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Abstract Accurate, precise and timely forecasts of flood wave arrival time, depth and

velocity at each point of the floodplain are essential to reduce damage and save lives.

Current computational capabilities support hydraulic models of increasing complexity over

extended catchments. Yet a number of sources of uncertainty (e.g., input and boundary

conditions, implementation data) may hinder the delivery of accurate predictions. Field

gauging data of water levels and discharge have traditionally been used for hydraulic

model calibration, validation and real-time constraint. However, the discrete spatial dis-

tribution of field data impedes the testing of the model skill at the two-dimensional scale.

The increasing availability of spatially distributed remote sensing (RS) observations of

flood extent and water level offers the opportunity for a comprehensive analysis of the

predictive capability of hydraulic models. The adequate use of the large amount of

information offered by RS observations triggers a series of challenging questions on the

resolution, accuracy and frequency of acquisition of RS observations; on RS data pro-

cessing algorithms; and on calibration, validation and data assimilation protocols. This

paper presents a review of the availability of RS observations of flood extent and levels,

and their use for calibration, validation and real-time constraint of hydraulic flood fore-

casting models. A number of conclusions and recommendations for future research are

drawn with the aim of harmonising the pace of technological developments and their

applications.
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1 Introduction

Operational flood forecasting systems usually consist of a cascaded modelling framework.

A hydrologic model computes the amount of water entering the river system. A hydraulic

model then uses this input to compute water level and velocity in the river network, and

when the storage capacity of the river is exceeded, in the floodplain. A significant amount

of work has already been performed to improve hydrologic model forecasts (e.g., Liu et al.

2012; Li et al. 2016). However, this is much less the case for hydraulic models. This

discrepancy can be explained by the lack, up until the last few decades, of spatially

distributed input and calibration/validation data (e.g., Bates et al. 1997, 2004; Horritt 2000;

Werner et al. 2005).

One significant problem for all environmental modelling is that the network of river

gauging stations is declining globally (Stokstad 1999; Sivapalan et al. 2003; Schumann

et al. 2015). Even though historical and current gauges provide useful data in the developed

world, the number of gauges in developing and emerging economies is very small. Fur-

thermore, measurement stations are often installed very far apart and in remote locations,

thus making inference of processes and data collection difficult (Schumann et al. 2015).

Nevertheless, even when available, measurements from gauging stations tend to consist

only of data for a small number of points. For instance, gauging stations in Europe are

usually installed every 10–60 km (Neal et al. 2009).

During the last two decades, an increasing awareness of the potential for remote sensing

(RS) techniques to monitor floods and thus alleviate some of the field data limitations has

led to a consensus among space agencies to strengthen flood monitoring from space. For

instance, the International Charter on Space and Major Disasters (www.disasterscharter.

org), operational from November 2000, aims to provide a unified system of space data

acquisition and delivery to those affected by disasters, such as flooding, via its member

space agencies. Flood inundation research has thus recently shifted from being a ‘‘data-

poor’’ to a ‘‘data-rich’’ science (e.g., Bates 2004; Di Baldassarre and Uhlenbrook 2012;

Schumann et al. 2015). This increased data availability has stimulated more efforts in

fostering understanding of the ways in which RS can support flood modelling (Mason et al.

2010).

The remote sensing-derived (RS-D) digital elevation models (DEM), river width and

land cover databases are now consolidated and provide indispensable support for the

implementation of hydraulic models; reviews on RS data sets for the implementation of

hydraulic models have been recently compiled by Di Baldassarre and Uhlenbrook (2012),

Musa et al. (2015), Schumann et al. (2015) and Yan et al. (2015).

Moreover, the integration of hydraulic models with RS-D observations of flood extent

and water level for model calibration, validation and real-time constraint has the potential

to be a powerful approach for augmenting process understanding and prediction (e.g.,

Bates et al. 1997; Schumann et al. 2015). This concept has only begun to be investigated

during the last decade; flood monitoring from space is a recent development with only

15–20 consistent RS-D flood extent and water level data sets currently available worldwide

(Bates et al. 2014b). Despite this small number of consistent RS-D flood extent and water

level data sets, pioneering studies have shown that such information has the potential to

become critically important for the calibration, validation and real-time constraint of

hydraulic models for flood forecasting. However, the potential of these RS-D observations

to support flood models has not yet been widely explored nor adequately utilised. There is
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also a need to develop improved frameworks to incorporate such RS-D data into hydraulic

models (Di Baldassarre and Uhlenbrook 2012; Schumann et al. 2015).

A review of the progress on integrating RS-D observations of flood extent and water

level data and hydraulic models was completed by Schumann et al. (2009a); however,

substantial advances have been made in the past few years and merits a new review. More

recent reviews by Di Baldassarre et al. (2011) and Yan et al. (2015) only focused on the

possibility of using coarse-resolution, low-cost RS data.

This paper provides an updated analysis of the state of the art on the use of coarse-,

medium- and high-resolution RS-D observations of flood extent and water level to improve

the accuracy of hydraulic models for flood forecasting. Section 2 reviews the present and

planned availability of coarse-, medium- and high-resolution sensors for the observation of

floods from a remote location. The protocols for the retrieval of maps of flood extent and

spatially distributed water levels from these RS observations are then discussed in Sect. 3.

Section 4 compares the main features of the traditionally available field data and the

recently available RS-D data in order to highlight the relative merits and flaws when used

to support the hydraulic modelling of floods. Section 5 presents an overview of the study

sites and RS-D data sets discussed in Sect. 6 and in Sect. 7 to investigate the opportunities

and challenges of using RS-D observations of flood extent and water level for the cali-

bration and validation (Sect. 6) and real-time constraint (Sect. 7) of hydraulic models for

flood forecasting. This review of the fit-for-purpose imaging characteristics and their

effective use in calibration/validation and real-time constraint algorithms is meant to set

the scene for a strategic and routine use of RS-D observations for flood forecasting in the

near future. Technological improvements, new satellites and constellation of satellites are

deemed to quickly enhance the global capability of flood monitoring from space in the

coming decades. Improved knowledge and computational tools are essential to make full

and optimal use of these large and timely data sets. Section 8 draws a number of con-

clusions and recommendations for future research with the aim of harmonising the pace of

technological developments and their application.

2 Remote Sensing-Derived Observations of Flood Extent and Level

Optical, passive microwave and radar instruments are increasingly being used for inun-

dation detection and monitoring. The global availability of RS-D observations of flood

extent and level has been previously discussed in Smith (1997), Bates et al. (2014a), Musa

et al. (2015) and Schumann et al. (2015). Reviews by Schumann et al. (2009a, 2012),

Mason et al. (2010), Di Baldassarre and Uhlenbrook (2012), Schumann and Moller (2015)

and Yan et al. (2015) have focused exclusively on radar sensors. This section provides an

integrated review of the current and future RS data availability for the observation of flood

extent and spatially distributed water level.

2.1 Remote Sensing-Derived Observations of Flood Extent

Satellite and airborne imagery used in floodplain mapping can be characterised by different

spatial resolutions, which, relative to the typical length scales of physical flow process

during floods, can be broadly defined as: high (1–2 m), fine/medium (10–25 m) and coarse/

low (about 100 m) (e.g., Di Baldassarre et al. 2011). These RS observations can be
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obtained using (1) optical sensors, (2) passive microwave instruments or (3) synthetic

aperture radars.

2.1.1 Optical Imagery

The most straightforward mode of acquisition of a flood image is with visible and thermal

bands (e.g., Schumann et al. 2009a). Aerial photography provides high-resolution data, and

it is considered the most reliable source of remotely sensed flood extent data (e.g., Yu and

Lane 2006; Yan et al. 2015). However, its acquisition requires the set-up of dedicated

flights and has a high cost. Satellite imagery acquired by multi-purpose space missions

offers a relatively cheaper alternative, with spatial resolutions varying from high to low,

and the coarse-resolution data often provided by space agencies for free. Examples of high-

, medium- and coarse-resolution satellite optical data are provided in Table 1. Flood

mapping using optical imagery has proved to be relatively successful (e.g., Wang 2004;

Marcus and Fonstad 2008; Faruolo et al. 2009; Proud et al. 2011). Historical databases of

observed inundated areas are provided, for instance, by the Dartmouth Flood Observatory,

and Geoscience Australia. The Dartmouth Flood Observatory (http://floodobservatory.

colorado.edu/, see Adhikari et al. 2010) uses 250-m resolution MODIS and other data, such

as the Shuttle Radar Topographic Mission (SRTM) Water Body Data Set, to map flooding

in near real time and compile an archive of large floods at global scale. The web service

Water Observation from Space (WOfS) provided by Geoscience Australia (http://www.ga.

gov.au/scientific-topics/hazards/flood/wofs) displays a statistical analysis of historical

surface water observations derived from LANDSAT-5 and LANDSAT-7 satellite imagery

for all of Australia from 1987 to present day (Mueller et al. 2016).

However, the systematic application of optical techniques for the monitoring of specific

events is hampered by their daylight-only application and their inability to map flooding

beneath clouds and vegetation (e.g., Wilson et al. 2007). On the contrary, microwaves

penetrate cloud cover, and they are capable to acquire data during day and night and also to

some extent map flooded vegetation. Consequently, radar remote sensing offers an

opportunity to routinely acquire flood information (e.g., Schumann et al. 2009a).

2.1.2 Passive Microwave Imagery

Passive microwave radiometers measure naturally emitted thermal radiation (i.e. bright-

ness temperature). Due to the different thermal inertia and emission properties of land and

water, the observed microwave radiation has a lower brightness temperature for water than

for land. This effect can be used for detection of the flooded areas, and detailed techniques

have been described by many authors (e.g., Schmugge 1987; Choudhury 1989; Hamilton

et al. 1996; Smith 1997). However, the large angular beams of such systems result in

spatial resolutions as large as 20–100 km (e.g., Rees 2012), and the interpretation of the

wide range of materials with many different emissivities is very difficult (e.g., Papa et al.

2006; Schumann et al. 2009a). The potential of using passive microwave imagery for flood

monitoring is thus limited to very large catchments (i.e. catchments having area larger than

*103 km2). For instance, Sippel et al. (1998) and Jin (1999) mapped the flooded area in

the Amazon catchment (Brazil) and in the Wuhan and Wuyuan regions (China), respec-

tively. De Groeve (2010) demonstrated the existence of a good correlation between passive

microwave-based flood extents and gauged water levels, when river overtopping occurs in

the gently sloping floodplains of the Zambezi River (Namibia). The experimental Global

Flood Detection System hosted by the Global Disaster Alert and Coordination System
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(http://www.gdacs.org/flooddetection/) uses passive microwave remote sensing (i.e.

AMSR-E and TRMM sensors; the details of these products are listed in Table 1) to monitor

floods worldwide (Kugler and De Groeve 2007; Revilla-Romero et al. 2015). Despite the

successful detection of inundated areas in several kilometres wide river systems, several

authors (e.g., Schumann et al. 2009a; Schumann and Moller 2015) highlighted that much

high spatial resolution imagery is required to support flood monitoring and modelling in

the large worldwide number of small- to medium-sized catchments.

2.1.3 Active Microwave Imagery

Active microwave imagery from synthetic aperture radar (SAR) is deemed to be the only

reliable source of information for monitoring floods on rivers less than 1 km in width (e.g.,

Schumann et al. 2009a; Mason et al. 2010). The applications of SAR remote sensing of

flood inundation in a variety of natural and man-made environments have been recently

reviewed by Schumann and Moller (2015).

SARs are active systems that emit microwave pulses at an oblique angle towards the

target. The amount of microwave energy scattered off an object or feature is a function of

its surface texture, shape and dielectric properties (Woodhouse 2005). Open water, in the

absence of roughness due to weather causing waves, has a relatively smooth surface which

causes radar radiation to be reflected away from the sensor, resulting in low backscatter

(Henderson and Lewis 2008). Rough terrestrial land surfaces, by contrast, reflect the

energy in many directions, including back towards the sensor, and therefore appear as high

backscatter zones. These differences allow flood extent to be mapped using a variety of

techniques (Sect. 3.2) to an accuracy of approximately one pixel (Bates et al. 2014b).

Airborne SAR provides high-resolution flood extents and has been used recently to

better understand floodplain inundation processes and to compare different hydraulic

models with satisfactory results (e.g., Bates et al. 2006; Horritt et al. 2007; Wright et al.

2008). However, satellite SAR images are distributed by space agencies at lower or no cost

and are often regarded as an attractive alternative for flood monitoring. Table 1 provides a

list of the main past, current and planned satellite missions featuring SAR sensors with

high potential for flood propagation and inundation studies. SAR sensors offer a number of

acquisition modes, and each acquisition mode is directly linked with the resolution of the

resulting image and the size of the scene area covered. For instance, RADARSAT, Ter-

raSAR-X and CosmoSkyMed can acquire in SpotLight, StripMap or ScanSAR mode. The

highest resolution but the smallest scene area are achieved with the SpotLight mode; the

StripMap mode provides a good trade-off between the size of the scene area and the

resolution; the ScanSAR mode is intended for use in applications requiring large area

coverage. Technical details on the SAR acquisition modes can be found, for instance, in

Lacomme et al. (2001) and Parker (2012).

It must be stated that two difficulties may be encountered using this kind of sensor. The

first challenge, discussed here, is related to the technical possibility of acquiring useful data

during the flood events. The second challenge, discussed in Sect. 3, is related to the

interpretation of the RS images in order to extract information of the flood event.

The strong inverse relationship between spatial resolution and revisit time for satellites

(e.g., Di Baldassarre et al. 2011) makes monitoring floods from space in near real time

currently only possible through either low-resolution SAR imagery or satellite constella-

tions (e.g., Schumann et al. 2012). Revisit times for SAR imagery with spatial resolutions

in the order of 100 m (usually referred to as wide swath mode) are in the order of 3 days,

and the data can be obtained within 24 h at relatively low cost (e.g., Schumann et al. 2012).
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In smaller basins with shorter flood wave travel times, the probability of imaging a flood

decreases proportionately and the available acquisitions from coarse-, medium- or fine-

resolution sensors become increasingly opportunistic. Moreover, when monitoring and

modelling urban areas, very fine spatial resolution (lower than 5 m) imagery is necessary

(Schumann et al. 2012), despite not being often sufficient due to the uncertainties in water

surface identification in urban areas (see Sect. 3.2 for a detailed discussion). Constellations

of satellites are likely to be the only way to achieve a suitable combination of resolution

and revisit frequency (Garcı́a-Pintado et al. 2013). For instance, the COSMO-SkyMed

constellation is composed by four satellites in a Sun-synchronous orbit, providing a 3-m

image sequence with a time from request to acquisition of the first image of 26–50 h, and

then subsequent images at 12- and 24-h revisit times. An example of flood monitoring

using multi-temporal COSMO-SkyMed data has been provided by Pulvirenti et al. (2011a).

Further, a new constellation of SAR satellites will be shortly available. The ESA mission

Sentinel-1 is composed of two satellites, Sentinel-1A (launched in 2014) and Sentinel-1B

(launched in April 2016), operating in four imaging modes with resolution down to 5 m

and coverage up to 400 km. The orbit configuration optimises coverage, offering a global

revisit time of just 6 days. At the equator, however, the repeat frequency will be just 3 days

and less than 1 day over the Arctic. Europe, Canada and main designed shipping routes

will be covered in less than 3 days. Product delivery times of 24 down to 3 h have been

planned for two types of data sets: a predefined fixed large data collection for specific

applications and a flexible, on-demand data collection covering last minute requirements,

like observations over emergency events. Experience of fast product delivery has been

previously provided by the ESA Grid Processing On-Demand (GPOD) Fast Access to

Imagery for Rapid mapping Exploitation (FAIRE) system (http://gpod.eo.esa.int) which

allowed ENVISAT-ASAR end ERS images to be available 3 h after acquisition for

emergency responses applications such as the International Charter Space and Major

Disasters. Based on these premises, as observed by Schumann et al. (2012), the rapid

delivery of fine-resolution image is technically feasible and might be a common form of

dissemination in the near future.

2.2 Remote Sensing-Derived Observations of Flood Level

Flood level can be obtained through remote sensing in a direct or indirect manner.

Radar altimeters, LiDAR, SAR Interferometry or wide swath altimetry allows the direct

observation of flood level. The main features and applications of these direct monitoring

techniques are described here. The indirect retrieval of water levels from RS data can be

performed by intersecting RS-D inundation extent maps with digital terrain models; in

particular, the technical details of the flood level retrieval from SAR images are discussed

in Sect. 3.3.

Radar altimeters (RALT) emit a short, nadir-directed radar pulse to the Earth’s surface.

The two-way return time is used to calculate the distance between the instrument and the

target. A standard altimeter product represents the average water level over the altimeter

footprint (Smith 1997). Water surface elevation data provided by satellite-based RALT

instruments on board of past, active and planned missions such as TOPEX/Poseidon

(1992–2005), ERS-2 (1995–2011), ENVISAT (2002–2012), Jason-1 (2001–2013), 2

(2008) and 3 (January 2016) and Sentinel-3A-B-C (February 2016 planned, 2017, 2020)

have centimetre accuracy. The revisit time of 10–35 days and the global coverage have

allowed the development of global databases such as the LEGOS (Laboratoire d’Etudes en

Géophysique et Océanographie Spatiales) database (http://www.legos.obs-mip.fr/en/soa/
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hydrologie/hydroweb/) and the ESA’s Rivers and Lakes project database (http://tethys.

eaprs.cse.dmu.ac.uk/RiverLake). However, their kilometre footprint size, their limited

orbital coverage due to an orbit-to-orbit spacing of several kilometres and an along-track

spacing from 500 m to 6–7 km (e.g., Fu 2001) may impede their application for riverine

flood modelling (e.g., Schumann et al. 2015; see Table 1). In small rivers, the surrounding

topography can have a major impact on the echo shape returned to the altimeter and

consequently the observed water surface elevation is potentially affected by significant

uncertainties (e.g., Bercher and Kosuth 2012). For instance, Birkett et al. (2002) found that

the minimum river width to be used with TOPEX/Poseidon, to avoid footprint contami-

nation, is approximately 1 km. RALT water levels have thus been successfully used for

many years to monitor the ocean surface and the water level of several kilometres wide

inland water bodies (the Ob River in Kouraev et al. 2004; e.g., the Amazon River in

Frappart et al. 2006; the Congo River in Lee et al. 2011). Nevertheless, the number of

applications of RALT water levels for the study of small- to medium-sized rivers has

recently increased. For instance, Tarpanelli et al. (2013a) used RALT water levels in

combination with measured and modelled discharge data to estimate rating curves where

the satellite track intersects the river reach along the Po River (Italy). We note here that in

this study the Po River main channel width varied from 200 to 300 m and two lateral banks

had an overall width from 400 m to 4 km. Using the same case study, Domeneghetti et al.

(2014, 2015) showed that the use of a time series of RALT data, or an ensemble of RALT

data from different satellite tracks, can compensate for the low accuracy of a single

measurement over a medium-sized river and efficiently integrate in situ observations to

improve the knowledge of the streamflow regime. Furthermore, some studies used RALT

data to calibrate and validate hydraulic models (e.g., Wilson et al. 2007; Biancamaria et al.

2009; Siddique-E-Akbor et al. 2011).

The space-borne LiDAR GLAS (Geoscience Laser Altimeter System) on board of

ICESat (2003–2009) had the potential to overcome the RALT footprint shortcoming (e.g.,

Schumann et al. 2015). This satellite mission was designed primarily to monitor changing

elevations of ice sheets (Zwally et al. 2002), and GLAS pulses illuminate footprints 70 m

in diameter, spaced at 170-m intervals along the Earth’s surface with a revisit time interval

of 91 days. Recent studies demonstrated the ability of ICESat’s GLAS to retrieve water

levels on large to medium rivers. In particular, Hall et al. (2012) showed that the mean

difference between ICESat and gauged water levels from the Mississippi and Danube

rivers was -16 cm (with a standard deviation of 73 cm); this value reduced to -10 cm

(with a standard deviation of 27 cm) when a more restrictive observations selection cri-

terion was used. This proof of concept study allowed the use of ICESat data to geodetically

level gauges over a 400-km-long and 3.4-km-wide reach of the Amazon River. O’Loughlin

et al. (2013) successfully retrieved the spatial and temporal dynamics of water slopes of the

500-m to 13-km-wide Congo River, while Neal et al. (2012) and Schumann et al. (2013)

used ICESat’s GLAS water levels to calibrate and validate hydraulic models of the 750-m-

wide Niger River (Mali) and of the 1-km-wide Zambesi River (Mozambique). A follow-on

ICESat-2 mission is planned for 2017 and might provide the opportunity for the analysis of

flood events in medium to small catchments.

Spatial and temporal changes in water levels can also be estimated by radar interfer-

ometry (InSAR). This technique requires two SAR images from slightly different viewing

geometries. Co-registration of the two images to a sub-pixel accuracy and subtraction of

the complex phase (time delay) and amplitude (intensity) for each SAR image pixel allows

changes in surface topography or displacements to be mapped (Bamler and Hartl 1998).

For changes in water level retrieval, the specular reflection of smooth open water that
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causes most of the return signal to be reflected away from the antenna results in a complete

loss of temporal coherence between SAR images acquired at different times, rendering

interferometric retrieval difficult if not impossible (Alsdorf 2002). However, for inundated

floodplains where there is emergent vegetation, the implementation of numerical algo-

rithms such as the two step protocol suggested by Massonnet et al. (1993) allows reliable

interferometric phase signatures of water level changes to be observed. Alsdorf et al.

(2000, 2001, 2005, 2007) were able to measure water surface elevation changes to cen-

timetric accuracy and with a spatial resolution of approximately 200 m across the roughly

50-km-wide Amazon floodplain. Jung et al. (2010) used SAR interferometry to contrast the

spatial and temporal dynamics of river and floodplain water level connectivities of the

Amazon, Congo and Brahmaputra river systems.

The possibility of using interferometric SAR for the calibration of two-dimensional

hydraulic models was highlighted by Jung et al. (2012) in their study of the 2008 flood in

the Atchafalaya River (Louisiana). Despite this promising result, the number of practical

applications of InSAR hydrologic products is still sparse, most likely because of the

complex numerical procedures that need to be applied for the detection of water level

variations (Domeneghetti et al. 2014).

Finally, water level observations will be provided by the upcoming Surface Water

Ocean Topography (SWOT) wide swath altimetry satellite mission, expected in 2020.

The SWOT mission is designed to observe all rivers wider than 100 m and water bodies

(lakes, reservoirs, ponds, continuous wetlands) with an area greater than 250 m 9 250 m

(i.e. 62,500 m2) (Rodrıguez 2015). Water level observations will be provided with 10-cm

accuracy over 1 km2 (e.g., a 10-km reach for a river of 100 m width) and 25-cm accuracy

over 250 m2 (Biancamaria et al. 2015). The orbit period will be approximately 21 days

with the number of revisits per repeat period ranging from a minimum of two at the equator

to more than ten above 70� N/S (Biancamaria et al. 2015). A key attribute of swath

altimetry is the possibility of measuring spatial fields of surface water elevation rather than

transects as provided by ‘‘traditional’’ radar altimetry. Furthermore, the Ka-band radar

interferometer on board of SWOT is expected to be able to penetrate vegetation through

canopy openings. Consequently, many researchers are enthusiastically looking at the

SWOT satellite mission as an opportunity to sensibly improve our understanding of

hydrology (e.g., Bates et al. 2014a). Andreadis et al. (2007), Biancamaria et al. (2011) and

Andreadis and Schumann (2014) showed that the assimilation of synthetic SWOT water

levels into two-dimensional hydraulic models can improve the accuracy of flood forecasts

in the 30-m-wide Ohio River (USA) and in the 2- to 20-km-wide Ob River (Russia). Yet, it

must be stated that, despite the targeted decimetre accuracy, considerable water level

variation might exist over 1 km2 in many catchments and investigation of other case

studies is required.

3 SAR-Derived Observations of Flood Extent and Level

SAR is currently the most viable technique of observation of flood extent and level. Yet the

retrieval of flood information from SAR imagery is not straightforward, and interpretation

errors and inaccuracies impact the outcomes of the flood monitoring and modelling

exercise. The following paragraphs discuss the challenges of the interpretation protocol,

which is mainly composed by four steps: (1) pre-processing, (2) image classification, (3)
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retrieval of water levels from classified images and a DEM and (4) comparison with

auxiliary data (when available).

3.1 Pre-processing

Geo-referencing, ortho-rectification and speckle removal are essential for the success of the

retrieval of flood-related data from a SAR image. Geo-referencing locates the image on

Earth; ortho-rectification corrects systematic sensor and platform-induced geometry errors

which introduce terrain distortions when the sensor is not pointing directly at the Nadir

location.

Speckle occurs where distributed targets are imaged and the pixel is therefore repre-

sentative of the contributions coming from many scatterers with random phase. These

contributions cause interference (i.e. a ‘‘salt-and-pepper’’ effect on the resultant image,

e.g., O’Grady and Leblanc 2014) and result in a noise-like multiplicative modulation of the

true backscatter (Oliver and Quegan 2004). Speckle characterisation and removal has been

commonly attempted using filtering techniques (Frost et al. 1981, 1982; Lee 1983; Durand

et al. 1987; Lee et al. 2009). More recently, Giustarini et al. (2015) proposed a nonpara-

metric, fully automatic bootstrap method to account for the influence of speckle.

3.2 Image Classification for the Retrieval of Flood Extent Maps

Image classification is the interpretation process that aims to produce a map consisting of

dry and flooded pixels. Surface roughness is considered to be the main factor affecting

SAR backscattering: smooth surfaces such as flooded areas cause a sharp drop in the

backscatter intensity (see Sect. 2.1.3). Nevertheless, a number of event-related and

catchment-related meteorological and geometric factors can alter the backscatter charac-

teristic causing errors in the detection of the flooded area. For instance, multiple reflections

due to emerging vegetation and the roughening of the water surface due to rain and wind

cause an increased backscatter that can lead to an underestimation of the flood extent

(Mason et al. 2009; Zwenzner and Voigt 2009). Conversely, smooth surfaces such as roofs,

tarmac and car parks act as specular reflectors and may lead to an overestimation of the

flood extent (e.g., Giustarini et al. 2013). Moreover, radar shadow and layover caused by

buildings and tall vegetation can hide relevant flooded areas.

These effects are function of the sensor characteristics, i.e. geometric spatial resolution,

wavelength, incidence angle and polarisation. In a review on microwave remote sensing of

flood inundation, Schumann and Moller (2015) denoted the lack of a detailed investigation

on the sensitivities of the sensor characteristics for mapping flooded surfaces. Here, we

summarise the few notable exceptions.

Wavelength is the distance over which the wave’s shape repeats. Commonly used radar

wavelengths for monitoring flood inundation processes range from 30 to 4 cm and include

the bands L, C and X. Long L-band wavelengths can penetrate vegetation canopy and are

less sensitive to wind and roughness on water surfaces. The capacity for canopy pene-

tration is less at C- and X-band, and the total backscatter is predominantly a first surface

return from the small vegetation components (Lang and Kasischke 2008; Whitcomb et al.

2009). Consequently, data from L-band sensors are preferable for the detection of floods in

forested areas (Hess et al. 1990; Horritt et al. 2003; Schumann et al. 2012). Shorter-

wavelength C- and X-band SAR data have proven useful for detecting floods in herbaceous

and wooded wetlands (Evans et al. 2010; Hong et al. 2010; Brisco et al. 2011). The use of

L-band data in combination with C- or X-band data has been suggested as the optimal
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solution for discrimination of flooded forest and other wetland surfaces (e.g., Mitchell et al.

2015).

The microwave polarisation describes the orientation of the electric field vector of the

transmitted and reflected signals with respect to the horizontal direction. Henry et al.

(2006) compared different polarisations for flood mapping purposes and concluded that the

image mode in HH polarisation (horizontal transmit–horizontal receive), with its reduced

sensitivity to water surface roughness due to wind, is most efficient in distinguishing

flooded areas. However, Schumann et al. (2007b) pointed out the utility of VV and VH

polarisations as VV polarisation data highlights vertical features like vegetation and VH

polarisation data reflect the horizontal nature of the smoothed flood water. In fact, as

previously discussed by Smith (1997), the optimal discrimination of various inundated

vegetation cover types would require the analysis of multiple frequencies and polarisations.

Incidence angle refers to the angular deviation of the incident signal from nadir. In one

of the rare studies, Lang and Kasischke (2008) found that the incidence angle had little

impact on C-band backscatter at HH polarisation from flooded and non-flooded forest.

In order to deal with the listed sources of uncertainty and achieve an accurate detection

of the flooded area, a number of image processing algorithms have been proposed. The

most common procedures are visual interpretation (e.g., MacIntosh and Profeti 1995;

Oberstadler et al. 1997), supervised classification (e.g., De Roo et al. 1999; Townsend

2002), image texture algorithms (e.g., Schumann et al. 2005), histogram thresholding (e.g.,

Brivio et al. 2002; Schumann et al. 2010), image statistic-based active contour models

(e.g., Bates et al. 1997; Horritt 1999; Matgen et al. 2007a) and various multi-temporal

change detection methods (e.g., Calabresi 1995; Delmeire 1997; Bazi et al. 2005).

Schumann et al. (2009a) and Di Baldassarre et al. (2011) pointed out that each image

processing technique has advantages and disadvantages; consequently, no technique can be

identified as optimal for specific image characteristics and no technique performs equally

well for all the images.

The understanding of flood dynamics in urban areas is essential. However, radar lay-

over, foreshortening, shadows and double backscatter due to buildings and man-made

structures may impede the accurate mapping of flooded areas, even when SAR image

resolutions of 3 m and higher are available, and enhanced image processing algorithms are

used (e.g., Giustarini et al. 2013).

A possible approach includes the use of SAR simulators. SAR simulators are mathe-

matical models of the overall SAR system chain that can be used to generate synthetic

reflectivity maps of an urban area. Site-specific SAR effects such as layover, foreshort-

ening, shadowing, double backscatter and speckle can thus be modelled for comparison

with the RS data. For instance, Mason et al. (2012a) used a SAR simulator (Speck et al.

2007) in conjunction with LiDAR terrain data to estimate regions of the image in which

water would not be visible due to shadow or layover caused by buildings and tall vege-

tation in the Severn River catchment (UK). An algorithm combining image segmentation,

spectral and textural classification and region-growing techniques was then used to classify

a TERRASAR-X image acquired during the July 2007 flood. The assessment of the

algorithm flood detection accuracy was carried out using aerial photographs mosaics. In the

urban area, 75 % of the urban water pixels visible to TerraSAR-X were correctly detected;

even better results were achieved in rural areas, with almost 90 % of water pixels being

correctly detected. Mason et al. (2014) showed that it is possible to detect flooding in radar

layover regions by using a SAR simulator (Franceschetti et al. 2002) in conjunction with a

high-resolution DEM to analyse the backscatter due to double bouncing of the radar signal

between a flooded road and wall.
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Since high-resolution DEMs are not globally available, Giustarini et al. (2013) for-

mulated a change detection algorithm based on the calibration of a statistical distribution of

open water backscatter values from images of floods. Images acquired during dry condi-

tions enabled the identification of areas that are not visible to the sensor (i.e. affected by

shadow and layover) and that systematically behave as specular reflectors (e.g., smooth

tarmac, permanent water bodies). The algorithm was applied to classify the same TER-

RASAR-X image as Mason et al. (2012a) and yielded a classification accuracy in the urban

area of around 81 % when compared with aerial photography-derived flooded areas.

Although this latter approach overcomes the need of a high-resolution DEM and a SAR

simulator, it requires a reference image with the same imaging characteristics as the flood

image. As such an image might be rarely available, Westerhoff et al. (2013) and Schlaffer

et al. (2015) proposed an approach that takes advantage of the full information from a time

series containing a number of images acquired over an area. Probability distributions of

water and non-water backscatter are derived from multi-temporal SAR imagery; using

these histograms, the probability of a ‘‘new’’ measurement belonging to either one or the

other population can be derived. Westerhoff et al. (2013) showed that inundation maps of

the Pakistan 2010 and Thailand 2011 events retrieved by using a reference data set derived

from the analysis of ENVISAT-ASAR images had a strong resemblance with MODIS-

derived results. Schlaffer et al. (2015) analysed over 500 ENVISAT-ASAR scenes with a

spatial resolution of 150 m to characterise the seasonality in backscatter under non-flooded

conditions of the river Severn catchment (UK). This reference data set was then used for

the interpretation of an ENVISAT-ASAR image acquired during the 2007 flood. When

validated against airborne photography and a TERRASAR-X-derived inundation map

(Giustarini et al. 2013), flood detection accuracy was larger than 80 % in rural areas but

lower than 50 % in urban areas. This large misclassification is consistent with the

expectation that large portions of floods within urban areas remain unseen by coarse-

resolution ASAR data due to layover and radar shadow.

In addition to the challenges of obtaining an accurate and reliable image interpretation,

an ideal flood mapping system should be fully automatic in an operational crisis man-

agement context. Notable examples of research into automatic near real-time flood

detection algorithms are provided by Martinis et al. (2009, 2011, 2015), Matgen et al.

(2011) and Pulvirenti et al. (2011a, b). In a global context, Matgen et al. (2011) developed

an automated flood mapping tool for different SAR image modes and resolutions based on

a region-growing algorithm refined by change detection. Martinis et al. (2009, 2011, 2015)

developed automatic, near-real-time flood detection algorithms based on a region-growing

iterated segmentation/classification approach for single-polarisation high-resolution Ter-

raSAR-X imagery, while Pulvirenti et al. (2011a) developed an algorithm that integrates

backscatter analysis with simple hydraulic considerations and contextual information for

the interpretation of COSMO-SkyMed SAR imagery.

Further, ESA is developing a free open-source toolbox named Sentinel-1 Toolbox

(S1TBX) for the processing of SAR images acquired by ESA SAR missions including

SENTINEL-1, ERS-1, 2 and ENVISAT, as well as third-party missions such as ALOS-

PALSAR, TerraSAR-X, COSMO-SkyMed and RADARSAT-2. S1TBX includes tools for

speckle filtering, orthorectification, mosaicking and data analysis.

In summary, uncertainty in flood mapping from SAR images stems from both the image

input to the algorithm and the algorithm itself. Classification accuracies of flooded areas

vary considerably and only in rare cases exceed 90 % (Schumann et al. 2012). A more

extensive testing of the proposed algorithms on a number of case studies is necessary. For

instance, as highlighted above, the same TerraSAR-X of the 2007 flood in the river Severn
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(UK) was successfully analysed using different algorithms for the mapping of floods in

urban areas (i.e. Mason et al. 2012a; Giustarini et al. 2013). However, it is worth noting

that the low housing density and height in the area of acquisition may lead to optimistic

conclusions on the efficiency of the algorithms proposed. A general prerequisite to estimate

and eventually reduce uncertainties is to first identify and understand their sources (e.g.,

Schumann et al. 2012; Schumann and Moller 2015). Further research on automatic image

classification in near real time is required. Additionally, in order to ensure a higher tem-

poral and spatial coverage, flood observation services may need to make use of data sets

stemming from different sensors (Matgen et al. 2011) and several different interpretation

problems may have to be tackled in the study of a single flood event.

Finally, it is worth noting here that even small inaccuracies in the maps of the flooded

areas can significantly reduce the quality of higher level products such as maps of inun-

dation depths (see Sect. 3.3).

3.3 Assessment of Water Level from Maps of Flood Extent

The water level estimation methodology is composed of two compulsory steps, sometimes

followed by three additional steps: (1) SAR image processing in order to extract the flood

extent limits; (2) estimation of water levels by merging the flood extent limits and a digital

elevation model (DEM); (3) application of constraining protocols to guarantee the

hydraulic coherence of the data set of RS-D water levels (e.g., Mason et al. 2007; Schu-

mann et al. 2007a; Hostache et al. 2009); (4) verification against field data (e.g., water/

debris marks; Schumann et al. 2008c); (5) analysis of the data set for the retention of the

data that could meet some pre-defined quality criteria (e.g., Hostache et al. 2009; Neal et al.

2009; Schumann et al. 2011; Stephens et al. 2012).

The implementation of hydraulic coherence protocols is deemed to account for most of

the ‘‘noise’’ in water levels from a DEM at the SAR-derived flood boundaries. In partic-

ular, Schumann et al. (2007a) presented a steady-state regression analysis (REFIX—Re-

gression and Elevation based Flood Information eXtraction) of water level values retrieved

along the river centre line. Mason et al. (2007) suggested the need for ensuring that the

water line varies smoothly in elevation along the reach. Hostache et al. (2009) suggested

constraining the RS-D water levels using the hydraulic coherence algorithm by Raclot and

Puech (2003) and Raclot (2006). The latter algorithm states that hydraulic energy decreases

from upstream to downstream. Under the assumption of low velocity, this statement can be

simplified into a decrease in water level in the flow direction. Notwithstanding the suc-

cessful implementation of these strategies, the accuracy of the water level data set highly

depends on the quality of the RS-D flooded area and the accuracy and resolution of the

DEM. Taking advantage of the wide spatial coverage offered by remote sensing, many

studies (e.g., Hostache et al. 2009; Neal et al. 2009; Schumann et al. 2011; Mason et al.

2012b; Stephens et al. 2012) suggested the retention of data that could meet some pre-

defined quality criteria. For instance, Hostache et al. (2009) suggested removing steep

areas, areas having dense vegetation and urban structures at the flood boundary. Mason

et al. (2012b) and Stephens et al. (2012) described methods for selecting spatially inde-

pendent subsets of water levels, with the aim to reduce the impact of spatially clustered

errors.

The accuracy of the RS-D data set of water levels thus depends on a plethora of factors,

whose impacts are related to the specific case study. A review by Di Baldassarre et al.

(2011) showed that reported root mean square errors between the RS-D water levels and
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in situ data ranged from below 20 cm (Schumann et al. 2007a) to 2 m (Oberstadler et al.

1997; Schumann et al. 2008b).

Finally, similar techniques can be used to observe river widths, since it essentially

requires the observation of a water mask and possibly prior information on river topology

(Pavelsky and Smith 2008).

4 Information Content of Remote Sensing Data for Flood Forecast

4.1 A Comparison of the Information Content of Remote Sensing-Derived
Observations and Traditional Field Data

Continuous time series of gauged water levels and/or discharge recorded at discrete

locations have traditionally been used for model calibration and validation. More recently,

they have been used for real-time constraint of hydraulic flood forecasting models (e.g.,

Madsen and Skotner 2005; Neal et al. 2007). Gauged data at discrete locations represent

the aggregate response of the catchment to that point and might hinder relevant features of

the flooding behaviour at the spatially distributed scale (e.g., Bates et al. 1998). The value

of anecdotal yet spatially distributed high water marks or debris marks has been

acknowledged by many studies (e.g., Hunter et al. 2005; Werner et al. 2005). Nevertheless,

these kinds of field data are quite rare. The increasing availability of highly spatially

distributed RS-D observations of flood extent and levels offer new opportunities for

investigation and analysis (e.g., Bates 2004; Bates et al. 2014a; Schumann et al. 2009a).

Per contra, time series of gauged water levels and/or discharge values are normally con-

tinuous in time, while RS-D observations of flood extent and level availability for a single

flood event are often reduced to one, or just a few images. Despite the fact that the

frequency of acquisition is likely to increase in the near future, the temporal coverage of

RS-D observations of flood extent and level is inevitably discrete. Questions on the

effectiveness of discrete-time-instant coverage and on the optimal timing and frequency of

acquisition need to be answered. It is commonly agreed that an assessment of the uncer-

tainty of observed data is pivotal to any meaningful calibration, validation or data

assimilation exercise. A large number of studies are available for the assessment of the

uncertainty in gauged data (e.g., Di Baldassarre and Montanari 2009; Domeneghetti et al.

2012; Tomkins 2014; Coxon et al. 2015). Errors in high water marks and wrack marks are

related to the quality of the instruments and can be easily assessed. In contrast, the

description of the uncertainty in RS-D observations of flood extent and levels is a current

scientific challenge. The need for a thorough understating and an effective description of

RS-D data uncertainty is exacerbated by their discrete-time coverage: with just one (or a

few) images available during a flood event, a poor description of its uncertainty is deemed

to negatively impact any calibration/validation/data assimilation protocol. The following

paragraph presents a review of the approaches listed in the literature.

Table 2 presents a summary of the aforementioned field and RS-D data features used for

flood monitoring and modelling.

4.2 Uncertainty in the Remote Sensing-Derived Observations

Notwithstanding the relevant technological and methodological progresses, RS-D obser-

vations of flood extent and levels are deemed to be intrinsically susceptible to sources of
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uncertainty due to (1) imaging characteristics (e.g., imaging geo-referencing, look angle

and resolution); (2) atmospheric and ground perturbations (e.g., rain, wind, trees, buildings,

terrain geometry); and (3) image processing procedures (i.e. the algorithm selected, the

quality of the DEM). A methodology for the description of the uncertainty in RS-D

observations of flood extent and levels should be able to account for this long and varied

list of (1) system-specific, (2) event and catchment-specific and (3) algorithm and data

availability-specific sources of errors.

An almost straightforward approach used in many studies consists of the definition of

intervals of values of RS-D water level data that implicitly represent a number of uncer-

tainties. For instance, the maximum and minimum values defined by Schumann et al.

(2008d) accounted for image noise, medium image ground resolution, image position

errors, wind roughening and protruding vegetation (that is the sources of uncertainty (1)

and (2) in the list above). Matgen et al. (2004) and Pappenberger et al. (2007) focused on

the uncertainties in the image processing (3); Hostache et al. (2009) considered the

uncertainties stemming from the image geo-referencing, the DEM altimetric uncertainty

and the image processing (1, 3).

Many authors suggested the analysis of an ensemble of flood extent/water level maps

derived from the application of a number of image processing techniques and parameters

(3). More specifically, Schumann et al. (2009b) aggregated ten plausible flood maps

derived by combining two contemporaneous SAR images with five different flood mapping

procedures to build a ‘‘possibility of inundation map’’, which is a map of inundation that

expresses a degree of belief that a given pixel (or area) is wet. Despite being a remarkable

approach, it has been observed (e.g., Schumann et al. 2009b; Stephens et al. 2012) that the

number of ensemble members and the procedure tend to be subjective and the ‘‘possibility

of inundation map’’ cannot represent a probability in strict terms. Schumann et al. (2008c)

suggested performing cross section-specific statistical analysis on the values of water levels

extrapolated from an ensemble of flood maps. This approach is appealing as it allows

exploiting the full empirical distribution of RS-D water levels and facilitates the identi-

fication of problematic areas which require careful hydraulic investigation prior to the

implementation of flood inundation models (Giustarini et al. 2011). Nevertheless, RS-D

data uncertainty can be very high and the distribution functions often exhibit bias and

skewness (e.g., Schumann et al. 2010), hampering the definition of a statistical distribution.

In order to limit the negative impact of bias in RS data, Neal et al. (2009), Giustarini et al.

(2011) and Mason et al. (2010, 2012b) suggested to take advantage of the vast spatial

coverage offered by the RS imagery by retaining only the measurements that meet some

form of quality control and follow a Gaussian distribution. As an alternative to the

Table 2 Main features of field and RS-D data used for flood monitoring and modelling

Field data RS-D flood extent
and levels

Gauged water levels/
discharge

High water marks/debris marks

Spatial coverage Discrete Distributed Distributed

Temporal
coverage

Continuous Discrete but unreliable due it being
anecdotal evidence

Discrete

Description of
uncertainty

Mature topic Mature topic Young topic
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implementation of a quality control routine, Giustarini et al. (2012) proposed the use of

empirical, cross section-specific histograms of water levels which were derived by

addressing the uncertainties of the entire SAR image processing chain. A bootstrap

methodology was used to define 100 possible threshold values for delineation of the

flooded area based on a hybrid methodology combining backscatter thresholding and

region growing. The boundaries of the consequent 100 flood extent maps were then

fuzzified to include the horizontal geo-referencing uncertainty. Each cross section was

consequently assigned an ensemble of possible water levels and the vertical error asso-

ciated with the DEM included.

5 Overview of the Study Sites

Flood monitoring from space is a recent development; although the amount of observations

is expected to increase with the launch of new satellites, studies investigating the benefits

for hydraulic flood models calibration/validation and real-time constraint had to rely on a

limited number of RS-D flood extent and water level data sets currently available

worldwide. RS-D observations information content for flood monitoring and forecast is the

outcome of a combination of factors including sensor characteristics (mainly spatial res-

olution, wavelength, polarisation and look angle), timing of acquisition, image classifi-

cation algorithm, catchment geometry, land cover/use and flooding behaviour. Knowledge

of these details is required for a critical understanding of the results of any calibra-

tion/validation and data assimilation exercise. This section provides a schematic overview

of the study sites and data sets used in Sects. 6 and 7. In particular, Table 3 details the

geometry of the river network (main channel and floodplain), the implementation data, the

available RS-D and field data for the specific flood event/period. Figure 1 shows the

uneven spatial distribution of the study sites worldwide. The quality and quantity of the

available data led the attention of the scientific community to small, European catchments

(e.g., the Alzette River, Grand Duchy of Luxemburg). However, there is a need to test the

use of RS-D observations for flood monitoring and forecast in a larger variety of catch-

ments, having different geometries, different land cover/use characteristics, different

flooding dynamics and where only low resolution or scarce implementation data set is

available.

6 Remote Sensing-Derived Observations for the Calibration
and Validation of Hydraulic Flood Forecasting Models

Calibration is the process by which model parameters are conditionally ranked based on

their ability to make the model results match observed data. Validation requires that

predictions of a model are compared to observed data, ideally independent from the

calibration data set, to demonstrate the accuracy and reliability of the model.

Flood inundation models are traditionally calibrated by tuning the channel and flood-

plain roughness coefficients (e.g., Aronica et al. 1998, 2002; Horritt and Bates 2002;

Pappenberger et al. 2005, 2007). These coefficients are used to account for more sources of

uncertainty than just roughness (e.g., Romanowicz and Beven 2003; Di Baldassarre et al.

2011). According to Bates et al. (2014b), the major sources of uncertainty in flood inun-

dation modelling are: (1) roughness values; (2) errors in the model input data (mainly
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boundary and initial conditions, topography and bathymetric data); (3) model structural

errors; (4) conceptual model uncertainty (e.g., three-dimensional processes are not repre-

sented by two-dimensional models); and (5) errors in the independent observed data used

to estimate model parameters. Therefore, calibrated parameter values are not physically

realistic and a large number of different parameter sets might be able to map model

predictions to the observed data to an acceptable level of performance. This is the concept

of equifinality in environmental modelling (Beven 2006). Methodologies acknowledging

the uncertainty inherent in the inundation modelling process have gained favour in recent

years as being preferable to generating single deterministic maps of flood extent/level

(Aronica et al. 1998; Romanowicz and Beven 1998; Aronica et al. 2002; Romanowicz and

Beven 2003; Bates et al. 2004; Hall et al. 2005; Pappenberger et al. 2005). The GLUE

(generalised likelihood uncertainty estimation) methodology of Beven and Binley (1992)

embraces the concept of equifinality and attempts to find those feasible models that provide

acceptable fits to any available observational data.

6.1 Overview of the Studies

Continuous time series at discrete locations of gauged water levels/discharge have tradi-

tionally been used for model calibration and validation. However, many different spatial

patterns of effective parameter values can lead to the same aggregate response. Schumann

et al. (2008a) argued that in order to constrain model parameter uncertainty and at the same

time increase parameter identifiability as much as possible, models need to satisfy some

behavioural criterion at a large number of spatially distributed locations. Therefore, the

frequent lack of distributed field data such as high water marks or wrack marks has so far

Fig. 1 Geographical distribution of the study sites
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been a significant contributor towards equifinality (Grayson and Blöschl 2001). Despite a

substantial agreement on the potential value of spatially distributed RS-D water level/flood

extent data for the calibration and validation of hydraulic models (e.g., Bates 2004;

Schumann et al. 2015), the optimal use of this uncertain, low-frequency data set compared

to traditional field data and the definition of the optimal calibration protocol are current

scientific challenges (e.g., Yan et al. 2015).

In the Generalized Likelihood Uncertainty Estimation (GLUE) procedure, each member

of aMonteCarlo ensemble ofmodel simulations is assigned aweight according to howwell it

fits with observed calibration data. Model calibration and validation then require the use of

performancemeasures to determine the accuracy of each parameter set tomatch the observed

data. Threshold performance measure values are sometimes defined to reject the simulations

that deviate too much from the observations. However, the use of a threshold performance

measure has been criticised in the past (Gupta et al. 1998) for its potential lack of objectivity.

A weighted sum of the predictions from a subsample, or all the simulations, then produces an

uncertain model prediction (Romanowicz et al. 1996). In the case of traditional field data of

time-series gauged water levels and discharge values, three quantitative performance mea-

sures have been generally recommended, more specifically the Nash–Sutcliffe efficiency

(NSE), per cent bias (PBIAS) and ratio of the root mean square error (RMSE) to the standard

deviation of measured data (RSR) (Moriasi et al. 2007). The RMSE has been traditionally

used when water or debris marks were available. New performance measures have been

required to fully use the wide potential information content embedded in RS imagery of flood

events. The understanding that uncertainty should be viewed as central to the use of RS data

resulted in a shift from deterministic to uncertain performance measures and the correlated

adoption of the extended GLUE (Aronica et al. 2002) methodology.

Sections 6.2, 6.3 and 6.4 provide a review of the performancemeasures and the calibration

and validation strategies used in the literature. Section 6.5 reviews the benchmarking analysis

completed to compare the effectiveness of field and RS data in constraining the parameter

space of hydraulic models. Sections 6.6, 6.7 and 6.8 focus on the impact of the characteristics

of RS data on the effectiveness of the calibration and validation exercise.

Table 4 summarises the studies discussing the use of RS-D observations of flood extent

and levels for the calibration and validation of hydraulic models for flood forecasting.

6.2 Calibration Strategies: Deterministic Performance Measures

Due to the difficulties in describing and quantifying RS-D data uncertainty, many studies

still assume the RS data to be ‘‘perfect’’. Examples are the use of RS-D flooded area by

Hunter et al. (2005), Horritt (2006), Mason et al. (2009) and Dung et al. (2011); the use of

RS-D observations of inundation width by Di Baldassarre et al. (2009a) and Prestininzi

et al. (2011); and the use of RS-D water levels by Mason et al. (2009) and Domeneghetti

et al. (2014).

As the extraction of flood extent maps is the first step in the RS image processing chain,

a number of performance measures to condition inundation models on flood extent data

have been proposed in order to limit the sources of uncertainty in the observational data

set. Observed and modelled data are divided into discrete categories of wet/dry cells

separated by deterministic boundaries for the purpose of building a contingency table (see

Table 5) which reports the number of pixels correctly and incorrectly predicted as wet or

dry. The model performance is then assessed by the binary measures given in Table 6.

Following the recommendations of Schumann et al. (2005) and Hunter et al. (2005), the

Critical Success Index (CSI) has been most commonly used. However, the lack of
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consistency of binary measures was reported by many authors. Pappenberger et al. (2007)

interestingly related the reliability of a binary performance measure to the features of the

image processing algorithm. For instance, they stated that active contour algorithms, as

well as the CSI, favour the same type of flooding pattern (large areas in contrast to a

fragmented floodplain), and this combination may hinder the inefficiency of the CSI.

Comprehensive analyses by Hunter et al. (2005), Schumann et al. (2009a) and Stephens

et al. (2014) identified six possible issues: (i) the sensitivity to the magnitude of the flood;

(ii) the bias towards unflooded areas; (iii) the bias towards overprediction or underpre-

diction of the flooded areas; (iv) the sensitivity to the shape of the valley; (v) the sensitivity

to the domain size; and (vi) the sensitivity to the resolution of the model. The last column

of Table 6 summarises the contributions of the above listed studies.

The use of any binary performance measure is thus subordinated to the preliminary

acknowledgement of its limitations (Stephens et al. 2014), while the contemporary use of

Table 5 Contingency table
Present in observation Absent in observation

Present in model A B

Absent in model C D

Table 6 Flood extent-based performance measures (the values A to D are from Table 5)

Name Equation Description Issues

Bias AþB
AþC

Aggregate model performance
highlighting over-/underprediction

(i)
(iv)

Proportion correct
(PC) or F\1[

AþD
AþBþCþD

Proportion of cells whose wet/dry state
has been correctly predicted over the
total extent of the study area

(i)
(ii)
(v)
(iv)

Critical success
index (CSI) ore
threat score
(F\2[)

A
AþBþC

Adjustment of the PC for the quantity
being forecast (Wilks 2011)

(i)
(iii)
(iv)

‘‘Adjusted’’ critical
success index

P
i wi;dAiP

i wi;dAi þ
P

i wi;dBi þ
P

i wi;dCi

Adjustment of the CSI that aims to
remove the issue (iv). The weight
factor wi;d depends both on ground

features and model performances
(Prestininzi et al. 2011)

(i)
(vi)

F\3[ A�C
AþBþC

Designed to penalise underprediction (i)
(iv)

F\4[ A�B
AþBþC

Designed to penalise overprediction (i)

Hit rate (H) H ¼ A
AþC

Fraction of the observed flood that is
correctly predicted (it detects
underprediction)

(i)
(iv)

False alarm rate
(F)

F ¼ B
BþD

Fraction of dry areas that are incorrectly
predicted (it detects overprediction)

(i)
(iv)

Receiver operating
characteristics
(ROC)

H versus F The ROC space depicts the relative
trade-offs between benefits (H) and
costs (F)

(i)
(iv)

Pierce skill score
(PSS)

H - F Threshold that aims at maximising
difference between H and F

(i)
(iii)
(iv)
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different formulations has the potential to provide a more complete description of the

prediction accuracy (Pappenberger et al. 2007).

Schumann et al. (2014) formulated a statistical measure in the receiver operating

characteristics (ROC) space to allow an automated model calibration without the need of a

classification of the SAR image. A SAR image was classified using histogram thresholding

with threshold values varying from -? to ??. In a Monte Carlo framework, the ROC

curve having the largest area pinpoints the optimal parameter set and the optimal SAR

classification threshold value. The RS-D flooded area and the optimal parameter set

identified by the ROC-based method were consistent with the results of Di Baldassarre

et al. (2009b) and Schumann et al. (2009b, 2013).

As an alternative to area based binary performance measures, Di Baldassarre et al.

(2009a) and Prestininzi et al. (2011) used the mean average error (MAE) to compare

deterministic values of modelled and observed inundation width.

Due to the recent progresses in RS image analysis, some authors tested the possibility of

using water level-based performance indices. In particular, Mason et al. (2009) proposed

the use of the Student t test, while Stephens et al. (2012) used the RMSE to compare the

values of modelled and observed spatially distributed values of water level. Both of the

proposed water level-based measures were more sensitive to the roughness parameters and

less sensitive to clustered errors in the observed data when compared to the traditionally

used water extent-based measures. These characteristic resulted in a higher effectiveness of

water level-based measures over flood extent-based measures in constraining the parameter

space.

6.3 Calibrating Uncertain Models with Uncertain Remote Sensing-Derived
Observations

The need for the acknowledgement of the intrinsic uncertainty in RS-D observation of

flood extent and level has been claimed by many authors. For instance, Pappenberger et al.

(2007) observed that ignoring RS-D data quality issues may mask the real information

content of the observations and mislead the conditioning of the models. Di Baldassarre

et al. (2009b) and Tarpanelli et al. (2013b) showed that successive, yet independent,

deterministic calibration exercises based on different interpretations of the same SAR

image led to different ‘‘optimal’’ parameters. In an attempt to reduce the impact of

uncertainties of RS-D data, Stephens et al. (2012) used multiple samples of spatially

independent water level values derived from the same SAR image. However, the sub-

jective selection of a sample of the observed data unintentionally included and excluded

observed data error, and as a result the choice of subset caused variations in the computed

‘‘optimal’’ parameter set. Conversely, Horritt and Bates (2002) showed that accounting for

observation errors in an uncertain classification procedure led to more consistent results

between data sets with different accuracies (i.e. an ERS-1 image and an ENVISAT-ASAR

Wide ScanSAR Mode image). Recent studies have consequently looked at the analysis of

the uncertainty in RS-D observations of flood extent and levels as an opportunity to fully

exploit the information content of RS imagery (e.g., Pappenberger et al. 2007; Hostache

et al. 2009; Schumann et al. 2009b; Stephens et al. 2012).

Methodologies such as the extended GLUE procedure that acknowledge the uncertainty

inherent in both the flood modelling process and the observed data have progressively

gained favour, urging the need for methods to describe the uncertainties in RS-D obser-

vations of flood extent and levels. Bias in the distributions of RS data has hampered so far

the use of a probabilistic distribution (Schumann et al. 2008d). However, a number of
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alternative strategies have been proposed. These strategies are based on fuzzy logic,

reliability diagrams and the statistical analysis of the results of the calibration exercise.

6.3.1 Fuzzy Performance Measures

In a fuzzy logic approach, all RS-D data are affected by an interval representing their

uncertainty. Performance measures quantifying the degree of belonging (i.e. membership

functions) of the model results to these intervals are used for model evaluation. Different

shapes of the membership function and different approaches to quantifying the uncertain

intervals of water levels, inundation widths and wet/dry boundaries have been proposed. A

simple stepmembership function was used by Schumann et al. (2008a): at each cross section,

the maximum uniform weight (that is 1) was attributed to the realisations of the hydraulic

model that predicted water levels within the interval of the observed water level data. A zero

weight was used otherwise. Slightly more complex trapezoidal membership functions were

adopted byHostache et al. (2009) andMatgen et al. (2004) to quantify the degree of belonging

ofmodelled along-reachwater levels and inundationwidth values to the uncertain RS-D data.

Finally, Pappenberger et al. (2007) used the standard similarity function of Hagen (2003) to

assess the level of similarity of the observed and modelled fuzzy flooded areas. All these

approaches were used for the calibration of a hydraulic model of the 2003 flood event in the

Alzette River (GrandDuchy of Luxemburg). However, the lack ofmodel validation inhibited

any conclusive recommendation on the most effective approach.

An accurate description of all sources of uncertainty in RS-D data proved to be pivotal.

When a step membership function was used to assign a constant weight to intervals of RS-

D water level (Schumann et al. 2008a), the constraint of the parameter space was driven by

the very restricted number of cross sections characterised by a small height variation

leading to the risk of artificially overfitting the model to these specific locations. Con-

versely, a comprehensive analysis of RS data uncertainty and a trapezoidal membership

function (Hostache et al. 2009) included higher information content and allowed the

representation of the average hydraulic behaviour of the catchment. Despite being posi-

tively correlated with a large number of deterministic binary measures (Pappenberger et al.

2007), each fuzzy performance measures normally yielded a lower constraint of the

parameter space. Nevertheless, this increased degree of freedom can be seen as an

opportunity to build a hydraulic model able to reasonably reproduce flood events of dif-

ferent magnitude. For instance, Hostache et al. (2009) showed that a one-dimensional (1D)

hydraulic model of the Alzette River, calibrated using RS-D water levels observed during a

50-year Average Recurrence Interval (ARI) flood in 2003 and a trapezoidal fuzzy per-

formance measure could reproduce a 2-year ARI flood in 2007.

6.3.2 Reliability Diagrams

Reliability diagrams are graphs of the observed frequency of an event plotted against the

forecasted probability of an event (Hartmann et al. 2002).A perfect forecast systemwill result

in forecasts with a probability of X % being consistent with the eventual outcomeX % of the

time. Hence, when plotting a reliability diagram, comparisons are made against the diagonal.

Exploiting the quite unique opportunity of two coincident satellite images during the

2006 flood in the River Dee (UK), Schumann et al. (2009b) derived a ‘‘possibility of

inundation map’’ applying five different processing protocols to images having different

resolutions and characteristics. Di Baldassarre et al. (2009b) then constructed a reliability

diagram by classifying the ‘‘possibility of inundation map’’ of Schumann et al. (2009b) into
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regions of similar possibility of inundation and counting the number of simulated wet cells

in each region. In a Monte Carlo framework, each model realisation was evaluated by

computing the RMSE between the cloud of points and the diagonal. These weights were

used to combine the results of these numerical simulations and obtain an uncertain flood

inundation map.

6.3.3 ‘‘Post’’-Analysis of the Calibration Results

Considering the impossibility of accounting for all the sources of uncertainties in RS-D

data, some authors suggested performing a statistical analysis on the results of calibration

protocols. Stephens et al. (2012) calibrated a two-dimensional (2D) hydraulic model of the

2006 flood in the river Dee (UK) using a deterministic approach and multiple samples of

spatially independent water level values extracted from a SAR image. The frequency with

which each parameter set appeared as the optimum was used as a weight within a GLUE-

style uncertainty framework. The resulting flood uncertain inundation map reflected the

confidence in the observed data and showed an overall good agreement with the observed

data.

6.4 Validation Strategies

A good model is one that, once calibrated for one flood event, reproduces a different event

with the required predictive capability (e.g., Horritt et al. 2007; Schumann et al. 2009a).

Defining the ‘‘required predictive capability’’ is subjective. Under the assumption of ide-

ally perfect models, some authors (e.g., Prestininzi et al. 2011) adopted the upper boundary

target of replicating an event with the same degree of uncertainty as the observations.

However, real uncertain models hardly (if ever) achieve this target during calibration;

further, calibrated parameter values are not physically realistic (Sect. 6) and flood events

having different magnitude might require a different set of parameter values. In a GLUE

framework, a model is more robust if the cloud of the best scoring values in the parameter

space does not change when moving from one event to another (e.g., from calibration to

validation). In order to allow some degree of freedom in model performance, a threshold to

identify the best scoring values should be defined. The lack of a broad consensus on

protocols and criteria to evaluate the performance of hydraulic models for flood forecasts

has been pointed out by many authors (e.g., Horritt 2006; Yan et al. 2015).

Models calibrated using RS-D data have been validated using field data in both a

deterministic (e.g., Tarpanelli et al. 2013b; Domeneghetti et al. 2014) and stochastic (e.g.,

Hostache et al. 2009) framework. However, the use of lumped field data might not allow a

comprehensive validation of the model behaviour at large spatial scales.

Measuring the consistency between uncertain flood inundation maps and observed

floods would be conceptually easy if a large number of observed flood events were

available allowing use of the reliability diagrams (Horritt 2006). However, since RS

observations are currently available for a very small number of flood events, only limited

form of validation is possible by estimating how well the uncertain flood inundation map

matches the observed extent. Albeit this comparison can only be approximate because the

observed flood extent has been used to derive the weights of the parameter space used for

the computation of the uncertain flood inundation map (Mason et al. 2009), it allows some

sensitive analysis on model performances.

Most studies listed in the literature simply commented on a visual comparison between

observed and modelled uncertain flood inundation maps. Such a qualitative evaluation
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hampers any benchmarking analysis on the effectiveness of the proposed calibration

strategies, even when the same flood event and the same hydraulic model were used as case

study (e.g., Matgen et al. 2004; Pappenberger et al. 2007; Schumann et al. 2008a; Di

Baldassarre et al. 2009b; Stephens et al. 2012). A protocol based on the use of quantitative

measures to evaluate uncertain flood inundation maps when one single image is available

was suggested by Horritt (2006).

Two desirable properties of an uncertain flood inundation map are accuracy and pre-

cision. A precise flood map will contain large areas which are classified as definitely wet or

dry. However, such a precise map may not be accurate, as it may not coincide perfectly

with the real flood extent. Horritt (2006) suggested the Shannon entropy as a measure of

model precision and the reliability diagram as a measure of the accuracy of probabilistic

predictions. The use of the Shannon entropy for the comparison of different data sets

ability in constraining the parameter space of hydraulic models was previously demon-

strated by Hunter et al. (2005). The reliability diagram was constructed by classifying the

uncertain flood map into regions of similar predicted possibility of flooding and counting

the number of observed wet cells in each region. The protocol was then applied for

assessing both the precision and accuracy of uncertain predictions of flood extent of two

events that occurred in the river Severn (UK), in 1998 and 2000, respectively. A SAR

image was available for each event. When both the measures of precision and accuracy

were applied, differences in the optimal parameter sets needed to reproduce two events of

different magnitude became evident, exposing the challenge of using models in a pre-

dictive mode and the danger of over-fitting the model to the calibration data (Romanowicz

and Beven 2003).

The need for testing the model results for both precision and accuracy in order to avoid

misleading conclusions was subsequently recognised by Mason et al. (2009) and Di Bal-

dassarre et al. (2009b). Alternatively to the reliability diagram, Mason et al. (2009) used a

chi-square goodness-of-fit test to verify the null hypothesis that the observed flood extent

matches the predicted uncertain flood map, while Di Baldassarre et al. (2009b) computed

the difference between the modelled and the observed possibility of inundation at pixel

level.

6.5 Utility of Remote Sensing-Derived Observations of Flood Extent
and Level in Contrast to Field Data

It is generally agreed in the scientific community that the information content of RS data is

very valuable. However, they do not yet seem capable of being a complete substitute for

in situ observations. The fuzziness and poor description of the uncertainty of the SAR-

derived values of inundation width (e.g., Matgen et al. 2004), flooded area (e.g., Hunter

et al. 2005; Pappenberger et al. 2007) and water level (e.g., Schumann et al. 2008a) and the

limited spatial distribution of RALT observations (e.g., Domeneghetti et al. 2014) limit the

ability to constrain the parameter space of any hydraulic model.

The measurements provided by ground-based gauging stations still remain invaluable

for constraining flood model predictions. In some cases, adequate model calibration was

only possible when RS-D observations were used in combination with field data (e.g.,

Matgen et al. 2004; Hunter et al. 2006; Hostache et al. 2009). However, currently available

SAR-derived uncertain values of inundation width (e.g., Matgen et al. 2004; Di Baldassarre

et al. 2009a), flooded area (e.g., Hunter et al. 2005) and water level (e.g., Hostache et al.

2009, 2010; Domeneghetti et al. 2014) can integrate traditional field data to improve the

accuracy of the calibration of the hydraulic model. Hostache et al. (2009), Di Baldassarre
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et al. (2009a) and Dung et al. (2011) further showed that discrete field data representing the

bulk response of the catchment might not allow adequate verification of a hydraulic model,

while the intrinsically two-dimensional features of remote sensing observations densely

distributed over space naturally induce more coherent and more explicative modalities of

comparison. For instance, using SAR-derived inundation widths, Di Baldassarre et al.

(2009a) demonstrated that a model which is a good predictor of internal hydraulic prop-

erties might not be a good predictor of the flooded area. Hostache et al. (2009) further

stated that the local nature of field data can lead to an overfitting of the hydraulic model to

a specific location or event, thus limiting the overall predictive skills of the model. Con-

versely, the increased degree of freedom allowed by RS data uncertainty provides an

opportunity to build a hydraulic model that can reasonably reproduce flood events having

different magnitudes.

Dung et al. (2011) showed that the mutually exclusive use of stage hydrographs and

flooded areas can lead to biased and contradictory model behaviour as information on

temporal dynamics from in situ gauging stations and spatial dynamics from RS-D inun-

dation maps is complementary. The authors then successfully adopted a multi-objective

calibration protocol to exploit the information content derived from a network of 12 river

stage hydrographs and a series of inundation maps derived from ENVISAT-ASAR

imagery.

A multi-objective calibration exercise completed by Hunter et al. (2005) highlighted the

relevance of the accuracy of the RS data. More specifically, a high-resolution optical air

photograph was much more effective in discriminating between parameter sets than the

coincident ERS-1 SAR image (25-m ground resolution). Furthermore, they showed that the

information on flooded area retrieved from a single, accurate air photograph led to a similar

degree of reduction in the parameter space uncertainty of 84 field water marks. The

effectiveness of water marks in constraining the parameter space was previously demon-

strated by Werner et al. (2005). Considering the rare availability of field water marks, the

results highlight the value of accurate RS-D observations of flood extent and levels.

Notwithstanding the need for more accurate and temporally continuous field data, many

studies showed that calibration performed exclusively using RS-D observations was still

able to provide a valuable prediction of the flooded area (e.g., Matgen et al. 2004 used

ENVISAT-ASAR- and ERS-2-derived inundation width values; Pappenberger et al. 2007

used ENVISAT-ASAR-derived flooded area) or enhance the modelling of the average

streamflow of a large river (e.g., Domeneghetti et al. 2014 used ENVISAT RALT data).

In summary, RS-D data are not yet ready to replace field data for hydraulic model

calibration and validation entirely, with improvement in the accuracy and description of

their uncertainty required. The temporal resolution of RS data is likely to increase, and

investigations into the optimal acquisition time frame are under way. The use of field data

and RS-D data in a combined, multi-objective calibration manner is currently the best

strategy (e.g., Hall et al. 2011; Bates et al. 2014b; Domeneghetti et al. 2014) in order to

fully exploit the complementary information content on temporal dynamics from in situ

gauging stations and spatial dynamics from RS-D data. RS-D data provide information that

cannot be achieved with field data; as such more research focusing on the use of RS data

for the calibration of hydraulic models is required.

6.6 Utility of Low-Resolution Remote Sensing

Higher temporal repeat of acquisition is currently possible through the use of low-reso-

lution sensors. Furthermore, RS data from low-resolution sensors are often available at
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global scale and at no or low cost. Several studies consequently investigated the possibility

of using coarse RS data to improve the accuracy of flood forecasting, especially in

ungauged or data-sparse areas (see review from Schumann et al. 2009a; Di Baldassarre

et al. 2011; Yan et al. 2015).

Inundation width values and flooded areas derived from ENVISAT-ASAR WSM

images superimposed on a 2-m LiDAR DEM were successfully used by Di Baldassarre

et al. (2009a), Prestininzi et al. (2011) and Tarpanelli et al. (2013b) to calibrate hydraulic

models of the Po and Tiber rivers in Italy. Schumann et al. (2010) showed that when only

freely available low-resolution space-borne data sets with global coverage can be used,

water profiles derived from the intersection between an ENVISAT-ASARWSM image and

the global 90-m SRTM DEM were able to discriminate between competing model

parameterizations. The satisfactory results obtained for medium-sized catchments (in the

Po and Tiber river case studies the floodplain has an extension varying from 400 to 4000

and from 50 to 350 m, respectively) highlighted the potential of using coarse RS data to

support flood modelling. However, Schumann et al. (2010) underlined that accounting for

RS-D observations and DEM uncertainties is essential for the success of the calibration

exercise, especially in medium to steep topography. Furthermore, RS-D water level values

are likely to be more sensitive to the low accuracy of the original data, and RS-D inun-

dation width, flooded area and river reach water level profiles are recommended when

using a coarse data set (Schumann et al. 2008b).

As previously stated, the systematic use of optical data is limited by the inability of the

sensor to penetrate the cloud cover. Yet, when cloud-free, coarse optical images proved to

be useful. One example is the successful use of an ASTER image of the 2004 flood in Haiti

by Brandimarte et al. (2009). Some studies, e.g., Lai et al. (2014) and Ticehurst et al.

(2014, 2015), investigated the more appealing opportunity of using the large number of

images derived from the ‘‘frequent’’ revisit time of coarse optical sensors for the analysis

of floods in large, slow-motion catchments. In particular, Lai et al. (2014) used flood extent

maps derived from a series of MODIS images to calibrate the hydraulic model of the

180-km2-wide Mengwa flood detention area (China). Ticehurst et al. (2013) showed that

MODIS spatial consistency and high temporal frequency (1–2 times per day) can be of

great value in detecting general changes in water movement in large scale Australian

catchments such as the lower Condamine–Balonne flood plain (3800 km2), the Fitzroy

River (32,000 km2) and the Macquarie Marshes (3000 km2). The best results were

achieved in the wide lower part of the catchments and during the slow flood recession

phase.

6.7 Timing Considerations

Model response to the calibration process might be significantly different for high and low

flows on the inter- as well as the intra-event scale (e.g., Romanowicz and Beven 2003;

Hunter et al. 2005). Stand-alone low-resolution sensors and medium- to high-resolution

sensors carried by a constellation of satellites provide the highest acquisition frequency

(see Sect. 2.1.3). However, even in the frame of a fast-progressing technology, the dis-

crete-time coverage will remain an intrinsic limitation of RS data. Consequently, the

acquisition time may be crucial in determining the success of using RS data in constraining

the parameter space for the purpose of flood modelling (e.g., Schumann et al. 2009a).

With flood forecasting being the focus of the modelling study, observations of larger

discharge values might be of greater interest in testing model performance against con-

ditions as close as possible to those being predicted. For instance, Horritt (2006) showed
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that inundation extents acquired at higher discharges were more effective at constraining

model predictions of the 1998 and 2000 floods in the river Severn (UK) than satellite

overpasses during the falling limb of the hydrograph, when the floodplain was dewatering

slowly. However, an exception to this was shown by the case study of the 2003 ‘‘valley

filling event’’ in the Alzette River (Grand Duchy of Luxembourg), as investigated by

Matgen et al. (2004) and Schumann et al. (2008c). In a ‘‘valley filling event’’, flood extents

show little sensitivity to high discharge values, and shoreline positional errors can cause

significant uncertainties in stage retrieval. In these cases, acquisitions at a lower flow than

peak may provide a better test of model performances. At a preliminary stage of the flood,

small changes in the channel roughness coefficient may have a large impact on the sim-

ulated extent and thus provide useful information on channel hydraulics. Further, when the

river channel is at bankfull, small changes in the discharge tend to induce large changes of

the flood extent, and the lumped friction parameters need to be adjusted accordingly. Using

multi-temporal airborne radar imagery of the 2000 flood in the river Severn (UK), Horritt

et al. (2007) showed that observations made during the receding limb of the hydrograph,

when the discharge was approximately at bankfull and then below bankfull were more

effective at distinguishing models than imagery captured at peak flow.

In conclusion, care is required to ensure that the observations provide useful informa-

tion on the hydraulic processes that the model is trying to represent (Schumann et al.

2009a). Inundation patterns at different stages during the flood event may be dominated by

the topography of the floodplain, and these effects may limit the ability of observations to

constrain the model parameter space. A strong correlation between the observed quantity

and flood dynamics is pivotal in determining the success of the calibration/validation

protocol, and the advisable acquisition time is a function of the specific case study.

6.8 Selection of the Remote Sensing-Derived Product

As can be inferred from the above, a range of RS-D data can be used for the calibration and

validation of hydraulic models: (1) maps of flood extent, (2) spatially distributed inun-

dation width values and (3) spatially distributed water level values. A large variability of

the observed values within the flooding process allows a more effective constraint of the

parameter space. Flood extent and inundation width data are highly correlated with flood

dynamics in floodplains with slowly varying slopes. Conversely, only water level values

vary strongly in floodplains constrained by steep slopes or in the occurrence of valley

filling events (e.g., Horritt 2006; Mason et al. 2009; Stephens et al. 2012, 2014). In order to

capture the capability of each observation data set to evaluate the performance of various

features of the model, many studies (e.g., Schumann et al. 2008d; Hall et al. 2011) sug-

gested a multi-objective calibration framework representing a compromise between

observed flood area and spatially distributed water stages.

7 Remote sensing-Derived Observations for Real-Time Updating
of Hydraulic Flood Forecasting Models

Data assimilation (DA) is an approach to the problem of updating a dynamical system

using both current and past observations, together with a model to provide temporal

continuity and dynamic coupling among the variables (e.g., Charney et al. 1969; Hunt et al.

2007; Houser et al. 2010). Basically, there are four methods for model updating (Houser
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et al. 2010): state updating, input updating, error prediction or correction and parameter

updating. State updating methods adjust internal model states based on observations; input

updating methods involve generating new estimates of input data and then running them

through the simulation model; error prediction methods analyse past errors between

observations and model predictions to predict future model errors; and parameter updating

methods seek to update the parameters of simulation models.

Data assimilation requires a numerical algorithm that, given a (noisy) model of the

system dynamics, finds the best estimates of system states from (noisy) observations

(Houser et al. 2010). Most current approaches to this problem are derived from either the

direct observer or dynamic observer techniques. Direct observer techniques sequentially

update the results of the numerical model (i.e. the ‘‘forecast’’ or ‘‘a priori estimate’’) using

the difference between observations and model predicted observations. This difference is

known as the ‘‘innovation’’, and it is computed whenever new observations are available.

The model predicted observations are calculated from the model ‘‘background’’ states. The

correction, or ‘‘analysis increment’’, added to the background state vector is the innovation

multiplied by a weighting factor or ‘‘gain’’. The resulting estimate of the state vector is

known as the ‘‘a posteriori estimate’’. The commonly used direct observer techniques are:

(1) direct insertion; (2) statistical correction; (3) successive correction; (4) analysis cor-

rection; (5) Newtonian nudging; (6) optimal statistical interpolation; (7) one-, two- or

three-dimensional variational assimilation; (8) Kalman filter and variants; and (9) particle

filter and variants. The dynamic observer finds the best fit between the forecast model state

and the observations by minimising an objective or penalty function over space and time

‘‘window’’, including a background and observation penalty term to account for initial state

vector uncertainty and observation uncertainty. Dynamic observer methods are well suited

for smoothing problems, but provide information on estimation accuracy only at a con-

siderable computational cost. The 4D (3D in space, 1D in time) ‘‘variational’’ (otherwise

known as Gauss-Markov) assimilation and the ensemble Kalman smoother (Dunne and

Entekhabi 2005) are examples of dynamic observer techniques. For a more comprehensive

analysis of the direct and dynamic observer techniques in land surface data assimilation,

we refer to Houser et al. (2010).

Many studies assimilated in situ measurements for hydraulic modelling applications

(e.g., Shiiba et al. 2000; Madsen and Skotner 2005; Neal et al. 2007). As pointed out by

Schumann et al. (2009a), there is no doubt that a comprehensive remote sensing data

assimilation (RS DA) framework has the potential of becoming a critical component in

future flood forecasting systems. However, only a few studies have so far attempted to

assimilate RS data into hydraulic models (e.g., Matgen et al. 2007b; Giustarini et al. 2011;

Garcı́a-Pintado et al. 2015, please refer to Sect. 7.1 for the complete list). The objective of

this section is to analyse the outcomes of the ongoing debate on how to integrate RS data

into hydraulic modelling for flood forecasting.

7.1 Overview of the Studies

The assimilation of RS-D observations of water levels, inundation widths or flood extents

into hydraulic models for flood forecasting has started to be investigated only in the last

decade, taking advantage of the increasing availability of RS data and of the correlated

ongoing developments in the interpretation of RS images. The number of historical events

for which RS data are available is still limited (see Sect. 5). However, the amount of

applications is expected to increase with the launch of new satellites scheduled for the next

years. In this context, many authors opted for the analysis of synthetic scenarios in which
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synthetic RS-D data were generated either from a so-called truth realisation of the

numerical model or using a simulator algorithm (such as the Jet Propulsion Laboratory

Instrument Simulator, Rodriguez and Moller 2004). Synthetic RS-D data were generated to

emulate the characteristics of products potentially provided by specific sensors and the

analysis of synthetic scenarios aimed at proving their potential utility for flood forecasting.

Furthermore, these studies focused on the problem of scheduling satellite-based acquisi-

tions for sequential assimilation into operational flood modelling. Conversely, studies

based on real case scenarios aimed at proving the utility of the assimilation of currently

available RS-D data.

For both synthetic and real case scenarios, preliminary choices of the data assimilation

algorithm, the updating method, the RS-D observation (i.e. water levels, inundation width

or flooded area) have to be made. These aspects are discussed in Sects. 7.2 and 7.6,

respectively. Section 7.3 lists the performance measures used to evaluate the impact of RS

DA on the accuracy of flood forecast. A few benchmarking analyses have contrasted the

effectiveness of assimilating RS and field data into hydraulic models for flood forecasting;

the main outcomes are presented in Sect. 7.4. The accuracy of the observations, the first

visit time and the frequency of acquisition affect the result of any DA strategy. Section 7.5

summarises the findings and recommendations of the published studies. As DA techniques

are not meant to correct systematic errors (biases), Sect. 7.7 discusses the impact of a poor

implementation and calibration of the hydraulic model on the accuracy of the flood

forecasts.

Table 7 summarises the studies focussing on the assimilation of RS-D observations of

flood extent and levels for improving the accuracy of hydraulic models for flood

forecasting.

7.2 Data Assimilation Algorithm

The large majority of the approaches applied in the literature for the assimilation of RS

data into hydraulic models for flood forecasting were derived from the direct observer

technique. In particular, Matgen et al. (2007b) applied a direct insertion method while

Andreadis et al. (2007), Andreadis and Schumann (2014), Neal et al. (2009), Matgen et al.

(2010), Giustarini et al. (2011, 2012) and Garcı́a-Pintado et al. (2013) applied filtering

methods. Per contra, Lai and Monnier (2009) peculiarly provided an example of the

application of a dynamic observer technique. In an artificial test case based on the 1997

flood event in the Mosel River (France), they used a 4D-variational technique to assimilate

synthetic RS-D water levels into a 2D hydraulic model for the updating of the input

discharge hydrograph.

The next paragraphs present studies that used a filtering approach. The ensemble

Kalman filter and the particle filter and their variants were used for the assimilation of RS-

D data into hydraulic models. The selection of the filtering algorithm was based on:

1. the ability of the filter to model the uncertainties in the RS-D data; and

2. the physical dimension of the model domain.

Early studies completed by Andreadis et al. (2007) and Neal et al. (2009) were based on the

Ensemble Kalman filter (EnKF) analysis scheme proposed by Evensen (1994, 2003, 2004).

The EnKF is a Monte Carlo implementation of the Bayesian update problem. The EnKF is

computationally efficient; however, it makes the assumption that all probability distribu-

tions involved (including the distribution of the measurement error) are Gaussian. As

detailed in Sect. 4.2, studies investigating the full empirical distribution and the
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uncertainty description of RS-D data are still limited. In one of the rare studies, Schumann

et al. (2008c) showed that a Gaussian error assumption may not be adequate for most of the

RS-D ensembles of water levels. Consequently, Matgen et al. (2010) and Giustarini et al.

(2011, 2012) proposed an assimilation scheme based on the particle filter (PF) as a pos-

sibility to relax the Gaussian assumption of the EnKF. The PF can indeed easily manage

the propagation of a non-Gaussian distribution through nonlinear hydrologic and hydraulic

models (Moradkhani 2008). The DA protocol proposed by Matgen et al. (2010) and

Giustarini et al. (2011, 2012) can thus be adapted to any empirical or theoretical distri-

bution function. However, since theoretical distribution functions alternative to the

Gaussian distribution have yet to be specified, following Neal et al. (2009), Matgen et al.

(2010) suggested the possibility of applying the PF to assimilate a subsample of mea-

surements that did not fail a normality test. Giustarini et al. (2011, 2012) assumed that the

RS-D water levels were uniformly distributed within an interval derived using the protocol

proposed by Hostache et al. (2009). In a follow-up study, Giustarini et al. (2012) formu-

lated an approach that allows exploiting the full empirical spread of RS-D water levels,

without requiring any assumption on their distribution function (Sect. 4.2).

Garcı́a-Pintado et al. (2013) noted the relatively small size and the mono-dimension of

the model setups investigated by Matgen et al. (2010) and Giustarini et al. (2011). As

discussed by Snyder et al. (2008) and Matgen et al. (2010), despite the potential to improve

the PF efficiency for rivers with complex geometry and large dimensional problems, the

research is still in progress. Conversely, the feasibility of the EnKF with ensemble sizes

(i.e. the number of model realisations) much smaller than the state dimension has been

demonstrated in operational numerical weather prediction (Houtekamer and Mitchell

2005) and is theoretically justified (Furrer and Bengtsson 2007). Based on these consid-

erations, the EnKF was recently implemented by Garcı́a-Pintado et al. (2013, 2015) and

Andreadis and Schumann (2014).

7.2.1 Global or Local Data Assimilation Strategy

Global and local formulations for both the PF and the EnKF are possible. The two different

strategies were tested and compared, respectively, by Giustarini et al. (2011) and Garcı́a-

Pintado et al. (2015).

Generally speaking, in a global filter the likelihood of a model realisation is based on its

ability to correctly predict the state variables (i.e. water levels, inundation width, flooded

area and discharge) along the entire river domain. A global PF was adopted in the synthetic

experiment implemented by Matgen et al. (2010). They used the same model to generate

and assimilate the synthetic satellite observations. Consequently, for a given forcing (in-

flow hydrograph), the model generally performed equally well (or poorly) at all cross

sections along the river, and the choice of a global weighting procedure in which a single

particle contained a state vector the water levels at all cross sections was appropriate.

However, as observed by Giustarini et al. (2011) in a real case study, model structural

errors and parameter uncertainties cause local bias that need to be taken into consideration.

As the global weighting procedure favours compromising solutions that provide accept-

able results at all model cross sections, it might happen that one model performs well over

the entire river reach, but at the same time has a very poor performance at many local

levels. This raises difficulties in the selection of a good model application. Moreover, as

Garcı́a-Pintado et al. (2015) remarked in their analysis of the global formulation of the

EnKF, spurious updates of the state at locations physically disconnected from the obser-

vation are possible. Localisation techniques were then suggested to correct the problem.
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Giustarini et al. (2011) proposed a local variant of the PF. The local PF procedure

attributes a separate particle set to each cross section (i.e. a single particle contains the

water level from one cross section as state vector) and thus associates likelihoods to each

model realisation according to its ability to correctly predict the water stage at a given

cross section. The global and local formulations were applied to assimilate (1) field data

and (2) ERS2- and ENVISAT-ASAR-derived water levels into a hydraulic model of the

2003 flood in the Alzette River (Grand Duchy of Luxembourg). The authors demonstrated

that a local weighting procedure is the preferred solution when assimilating unbiased and/

or very precise observations, while in ungauged basins where highly uncertain RS-D

observations are the only available data source, a global weighting procedure is recom-

mended. Based on these recommendations, Giustarini et al. (2012) used the global

weighting formulation of the PF to assimilate water levels derived from a coarse ENVI-

SAT-ASAR Wide Swath Mode image into an uncalibrated 1D hydraulic model of the 2008

flood in the Po River (Italy).

The local formulation of the EnKF assimilation protocol has been traditionally based on

an observation localisation method (e.g., Hunt et al. 2007; Nerger and Gregg 2007;

Kirchgessner et al. 2014) in which the assimilation is applied independently to a series of

disjoint local domains, and only observations within some defined cut-off radius are

considered (Kirchgessner et al. 2014). Garcı́a-Pintado et al. (2015) formulated a novel

distance metric based on an along channel network distance that is originally able to

account for the physical connectivity of flows. They subsequently tested the efficiency of

the global formulation, the traditional local formulation and their own novel local for-

mulation of the EnKF to improve the forecast of the 2012 flood in the Severn and Avon

rivers (UK). Water levels derived from 7 COSMO-SkyMed images had a Gaussian dis-

tribution with 25 cm standard deviation and were assimilated into a 2D hydraulic model.

The authors showed that their novel local formulation of the EnKF was able to filter out the

spurious correlations and unphysical relationships dominating the global filter. When the

local filter was applied, more observations shared a fair contribution to the updating,

making the filter more robust to outliers in the observations.

A local EnKF was subsequently applied by Andreadis and Schumann (2014) to

assimilate synthetic values of RS-D water levels, inundation width and flood extent into a

2D hydraulic model for the prediction of the flow regime of the Ohio River over 1 year.

The river was partitioned into reaches of equal lengths, and the assimilation was performed

exclusively using the forecasts and observations of that reach. In the case of the Ohio River

(516 km), the localisation reach length was set at 5 km; however, the authors stated that

very similar results were obtained for lengths up to 50 km.

7.2.2 State, Input and Parameter Updating

The most straightforward use of RS-D data to improve the forecasting skills of a hydraulic

model is state updating. Each time a RS observation is available, the model state is updated

and the new values are then used as the new ‘initial condition’’ of the hydraulic model.

Following the analysis step, the model is propagated in time and its result becomes the

forecast in the next analysis cycle (i.e. when new observations become available). For

instance, Matgen et al. (2007b) used a direct insertion method that forced water level data

simulated by a hydraulic model to fall within the confidence interval of ERS-2-derived

water levels. Matgen et al. (2010) subsequently used the PF to update the forecasted water

levels using synthetic water levels with an ‘‘acquisition’’ frequency down to 12 h and an

accuracy of 0.30 m. Andreadis et al. (2007) and Garcı́a-Pintado et al. (2013) used the
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EnKF to update the modelled water level and discharge values using synthetic observations

of water level. Andreadis and Schumann (2014) used the local EnKF to update water

levels, discharge or flooded extent values using synthetic observations of water levels, top

width and flooded areas. Using different algorithms for the assimilation of different states

in real and synthetic scenarios, all the studies listed above concluded that, although the

models results were more accurate immediately after the analysis step, the improvement in

forecasting skills due to state updating had a short time span. Depending on the specific

case study, a few hours or even a few minutes after the state updating, the model forecast

returned towards the open-loop model realisation. The positive impact of a mere re-

initialization of hydraulic models is indeed limited by the dominating effect of the

upstream boundary condition (i.e. inflows).

To tackle the problem of non-persistent model improvements, many authors (e.g.,

Andreadis et al. 2007; Matgen et al. 2010; Giustarini et al. 2011) suggested a shift from a

simple state updating method to a combination of state updating and input updating.

Different protocols to correct input errors were used. For instance, Andreadis et al. (2007)

computed a relative error term based on the difference between the a priori and the a

posteriori discharge values at each analysis step. Then, from the next step until the next

assimilation time, every member of the ensemble of input discharge hydrographs was

corrected applying the autoregressive error forecast model proposed by Madsen and

Skotner (2005). The autoregressive error forecast model essentially regresses the current

value of a time series against the value at the previous time step. Over an 84-day simulation

of the hydraulic behaviour of the Ohio River, the filter was able to recover water levels and

discharge even when a 32-day satellite acquisition frequency was used.

Alternatively, Matgen et al. (2010) adopted a constant error forecast model: the relative

error computed at one analysis step was applied to correct every member of the ensemble

of discharge hydrographs from the next step until the next assimilation time. In this

approach, the underlying assumption is that current model errors are due to an over- or

underestimation of water stored in the basin. In their analysis of the 2003 flood event in the

Alzette River, Matgen et al. (2010) showed that the time-averaged RMSE of water level

was 0.34 m for an open-loop simulation and 0.33 m when a simple state updating method

was applied to assimilate synthetic RS-D water levels having a Gaussian distribution with

zero mean and standard deviation of 0.30 m and a frequency of 48 h. The time-averaged

RMSE reduced to 0.25 m when the same RS-D water levels were used in a combined state

and input updating approach.

Giustarini et al. (2011) applied the scheme for state updating and input correction based

on the constant inflow error forecast model proposed by Matgen et al. (2010) to a real case

scenario. Water levels derived from an ERS-2 and an ENVISAT-ASAR image, respec-

tively, acquired during the rising limb and immediately after the flood peak of the 2003

flood event in the Alzette River were assimilated into a 1D hydraulic model. The proposed

inflow correction model led to improved predictions for more than 5 h after the assimi-

lation. Nevertheless, during the receding limb the forecasts with filtering performed worse

than the open-loop predictions. Giustarini et al. (2011) observed that the two satellite

observations were acquired when model errors are known to be only weakly correlated in

time. During the rising limb of the event, precipitation errors continuously add to model

parameter and model structural errors and the assumption of constant relative errors

throughout the flood event might not be valid. However, Giustarini et al. (2012) obtained

more persistent improvements in the predicted water levels when the PF with the same

constant inflow error forecast model was applied to two different real cases. First, a 2-year

Average Recurrence Interval (ARI) flood in the Po River observed by a coarse-resolution
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(75 m) ENVISAT-ASAR Wide Swath Mode image recorded immediately before the flood

peak, and second, a 5-year ARI flood event in the Surat River observed by a high-

resolution (5 m) RADARSAT-2 image recorded immediately after the flood peak. Both

test cases obtained improvements in the predicted water levels over several hours. The

reasons for this might be the different approach used to represent RS-D data uncertainties

(see Sect. 4.2) and/or the different flooding characteristics of the study sites. In fact,

Giustarini et al. (2011) hypothesised that in larger river systems the dominating effect of

the boundary condition is reduced and this favours more persistent model improvements.

Garcı́a-Pintado et al. (2013, 2015) argued that, for storm–flood event durations and in

the absence of discharge data, the low current satellite revisit frequency hampers the

operational implementation of more complex approaches than a constant error forecast

model. Consequently, the deviations of the error forecast model from the real error

dynamics will diminish the improvement achieved using the data assimilation protocol. In

particular, Garcı́a-Pintado et al. (2013) used a reverse approach in a synthetic scenario to

show that the speed at which the updated model predictions drift away from the truth after

the analysis step is driven by the lack of match between the used inflow error forecast

model and the true inflow error evolution.

It is important to underline that Andreadis et al. (2007), Matgen et al. (2010), Giustarini

et al. (2011, 2012) and Garcı́a-Pintado et al. (2013) all assumed the hydraulic model to be

perfect in its structure, implementation and parameters, while the boundary inflows were

considered as the only source of error. An attempt towards parameter updating was per-

formed by Garcı́a-Pintado et al. (2015). Using the real case scenario of the 2007 flood

event in the Severn and Avon rivers (UK), they investigated whether, with an imminent

flood situation, it is more effective to focus on state updating; joint state and inflow

updating; or joint state, input and parameter updating. In the latter hypothesis, state values

(water levels), inputs and uncertain friction and bathymetry are estimated at the same time.

In the studied case, despite a benefit in the development of forecast error covariances and a

consistent convergence of the parameters, the simultaneous parameter updating did not

improve the flood forecast skill. However, the authors suggested that an accurate tuning of

the localisation parameters used for bathymetry estimation in the frame of the local EnKF

is likely to lead to an improved feedback on the flood forecasts.

7.3 Performance Measures

The capability of the proposed RS DA strategies in improving the accuracy of hydraulic

models for flood forecasting has been evaluated by comparing the results of the analysis

and of the forecast steps against ‘‘true’’ (i.e. observed or synthetic) values of water levels/

discharge at individual gauge stations. In particular, the effectiveness of the analysis step in

reducing the discrepancy between the forecast and the ‘‘truth’’ is shown by plotting the

histogram of the a priori and a posteriori water level/discharge value ensemble at specific

locations along the river reach and quantified by the mean error value. The latter is the

change in distance between the mean of the a priori histogram and the ‘‘truth’’ compared to

the distance between the mean of the a posteriori histogram and the truth. The effectiveness

of the analysis step in reducing the uncertainty of the predicted ensemble of water level

and/or discharge values is measured by computing the standard deviation of the a priori

and a posteriori histograms.

The effectiveness of the forecast step in improving the predictions of a hydraulic model

is generally quantified by the time-averaged RMSE between the modelled and the ‘‘true’’

time series of water level/discharge values at discrete points along the river reach. Some
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studies (e.g., Giustarini et al. 2012) limited the assessment to a visual comparison between

predicted and ‘‘true’’ time series of water levels/discharge values. Garcı́a-Pintado et al.

(2013) used the RMSE, the Brier Skill Score (BSS) and rank histograms. The BSS was

used to evaluate the accuracy of forecast when compared to the open-loop simulation. The

rank histograms were used for determining the reliability of ensemble forecasts and for the

diagnosis of errors in its mean and spread. Andreadis and Schumann (2014) defined a time

and spatially averaged cost function to measure the reduction in the forecast error due to

the assimilation when compared to an open-loop simulation.

The errors in the timing and value of the flood peak have so far not been included in the

assessment of the effectiveness of RS DA in enhancing the forecast skills of a hydraulic

model. Furthermore, as explained in Sect. 6.5, checking the skills of a hydraulic model for

flood forecasting exclusively at local level might not be representative for the model

behaviour at catchment level.

7.4 Utility of Remote Sensing-Derived Observations of Flood Extent
and Level in Contrast to Field Data

A few studies contrasted the use of RS-D and field observations in a data assimilation

exercise. Neal et al. (2009) showed that, over a 10-km domain of the Alzette River, water

levels derived from a 25-m resolution ENVISAT-ASAR image taken four hours after the

2003 flood peak were able to provide similar reductions in water level uncertainty as two

wrack marks having a standard deviation below 0.04 m. This result demonstrated that,

even when a dense and accurate network of ground measurements is available (it is worth

noting here that gauging stations in Europe are usually constructed every 10–60 km), the

use of a RS image is appealing.

Giustarini et al. (2011) performed a benchmark test to contrast the improvements in

flood forecasting accuracy obtained when assimilating, respectively, very precise but

poorly distributed ground-surveyed information or spatially distributed but highly uncer-

tain RS-D water level data. For the 2003 flood event in the Alzette River, hydrometric data

with a standard deviation of 0.1 m were recorded by six gauge stations; RS-D water levels

having a mean uncertainty of ±0.54 cm (Hostache et al. 2009) were retrieved from two

subsequent 25-m resolution ERS2 and ENVISAT-ASAR images. In situ data were

assimilated only at the time steps of the satellite overpasses. When a global weighting

approach was used, the two data sets showed similar performances in reducing the a priori

uncertainty, and the a posteriori distribution of the water levels generally encompassed the

truth. However, when a local weighting approach was used, the ground data outperformed

the RS-D data due to their higher accuracy. Nevertheless, Giustarini et al. (2011) high-

lighted that a local weighting approach in combination with precise but poorly spatially

distributed field data can potentially lead to an over-correction of models as the perfor-

mance of a model at a local level might not be truly representative for its behaviour at a

regional level. In this case, the assimilation can even lead to a deterioration in model

performance.

In summary, RS-D data are not yet a substitute for a dense in situ gauge network, as

they are only available infrequently and with a lesser accuracy than in situ gauge data.

However, RS-D data provide added value through their spatially distributed information.

The combination of both RS-D and field data sets is therefore likely to yield the best

assimilation results.
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7.5 Importance of Remote Sensing Observations Resolution, Acquisition
Time and Coverage

7.5.1 Resolution

The need for a rapid dissemination of information is probably of greater importance than

the production of a high-resolution product (e.g., Blyth 1997). Given the strong inverse

relationship between spatial resolution and revisit time for satellites (e.g., Di Baldassarre

et al. 2011), many authors investigated the possibility of assimilating data from coarse

satellite imagery into hydraulic models. Synthetic experiments completed by Matgen et al.

(2010) and the analysis of real case studies performed by Neal et al. (2009) and Giustarini

et al. (2011, 2012) showed that forecasting improvements can be achieved using the

existing coarse, low accuracy SAR data. In particular, Matgen et al. (2010) hypothesised

standard deviations of observed water levels from 0.1 m up to 10 m in order to investigate

the performance of the assimilation scheme as a function of observation accuracy. The

rather satisfactory results obtained with standard deviations up to 5 m indicated that the

assimilation of data having errors typical of coarse-resolution imagery (Di Baldassarre

et al. 2011) can lead to forecast improvements.

Giustarini et al. (2012) used the full empirical histogram distribution of the water levels

derived from the overlapping of a 150-m resolution ENVISAT-ASAR Wide Swath Mode

image with the global 90-m resolution SRTM DEM. Given the coarse resolution of both

the data set and the overestimation of the actual river bathymetry, the RS-D water levels

displayed a wide spread of values for each cross section and even included values lower

than the bed level. Moreover, due to the underestimation of the actual shape of the flow

area, for a given input discharge, the modelled water levels overestimated the true water

levels. Nevertheless, after the assimilation step, the reduction in the forecast error was

relevant.

7.5.2 First Visit Time and Frequency of Acquisition

Knowledge of the sensitivity of the forecasting accuracy to the first visit time and to the

subsequent acquisition frequency is an important design parameter in a time limited (and

often resource-limited) emergency scenario. These questions were investigated by ad hoc

synthetic experiments. Andreadis et al. (2007) analysed the impact of the assimilation

frequency on the modelling of both low-flow and high-flow periods. The synthetic RS-D

water levels were representative of the observations that will be provided by the SWOT

altimeter and the 8-day planned overpass interval of SWOT for the Ohio River (USA) was

used as a benchmark. Two additional experiments with overpass intervals of 16 and

32 days were conducted. All the filter simulations performed better than the open-loop

simulation; however, as expected, the assimilation system performance degraded as the

observation frequency became sparser. The time-averaged discharge and channel water

level RMSE of the open-loop simulation were 23.2 % and 56 cm. These numbers were

reduced to 10, 12.1 and 16.9 % and to 21.6, 24.9 and 33.3 cm, when RS-D data are

assimilated with a frequency of 8, 16 and 32 days.

The timing of acquisition, rather than its frequency, is pivotal in improving flood events

forecast. Matgen et al. (2010) showed that the water level RMSE averaged over the total

length of a flood event decreased from the open-loop simulation value of 0.34 m to 0.18,

0.19 and 0.25 m when RS-D water level data were acquired with a frequency of 12, 24 and
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48 h, respectively, and the first visit time was before the flood peak at the upstream cross

section. In fact, a higher frequency was effective in improving the forecast skills only when

acquisitions were performed during the rising limb and until shortly after the flood peak.

On the contrary, no significant positive effect was obtained by an increased frequency

during the receding limb. Analogously, the synthetic experiments performed by Garcı́a-

Pintado et al. (2013) showed that imagery obtained early in the flood had a large influence

on forecast statistics, and revisit interval was most influential for early observations. The

time-averaged discharge RMSE when the first acquisition happened during the rising limb

was roughly equal to the 35 % of the time-averaged discharge RMSE when the first

acquisition happened during the receding limb, while the frequency of acquisition appeared

to be a secondary factor. Per contra, in a real case scenario, Giustarini et al. (2011)

denounced the low persistence of the improvements of the flood forecast skills achieved

using two RS images acquired before and immediately after the flood peak, respectively.

Nevertheless, in this case study, not even the use of highly accurate field data assimilated at

the same acquisition time of the RS images could enhance the performance of the forecast

model and a poor calibration was likely the cause of such a lack of improvements

(Sect. 7.7).

In summary, the required first visit and revisit times depend on the temporal corre-

lation of model errors. During the hydrograph’s rising limb errors are difficult to predict

as precipitation errors continuously add to model parameter and model structural errors

(e.g., Giustarini et al. 2011). The operational scheduling of satellite SAR acquisitions

should try to capture the early stages of the rising limb, possibly with the highest

available observation frequency. After the flood peak, it becomes economically and

computationally convenient to distribute the observations in time. This kind of strategy

should enable the forecast to be kept on track for a longer time at minimum cost (Garcı́a-

Pintado et al. 2013).

7.5.3 Coverage

In the analyses described so far, the RS observation provided a full coverage of the model

domain. However, depending on the specific orbit, the spatial coverage of satellite

observations might be partial, and examining the impact of observations that are not

spatially coincident with the forecast reach becomes of interest. Biancamaria et al. (2011),

Garcı́a-Pintado et al. (2013) and Andreadis and Schumann (2014) showed that the benefit

of assimilating upstream observations at an early overpass is propagated downstream and

can be highly influential. The experiment completed by Andreadis and Schumann (2014)

suggested that the sequential assimilation of synthetic RS-D observations of flood extents

having limited coverage can be useful to investigate errors and uncertainties in the model

implementation and structure. Moving from upstream to downstream of the Ohio River

(USA), they assimilated observations covering gradually increasing areas of the model

domain. By extending the spatial coverage of their synthetic observations downstream,

they were able to point out the locations where the assimilated observations actually

degraded the forecast. A further investigation revealed large errors in the DEM (3.5 and

4.7 m) at those locations. It was also proven that, because of the negative impact of the

assimilation at these locations, the assimilation of observations covering a much larger area

is required to recover the same level of forecast accuracy that could be achieved assimi-

lating more accurate observations over a smaller area.
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7.6 Selection of the Remote Sensing-Derived Product

All studies listed above assimilated RS-D water levels. Andreadis and Schumann (2014)

compared the impact of assimilating RS-D observations of water level, top width and

inundated area on the forecasting skills of a hydraulic model of the Ohio River (USA). In a

synthetic scenario, a simple state updating approach was applied during both low- and

high-flow periods and for lead times from 1 to 11 days. The assimilation of RS-D water

levels improved the prediction of water levels for all lead times. The impacts of the

assimilation of RS-D water level and top width values on discharge prediction were then

evaluated. The imperfect knowledge of channel bathymetry and the fact that discharge is

mostly governed by the boundary inflows forcing (i.e. the low temporal autocorrelation of

discharge) render discharge prediction highly challenging. Despite those difficulties, the

impact of the RS-D water level observations on the discharge prediction skills was positive

for lead times up to 7 days over the entire study period. In contrast, the assimilation of top

width observations actually degraded the forecast skills on average (both spatially and

temporally). The impact of the DA exercise on the forecast skill is partly dependent on the

covariance between the forecast variable (i.e. discharge) and the observations (i.e. top

width). For channel cross sections that are close to rectangular, top width does not vary

significantly despite large variations in discharge (and water depth) and the information

content of the width observations is limited. Finally, the impact of the assimilation of RS-D

flooded area was a function of the acquisition time (Sect. 7.5.2) and showed a short

persistence due to the quick variation of the inflow conditions during a flood event.

7.7 Importance of Hydraulic Models Implementation and Calibration

The analysis of real case scenarios performed by Neal et al. (2009), Giustarini et al.

(2011, 2012) and Andreadis and Schumann (2014) showed that, despite the fact that the RS

DA improved the accuracy of the flood forecasts, the impact of uncertainties in the

implementation, calibration or model structure was still significant, especially at the local

level. In particular, Neal et al. (2009), Giustarini et al. (2012) and Andreadis and Schu-

mann (2014) tested the potential value of satellite observations for the reduction in flood

forecasting uncertainty when knowledge of topography, and river bathymetry is highly

uncertain as only coarse data are available. Neal et al. (2009) obtained rather satisfactory

results comparing the accuracy of a model of the 2003 flood in the Alzette River when

either LiDAR data were used to model the cross sections, or simplified channel geometry

was used. In fact, the same real case study was also analysed by Giustarini et al. (2011)

using a different calibration, a different inflow ensemble and a different filter. In the latter

study, even according to the best case scenario, i.e. when precise in situ measurements

were assimilated into a hydraulic model, difficulties raised from the fact that model

accuracy varies in space, and the poor quality of the forecast results at some cross sections

could be explained by a poorly calibrated model. When only a global coarse data set for

model implementation were available, Giustarini et al. (2012) and Andreadis and Schu-

mann (2014) showed that, despite its effectiveness in correcting input errors and modelled

water levels, the RS DA protocol could not impede the underestimation of river discharge

due to the discrepancy between the actual river bathymetry and the bathymetry derived

from the global database. Based on these analyses, it can be concluded that the set-up and

calibration of the hydraulic model are paramount prior to any data assimilation exercise.

Nevertheless, RS DA can provide a valuable tool to identify weaknesses in the model
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structure or local errors in the model implementation/parameterisation. For instance, based

on the results shown by Andreadis and Schumann (2014), ad hoc experiments consisting of

the assimilation of (synthetic) remote sensing data having a partial coverage can allow the

identification of the most ‘‘valuable’’ (i.e. improving forecast skill) observation locations as

well as locations where the assimilated observations may lead to a persistent degradation of

the forecast skill. In a resource-limited scenario, this analysis is a valuable tool as it points

out the locations where assimilation is pivotal (as they benefit the flood forecasts) as well

as the areas/locations requiring refined implementation data and parameter assessment.

8 Discussion and Conclusions

Based on this literature review, there is no doubt that the use of remote sensing data has the

potential to become a critical component in flood forecasting systems, more specifically for

the calibration, validation and real-time constraint of hydraulic models.

The number of space missions which are able to provide coarse- to high-resolution RS

imagery is currently increasing, and the observation of flood events from a remote location

is likely to shift from being opportunistic to being strategic. RS techniques provide a large

amount of data, which can solve the well know issue of scarcity of spatially distributed

data for flood inundation modelling (e.g., Bates et al. 1997, 2004; Horritt 2000; Werner

et al. 2005). Such data availability requires a better understanding on how to effectively

exploit the information content to improve the accuracy of hydraulic models for flood

forecasting. In fact, more detailed information might not directly lead to improved model

performance as different limitations and uncertainty sources affect flood inundation

modelling. These can be categorised as: (1) model structural uncertainty, which is origi-

nated by the inability of models to perfectly schematize the (often incompletely under-

stood) physical processes involved; (2) inflow uncertainty; (3) scarcity and uncertainty in

the observations used for calibration, validation and real-time constraint; (4) inadequacy of

calibration, validation and data assimilation protocols; and (5) time-changing physical

characteristics of the flooded area (e.g., Di Baldassarre and Uhlenbrook 2012; Dottori et al.

2013; Bates et al. 2014b).

The published literature demonstrated that the availability of RS-D observations of

flood extent and water levels have the potential to reduce some of the above listed sources

of uncertainty. The main conclusions and research needs pointed out during the last two

decades of scientific efforts are listed here with the aim of paving the way for the

development of improved protocols for flood inundation prediction.

• RS-D observations of flooded area and water levels are currently a complement, not an

alternative to field data for hydraulic model calibration/validation and real-time

constraint. The main drawbacks of RS-D data are the low precision, accuracy and

acquisition frequency.

• Further research on RS image processing algorithms is required in order to improve

accuracy and precision and reduce the delivery time of RS-D data.

• The quantification of RS-D data uncertainty is pivotal for any calibration, validation

and DA exercise.

• The choice of the most appropriate RS-D observation (i.e. inundation extent or level)

and of the advisable acquisition first visit and revisit time is tied to the morphological

and flooding characteristics of the catchment. A large variability of the observed

quantities within the flooding process and a strong correlation between the observed
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quantity and flood dynamics is pivotal in determining the success of the calibration,

validation, and data assimilation protocol. Early acquisitions are recommended as during

the hydrograph’s rising limb small changes in the channel roughness coefficient may

have a large impact on the simulated extent and water levels. Observations of flood

extent at flood peak conditions are advisable for model calibration and validation in flat,

large floodplains. Conversely, in V-shaped valleys affected by ‘‘valley filling’’ events,

flood extents show little sensitivity to high discharge values. In these cases, observations

of water levels at a lower flow than peak may provide a better test of model

performances. In real-time forecast, precipitation errors continuously add to model

parameter and model structural errors; first visit time and increased acquisition

frequency during the rising limb until the flood peak proved to be more effective in

improving the models’ forecast skill.

• The implementation of multi-objective calibration and validation frameworks is

advised and the definition of consistent performance measures is required.

• The selection of the appropriate data assimilation algorithm is an open question. It is

worth noting that no study so far has applied different DA algorithms (for instance the

EnKF and the PF) to the same case study. Simple state updating methods improve the

forecast for a short time. Input updating has been based so far on very simple models and

more appropriate approaches have been advocated. Future research should look at the

combination of state updating, input updating and parameter updating.

• Uncertainties in the upstream boundary conditions have been identified has one of the

main sources of errors in flood forecasting (e.g., Bates et al. 2014b). In all the studies

analysed, these uncertainties were propagated through the system using ensemble input

forecasts retrieved from hydrologic models or uncertainty in the rating curve of gauged

hydrographs. The propagation of errors and uncertainties through coupled hydrologic

and hydraulic models has to be investigated.

In summary, further research in image processing, description of uncertainty, calibration–

validation and data assimilation protocols, performance measures, error propagation are

required to make full use of the new RS data sets. Nevertheless, limitations and uncertainty

sources will always affect flood inundation modelling; the models are a representation of

the real word, and the real word might undergo sensitive changes over the years or during

the flood event itself. Consequently, possible uncertainty sources should be always iden-

tified and evaluated, for instance, through multiple scenario analyses.
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