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Multidimensional Disaggregation of Land Surface
Temperature Using High-Resolution Red,

Near-Infrared, Shortwave-Infrared,
and Microwave-L Bands
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Abstract—Land surface temperature data are rarely available
at high temporal and spatial resolutions at the same locations. To
fill this gap, the low spatial resolution data can be disaggregated
at high temporal frequency using empirical relationships between
remotely sensed temperature and fractional green (photosynthet-
ically active) and senescent vegetation covers. In this paper, a
new disaggregation methodology is developed by physically link-
ing remotely sensed surface temperature to fractional green and
senescent vegetation covers using a radiative transfer equation.
Moreover, the methodology is implemented with two additional
factors related to the energy budget of irrigated areas, being the
fraction of open water and soil evaporative efficiency (ratio of
actual to potential soil evaporation). The approach is tested over
a 5 km by 32 km irrigated agricultural area in Australia using
airborne Polarimetric L-band Multibeam Radiometer brightness
temperature and spaceborne Advanced Scanning Thermal
Emission and Reflection radiometer (ASTER) multispectral data.
Fractional green vegetation cover, fractional senescent vegeta-
tion cover, fractional open water, and soil evaporative efficiency
are derived from red, near-infrared, shortwave-infrared, and mi-
crowave-L band data. Low-resolution land surface temperature
is simulated by aggregating ASTER land surface temperature to
1-km resolution, and the disaggregated temperature is verified
against the high-resolution ASTER temperature data initially used
in the aggregation process. The error in disaggregated tempera-
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ture is successively reduced from 1.65 ◦C to 1.16 ◦C by includ-
ing each of the four parameters. The correlation coefficient and
slope between the disaggregated and ASTER temperatures are
improved from 0.79 to 0.89 and from 0.63 to 0.88, respectively.
Moreover, the radiative transfer equation allows quantification of
the impact on disaggregation of the temperature at high resolution
for each parameter: fractional green vegetation cover is respon-
sible for 42% of the variability in disaggregated temperature,
fractional senescent vegetation cover for 11%, fractional open
water for 20%, and soil evaporative efficiency for 27%.

Index Terms—Advanced Scanning Thermal Emission and Re-
flection radiometer (ASTER), brightness temperature, disaggre-
gation, evaporative efficiency, land surface temperature, Moderate
Resolution Imaging Spectroradiometer (MODIS), multispectral,
open water, soil moisture, vegetation fraction.

I. INTRODUCTION

R EMOTELY sensed land surface temperature is a signature
of the thermodynamic equilibrium state of the surface

skin. Consequently, it provides the potential to monitor dy-
namic information on instantaneous energy and water fluxes
at the land-surface–atmosphere interface. Nevertheless, the op-
erational use of thermal remote sensing for hydrological and
water resource management studies has been limited to regional
scale applications (e.g., [1] and [2]) mainly because the spatial
resolution (larger than 1 km) of current high temporal resolution
thermal sensors is too coarse to represent the heterogeneity of
man-made landscapes. For example, the Moderate Resolution
Imaging Spectroradiometer (MODIS) has a revisit frequency
of 1 or 2 times per day but a spatial resolution of only 1 km,
while the Advanced Scanning Thermal Emission and Reflection
radiometer (ASTER) has a spatial resolution of 90 m but a
revisit time of only 16 days.

The use of remotely sensed land surface temperature over
agricultural areas requires data at both high spatial and tem-
poral resolutions [3]. While there is a lack of high spatial
resolution thermal data from satellite with high frequency,
there is the potential for land surface temperature derived from
kilometric resolution sensors having high temporal resolution
to be disaggregated using high spatial resolution ancillary data.
The first disaggregation approach of remotely sensed temper-
ature was developed by [4] using the fractional green vege-
tation cover derived from red and near-infrared reflectances.
Given the high temperature difference between bare soil and a

0196-2892/$26.00 © 2011 IEEE



MERLIN et al.: MULTIDIMENSIONAL DISAGGREGATION OF LAND SURFACE TEMPERATURE 1865

well-watered crop, this approach has proved to be effective over
areas with relatively uniform soil and vegetation hydric status.
Recently, [5] has extended the approach of [4] to conditions
where vegetation hydric status is heterogeneous. This required
developing a methodology to estimate the fraction of senescent
vegetation cover from a time series of FORMOSAT-2 images.
The accuracy in disaggregated temperature was improved by
taking into account fractional senescent vegetation cover in
addition to fractional green vegetation cover.

Fractional green and senescent vegetation covers, however,
are not the only factors explaining the spatial variations of land
surface temperature, especially over irrigated areas where crop
fields may have different moisture status to the surrounds. In
particular, the temperature over a flooded crop field may be
drastically different from the temperature over a mature crop
field. Therefore, the fraction of open water is an important
variable to represent the spatial variations of land surface tem-
perature. Over nonwatered land surfaces, the soil evaporative
efficiency (ratio of actual to potential soil evaporation) is a
signature of the capacity of the soil to evaporate its water
content in the near surface and thus to counter an increase of
its thermodynamic temperature. Consequently, soil evaporative
efficiency is also an essential variable to describe the spatial
variations of land surface temperature. Moreover, knowledge
of soil evaporative efficiency is needed to decouple the effects
of soil and vegetation hydric status on the surface energy
budget and hence to better represent the resultant radiative
surface temperature. As an example, the crop water stress index
(CWSI) [6], [7] can be used to detect plant stress based on the
difference between foliage and air temperature. Nevertheless,
the application of the CWSI to partially vegetated areas is
subjected to large uncertainties because the soil background
may have a different temperature to the plants [7] depending
on soil evaporative efficiency. Another example is provided by
Moran et al. [8] who proposed the vegetation index/temperature
(VIT) trapezoid to estimate a most probable range of plant
stress over partially vegetated fields. It is a three-step procedure
in which the following steps are performed: 1) the temperatures
of the four vertices of the VIT trapezoid are estimated using an
energy budget model; 2) the minimum and maximum probable
vegetation temperatures are estimated from the measured com-
posite land surface temperature, together with the maximum
and minimum simulated soil temperatures; and 3) the minimum
and maximum probable CWSIs are computed by normalizing
the minimum and maximum probable vegetation temperatures
from the vegetation temperature extremes simulated by the
energy budget model. The point is that this approach does not
allow estimating a single CWSI value because the retrieval
problem is underdetermined. In particular, Moran et al. [8]
noted that “with knowledge of a second point within the
hourglass (perhaps soil temperature), it would be possible to
infer [the canopy-air temperature] difference and pinpoint the
CWSI value.” In the latter case, knowledge of soil temperature
is equivalent to knowledge of soil evaporative efficiency, which
would remove the underdetermination of the VIT trapezoid.

The objective of this paper is to develop a new disaggrega-
tion methodology of kilometric land surface temperature using
hectometric multivariable ancillary data. The approach is based

on a radiative transfer equation that estimates differences in
temperature data at hectometric resolution. Specifically, the use
of a radiative transfer equation allows the following: 1) includ-
ing variables other than those used by previous disaggregation
approaches and 2) deducing the most pertinent variables. In
addition to fractional green and senescent vegetation covers, the
new methodology includes the variability at hectometric reso-
lution of fractional open water and soil evaporative efficiency.
With respect to other disaggregation algorithms in literature
[4], [5], the proposed technique differs in the following four
main aspects: 1) it relies on a physically based radiative transfer
equation rather than empirical linear regressions; 2) it takes
into account the fractional open water derived from shortwave-
infrared band as required; 3) it takes into account the soil hydric
status via microwave-derived soil evaporative efficiency; and
4) it allows the relative weight of each parameter used for
disaggregating temperature to be quantified.

The new disaggregation technique is compared to the ex-
isting approaches using data collected during the National
Airborne Field Experiment in 2006 (NAFE’06; [9]). The ex-
perimental site covers a 5 km by 32 km irrigated agricultural
area, which included approximately 5% of flooded rice crops
during NAFE’06. Disaggregation algorithms are first tested by
aggregating ASTER temperature at 1-km resolution and by
comparing the disaggregated temperature to the high-resolution
ASTER temperature initially used in the aggregation process.
The application to aggregated ASTER data allows evaluating
approaches independently of differences between ASTER and
MODIS products [5]. Disaggregation algorithms are then ap-
plied to MODIS data.

II. EXPERIMENTAL DATA

The study area is a 5 km by 32 km area included in the
Coleambally Irrigation Area (CIA) located in the flat west-
ern plains of the Murrumbidgee catchment in southeastern
Australia (35◦ S, 146◦ E). The principal summer crops grown
in the CIA are rice, maize, and soybeans, while winter crops
include wheat, barley, oats, and canola. In November, rice crops
are flooded under 30 cm height of irrigation water.

The NAFE’06 was conducted from October 31 to
November 20, 2006, over a 40 km by 60 km area, with more
detailed flights over the 5 km by 32 km focus area studied
in this paper. While a full description of the NAFE’06 data
set is given in [9], a brief overview of the most pertinent
details is provided here. The data used in this paper are
comprised of airborne L-band brightness temperature; ASTER
red, near-infrared, and shortwave-infrared reflectances; ASTER
land surface temperature data (resampled at 250-m resolution);
MODIS land surface temperature data; and air temperature data
collected by a meteorological station in the NAFE’06 area.

A. PLMR

The Polarimetric L-band Multibeam Radiometer (PLMR) is
an airborne instrument that measures both H and V polariza-
tions using a single receiver with polarization switching at view
angles of ±7◦, ±21.5◦, and ±38.5◦. The accuracy of the PLMR
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is estimated to be better than 2 K and 3 K in the H and V
polarization, respectively [10].

During NAFE’06, the PLMR flew on November 14 to collect
L-band brightness temperature at 250-m resolution over the
5 km by 32 km area in the CIA. PLMR was mounted in the
across-track configuration so that each pixel was observed at a
given incidence angle (approximately 7◦, 21.5◦, or 38.5◦). Data
were processed for incidence angle and beam location on the
ground by taking into account aircraft position, attitude, and
ground topography.

As the sensitivity to soil moisture is higher for H-polarized
brightness temperature than for V-polarized brightness temper-
ature, only the H-polarized brightness temperature TB is used
in this paper. Preprocessing of TB consists of the following:
1) resampling H-polarized PLMR data at 250-m resolution
on a grid that matches in symmetry to the flight lines over
the 5 km by 32 km area and 2) converting the resampled
TB to an equivalent value at 21.5◦ incidence angle. The in-
cidence angle 21.5◦ is chosen to minimize conversion errors.
The angular conversion involves the brightness temperature
collected by inner beams at approximately 7◦ incidence angle
being multiplied by the ratio TBMB/TBIB, with TBMB and
TBIB being the mean brightness temperatures collected by the
middle and inner beams, respectively. Similarly, the brightness
temperature collected by the outer beams at approximately
38.5◦ incidence angle is multiplied by the ratio TBMB/TBOB,
with TBOB being the mean brightness temperature collected by
the outer beams. Mean brightness temperatures TBIB, TBMB,
and TBOB are computed as the average (for all flight lines)
of the TB collected by the beams pointing at ±7◦, ±21.5◦,
and ±38.5◦, respectively. This technique was already used in
[11] to generate TB images by assuming that the impact of
soil moisture and biomass on the angular dependance of TB is
negligible or small. In this paper, a slightly different approach
is adopted to take into account the variations in aircraft attitude
during data collection, which made the incidence angle θ os-
cillate around 7◦, 21.5◦, and 38.5◦. The brightness temperature
TB(θ) observed at the incidence angle θ is multiplied by the
ratio TBMB/TBinterp(θ), with TBinterp(θ) being the mean
brightness temperature linearly interpolated at θ incidence an-
gle from the mean data collected by the inner, middle, and outer
beams.

B. ASTER

The ASTER instrument was launched in 1999 aboard Terra, a
sun synchronous platform with 11:00 UTC descending Equator
crossing and a 16-day revisit cycle. An ASTER scene covers an
area of approximately 60 km by 60 km and consists of 14 nadir-
looking bands and one oblique-looking band to create stereo-
based digital elevation models. The three nadir-looking bands
in the visible and near infrared have a 15-m resolution. The six
bands in the shortwave-infrared have a 30-m resolution. Finally,
there are five thermal infrared bands with a 90-m resolution.

The ASTER overpass of the NAFE’06 site was on
November 16, 2006. Official ASTER products [12] were used
here for surface reflectance (AST_07) and radiometric temper-
ature (AST_08) with accuracies of 5% and 1.5 K, respectively

[13]–[19]. They were downloaded from the Earth Observing
System Data Gateway (EDG).

ASTER 15-m resolution red (B2) and near-infrared (B3)
bands were extracted over the 5 km by 32 km area and re-
sampled at 250-m resolution to match the spatial resolution
and extent of PLMR observations. The ASTER 30-m resolution
B5 band (1.60–1.70 μm) was extracted over the 5 km by
32 km study area and resampled at 50-m resolution. Fractional
open water was estimated using B5 band [20] based on a
threshold method. Consequently, B5 data were resampled at
a resolution finer than that (250 m) of PLMR data to classify
open water pixels at 50-m resolution and to obtain fractional
open water at 250-m resolution from the binary classification.
ASTER 90-m resolution radiometric temperature was extracted
over the 5 km by 32 km area and aggregated at 250-m res-
olution to match the spatial resolution and extent of PLMR
observations. Aggregation was achieved by linearly averaging
high-resolution surface temperatures, i.e., without accounting
for the nonlinear relationship between physical temperature and
radiance. This choice was motivated by the results of [21],
which compared the temperature aggregated using different
scaling approaches and obtained very low differences (maxi-
mum difference of 0.2 ◦C).

C. MODIS

The MODIS/Terra data were collected concurrently with
ASTER data. MODIS official products consisted of the 928-m
resolution surface skin temperature (MOD11-L2) retrieved by
the “generalized split window” algorithm [22]–[24] and reg-
istered in the sinusoidal projection. The MODIS Reprojection
Tool was used to project MOD11-L2 data in UTM WGS 1984
55S with a sampling interval of 1 km.

In this paper, the disaggregation of 1-km MODIS tempera-
ture is evaluated using high-resolution ASTER data. To distin-
guish the errors associated with the disaggregation technique
and the errors associated with the discrepancy between MODIS
and ASTER temperature products, a comparison is made be-
tween ASTER and MODIS data at 1-km resolution over the
5 km by 32 km study area. The ASTER data are aggregated
at the MODIS spatial resolution (1 km) by linearly averaging
high-resolution temperatures. The root-mean-square difference
(RMSD), bias, correlation coefficient, and slope of the linear
regression between MODIS and aggregated ASTER data are
2.7 ◦C, −2.3 ◦C, 0.75, and 0.52, respectively. The discrepancy
between MODIS and ASTER data, which is mainly explained
here by a significant bias and a relatively low slope of the linear
regression, is on the same order of magnitude as the mean
difference (about 3 ◦C) reported in literature [5], [21], [25].

III. DISAGGREGATION ALGORITHMS

This paper aims to compare different approaches for dis-
aggregating kilometric MODIS land surface temperature data.
The study uses aggregated ASTER and real MODIS data
and demonstrates the disaggregation at 250-m resolution. The
resolution of 250 m is chosen to match with the lowest reso-
lution at which ancillary data composed of red, near-infrared,
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Fig. 1. Schematic diagram presenting the different disaggregation algorithms
of kilometric temperature Tkm and the verification strategy at high (250 m)
resolution.

shortwave-infrared, and microwave-L bands are available. In
this case study, the target scale is determined by the resolution
(250 m) of airborne microwave data.

As shown in the schematic diagram of Fig. 1, the disaggre-
gation algorithms are noted as Dk, with k being the number
of factors taken into account in the disaggregation. The new
algorithms are noted as Dk′. D0 does not use any ancillary
data, while D1 is based on a linear regression between land
surface temperature and fractional green (photosynthetically
active) vegetation cover. Fractional green vegetation cover fgv
is defined as the surface area of green vegetation per unit area
of soil. D1 is the same as in [4]. D2 is based on D1 but
takes into account both fractional green and total vegetation
covers. Fractional vegetation cover ftv is defined as the total
surface area of (green plus senescent) vegetation per unit area
of soil. D2 is the same as in [5]. The new algorithms D1′,
D2′, D3′, and D4′ (and D4′′) are all derived from a radiative
transfer equation. The four algorithms differ with regard to the
number of factors which are explicitly taken into account. D1′

includes the variability of fgv and is thus a substitute for D1
based on radiative transfer. D2′ includes the variability of both
fgv and ftv and is thus a substitute for D2 based on radiative
transfer. The other algorithms D3′ and D4′ integrate additional
variables. D3′ includes the variability of fgv, ftv, and fractional
open water fow. D4′ includes the variability of fgv, ftv, fow,
and soil evaporative efficiency (ratio of actual to potential soil
evaporation) β. D4′′ is the same as D4′ but with a different
formulation for soil evaporative efficiency.

D0 sets the disaggregated temperature as

T (0) = Tkm (1)

with Tkm being the land surface temperature observed at kilo-
metric resolution.

Using D1, the disaggregated temperature is computed as

T (1) = Tkm + a1 × (fgv − 〈fgv〉km) (2)

with fgv being the fractional green vegetation cover derived at
high resolution, 〈fgv〉km being the fgv aggregated at kilometric
resolution, and a1 being the slope of the linear regression
between Tkm and 〈fgv〉km. Note that the variables defined at
kilometric resolution are noted with the subscript km.

Using D2, the disaggregated temperature is computed as

T (2) = Tkm + aproj1 ×
(
fproj
gv − 〈fgv〉km

)
(3)

with fproj
gv being the projected fgv and aproj1 being the slope

of the linear regression between Tkm and the projected fgv es-
timated at kilometric resolution fproj

gv,km. Note that the variables
defined at the image scale are written in bold. The notion of
a “projected variable” was introduced in [26]. It is a robust
tool that strenghtens the correlation between two variables by
representing the dependence of these variables on other addi-
tional variables. In [5], the projection technique was applied
to fractional green vegetation cover to artificially improve the
spatial correlation between T and fgv by taking into account
the dependence of T on ftv. The projected fractional green
vegetation cover is computed as

fproj
gv =fgv−

Tfcsv−(Tb,ds+Tb,ws)/2

Tfcsv−Tfcgv
× (ftv−〈ftv〉km)

(4)

with ftv being the fractional total vegetation cover derived at
high resolution, 〈ftv〉km being the ftv aggregated at kilomet-
ric resolution, Tb,ws being the temperature of wet bare soil,
Tb,ds being the temperature of dry bare soil, Tfcgv being the
temperature of full-cover green vegetation, and Tfcsv being
the temperature of full-cover senescent vegetation (notations
are summarized in Table I). Following the interpretation of
the “triangle method” [27], Tb,ws, Tb,ds, Tfcgv, and Tfcsv

correspond to the minimum and maximum soil and vegetation
temperatures within the study area, respectively. It is reminded
that ftv = fgv + fsv, with fgv and fsv being the fractional
green and senescent vegetation covers, respectively.

In (4), the projected fractional green vegetation cover esti-
mated at kilometric resolution is

fproj
gv,km = 〈fgv〉km − Tfcsv − (Tb,ds +Tb,ws)/2

Tfcsv −Tfcgv

× (〈ftv〉km − ftv) (5)

with ftv being the mean ftv over the whole study area.
The new algorithms D′ use a radiative transfer equation

to model the spatial variability of disaggregated temperature
within each 1-km resolution pixel, using ancillary data avail-
able at high resolution such as fgv, ftv, fow, and β. D1′ is
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TABLE I
INTERPRETATION OF THE VERTICES IN THE GENERALIZED “TRIANGLE APPROACH”

a substitute for D1 based on radiative transfer. It expresses
disaggregated temperature as

T (1′) = Tkm +ΔT (1′) (6)

with ΔT (1′) being the difference between the temperature
simulated using high-resolution fgv and that aggregated within
the 1-km resolution pixel

ΔT (1′) = Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)

−〈Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)〉km (7)

with Tmod being the land surface temperature simulated by
a radiative transfer equation. In (7), fractional total vegetation
cover, fractional open water, and soil evaporative efficiency
are set to their values aggregated at kilometric resolution.
Therefore, only the variability of fgv is taken into account at
high resolution.

D2′ is a substitute for D2 based on radiative transfer. It
expresses the disaggregated temperature as in (6), with the
simulated temperature difference ΔT (2′) written as

ΔT (2′) = Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)

−〈Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)〉km . (8)

D3′ is derived from the same radiative transfer equation and
includes the variability of fgv, ftv, and fow at high resolution.
It determines the disaggregated temperature using (6) but with
the simulated temperature difference ΔT (3′) written as

ΔT (3′) = Tmod (fgv, ftv, fow, 〈β〉km)
−〈Tmod (fgv, ftv, fow, 〈β〉km)〉km . (9)

D4′ is derived from the same radiative transfer equation and
includes the variability of fgv, ftv, fow, and β at high resolu-
tion. It determines the disaggregated temperature using (6) but
with the simulated temperature difference ΔT (4′) written as

ΔT (4′) = Tmod (fgv, ftv, fow, β)

−〈Tmod (fgv, ftv, fow, β)〉km . (10)

D4′′ is an extension of (10) to replace β by another formula-
tion of soil evaporative efficiency noted as β′.

The high- to low-resolution simulated temperature difference
in (7)–(10) is computed using a linearized radiative transfer

equation [5], [28], [29]. Modeled land surface temperature
Tmod is written as

Tmod = fowTow + (1− fow)Tnw (11)

with Tow being the surface temperature of a water body and
Tnw being the skin temperature of a nonwatered land surface.
Nonwatered land surface temperature is expressed as

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv + (1− ftv)Tbs (12)

with Tfcgv and Tfcsv being the temperature of full-cover green
and senescent vegetations, respectively, and Tbs being the bare
soil temperature. With the soil evaporative efficiency defined
[30] as

β =
Tb,ds − Tbs

Tb,ds −Tb,ws
(13)

the bare soil temperature can be expressed as

Tbs = βTb,ws + (1− β)Tb,ds. (14)

By assuming that water temperature is close to well-watered
green vegetation [27], modeled land surface temperature
becomes

Tmod = fowTfcgv + (1− fow)Tnw (15)

with the nonwatered land surface temperature expressed as

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) [βTb,ws + (1− β)Tb,ds] . (16)

The temperature extremes Tb,ds, Tb,ws, Tfcgv, and Tfcsv are
extrapolated (according to Section V) from low-resolution land
surface temperatures using high-resolution ancillary data [5].

IV. DERIVATION OF BIOPHYSICAL VARIABLES

The four variables used by the disaggregation methodol-
ogy are the following: fractional green vegetation cover fgv,
fractional total (green plus senescent) vegetation cover ftv,
fractional open water fow, and soil evaporative efficiency β.
All of these variables are estimated from ASTER red, near-
infrared, and shortwave-infrared reflectance products and from
the PLMR H-polarized brightness temperature converted at an
incidence angle of 21.5◦.
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Fig. 2. Images of fractional green vegetation cover fgv, fractional senescent
vegetation cover fsv = ftv − fgv, fractional open water fow, soil evaporative
efficiency β, and soil evaporative efficiency β′. Note that 2% of the 5 km by
32 km area is contaminated by clouds and cloud shadow. Contaminated 250-m
resolution pixels are represented by crossed-out surfaces.

A. Fractional Green Vegetation Cover

Fractional green vegetation cover can be estimated from the
Normalized Difference Vegetation Index (NDVI) as in [31]

fgv =
NDVI −NDVIbs

NDVIfcgv −NDVIbs
(17)

with NDVIbs and NDVIfcgv being the NDVI over bare
soil and full-cover green vegetation, respectively. NDVI is
computed as the difference between near-infrared and red bands
divided by their sum. The spatial variation of fractional green
vegetation cover over the study area is shown in Fig. 2.

B. Fractional Total (Green Plus Senescent) Vegetation Cover

Fractional total vegetation cover is estimated by correlating
ftv with surface albedo for green vegetation and by setting ftv
to the maximum fgv for senescent vegetation. This methodol-
ogy [5] is based on two assumptions, which are generally met in
agricultural areas: 1) soil albedo is generally lower than green
vegetation albedo, and 2) green vegetation albedo is lower than
senescent vegetation albedo. Although a time series of red and
near-infrared data would be required to estimate soil albedo
and green vegetation albedo on a pixel-by-pixel basis [5], only
one ASTER scene is available for this study period. Therefore,
an alternate approach is adopted. Surface albedo is modeled

as a linear mixing of vegetation and soil components (e.g.,
[32] and [33])

α = (1− ftv)αbs + fgvαfcgv + (ftv − fgv)αfcsv (18)

with αbs, αfcgv, and αfcsv being the albedo for bare soil, full-
cover green vegetation, and full-cover senescent vegetation,
respectively, and with the end-members αbs, αfcgv, and αfcsv

estimated in Section V.
By inverting (18), fractional vegetation cover is expressed as

ftv =
α− αbs + fgv(αfcsv − αfcgv)

αfcsv − αbs
(19)

with α being the surface albedo estimated as a weighted sum of
red and near-infrared reflectances using the coefficients given in
[34] and validated in [35]–[38]. As stated previously, our case
study does not allow calibrating αbs, αfcgv, and αfcsv on a
pixel-by-pixel basis. Consequently, the value of ftv computed
from (19) may, on some occasions, be lower than fgv or larger
than 1. To avoid nonphysical values, ftv is set to fgv and 1 in
the former and latter case, respectively.

The spatial variation of fractional senescent vegetation cover
(fsv = ftv − fgv) over the study area is shown in Fig. 2. Note
that NAFE’06 was undertaken at the beginning of the summer
agricultural season so that all irrigated crops were green and
healthy.

C. Fractional Open Water

The fraction of open water within each 250-m resolution
pixel is estimated using 50-m resolution resampled ASTER
B5 reflectance product. Various studies have indicated that the
shortwave-infrared band centered at around 1 μm is highly
sensitive to the presence of open water [20], [39], [40]. In this
paper, a simple threshold method is applied to classify at 50-m
resolution the 5 km by 32 km area in two classes: water and
nonwatered surface. The threshold value is estimated as 0.170
from one flooded crop field in the south of the study area. The
spatial variation of fractional open water over the study area is
shown in Fig. 2. Open water represents 5% of the study area
and is attributed to rice cropping.

D. Soil Evaporative Efficiency

Soil evaporative efficiency β is defined as the ratio of actual
to potential soil evaporation. In this paper, β is estimated from
PLMR brightness temperatures. Two different formulations
are used to evaluate the coupling effects of near-surface soil
moisture, fgv, and fsv on microwave-derived soil evaporative
efficiency.

By assuming that brightness temperature is mainly sensitive
to surface soil moisture [41] and that soil evaporative efficiency
is mainly driven by surface soil moisture [42], [43], soil evapo-
rative efficiency can be estimated as

β = 1− TB −TBb,ws

TBfcsv,ds −TBb,ws
(20)
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with TBb,ws and TBfcsv,ds being the minimum and max-
imum brightness temperatures observed over the study area,
respectively. As brightness temperature generally decreases
with surface soil moisture and increases with vegetation cover
[44], TBb,ws and TBfcsv,ds are interpreted as the brightness
temperatures over wet bare soil and full-cover senescent vege-
tation with dry soil, respectively. The spatial variation of β over
the study area is shown in Fig. 2.

Since brightness temperature also depends on biomass (e.g.,
[45]), a second formulation of soil evaporative efficiency β′ is
derived in order to decouple the effects of soil moisture, fgv,
and fsv on TB. As in [46], the assumption is that, for a given
vegetated pixel, if vegetation is partially stressed (i.e., fsv > 0
or ftv > fgv), then near-surface soil moisture availability is
zero (i.e., β′ = 0). Alternatively, if that pixel does not contain
senescent vegetation (i.e., fsv = 0 or ftv = fgv), then β′ is
computed as the ratio of the measured– “wet soil” brightness
temperature difference to the “dry soil”–“wet soil” brightness
temperature difference. Formally, one writes

β′ =0 if TB > TBds (21)

β′ =1− TB − TBws

TBds − TBws
if TB ≤ TBds (22)

with TBds and TBws being the “dry soil” and “wet soil”
brightness temperatures, respectively, both being estimated for
fsv = 0. Since green vegetation is partially transparent to mi-
crowaves, the “dry soil” brightness temperature is computed as
a weighted sum of the brightness temperature over dry bare soil
(noted as TBb,ds) and the brightness temperature over full-
cover green vegetation with dry soil (noted as TBfcgv,ds)

TBds = fgvTBfcgv,ds + (1− fgv)TBb,ds. (23)

Similarly, the “wet soil” brightness temperature is computed as
a weighted sum of the brightness temperature over wet bare soil
(noted as TBb,ws) and the brightness temperature over full-
cover green vegetation with wet soil (noted as TBfcgv,ws)

TBws = fgvTBfcgv,ws + (1− fgv)TBb,ws. (24)

The spatial variation of β′ over the study area is shown in Fig. 2.

V. ESTIMATING END-MEMBERS

A key step in the disaggregation procedure is estimating
the 14 end-members from ASTER and PLMR data. They
are composed of the following: NDVIbs, NDVIfcgv, αbs,
αfcgv, αfcsv, Tb,ws, Tb,ds, Tfcgv, Tfcsv, TBb,ws, TBb,ds,
TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. For the convenience
of the reader, the unit is degree Celsius for radiometric temper-
ature and kelvin for brightness temperature.

A. NDVI

NDVI end-members are estimated as the minimum and maxi-
mum values of NDVI observed over the 5 km by 32 km area for

TABLE II
NDVI AND SURFACE ALBEDO END-MEMBERS

Fig. 3. ASTER surface albedo α plotted against ASTER fractional green
vegetation cover fgv. Three particular values of α are identified: the soil
albedo αbs estimated as the minimum surface albedo, the green vegetation
albedo αfcgv estimated as the albedo corresponding to the largest fgv , and the
senescent vegetation albedo αfcsv estimated as the maximum surface albedo.

bare soil and full-cover green vegetation, respectively. Values
for NDVIbs and NDVIfcgv are reported in Table II.

In this paper, the study domain included extreme conditions
in terms of vegetation cover so that NDVI end-members could
be estimated from the red and near-infrared reflectances ac-
quired over the area on a single date. In the case where extreme
conditions are not encountered in the application domain, a
different approach should be adopted, such as the use of a time
series of NDVI data (instead of a single snapshot image) that
would capture the phenological stages of agricultural crops.
Also, the determination of reflectance end-members could
be further constrained by the use of ancillary spectral data
sets [47].

B. Albedo

Fig. 3 shows the space defined by surface albedo α and
fractional green vegetation cover fgv. Pixels including open
water are removed from the scatterplot. The soil albedo αbs

is defined as the minimum ASTER surface albedo observed
within the study area by assuming that the dependence of
αbs on soil moisture is small compared to the dependence of
α on vegetation cover. The green vegetation albedo αfcgv is
estimated as the surface albedo corresponding to maximum
fractional green vegetation cover. The senescent vegetation
albedo αfcsv is estimated as the maximum surface albedo
observed within the study area. Values for αbs, αfcgv, and
αfcsv are reported in Table II.
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TABLE III
LAND SURFACE TEMPERATURE AND L-BAND BRIGHTNESS

TEMPERATURE END-MEMBERS THAT ARE ESTIMATED FROM

HIGH-RESOLUTION ASTER TEMPERATURE DATA, EXTRAPOLATED

FROM AGGREGATED ASTER TEMPERATURE DATA, AND EXTRAPOLATED

FROM MODIS TEMPERATURE DATA. FOR THE CONVENIENCE OF THE

READER, THE UNIT IS DEGREE CELSIUSFOR RADIOMETRIC

TEMPERATURE AND KELVIN FOR BRIGHTNESS TEMPERATURE

C. Land Surface Temperature

As the range of surface conditions varies with spatial res-
olution, two different procedures are developed to estimate
temperature end-members.

1) When estimating temperature end-members from 250-m
resolution data, one pixel is identified as fully covered
green vegetation, one pixel as fully covered senescent
vegetation, one pixel as bare dry soil, and one pixel as
bare wet soil. In this case, it is assumed that all extreme
conditions are included at high resolution within the study
domain.

2) When estimating temperature end-members from 1-km
resolution data (as in the operational scenario), none of
the pixels are identified as representative of any extreme
condition. Temperature end-members are extrapolated
from 1-km temperature data using ancillary data com-
posed of air temperature, soil albedo, green vegetation
albedo, and senescent vegetation albedo as described in
the following.

End-members Tb,ws, Tb,ds, Tfcgv, and Tfcsv are deter-
mined by analyzing the consistency of the diagrams in Fig. 4.
Fig. 4(a) shows the space defined by ASTER land surface
temperature and ASTER fractional green vegetation cover. The
three edges of the triangle T − fgv are interpreted [27] as “bare
soil” between A and B, “wet surface” between B and C, and
“dry soil” between C and A. Fig. 4(b) shows the space de-
fined by ASTER land surface temperature and ASTER surface
albedo. An interpretation of the polygon T − α is provided
in [5], which is consistent with the triangle method. The four
edges are interpreted as “bare soil” between A and B, “wet
surface” between B and C, “full cover” between C and D,
and “dry surface” between D and A. The notation system for
polygon vertices A, B, C, and D is summarized in Table I, and
the corresponding temperature values Tb,ds, Tb,ws, Tfcgv,
and Tfcsv are reported in Table III.

In this paper, high-resolution temperature T is assumed to
be unavailable. Consequently, the extreme temperatures Tb,ds,
Tb,ws, Tfcgv, and Tfcsv are extrapoled from the spaces Tkm −

Fig. 4. (a) Scatterplot of ASTER temperature versus fractional green vegeta-
tion cover and (b) versus surface albedo, (c) scatterplot of aggregated ASTER
temperature versus aggregated fractional green vegetation cover and (d) versus
aggregated surface albedo, and (e) scatterplot of MODIS temperature versus
aggregated fractional green vegetation cover and (f) versus aggregated surface
albedo. The vertices A, B, C, and D obtained using high-resolution data in
(a) and (b) are extrapolated using low-resolution data in (c), (d), (e), and (f)
from ancillary data composed of air temperature Ta, soil albedo αbs, green
vegetation albedo αfcgv , and senescent vegetation albedo αfcsv .

〈fgv〉km and Tkm − 〈α〉km defined at kilometric resolution
(see Fig. 4(c) and (d) for aggregated ASTER temperature and
Fig. 4(e) and (f) for MODIS temperature). An approach similar
to [5] is used as follows.

1) Vertex C corresponds to full-cover green vegetation
and is located at (1,Tfcgv) in Fig. 4(c) (Fig. 4(e) for
MODIS temperature) and at (αfcgv,Tfcgv) in Fig. 4(d)
[Fig. 4(f)]. In this paper, Tfcgv is set to the air tem-
perature Ta measured at the time of ASTER overpass.
Vertex C is thus placed at (1,Ta) in Fig. 4(c) [Fig. 4(e)]
and at (αfcgv,Ta) in Fig. 4(d) [Fig. 4(f)].

2) Vertex B corresponds to wet bare soil and is located at
(0,Tb,ws) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ws) in
Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)]
at the intersection between (BC) and the vertical line
〈fgv〉km = 0. The slope of (BC) is computed as the slope
of the linear regression of the data points corresponding
to the “wet surface” edge of the triangle Tkm − 〈fgv〉km.
The off-set of (BC) is determined from C.

3) Vertex A corresponds to dry bare soil and is located at
(0,Tb,ds) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ds) in
Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)]
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at the intersection between (AC) and the vertical line
〈fgv〉km = 0. The slope of (AC) is computed as the slope
of the linear regression of the data points corresponding
to the “dry soil” edge of the triangle Tkm − 〈fgv〉km. The
off-set of (AC) is determined from C.

4) Vertex D corresponds to full-cover senescent vegetation
and is located at (αfcsv,Tfcsv) in Fig. 4(d) [Fig. 4(f)].
It is placed in Fig. 4(d) [Fig. 4(f)] at the intersection
between (AD) and the vertical line 〈α〉km = αfcsv. The
line (AD) is considered as being parallel to (BC)[5].
Consequently, the slope of (AD) is determined from
the slope of (BC). The off-set of (AD) is determined
from A. Note that the lines (AD) and (BC) might
not be strictly parallel. This may be due to a lack of
representativeness of the surface conditions captured at
250-m resolution within the study area. In that case, one
or several data points may be located above (AD). To
circumvent this artifact, the slope of (AD) in Fig. 4(d)
[Fig. 4(f)] is increased so that all data points will be
located below the “dry surface” edge.

Table III lists the four temperature end-members: 1) esti-
mated from Fig. 4(a) and (b) using high-resolution ASTER
data; 2) extrapolated from Fig. 4(c) and (d) using aggregated
ASTER temperature data; and 3) extrapolated from Fig. 4(e)
and (f) using MODIS temperature data. The values extrapo-
lated from aggregated ASTER and MODIS temperatures are
rather close to those estimated from high-resolution ASTER
temperature data, with the maximum difference in extrapolated
temperatures being 2.6 ◦C, except for Tfcsv using MODIS
data. In the latter case, the significant underestimation (5.3 ◦C)
of Tfcsv can be explained by the following: 1) the negative
mean difference (−2.3 ◦C) between MODIS and ASTER data
and/or 2) the smaller range of (spatial dynamics) of 1-km
resolution MODIS data in relation to 1-km aggregated ASTER
data [please compare Fig. 4(c) with Fig. 4(e), and Fig. 4(d) with
Fig. 4(f)].

D. Brightness Temperature

To estimate soil evaporative efficiency β in (20) and β′

in (22), five brightness temperature values corresponding to
extreme surface conditions are required: TBb,ds, TBb,ws,
TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. In this paper, those
five values are estimated from a generalized version [5], [9] of
the classical “triangle method” [27].

Fig. 5(a) shows the space defined by PLMR brightness
temperature and ASTER land surface temperature. In the fol-
lowing, an original interpretation of the five vertices visible
in Fig. 5(a) is provided, which is consistent with both the
classical “triangle method” and the state-of-the-art L-band ra-
diative transfer models. Vertices are presented successively in
the counterclockwise direction, and the correspondence with
vegetation and soil conditions is summarized in Table I.

1) Vertex at minimum brightness temperature: L-band ra-
diative transfer models predict an increase of brightness
temperature with biomass and a decrease of brightness
temperature with surface soil moisture (e.g., [48] and
[49]). Therefore, the point at minimum brightness tem-

perature corresponds to wet bare soil. This vertex is noted
as B in Fig. 5(a), which is consistent with Fig. 4.

2) Vertex at maximum land surface temperature: the triangle
method predicts a decrease of land surface temperature
with both vegetation cover and surface soil moisture.
Therefore, the point at maximum land surface tempera-
ture corresponds to dry bare soil. This vertex is noted as
A in Fig. 5(a), which is consistent with Fig. 4.

3) Vertex at maximum brightness temperature: being con-
sistent with an increase of vegetation emission with
biomass and a decrease of soil emission with surface soil
moisture, the point at maximum brightness temperature
corresponds to full-cover vegetation with dry soil. It
could correspond to full-cover green vegetation. How-
ever, the associated land surface temperature in Fig. 5(a)
is much larger than that over full-cover green vegetation
(21 ◦C) and rather close to the temperature over full-
cover senescent vegetation (34 ◦C). Therefore, the point
at maximum brightness temperature corresponds to full-
cover senescent vegetation with dry soil. This vertex
is noted as D′ in Fig. 5(a), which is consistent with
Fig. 4. A prime mark indicates that D′ corresponds to a
dry soil, whereas D does not specify soil hydric status.
Note that D′ does not necessarily correspond to dry
senescent vegetation since wet senescent vegetation can
lead to large values of brightness temperature [50]. In
our case study, however, no rainfall occurred during the
four days preceding the ASTER overpass, which means
that senescent vegetation was completely dry. In terms of
radiative transfer modeling, the effect of dry biomass on
brightness temperature can be represented by large values
of roughness parameter [51].

4) Vertices at minimum land surface temperature: two more
vertices are apparent in the counterclockwise direction.
Being consistent with a decrease of land surface tem-
perature with green vegetation, both points correspond
to full-cover green vegetation. As vegetation is partially
transparent to the L-band emission from the soil, each
point corresponds to a different soil hydric status. The
vertex with a larger TB [noted as C′′ in Fig. 5(a)]
corresponds to full-cover green vegetation with dry soil,
and the point with a lower TB [noted as C′ in Fig. 5(a)]
corresponds to full-cover green vegetation with wet soil.

As high-resolution temperature is assumed to be unavailable
in this paper, brightness temperature end-members are not
estimated from the polygon TB − T in Fig. 5(a) but from
the polygon TB − fgv shown in Fig. 5(b). The following is
an interpretation of the polygon in Fig. 5(b), based on the
consistency with the polygon in Fig. 5(a). In particular, the five
vertices in Fig. 5(a) can be located in Fig. 5(b) as follows.

1) Vertex B corresponds to wet bare soil. It is located at
the minimum value of brightness temperature such that
fgv = 0.

2) Vertex A corresponds to bare dry soil. It is not apparent
in Fig. 5(b) because fractional green vegetation is not
sufficient information to distinguish between bare soil
and senescent vegetation.
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Fig. 5. (a) Scatterplot of PLMR incidence-corrected brightness temperature TB versus ASTER land surface temperature and (b) versus ASTER fractional
green vegetation cover, and (c) scatterplot of aggregated TB versus aggregated ASTER temperature and (d) versus MODIS temperature. Extreme brightness
temperatures TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds are estimated by interpreting the bare soil, dry surface, full-cover vegetation, and wet surface
edges of the polygon in (b). The estimation of TBb,ds using low-resolution temperature data is illustrated with aggregated ASTER temperature in (c) and MODIS
temperature in (d).

3) Vertex D′ corresponds to full-cover senescent vegetation
with dry soil. It is located at the maximum value of
brightness temperature.

4) Vertex C′′ corresponds to full-cover green vegetation
with dry soil. It is located at the maximum value of
brightness temperature such that fgv = 1.

5) Vertex C′ corresponds to full-cover green vegetation with
wet soil. It is located at the minimum value of brightness
temperature such that fgv = 1.

Based on the aforementioned interpretation of the polygon
TB − fgv in Fig. 5(b), the methodology used for estimating
TBb,ds, TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds is
detailed in the following.

1) The brightness temperature over full-cover dry surface
(TBfcsv,ds) and over wet bare soil (TBb,ws) are set
to the maximum and minimum brightness temperatures
observed within the study area, respectively.

2) The brightness temperatures over full-cover green veg-
etation with wet soil (TBfcgv,ws) and over full-cover
green vegetation with dry soil (TBfcgv,ds) are estimated
as the brightness temperature extrapolated at fgv = 1 in
Fig. 5(b) along the “wet soil” and the “full-cover dry
soil” edge, respectively. The slope of the lines (BC′)
and (D′C′′) are determined so that all of the points with
fgv > 0.5 be above and below the “wet soil” and “full-
cover dry soil” edges, respectively.

3) Vertex A cannot be identified in the space TB − fgv.
Consequently, TBb,ds is set to the brightness tempera-
ture corresponding to the maximum Tkm (see Fig. 5(c) for
aggregated ASTER temperature and Fig. 5(d) for MODIS
temperature data).

Table III lists the five brightness temperature end-members:
1) estimated from Fig. 5(a) using high-resolution ASTER data;
2) estimated from Fig. 5(b) and (c) using high-resolution
fractional green vegetation cover and aggregated ASTER tem-
perature data; and 3) estimated from Fig. 5(b) and (d) using
high-resolution fractional green vegetation cover and MODIS
temperature data. Values estimated from low-resolution tem-
perature are remarkably close to those estimated from high-
resolution ASTER temperature data (Table III), except for
TBb,ds with a difference of 6 K. This difference is apparently
due to the lack of representativeness of kilometric aggregated

brightness temperature and the method for estimating TBb,ds

at kilometric scale. Note, however, that a 6-K difference is still
relatively low compared to the range (190 K–280 K) covered
by brightness temperature values.

VI. APPLICATION

The disaggregation algorithms presented here are applied
to the NAFE’06 data set. ASTER land surface temperature is
aggregated at 1-km resolution, and kilometric temperature is
used as input to D0, D1, D1′, D2, D2′, D3′, D4′, and D4′′. As
shown in Fig. 1, the verification strategy consists in comparing
disaggregation results at 250-m resolution with ASTER land
surface temperature. An application to MODIS data is also
presented.

A. Application to Aggregated ASTER Data

1) End-Members Derived From High-Resolution Data: The
approach is first implemented using the end-members estimated
from high-resolution ASTER temperature data. This allows
testing the robustness of the model in (15) and (16) inde-
pendently of the methodology used for extrapolating the nine
end-members Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws,
TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds.

Fig. 6 shows the output images of the eight disaggregation
algorithms, which are to be compared with the reference image
derived from ASTER land surface temperature. One observes
that the disaggregated temperature is successively improved
by including additional factors in the disaggregation, which
indicates that the methodology is able to take into account
several independent factors. Although the boxy artifact at 1-km
resolution is successively reduced from T (0) to T (4′′), it is still
apparent for T (4′′). This effect may be due to the following: 1)
other factors that are not taken into account in the procedure,
such as green vegetation water stress, wind speed, surface
emissivity, surface albedo, etc.; 2) errors in estimated fgv, fsv,
fow, and β; and/or 3) resampling errors at 250-m resolution.

Table IV lists the RMSD, correlation coefficient, and slope
between the disaggregated and ASTER temperatures for each
of the eight disaggregation algorithms. The error is successively
decreased from 1.65 ◦C to 1.16 ◦C, while the correlation
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Fig. 6. Maps of the temperature disaggregated by the eight algorithms as compared with the map (right) of high-resolution ASTER temperature.

TABLE IV
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS ESTIMATED USING

HIGH-RESOLUTION ASTER TEMPERATURE DATA

(TO THE END-MEMBERS EXTRAPOLATED USING

AGGREGATED ASTER TEMPERATURE DATA)

coefficient and slope are successively increased from 0.79 and
0.63 to 0.89 and 0.88, respectively. When comparing D1, D2,
D1′, and D2′, no significant differences are observed between
all four algorithms in terms of root-mean-square error, corre-
lation coefficient, and slope. Note that, in this paper, ftv was
estimated in a different way than in [5] because only one visible
and near-infrared image was available and a FORMOSAT-like
time series would be required to derive ftv more accurately on
a pixel-by-pixel basis. Nevertheless, this comparison suggests
that D1′ seems to be equivalent to D1 and D2′ equivalent to D2,
which justifies the use of the Tmod model.

The main advantage of the new approach is to take into
account a number of additional factors, including fractional
open water and soil evaporative efficiency. When comparing the
results obtained for D3′, D4′, and D4′′ in Table IV, it is observed
that the disaggregated temperature is significantly improved
against the classical approaches D1 and D2. Moreover, the

statistical results are successively improved by including fow,
β, and β′. Fig. 7 shows the improvement, especially in the
slope between the disaggregated and ASTER temperatures. The
good results obtained for D4′′ indicate that the performance of
disaggregation algorithms is intimately related to the following:
1) the capability of separating the independent factors that
impact on surface temperature and 2) the ability to integrate
them consistently into the procedure.

2) End-Members Derived From Aggregated ASTER Data:
As disaggregation procedures D1′, D2′, D3′, D4′, and D4′′

are subjected to uncertainties in land surface temperature and
brightness temperature end-members, the five algorithms are
next tested using the end-members estimated from kilomet-
ric temperature data, as presented in Section V. Aggregated
ASTER (instead of MODIS) data are used to evaluate the
impact of end-members regardless of the discrepancy between
MODIS and ASTER temperatures.

Table IV lists the RMSD, correlation coefficient, and slope
between the disaggregated and ASTER temperatures for each
of the five algorithms. Results are compared with those ob-
tained using the end-members estimated from high-resolution
ASTER temperature. In general, the error is slightly larger,
and the correlation coefficient and slope are slightly lower us-
ing extrapolated end-members. Nevertheless, the disaggregated
temperature is still much improved by applying D4′′ instead of
D1′, with the correlation coefficient and slope increasing from
0.74 to 0.88 and from 0.72 to 0.86, respectively. Consequently,
the extrapolation of end-members from kilometric data is not
found to be a limiting factor in the methodology.

B. Application to MODIS Data

Disaggregation algorithms D0, D1, D1′, D2, D2′, D3′, D4′,
and D4′′ are then applied to MODIS data. In this case, end-
members are derived from MODIS data. Fig. 8 shows the scat-
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Fig. 7. Aggregated ASTER temperature (1 km) is disaggregated by each of
the eight algorithms and is plotted against high-resolution ASTER temperature.

terplot of disaggregated MODIS versus ASTER temperature for
each algorithm separately. One observes that the new methodol-
ogy improves the correlation and slope of the linear regression
between the disaggregated and ASTER temperatures. However,
a systematic negative bias is apparent in the disaggregated
temperature. Table V lists the RMSD, correlation coefficient,
and slope between the disaggregated and ASTER temperatures
for each of the eight algorithms. The error slightly decreases
from 3.2 ◦C to 3.0 ◦C, while the correlation coefficient and
slope increase from 0.6 and 0.3 to 0.7 and 0.5, respectively.
The results obtained for D3′ and D4′ in Table V indicate that
the disaggregated temperature is improved against the classical
approaches D1 and D2. As for the application to aggregated
ASTER data, the statistical results are successively improved
by including fow, β, and β′. However, the improvement with
MODIS data is not as visible as with aggregated ASTER
data because the difference between MODIS and ASTER data
(please refer to Section II-C) has the same order of magnitude
as the subpixel variability at 250-m resolution (see RMSD for
D0 in Table V). In particular, the mean bias and the relatively
low slope of the linear regression between the disaggregrated
and ASTER data are associated with the discrepancy at 1-km
resolution between the MODIS and ASTER temperature data.

VII. SENSITIVITY ANALYSIS

To further assess the stability of the new D′ algorithms based
on radiative transfer, two sensitivity analyses are conducted

Fig. 8. MODIS temperature (1 km) is disaggregated by each of the eight
algorithms and is plotted against high-resolution ASTER temperature.

TABLE V
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS EXTRAPOLATED

USING MODIS TEMPERATURE DATA

by the following: 1) adding a Gaussian noise on kilometric
temperatures and high-resolution brightness temperatures and
2) estimating the contribution of each factor on the variability
of modeled land surface temperature.

A. Uncertainty in End-Members

To test the stability of the method for estimating the nine
end-members (Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws,
TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds) from low-resolution
temperature data, a Gaussian noise with a standard deviation
of 1 ◦C is added to the kilometric (aggregated ASTER) land
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TABLE VI
MEAN AND STANDARD DEVIATION OF LAND SURFACE TEMPERATURE

AND L-BAND BRIGHTNESS TEMPERATURE END-MEMBERS

EXTRAPOLATED USING KILOMETRIC TEMPERATURE DATA. FOR THE

CONVENIENCE OF THE READER, THE UNIT IS DEGREE CELSIUS FOR

RADIOMETRIC TEMPERATURE AND KELVIN FOR

BRIGHTNESS TEMPERATURE

TABLE VII
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES FOR THE DATA

INCLUDING ALL THE 100 ARTIFICIALLY NOISED DATA SETS

surface temperature data set, and a Gaussian noise with a stan-
dard deviation of 2 K is added to the high-resolution brightness
temperature data set. An ensemble of 100 data sets is generated
and used as input to the disaggregation algorithms.

Table VI reports the average and standard deviation of ex-
trapolated end-members computed within the ensemble of 100
artificially perturbed data sets. Results indicate that the method
for extrapolating end-members is stable for all end-members.
Table VII lists the RMSD, correlation coefficient, and slope
between the disaggregated and ASTER temperatures for all 100
data sets. Although the results are generally degraded by using
noisy input data sets, D4′′ is still superior to all other algorithms
(see Fig. 9). Therefore, the integration of fractional open water
and soil evaporative efficiency into the disaggregation is able to
improve the representation of land surface temperature variabil-
ity despite the uncertainties in fow and β′, and the uncertainties
in extrapolated end-members.

B. Weighting Variability Factors

Results with the NAFE’06 data set have indicated that the
new D′ algorithms based on radiative transfer significantly
improve (in relation to D1 and D2 methods) the representation
of disaggregated temperature by directly integrating the various

Fig. 9. As for Fig. 7 but using all the 100 artificially noised input data sets.

input parameters of the radiative transfer equation. Another ad-
vantage of the proposed methodology is to quantify the weight
of these input parameters. Here, the relative weights of fgv,
fsv, fow, and β′ are compared, and the relative improvement in
disaggregated temperature when including these factors in the
disaggregation is assessed. The weight of fgv on the variability
in land surface temperature is derived by computing the first
partial derivative of Tmod from (15) and (16)

∂Tmod

∂fgv
= −(1− fow)(Tfcsv −Tfcgv). (25)

Similarly, the first partial derivative of Tmod is computed with
respect to fsv

∂Tmod

∂fsv
= −(1− fow) [β

′Tb,ws + (1− β′)Tb,ds −Tfcsv]

(26)
with respect to fow

∂Tmod

∂fow
= − [fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) (β
′Tb,ws + (1− β′)Tb,ds)−Tfcgv] (27)

and with respect to β′

∂Tmod

∂β′ = −(1− fow)(1− ftv)(Tb,ds −Tb,ws). (28)

Table VIII lists the standard deviation of each parameter
within the study area, the average of partial derivatives, and the
relative weight of each parameter on the variability of modeled
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TABLE VIII
STANDARD DEVIATION, MEAN PARTIAL DERIVATIVE, AND IMPACT ON HIGH-RESOLUTION MODELED TEMPERATURE OF EACH OF THE

FOUR PARAMETERS: FRACTIONAL GREEN VEGETATION COVER, FRACTIONAL SENESCENT VEGETATION COVER,
FRACTIONAL OPEN WATER, AND SOIL EVAPORATIVE EFFICIENCY

land surface temperature. The relative weights of fgv, fsv, fow,
and β′ are estimated as the mean partial derivative times the
standard deviation. Results indicate that all parameters have a
negative impact on T . More interestingly, fgv appears to be
the most significant variability factor, with a relative weight
of 42%, which is consistent with NDVI-based approaches [4].
The second and third most significant variability factors are soil
evaporative efficiency and fractional open water, with relative
weights of 27% and 20%, respectively. Finally, fractional senes-
cent vegetation cover represents only 11% of the variability
in land surface temperature. The low impact of fsv can be
associated with the low mean partial derivative. In particular,
∂Tmod /∂fsv is low because the temperature difference be-
tween dry bare soil (Tb,ds) and full-cover senescent vegetation
(Tfcsv) is also low in our case study.

The relative weights in Table VIII are now related with
the disaggregation results in Table III. Consequently, the poor
improvement of D2 against D1 (and D2′ against D1′) can be
attributed to the relatively low weight of fsv in the variability of
land surface temperature. Conversely, the significant improve-
ments of D4′′ against D3′, D3′ against D2′, and D1 (and D1′)
against D0 are attributed to the large weights of β′, fow, and
fgv, respectively.

In summary, the variability of land surface temperature is rea-
sonably represented by model Tmod . Moreover, the approach
allows the relative weight of each variability factor to be taken
into account in the disaggregation procedure.

VIII. SUMMARY AND CONCLUSION

A new disaggregation methodology for land surface tem-
perature has been developed to integrate the main surface
parameters involved in the surface energy budget. It is based
on a linearized radiative transfer equation, which distinguishes
between soil, vegetation, and water temperature, and uses soil
evaporative efficiency and fractional senescent vegetation cover
to parameterize/estimate soil and vegetation hydric status, re-
spectively. The approach is implemented using four parame-
ters: the fraction of green vegetation cover derived from red
and near-infrared bands, the fraction of senescent vegetation
cover derived from red and near-infrared bands, the fraction
of open water derived from shortwave-infrared band, and the
soil evaporative efficiency derived from microwave-L band.
It is tested over a 5 km by 32 km area of irrigated land in
Australia, including flooded rice crops, using ASTER and L-
band airborne data. Low-resolution land surface temperature

is simulated by aggregating ASTER land surface tempera-
ture at 1-km resolution, and the disaggregated temperature is
compared to high-resolution ASTER temperature. The results
indicate that the methodology is able to separate efficiently the
independent factors that impact surface temperature and to inte-
grate them consistently into the disaggregation procedure. The
error in disaggregated temperature is successively reduced from
1.65 ◦C to 1.16 ◦C by including each of the four parameters.
The correlation coefficient and slope between the disaggregated
and ASTER temperatures are improved from 0.79 to 0.89 and
from 0.63 to 0.88, respectively. Moreover, the radiative transfer
equation allows quantifying the impact at high resolution of
each parameter on land surface temperature. In this case study,
fractional green vegetation cover is responsible for 42% of the
variability in disaggregated land surface temperature, fractional
senescent vegetation cover for 11%, fractional open water for
20%, and soil evaporative efficiency for 27%.

Note that the approach presented in this paper did not take
into account the water stress of green vegetation because none
of the considered parameters (fractional green vegetation cover,
fractional senescent vegetation cover, fractional open water, and
soil evaporative efficiency) could describe the hydric status of
photosynthetically active (green) vegetation. The analysis was
conducted solely in a highly irrigated environment in which
vegetation water stress was small. However, in most cases,
the vegetation water stress might not be negligible for natural
areas. In the presence of water-stressed green vegetation, the
scatterplot (temperature versus green vegetation cover) would
be transformed into a trapezoidal shape with four vertices
rather than a triangle. In such conditions, the disaggregation
problem would be partly undetermined since the partitioning
between unstressed and stressed green vegetations would not
be represented. Consequently, the approaches shown here are
not expected to be representative of other less extreme environ-
ments than the present irrigated area. Nevertheless, one should
keep in mind that improving the spatial resolution of land
surface temperature data via disaggregation is only relevant in
the conditions where the spatial variability of temperature is
large.

Although the approach was successfully applied to airborne
and satellite data collected during NAFE’06, further research is
needed to test the disaggregation approach on a routine basis.
One may anticipate that fractional green and senescent vege-
tation covers could be derived accurately using FORMOSAT-
like data. The FORMOSAT-2 instrument [52] provides short-
wave data at high spatial resolution (8 m) and high temporal
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frequency (potentially one image per day), which allow a fine
analysis of the seasonality of canopies during the crop cycle
[5], [53], [54]. Fractional open water could be derived from
Landsat-5 data (e.g., [20]). Although the repeat cycle of Landsat
(16 days) is longer than the temporal resolution needed for land
surface temperature, the seasonal variations of water bodies
such as irrigation canals and flooded fields are expected to
be low. Soil evaporative efficiency could be derived at high
resolution from active microwave sensors, such as the Phased
Array L-band SAR (PALSAR) [55]. Soil evaporative efficiency
formulas express evaporation as a function of normalized sur-
face soil moisture. Therefore, soil evaporative efficiency is
equivalent to a soil moisture index, which could be replaced
in (20) by the radar-derived soil wetness index computed as
the observed to minimal backscattering coefficient difference
divided by the maximal to minimal backscattering coefficient
difference [56], [57]. Note, however, that the temporal coverage
of the PALSAR fine beam dual polarization mode is relatively
low, with a revisit cycle of 46 days. Consequently, accurate
disaggregation of land surface temperature would still rely on
the availability of high-resolution radar data.
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