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Estimation of Vegetation Water Content From
the Radar Vegetation Index at L-Band

Yuancheng Huang, Jeffrey P. Walker, Ying Gao, Xiaoling Wu, and Alessandra Monerris

Abstract—Information on vegetation water content (VWC) is
important in retrieving soil moisture using microwave remote
sensing. It can be also used for other applications, including
drought detection, bushfire prediction, and agricultural pro-
ductivity assessment. Through the Soil Moisture Active Passive
(SMAP) mission of the National Aeronautics and Space Admin-
istration, radar data may potentially provide the VWC infor-
mation needed for soil moisture retrieval from the radiometer
data acquired by the same satellite. In this paper, VWC estima-
tion is tested using radar vegetation index (RVI) data from the
third SMAP airborne Experiment. Comparing with coincident
ground measurements, prediction equations for wheat and pas-
ture were developed. While a good relationship was found for
wheat, with r = 0.49, 0.62, and 0.65 and root-mean-square
error (RMSE) = 0.42, 0.37, and 0.36 kg/m2, the relationship
for pasture was poor, with r = −0.06,−0.14, and − 0.002
and RMSE = 0.15, 0.15, and 0.15, kg/m2, for 10-, 30-, and
90-m resolutions, respectively. These results suggested that RVI
is better correlated with VWC for vegetation types having a
greater dynamic range. However, the results were not as good
as those from a previous tower-based study (r = 0.98 and
RMSE = 0.12 kg/m2) over wheat. This is possibly due to spa-
tial variation in vegetation structure and surface roughness not
present in tower studies. Consequently, results from this study
are expected to more closely represent those from satellite obser-
vations such as SMAP, where large variation in vegetation and
environment conditions will be experienced.

Index Terms—Microwave remote sensing, radar vegetation in-
dex (RVI), soil moisture active passive experiment (SMAPEx),
vegetation water content (VWC).

I. INTRODUCTION

V EGETATION water content (VWC) is an important pa-
rameter in sustainable land and water management, as it

can be used in assessing agricultural productivity and predicting
drought and bushfire [1]–[5]. Moreover, it plays a significant
role in the retrieval of soil moisture using microwave remote
sensing, which further supports applications such as weather
and climate forecasting [6] and flood and landslide prediction
[7]. An ability to gain accurate estimation of VWC is therefore
critical.
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There are currently two main approaches in estimating
VWC. The conventional approach uses optical remote sensing
measurements to produce large-scale maps based on spectral
indexes, such as the normalized difference vegetation index
(NDVI) or the normalized difference water index (NDWI)
[8]–[10]. This approach can provide an estimation of VWC
with root-mean-square error (RMSE) ranging from 0.40 to
0.55 kg · m−2 for cereal grains and around 0.30 kg · m−2 for
grasslands [11]. However, the approach is significantly affected
by atmospheric conditions and solar illumination at the time of
satellite overpass [12], [13].

A recently proposed alternative has used active microwave
remote sensing, otherwise referred to as radar. Compared with
optical sensors, the main advantages of radar are that 1) it can
penetrate clouds and acquire data regardless of time of day or
weather conditions, and 2) at appropriate frequencies, radar
signals can pass through vegetation canopy, allowing obser-
vation of the underlying surface [14], [15]. Active microwave
observations can be also used to provide complementary in-
formation on vegetation properties, such as leaf area index, to
enhance the results obtained from optical observations when
limited data with an optical sensor are available [16]. How-
ever, radar measurements are also sensitive to surface rough-
ness, topographic features, and vegetation structures, which
means that acquisition of VWC from a single-frequency single-
polarization backscattering observation is difficult [15].

The radar vegetation index (RVI) developed by Kim and
VanZyl [17] is a simple function of radar backscatter coefficients,
which includes a unique combination of all polarizations. Com-
pared with other radar-based variables, including backscattering
cross section, eigenvalues, and correlation between polarimetric
channels, this polarimetric index is less sensitive to variation in
both incidence angle and environmental conditions [17]. Thus,
it is expected to be most suitable for estimating vegetation
properties such as VWC [18]. While the RVI has been shown
to generally capture vegetation patterns well, it is particularly
vulnerable to errors in the calibration offset term over lightly
vegetated regions [19]. However, in highly vegetated regions,
which are of arguably greater interest in studies using RVI, the
problem is significantly reduced [19].

Kim et al. [14], [20] recently undertook tower-based field
studies in South Korea and subsequently proposed relationships
between VWC and RVI. The experiments were conducted over
a paddy field of 22 m × 31 m, a soybean field of 25 m × 32 m,
and a wheat field of 20 m × 40 m, using polarimetric measure-
ments from an L-band scatterometer mounted on a stationary
platform above the fields, with a fixed incidence angle of
40◦. Consequently, the study presented here tests the proposed

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: yhua120@gmail.com
mailto: jeff.walker@monash.edu
mailto: ying.gao@monash.edu
mailto: xiaoling.wu@monash.edu
mailto: sandra.monerris-belda@monash.edu
mailto: sandra.monerris-belda@monash.edu


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

relationship between VWC and RVI using independent data
from the third Soil Moisture Active Passive Experiment
(SMAPEx-3), which was designed to provide prelaunch cal-
ibration and validation for the Soil Moisture Active Passive
(SMAP) mission [21].

II. DATA SETS

The SMAP prelaunch calibration and validation activities
SMAPEx consisted of a series of three airborne field cam-
paigns, conducted across a 38 km × 36 km study area in the
Yanco region within the Murrumbidgee catchment, Australia
(latitude 34◦40.23′ S to 35◦0.76′ S; longitude 145◦58.84′ E to
146◦21.28′ E). The Yanco region is a relatively flat agricultural
area composed of irrigated cropland and semiarid grassland.
The radar data utilized in this study were collected by the
airborne Polarimetric L-band Imaging Synthetic aperture radar
(PLIS), supported by ground vegetation sampling for five types
of vegetation—wheat, pasture, barley, lucerne, and canola.

Beginning on September 3, 2011, the three-week-long
SMAPEx-3 campaign covered a range of soil wetness and
vegetation conditions. A variety of airborne data, including
active and passive microwave, were collected and used as scaled
replicates of data that will be available from SMAP, to develop
the mathematical algorithms for soil moisture retrieval and
downscaling. Full details about the campaign can be found in
the SMAPEx-3 workplan [21].

A. Airborne Data

In SMAPEx-3, radar measurements were made from a small
experimental aircraft from a height of 3000 m over the study
area. With the PLIS radar installed, the aircraft provided ground
backscatter information at 10-m resolution, for subsequent
simulation of the radar data that will be available from SMAP
[22]. Given a 2.2-km-wide swath on each side of the aircraft,
with incidence angle ranging from nominally 15◦ to 45◦, the
ten flight lines, as shown in Fig. 1, were designed to provide
full coverage of the entire study area.

Composed of two antennas and an RF unit (left and right
looking), the PLIS measured L-band backscatter at all polar-
izations, including HH, VV, HV, and VH. Each antenna was
28.7 cm × 28.7 cm × 4.4 cm in size, mounted under the
fuselage of the aircraft. Inclined at an angle of 30◦ from the hor-
izontal, the paired antennas were able to achieve a cross-track
swath of ±45◦, with a 1.6-km nadir gap. The measured gain of
each antenna was 9 dB, with an output frequency of 1.26 GHz.
More details on the PLIS system can be found in [23].

The PLIS system was calibrated using measurements from
six trihedral passive radar calibrators (PRCs) deployed across
the radar swath in a homogeneous grass field, as well as
measurements over a forest area. All targets were imaged
daily at both the beginning and end of each flight to check
for any calibration drift. Data acquired from the forest area
were used to calculate the cross-polarized channel imbalances,
whereas copolarized channel imbalances were estimated using
the PRC data. Absolute radiometric calibration, defined as the
difference between the measured PRC backscattered power and
the theoretical radar cross section for the PRCs, was calculated

Fig. 1. Layout of the SMAPEx-3 study area indicating the six focus areas and
the ten flight lines, from [21].

as 0.93 dB on average with a standard deviation of 0.8-dB
relative radiometric accuracy [24]. By comparing data from
all targets from the start and end overpasses, repeatability was
calculated as approximately 0.9-dB RMSE at copolarization
and 1.4 dB at cross-polarization, which meet the requirement
of radar measurement accuracy for SMAP [22].

As data from the SMAPEx-3 were collected at incidence
angles between 15◦ and 45◦, they were converted to the equiv-
alent values that would be observed at 40◦ by SMAP [25]. The
method used is a nonlinear approach that matches the cumu-
lative frequency distribution of observations at the observing
incidence angle with the cumulative frequency of observations
at a reference angle and has been shown to provide superior
results to other normalization methods [25]. The normalized
data used in this study were estimated by Wu et al. [22] to have
accuracy of around 3.2, 1.8, and 0.8 dB at 10-m, 100-m, and
1-km resolutions, respectively.

B. Ground Vegetation Sampling

Ground vegetation sampling was conducted daily within 10-m
pixels at one or more of the six 2.8 km × 3.1 km focus areas ac-
ross the region, as shown in Fig. 1 [21]. Each of these focus
areas was equivalent to a radar-sized pixel from the SMAP
grid and was selected to characterize all major types of vege-
tation present within the study area, including wheat, pasture,
barley, lucerne, and canola. Located in the eastern part of
the study area, the “YA” and “YD” areas presented a mix of
flood irrigated and dryland cropping areas and grazing areas,
where higher spatial variability and wetter soil conditions were
observed. Located in flat regions characterized by uniform
grasslands, the “YB” and “YC” areas presented drier and more
uniform conditions. These areas were sampled concurrently
with airborne observations on a rotational basis, with relatively
fewer sampling points in the grassland sites.
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Fig. 2. Locations for vegetation sampling in each of the six focus areas.
Three indicators—hollow circle, solid circle, and solid square—represent the
different numbers of samples collected in each location during the SMAPEx-3
campaign; five colors—blue, red, green, purple, and aqua—represent the vege-
tation types.

During the field campaign, vegetation was sampled using a
0.5 m× 0.5 m quadrant that was randomly placed on the ground
within the area to be sampled. All above-ground biomass within
the quadrant was removed, doubled bagged, and then sealed
with rubber bands to ensure no moisture loss. The samples were
processed daily to obtain a wet weight before being placed in a
dehydrator to dry at 65 ◦C for two to three days until a constant
weight was reached. To avoid any moisture absorbed from the
air, which would affect the accuracy of the measurement, all dry
samples were immediately weighted once they were taken out
of the dehydrator. Knowing the difference in weight between
wet and dry samples allowed the VWC to be calculated.

To accurately track the temporal changes in VWC and bio-
mass, measurements were repeated weekly at the same loca-
tions over the three-week period. As shown in Fig. 2, a total
of 19, 23, 5, 3, and 3 locations was chosen for sampling of
wheat, pasture, barley, lucerne, and canola across the six focus
areas, giving a total of 55, 69, 18, 9, and 9 measurements for
each vegetation type. However, as flights were not scheduled
daily during the three-week experiment, the number of samples
available in this study was significantly reduced. Only 30, 47, 5,
3, and 3 coincident measurements were used. Fig. 3 shows the
distribution of the sampled VWC used in this study. For wheat,
VWC varied over a large range, being from 0.4 to 2.6 kg/m2.
For pasture, a limited dynamic range of VWC was observed
across the six focus areas, with 85% of VWC being less than
0.4 kg/m2. For barley, lucerne, and canola, as only a lim-
ited number of VWC were available, data were presented for
comparative purposes only. A complete summary of dominant
vegetation types, ground sampling measurements, and dynamic
ranges of VWC for each focus areas is shown in Table I.

Due to differences in field conditions over the entire study
area, it is also important to appreciate the spatial variation in
VWC measurements used in this study. The standard deviation

Fig. 3. Distribution of sampled VWC collected from six focus areas across the
SMAPEx-3 study area.

TABLE I
SUMMARY STATISTICS OF THE SMAPEX-3 GROUND MEASUREMENTS

FOR DOMINANT VEGETATION TYPES IN EACH FOCUS AREA

on colocated measurements representing the same pixel and
time is 0.27 and 0.12 kg/m2 for wheat and pasture, respectively,
averaged over the three-week period. While the VWC for
pasture was relatively uniform spatially, it is not surprising
that wheat experienced a greater variation due to irrigation and
differences in growth rate. Again, data for barley, lucerne, and
canola are not presented here due to the limited number of
measurements available.

III. METHODOLOGY

In order to accurately estimate VWC from radar across a
range of vegetation types, the approach should be minimally
affected by variation in vegetation structure, incidence angle,
and environmental conditions, such as surface roughness. It
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Fig. 4. Time series of L-band backscatter coefficient σ◦ and RVI plotted daily at four points of sampling for (a) and (b) wheat and (c) and (d) pasture, with radar
data resolution and VWC as indicated in each panel. Each data point represents the averages and standard deviations of the backscatter coefficients aggregated from
10 m to 30- and 90-m resolutions. Data are observed at a range of incidence angles and converted to equivalent values as observed at 40◦ by angle normalization.

has been proposed that RVI meets this requirement [17] and
is therefore tested as a potential radar-based quantity that may
be directly related to VWC. The RVI can be calculated by

RVI =
8σHV

σHH + σVV + 2σHV
(1)

where σHV is the cross-polarization backscattering coefficient,
and σHH and σVV are the copolarization backscattering coeffi-
cients, represented in power unit. RVI measures the randomness
of scattering and ranges between 0 and 1, with near 0 for a
smooth bare soil surface and a larger number for increasing
VWC. Supported by ground vegetation sampling, the rela-
tionship between sampled VWC and its corresponding RVI
obtained from the PLIS radar was examined, using alternate
regression fits. Linear regression, which gave the best results for
the relationship, was found most suitable and therefore adopted
in this study. Moreover, the RMSE was also calculated and
compared with optical results.

For high-resolution observations, the ratio of received-to-
reflected energy for vegetated surfaces can be influenced to
a great extent, depending on ground surface roughness, soil
moisture, radar incidence angle, and vegetation structure, as
well as VWC. Moreover, speckle noise in radar data acquisition

is likely, and thus, errors carried in the RVI derivation could be
considerable, which may then translate to a poor relationship
between VWC and RVI. Consequently, steps were taken to min-
imize these errors by aggregating the airborne backscattering
coefficients from 10-m resolution to 30- and 90-m resolutions
at 10-m increments. Resolutions of 30 and 90 m are equivalent
to 9 and 81 pixels at a resolution of 10 m, and spatially
averaged RVI can be therefore achieved by taking the average
of adjacent backscattering coefficients and calculating the RVI.
This resulting RVI was then matched with corresponding VWC
to assess impacts on the relationship.

In the case of effects due to errors in the normalization
process, RVI was also derived from the original nonangle cor-
rected backscatter observations and compared against sampled
VWC for separate incident angle bins. Results are compared
with those from the angle normalized results.

IV. RESULTS

A. Time Series of Analysis Using 40◦ Incidence Angle
Corrected Data

Fig. 4 shows example time series of backscatter coefficients
recorded during SMAPEx-3 to assess the response of the
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TABLE II
LINEAR REGRESSION OF VWC AND RVI AT 10-, 30-, AND 90-M RESOLUTIONS (40◦ ANGLE CORRECTED)

different radar channels at different resolutions to changes in
VWC. The graphs also include the time series of calculated
RVI over the same period. In order to present the range of
conditions encountered in the SMAPEx study area, sampling
data from a point in focus area YA7 and YA4 were chosen
for wheat, and two points in focus area YB7 were chosen for
pasture. Note that all data presented in the graphs were 40◦

angle corrected in accordance with the SMAP viewing angle
and did not include those for barley, lucerne, and canola due
to the limited number of samples available. For the wheat
field, both the backscatter coefficient and RVI exhibited a
positive correlation to VWC, with σHV and RVI increasing in
response to the increase in VWC. However, compared with
the change in σHV, a more sensitive response was observed
in RVI, demonstrating the potential for using RVI to estimate
VWC in the context of soil moisture retrieval. It was also
observed that the difference between σHV and σVV decreased
as VWC increased. This comes mainly as the result of an
increase in canopy volume scattering at HV polarization as
the crops grew in size and increased in VWC. Moreover, the
scatterplots of radar data at 30- and 90-m resolutions were
very similar, suggesting that the speckle noise contained in the
radar data has been minimized after aggregation. For pasture,
while backscatter coefficients exhibited a positive correlation to
VWC in the experiment field where higher VWC was observed
[see Fig. 4(d)], they did not exhibit the same correlation as
expected in the field where sampled VWC was relatively lower
[see Fig. 4(c)]. Conversely, a negative correlation was observed
to persist after backscatter coefficients were aggregated from
10-m resolution to 30- and 90-m resolutions, particularly for
σHV, which is generally more related to volume scattering
of vegetation compared with σHH and σVV. However, this
might be the result of radar data being affected mainly by
other factors, such as surface roughness and soil moisture,
since pasture had a relatively low VWC (0.23–0.33 kg/m2).
In addition, the differences between σHH, σVV, and σHV

were fairly constant throughout the experiment, and this could
be a result of an already well-developed pasture field where
environment conditions were relatively consistent. However,
notice that RVI still exhibits a positive correlation to VWC with
increased RVI, which again shows the potential for using RVI to
estimate VWC.

Fig. 5. Relationship between VWC and RVI observed using 40◦ angle nor-
malized data at 30-m resolution.

B. VWC Estimation Using 40◦ Incidence Angle
Corrected Data

Five major vegetation types were observed in the SMAPEx-3
study area. While there were only a limited number of vegeta-
tion samples available for barley, lucerne, and canola, these are
still presented for comparative purposes.

Table II summarizes the results from SMAPEx-3 for spatial
resolutions from 10 to 90 m with normalized RVI, together
with those from the recent study by Kim et al. [20]. For
wheat, the slope of the regression line increases with decreasing
spatial resolutions, from 0.71 at 10-m resolution to 1.01 at
90-m resolution, with a corresponding increase in correlation
coefficient by about 34% and reduction in RMSE by 13%, in
magnitude. For pasture, there was a negative slope for all res-
olutions, with low and inconsistent correlation coefficients. In
short, the difference in results between resolutions from 30 to
90 m was small, and thus, 30-m resolution data are presented
and used hereon as a compromise between minimizing speckle
noise and the spatial scale of ground measurement.

More important, the relationship proposed by Kim et al. was
not found to be robust, with their correlation coefficient of
close to 1 being much higher than that found here, although
data were processed for the same 40◦ incidence angle. This is
further highlighted in Fig. 5, where the relationship at 30-m
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resolution between sampled VWC and the corresponding nor-
malized RVI is shown for the different vegetation types and
compared with those from the study by Kim et al. It is shown
that, for wheat, an increase in RVI had a corresponding increase
in VWC overall and that data were evenly distributed around the
regression line, yielding a good relationship between VWC and
RVI. However, the slope of this relationship was distinctively
different to that developed by Kim et al.

For pasture, there was only a small change in VWC with
increase in RVI, resulting in a flat regression line and a poor
relationship between VWC and RVI, which was unexpected.
However, upon reflection, this is not surprising, considering the
very small dynamic range of VWC for pasture fields during
the three-week-long SMAPEx-3 (average of 0.26 kg/m2 and
standard deviation of 0.15 kg/m2), whereas the fields of other
vegetation types provided had a wider range of VWC condi-
tions. Moreover, the radar short-term calibration stability and
the within-field spatial variability might also impact the corre-
lation between VWC and RVI, when the analysis is subjected to
very small dynamic ranges of VWC. However, the grasslands
can be easily distinguished from other vegetation types, and
while the correlation is poor, the approach might be suffi-
cient to estimate the VWC of grasslands given the relatively
small RMSE.

C. VWC Estimation Using Native Data for Different
Incidence Angle Ranges

To check for possible effects due to normalization errors, RVI
derived from nonangle corrected backscatter was also examined
against VWC. Nonangle normalized RVI were divided into
three 10◦ angle groups. Again, data for barley, lucerne, and
canola were presented for comparative purposes only, due to
the limited number of vegetation samples available.

Fig. 6 shows the relationship between sampled VWC and
observed RVI at 30-m resolution according to incidence an-
gle groupings. For wheat, the results demonstrated a good
relationship in the 15◦–25◦ angle range with evenly distrib-
uted data points around the linear fit, and sloping upward.
Table III summarizes the relationship between VWC and RVI
for all coincident vegetation data for the angle groupings tested.
Due to the limited number of samples available, data for
the 35◦–45◦ range are not considered in the discussion and
presented for comparative purposes only. For the other two
groups, it was found that the slope of the regression line and
the correlation coefficient were relatively small (m = 1.65
and 0.76, r = 0.46 and 0.26, respectively, for groups 15◦–25◦

and 25◦–35◦); in addition, the RMSE values were quite similar
for each angle bin and for the normalized angle results. For
the 25◦–35◦ angle range, the smaller slope for the linear fit
suggests that the RVI could be less sensitive to VWC in this
angle range, or that the relationship between VWC and RVI
could be affected more by other environment factors. After
normalizing radar backscatters to those equivalently observed
at 40◦, a better relationship between VWC and RVI was found,
with r = 0.62. This shows that 40◦ angle normalization was
effective to improve correlation of RVI to VWC. For pasture,
regression lines for all angles were nearly flat, which means

Fig. 6. Relationship between VWC and RVI observed for data in angle range
of (a) 15◦–25◦ , (b) 25◦–35◦ , and (c) 35◦–45◦ at 30-m resolution for wheat,
pasture, barley, lucerne, and canola.

that VWC and RVI were again not well correlated, possibly
due to the low dynamic range of VWC. While the associated
RMSE varied significantly across different angle groups, it
was equivalent to that from normalized data. Consequently,
the normalized RVI results are believed to be representative of
what would have been achieved if observed directly at 40◦, and
therefore, this analysis may be directly applicable to SMAP.

V. DISCUSSION

Compared with the study conducted by Kim et al. [20],
which demonstrated a direct-proportional relationship between
VWC and RVI (r = 0.98 and RMSE = 0.12 kg/m2 for wheat),
the proposed relationship from this study was not so robust
(r = 0.62 and RMSE = 0.37 kg/m2). This may be due to the
differences in data acquisition methods. In SMAPEx-3, the
three-week-long experiment was conducted across a 38 km ×
36 km region and was timed to capture a phase of inten-
sive growth of Austral spring crops. The region presented a
mix of irrigated and dryland cropping areas, where surface
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TABLE III
LINEAR REGRESSION OF VWC AND RVI AT DIFFERENT INCIDENCE ANGLES (30-m RESOLUTION, NOT ANGLE CORRECTED)

roughness, soil moisture, and biomass density were expected
to vary significantly. Moreover, radar data were acquired by
an airborne sensor at 3000-m height with 10 m × 10 m foot-
prints on the ground. In contrast, the experiment of Kim et al.
was for a single wheat field of 20 m × 30 m, where soil
conditions were very consistent through time. From seeding
to full maturity, their 164-day-long study covered an entire
growing season, with radar data acquired from a stationary
platform with an incident angle of 40◦ at a height of 4 m.
Therefore, considering the variations in size and conditions
of the experimental fields, as well as the techniques used to
acquire radar data, it should not be surprising that there could
be a larger error of estimation involved in the SMAPEx-3 data
relative to the study of Kim et al. However, the large difference
in slope of the relationship still requires some explanation.
Five aspects were recognized to have possibly impacted on
the results.

First, random fluctuations in radar signals returned from
an object can lead to considerable speckle noises. However,
reducing the spatial resolution will have minimized these errors.
Such errors should not exist in the tower data due to the ability
to multilook through time rather than space. While decreased
resolution reduced the RMSE, it did not considerably impact
on the slope.

Second, there was only a limited number of vegetation
samples collected in SMAPEx-3. While vegetation sampling
was designed in a way that VWC samples were representative
of the surrounding 10 m × 10 m area where sampling was
made, the same sampled VWC was then used to represent the
larger areas when resolution was reduced. This may lead to
greater uncertainty in the VWC estimates, but again, this is not
expected to impact the slope of the relationship.

Third, the transformation function that converts backscatter
coefficients observed at a variety of incidence angles to the
equivalent value at 40◦ was not developed for application
at high spatial resolution. Errors of approximately 3.2 dB
have been found at 10-m resolution and 1.8 dB at 100-m
resolution, and consequently, the RVI from nonnormalized
angles may be in error. As a result, the differences in slope
of the relationship might in part be attributed to angular nor-
malization to 40◦, particularly from observations at low inci-
dence angles where slight difference in polarization response
is expected.

Fourth, cropping areas in the SMAPEx-3 where wheat was
sampled presented a large variety of growth stages and veg-

TABLE IV
REGRESSION OF VWC AND OPTICAL VEGETATION INDICES, FROM [11]

etation structures, in terms of plant height (33.0–73.3 cm),
density (8–16 plants per meter), and row spacing (19–33 cm).
This means that randomly oriented scattering particles in crop
plants could vary significantly from field to field in SMAPEx-3,
whereas this was not the case in Kim et al., where vegetation
structure was relatively consistent over the experimental area.
As radar backscatter is strongly affected by vegetation structure
[26]–[28], there could be variation in backscatter even for
similar VWC.

Finally, variation in soil moisture and surface roughness
impacts the backscatter in addition to vegetation. A major
difference between these two studies is the constant (or slowly
varying) roughness in the case of a fixed tower looking at
the same patch of soil, whereas there will have been large
variations in roughness conditions and look angles relative
to row directions in the case of airborne data. Consequently,
it is this variation in roughness that seems to contribute
the most to the discrepancy between the results here and
those by Kim et al. Moreover, these results will therefore
more closely represent those expected from satellites such as
SMAP, where large variations in surface roughness will be
experienced.

It is also important to contrast these results with those from
other techniques. Compared with a recent synthesis study on
the use of optical data to estimate VWC for the same study
site (RMSE ranged from 0.43 to 0.50 kg/m2 for cereal grains,
as shown in Table IV), radar-based RVI has shown an im-
provement in VWC estimation for vegetation types having a
greater dynamic range (corresponding RMSE reduced to 0.36–
0.42 kg/m2 for wheat). However, for vegetation types hav-
ing lower VWC, the correlation of RVI with VWC (r =
−0.06–0.00 for pasture) is not as robust as that of optical
vegetation indexes (r = 0.45–0.72 for grassland), mainly due
to the effects of surface roughness. While the use of radar data
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is a promising approach for VWC estimation, both approaches
will require a priori information on the vegetation type, due to
the different empirical relationships that have been found.

VI. CONCLUSION

The VWC is an important parameter in retrieving soil mois-
ture from radiometer measurements and can be also used in
a range of applications. There are two major approaches in
estimating VWC, one involving the use of optical sensors and
the other being active microwave remote sensing. In this paper,
radar data acquired from the SMAPEX-3 field campaign were
converted to RVI and plotted against ground-measured VWC.

Five types of vegetation were identified in SMAPEx-3, in-
cluding wheat, pasture, barley, lucerne, and canola, but due to
the limited number of samples, only wheat and pasture have
been rigorously assessed here. Moreover, results are presented
at 30-m spatial resolution as a compromise between minimizing
speckle noise and the spatial scale of ground measurement.
Comparison was also made with nonnormalized angle obser-
vations to confirm that angle normalization had not adversely
affected the accuracy of results.

The relationship between VWC and RVI at an angle of
40◦ was found to have an RMSE of 0.38 kg/m2 for wheat
and 0.15 kg/m2 for pasture at 30-m resolution. A similar
study using tower data found better results, with an RMSE of
0.12 kg/m2 for wheat. Moreover, there is a large difference
in the slope of the relationships found for wheat by these
two studies, likely due to differences in vegetation structure
and surface roughness. Compared with optical sensors (RMSE
ranging from 0.40 to 0.55 kg/m2 for cereal grains and around
0.30 kg/m2 for grassland), the radar-based RVI approach has
shown better results. However, the apparent roughness impact
may limit spatial application.

ACKNOWLEDGMENT

The authors would like to thank the participants of the
SMAPEx campaigns, particularly those involved in measure-
ments of vegetation properties. They would also like to thank
the Faculty of Engineering of Monash University for providing
an undergraduate research opportunity for Y. Huang.

REFERENCES

[1] E. R. Hunt, Jr., L. Li, M. T. Yilmaz, and T. J. Jackson, “Comparison of
vegetation water contents derived from shortwave-infrared and passive-
microwave sensors over central Iowa,” Remote Sens. Environ., vol. 115,
no. 9, pp. 2376–2383, Sep. 2011.

[2] H. Lawrence et al., “Comparison between SMOS Vegetation Optical
Depth products and MODIS vegetation indices over crop zones of the
USA,” Remote Sens. Environ., vol. 140, pp. 396–406, Jan. 2014.

[3] D. M. LeVine and M. A. Karam, “Dependence of attenuation in a vegeta-
tion canopy on frequency and plant water content,” IEEE Trans. Geosci.
Remote Sens., vol. 34, no. 5, pp. 1090–1096, Sep. 1996.

[4] J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance
at the 950–970 mm region as an indicator of plant water status,” Int. J.
Remote Sens., vol. 14, no. 10, pp. 1887–1905, 1993.

[5] B. C. Gao and A. F. Goetz, “Retrieval of equivalent water thickness and
information related to biochemical components of vegetation canopies
from AVIRIS data,” Remote Sens. Environ., vol. 52, no. 3, pp. 155–162,
Jun. 1995.

[6] Y. Y. Liu, A. I. J. M. van Dijk, R. A. M. de Jeu, and T. R. H. Holmes, “An
analysis of spatiotemporal variations of soil and vegetation moisture from
a 29-year satellite-derived data set over mainland Australia,” Water Res.
Res., vol. 45, no. 7, 470–474, Jul. 2009.

[7] M. Owe, R. de Jeu, and T. Holmes, “Multisensor historical climatology of
satellite-derived global land surface moisture,” J. Geophys. Res., vol. 113,
no. F1, Mar. 2008, Art. No. F01002.

[8] T. J. Jackson and T. J. Schmugge, “Vegetation effects on the microwave
emission of soils,” Remote Sens. Environ., vol. 52, no. 3, pp. 155–162,
Jun. 1995.

[9] C. J. Tucker, “Red and photographic infrared linear combinations for
monitoring vegetation,” Remote Sens. Environ., vol. 8, no. 2, pp. 127–150,
May 1979.

[10] D. Chen, T. J. Jackson, F. Li, M. H. Cosh, and C. Walthall, “Esti-
mation of vegetation water content for corn and soybeans with a nor-
malized difference water index (NDWI) using Landsat thematic mapper
data,” in Proc. IEEE Geosci. Remote Sens. Symp., Jul. 2003, vol. 4,
pp. 2853–2856.

[11] Y. Gao et al., “Optical sensing of vegetation water content: A synthesis
study,” IEEE J. Sel. Topics Remote Sens., vol. 8, no. 4, 1456–1464,
Apr. 2015.

[12] T. J. Jackson et al., “Vegetation water content mapping using Landsat data
derived normalized difference water index for corn and soybean,” Remote
Sens. Environ., vol. 92, no. 4, pp. 475–482, Sep. 2004.

[13] D. Chen, J. Huang, and T. J. Jackson, “Vegetation water content estimation
for corn and soybeans using spectral indices derived from MODIS near-
and short-wave infrared bands,” Remote Sens. Environ., vol. 98, no. 2/3,
pp. 225–236, Oct. 2005.

[14] Y. Kim, T. Jackson, H. Lee, and S. Hong, “Radar vegetation index for
estimating the vegetation water content of rice and soybean,” IEEE Trans.
Geosci. Remote Sens., vol. 9, no. 4, pp. 564–568, Jul. 2012.

[15] J. P. Walker, P. Houser, and G. Willgoose, Active Microwave Re-
mote Sensing for Soil Moisture Measurement: A Field Evaluation Us-
ing ERS-2. Hoboken, NJ, USA: Wiley, Aug. 2004, vol. 18, no. 11,
pp. 1975–1997.

[16] J. G. P. W. Clevers and H. J. C. van Leeuwen, “Combined use of optical
and microwave remote sensing data for crop growth monitoring,” Remote
Sens. Environ., vol. 56, no. 1, pp. 42–51, Apr. 1996.

[17] Y. J. Kim and J. VanZyl, “A time-series approach to estimate soil moisture
using polarimetric radar data,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 8, pp. 2519–2527, Aug. 2009.

[18] M. Arii, J. van Zyl, and Y. Kim, “A general characterization for polari-
metric scattering from vegetation canopies,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 9, pp. 3349–3357, Sep. 2010.

[19] K. A. McColl, D. Entekhabi, and M. Piles, “Uncertainty analysis of soil
moisture and vegetation indices using Aquarius scatterometer observa-
tions,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4259–4272,
Jul. 2014.

[20] Y. Kim et al., “Retrieval of wheat growth parameters with radar vegetation
indices,” IEEE Trans. Geosci. Remote Sens., vol. 11, no. 4, pp. 808–812,
Apr. 2014.

[21] A. Monerris et al., The Third Soil Moisture Active Passive Experi-
ment Workplan. Melbourne, VIC, Australia: Monash Univ. Publisher,
Aug. 2011.

[22] X. Wu, J. P. Walker, C. Rüdiger, R. Panciera, and D. Gray, “Simulation
of the SMAP data stream from SMAPEx field campaigns in Australia,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1921–1934,
Apr. 2015.

[23] D. Gary et al., “PLIS: An airborne polarimetric L-band interferometric
synthetic aperture radar,” in Proc. APSAR, 2012, pp. 1–4.

[24] R. Panciera et al., “The Soil Moisture Active Passive Experiment
(SMAPEx): Towards soil moisture retrieval from the SMAP mission,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, 490–507, Jan. 2014.

[25] N. Ye, J. Walker, and C. Rüdiger, “A cumulative distribution func-
tion method for normalizing variable-angle microwave observations,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, 3906–3916,
Jul. 2015.

[26] M. W. Whitt and F. T. Ulaby, “Radar response of periodic vegetation
canopies,” Int. J. Remote Sens., vol. 15, pp. 1813–1848, Oct. 1993.

[27] A. Monsivais-Huertero, I. Chenerie, K. Sarabandi, F. Baup, and
E. Mougin, “Microwave electromagnetic modelling of Sahelian grass-
land,” Int. J. Remote Sens., vol. 31, no. 7, pp. 1915–1942,
Dec. 2008.

[28] D. Liu, G. Sun, Z. Guo, K. Jon Ranson, and Y. Du, “Three-dimensional
coherent radar backscatter model and simulations of scattering phase
center of forest canopies,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 1, pp. 349–357, Jan. 2010.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: ESTIMATION OF VEGETATION WATER CONTENT FROM THE RVI AT L-BAND 9

Yuancheng Huang received the B.E. (with first-
class honors) degree in civil engineering from
Monash University, Melbourne, VIC, Australia,
in 2013.

During his undergraduate studies, he showed
great interests in geoscience and radar remote sens-
ing, and under the supervision of Prof. Jeffrey P.
Walker, undertook a research project on estimation
of vegetation water content using RVI at L-band. He
continued his study in the same area after graduation
and had his first academic paper published by the

IEEE. He was with Monash University at the time of writing this paper.

Jeffrey P. Walker received the B.E. degree in civil
engineering and the B.Surv. (with first-class honors
and University Medal) degree in 1995 and the Ph.D.
degree in water resources engineering in 1999, all
from The University of Newcastle, Callaghan, NSW,
Australia.

He then joined the NASA Goddard Space Flight
Center to implement his soil moisture work globally.
In 2001, he joined, as a Lecturer, the Department
of Civil and Environmental Engineering, The Uni-
versity of Melbourne, Melbourne, VIC, Australia,

where he continued his soil moisture work, including the development of
the only Australian airborne capability for simulating new satellite missions
for soil moisture. In 2010, he became a Professor with the Department of
Civil Engineering, Monash University, Melbourne, where he is continuing this
research. He is contributing to soil moisture satellite missions at NASA, the
European Space Agency, and the Japanese Aerospace Exploration Agency, as
a Science Team Member for the Soil Moisture Active Passive mission and a
Cal/Val Team Member for the Soil Moisture and Ocean Salinity mission and
Global Change Observation Mission - Water, respectively.

Ying Gao received the B.E. (with first-class honors)
degree in civil engineering from Monash University,
Melbourne, VIC, Australia, and Central South Uni-
versity, Changsa, China, in 2010. She is currently
working toward the Ph.D. degree in civil engineering
at Monash University.

She was awarded a Faculty Scholarship to con-
tinue her Ph.D. studies. She was involved in the Soil
Moisture Active and Passive (SMAP) Experiments
field campaigns as part of NASA’s SMAP mission.
Her research interests include active and passive mi-

crowave remote sensing, optical sensing of vegetation, soil moisture retrieval,
and surface roughness parameterization.

Xiaoling Wu received the B.E. degree in biomedical
engineering from Zhejiang University, Hangzhou,
China, in 2009, and the Ph.D. degree in civil engi-
neering from Monash University, Melbourne, VIC,
Australia, in 2015. The topic of her undergradu-
ate thesis was the development of biosensor using
nanomaterial.

She is currently working as a Postdoctoral Re-
searcher with the Department of Civil Engineering at
Monash University. After graduation, she undertook
a one-year research project in computer science at

the University of Copenhagen, Copenhagen, Denmark. Her current research
focuses on downscaling of soil moisture using airborne radar and radiometer
observations, which is expected to provide an accurate and high-resolution
(> 10 km) soil moisture product, with potential benefit in the areas of weather
forecasting, flood and drought prediction, agricultural activities, etc.

Alessandra Monerris received the B.E. degree
in telecommunication from Universitat Politèc-
nica de València, València, Spain, and the Ph.D.
degree in telecommunication from Universitat
Politècnica de Catalunya, Barcelona, Spain.

In 2006, she was a Visiting Ph.D. Student with
the University of Rome “Tor Vergata,” Rome, Italy.
From 2007 to 2011, she was the Executive Direc-
tor of SMOS Barcelona Expert Centre (the Soil
Moisture and Ocean Salinity Mission Expert Centre)
Barcelona. Since 2011, she has been a Research

Fellow with the Department of Civil Engineering, Monash University,
Melbourne, VIC, Australia. She has extensive experience in the preparation
and coordination of field experiments for the validation of soil moisture satellite
data, both for the European Space Agency’s Soil Moisture and Ocean Salinity
and NASA’s Soil Moisture Active Passive (SMAP) missions (she led the third
SMAP Experiment). Since 2012, she has been responsible for the OzNet
soil moisture monitoring network in the Murrumbidgee River catchment, as
well as the CosmOz tower, Yanco, Australia. Her research areas include
the estimation of soil moisture and vegetation parameters from airborne and
ground-based L-band passive microwave observations, cosmic-ray probes, and
Global Navigation Satellite Systems Reflectometry.


