieved by solve a cubic equation in fv [40]. The maximum
fv can be also numerically calculated by varying fv to find the
maximum fv in which all three eigenvalues of Tremainder are
nonnegative [27]. In this way, the volume scattering power can
be determined for a specific volume scattering model.

The remainder Tremainder can be considered as a sum of
surface Ts, double-bounce Td, and residual Tresidual compo-
nents and can be written as

[Tremainder] = fs[Ts] = fd[Td] + [Tresidual]. (3)

To estimate the surface Ts, double-bounce Td, and residual
Tresidual components, the ground components are assumed to
satisfy the reflection symmetry assumption, and the eigenvalue
decomposition is applied [30], [41], with the three individual
components being

[Ts] =

⎡
⎣ cos2 αs cosαs sinαse

iφs 0
cosαs sinαse

−iφs sin2 αs 0
0 0 0

⎤
⎦

(4a)

[Td] =

⎡
⎣ cos2 αd cosαd sinαde

iφd 0
cosαd sinαde

−iφd sin2 αd 0
0 0 0

⎤
⎦

(4b)

[Tresidual] = fsd

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦ (4c)

where fsd is the scattering intensity for the residual component,
αs and αd are the scattering angles characterizing the surface
and double-bounce scattering mechanisms, and φs and φd are

the scattering phases for surface scattering and double-bounce
scattering, respectively. Generally, the surface scattering angle
αs ranges between 0◦ and 45◦, while the double-bounce scat-
tering angle αd locates in the range of 45◦–90◦. It should be
pointed out that, in the eigenvalue decomposition, the surface
component Ts and the double-bounce component Td are as-
sumed to be orthogonal. The orthogonality condition can be
written as [37], [42]

αs + αd =
π

s
and φs + φd = ±π. (5)

The matrix Tresidual in (3) is the residual power after sub-
tracting the volume, surface, and double-bounce components.
In general, the residual component will contain additional
cross-polarized power (in the T33 element of Tresidual) that
could represent terrain effects and rough surface scattering [30].

B. Adaptive MBD Model

The vegetation canopy is often approximated as a cloud
of equally shaped particles. Under this approximation, several
volume scattering models have been proposed under the re-
flection symmetry condition by considering the effects of the
orientation and the shape of volume particles [29], [35], [39],
[43] and [44]. A promising general model, which requires no
scattering reflection symmetry assumption, was introduced by
Arii et al. [38]. This generalized volume model describes the
vegetation canopy as a cloud of thin cylinders characterized by
two parameters: the mean orientation angle of the dipoles and
the degree of randomness around that mean orientation angle.
In the form of the coherency matrix, this volume model can be
expressed as [38]

Tv(θ0, σ) = Tα + p(σ)Tβ(θ0) + q(σ)Tγ (θ0) (6)

with

Tα =
1

4

⎡
⎣2 0 0
0 1 0
0 0 1

⎤
⎦ (7a)

Tβ(θ0) =
1

4

⎡
⎣ 0 − cos(2θ0) sin(2θ0)
− cos(2θ0) 0 0
sin(2θ0) 0 0

⎤
⎦ (7b)

Tγ(θ0) =
1

4

⎡
⎣0 0 0
0 cos(4θ0) − sin(4θ0)
0 − sin(4θ0) − cos(4θ0)

⎤
⎦ (7c)

where θ0 is the mean orientation angle and σ is the degree of
randomness. The coefficients p(σ) and q(σ) are characterized
by sixth-order polynomials in terms of σ as in [27]. The
parameter σ ranges from 0 to 0.91. There are two extreme cases:
the uniform distribution with σ = 0.91 when the thin cylinders
are uniformly randomly distributed and the delta distribution
with σ = 0 when all the individual cylinders have consistent
orientation.

For the general case of volume scattering model in (6), the
reflection symmetry is not guaranteed except for specific mean
orientation angles. This generalized model allows for a variable
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orientation angle and randomness and is therefore referred to in
this paper as the “Adaptive VM.”

Based on the Adaptive VM, the NNED of (1) was extended
to an Adaptive MBD [27] by replacing the volume component
in (1) with (6). To find the best fit decomposition, the power in
the residual matrix is evaluated for all pairs of randomness and
mean orientation angles, and the parameter set that minimizes
the power associated with the residual matrix will be selected.

C. Modifications of the Adaptive MBD

The Adaptive MBD was not designed for soil moisture
inversion since it does not account for the fact that ground
components must be physically invertible. This section shows
how the Adaptive MBD can be extended to a novel soil moisture
inversion scheme.

In the Adaptive MBD [27], there is no need to determine the
dominant scattering component since the ground components
are separated by the eigenvalue decomposition. However, for
soil moisture inversion, the inverted scattering component must
be dominant as shown in [32]. Therefore, before applying the
Adaptive MBD, the scattering dominance is first determined.
To determine the dominance between surface and double-
bounce scattering mechanisms, the sign of Re(ShhS

∗
vv) after

the removal of the volume contribution using a random volume
is utilized [29], [32]. Surface scattering is dominant if the term
Re(ShhS

∗
vv) is positive; otherwise, double-bounce scattering is

dominant.
The surface scattering component Ts is usually modeled

by the (extended) Bragg model [3], [32], [45] or the PTSM
[6], [7]. The original Bragg model [45] does not account
for depolarization effects and is not able to describe cross-
polarized scattering. In the extended Bragg (X-Bragg) model
[3], [32] and the PTSM [6], [7], the cross-polarization returns
were induced through a line-of-sight rotation of the surface
coherency matrix since terrain slopes in the azimuth direction
could rotate the polarization basis of the scattering matrix. The
azimuthal slope variations are more likely related to large-scale
surface roughness (i.e., a few tens of centimeters, but less than a
SAR resolution cell), and therefore, these two models are more
suitable for scattering surface composed of rough randomly
tilted facets (large with respect to the radar wavelength, but
small with respect to the sensor resolution) [6], [7]. However,
the use of the X-Bragg or the PTSM will increase the number of
unknown parameters, which has to be fixed by setting empirical
additional constraints [32], [46]. In this paper, no analytical
form is assumed for the surface scattering component, which
is considered as the sum of Ts and Tresidual in (3) as

[Tsurface] = fs[Ts] + [Tresidual]. (8)

The normalized correlation coefficient of Tsurface is one

γ(hh+vv)(hh−vv) =
〈(Shh + Svv)(Shh − Svv)

∗〉√
〈|Shh + Svv|2〉 〈|Shh − Svv|2〉

= 1.

(9)

As a consequence, the surface scattering model in (8)
does not account for depolarization effects [3]. The cross-
polarization term of Tsurface is assumed mainly due to the

rough surface scattering [47] associated with small-scale sur-
face roughness (a few centimeters, comparable with the radar
wavelength).

For soil moisture inversion, the copolarization ratio p and
cross-polarization ratio q are first reconstructed from the de-
composed coherency matrix of the surface component (i.e.,
fs ∗Ts +Tresidual), with soil moisture and surface roughness
consequently obtained by inverting the empirical Oh surface
scattering model [48]. The decomposed surface component is
attenuated by extinction through the volume [37], [49] and
hence is not the same as the bare surface return. Therefore, the
polarization ratios p and q in the Oh model are biased due to
differential extinction, i.e., the difference between extinction at
V and H polarizations. However, under the assumption that the
extinction coefficients from different polarizations are equal,
the polarization ratios p and q are preserved. This is the main
advantage of the utilization of the Oh model since it employs
ratios rather than absolute values for soil moisture retrieval.

The double-bounce component is modeled as a Fresnel re-
flection between the soil surface and the vertical trunk of a plant
with the scattering intensity fd and scattering mechanism αd

given by [35]

αd = atan

(
1

αF

)
fd =

fF

sin2(αd)
(10)

with

fF =
m2

d

2
|RshRth +RsvRtve

iϕ|2

αF =
RshRth −RsvRtve

iϕ

RshRth +RsvRtveiϕ
(11)

where md is the loss factor and ϕ is the polarimetric phase
difference introduced by the vegetation layer. Rsh, Rsv, Rth,
and Rtv are the Fresnel scattering coefficients of the underlying
soil surface and the vegetation trunk plane [32]. The Fresnel
scattering coefficients depend on the radar incidence angle θ,
the dielectric constant of the soil surface εs, and the trunk εt.
The dielectric constant of the surface εs and the trunk εt can be
retrieved using fF and αF as described in detail in [32] in case
of the dominant double-bounce component.

To account for the vegetation/roughness attenuation, the loss
factor md of (11) is assumed as [34]

md = exp

(
− sin2(θ)

2(μmax − μmin)

)
(12)

with

μmax =
λ1

fv
μmin =

λ2

fv
(13)

where μmax and μmin represent the maximum and minimum
ground-to-volume ratios defined in [26] and [34], in which
λ1 and λ2 are eigenvalues of the summed ground component
matrix after the removal of the volume component and fv is the
volume intensity obtained by (2). The mean attenuation loss md

was empirically derived from SAR data over various crop types
(i.e., corn, grass, wheat, barley, and rape) [34], and it does not
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incorporate differential extinction between H polarization and
V polarization for randomly oriented volume [26].

To find the best fit decomposition, the Adaptive MBD of (1)
is calculated by varying randomness σ and mean orientation
angle θ0 for their entire ranges. The pair of randomness σ and
mean orientation angle θ0 that minimizes the power associated
with the residual matrix Tresidual is considered as the best fit
parameter set. This optimization criterion may underestimate
the surface scattering in the case of dominant surface scattering
since the residual component is treated as an additional part
of the surface component in this paper. Therefore, alternative
optimization criteria are utilized to find the best fit parameter
by using a priori information obtained from the conventional
eigenvalue-based decomposition [28]. The surface scattering al-
pha angle αmin (i.e., the minimum of the three scattering alpha
angles) is first calculated from the conventional eigenvalue-
based decomposition of Tdata. Next, the modeled maximum
surface scattering angle αBmax can be obtained from the Bragg
model by setting the soil dielectric constant to 40 (the maximum
possible soil dielectric constant value assumed in vegetated
soils). When surface scattering is dominant and the value of
αmin is lower than that of αBmax, the pair of θ0 and σ that
minimizes |αmin − αs| is selected, where the αs is the surface
scattering angle obtained from the eigenvalue decomposition of
the remainder coherency matrix of (3). When double-bounce
scattering is dominant or the value of αmin is greater than that
ofαBmax, the power in the residual component is expected to be
zero since the double-bounce scattering is assumed to generate
no cross-polarization signal. In such case, the pair of θ0 and σ
that minimizes the power in the residual component Tresidual

is selected.

D. Soil Moisture Inversion by Adaptive MBD

By applying the modifications, the adaptive NNED proposed
in [27] is extended to a novel soil moisture inversion scheme,
which follows the following steps as also summarized in Fig. 1.

1) Determine the scattering dominance according to the
sign of Re(ShhS

∗
vv) after the removal of the volume

component using the Freeman MBD [29].
2) For each pair of σ and θ0, calculate the volume scattering

model as in (6), as well as its corresponding maximum
volume intensity fv. In order to keep simplicity but
without loss of generality, a range of discretized values
of randomness σ and mean orientation angle θ0 are used,
with the randomness being discrete between 0 and 0.91
(interval steps of 0.03) and the mean orientation angle
between 0 and 180◦ (interval steps of 5◦).

3) The eigenvalue decomposition under the assumption of
reflection symmetry proposed in [41] is applied to the
remainder coherency matrix of (3), with the surface Ts,
double-bounce Td, and residual Tresidual components
estimated accordingly. The scattering angles αs and αd

for surface and double-bounce components can also be
obtained at the same time.

4) Having decomposed the coherency matrix into surface,
double-bounce, and volume components, soil moisture is

Fig. 1. Adaptive MBD and soil moisture inversion for single pixel.

retrieved from either the surface component or double-
bounce component, depending on the scattering domi-
nance. If the surface scattering is dominant, soil moisture
is retrieved from the surface component (i.e., fs ∗Ts +
Tresidual) by using the empirical Oh surface scattering
model [48]. If the double-bounce component is dominant,
soil moisture is retrieved from the Fresnel model of fF
and αF as detailed in [32]. To obtain physically correct
ground scattering components, only the pair of θ0 and σ
that ensures HH > VV for the double-bounce component
and HH < VV for the surface component is selected as
the candidate of the best fit parameter set.

5) The steps of 2), 3), and 4) are repeated for all pairs of ran-
domness and mean orientation angle. To find the appro-
priate pair of randomness σ and mean orientation angle
θ0 for each pixel, different optimization criteria are
utilized depending on the scattering dominance. If the
sign of Re(ShhS

∗
vv) is positive and the scattering angle

αmin from conventional eigenvalue-based decomposition
is lower than the maximum surface scattering angle
αBmax from the Bragg model, the pair of θ0 and σ that
minimizes |αmin − αs| is selected. Otherwise, if the sign
of Re(ShhS

∗
vv) is negative or αmin is greater than αBmax,

the pair of θ0 and σ that minimizes the power in the
residual matrix P (Tresidual) (calculated as the matrix
trace of Tresidual) is chosen.

In summary, the adaptive NNED proposed in [27] is extended
and incorporated into a novel soil moisture inversion scheme.
In this novel scheme, an adaptive volume scattering model
without a reflection symmetry assumption is applied, while the
surface scattering and double-bounce scattering models are still
considered under reflection symmetry. The proposed inversion
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TABLE I
POLARIMETRIC DECOMPOSITION MODELS TESTED IN THIS PAPER

scheme also ensures that all the decomposed components have
nonnegative powers. The approach is applied to polarimetric
SAR data to retrieve soil moisture under vegetation cover in
agricultural areas.

For comparison, three existing MBD models for soil mois-
ture inversion are also tested: 1) the modified Freeman–Durden
decomposition, where the ground component is replaced with the
X-Bragg model [32], referred to as the Freeman MBD using
X-Bragg; for this model, the angular-distribution width parame-
ter characterizing the surface roughness was set asπ/6 as in [32];
2) the replacement of the volume scattering model with a library
of three volume models proposed by Yamaguchi et al. [39] in
the Freeman–Durden decomposition, referred to as Yamaguchi
MBD; and 3) an iterative generalized hybrid MBD (referred to
as Hybrid MBD) which combines model-based and eigenvalue-
based decomposition techniques together with a generalized
vegetation model, in which a physically constrained approach
is employed to determine the volume scattering intensity [35].
The methods tested in this paper are summarized in Table I.

III. STUDY AREA AND DATA SET

The airborne and ground data used in this paper were col-
lected during the third Soil Moisture Active Passive Experi-
ment (SMAPEx-3), conducted on September 5–23, 2011, in
the Yanco study area in southeastern Australia [50]. The aim
of the experiment was to collect airborne SAR and passive
microwave data for algorithm development for the National
Aeronautics and Space Administration Soil Moisture Active
Passive mission. The site is a semiarid agricultural area located
in the western plains of the Murrumbidgee catchment near the
township of Yanco (longitude 146◦10′ E, latitude 34◦50′ S).
Approximately one-third of the area is characterized by intense
irrigation activity. The principal crops during the monitoring
period were wheat and canola. The study area is flat with
elevation changes of only a few meters.

Fully polarimetric L-band (1.26 GHz) data were acquired on
nine dates with coincident ground sampling of soil moisture
(see Table II). The airborne SAR data acquisition system was
the Polarimetric L-band Imaging SAR (PLIS) [51], which is a
fully polarimetric L-band SAR sensor and illuminates the ground
on either sides of the aircraft at an incidence angle varying
from 15◦ to 50◦ across the swath. Polarimetric and radiometric
calibration of PLIS was accomplished using a distributed forest
target in conjunction with six trihedral passive radar calibrators.
After calibration, the mean ratio of the copolarized channels

TABLE II
SAR DATA ACQUISITION DATES DURING THE SMAPEX-3 EXPERIMENT.

CUMULATIVE PRECIPITATION (THREE DAYS PRIOR TO WHEN THE
SMAPEX-3 EXPERIMENT BEGAN) AND PRECIPITATION

RECORDED ON THE DAY (BRACKETS)
ARE ALSO SHOWN

was 1, and the mean phase difference was 3◦ and 6◦ for the
left and right antennas, respectively. The absolute and relative
calibration accuracies were estimated at 0.9 and 0.8 dB, re-
spectively [50]. After polarimetric and radiometric calibration,
the scattering matrix (spatial resolution of approximately 6 and
0.8 m in range and azimuth) was transformed into a coherency
matrix (by applying a multilook factor of 2 in range and 14 in
azimuth) and projected to ground coordinates at a spatial res-
olution of 10 m. Speckle noise in the SAR data was reduced
using the refined Lee filter with a window size of 7 × 7 [52],
which could preserve polarimetric information in homogeneous
areas. Additionally, an additive noise suppression filtering algo-
rithm for fully polarimetric data, based on the reduction of the
channel correlation 〈HV · VH∗〉, was applied to further reduce
additive noise [3].

Soil moisture monitoring was undertaken at about 70 agri-
cultural fields, 39 of which were planted with wheat and canola,
while the remaining presented bare conditions. Despite the large
number of fields available, most were unsuitable for analysis as
they presented stable dry soil moisture conditions throughout
the experiment (below 0.2 m3/m3). A total of 11 fields were
selected for the purpose of this paper which targeted fields with
reasonably wide soil moisture dynamic range and a variety of
growth stages and crop types (wheat and canola) as observed
during the field campaign. Table III lists the main character-
istics of the fields used in this analysis, and Fig. 2 displays
a polarimetric radar RGB image of the selected fields. Some
fields were flood irrigated during the monitoring period (see
Table III). A bare soil field was included in the analysis as a
control site. Notice that the empirical Oh surface scattering model
employed for soil moisture inversion was previously evaluated
on 11 bare fields in the same study area and was shown to be
the most accurate among three models [53].
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TABLE III
CHARACTERISTICS OF SMAPEX-3 AGRICULTURAL FIELDS USED IN THE ANALYSIS

Fig. 2. RGB image of the Pauli decomposition powers (in decibels) of the agricultural study areas using the airborne SAR observations acquired on September 10,
2011; Pauli2 (double-bounce scattering, Red): |Shh − Svv|2. Pauli3 (volume scattering, Green): |Shv|2. Pauli1 (single-bounce scattering, Blue): |Shh + Svv|2.
The agricultural study area is composed of two parts as shown in the left and right panels. The analyzed agricultural fields are outlined by polygons and labeled
with the field number according to Table III.

Although soil moisture was monitored on each of the nine
days of airborne SAR acquisition, due to the large number of
fields, each field was monitored only once a week, for a total of
three visits during the experiment. Soil moisture measurements
were conducted using portable dielectric probes over a depth of
0–5 cm on a regular grid of locations equally spaced at 250 m, re-
sulting in 2 to 7 monitoring locations, depending on the field size
(see Table III). At each location, three soil moisture replicate
measurements were taken within a 1-m radius and averaged
to characterize small-scale soil moisture variability. The com-
plex dielectric measurements were converted to volumetric soil
moisture (in m3/m3) using site-specific calibration equations
developed using hundreds of gravimetric samples collected
in the area, yielding an estimated accuracy of 0.035 m3/m3

[54]. Surface roughness and vegetation characteristics were
also measured at 3 of the 12 fields analyzed and are included

in Table III. Surface roughness was measured using 3-m-long
manual profiles in two directions. Vegetation biomass samples
were collected to determine the water content through oven dry-
ing. Vegetation conditions varied little during the experiment,
with an increase in plant height smaller than 10 cm on average
for the wheat and up to 20 cm for the canola. However, the
emergence of heads in the flowering wheat was observed during
the experiment.

IV. RESULTS AND DISCUSSIONS

The results of four decomposition schemes are analyzed qual-
itatively in terms of decomposed power components (volume,
surface, and double bounce) and vegetation structure param-
eters. The results for soil moisture estimation are then quantita-
tively analyzed using ground measurements.
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Fig. 3. Time series of the mean volume scattering intensity fv values over the
entire study area by the three different polarimetric decomposition methods.
The same volume model (i.e., the random volume model) is employed for the
three methods. For the Hybrid MBD, the soil dielectric constant is set as 40 (the
maximum possible soil dielectric constant value assumed in vegetated soils), in
which the volume scattering intensity will be the smallest.

A. Volume Intensity Estimation

The determination of volume intensity fv is a critical step
for the accurate characterization of the vegetation volume and
soil moisture inversion. In the original Freeman MBD, the
volume scattering intensity can be directly obtained from the
cross-polarization component (i.e., fv = 4× T33). The volume
scattering intensity is often overestimated since the cross-
polarization component is assumed solely from volume scat-
tering [37]. To constrain the volume scattering intensity, a
physically constrained solution for the vegetation volume in-
tensity was proposed in the Hybrid MBD [34], [35], in which
the contribution of the double-bounce component had to be
neglected. Alternatively, a nonnegative eigenvalue approach is
utilized in the Adaptive MBD. In order to demonstrate how the
three methods vary, the same volume scattering model (i.e., the
random volume model) was used for all three methods. Fig. 3
displays the time series of mean volume intensity fv values over
the entire study area obtained from the three approaches de-
scribed earlier. For the Hybrid MBD, the soil dielectric constant
εs was set to 40, in which the minimum fv will be obtained.

It can be seen that the Adaptive MBD has smaller fv values
when compared to the Freeman MBD, indicating a smaller vol-
ume component which is consistent with previous observations
regarding the overestimation of the volume component by the
Freeman MBD [30], [38] and [40]. In contrast, the Hybrid
MBD always has much higher fv values than the Adaptive
MBD and the Freeman MBD. This is likely due to the fact that
only three terms of the measured coherency matrix (namely,
T11, T22, and |T12|) are used in the Hybrid MBD and that
the scattering from the double-bounce component is neglected
when solving for fv. Overestimated volume intensity fv leads
to nonphysical ground components in the Hybrid MBD due to
the negative cross-polarization terms. Since, for our airborne
SAR data, most pixels had negative cross-polarization terms
in the ground component, the Hybrid MDB method resulted
in unsolvable soil moisture inversion over wide areas. It was
therefore not further used in this paper. Additional analysis with

different SAR data sets is needed to clarify the reasons behind
such failure.

B. Comparison of Decomposed Powers

Fig. 4 displays the time series of decomposed powers using
the three methods analyzed, namely, the Freeman MBD us-
ing X-Bragg, the Yamaguchi MBD, and the Adaptive MBD.
The curves indicate the measured vegetation height. For easy
display, the comparison is shown for five agricultural fields,
namely, fields #4, #97, #17, #29, and #95, chosen to represent
the main vegetation types (wheat and canola) and wheat growth
stages during the monitoring period (leaf emergence, stem
elongation, and flowering; see Table III). Note that all powers
are normalized to the total power (i.e., surface+ double-bounce
+ volume), therefore highlighting the relative strength between
the three components.

The relative strengths of the decomposition powers reflect
changes with vegetation heights and types. In field #4, the
wheat was in the stage of leaf emergence, and the height was
less than 35 cm (see Table III). In such a case, surface scattering
was the dominant scattering mechanism (about 80% of the total
power), as expected. Both the double-bounce and volume com-
ponents were quite low. For wheat in the stem elongation phase
(∼40-cm height, field #97), the surface component dropped a
lot, while the volume component showed a significant increase
with respect to field #4. The double-bounce component took up
to 10% of the total power. Since the wheat canopy is composed
mostly of vertical stalks, the presence of vertical structures in
the stage of stem elongation generated a considerable amount
of double-bounce scattering. For tall wheat fields (fields #17
and #29), where the wheat plants were of similar height and in
the flowering phase and the radar incidence angle was almost
the same, the decomposed powers varied. For field #17, the
surface component was still dominant, while the double-bounce
component indicated an increase with respect to field #97.
By contrast, for the tall wheat field #29, the double-bounce
component was dominant at most dates. Reasons for this might
be associated to the plant row direction (see Table III) as the
row direction could shift the phase difference between HH and
VV [55]. It is worth mentioning that the emergence of wheat
heads may contribute to the volume scattering [56] and alter the
ratio between HH and VV polarizations [57], [58]. However,
the influence of wheat heads on decomposition results was not
obvious in this paper, which requires further investigation with
the support of additional ground measurements.

The dominant scattering mechanism changed from surface
scattering in wheat fields to mainly volume scattering in the
canola fields, with the volume component taking between 50%
and 80% of the total power. The plants in field #95 had already
grown to a height of about 100 cm when the SMAPEx-3
campaign began. Moreover, the canopy was very dense and
lush (4–5-kg/m2 vegetation water content) relative to the wheat,
resulting in the volume scattering dominance observed in Fig. 4.
Both the surface and double-bounce components were rela-
tively low.

No significant temporal trends in decomposed volume pow-
ers could be associated to plant growth during the monitoring
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Fig. 4. Time series of relative decomposed powers: (Left column) Volume, (middle column) surface, and (right column) double-bounce scattering for five selected
fields with increasing plant heights (top to bottom). The curves show the height of the crop of the respective field. The arrows indicate approximate dates when
fields were irrigated.

period except a slight increasing trend in relative volume com-
ponent observed as the plant height increased in field #97. This
was no surprise since, as previously observed, the vegetation
conditions varied little during the experiment (see Table III).
However, it was surprising that there was no clear correlation
between volume component and plant height variability across
the four selected wheat fields (fields #4, #97, #17, and #29).

It was previously observed that, in the flowering phase, the
fresh biomass began to decrease gradually [59], [60]. As a
consequence, the wheat became dry and appeared rather trans-
parent at L-band. This may explain why the volume component
appeared much stronger in short wheat (field #97) than in tall
wheat (fields #17 and #29). These results are in agreement with
the findings in [32], suggesting that the volume component
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Fig. 5. Randomness maps in the agricultural study areas on September 7, 2011.
The analyzed agricultural fields are outlined by the polygons.

seems to be more sensitive to fresh biomass rather than plant
height.

In terms of comparison among different decomposition
schemes, the three approaches yielded quite different results. In
most fields, particularly tall wheat and canola, the Yamaguchi
MBD provided the highest relative volume component, leading
to negative surface or double-bounce components for fields #17
and #19 at some dates. Our interpretation of this behavior is
that the Yamaguchi MBD assumes that the cross-polarization
signal comes solely from the volume scattering. Meanwhile,
the volume component fluctuated significantly from day to day,
particularly in wheat fields #17 and #29, which was more likely
associated to the fluctuations in cross-polarization terms. These
problems can be partially solved by introducing the X-Bragg
model for slightly rough soil surfaces [32], as shown in the
Freeman MBD using X-Bragg. Conversely, the Adaptive MBD
resulted in a lower volume component and consequently higher
surface or double-bounce components. The Adaptive MBD
also provided more temporally stable volume components than
both Freeman and Yamaguchi MBDs. Given the short time lag
(i.e., from two to three days) between observations and conse-
quent small vegetation changes, the decomposed volume com-
ponents were not expected to fluctuate significantly. It is worth
mentioning that the time lag is not expected to influence the de-
composed results and soil moisture retrieval results since the re-
sults were obtained separately for each acquisition date. Hence,
the stable volume component appears to be an advantage of the
Adaptive MBD over the Freeman MBD using X-Bragg and the
Yamaguchi MBD.

C. Vegetation Orientation and Randomness Parameters
Derived From Adaptive VM

The use of the Adaptive VM allows the estimation of two
physical parameters associated to the vegetation structures,
namely, the randomness σ and the mean orientation angle θ0.
The randomness map (September 7, 2011) is shown in Fig. 5.
A significant difference is observed for the fields selected. Ran-
domness values close to that of the uniform random distribution
are found over the canola fields. This is reasonable considering
the random structure of canola plants with a larger number
of branches variably orientated within the canopy volume.
Randomness values close to the delta distribution were found

Fig. 6. Mean orientation angle maps in the agricultural study areas on
September 7, 2011. The analyzed agricultural fields are outlined by the polygons.

over the wheat fields, with the exceptions of fields #17 and #89.
A low randomness value corresponds to the case of a cloud
of particles tightly oriented around the mean orientation angle,
which agree well with the structure of wheat plants.

The mean orientation angle map (September 7, 2011) is
shown in Fig. 6. The spatial distribution of θ0 reveals that most
pixels had horizontal orientations over the agricultural study
area. Furthermore, the wheat fields exhibited more horizontal
orientations. This result is not surprising. For fields covered
with short to medium wheat plants (e.g., fields #4 and #97 in
Fig. 4), horizontal orientations more likely result from the ex-
pected bending of wheat leaves, as the length of the wheat leaf
was comparable to the radar wavelength, which is consistent
with the results in [35]. However, over fields of tall wheat
plants with vertical stalks (e.g., fields #17 and #29 in Fig. 4),
a strong double-bounce scattering emerges which could raise
the horizontal contribution due to the Fresnel reflections at
the trunk and ground surface, as previously observed in [27].
Therefore, the results presented for the Adaptive VM agree with
expectations based on the known plant structure.

D. Soil Moisture Inversion Rate

The rate of successfully inverted pixels was calculated and
compared for the various methods analyzed. For each field, the
inversion rate was calculated as the amount of pixels in the field
that can be successfully inverted relatively to the total SAR pix-
els covering the field, and then, the cumulated rate was calcu-
lated across all dates. Fig. 7 shows the averaged inversion rates
for each field. On average, the Adaptive MBD resulted in a much
higher inversion rate than the Freeman MBD using X-Bragg
and the Yamaguchi MBD (both for surface and double-bounce
components), successfully inverting approximately 70% and
20% of pixels (respectively for surface and double-bounce com-
ponents, depending on the scattering dominance) as opposed
to approximately 15% and 10% inverted with the Freeman
MBD using X-Bragg. The inversion rates for the Freeman MBD
using X-Bragg and the Yamaguchi MBD are consistent with
the results in [32] using a different SAR data set. However, the
inversion rate for the Adaptive MDB is comparable with the
results of the Hybrid MBD [35], while the latter resulted
in nonphysical ground components and failed to retrieve soil
moisture with our current SAR data. On a field-by-field basis,
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Fig. 7. Successful soil moisture inversion rate (percent of total field pixels) for
each field using different decomposition schemes from (a) surface component
and (b) double-bounce component. The average inversion rate across all fields
is shown on the right-hand side.

the Adaptive MBD consistently inverted more pixels than the
Freeman MBD using X-Bragg and the Yamaguchi MBD. Such
higher inversion rate allows the Adaptive MBD to provide a more
comprehensive characterization of the soil moisture spatial
distribution with respect to the Freeman MBD using X-Bragg
and the Yamaguchi MBD. The inversion rate of the surface
component was also higher than that of the double-bounce
component for most wheat fields, while for the canola fields,
the inversion rate of the double-bounce component was higher.

E. Validation of Soil Moisture Estimation

Fig. 8 shows an example of soil moisture maps (September 7,
2011) obtained from the inversion of the surface and double-
bounce components using the Adaptive MBD. Noninvertible
pixels appear white. Results from the surface component indi-
cate a higher inversion rate than that of the double-bounce com-
ponent. However, the inverted pixels from the double-bounce
component are complementary to those from the surface com-
ponent, providing a more complete map of the soil moisture
distribution.

The validation of soil moisture estimated from polarimetric
decomposition was performed against ground measurements
within each field listed in Table III. To avoid errors caused by
landscape spatial heterogeneity and also obtain sufficient SAR
estimates considering the inversion rate, the SAR estimates were
extracted using a window of 21 × 21 pixels centered around
each ground measurement location. For each ground measure-
ment, only the SAR estimates with sufficient percentage (i.e.,

Fig. 8. Soil moisture map obtained from the Adaptive MBD on September 7,
2011 by inverting (a) the surface component and (b) the double-bounce compo-
nent. Noninvertible pixels appear white.

30%) of successful retrieval within the 21 × 21 window were
selected. The extracted SAR pixels and ground measurements
were then averaged on a field-by-field basis and compared.

Time series of SAR estimates and ground-based soil mois-
ture are presented in Fig. 9 for the three decomposition schemes
analyzed. The ground measurements are presented with ±20%
interval of their total range instead of standard deviation since,
occasionally, there were not enough points per field to calcu-
late the standard deviation. The Adaptive MBD was the only
method able to track the soil moisture dynamics in most wheat
fields and the gradual dry-down pattern in the canola fields,
while the Freeman MBD using X-Bragg and the Yamaguchi
MBD could not provide continuous soil moisture estimates for
the selected fields. Over a bare soil surface (e.g., field #144) and
wheat fields of intermediate height (up to 55 cm, e.g., fields #4,
#35, #97, and #57), the Adaptive MBD was able to track
changes in soil moisture with some exceptions. For instance,
in field #97, the algorithm was able to track the strong increase
in soil moisture up to 0.4 m3/m3, whereas for field #35, soil
moisture was underestimated on September 5. The Adaptive
MBD was also able to track soil moisture dynamics on some
of the tall wheat fields (#17, #19, and #22) and canola fields
(#95 and #96), albeit with underestimation in field #96.

Despite some encouraging results, the performance of the
Adaptive MBD was not robust under all conditions. Although,
in fields #17 and #19, the ground observations were matched
in most cases, the large fluctuations in estimated soil moisture
between ground sampling days seem unrealistic since no irriga-
tion or rain was recorded during that period (see Table II). These
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Fig. 9. Time series of field-averaged soil moisture estimated from different polarimetric decomposition methods as compared to ground measurements. The
ground measurements are presented with ±20% interval. The arrows indicate approximate dates when fields were irrigated.

fluctuations appeared to be associated with the large fluctua-
tions in the cross-polarization terms observed for fields #17 (see
Fig. 4) and #19, rather than a geophysical factor. Moreover, the
Adaptive MBD failed to pick up wet soil moisture conditions on
days immediately following flood irrigation for certain wheat
fields (i.e., field #17 on September 21, field #19 on September
21, and field #22 on September 18) and almost failed to retrieve
soil moisture for wheat fields #29 and #89.

To understand the different performances of the three po-
larimetric decomposition models (namely, the Freeman MBD
using X-Bragg, the Yamaguchi MBD, and the Adaptive MBD),
the scatterplots of Re(T12) versus Re(ShhS

∗
vv) after decompo-

sition using the three models for surface and double-bounce
components are shown in Fig. 10. Surface scattering usually
has a positive Re(ShhS

∗
vv) value, while double-bounce scat-

tering has a negative Re(ShhS
∗
vv) value [29], [61], which

is consistent with the Bragg model [32] and Fresnel model
[32] for surface and double-bounce scattering, respectively.
Opposite to the term Re(ShhS

∗
vv), a negative Re(T12) value

(corresponding to HH < VV) indicates surface scattering, while
a positive Re(T12) (corresponding to HH > VV) represents
double-bounce scattering. Consequently, positive Re(ShhS

∗
vv)

and negative Re(T12) would be the physically feasible con-
ditions for surface scattering, while double-bounce scattering
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Fig. 10. Scatterplot of Re(T12) versus Re(ShhS
∗
vv) from the 12 fields

analyzed for (a) Freeman MBD using X-Bragg, (b) Yamaguchi MBD, and
(c) Adaptive MBD. Re(T12) and Re(ShhS

∗
vv) values are averaged on a field-

by-field basis for the dates when ground soil moisture measurements were
available.

has negative Re(ShhS
∗
vv) and positive Re(T12) values. A pixel

outside these regions cannot be inverted. For the Freeman
MBD using X-Bragg and the Yamaguchi MBD, most points
are outside the physically feasible regions with some exceptions
for fields #35, #95, and #96. Therefore, both methods failed to
provide continuous and accurate soil moisture estimates. The
application of Adaptive MBD could obtain physically mean-
ingful surface or double-bounce components for soil moisture
inversion. Fig. 10 can explain well the different performances
of the three decomposition approaches. The Adaptive MBD
is the only one to obtain physically meaningful surface or
double-bounce components for most fields and therefore allow
more accurate soil moisture estimation. More physically correct
ground components appear to be an advantage of the Adaptive
VM over the simple volume scattering models in the Freeman
MBD using X-Bragg and the Yamaguchi MBD.

Fig. 10 can also help understanding why the Adaptive MBD
failed to obtain soil moisture inversion results for wheat fields
#29 and #89. For wheat field #29, pairs of Re(ShhS

∗
vv) and

Re(T12) are outside the valid region, and therefore, inversion
for soil moisture failed. For wheat field #89, Re(ShhS

∗
vv) and

Re(T12) values for both surface and double-bounce compo-
nents were around zero, indicating that the powers of the
surface and double-bounce components were close to each
other. An erroneous determination of the dominance of surface
and double-bounce components can occur, and consequently,
the decomposition solution may not be stable. This can also be
seen in Fig. 7 (for field #89), where the surface component and
double-bounce component have comparable inversion rates.
Therefore, the failure of soil moisture inversion over field #89
is most likely related to the instability of the decomposition
solution, which may be solved by using an alternative scattering
dominance criterion accounting for vegetation conditions (i.e.,
vegetation type and plant height) [29], [33], [34], [37], [62].

Fig. 11. Comparison of the estimated and the measured soil moisture from the
Adaptive MBD for (a) surface component and (b) double-bounce component.
N is the number of pairs of points.

It is worth noting (see Table III) that field #97 did not present
a row structure, while the remaining fields with tall wheat
where soil moisture retrieval was not always successful (fields
#22, #89, #17, #19, and #29) presented a row structure. Row
structure was associated with the large-scale roughness of the
soil surface on the order of tens of centimeters (vertical) and
hundreds of centimeters (planimetric) [63]. Since large-scale
roughness is known to cause a rotation of the scattering plane, it
contributes to depolarization effects and cross-polarization sig-
nals. Moreover, with the presence of row structure, the radar
look direction (particularly relative to the row direction) will
have a significant impact on surface scattering since the back-
scatter from a field viewed with the look direction perpendic-
ular to the row direction can be much stronger than the look
directions off perpendicular [64], [65]. Therefore, the failure of
the retrieval scheme in such fields is likely associated with the
confounding effect of the row structure.

Soil moisture retrieval results from the Adaptive MBD for the
selected 12 fields were quantitatively validated against ground
measurements as shown in the scatterplots of Fig. 11. The sur-
face component had 26 pairs of points, while the double-bounce
component had 8, which is consistent with the observation of
continuity of time-series soil moisture shown in Fig. 9. The
Adaptive MBD overall resulted in a root-mean-square error
(RMSE) value of 0.10 m3/m3 and a bias value of 0.00 m3/m3 for
the surface component and an RMSE value of 0.14 m3/m3 and
a bias value of −0.07 m3/m3 for the double-bounce component.
Although the uncertainty is certainly elevated, the method
analyzed in this paper makes exclusive use of the polarimetric
information contained in the SAR data, without any a priori
information on the vegetation structures. The method analyzed
also makes the most of the adaptive volume scattering model
and the NNED so that it is very appealing for application in
agricultural studies and can ensure that the decomposed scat-
tering components are nonnegative.

It should be noted that the proposed decomposition was
tested over flat terrain. For more rugged areas, slopes in the
azimuth direction could induce polarization orientation angle
shifts [66], [67], which could affect the polarimetric radar
signatures and, consequently, the polarimetric decomposition
results [68], [69]. Furthermore, the presence of azimuth slopes
could also lead to incorrect estimates of volume orientation
angle in the Adaptive VM [70]. Due to the characteristics of
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the study area, the impact of orientation angle is assumed to be
minimal in this paper. However, the effect of polarization ori-
entation angle has to be taken into account when the proposed
decomposition is applied to hilly areas.

It is important to remember that the decomposed ground
scattering components (i.e., surface and double-bounce scat-
tering components) are attenuated by extinction through the
vegetation canopy [44], [49]. In order to make exclusive use
of the polarimetric information contained in the SAR data, the
extinction coefficients from different polarizations are assumed
to be equal so that the attenuation effects are cancelled out and,
consequently, no bias occurs on the soil moisture retrieval for
randomly oriented vegetation cover. However, the presence of
volume orientation introduces an additional imbalance in ex-
tinction coefficients between H and V polarizations and would
introduce an estimation error [26], which is not accounted
for in this paper. Therefore, soil moisture retrieval accuracy
is expected to be improved with information on differential
extinction coefficients, which could be retrieved using polari-
metric decomposition with a priori knowledge of crop height
[44] or polarimetric interferometric SAR [71], [72].

V. CONCLUSION

This paper provided an extensive analysis of soil moisture
estimation in agricultural crop fields from fully polarimetric
L-band SAR data using an adaptive polarimetric decomposi-
tion of the SAR coherency matrix. The adaptive nonnegative
decomposition model proposed in [27] was extended into a
novel soil moisture retrieval scheme. The proposed Adaptive
MBD has been validated using fully polarimetric L-band SAR
data acquired in the frame of the SMAPEx-3 campaign over a
time span of three weeks in 2011 in southeastern Australia. In
addition, soil moisture inversion from the proposed model was
compared with previous MBD methods (see Table I).

The results indicated that, among all the decomposition mod-
els tested, the Adaptive MBD developed in this paper resulted
in lower and more temporarily stable volume scattering com-
ponents when compared to previous decomposition models.
The use of a nonnegative eigenvalue approach proved to be
effective in constraining the volume intensity and ensuring the
nonnegativity of decomposed scattering powers.

The proposed decomposition incorporates an Adaptive VM
[38], which allows for two physical parameters (i.e., the mean
orientation angle and the randomness) to be estimated. The re-
sults from these two parameters agree with expectations based
on the known plant structure, demonstrating the performance
of the Adaptive VM in describing volume scattering from
vegetation canopy in wheat and canola fields.

The results also demonstrated that a successful retrieval was
subject to valid surface or double-bounce scattering compo-
nents. The proposed Adaptive MBD was superior in achieving
physically correct ground components for soil moisture inver-
sion with respect to previous decomposition methods, due to the
utilization of an adaptive volume scattering model [38]. This
allowed for better soil moisture estimates when compared to
other methods. More importantly, it allowed for the retrieval
of a more continuous soil moisture time series and a higher

inversion rate, thus providing a better spatial characterization
of the soil moisture heterogeneity across the agricultural fields.
The results also suggest that, depending on the crop type, either
surface or double-bounce scattering components are suitable in
tracking soil moisture dynamics in agricultural fields. Soil
moisture retrieval from the double-bounce component was more
efficient in the case of elevated biomass fields (e.g., canola),
while the surface scattering was a better option on fields with
low and intermediate biomass levels (e.g., wheat).

Finally, the performance of the proposed method was not
robust under all conditions. The failures were most likely re-
lated to confounding scattering processes due to the presence of
row structures in the underlying soil surface. One open question
which warrants further analysis is the improvement of the sur-
face scattering model so that it can better describe the complex
scattering process with the presence of row structures, which
would, in turn, improve the soil moisture inversion accuracy.
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