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Abstract—Soil moisture retrievals, delivered as a CATDS (Cen-
tre Aval de Traitement des Données SMOS) Level-3 product of the
Soil Moisture and Ocean Salinity (SMOS) mission, form an im-
portant information source, particularly for updating land surface
models. However, the coarse resolution of the SMOS product
requires additional treatment if it is to be used in applications at
higher resolutions. Furthermore, the remotely sensed soil moisture
often does not reflect the climatology of the soil moisture predic-
tions, and the bias between model predictions and observations
needs to be removed. In this paper, a statistical framework is pre-
sented that allows for the downscaling of the coarse-scale SMOS
soil moisture product to a finer resolution. This framework de-
scribes the interscale relationship between SMOS observations
and model-predicted soil moisture values, in this case, using the va-
riable infiltration capacity (VIC) model, using a copula. Through
conditioning, the copula to a SMOS observation, a probability dis-
tribution function is obtained that reflects the expected distribu-
tion function of VIC soil moisture for the given SMOS observation.
This distribution function is then used in a cumulative distribution
function matching procedure to obtain an unbiased fine-scale soil
moisture map that can be assimilated into VIC. The methodology
is applied to SMOS observations over the Upper Mississippi River
basin. Although the focus in this paper is on data assimilation ap-
cations, the framework developed could also be used for other pur-
poses where downscaling of coarse-scale observations is required.

Index Terms—Hydrology, microwave radiometry, soil moisture.

Manuscript received January 13, 2014; revised June 6, 2014, September 29,
2014, and October 30, 2014; accepted November 12, 2014. This work was
supported by the ESA-ITT project “SMOS+ Hydrology Study” and by the
Belgian Science Policy Office in the frame of the STEREO III program under
project HYDRAS+ (SR/00/302), by the Bijzonder Onderzoeksfonds (BOF)
project 01J01809, and by the CNES Terre, Océan, Surfaces Continentales,
Atmosphère (TOSCA) programme.

N. E. C. Verhoest, M. J. van den Berg, B. Martens, and H. Lievens are with
the Laboratory of Hydrology and Water Management, Ghent University, 9000
Ghent, Belgium (e-mail: Niko.Verhoest@UGent.be).

E. F. Wood and M. Pan are with the Department of Civil and Environmental
Engineering, Princeton University, Princeton, NJ 08544 USA.

Y. Kerr, A. Al Bitar, and S. K. Tomer are with Centre d’études Spatiales de
la BIOsphère (CESBIO), 31401 Toulouse, France.

M. Drusch is with the European Space Agency, European Space Research
and Technology Centre (ESTEC), 2200 AG Noordwijk, The Netherlands.

H. Vernieuwe and B. De Baets are with the Department of Mathematical Mod-
elling, Statistics and Bioinformatics, Ghent University, 9000 Ghent, Belgium.

J. P. Walker, G. Dumedah, and V. R. N. Pauwels are with the Department of
Civil Engineering, Monash University, Clayton, VIC 3800, Australia.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2014.2378913

I. INTRODUCTION

MANY hydrologic processes, such as runoff production
and evapotranspiration, are largely determined by the

availability of soil moisture. This state variable is therefore of
key importance within physically based hydrologic models, and
any knowledge of its spatial distribution can be of benefit to the
modeling process. Many studies have demonstrated the benefits
of assimilating soil moisture observations in land surface mod-
els (LSMs) e.g., [1]–[5]. Updating soil moisture in such models
with observations aims at a better modeling of the hydrologic
processes affected by soil moisture, such as the partitioning of
rainfall water into infiltration and runoff, and the evapotran-
spiration process. However, several studies have demonstrated
that large systematic differences can be found between remotely
sensed and modeled soil moisture [6]–[9].

The discrepancies between these different soil moisture esti-
mates can be attributed to different causes. Not only can the
remote sensing observations be biased due to errors in the
retrieval algorithm [10], [11] or the effect of subgrid variability
due to roads, houses, vegetation cover, etc. [8], but also due to
approximations in the model structure, model parameterization
and discretization, initial conditions, and errors in forcing data
[10]. A further reason for the disagreement can be found in the
fact that there is a vertical mismatch in the soil column between
the different soil moisture products, [12], i.e., soil moisture va-
lues obtained through remote sensing are generally limited to
the top few centimeters, whereas LSMs typically have a surface
layer depth of 10 cm [9]. Because of these reasons, modeled soil
moisture generally does not correspond well to observations,
but rather shows similar trends and dynamics [13]. If, for ins-
tance, the aim of the model is to predict discharge, it may be ac-
cepted that the model state variables, such as soil moisture,
diverge from the actual soil moisture states. The explanation
therefore is that such discrepancies inherently compensate for
poor model descriptions of hydrologic processes. In this case,
soil moisture observations can be used to improve the model
discharge predictions provided that the soil moisture observa-
tions are matched to the model climatology. Many studies have
been devoted to addressing the discrepancies between observed
and modeled soil moisture, focusing on the removal of the bias
in observations or model states prior to data assimilation [6],
[7], [14]–[16] or during data assimilation [10], [17]–[19].
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When dealing with remote sensing products for data as-
similation in spatially distributed models, another important
issue is the difference in the horizontal spatial scale of the
data [20]. Passive microwave sensors, such as the Advanced
Microwave Scanning Radiometer—Earth Observing System
[21], the Soil Moisture and Ocean Salinity (SMOS) mission
[22], and the forthcoming Soil Moisture Active Passive mission
[23], provide soil moisture products at a spatial resolution of
tens of kilometers. In contrast, LSMs are often run at a spatial
resolution of less than 10 km [9]. In literature, two approaches
for assimilating data at a coarser scale have been presented.
The first approach consists of a priori downscaling the re-
mote sensing observations to the model scale [20], [24], [25],
whereas the second approach performs a dynamic downscaling,
for which innovations at the model resolution are derived from a
backmapping of the difference between the coarse-scale remote
sensing observations and corresponding aggregated model pre-
dictions at the coarser scale [9], [26]–[28]. It should be stated
however, that, irrespective of the approach taken, assumptions
have to be made on the subpixel distribution of soil moisture
or on the way innovations have to be assigned to the individual
subpixels. Detailed comparative studies should reveal which of
the approaches and/or assumptions lead to the best update of
higher resolution models given coarse-scale observations.

In the case of an a priori downscaling of the remote sensing
observations, it is required that the remotely sensed soil mois-
ture observations are bias corrected and rescaled prior to their
assimilation into LSMs [6], [29]. In this paper, a methodology
is proposed that allows for downscaling coarse-scale remotely
sensed soil moisture products to the spatial scale of the LSM,
accounting for differences in model climatology and bias be-
tween remotely sensed and modeled soil moisture. The result-
ing downscaled soil moisture product is bias corrected such that
it is consistent with the model climatology. This differs from
the approach of Calvet and Noilhan [30], where modeled soil
moisture is scaled to the observations. Similar to Gao et al. [29],
a copula-based joint probability distribution function is fitted
to remotely sensed soil moisture observations and modeled
soil moisture. However, in the current study, both data sources
are not rescaled to a common spatial scale. Through condi-
tioning the copula to a coarse-scale observation, a probability
distribution function of expected soil moisture values at the
model resolution is obtained for the coarse-scale remote sensing
pixel considered. As the copula merely describes the depen-
dence between both soil moisture sources, irrespective of any
potential bias, this approach implicitly corrects for bias as it
relates any observation with the corresponding modeled soil
moisture values, each characterized by its own climatology,
and also rescales the temporal variance of the observed soil
moisture to that of the model. Finally, the methodology that
is developed should be applicable in an operational applica-
tion where coarse-scale observations are assimilated into an
LSM in order to better predict discharge. To demonstrate the
framework, coarse-scale SMOS soil moisture observations and
finer resolution variable infiltration capacity (VIC) modeled soil
moisture from the Upper Mississippi basin are used.

In this paper, a preprocessing framework is presented to
downscale coarse-scale SMOS data to the finer model resolu-

tion. Although this paper does not present results from a data
assimilation experiment, several advantages of the presented
methodology can be listed:

1) the framework allows for a fast and simple preprocessing
for obtaining a downscaled and bias-corrected product for
which no explicit bias estimation is needed;

2) the framework can easily be parametrized without the need
of being calibrated;

3) the bias estimation is implicitly taken into account and no
bias model or assumptions with respect to the temporal
and/or spatial dynamics of the bias are needed;

4) a simple data assimilation scheme can be used as no
rescaling nor bias correction is needed within the data
assimilation framework.

We wish to state that, although the methodology presented in
this paper is framed within the context of data assimilation stud-
ies, it can also be applied for downscaling SMOS soil moisture
observations (or other coarse-scale observations) based on a
higher resolution map, obtained from a model, or from another
remote sensing source.

II. DATA DESCRIPTION

This study makes use of a two-year data set of SMOS Level 3
soil moisture values and corresponding VIC model simulations
for the Upper Mississippi Basin. For this study, the entire
data set was randomly split into two parts to allow for cross-
validation. To this end, all dates were randomly assigned to
one of two subsets S1 and S2 (each having a similar number
of dates), resulting in two sets having similar soil moisture
ranges for the study area. This approach avoids the problem
that one data set may contain, for instance, more wet data
compared with the other data set, as might occur when the
time series is subdivided into two consecutive periods. In the
latter case, the framework would fail, as any other data-driven
method, if it were applied to data ranges that were not (well)
covered in the calibration data set. However, such problem can
be circumvented in an operational setting by using all preceding
data to fit the copulas and regularly repeat the fitting process
with new data while time is progressing. This way, the problem
of applying the framework outside its region of validity is
minimized. Splitting the data set into two subsets in this paper
is merely done to demonstrate the validity of the method.

The following sections will describe the data set in full detail.

A. Upper Mississippi Basin

The Upper Mississippi Basin comprises portions of
Minnesota, Wisconsin, Iowa, and Illinois and has an area of ap-
proximately 440 000 km2. The basin is ideally suited as a focus
area due to its large size, the lack of significant topography
(which simplifies the retrieval of soil moisture from satellite
observations), and the large extent of agricultural land use (e.g.,
corn, soybean, wheat, etc.). Moreover, there is a strong north–
south precipitation gradient that ranges from approximately
475 mm/year in the north to over 1300 mm/year in the south. In
the southern portion, the strong summer precipitation has
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Fig. 1. Land cover map of the Upper Mississippi River Basin. The two anno-
tated locations (A and B) will be further used in this paper as focus sites.

resulted in moderate to severe flooding, often enhanced by wet
initial soil conditions. The basin is well gauged, has an exten-
sive meteorological network, and is part of the North American
Land Data Assimilation System (NLDAS) domain [31].

Fig. 1 shows two annotated areas (A and B) that correspond
to the approximate locations of two SMOS grid cells, hav-
ing their centers at approximately (93.45◦ W, 44.44◦ N) and
(89.80◦ W, 40.47◦ N), respectively. These sites will be further
used as focus sites to illustrate some of the concepts introduced
in this paper. Pixel A is characterized by a clay loam soil texture
and is mostly covered with low vegetation (more than 85 % of
its extent) such as crops and wooded grasslands. Pixel B is lo-
cated in a region consisting of a loamy soil texture and is mainly
covered with high vegetation such as forests (mean fraction of
forest cover ≥ 75 %). Therefore, both pixels have very different
properties in terms of soil texture and land cover, which makes
them suitable as focus sites. Moreover, due to their differences
in land cover and soil texture, these sites are likely to exhibit
different soil moisture states.

B. SMOS Soil Moisture Observations

The SMOS mission has been routinely providing global soil
moisture data at a nominal spatial resolution of 43 km since
November 2009, with a high acquisition frequency of 1 to 3
days. The SMOS soil moisture observations used in this study
are level 3 CATDS (Centre Aval de Traitement des Données
SMOS) data. The level 3 algorithm (i.e., version 2.4.4.) is
essentially based on ESA’s (European Space Agency) level 2
prototype [32], with the extension of multiorbit retrievals of
vegetation parameters, enhancing the retrieval of soil moisture
for individual orbits [33]. Both ascending (MIR_CLF3UA) and

descending (MIR_CLF3UD) soil moisture data are available in
a ±25 km cylindrical projection over the Equal Area Scalable
Earth grid. Data from the 1-day global product have been
extracted over the Upper Mississippi area and were archived
from January 15, 2010 to March 29, 2012. In addition to soil
moisture, the CATDS product also includes quality indices of
soil moisture and radio-frequency interference (RFI), and flags
indicating the presence of snow and frozen soils. The SMOS
soil moisture data have been filtered, preserving data when soil
and air temperatures are larger than 2.5 ◦C and flags for snow
and frozen soils are zero. Furthermore, only soil moisture val-
ues with a data quality index (as defined in the SMOS product)
below 0.07 cm3/cm3 are withheld. Finally, SMOS observations,
which are likely to be contaminated with RFI have been re-
moved from the data set. Therefore, the corresponding data field
(N_RFI_X and N_RFI_Y) in the SMOS product is used to-
gether with a threshold of 105 (i.e., if one of both variables,
as provided with the Level 3 product, is larger than 105, the
SMOS observation is not withheld).

C. VIC-Modeled Soil Moisture

The VIC model [34]–[36] is a semidistributed hydrological
model, balancing both the water and energy budgets at grid
sizes ranging from 1 km to hundreds of kilometers. A distin-
guishing characteristic of the VIC model lies in its capability to
capture subgrid vegetation variability in a statistical way. VIC
has been extensively used in numerous applications [37]–[40],
among others.

The meteorological forcing fields used in the VIC model
simulations for the Upper Mississippi basin were obtained from
the real-time forcing data set [41] for the first phase of the
NLDAS-1 project [31]. Seven forcing fields were processed at
a 1-hourly time step and 0.125◦ resolution: precipitation, 2-m
air temperature, atmospheric pressure, vapor pressure, wind
speed, and incoming shortwave and longwave radiation. Ad-
ditionally, soil and vegetation parameters were taken from the
NLDAS-1 project. The land cover scheme employed in VIC is
the University of Maryland 1-km global land cover data set
[42], which developed based on the recommendations from
the International Geosphere-Biosphere Program (IGBP) for use
in global change research. Leaf area index values have been
derived from AVHRR satellite observations [43]. Finally, soil
texture is taken from the 1-km STATSGO database [44] and
elevation data are obtained from the GTOPO30 database (30 arc
seconds) [45].

VIC is run in full water and energy balance mode, to simulate
soil moisture and surface temperature layers on an hourly basis,
with a grid spacing of 0.125◦ by 0.125◦. The number of vertical
soil layers for moisture calculation has been set to 3, with the
top layer referring to the first 10 cm. Note that the depth of this
first layer arguably differs from the observation depth of SMOS
(typically taken as the first 5 cm of the soil), which may be
an important source of bias in soil moisture values between the
observations and the model predictions of the topsoil layer. This
bias may be due to the fact that observed soil moisture generally
shows faster dry downs and quicker saturation [46]. Further-
more, given that the VIC model was parametrized through
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optimizing for discharge predictions, it is expected that the soil
moisture values may deviate from the true values in order to
compensate for deficiencies in the model structure, and thus re-
sulting in a model-specific soil moisture climatology, including
an additional source of bias between observations and model
simulations of soil moisture.

For this study, VIC data of the same period as that of the
SMOS observations (i.e., January 15, 2010 to March 29, 2012)
were used.

III. DOWNSCALING FRAMEWORK

When remotely sensed soil moisture data fields are used for
updating LSMs, one is often confronted with two problems. The
first stems from the difference in spatial scale, where generally
the remote sensing products have a coarser resolution compared
with the LSM. This problem can be solved through either up-
scaling the model results to the resolution of the satellite
observations [30] or downscaling the coarse-scale soil moisture
observations to the grid of the LSM [20], [24], [25]. The second
problem concerns the fact that when the remotely sensed soil
moisture observations are compared with corresponding mod-
eled soil moisture, often a bias is encountered, which may de-
pend on the soil moisture state. Removing this bias from the
observations, such that these data are consistent with the clima-
tology of the LSM, is currently a necessary condition for ap-
plying these observations in a data assimilation framework [47].

The framework presented in this paper is adapted from van
den Berg et al. [48] who developed the scheme for statisti-
cally downscaling rainfall fields. For the current application,
the core of the framework consists of a bivariate distribution
function fitted between the coarse-scale SMOS soil moisture
observations and the corresponding fine-scale modeled soil
moisture values by means of a copula. Such a copula is fitted for
every coarse-scale pixel in the study area. Through conditioning
this distribution to a SMOS observation, the corresponding
probability distribution function of VIC soil moisture values
within that SMOS pixel is obtained. When this operation is per-
formed, bias is implicitly corrected for. Yet, such a probability
distribution functions does not provide a soil moisture map. In
order to reach this goal, it is assumed that the spatial pattern of
soil moisture values, as modeled by VIC, can be trusted, but that
the soil moisture values should be adjusted according to the
probability distribution function of VIC soil moisture values
corresponding to the SMOS observation. Consequently, the
VIC-modeled soil moisture values are adjusted through CDF-
matching to this probability distribution function. In the fol-
lowing paragraphs, this methodology will be described in full
detail.

A. Description of the Methodology

The methodology for downscaling and bias-correcting
SMOS soil moisture values to the VIC resolution is based
on the dependence between a SMOS coarse-scale observation,
denoted by ΘS , and the corresponding VIC top-layer soil mois-
ture values, denoted by ΘM , that fall within the SMOS pixel
considered. To describe this dependence, a copula is used. A

Fig. 2. Downscaling framework. The projection plane indicated in the figure
allows converting values on the y-axis [in panel (c)] to x-values [in panels (a)
and (d)] and vice versa according to y = x.

copula is a mathematical function that allows for constructing a
multivariate distribution function based on the marginal distri-
bution functions of the variables considered. A bivariate copula
C thus models the joint cumulative probability distribution
function of two random variables X and Y (in our case ΘM and
ΘS), based on the marginal cumulative distribution functions
(CDFs) FX(x) and FY (y), as expressed by the theorem of
Sklar [49]

P(X≤x, Y ≤y)=FX,Y (x, y)=C (FX(x), FY (y))=C(u, v).
(1)

As such, the bivariate copula C corresponds to a bivariate CDF
with uniform marginals U and V on the unit interval.

As the dependence between Θs and ΘM may vary through-
out the catchment, a copula is fitted for each coarse-scale
pixel in the entire study area. Furthermore, data from different
seasons, i.e., December–January–February (DJF), March–
April–May (MAM), June–July–August (JJA) and September–
October–November (SON), and different types of overpasses,
i.e., ascending and descending, are separated. This means that
for every SMOS pixel a copula is fitted for each combination
of a given season and type of overpass. To fit the copulas, both
VIC-modeled soil moisture values (ΘM ) and SMOS observa-
tions (ΘS) are transformed to a uniformly distributed value on
I=[0, 1] interval, respectively, U and V , through their
(marginal) cumulative distribution functions, respectively, FΘM

and FΘS
[cfr. respectively, Fig. 2(c) and (e)]. This is obtained

through

u =FΘM
(θM ) ⇔ θM = F

(−1)
ΘM

(u) (2)

v =FΘS
(θS) ⇔ θS = F

(−1)
ΘS

(v) (3)
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where θM and θS are, respectively, the VIC- and SMOS-based
soil moisture values, and u and v are the values of the corre-
sponding variables U and V . F (−1)

ΘM
and F

(−1)
ΘS

are the quasi-
inverse functions of the cumulative distribution functions FΘM

and FΘS
. When these cumulative distribution functions are

strictly increasing, the quasi-inverse functions equal the usual
inverse F−1 [50].

To model the bivariate distribution function FΘM ,ΘS
between

the VIC-modeled soil moisture and the coarse-scale SMOS soil
moisture, the theorem of Sklar [49], (1) is used

FΘM ,ΘS
(θM , θS) = C (FΘM

(θM ), FΘS
(θS)) = C(u, v) (4)

where C(u, v) is the copula that describes the dependence
between both soil moisture variables [see Fig. 2(d)].

Based on the copula and the marginal distribution functions
[see also Fig. 2(c)–(e)], the downscaling can be performed.
Given a coarse-scale SMOS observation θS,o, the correspond-
ing V -value (i.e., vo) can be found using (3). This value can
then be used to condition the copula

FU |V (u|vo) = P(U ≤ u|v = vo) =
∂C(u, v)

∂v

∣∣∣∣
v=vo

. (5)

Conditioning the copula results in a conditional cumulative
distribution function (CCDF) FU |V (u|vo), which describes how
values of u are distributed given an observation of V . This
distribution function is conceptually shown in Fig. 2(a). By ap-
plying the inverse transformation in (2) and using the theorem
of Sklar [see also (1)], the distribution function of correspond-
ing θM -values can be derived.

To obtain the CCDF of soil moisture [cfr. Fig. 2(b)], any
value u′ ∈ [0, 1] [see Fig. 2(a)] is transformed to θ′M through
the inverse marginal fine-scale distribution [Fig. 2(c), i.e.,
θ′M = F

[−1]
ΘM

(u′)], which is subsequently assigned the value
FΘM |ΘS

(θ′M |θS,o), which is equal to FU |V (u
′|vo). This mod-

eled CCDF will be further referred to as FΘM |ΘS
.

The procedure of the downscaling framework, visualized in
Fig. 2, is thus applied as follows.

1) Based on the marginal CDFs of the fine-scale data FΘM

[see Fig. 2(c)] and the coarse-scale data FΘS
[given in

Fig. 2(e)], that respectively allow for transforming VIC soil
moisture values (θM ) and SMOS observations θS into val-
ues for u and v, the copula C(u, v) is fitted [see Fig. 2(d)].

2) Given a coarse-scale observation θS,o, the corresponding
value vo = FΘS

(θS,o) is found [Fig. 2(e)].
3) This value vo is used to condition the copula [Fig. 2(d)]

leading to the CCDFFU |V (u|vo) shown in Fig. 2(a).
4) To back-transform this CCDF to soil moisture values ΘM ,

the CDF of the fine-scale distribution FΘM
[cfr. Fig. 2(c)]

is inverted. As such, any value u′ [as shown in Fig. 2(a)] is
inverted to θ′M = F−1

ΘM
(u′).

5) Given the unique relationship between θM and u (given
by FΘM

), the probability that u is smaller than or equal to
any considered value u′ (i.e., P(u ≤ u′) = FU |V (u|vo)) is
equal to the probability that θM is smaller than or equal
to θ′M = F−1

ΘM
(u′). As such, the CCDF FΘM |ΘS

(θM |θS,o)

is obtained by assigning the value FU |V (u
′|vo) to the θ′M

corresponding to u′ [cfr. Fig. 2(b)].

In order to derive downscaled soil moisture maps in accor-
dance with the VIC climatology, two assumptions are made.
First, it is assumed that the soil moisture pattern predicted by
the LSM is an acceptable representation of the true soil mois-
ture field, such that it can be imposed on the downscaled soil
moisture map. The second assumption is that the downscaled
soil moisture map should obey the CCDF FΘM |ΘS

. Applying
a classical CDF matching [7], [15], which transforms the CDF
of the VIC-modeled soil moisture within a SMOS pixel (i.e.,
CCDF FΘM |ΘM

) to that of the derived CCDF FΘM |ΘS
, guaran-

tees that both assumptions are met.
In the current setup of the experiment, the number of fine-

scale VIC pixels within the overlaying coarse-scale SMOS
pixel is too small (i.e., 4 to 6) to derive an empirical VIC soil
moisture distribution function. Using the ranks to estimate the
cumulative distribution value is too inaccurate, and an alterna-
tive estimation approach is needed to estimate the distribution
function of modeled soil moisture values of the individual VIC
grid cells within the SMOS pixel. Experiments have shown that
the spatial variability of soil moisture depends on the spatial
average soil moisture content [51], thus requiring probability
distribution functions that change with the average moisture
content. One way to represent the required distribution function
of the modeled soil moisture is by accounting for the (fitted)
scaling relationship between the standard deviation of the soil
moisture content values within the area considered and the
corresponding averaged value, and assuming a known distri-
bution function such as a Gaussian probability distribution
function for the fine-scale soil moisture values, as done by
Vernieuwe et al. [52]. However, to avoid predefining the type
of distribution function, another approach that is consistent with
the downscaling methodology is used.

To properly describe the within SMOS-pixel soil moisture
distribution function, a methodology that makes use of the
same scaling framework as previously presented is suggested
that allows for a proper CDF-matching. Through constructing a
copula between data couples (θM , θM ), where θM is the mean
modeled soil moisture within the SMOS pixel, the required
CCDF FΘM |ΘM

can be obtained through conditioning this
copula on the average soil moisture content, modeled at the time
of SMOS acquisition. The rationale for this approach is the re-
lationship between the average soil moisture content and the
distribution of the soil moisture values at the model scale within
a SMOS pixel. To obtain this CCDF, the framework discussed
above can be followed by considering ΘV instead of ΘS . As
a result the CCDF FΘM |ΘM

is obtained, which can be used to
calculate the cumulative distribution value of the soil moisture
content for each of the VIC pixels.

Once the cumulative distribution values of the individual VIC
pixels are known, a CDF matching can be performed, which
transforms FΘM |ΘM

to FΘM |ΘS
. This is obtained through

altering the soil moisture value of the modeled VIC pixel
to the value that has the same cumulative distribution value
in FΘM |ΘS

, i.e., a CDF matching between FΘM |ΘM
and

FΘM |ΘS
.
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Fig. 3. Marginal distribution functions for the ascending (a) and descending (b) SMOS data in set S1 for pixels A (black lines) and B (gray lines) for the third
season (JJA). Empirical distribution functions are plotted as dotted lines and the theoretical models fitted to the data are shown as solid lines.

Fig. 4. Marginal distribution functions for the VIC-modeled fine-scale (a) and coarse-scale (b) soil moisture values in set S1 for pixels A (black lines) and B (gray
lines) for the third season (JJA). Empirical distribution functions are plotted as dotted lines and the theoretical models fitted to the data are shown as solid lines.

B. Fitting the Marginal Distribution Functions

Three marginal cumulative distribution functions are needed
to perform the downscaling, i.e., FΘS

(θS), FΘM
(θM ), and

FΘM
(θM ). However, as the ascending and descending SMOS

data sets are treated separately, each coarse-scale pixel consid-
ered in this study requires four marginal distribution functions
that need to be derived for each season. To maintain the
practical applicability of the downscaling framework, marginal
distribution functions are fitted to the empirical cumulative
distribution values. It should be noted that distribution functions
are only fitted if at least 100 data points are available. Several
parametrical distributions were considered and the distribution
functions used were selected based on a visual and statistical
inspection of the different fits. Based on this inspection, the
Gamma distribution was selected to model the statistical behav-
ior of both the ascending and descending SMOS soil moisture.
In contrast, the Gaussian Mixture distribution with two compo-
nents was used to model the bimodal distribution function that
is often encountered for the modeled VIC soil moisture (for
FΘM

(θM ) as well as FΘM
(θM )). The parameters of the differ-

ent distribution functions were obtained using a classical maxi-
mum likelihood estimation. However, one should be aware that
for some pixels another theoretical distribution function may
better fit the data. However, it was decided to select only one
model for each type of fit, to safeguard the operational applica-
bility of the framework.

Figs. 3 and 4 show the fitted marginal distribution functions
(solid lines) and the empirical marginal distribution functions
(dotted lines) for the two coarse-scale pixels A and B (cf. Fig. 1).
These figures show the models fitted to the data in S1 and for the
third season (JJA) considered in this study. For the other seasons
and for the other data set S2, similar results were obtained
(figures not shown). Given the relatively good agreement
between the theoretical models and the empirical distribution
functions, it can be concluded that the selected models are
suitable to describe the statistics of the different soil moisture
products.

Figs. 3 and 4 also show that an important difference may exist
between the distributions of the different coarse-scale pixels.
This is due to several influencing factors such as soil texture,
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land cover, topography, homogeneity of the coarse-scale pixel,
etc., and motivates the choice to fit the different models for each
of the pixels separately.

Comparing Fig. 3(a) and (b) reveals that there is a difference
between the marginal cumulative distribution function fitted to
the ascending SMOS soil moisture data and the one fitted to the
descending SMOS soil moisture data, which shows the need
to treat them separately. This difference in statistical behavior
between the ascending SMOS soil moisture products and the
descending SMOS soil moisture products may be attributed
to several factors. It is well known that the atmospheric and
environmental conditions during both acquisitions differ rather
strongly. During the ascending overpass (6 am local solar time)
ionospheric effects are generally lower compared with the de-
scending overpass (6 pm local solar time). Moreover, the
physical temperatures of the soil and vegetation layers can be
considered more in equilibrium during the ascending overpass
of the satellite. Furthermore, RFI impacts are different between
ascending and descending passes, and although the data are
filtered for RFI, its effects are never completely removed. These
differences influence the soil moisture retrieval, which may re-
sult in a different cumulative distribution function for both data
sets. This significant deviation between the two types of over-
passes could not be observed for the corresponding VIC distri-
butions. Therefore, only one distribution function was fitted to
the modeled soil moisture values from VIC.

Fig. 4(a) clearly illustrates why a Gaussian mixture distri-
bution function is selected to model the marginal cumulative
distribution function of the fine-scale VIC soil moisture. It is
shown that the distribution function of pixel B consists of two
components, whereas this behavior is not observed for pixel A.
However, the Gaussian mixture model seems sufficiently flex-
ible to model the empirical distribution function of the latter
pixel as well. While alternative distributions that better fit the
distribution at every pixel may exist (more dedicated research
could find the best fitting function per pixel), distributions func-
tions with a flexible shape were used, as they are easy to
parameterize and are the same for each pixel (though differing
in parameter values).

The shape of the marginal cumulative distribution functions
considered in Fig. 4(a) are strongly driven by the soil properties.
Homogeneous pixels in terms of soil properties are more likely
to have a low variability of soil moisture within the pixel, which
results in a cumulative distribution function like the one of pixel
A, as shown in Fig. 4(a). When soil properties are non-uniform
in the area considered, the soil moisture variability is likely to
increase. This is the case for pixel B, where the soil textural
properties of one fine-scale VIC pixel located within the SMOS
pixel, strongly deviate from the other VIC pixels located within
the same SMOS pixel. On average, this pixel exhibits higher
soil moisture states compared with the others, resulting in a
bimodal probability distribution function.

Figs. 3 and 4(b) further show that there is a bias between
the aggregated VIC and SMOS soil moisture. In addition, the
dynamic range of the VIC top-layer soil moisture values is gen-
erally lower than the one observed for the SMOS soil moisture
data set. It will be shown that the framework presented in this
paper implicitly accounts for this bias.

TABLE I
SELECTED COPULA FAMILIES AND CORRESPONDING

PARAMETERS VALUES FOR JJA FOR PIXELS A AND B

C. Fitting the Copulas

Aside from the marginal cumulative distribution functions,
three copulas are needed for each pixel in order to apply the
downscaling framework: two copulas describing the depen-
dences between the VIC fine-scale soil moisture and the SMOS
coarse-scale soil moisture (i.e., one for ascending and one
for descending overpasses) and one copula describing the re-
lation between aggregated VIC soil moisture values and the
corresponding fine-scale VIC-modeled soil moisture values.
Both non-parametric empirical copulas and theoretical para-
metric copulas can be used to describe the dependence struc-
ture between two variables. Given the objective to apply the
framework in an operational application, parametric copulas are
preferred as these allow for a fast calculation of the CCDF.
Although more suitable copulas can probably be found, we
restricted the search for the best parametric copula to the three
most widely used families of Archimedean copulas [53]. It is
believed that these families are sufficiently flexible to describe
the dependence structures found in the data sets. The following
families are included in the analysis:

• the Frank copula family

C(u, v) = − 1

α
ln

(
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

)
(6)

with α ∈]−∞,+∞[\{0};
• the Gumbel copula family

C(u, v) = exp
(
− [(− ln(u))α + (− ln(v))α]

1
α

)
(7)

with α ∈ [1,+∞[;
• the Clayton copula family

C(u, v) = max
([

u−α + v−α − 1
]− 1

α , 0
)

(8)

with α ∈ [−1,+∞[\{0}.

An additional advantage of these copula families is that only
one parameter (α) has to be estimated.

Most commonly, the best copula is selected based on a like-
lihood approach or goodness-of-fit test for copulas (e.g., [54]
and [55]). However, these tests only allow for parameterized
copulas to be compared [56]. To select the most suitable copula
family, an alternative technique is needed that is independent
of the copula parameters. Therefore, the recently developed
Bayesian copula selection algorithm [56] was applied. It should
be emphasized here that a restricted set of copula families is
selected a priori in this study [see also (6)–(8)]. Once the most
appropriate copula family is selected, the parameter α of each
copula is calculated by using the relationship between Kendall’s
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Fig. 5. CCDF FΘM |ΘS
for different values of the coarse-scale SMOS observation for pixel A (a) or pixel B (b) for the ascending data set and the third season

(JJA) considered.

Fig. 6. (a) VIC simulation on 17/08/2010 at 6 AM local solar time (during the
ascending SMOS overpass), (b) corresponding ascending SMOS observations,
(c) downscaled soil moisture map and (d) difference map, i.e., panel (c) minus
panel (a). All soil moisture contents are expressed as vol%.

tau (τ ) and the copula parameter. The relationships between τ
and α for the Frank, Gumbel and Clayton copula families are
respectively given by

τ =1− 4

α

⎛
⎝1− 1

α

α∫
0

t

exp(t)− 1
dt

⎞
⎠ (9)

τ =1− α−1 (10)

τ =1− 2

2 + α
. (11)

The selected copula families are listed in Table I.

D. CDF of Downscaled Soil Moisture

The cumulative distribution function of the downscaled
SMOS soil moisture is obtained through conditioning the copula
to the SMOS observation, resulting in the CCDF FΘM |ΘS

. This
CCDF is obtained through a numerical approximation of (5)

FU |V (u, vo) =
∂C(u, v)

∂v

∣∣∣∣
v=vo

≈ C(u, vo + δ)− C(u, vo)

δ
.

(12)

A value of δ = 1 · 10−5 is selected to approximate the deriva-
tives, whereas U is linearly discretized between 0 and 1 with a
step size of 1 · 10−2. The resulting distribution function FU |V
can be transformed to FΘM |ΘS

by using the inverse transforma-
tion in (2) and the theorem of Sklar.

Fig. 5 shows the resulting CCDF FΘM |ΘS
for a variety of

possible SMOS observations for the third season and the as-
cending data set for pixels A and B, respectively. Both plots
in this figure clearly show that the conditional distribution of
the fine-scale soil moisture deviates from the distribution of the
corresponding coarse-scale soil moisture values [see also
Fig. 3(a)]. However, the shape of the CCDFs is very similar to
the shape of the distribution of the corresponding fine-scale VIC
soil moisture values [see also Fig. 4(a)]. This can be expected
given the objective of the framework was to estimate the
distribution of the subpixel soil moisture values given a coarse-
scale SMOS observation. This indicates that the fitted copulas
are able to model the distribution of the fine-scale soil moisture
values. Moreover, as could be expected, the CCDFs of different
pixels can be very different, as already discussed.

Both figures also show that depending on the coarse-scale
SMOS observation, different CCDFs are obtained. For instance,
Fig. 5(a) shows that the expected fine-scale soil moisture vari-
ability is decreasing when the observed SMOS soil moisture
value is increasing. Alternatively, Fig. 5(b) shows that for
increasing values of the coarse-scale soil moisture observation,
it is more likely to observe a multimodal fine-scale soil moisture
distribution function.
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IV. RESULTS

The objective of the downscaling framework is to rescale the
SMOS observations to the VIC resolution and to remove the
bias between both soil moisture products. The resulting soil
moisture product should thus obey the VIC climatology. This
means that the downscaled soil moisture map should reflect the
spatial soil moisture pattern predicted by VIC, but rescaled to
the distribution of fine-scale soil moisture values given a coarse-
scale SMOS observation. To assess the ability of the framework
to meet these objectives, the SMOS observations in data set S2
are downscaled using the copulas fitted to data from S1.

A. Downscaled Soil Moisture Maps

Fig. 6 shows an example of the VIC simulations, the ascend-
ing coarse-scale SMOS observations, the corresponding down-
scaled SMOS observations on August 17, 2010, as well as a
difference image of the VIC simulations with the downscaled
SMOS observations. Locations where no soil moisture value is
shown correspond to pixels where either no SMOS observation
is available or where no copula could be fitted due to the low
data availability.

Comparing Fig. 6(a) and (b), it is clear that the modeled
soil moisture exceeds the observed soil moisture by SMOS on
average. However, the spatial patterns of both products are com-
parable for a large part of the study area. Fig. 6(c) shows the cor-
responding downscaled product. As shown from this figure, the
downscaled product reflects the soil moisture patterns predicted
by VIC. Furthermore, it can be seen that the soil moisture value
at several zones in the study area is increased compared with
the original VIC product [cf. Fig. 6(d)], and that the fine-scale
variability at several locations is slightly increased. This means
that, on average, a higher variability of the fine-scale soil mois-
ture observations is expected than what is predicted by VIC for
some of the SMOS observations. Figs. 7 and 8 demonstrate
this with an example of one coarse-scale SMOS observation.
Fig. 7 shows the marginal cumulative distribution function of
fine-scale soil moisture at pixel A given a coarse-scale SMOS
observation (FΘM |ΘS

, red line) and the cumulative distribution
function of modeled soil moisture, given its average value at the
coarse scale (i.e., CCDF FΘM |ΘM

, black line). Both marginal
distribution functions stem from conditioning the respective
copulas with a coarse-scale SMOS observation and a mean
modeled soil moisture value, respectively. As shown from this
figure, a slight discrepancy between both marginal distribution
functions can be observed, indicating that the CDF matching
will result in slightly rescaled soil moisture values. This is il-
lustrated in Fig. 8 where the modeled VIC soil moisture values,
at pixel A, are shown in the left panel and the corresponding
downscaled SMOS observations are shown in the right panel.
As shown from the left panel of this figure, all modeled soil
moisture values are restricted between 4 and 33 vol%. It is clear
from Fig. 7 that higher soil moisture values are expected.
After CDF matching, higher soil moisture values will thus
be obtained, which is shown at the right-hand side of Fig. 8.
Furthermore, the range of soil moisture values is slightly in-

Fig. 7. FΘM |ΘS
(gray line) and F

ΘM |ΘM
(black line) on 17/08/2010 for

pixel A (ascending SMOS overpass).

Fig. 8. VIC simulations (left-hand side) and corresponding downscaled SMOS
soil moisture (right-hand side) on 17/08/2010 for pixel A (ascending SMOS
overpass). All soil moisture contents are expressed as vol%.

creased, resulting in a higher fine-scale soil moisture variability
as already observed at certain locations in Fig. 6.

Fig. 9 shows another example of a VIC simulation, the cor-
responding ascending SMOS observations and the downscaled
soil moisture map, respectively, for April 18, 2011, with the soil
moisture patterns modeled by VIC deviating strongly from the
observed soil moisture patterns by SMOS. This is particularly
true for the high soil moisture zone predicted by VIC in the cen-
tral part of the study area. It is clear from Fig. 9(b) that SMOS
observes a zone with low soil moisture compared with its sur-
roundings. Fig. 9(c) shows again that the resulting downscaled
product reflects the soil moisture patterns predicted by VIC. It
can be seen that the soil moisture values at the central part of
the study area are reduced compared with the original VIC sim-
ulations [cfr. Fig. 9(d)]. This means that, on average, and given
the SMOS observations in this zone, lower soil moisture values
are expected than the ones modeled by VIC.

The results presented here show the flexibility of the down-
scaling framework. It is shown that the SMOS observations are
the key variables to estimate how fine-scale soil moisture values
are distributed given a coarse-scale soil moisture observation.
The CDF matching between the distribution function FΘM |ΘS

and the observed cumulative distribution function FΘM |ΘM

guarantees that the downscaled soil moisture values are dis-
tributed as would be expected, which will benefit the data
assimilation since the downscaled product will obey the VIC
climatology.
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Fig. 9. (a) VIC simulation on 18/04/2011 at 6 AM local solar time (during the
ascending SMOS overpass), (b) corresponding ascending SMOS observations,
(c) downscaled soil moisture map and (d) difference map, i.e., panel (c) minus
panel (a). All soil moisture contents are expressed as vol%.

Fig. 10. Temporal bias before downscaling for the ascending (a) and descend-
ing (b) data set, expressed in vol%.

B. Bias

Prior to the assimilation of satellite-derived soil moisture
products into LSMs, the bias between the simulated and ob-
served soil moisture products should be removed [10]. The
downscaling framework presented in this paper implicitly re-
moves the bias between both products. To verify this, the tem-
poral bias between the SMOS observations and the simulated
VIC soil moisture values was calculated on a pixel basis for the
entire S2 data set.

Fig. 10 shows maps of the bias between the observed coarse-
scale SMOS observations and the simulated VIC soil moisture
values for the ascending and descending tracks, respectively.
To obtain this, the modeled VIC soil moisture was aggregated

Fig. 11. Temporal bias after downscaling for the ascending (a) and descending
(b) data set, expressed in vol%.

to the SMOS scale by simply averaging the VIC simulations
located within a given SMOS pixel. As can be seen from these
figures, a negative bias exists between both soil moisture prod-
ucts. This indicates that, on average, the observed SMOS soil
moisture is smaller compared with the modeled soil moisture
values by VIC. This bias can also be observed when the cumu-
lative distribution functions of both products are compared [see
also Figs. 3 and 4(b)]. The figures also show a lower bias (in ab-
solute terms) for the northern part compared with the remainder
of the study area. However, it should be noted that the northern
part is dominated by forests (cfr. Fig. 1) and that the data avail-
ability for these areas is somewhat lower. Furthermore, no clear
difference in bias can be observed for both types of overpasses.

Fig. 11 displays the bias after downscaling, based on the
framework for which the copulas were fitted to data in S1.
It is clear from this figure that the bias between the original
SMOS soil moisture map and the VIC simulation is strongly
reduced. Unfortunately, some pixels can still be found with a
high temporal bias. However, more than 95 % of the pixels
have an absolute bias below 3 vol% for both the ascending and
descending overpasses, indicating that the framework is able
to remove the bias from the observations under most circum-
stances. It is also clear from Fig. 11 that no spatial pattern can be
observed in the bias. The difference in bias between the ascend-
ing and descending track is slightly more distinct compared
with the bias before downscaling, with a slightly higher bias for
the descending data set.

C. Robustness of the Framework

Given the objective to develop a framework that can be im-
plemented operationally, the question arises whether the fitted
copulas are robust. It should be emphasized that the calibration
data set should be sufficiently large such that all possible soil
moisture states are included in the analysis, as a copula fitted
to a rather wet year, will not perform as expected when applied
on a rather dry year. To circumvent this problem, the data set
in this study was randomly split into two parts (i.e., S1 and S2),
rather than splitting the data into two separate years, as this may
lead to applying the framework in situations that were not (or
insufficiently) covered in the calibration period (cfr. supra).

To assess the robustness of the framework, the marginal
distribution functions and copulas were fitted for each pixel
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Fig. 12. Root Mean Squared Error (vol%) between the downscaled SMOS data
obtained through the downscaling framework with copulas fitted to S1 on the
one hand and fitted to S2 on the other hand, for ascending (a) and descending
(b) observations.

separately, once to the data from S1 and once to data from S2.
For both data sets, marginal cumulative distribution functions
and copulas for each coarse-scale pixel in the entire study area
and for each season and type of overpass are thus obtained.
Subsequently, each SMOS data set was downscaled using both
parameter sets. Finally, the downscaled soil moisture maps
were compared with assess whether both parameter sets gave
rise to the same results.

Fig. 12 shows maps of the root-mean-squared error (RMSE)
calculated between downscaled SMOS observations using the
framework for which the copulas were fitted to S1 and those
downscaled with the framework having copulas fitted to S2, dis-
tinguishing between the ascending and descending tracks. From
these figures it can be seen that for both types of overpasses,
the models (i.e., marginal distributions and copulas) are robust
for most of the pixels, based on the small values of the RMSE
for the majority of the study area. This means that downscaling
the SMOS observations with both parameter sets gave rise to
the same results. Therefore, it can be expected that the fitted
models are stable in time. Fig. 12 also demonstrates that there
is a small problematic zone in the north western part of the
study area where the values of the RMSE are somewhat higher
compared with the remaining pixels in the study site. When
Fig. 11 is compared with Fig. 12, it can be seen that the pixels,
where an elevated bias is observed, are the same pixels where
the temporal stability of the models is weak. This can probably
be attributed to a combination of data availability and the
complexity of the dependence between the different variables
in this zone. As aforementioned, a threshold of 100 data points
was defined to fit the different models. However, this threshold
was determined in a subjective way and can be adapted in the
future to optimize the fits.

D. Time Series of Downscaled Soil Moisture

As an example, Fig. 13 plots time series of soil moisture for
a fine-scale VIC pixel at location A and another at location B
for the third season of the year 2010, along with the observed
coarse-scale SMOS soil moisture and the downscaled soil mois-
ture value for the fine-scale pixel considered. The downscaled
soil moisture values shown in these plots are obtained from

Fig. 13. Time series of soil moisture for one random fine-scale VIC pixel lo-
cated within the coarse-scale SMOS pixel A (a) and pixel B (b) for the third
season (JJA) of the year 2010 (black line), and corresponding SMOS coarse-
scale and downscaled soil moisture values.

the independent SMOS data sets. Both figures again show the
large bias between the coarse-scale SMOS observations and
the VIC simulations. Further, both figures clearly demonstrate
that there is a strong difference between the original CATDS
Level-3 SMOS soil moisture values and those obtained after
downscaling.

Fig. 13(a) shows that, on average, the downscaled soil mois-
ture values are lower than the VIC simulations. This indicates
that lower VIC soil moisture values are expected based on the
SMOS observations. Yet, the behavior of the downscaled soil
moisture is dictated by both the SMOS observation and the
fine-scale VIC simulations located in the coarse-scale pixel. For
pixel B, the differences between the downscaled soil moisture
and the VIC simulations is less pronounced [see Fig. 13(b)].
Only at some specific time steps is a large difference obtained,
whereas for most of the time steps the downscaled soil moisture
corresponds well to the VIC simulations. The reason for the
large differences have to be investigated in further detail, as
these can be attributed to errors in model forcing and an
insufficient fit of copulas or marginal distribution functions in
certain ranges of observed and/or simulated soil moisture, etc.

V. CONCLUSION

A statistical framework has been proposed to downscale
remotely sensed coarse-scale soil moisture observations for the
purpose of assimilating into a higher resolution LSM. Given the
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potential difference in climatology of the model with respect
to the remotely sensed observations, a bias may exist between
the two products. Yet, such a bias needs to be removed when
assimilating the observations. To reach both goals, i.e., a spatial
downscaling and bias removal, a downscaling framework that
makes use of a copula has been proposed. Through conditioning
the copula to the coarse-scale observation, the subgrid vari-
ability of the LSM-based soil moisture is modeled through the
CCDF of downscaled soil moisture values. In order to preserve
the spatial pattern within the SMOS pixel, a CDF matching
procedure is applied, in which the modeled soil moisture was
rescaled to this CCDF.

The advantage of the proposed methodology is that it can
be applied irrespective of boundary conditions (i.e., it is not
restricted to semiarid or humid catchments, e.g., [24]), LSM or
remote sensing product used, as it merely depends on the sta-
tistical dependence between two data sets (i.e., remotely sensed
and modeled soil moisture). In this paper, the method is demon-
strated using SMOS-based soil moisture and the VIC model
for the Upper Mississippi Basin. It is shown that the method
allows the downscaling of SMOS products to the VIC resolu-
tion while adequately removing the bias. However, further
research is needed with respect to optimizing the fits of the
marginal distribution functions. In this paper, flexible distri-
bution functions were used allowing for modeling bimodal
distributions. However, other probability distribution functions
may be found that better represent the data. Further, the copulas
used were restricted to three flexible and commonly used copula
families that are easily parameterized based on one single pa-
rameter. Again, alternative models can be proposed that better
describe the dependences. Finally, the minimal number of data
points needed to fit the copulas was set to 100. This value
allowed for most of the pixels to be parameterized, but it should
be investigated whether this lower limit with respect to the
number of data points could be increased, if more data were
available. Notwithstanding these comments, it was found that
the approach is very robust, and that copulas fitted to model
predictions can be used to downscale SMOS observations at
dates not included in the calibration data set. However, when the
framework is to be applied in an operational setting, it is best to
fit the copulas to the maximum extent of data available, i.e., all
historical data available, in order to prevent that the framework
is applied outside its validity (as defined by the data used for
fitting the copulas in the framework). Furthermore, a regular
refitting of the copulas with newly available data while time
is progressing is advisable, to ensure that the data set used for
calibration is as rich as possible, reflecting the soil moisture
climatologies as accurate as possible given the data set.

It should be remarked that the presented framework only pro-
vides soil moisture maps at the resolution of the hydrological
model. In order to use these maps for data assimilation, an as-
sessment of the uncertainty on each of the subgrid soil moisture
values should be made based on the uncertainty of the SMOS
observation. Latter downscaling of the uncertainty is currently
under investigation.

Finally, it should be clear that the methodology developed
can be used for other purposes than data assimilation. It al-
lows for downscaling coarse-scale data (not restricted to soil

moisture) to a higher resolution at which data, being modeled
or remotely sensed, are available. Further research should be
undertaken to assess whether both data sources need to repre-
sent the same state variable, or whether both can be different
though related to each other (e.g., brightness temperature and
soil moisture).
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