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Abstract—Ground-based multifrequency (L-band to W-band,
1.41–90 GHz) and multiangular (20◦–50◦) bipolarized (V and H)
microwave radiometer observations, acquired over a dense wheat
field, are analyzed in order to assess the sensitivity of bright-
ness temperatures (Tb) to land surface properties: surface soil
moisture (mv) and vegetation water content (VWC). For each
frequency, a combination of microwave Tb observed at either
two contrasting incidence angles or two polarizations is used to
retrieve mv and VWC, through regressed empirical logarithmic
equations. The retrieval performance of the regression is used as
an indicator of the sensitivity of the microwave signal to either
mv or VWC. In general, L-band measurements are shown to be
sensitive to both mv and VWC, with lowest root mean square
errors (0.04 m3 · m−3 and 0.52 kg · m−2, respectively) obtained
at H polarization, 20◦ and 50◦ incidence angles. In spite of the
dense vegetation, it is shown that mv influences the microwave
observations from L-band to K-band (23.8 GHz). The highest
sensitivity to soil moisture is observed at L-band in all configu-
rations, while observations at higher frequencies, from C-band
(5.05 GHz) to K-band, are only moderately influenced by mv at
low incidence angles (e.g., 20◦). These frequencies are also shown
to be very sensitive to VWC in all the configurations tested. The
highest frequencies (Q- and W-bands) are shown to be moder-
ately sensitive to VWC only. These results are used to analyze
the response of W-band emissivities derived from the Advanced
Microwave Sounding Unit instruments over northern France.

Index Terms—Microwave radiometry, soil moisture, vegetation.

I. INTRODUCTION

PASSIVE microwave remote sensing techniques have ap-
plications in monitoring the terrestrial surfaces or the
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atmosphere, depending on frequency. However, it is not clear
to what extent higher frequency observations can be used for
soil moisture monitoring. The main motivation of this study
is to consolidate previous investigations on the sensitivity of
microwave emission at different frequencies, polarizations, or
incident angles to soil moisture and vegetation water content
(VWC). Clearly, low frequencies (L-band in particular) are
sensitive to surface soil moisture mv [1] and have been selected
as the frequency of choice for such measurements. The Soil
Moisture and Ocean Salinity mission is a dedicated soil mois-
ture mission using L-band radiometry. However, the extremely
high frequencies (e.g., Q- and W-bands) that are routinely used
to characterize the atmosphere may also contain useful infor-
mation on soil moisture content that is hitherto underutilized.
For example, over continental areas, brightness temperatures
(Tb) at extremely high frequencies require correction for land
emissivity in order to retrieve relevant atmospheric information
[2], but this land information has not been assessed for its soil
moisture information.

For bare soil, microwave brightness temperatures are sen-
sitive to soil moisture at frequencies ranging from L-band
to extremely high frequencies, e.g., 90 GHz at W-band [3].
However, vegetation canopies tend to mask the soil microwave
emission, with this effect increasing at higher frequencies.
While many studies have shown that L-band radiometry is able
to retrieve soil moisture over relatively dense canopies (up to
3–5 kg · m−2), it has also been shown that C- and X-band
observations can be used over areas where vegetation is not too
dense (for a review, see [4]). However, microwave brightness
temperatures may become dominated by vegetation character-
istics at higher frequencies. For example, Wigneron et al. [5]
have shown that observations over pine forests at 90 GHz are
related to the density of trees, and Prigent et al. [6] have sug-
gested that passive microwave observations at K-band (19 GHz)
and higher frequencies are sensitive to the vegetation alone, and
not to the underlying soil moisture.

The objective of this study is to assess the extent to which
C-band and higher frequencies are sensitive to surface soil
moisture under dense vegetation and to compare the soil mois-
ture sensitivity with the sensitivity to the VWC. Since the
findings of Prigent et al. [6], showing a lack of sensitivity to soil
moisture for observations at K-band and higher frequencies,
are based on the analysis of satellite data, the use of ground-
based microwave observations in this paper, measured under
controlled mv and VWC conditions, can contribute to consoli-
date those results. The Portos-93 experiment [1] is used for this
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Fig. 1. PORTOS-93 experiment. (Top) PORTOS multifrequency microwave
radiometer, mounted on a crane. (Bottom) Dense wheat field observed by the
PORTOS instrument from April to July 1993.

purpose, which gathered microwave brightness temperatures
over several surface types at various frequencies and at various
incidence angles. In this study, the sensitivity of ground-based
passive microwave observations from the Portos-93 database to
mv and VWC is assessed for a dense wheat field.

II. PORTOS-93 DATA

The Portos-93 experiment [1] was carried out from April 1,
1993 to July 10, 1993 at Avignon, France (43◦55′ N, 4◦53′ E).
The Portos instrument was a multifrequency (1.41, 5.05, 10.65,
23.8, 36.5, and 90 GHz, or L-, C-, X-, K-, Q-, and W-bands,
respectively) dual-polarized (V and H polarizations) microwave
radiometer. Portos was set up on the boom of a mobile crane
(20 m high), and the microwave emissions of different surface
types were observed at several incidence angles, from 0◦ to 60◦.
During the experiment, soil and vegetation samples were regu-
larly collected in order to monitor mv and VWC by gravimetric
techniques. The data examined in this study were acquired on a
wheat field (Fig. 1). The wheat field was monitored during the
growing period and during the senescence. At the end of the
growing period, the VWC of the crop reached a value close to
3 kg · m−2.

Fifty-one variables are used in this study: VWC, surface
(0–0.5 cm) soil moisture (mv), V- and H-polarized brightness
temperatures (Tb) at six frequencies and four incidence angles
(20◦, 30◦, 40◦, and 50◦), and the infrared temperature (TIR).
TIR was measured with a Heiman KT15 infrared thermometer
fixed to the Portos instrument, at the same incidence angles

(20◦, 30◦, 40◦, and 50◦). TIR varies between 17 ◦C and 38 ◦C
across the four-month experiment.

Since the microwave observations are performed on a crane,
20 m above the surface, rather than from a satellite, weather
conditions have little impact on the brightness temperatures.
However, it must be noted that Tb’s include, apart from the
direct emission of the surface, a downwelling atmospheric
and cosmic emission term, reflected by the surface. During
the PORTOS experiment, it was not possible to measure the
downwelling sky brightness with the radiometer. An attempt
was made by Calvet et al. [3], [7] to estimate the contribution
of atmospheric and cosmic emissions, over relatively specular
surfaces (smooth bare soil with little or no vegetation), based on
simulations of the atmosphere characteristics from a numerical
weather prediction model and from in situ observations of
the cloud coverage. In this study, a more complex surface is
considered, and it is difficult to quantify the exact reflected
component of the sky emission. Therefore, the sky emission
was not removed from the Tb. For a large proportion (85%) of
the PORTOS observations, the look direction of the radiometer
was parallel to the row direction of the wheat field. In this study,
all the observations were used, irrespective of the look direc-
tion. However, separate analysis (not shown) has concluded that
using the observations with parallel look and row directions had
little difference on the results to using all the results together.
It was not possible to assess the results obtained using the
observations with orthogonal look and row directions only, as
those observations did not cover the range of configurations
considered in this study.

In order to illustrate the time variations of these variables,
Fig. 2 shows mv and VWC throughout the experiment, to-
gether with the V-polarized Tb measured by Portos at six
frequencies, for two contrasting incidence angles (20◦ and
50◦). In this data set, no correlation is observed between mv

and VWC.

III. METHODS

Biophysical variables can be retrieved from microwave Tb.
The use of bipolarization and multiangular observations per-
mits simultaneous retrieval of several variables, e.g., mv and
VWC [1], [8]. The vegetation effects can be modeled with the
τ−ω model [1], [9], [10]. The retrieval method may be based
either on a physical model (e.g., the τ−ω model associated
to a soil emission model), to be inverted through optimization
methods [11], or on linear combinations of Tb indices [12].
Wigneron et al. [13] have shown that the τ−ω model can be
used to build semiempirical statistical relationships between
mv and microwave emissivities observed at two contrasting
incidence angles and that these relationships may be used for
retrieval purposes.

Saleh et al. [14] performed a comparison of index-based
methods and semiempirical regression methods at L-band.
The semiempirical regression methods consisted of either
single configurations (one incidence angle, one polarization)
or multiple configurations (one polarization and two angles,
or two polarizations and one angle). The best mv retrievals
were obtained with the multiple configuration regressions
(either biangular or bipolarization). In addition, Saleh et al.
[14] showed that the multiple configuration regression method
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Fig. 2. Example of variables observed over a wheat field during the PORTOS-93 experiment. From top to bottom: VWC and surface soil moisture measured
at 2.5 cm (mv) and V-polarized brightness temperatures (Tb) at two incidence angles of 20◦ and 50◦ for six frequencies (1.41 GHz, closed circles and solid
line; 5.05 GHz, closed circles and dashed line; 10.65 GHz, open circles and solid line; 23.8 GHz, open circles and dashed line; 36.5 GHz, solid line; 90 GHz,
dashed line).

may be used to retrieve the optical depth of the canopy, which
is dependent on the VWC.

In this study, the multiple configuration regression method
is used to assess the sensitivity of the Portos microwave ob-
servations to either mv or VWC at various frequencies. The
following equations (adapted from [14]) are used:

V WC = exp
(

AV WC ln
(

1 − Tb(θ1, p)
TIR

)

+BV WC ln
(

1 − Tb(θ2, q)
TIR

)
+ CV WC

)

(1)

mv = exp
(

Amv
ln

(
1 − Tb(θ1, p)

TIR

)

+Bmv
ln

(
1 − Tb(θ2, q)

TIR

)
+ Cmv

)
. (2)

Equations (1) and (2) are used in either biangular (θ1 �= θ2,
p = q) or bipolarization (θ1 = θ2, p �= q) configurations. The
regression coefficients AV WC , BV WC , CV WC and Amv

, Bmv
,

Cmv
may vary from one configuration to another and may

depend on the soil and vegetation characteristics [14]. It must be
noted that wheat is a crop presenting a marked vertical structure
(vertical stems in particular) which influences the response of
the canopy scattering effects to polarization and to incidence
angle [1]. Four biangular approaches are considered, with θ1 =
50◦ or θ1 = 40◦, and θ2 = 20◦, and p = q = V or p = q = H

(denoted as 50V20V, 40V20V, 50H20H, and 40H20H, respec-
tively). Four bipolarization approaches are considered, with
θ1 = θ2 = 50◦, 40◦, 30◦, or 20◦ (denoted as 50VH, 40VH,
30VH, and 20VH, respectively). The regression coefficients are
not derived from simulations of the τ−ω model as in [13].
Instead, the regressions are based on the observed mv, VWC,
Tb, and TIR. The quality of the regression is used as an indicator
of the sensitivity of the microwave observations to either mv

or VWC. Three scores are considered: the squared correlation
coefficient (r2), the root mean square error (rmse), and the
Fisher’s F-test p-value.

IV. RESULTS

Table I and Figs. 3 and 4 present the results obtained for the
50V20V biangular configuration.

1) The VWC retrievals from (1) are significantly correlated
to the observations (p-value < 0.05) at all the frequen-
cies. The rmse ranges between 0.5 and 0.8 kg · m−2. The
best scores (denoting the highest sensitivity to VWC)
were obtained at C-, X-, and K-bands, with rmse values
close to 0.5 kg · m−2 and r2 values higher than 0.6.

2) The mv retrievals from (2) are significantly correlated
to the observations (p-value < 0.05) at L- and C-bands
only. The best correlation was obtained at L-band
(r2 = 0.65). At L- and C-bands, rmse values of 0.054 and
0.076 m3 · m−3 were obtained, respectively. At higher
frequencies, the correlation was not significant.

The use of the horizontal polarization, instead of the ver-
tical polarization, in the 50H20H configuration (Table II)
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TABLE I
RESULTS FOR BIANGULAR APPROACH AT V POLARIZATION, 50V20V AND 40V20V, OVER A DENSE WHEAT FIELD AT

SIX MICROWAVE FREQUENCIES. RETRIEVAL OF THE VWC AND OF THE SURFACE SOIL MOISTURE: REGRESSION

COEFFICIENTS (AV WC , BV WC , CV WC AND Amv , Bmv , Cmv ) AND SCORES (SQUARED CORRELATION

COEFFICIENT, F-TEST p-VALUE, AND ROOT MEAN SQUARE DIFFERENCE)

Fig. 3. Retrieved versus observed VWCs at the six frequencies observed, using a biangular approach (50◦ and 20◦) at V polarization, i.e., 50V20V.
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Fig. 4. Same as in Fig. 3 but for surface soil moisture (mv).

TABLE II
SAME AS IN TABLE I BUT FOR H POLARIZATION, 50H20H AND 40H20H

enhanced the sensitivity to soil moisture, with significant cor-
relations from L-band to K-band. In particular, at C-band,
a relatively high correlation was obtained (r2 = 0.28 and
p-value < 0.01). However, the rmse (of about 0.07 m3 · m−3)

is relatively poor at C-band. Very similar results were
obtained with θ1 = 40◦, instead of θ1 = 50◦, apart from the
lack of sensitivity to VWC observed at L-band in the 40H20H
configuration.
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TABLE III
RESULTS FOR BIPOLARIZATION APPROACH AT INCIDENCE ANGLES OF 50◦ AND 40◦ (50VH AND 40VH, RESPECTIVELY) OVER A DENSE WHEAT FIELD

AT SIX MICROWAVE FREQUENCIES. RETRIEVAL OF THE VWC AND OF THE SURFACE SOIL MOISTURE: REGRESSION COEFFICIENTS (AV WC , BV WC ,
CV WC AND Amv , Bmv , Cmv ) AND SCORES (SQUARED CORRELATION COEFFICIENT, F-TEST p-VALUE, AND ROOT MEAN SQUARE DIFFERENCE)

Tables III and IV present the results obtained for the bipolar-
ization configurations at 50◦ and 40◦ (Table III) and at 30◦ and
20◦ (Table IV).

1) In the bipolarization configurations, the sensitivity to
VWC retrievals was similar to the biangular configura-
tions presented in Tables I and II. For the 20VH con-
figuration, the best scores were obtained at C-, X-, and
K-bands, with rmse values close to 0.5 kg · m−2 and
r2 values higher than 0.6. At higher incidence angles
(i.e., 30◦, 40◦, and 50◦), the best scores were obtained
at C-band only. The best VWC retrieval was obtained at
C-band in the 50VH configuration, with an r2 value of
0.73 and an rmse of 0.41 kg · m−2. It seems that C-band
was good at retrieving VWC in all the configurations
(r2 was always higher than 0.64), whereas at L-band,
the best VWC retrievals were obtained at low incidence
angles (20VH and 30VH configurations) and with the
50H20H biangular configuration.

2) In the 20VH configuration, the sensitivity to mv was sim-
ilar to that observed for the 50H20H configuration, with
significant correlations from L-band to K-band. At higher
incidence angles (i.e., 30◦, 40◦, and 50◦), the sensitivity
of C-band to K-band to soil moisture decreased, and at
50◦, only L-band was sensitive to mv .

Table V summarizes the sensitivity to mv and VWC based
on the p-values obtained for each configuration. At L-, C-,
and K-bands, in general, the use of low incidence angles

(e.g., 20◦) allows a higher sensitivity to both mv and VWC. At
L-band, the biangular approach at H polarization (50H20H) was
particularly efficient for mv retrieval. In addition, at C- and
K-bands, the use of H polarization (50H20H or 40H20H)
was more efficient. C-band to K-band observations are more
sensitive to VWC than to mv , but a moderate sensitivity to
mv was still observed, particularly at C- and X-bands provided
that observations at low incidence angles are available. The
extremely high frequencies (Q- and W-bands) are not sensitive
to soil moisture over a dense vegetation canopy and are only
moderately sensitive to VWC.

V. DISCUSSION

The sensitivities were assessed with the logarithmic relation-
ships in (1) and (2). This assumption may impact the results.
The regression method of Saleh et al. [14] is based on log-
transformed variables, consistent with the τ−ω model, and
verified at L-band over grass. Wigneron et al. [13] have verified
the method over wheat and soybean. In the case of wheat,
Wigneron et al. [13] were able to estimate soil moisture with
0.05 m3 · m−3 accuracy after calibrating a biangular regres-
sion with L-band synthetic data generated by the τ−ω model
for a large range of soil and vegetation conditions. A wheat
canopy has anisotropic attenuation properties caused by the
nonuniform orientation distribution of the scattering elements
[13], and the equations derived from the τ−ω model may not
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TABLE IV
SAME AS IN TABLE III BUT FOR 30◦ AND 20◦ (30VH AND 20VH, RESPECTIVELY)

TABLE V
SUMMARY OF THE RESULTS FOUND IN THIS STUDY ON THE PASSIVE MICROWAVE RESPONSE TO SURFACE SOIL MOISTURE AND VWC, FROM

L-BAND TO W-BAND, FOR A DENSE WHEAT FIELD. FOUR LEVELS OF SENSITIVITY ARE INDICATED BASED ON THE F-TEST p-VALUES

OF TABLES I–IV FOR EIGHT BIPOLARIZATION OR BIANGULAR CONFIGURATIONS: “∗∗∗” CORRESPONDS TO p-VALUES < 10−3,
“∗∗” CORRESPONDS TO p-VALUES < 0.01, “∗” CORRESPONDS TO p-VALUES < 0.05, AND “NS” MEANS “NONSIGNIFICANT”

represent these properties well. The use of a simple linear
regression did not alter the conclusions of this paper. However,
very significant mv correlations (p-values < 10−3) were ob-
tained for the biangular configurations at C-band (as at L-band).
In the 50H20H configuration, very good rmse scores were

achieved at C-band for both mv and VWC (0.055 m3 · m−3 and
0.47 kg · m−2, respectively).

For bare soil, microwave brightness temperatures are sen-
sitive to soil moisture from L-band to W-band. This study
confirms that, over dense vegetation canopies, L-band is the
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most appropriate wavelength for soil moisture sensing, with
an rmse value lower than 0.04 m3 · m−3 in the 50H20H con-
figuration. However, multiangular observations also permit a
moderate sensitivity to mv to be achieved at higher frequencies,
particularly at C-band. Over the studied wheat field, applying
the regression method without log-transforming the variables
permitted significant correlations to be achieved at C-band in
biangular configurations (e.g., rmse of 0.055 m3 · m−3 in the
50H20H configuration). At higher frequencies, rmse values
were always higher than 0.072 m3 · m−3. As the currently avail-
able soil moisture products derived from satellite microwave
radiometry use high incidence angles only, it is concluded that
the good agreement of these products with in situ observations
in highly vegetated agricultural areas is due to the presence of a
significant fraction of bare soil and/or dry vegetation, caused by
the crop rotation practices. Consequently, the presence of bare
soil may allow a significant sensitivity of radiometric observa-
tions at extremely high frequencies to soil moisture that would
otherwise be completely masked by the vegetation canopy.

Indeed, passive microwave observations from a number of
spaceborne radiometers are available at only high incidence
angles (close to 50◦). The results obtained from the Portos-93
data set show that, at high incidence angles, no sensitivity to
soil moisture is to be expected over dense vegetation canopies,
except for L-band observations. On the other hand, C-, X-,
and K-band observations are sensitive to VWC, even at high
incidence angles.

Soil moisture products can be derived from either passive
or active microwave observations, for example, from the Ad-
vanced Microwave Scanning Radiometer for the Earth Ob-
serving System (AMSR-E) onboard NASA’s Aqua satellite or
from the scatterometers onboard the European Remote Sensing
satellites (ERS-1 and -2) and onboard ESA’s METOP satellite
(ASCAT). Recent studies [15]–[18] showed that soil moisture
products derived from C- and/or X-band satellite microwave
observations (either passive or active) correlate well with in situ
observations and model estimates of the surface soil moisture,
over agricultural regions in France, characterized by dense
crop fields. Gruhier et al. [16] showed that the agreement of
AMSR-E products with in situ observations is as good in France
as in Mali, a semiarid area with low vegetation cover. In the
context of the Portos-93 findings, this result may denote a
spurious correlation with vegetation status.

However, as far as the European scatterometers (onboard
ERS-1, ERS-2, and METOP) are concerned, they provide
C-band backscattering coefficients (σ0) at V polarization and at
distinct incidence angles. Wagner et al. [19] proposed a method
to account for the effects of the vegetation phenology, based
on this multiangular observation capability. Scaled surface soil
moisture estimates are then derived from this simple σ0 change
detection approach. This study shows that C-band multiangular
observations allow a moderate sensitivity to soil moisture in the
case of dense vegetation canopies. In particular, the biangular
configuration at H polarization seems to be most favorable to
soil moisture retrieval. However, the wheat field considered in
this study is characterized by a marked vertical structure, and
V polarization might present a higher sensitivity to soil mois-
ture for other vegetation types.

This explanation does not hold for the AMSR-E passive
microwave observations, available at high incidence angles

only. Although France is not considered as a semiarid area,
bare soil surfaces are quite common in agricultural areas: In
France, annual crops represent about one-third of the land use,
and in many agricultural areas, crop rotation systems generate a
rather high permanent fraction of bare soil and/or mature (dry)
crops. This might explain why AMSR-E observations at high
incidence angles are found to be sensitive to soil moisture.

Prigent et al. [6] suggested that K-band has no overall sensi-
tivity to soil moisture, based on observations from the Special
Sensor Microwave/Imager, with an incidence angle close to
53◦. For high incidence angles, this study confirms that no sen-
sitivity to mv is to be expected over dense vegetation canopies,
from C-band to W-band. Even at L-band, soil moisture retrieval
is difficult (with rmse of 0.059 m3 · m−3 in the 50VH configu-
ration, Table III). However, Prigent et al. [6] showed that, over
specific agricultural sites in Illinois, Russia, and India, high cor-
relations between polarization differences are indeed observed.
They attribute this correlation to the seasonal variability of the
vegetation density. The recent findings showing that C- and
X-band AMSR-E observations correlate well with soil moisture
in agricultural regions tend to confirm the hypothesis that the
microwave brightness temperatures actually respond to soil
moisture, in spite of the vegetation and high incidence angle of
AMSR-E. Again, the presence of bare soil in agricultural areas
might be an explanation for this finding, but this needs further
confirmation.

The presence of bare soil in agricultural areas may also allow
a significant response of the land emissivities at extremely high
frequencies (e.g., W-band). A way to assess this hypothesis is
to investigate the impact of precipitation events on emissivi-
ties retrieved from the Advanced Microwave Sounding Unit-A
(AMSU-A) and AMSU-B observations, over an agricultural
area where a dense rain gauge network is available. The AMSU
sensors are operational, onboard many satellites (NOAA-15,
NOAA-16, NOAA-18, METOP, and AQUA). Land surface
emissivities from AMSU usually vary in time and with surface
type, roughness, observation frequency, and incidence angle
(which goes from −58◦ to +58◦). Moreover, the AMSU-
retrieved emissivities are a mixture between emissivities in
the vertical and the horizontal polarizations since AMSU
measurements are made with a system of rotating antenna.
Karbou et al. [20] showed that emissivity angular dependence
can be neglected for incidence angles smaller than 40◦.

Fig. 5 shows daily mean AMSU-A and AMSU-B emissiv-
ities at 89 GHz, for an eight-month period, over a relatively
flat area in northern France (0.5◦ W−4◦ E and 46◦ N−49◦ N)
covered to a large extent by annual crops. The mean daily
emissivity estimates at 89 GHz are shown together with the
average daily accumulated precipitation measured in situ at
about 810 stations. On average, 152 emissivity observations
are available each day within the considered area, including
observations from AMSU-A NOAA-15, NOAA-16, NOAA-18,
METOP, and AQUA and observations from AMSU-B,
NOAA-16, NOAA-17, and NOAA-18. The emissivity depar-
ture from its average value of 0.95 ranges from −0.04 to +0.02.
Fig. 5 shows that, when rain occurs, the emissivity may drop
by 0.02–0.04. For instance, an increase in precipitation in early
September corresponds to a decrease of the emissivity of more
that 0.02. Similarly, soil freezing may affect the emissivity.
De Rosnay et al. [21] showed that soil freezing may lead to
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Fig. 5. (Dashed line) Daily mean AMSU-A emissivities at 89 GHz in northern France (0.5◦ W–4◦ E and 46◦ N–49◦ N) from 01/09/2008 to 30/04/2009 and
(solid line) daily precipitation measured in situ.

contrasting effects on microwave emission (i.e., decreasing or
increasing emissivities), depending on the vegetation cover.
This effect is visible in mid-January 2009, with a drop in
emissivity which is not associated with a precipitation event.
Indeed, January 2009 was particularly cold in northern France:
The mean minimum air temperature (Tmin) observed in Paris
was negative, −0.2 ◦C, much lower than the median value for
January, +2.5 ◦C, and negative Tmin values were observed from
January 1 to 12. Overall, the land surface emissivity at 89 GHz
appears to be negatively correlated with precipitation. The
Pearson, Kendall, and Spearman statistics are −0.43, −0.20,
and −0.29, respectively, with p-values lower than 10−5.
However, more in-depth studies are required to arrive at final
conclusions. In particular, examining the effect of rain on
emissivities derived from other sensors (which provide mea-
surements at V and H polarizations) would be instructive.

VI. CONCLUSION

This paper has investigated the sensitivity of passive mi-
crowave observations at various frequencies, from L-band to
W-band, to both surface soil moisture and VWC. The Portos-93
observations over a dense wheat field were used. The perfor-
mance of simple logarithmic statistical regression equations
relating mv and VWC to the microwave emissivities was used
as an indicator of the sensitivity to the microwave observations
to either mv or VWC.

L-band observations were found to be very sensitive to mv

in all the configurations tested. Conversely, higher frequencies
tended to be more sensitive to VWC than to mv . However,
multiangular observations permitted a moderate sensitivity to
mv be achieved at higher frequencies, particularly at C-band.
At high incidence angles, no sensitivity to mv was found from
C-band to W-band. As the currently available soil moisture
products derived from satellite microwave radiometry use high
incidence angles only, it is concluded that the good agreement
of these products with in situ observations in highly vegetated
agricultural areas is due to the presence of a significant fraction
of bare soil or dry vegetation, caused by the crop rotation
practices. The presence of bare soil may allow a significant sen-
sitivity of radiometric observations at extremely high frequen-
cies to soil moisture. This hypothesis seems to be confirmed
by the high correlation found between W-band emissivities of
AMSU-A and AMSU-B with precipitation observations in
northern France.
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