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Validation of the ASAR Global Monitoring Mode
Soil Moisture Product Using the NAFE’05 Data Set
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Abstract—The Advanced Synthetic Aperture Radar (ASAR)
Global Monitoring (GM) mode offers an opportunity for global
soil moisture (SM) monitoring at much finer spatial resolution
than that provided by the currently operational Advanced Micro-
wave Scanning Radiometer for the Earth Observing System and
future planned missions such as Soil Moisture and Ocean Salinity
and Soil Moisture Active Passive. Considering the difficulties in
modeling the complex soil–vegetation scattering mechanisms and
the great need of ancillary data for microwave backscatter SM
inversion, algorithms based on temporal change are currently the
best method to examine SM variability. This paper evaluates the
spatial sensitivity of the ASAR GM surface SM product derived
using the temporal change detection methodology developed by
the Vienna University of Technology. This evaluation is made for
an area in southeastern Australia using data from the National
Airborne Field Experiment 2005. The spatial evaluation is made
using three different types of SM data (station, field, and airborne)
across several different scales (1–25 km). Results confirmed the
expected better agreement when using point (Rstation = 0.75)
data as compared to spatial (RPLMR, 1km = 0.4) data. While
the aircraft–ASAR GM correlation values at 1-km resolution
were low, they significantly improved when averaged to 5 km
(RPLMR, 5km = 0.67) or coarser. Consequently, this assessment
shows the ASAR GM potential for monitoring SM when averaged
to a spatial resolution of at least 5 km.

Index Terms—Advanced Synthetic Aperture Radar (ASAR)
Global Monitoring (GM), National Airborne Field Experiment
2005 (NAFE’05), Polarimetric L-band Multibeam Radiometer
(PLMR), soil moisture (SM), spatial variability.

I. INTRODUCTION

THE SPATIAL and temporal resolutions at which soil
moisture (SM) is observed are important preconditions

when analyzing its variability. The fact that most hydrological
processes are best monitored at spatial scales of 1 km or
higher necessitates the need of sensors with much finer spatial
resolution than the coarse resolution provided by the current
and soon available passive and active microwave satellites
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(e.g., Advanced Microwave Scanning Radiometer for the Earth
Observing System—25 km, operational since 2002; METOP
Advanced Scatterometer (ASCAT)—25 km, operational since
2006; and Soil Moisture and Ocean Salinity (SMOS) and
Soil Moisture Active Passive (SMAP)—40 km, scheduled
for launch in 2009 and 2014, respectively). Long-term high-
resolution SM monitoring by spaceborne microwave remote
sensing can be achieved either by downscaling the available
coarse radiometer and scatterometer estimates or by using
active synthetic aperture techniques. However, there exist very
few active spaceborne instruments that operate at high spatial
resolution, high temporal frequency, and sensor wavelength
suitable for monitoring SM.

Current operational systems are as follows: the Synthetic
Aperture Radar (SAR) on RADARSAT-1/2 and ERS-1/2, the
Advanced SAR (ASAR) on ENVISAT, and the Phased Array
type L-band SAR (PALSAR) on ALOS; all except the last sen-
sor operate in C-band. Operational frequency is an essential in-
strument characteristic since it determines the penetration depth
of the microwaves in the soil profile. Currently, L-band is con-
sidered as the optimum frequency for SM monitoring due to its
deeper penetration capabilities (approximately 5 cm at L-band
versus 1 cm at C-band) and the reduced canopy layer attenu-
ation. The spatial resolution of the active sensors listed earlier
ranges from 10 to 1000 m. The higher spatial resolution obser-
vations that can be achieved in the finer resolution modes (SAR:
fine mode—10 m; PALSAR: fine mode—7–44 m; ASAR:
polarization mode—30 m) are limited in temporal repeat.
Moreover, the acquisitions are irregular and often require prior
request. However, frequent monitoring is essential when study-
ing SM due to its strong temporal dynamic nature. The ASAR
Global Monitoring (GM) mode offers high temporal (on aver-
age three days, including both ascending and descending orbits)
and adequate spatial resolution (1 km), making it appropriate
for SM studies using the temporal change detection approach.

Backscatter variability in space and the power of the returned
signal are strongly influenced by the amount of vegetation on
the ground, surface roughness conditions, dielectric properties
of the soil, and sensor (polarization, look/incidence angle, etc.)
and terrain (topography, aspect, etc.) characteristics. Moreover,
the radar backscatter (σo) inversion for SM retrieval is gener-
ally held to be more complex than that from brightness tem-
perature (TB). The strong influence of the land surface on the
radar measured signal and the need of ancillary data (i.e., mean
square roughness height [1], surface correlation length [2],
many vegetation parameters [3], etc.) make the standard re-
trieval algorithms applicable only to very site specific ground
conditions. Consequently, there is no universal operational
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Fig. 1. Plot A shows a schematic representation of the PLMR flight within the Goulburn catchment, where a1 and a2 indicate the farm and b indicates the
regional flight days. The extent of the farms sampled during the campaign is shown in the irregularly shaped polygons indicated by c, with the location of SM
monitoring stations shown by white circles. Spatial distribution of the ASAR GM SSM model parameters is illustrated in plots B–D.

TABLE I
DAYS OF PLMR AND ASAR GM COVERAGE AND RAIN GAUGE PRECIPITATION

algorithm for retrieval of absolute SM from the radar systems
listed previously [4].

A relative surface SM (SSM) product has been devel-
oped by the microwave remote sensing group (http://www.ipf.
tuwien.ac.at/radar) in the Institute of Photogrammetry and Re-
mote Sensing, Vienna University of Technology (TU Wien).
The 1-km product is derived using the ENVISAT/ASAR GM
mode and represents the degree of saturation of the top surface
layer [5] computed by relating the actual observed backscatter
value for a particular pixel to reference backscatter values for
dry and wet surface conditions. This methodology has been
successfully applied for SM retrieval at 25-km resolution using
scatterometer observations from ERS-1/2 and ASCAT [5]–[9].
However, at 1-km scale, the methodology has been validated
only using point data, and the ASAR GM SSM 1-km product,
which is used in this paper, is a new development. If proven
accurate and sensitive to SM variations, the ASAR GM SSM
product would be beneficial in terms of the following: 1) direct
SM monitoring at a resolution suitable for local and watershed
applications; 2) potential use in combined passive–active dis-
aggregation methods [10]; and 3) improved spatial hydrologic
modeling via data assimilation, rather than the commonly used
approach of assimilating station-observed SM or low-resolution
satellite estimates [11]–[16].

The objective of this paper is therefore to evaluate the TU
Wien ASAR GM SSM product (ASAR GM SSM) using the
National Airborne Field Experiment 2005 (NAFE’05) data set.

The ASAR GM spatial sensitivity to SSM is assessed using
the following: 1) in situ data from permanent SM stations;
2) extensive ground-measured SM collected during the NAFE’05
field experiment; and 3) airborne SM derived from the Polar-
imetric L-band Multibeam Radiometer (PLMR) at 1-km resolu-
tion. This allows the spatial sensitivity of the ASAR GM product
to be analyzed over several different spatial scales and addresses
an important question: Are point measurements of SM adequate
to achieve accurate validation of a satellite-derived product?

II. SM DATA SETS

The NAFE’05 experiment was conducted in the Goulburn
catchment (Fig. 1) during the month of November 2005 [17],
[18]. The area is historically characterized by temperate climate
with maximum average temperatures and major precipitation
events occurring typically during the southern hemisphere sum-
mer (November to February). The field campaign sampling was
undertaken over a 40 km × 40 km experimental area located
in the upper half of the catchment, herein referred to as the
PLMR regional flight box (Fig. 1, plot A, polygon b). The
area is predominantly grasslands and croplands on undulating
to flat terrain with fertile basaltic soils. Forests and sandstone-
derived soil cover the southern portion of the domain. Extensive
SM mapping through microwave techniques and in situ ground
monitoring were undertaken simultaneously at several different
scales (Table I and Fig. 1, plot A). Additional SM information
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was available from 18 permanent stations that were present in
the regional box.

The following section describes the three SM data sets
(in situ (field and station), PLMR, and ASAR GM) used in this
paper and provides an overview of the methodologies utilized
in the aircraft (PLMR) and satellite (ASAR GM) retrievals.

A. In Situ SM Data Sets

The Goulburn catchment has an extensive SM and meteo-
rological network offering near-real-time in situ observations
since September 2002 [19]. There are 26 SM monitoring
stations throughout the Goulburn catchment (white circles in
Fig. 1, plot A), with 18 of them falling within the PLMR
regional flight box and considered in this paper. Apart from
the seven stations concentrated over an intensively monitored
150-ha area (Fig. 1, plot A, PLMR subarea a1, middle dashed
outlined polygon), the rest are evenly distributed throughout the
sampling domain. Soil wetness information is recorded every
20 min at several different depths using Stevens Hydraprobes
(0–5 cm) and Campbell Scientific CS616 reflectometers (0–30,
30–60, and 60–90 cm). Temperature probes, necessary for
correction and calibration of the SM readings, were installed
at various depths along with the SM sensors and record soil
temperature data at the same time interval as the SM sensors.
Considering the shallow penetration capabilities of microwave
measurements, only calibrated near-SSM information from
the shallowest available depth (0–5 cm) is used here. Two
automated weather stations provide additional meteorological
parameters (including air temperature, relative humidity, wind
speed and direction, solar radiation, and barometric pressure)
measured every 1-min and averaged over 20-min intervals [19].

The ground component of the NAFE’05 field campaign
included 20 days of in situ SM sampling carried out over a
26-day period between October 31 and November 25, 2005 at
two different scales—regional- and fine-scale farm samplings.
The regional ground sampling was performed once a week
over a 40 km × 40 km area (Fig. 1, plot A, polygon b) at
approximately 1-km spacing between the sampling points. The
locations of the sampling points were selected on the basis of
being representative and spatially comprehensive. Farm-scale
SM sampling, done twice a week, was conducted over two
subareas (10 km × 30 km and 15 km × 30 km shown in Fig. 1,
plot A, polygons a1 and a2, respectively) covering a total of
eight focus farms (Fig. 1, plot A, polygon c). The fine-scale
sampling scheme involved SM monitoring at several different
resolutions ranging between 6.25 m in the inner most sections
and 500 m in the outer most sections of the high-resolution
areas (see Table I for the total number of days sampled in
each land unit). The sampling distance over these areas was
determined based on the local variability in terms of vegetation
cover, soil type, and microtopography. The SM estimates of
the top 5 cm of the soil profile were measured using Stevens
Hydraprobes1 which was done over a 6–8-h time window

1The University of Melbourne, Melbourne, Australia, has developed a tech-
nique that integrates the Stevens Hydraprobe and a Global Positioning System
in a Geographical Information System framework, known as the Hydraprobe
Data Acquisition System. It allows SM, soil temperature, auxiliary information,
and exact geographic coordinates of the sampling point to be automatically
recorded [20].

(∼6 A.M. to ∼2 P.M.). Schematic representations of the in situ
regional and farm sampling strategies are given in [18, Figs. 1
and 2].

Additional data acquired during NAFE’05 include the fol-
lowing [17]: gravimetric samples, collected together with the
SM sampling, for calibration of the Hydraprobe readings and
soil texture analyses; canopy characteristics (i.e., type and
height) and vegetation samples done once a week; and sur-
face roughness measurements, approximate percent rock cover
estimates, and canopy descriptors (i.e., leaf area index) ac-
quired once for the duration of the experiment. The vegetation
data were used to monitor the spatial variability and temporal
changes in vegetation water content and biomass across the
domain for the duration of the campaign, as well as to provide
the required vegetation parameters necessary for the retrieval
procedure.

B. PLMR-Derived SM

The PLMR instrument flown on a small aircraft operates
at 1.413 GHz (L-band), with both H- and V-polarizations at
incidence angles of ±7◦, ±21.5◦, and ±38.5◦. A total of
4 regional- and 16 farm-scale (8 at each focus farm) PLMR
scenes at 1-km spatial resolution were acquired coincident with
the ground sampling over the three domains discussed earlier
and shown in Fig. 1. Brightness temperature data were collected
at 62.5-m and 1-km spatial resolutions over 4–5-h time period
starting at approximately 0600 A.M.. Considering the fact that
SM changes on a diurnal basis, it is important to note that
the SM variability during the ground sampling time frame was
estimated to be less than 0.011 m3/m3. Since the aircraft time
period was generally shorter, that change would be even smaller
for the PLMR mapping interval [18]. Along with the in-flight
calibration checks, PLMR was calibrated on a daily basis both
before and after the flights against cold and warm surfaces. The
TB accuracy over the 150–300 K range (TB range measured
during the campaign) was estimated to be better than 0.7 and
2 K for the H- and V-polarizations, respectively. The TB

patterns at 1-km spatial resolution over the study domain in-
dicated good PLMR sensitivity to ground variability in terms
of vegetation, SM, and topography [18], [21].

The PLMR SM product was derived using the L-band Mi-
crowave Emission of the Biosphere (L-MEB) model [22] where
the land surface emission was simulated using the radiative
transfer equation with vegetation assumed to be homogenous
within the satellite footprint [18]. The soil–vegetation effects on
the microwave signal are described using the “τ−ω model” [23]
where the TB for certain observation angle and polarization is
modeled as a function of the effective temperatures of soil and
vegetation, the single scattering albedo (ω), the transmissivity
of the canopy layer, and the soil reflectivity. The effective soil
temperature in the model is estimated using physical tempera-
ture observations measured at the soil surface and a deep soil
layer [18]. L-MEB employs two dielectric-mixing models for
relating the smooth soil reflectivity to SM: Dobson [24] and
Mätzler [25]; the latter is utilized for very dry soils with a sand
fraction greater than 90%.

Initial retrieval was carried out using the “default” set
of SMOS parameters for ω, Hr (surface roughness), and
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b (vegetation parameter) [18], [22] and utilizing 62.5-m
H-polarized TB data. Since the retrieval error was estimated to
be better than the SMOS-aimed accuracy of 0.04 m3/m3 only
for areas covered by grasslands (RMSEgrassland_no_litter =
0.016 m3/m3 and average RMSEgrassland_with_litter =
0.041 m3/m3 versus RMSE over agricultural fields ranging
between 0.099 and 0.325 m3/m3, where RMSE is the root
mean square error), a site-specific calibration of b and Hr was
performed using field-collected vegetation and surface rough-
ness data. The optimization was carried out through the so-
called interactive least square minimization of the cost function
procedure. First, b and Hr were calibrated simultaneously. Sec-
ond, Hr was calibrated alone assuming that the SMOS vegeta-
tion values were correct. Third, Hr calibration as a function of
SM was performed. RMSE significantly improved after apply-
ing the third optimization scenario (∼ 0.04 m3/m3 over both
grass and croplands at 62.5-m resolution). The third calibrated
model was subsequently applied to the 1-km PLMR retrieval.
The 1-km estimates showed similar accuracy to the 62.5-km
retrievals (average RMSEPLMR,1km of 0.038 m3/m3 and R2

of 0.88, R. Panciera personal communication) when compared
with the available ground measurements. Detailed discussion of
retrieval methodology, including “default” and postcalibration
parameter values and spatial accuracy of PLMR-retrieved maps
over the NAFE’05 domain, is offered in [18].

C. ASAR GM SSM Product

ENVISAT is in a sun-synchronous orbit with a repeat cycle
of 35 days. It crosses the equatorial plane at 10 A.M./P.M. and
provides 14 orbits per day. ASAR operates at C-band with five
polarization modes (VV, HH, VV/HH, HV/HH, or VH/VV)
and different spatial resolutions, ranging from a couple of
meters in the image mode to 1 km in the GM mode. Incidence
angle ranges between 20◦ and 40◦. Temporal resolution of
the ASAR GM mode depends strongly on the geolocation of
the imaging area. Typically, acquisitions are more frequent
over the high-latitude areas (see Fig. 1[26]). Full description
of all ENVISAT/ASAR operational products can be found
at http://envisat.esa.int/instruments/asar/. Although ENVISAT
has acquired data since March 2002, the GM mode data are
available only from December 2004.

The product used in this paper is a relative measure of SM in
the top few centimeters of the soil layer [5], [6]. The retrieval
algorithm is based on temporal change detection. ASAR GM
HH-polarization backscatter data are initially normalized to a
medium incidence angle of 30◦, where the reference angle is
determined such as to minimize the extrapolation errors. It is
known that backscatter is highly sensitive to water present in
both the canopy and the top few centimeters of the soil layer
where the SM signal has been demonstrated to dominate at
lower incidence angle and observational frequency, and hori-
zontal polarization. In change detection approaches at constant
incidence angle and polarization, any change in the observed
backscatter is expected to be due to changes in vegetation
and/or SM. Canopy changes over longer time scales (excluding
rapid events such as clearings, harvesting, etc.), as compared to
the SM, and can be ignored if the change detection approach
is based on relatively short time steps [10]. In the case of

long-term time-series-based approaches, as in the TU Wien
algorithm, the seasonal vegetation variability needs to be ac-
counted for. However, Pathe et al. [26] concluded that, over the
ASAR GM incidence angle range, the backscatter variability
is primarily dominated by the SM signal, which supports the
earlier conclusion in [8] that, at C-band, the seasonal vegetation
effect is small. Thus, in a first approximation, it was neglected
in the ASAR GM retrieval. The error resulting due to this
simplification will be discussed in Section III-A.

The SSM (ms) is computed by comparing the normalized
backscatter value for a particular pixel to the driest and wettest
measured values [see (1)], where the highest and lowest values
were determined using time series analyses on a per-pixel basis.
Consequently, the ms value, which ranges between 0 (dry) and
1 (fully saturated soil), is computed by

ms(t) =

[
σo(30, t) − σo

dry(30)
]

[
σo

wet(30) − σo
dry(30)

] (1)

where ms is relative SSM content at certain time (t) and σo
wet

and σo
dry are minima and maxima backscattering values at a

local incidence angle of 30◦. To determine the σo
wet and σo

dry

values, it is assumed that the expected number of observations
acquired under dry/wet SM conditions is known. Historical
ERS data and thresholds of 5% and 95% SM for the dry and wet
references, respectively, are used to approximate the probable
number of observations. The σo

dry value, for example, is then
computed by dividing the average lowest measured ASAR GM
σo (30) by the number of estimated dry observations. Con-
sidering that atmospheric and hydrological processes are the
controlling factors that affect the spatio-temporal distribution of
the SM [27], the spatial resolution difference between ASAR
GM and ERS is not believed to be an issue in the calibration
scheme. More problematic are the limited number of ASAR
observations, their irregular temporal sampling, and their high
noise level [26]. These effects may lead to inaccuracies in σo

wet

and σo
dry and hence to bias the retrieved SM data. The difference

between the wet and dry reference values [denominator in (1)]
is referred to as backscatter sensitivity (S) to SM. The σo

dry

and S dependence on surface roughness and vegetation char-
acterizes with strong spatial variability, which was discussed in
details in [26].

The algorithm performance is evaluated using [26]

Δms,max ≈
√(

1.2
S

)2

+
(

β

S

)2

+ 0.01 (2)

where Δms,max is the maximum error, 1.2 is the sensor noise
given in decibels, S is the sensitivity, and β is the slope of
the σo-incidence curve measured in decibels per degree. This
error estimate assumes maximum contribution error of the
model parameters, including sensor noise, and accounts for the
neglection of the seasonal vegetation effect, and inaccuracies in
the dry and wet references.

The TU Wien retrieval methodology has been successfully
applied to ERS and, recently, to MetOp-A ASCAT [9], [28]
scatterometer data on a 25-km spatial grid and validated over
the Canadian prairies [6], Iberian Peninsular [6], Ukraine [8],
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and Western Africa [5]. The authors reported adequate changes
in SM with change in precipitation conditions over the areas
with accuracy of ∼0.048–0.063 m3/m3 depending on rainfall,
vegetation cover, local microrelief, and soil layer depth of
ground observations. Pathe et al. [26] present validation results
over the Oklahoma MESONET, using ASAR GM, ERS, and
in situ SM products. Taking into account the significant pixel
resolution differences among all three data sources (1 km,
50 km, and point observation, respectively), the correlation
coefficients obtained were interpreted as promising. However,
to date, ASAR GM validation has been mostly undertaken
using station data. The PLMR-retrieved SM over the NAFE’05
domain at the same resolution as ASAR GM provides a unique
opportunity to address spatial validation of the ASAR GM
SSM on a pixel-by-pixel basis, allowing the ASAR GM SSM
spatial patterns to be studied over an area of ∼ 1600 km2

without introducing any bias that might exist from point-based
monitoring due to ground heterogeneities.

The ms value estimated by the ASAR-GM-observed
backscatter using (1) is a relative measure of the moisture
content in the top few centimeters of the soil layer. To perform
comparison analyses with ground-measured or PLMR-retrieved
SM, the ms values were first converted into absolute SM.
The conversion was done by using the van Genuchten formula
[29], which relates the degree of saturation to the actual SM
content. The saturated moisture content was assumed to be
equal to the porosity value, which was derived in terms of soil
bulk density and density of the soil particles [30]. Finally, ms

was transformed into SM by rearranging the aforementioned
relationships [29], [30] to yield

SM = ms

[(
1 − ρb

ρs

)
− Θr

]
+ Θr (3)

where ms is the level of saturation estimated from the ASAR
GM measurements, Θr is the residual SM, and ρb and ρs are the
soil bulk density and density of soil particles (later assumed to
be equal to 2.65 g/cm3), respectively. Here, Θr was determined
as an average of the minimum observed SM from all permanent
SM stations within the 40 km × 40 km PLMR flight box
(Θr = 0.04 m3/m3). The average bulk density was calculated
from in situ measurements made during the field campaign
(ρb = 1.08 kg/m3).

III. DISCUSSION

Accuracy of the ASAR-GM-derived SM was validated at
several scales: point using in situ observations and 1–25 km
using airborne-derived SM from the PLMR L-band radiometer.
The results from these validations are presented and discussed
separately in Sections III-B and C. However, in order to ad-
equately interpret the evaluation result, it is important that we
first briefly describe the model parameters utilized in the ASAR
GM SSM retrieval and possible error sources.

A. ASAR GM SSM—Model Parameters

The main sources of retrieval error in the ASAR GM
product were the limited number of observations used in the
time series, uncertainties in the statistical methods used to

derive the model parameters, and the measurement noise of
the ASAR system [26]. The spatial distribution of the model
parameters (S and dry reference) and the maximum retrieval
error over the Goulburn catchment are shown in Fig. 1 (plots
B–D). Comparison of the three images revealed close spatial
resemblance, which, in turn, strongly mimicked the vegetation
conditions encountered in the domain. A high σo sensitivity
range is a necessary precondition for a good algorithm perfor-
mance. The spatial correlation between S and σo

dry was high
(RPLMR = 0.76 and RGoulb.Catch. = 0.74) with comparable
magnitude to the value reported by Pathe et al. [26]. The
similarity of the correlation values computed over the PLMR
flight box and the Goulburn catchment indicated that the PLMR
extent adequately captured the spatial heterogeneity in terms
of vegetation diversity and topographic variability present in
the catchment. Approximately 47.5% change in SM generates
8–9-dB increase in backscatter [31]. Comparison with the
sensitivity range (Savr = 9.4 dB and ∼40% SM change) over
the NAFE domain revealed excellent ASAR GM sensitivity and
high accuracy of the TU Wien S model parameter. Considering
the three vegetation classes (forest, crops, and pasture) used in
the PLMR SM retrieval (see [18, Fig. 1]), an average maximum
retrieval error of 0.17 m3/m3 was achieved over areas covered
by forests (sensitivity range of 7.7 dB), as compared to 14% and
15% for areas occupied by croplands and pastures, respectively
(sensitivity range of 9.8 dB for both classes). Larger than 20%
maximum error was observed over the more densely vegetated
southern portion of the catchment, which agreed with the results
presented in [26]. Analysis of the error budget reveals that the
retrieval error is dominated by the noise of the backscatter
measurements [first term in (2)], while potential errors due
to seasonal vegetation cover effects are about one order of
magnitude smaller.

B. ASAR GM SSM—Station/In Situ SM Comparisons

During the NAFE’05 campaign, the regional-scale in situ
data collection was undertaken in an irregular pattern with
ground spacing between the sampling points ranging between 1
and 2 km, depending on accessibility throughout the study area.
The overall Pearson correlation coefficient (R) for the PLMR
regional flight box is shown in Fig. 2 (plot 1a) (R = 0.61 and
RMSE = 0.14 m3/m3). This R value was calculated using all
matching dates of observations between ASAR and in situ data
(Table I). One additional pair was included: Since the ASAR
data on November 20th were acquired at ∼2300 P.M. local time,
the November 21st sampled SM was paired with the November
20th ASAR GM SSM as no rainfall occurred between the time
of sampling/PLMR flight and ASAR overpass.

As explained, the sampling resolution at regional and farm
scales was different. The finer sampling scheme adopted on the
farm-scale days meant more sampling locations, and therefore,
more measurements were averaged to create the 1 km × 1 km
grid across the focus farms; one may therefore assume a more
accurate SM estimation on the farm- than on regional-sampling
days. However, the R-values (Fig. 2, plots 1b and 1c) for the
two scales (Rregional = 0.64 and Rfarm = 0.55) were not very
different compared to the overall R value for the whole domain.
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Fig. 2. In situ versus ASAR GM SSM. Columns 1 and 2 show in situ SM
measurements averaged from field measurements gridded to 1 km and point
station data, respectively. Row a is ASAR data from all flight days during the
campaign, row b is ASAR data on regional (reg.) flight days only, and row c is
ASAR data from farm-scale flight days.

Moreover, the results indicate a wet bias in the ASAR GM SSM
relative to the field-collected data (Biasall = 5.2%). Possible
reasons for this could be residual moisture, porosity, and bulk
density values used in the soil wetness to SM conversion or
inaccuracies in the estimated dry and wet backscatter refer-
ences. The SM range captured by the ASAR is relatively lower
(on average ∼30%) than the in situ measurements (average
SM dynamic Rangefield = 0.31 m3/m3 versus RangeASAR =
0.21 m3/m3).

The in situ SM data observed from the permanent SM sta-
tions were also used. To reduce possible georeferencing errors
and the impact of the strong noise present in the ASAR images
(ASAR GM mode showed a noise of ∼1.2 dB compared to
< 0.2 dB for the ASCAT data [26]), the ASAR GM SSM used
for the comparisons was the average of a 2 × 2 window cen-
tered on the location of the station. Four out of the 18 permanent
sites were not operational during the NAFE’05 campaign. In
addition, SM data collected at K2 were very irregular for the
month of November, resulting in only one day of coincident
station–ASAR data collection. Therefore, K2 was excluded.
Additionally, there were no data recorded at the time of the
ASAR GM overpass at stations K4, M2, and M6; thus, the total
number of working stations for the NAFE’05 period was further
reduced to 11. The mean in situ SM values computed using
station data collected within 2 h of the ASAR overpass time
were used in the ASAR GM SSM–station SM analysis. Because

of the close proximity, a daily average SM value for the S1–S7
stations was calculated and used in the analysis. Moreover, it
should be noted that none of the stations were located in a
forest area.

Fig. 2 (second row) shows spatial correlation between the
station SM and ASAR GM SSM computed on per-pixel ba-
sis using all available coincident in situ–satellite observations
within the PLMR regional flight box. While there was a good
correlation with the station data at all station locations, RMSE
was better than 0.06 m3/m3 only at M3 and K3; no dependence
on vegetation and topography was observed. A Pearson corre-
lation coefficient of 0.75 indicated a good agreement between
the two products (satellite and station SM) over the NAFE’05
domain (Fig. 2, plot 2a). Slightly higher correlation coefficients
(Fig. 2, plots 2b and 2c) were computed for the two farm-
scale sampling subareas (Ra1 = 0.76 and Ra2 = 0.86). Both
subareas are similar in terms of vegetation (predominantly
grasslands) and topography. The t-test was used to assess
the difference in elevation and slope, indicating no significant
difference between the two subunits at 95% confidence interval
(p > 0.05).

The wet bias noticeable in the field–ASAR GM SSM com-
parison is also presented (Biasall = 3.59%). The RMSE
was lower when using the station SM data (average
RMSEstation = 0.085 m3/m3) as compared to the field-
measured SM data (average RMSEfield = 0.14 m3/m3). This
difference can be explained by the sampling frequency of
the two data sets and the effect of the surface heterogeneity.
Considering that SM is highly variable in space, a large number
of observations are needed to achieve accurate average estimate
within the satellite footprint. Over the NAFE’05 study domain
(1600 km2), stations are limited to (ideally) 18, and there is
typically only one station present within a single ASAR GM
pixel. Furthermore, at 1 km2 (ASAR GM spatial resolution),
having absolutely homogenous ground conditions is impos-
sible. Thus, the stations do not actually provide an average
estimate but a single SM measurement within the satellite
footprint that is strongly controlled by the surface conditions
present at the location of the station. Therefore, because of its
higher sampling frequency, the field-collected data would more
accurately capture the spatial variability within the satellite
footprint, resulting into a more profound surface heterogeneity
effect in the ASAR GM–field comparisons.

C. ASAR GM SSM–PLMR SM Comparisons

Spatial comparisons between ASAR GM SSM and PLMR-
derived SM were carried out at several different scales. The
results from these analyses are shown in Fig. 3. The scat-
ter plots were built using all available observations acquired
during the duration of the field campaign (see Table I). Two
additional ASAR GM SSM–PLMR SM pairs were included:
ASAR19Nov−PLMR18Nov and ASAR20Nov−PLMR21Nov.
The motivation for this choice of dates was due to the data
availability.

The pixel-by-pixel comparison over the PLMR regional box
at the original resolution of the two remote sensors (1-km
resolution) was strongly affected by the high noise level of
1-km ASAR GM SSM product and resulted in R = 0.39 and



IE
EE

Pr
oo

f

MLADENOVA et al.: VALIDATION OF THE ASAR GLOBAL MONITORING MODE 7

Fig. 3. PLMR versus ASAR GM SSM comparisons at several different scales:
1 (original pixel resolution), 5, 10, 15, 20, and 25 km. Pearson correlation
coefficient (R) and root mean square error (RMSE) are given in the top
portion of each scatter plot.

RMSE = 0.12 m3/m3. Decreasing the spatial resolution by
aggregating the data resulted in R and RMSE improvement,
with the best R and RMSE estimates achieved at 25 km
[R = 0.93 and RMSE = 0.07 m3/m3 (Fig. 3)]. Although R
increased significantly (R = 0.67) after aggregating the ASAR
GM SSM up to 5 km, RMSE remained close to the 1-km
result. Despite the improved correlation coefficients at 10 and
15 km, the RMSE remained high. If, however, the bias was
removed [26], the error values improved, on average, by 10%,
except at 1 km where the relative reduction in RMSE was only
2.9%, and were as follows: 0.117 m3/m3 at 1 km, 0.088 m3/m3

at 5 km, 0.083 m3/m3 at 10 km, 0.069 m3/m3 at 15 km,
0.080 m3/m3 at 20 km, and 0.063 m3/m3 at 25 km. Even
though the error values remained above the desired accuracy
range, the results can be considered reasonable in terms of po-
tential ASAR GM application for assimilation into hydrologic
models, e.g., taking into account the high noise levels present
in the 1-km data.

At finer spatial resolution, an important condition for good
correlation is having a wide range of SM conditions (i.e., from
very wet to very dry). This condition was not satisfied on an
individual day. Moreover, the ASAR GM SSM range had a
lower overall range compared to PLMR. Together, this resulted
in poor daily correlations (Fig. 4). The mean here was thus
computed as an average from the R values for each individual
day. As can be seen, although the Rmean (black square in
Fig. 4) indicates reasonable overall correlations between the

Fig. 4. Daily R-value variation with spatial resolution between ASAR GM
SSM (m3/m3) and PLMR SM (m3/m3). Black solid squares show the aver-
age from paired days (n), whereas the upper and lower limits of the whiskers
indicate, respectively, the minimum and maximum correlation coefficients at a
particular spatial resolution.

Fig. 5. (Solid diamonds) Mean daily ASAR GM, (white diamonds) PLMR,
and (circles) station SM (m3/m3) products and (bars) rain gauge precipitation
(mm) time series for the NAFE’05 duration. Each individual daily SM value
was computed by spatially averaging all available observations within the
aircraft flight box bounded by the white solid line in Fig. 1.

two sensors at coarser scale, there was a wide range of R
variability on a daily basis, shown by the Rmin and Rmax (lower
and upper limits of the whiskers in Fig. 4). One can notice
consistent increase and slight drop at 20 km in the daily Rmean

with a decrease in resolution which is similar to the results from
the overall spatial analysis that were discussed in the previous
paragraph (Fig. 3).

Wetting and drying trends are indicated by the response
of both sensors (Fig. 5). The rapid increase in SM due to the
October 31st and November 5th rainfall events followed by
drying is in the same order of magnitude, showing a good
agreement in the response of both systems. However, by the
end of the observing period, the ASAR GM SSM exhibits a wet
bias. The lack of ASAR data between November 8th and 18th
does not allow interpretation of the ASAR GM SSM behavior
under drying conditions and, thus, an examination of the wet
bias dynamics. Taking into consideration the mean ASAR
and PLMR SM (PLMRNAFE05mean = 0.23 m3/m3 and
ASARNAFE05mean = 0.29 m3/m3) values shown in Fig. 5,
it can be assumed that the ASAR GM SSM values remain
higher than the PLMR-derived SM values. The almost perfect
agreement in the beginning of the time series (the wettest SM
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TABLE II
DESCRIPTIVE STATISTICS AND TEMPORAL CORRELATION COEFFICIENTS FOR ASAR GM SSM

AND PLMR SM PRODUCTS FOR THE DURATION OF THE NAFE’05 EXPERIMENT

conditions) and the large difference between ASAR and PLMR
around November 18th and 19th suggest that the wet ASAR
GM SSM bias is the strongest under dry ground conditions.
This was further supported by the values computed using the
limited number of available PLMR–ASAR GM coincident
days, i.e., BiasNov1−7 = 0.6% versus BiasNov18−23 = 8%
(n = 4 for both time periods, where n is the number of
coincident days). However, we cannot generalize some of the
conclusions due to the limited time duration examined here.

The ASAR and PLMR temporal correlation analysis is pre-
sented in Table II. Although the overall RMSE here was low
(RMSEall = 0.052 m3/m3), when computed on a vegetation-
type basis, the R and RMSE values demonstrated some
variability. Grasslands, which occupy ∼80% of the domain,
indicated a good temporal agreement with R of 0.996 and
RMSE of 0.056 m3/m3. Despite the reasonable R values for
the croplands and forests, RMSE values were on the order of
0.13–0.14 m3/m3, which may be due to the limited extent of
these two cover classes and their homogeneity.

An example of spatial comparisons at 1, 5, and 10 km on
a per-pixel basis between PLMR SM and ASAR GM SSM
from November 7th and 6th (wet SM conditions following
the rainfall event from November 5th) and November 20th
and 21st (dry SM conditions associated with a ten-day dry-
down period), respectively, is shown in Fig. 6. The PLMR
SM map represents the area as being drier in the southern
portion of the domain and wettest over the croplands. Due to
the strong ASAR noise level at 1 km, that pattern cannot be
seen as noticeably as on the PLMR image. Although there
is a general resemblance between the two images, most of
the ground patterns clearly visible in the PLMR-derived SM
product are strongly masked by the noise present in the ASAR
product. Several things need to be taken into account when in-
terpreting these images: different time span between the rainfall
event and the sensor dates (i.e., Nov. 5th—precipitation, Nov.
6th—ASAR GM, and Nov. 7th—PLMR). Additionally, ASAR
GM and PLMR acquisitions were done at different times during
the day (ASAR GM ∼1000 P.M. versus PLMR ∼1000 A.M).
Furthermore, as already explained, both systems operate at
different frequencies [shallower ASAR GM (C-band) sensing
depth as compared to PLMR (L-band)]. Therefore, the more
homogeneous wetting throughout the northern and the central
portions of the domain observed in the ASAR GM SSM at 5
and 10 km was anticipated. Along with the previously listed
factors, the poor resemblance over the southern one-third of
the area, which is mainly occupied by forests, may be due to
model parameterization inaccuracies (in both retrievals) for this

Fig. 6. Spatial comparisons between PLMR SM for November 7 and 21, 2005
and ASAR GM SSM for November 6 and 20, 2005 at 1-, 5-, and 10-km pixel
resolutions.

particular vegetation class. The strong vegetation attenuation
present under such conditions would deteriorate the SM signal
and strongly increase the scattering in the case of ASAR.
Furthermore, considering that, at the 1-km pixel, it is difficult to
achieve uniform ground conditions, the measured signal would
be additionally complicated by the existence of subpixel het-
erogeneity. The performed upscaling significantly reduced the
noise present in the ASAR GM data, and a visible resemblance
between both products emerged.

A common trend can be observed in Figs. 2, 3, and 5—ASAR
GM lacks the dynamics captured in the other SM products de-
scribed here. This is most noticeable in the ASAR GM–PLMR
comparisons (Fig. 3), where the range is further reduced by
the upscaling. At 1 km, the observed variability in the ASAR
GM SSM data is caused by the high ASAR GM noise level,
which, as discussed earlier, is the major source of error in the
algorithm. The proposed spatial aggregation reduces the noise
and thus improves the SM signal. The ASAR GM SSM range
drops from 0.28 m3/m3 at 5 km to 0.20 m3/m3 at 15 km and
remains constant onward, which leads to the suggestion that the
proposed limits for spatial averaging to 3–10 km [26] may be
higher. In addition, it appears that the satellite and the aircraft
spatially compare better in the wet end than when drier, which
is similar to the temporal trend in the series analysis shown
in Fig. 5. Overall, the ASAR GM SSM demonstrates lower
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sensitivity and, as pointed out earlier, exhibits a narrower SM
range compared to the PLMR SM product. Uncertainties in the
bulk density used for the relative-to-absolute SM conversion
in the ASAR GM SSM case, along with inherited errors in
the retrieval algorithms, can explain the large dynamic range
difference between the ASAR GM and PLMR SM products
(0.43 versus 0.22 m3/m3, where the values were computed as
an average of the dynamic range at 5–25 km, excluding 1 km).

Finally, a significance test for R with p = 0.01 was per-
formed in order to assess the statistical accuracy of the spatial
(Figs. 2 and 3) and temporal (Table II) correlations achieved in
this paper. All R values were found to be significant (except
for the temporal coefficients computed over croplands and
forestlands), which, in turn, confirms the previously discussed
relationships and levels of agreement among the three SM
products examined in this paper.

IV. CONCLUSION

The ASAR GM surface soil wetness product has been as-
sessed for its sensitivity to SM using in situobserved (perma-
nent stations and field-collected) and aircraft-derived SM over
the NAFE’05 study area. The area is predominantly covered
by grasslands and partly by forests and croplands. The ASAR
GM SSM product was shown to capture the SM variability
reasonably well when evaluated with the point measured in situ
data obtained from the permanent SM stations in the domain
(R = 0.69 and RMSE = 0.099 m3/m3). Comparisons with
field-collected and PLMR-derived SM at 1-km SM showed
similar correlation and root mean square error.

An important source of error in the ASAR GM SSM is
the high noise level in the satellite system. Some of the noise
effects and the additional impact of vegetation and topographic
conditions were smoothed out by using a 2 × 2 window when
extracting the ASAR GM SSM values corresponding to the
station location. Several main conclusions can be noted.

1) Temporal analysis demonstrated good mean overall
ASAR GM SSM sensitivity to SM at 1-km spatial scale
and a wet bias compared to the in situ data for the duration
and ground conditions of the NAFE’05 field campaign.

2) Comparisons with in situ SM data revealed high spatial
agreement, which was not achieved when using the air-
craft data set. Thus, it may be concluded that the spatial
correlations were strongly dependent on the spatial scale
at which the analysis was performed, and were largely
controlled by the high ASAR GM noise levels.

3) Decrease in spatial resolution (increase in pixel size)
resulted in the improvement in R and RMSE shown to
be the best at 25 km; however, RMSE remained higher
than desired for SM retrieval when using microwave
techniques.

4) Temporal changes were adequately represented in both
data sets showing wetting and drying patterns with an al-
most perfect agreement in the beginning of the campaign
when the SM conditions were the wettest.

It should be noted that the results presented by Pathe et al.
[26] are solely based on long-term temporal agreement. This
analysis was focused primarily on evaluation of the ASAR GM
SSM spatial accuracy at several different scales. Overall, this

paper confirms the conclusion of Pathe et al. [26] that ASAR
GM has potential for monitoring SM and verifies its ability
to successfully depict change in moisture conditions. However,
these results indicate that the proposed aggregation to a mini-
mum of 3-km spatial resolution may be slightly underestimated.
The presented results from the ASAR–PLMR comparisons at
1 km over the NAFE’05 ground conditions demonstrated that,
despite the high spatial correlation coefficients and low RMSE
computed using point observed SM, detailed spatial pattern
comparison was poor due to noise in the ASAR GM product.
More research needs to be carried out in exploring techniques
for reducing the noise, which may result in improved spatial
pattern resemblance. This will further permit the use of the
ASAR GM (or, in general, the use of any fine-resolution ac-
tively) derived product for disaggregation of coarse-resolution
SM estimates through applying similar synergistic algorithms
as the one proposed by [10]. Moreover, the upcoming SMAP
mission is anticipated to provide radar data at 3-km ground
spacing. However, the raw backscatter observations will be
acquired at the same spatial resolution as ASAR GM, and as
was demonstrated, at this resolution, there is a significant level
of noise that will deteriorate the SM signal. Thus, the results
of this paper support the SMAP-adopted approach for spatial
averaging of the 1-km radar estimates to coarser aggregates.

Although the estimated error values were higher than the
desired accuracy of 0.04 m3/m3, considering that several data
assimilation techniques (i.e., Kalman filter/smoother and opti-
mum interpolation) allow one to account for the observation
and the model errors in the assimilation step suggests that
ASAR GM has potential for data assimilation applications.
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