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A B S T R A C T   

L-band passive microwave remote sensing is currently considered a robust technique for global monitoring of soil 
moisture. However, soil roughness complicates the relationship between brightness temperature and soil 
moisture, with current soil moisture retrieval algorithms typically assuming a constant roughness parameter 
globally, leading to a potential degradation in retrieval accuracy. This current investigation established a tower- 
based experiment site in Victoria, Australia. P-band (~40-cm wavelength/0.75 GHz) was compared with L-band 
(~21-cm wavelength/1.41 GHz) over random and periodic soil surfaces to determine if there is an improvement 
in brightness temperature simulation and soil moisture retrieval accuracy for bare soil conditions, due to reduced 
roughness impact when using a longer wavelength. The results showed that P-band was less impacted by random 
and periodic roughness than L-band, evidenced by more comparable statistics across different roughness con
ditions. The roughness effect from smooth surfaces (e.g., 0.8-cm root-mean-square height and 11.1-cm corre
lation length) could be potentially ignored at both P- and L-band with satisfactory simulation and retrieval 
performance. However, for rougher soil (e.g., 1.6-cm root-mean-square height and 6.8-cm correlation length), 
the roughness impact needed to be accounted for at both P- and L-band, with P-band observations showing less 
impact than L-band. Moreover, a sinusoidal soil surface with 10-cm amplitude and 80-cm period substantially 
impacted the brightness temperature simulation and soil moisture retrieval at both P- and L-band, which could 
not be fully accounted for using the SMOS and SMAP default roughness parameters. However, when retrieving 
roughness parameters along with soil moisture, the ubRMSE at P-band over periodic soil was improved to a 
similar level (0.01-0.02 m3/m3) as that of smooth flat soil (0.01 m3/m3), while L-band showed higher ubRMSE 
over the periodic soil (0.03-0.04 m3/m3) than over smooth flat soil (0.01 m3/m3). Accordingly, periodic 
roughness effects were reduced by using observations at P-band.   

1. Introduction 

Soil moisture (SM) plays a key role in the earth’s system since it 
impacts the water, energy and biogeochemical cycles, and subsequently 
climate-change projections (Seneviratne et al., 2010). L-band (~21-cm 
wavelength/1.4 GHz) passive microwave remote sensing has been 

widely accepted as a robust technique for soil moisture remote sensing 
due to its all-time/weather capability, direct relationship with soil 
moisture, relatively deep sensing depth (~ 5 cm), and being a protected 
band allocated exclusively for radio astronomy and earth observation 
use (Wigneron et al., 2017). Moreover, L-band has advantages in 
reducing the impact from soil surface roughness and the vegetation 
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canopy compared to shorter wavelengths due to its relatively long 
wavelength (Ulaby et al., 1986). 

The scientific community has made great efforts to improve soil 
moisture retrieval models at L-band over the past five decades based on 
ground (Blinn and Quade, 1972; Njoku and O’Neill, 1982; Wigneron 
et al., 2001; Cano et al., 2010; Schwank et al., 2012; Zheng et al., 2019) 
and airborne (Blanchard, 1972; Paloscia et al., 1993; Rosnay et al., 
2006; Merlin et al., 2008; Panciera et al., 2008; Colliander et al., 2017; 
Ye et al., 2020a; Ye et al., 2020b; Zhao et al., 2020b) experiments. As a 
result of supporting evidence on capability and expected benefits in 
applications, the European Space Agency (ESA) launched the Soil 
Moisture and Ocean Salinity (SMOS) satellite (Kerr et al., 2010) in 2009 
and the National Aeronautics and Space Administration (NASA) 
launched the Soil Moisture Active Passive (SMAP) satellite (Entekhabi 
et al., 2010) in 2015; both with L-band radiometers. 

It is well known that soil roughness effects complicate the microwave 
emission and reduce the sensitivity of brightness temperature (TB) to 
soil moisture (Choudhury et al., 1979; Newton and Rouse, 1980; Newton 
et al., 1982; Njoku and O’Neill, 1982; Wang et al., 1983). The soil 
roughness effects are considered to result from a mixture of complex 
phenomena including 3-D soil spatial heterogeneities, volume scattering 
under dry soil conditions, and soil anisotropy, making it impractical to 
model the effects physically (Panciera et al., 2009; Wigneron et al., 
2017). Accordingly, a tractable semi-empirical model (referred to as the 
HQN model) was proposed by Wang and Choudhury (1981) and further 
developed by Prigent et al. (2000) to simulate the roughness effects over 
flat soil exhibiting only random roughness. This model has been adopted 
in the baseline soil moisture retrieval algorithms of the SMOS (Kerr 
et al., 2017) and SMAP (O’Neill et al., 2015) missions. 

According to the Fraunhofer criterion (Ulaby et al., 1982), a surface 
may be considered electromagnetically smooth in the microwave range 
if the root-mean-square (rms) of the surface height distribution (rms 
height; otherwise known as s) fulfills s < λ

32cos(θ), where λ is the obser
vation wavelength and θ is the incidence angle. This provides a theo
retical basis that asserts observations at longer wavelength should be 
less affected by soil roughness than those at shorter wavelength. This has 
also been demonstrated by experiments (Blinn and Quade, 1972; Wang 
et al., 1983). Moreover, periodic (e.g., sinusoidal) row structures, a 
common type of soil tillage used for cultivation purposes, usually result 
in larger roughness impacts on radiometric observations compared to 
flat soil (Ulaby et al., 1986). However, as these experiments focused on 
L-band and higher frequencies, a demonstration of the impact at P-band 
is lacking. 

The periodic soil surface consists of micro-scale random variations, i. 
e., random roughness, superimposed on a macro-scale one-dimensional 
surface undulation, i.e., periodic roughness (Ulaby et al., 1986; Gao, 
2016). A common modeling approach is to simulate the micro-scale 
roughness and assume that the macro-scale roughness acts like topog
raphy by changing the local incidence angle of the micro-scale rough
ness (Wang et al., 1980; Ulaby et al., 2014; Neelam et al., 2020). Wang 
et al. (1980) were the first to model the emissivity over a periodic sur
face at varying azimuth. However, the model was found to overestimate 
the influence of the row structure (Promes et al., 1988). While Promes 
et al. (1988) concluded that the periodic structures can be ignored in 
most cases without notable error at L-band, this has been challenged by 
Zheng et al. (2012), who showed that row structures can lead to a 
retrieval error of up to 0.1 m3/m3. The results of Pham et al. (2005) also 
indicated that the azimuthal signal present in periodic row structures 
can lead to a retrieval error. 

The current soil moisture retrieval algorithms of the SMOS and SMAP 
missions assume constant roughness parameters of the HQN model for 
different land cover types (Entekhabi et al., 2014; Kerr et al., 2017). 
Additionally, the impact of a periodic soil surface has not been consid
ered in the SMOS and SMAP algorithms due to difficulties such as the 
lack of a global map for row structure, row height, and orientation, etc. 

Since these assumptions and simplifications impose errors on the soil 
moisture datasets (Peng et al., 2017), global soil moisture sensing could 
be improved by using P-band radiometry, if it can be proven that the 
roughness effects are reduced from those at L-band. Consequently, use of 
the HQN model to account for roughness at P-band (~40-cm wave
length/0.75 GHz), including periodic row structure, is tested in this 
paper. This follows from the work of Shen et al. (2021) which demon
strated an increased moisture retrieval depth at P- compared to L-band. 

2. Data 

A comprehensive tower-based experimental site was established at 
Cora Lynn, Melbourne, Australia (Fig. 1, see https://www.prism.monash. 
edu/) in October 2017 for exploring P-band radiometer soil moisture 
remote sensing. The field was 160 m × 160 m in size and divided into four 
quadrants (numbered as Q1 to Q4 from the northwest clockwise). A ten- 
meter-high tower was located at the center of the field, carrying the two 
radiometers (Fig. 1b), namely the Polarimetric P-band Multi-beam 
Radiometer (PPMR) and the Polarimetric L-band Multi-beam Radiom
eter (PLMR). The tower rotated and tilted the instruments on a schedule 
such that PPMR and PLMR alternatively observed the four quadrants of 
the paddock at a range of incidence angles. The spatial resolution of the 3- 
dB footprints of PPMR and PLMR for 40◦ incidence angle is approximately 
8.2 m × 7.0 m and 4.0 m × 4.0 m, respectively. 

The PPMR and PLMR operate at 0.742-0.752 GHz and 1.401-1.425 
GHz, respectively. PPMR has four antenna beams at dual linear (hori
zontal (H) and vertical (V)) polarizations (H- and V-pol) while PLMR has 
six antenna beams at H- and V-pol. Warm and cold calibration of PPMR 
and PLMR were performed regularly: the former was undertaken weekly 
by positioning PPMR/PLMR over a blackbody chamber constructed 
from microwave absorbers and having 16 temperature sensors to pro
vide the reference TB; the latter was performed every midnight ac
cording to the tower schedule by pointing the PPMR and PLMR towards 
the sky for 2 h. The calibration accuracy for both the PPMR and PLMR 
was found to be better than 1.5 K. Note that the use of “P-band” and “L- 
band” hereafter specifically refers to the frequencies at which PPMR and 
PLMR operate unless otherwise specified. 

For the period of data collection used in this paper, the temporal 
evolution of soil moisture and temperature was monitored by two sta
tions (Fig. 1a, c) having 12 Hydra-probes inserted into the soil at 5-cm 
increments down to 60 cm (Fig. 1d). To investigate the representative
ness of the station, the spatial variation in surface soil moisture (~5 cm) 
was measured weekly at the locations shown in Fig. 1a using an in-house 
Hydra-probe Data Acquisition System (HDAS, Merlin et al., 2007). 
Particle size analysis on soil samples collected over the paddock found 
the soil to be a silt loam consisting of 18.0% clay, 10.9% sand, and 
71.1% silt. The soil bulk density of the surface soil layer in this site was 
0.87 kg/m3. 

The data collected from July 17, 2019 to July 31, 2019 were used in 
this paper. Because the field was plowed and sown with wheat in late 
July, only a limited period of data could be used for the study of bare 
soil. During this period, quadrants 1-4 were all bare soil and managed 
with different roughness conditions (Fig. 2, Table 1). Quadrant 2 was 
smooth flat soil while quadrants 1, 3, and 4 had periodic row structures. 
To provide a rougher flat bare soil as part of the comparison, the data in 
quadrant 3 collected from November 18, 2020 to November 30, 2020 
were also used, referred to as quadrant 3r hereafter. The periodic row 
structures in quadrants 1, 3, and 4 had different shapes and/or azimuth, 
with azimuth defined here as the angle between the radiometer look 
direction and the row direction. The period of the row structure is 
defined as the row spacing, while the amplitude is half of the vertical 
distance between the bottom and the top of the row. 

The roughness measurements were performed on July 17 and 31, 
2019 for quadrants 1-4 and on November 19, 2020 for quadrant 3r. 
Three consecutive 1-m measurements (i.e., 3-m in total) in two 
perpendicular directions were conducted in every quadrant on every 
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sampling day using a pin-profiler with an ~0.5-cm pin interval. Pho
tographs of the pin-profiler were taken during measurements, and the 
heights of the red pin tops in the photographs were derived from image 
processing, for calculating the rms height and correlation length 
(Table 1). RMS slope was also calculated to characterize the surface 
roughness, being rms height divided by correlation length. Although it 
has been suggested that a roughness profile longer than 10 m is required 
to guarantee a good precision (Oh and Kay, 1998; Baghdadi et al., 2000), 
such a long profile is not practical to measure in field experiments, and 
so a 3-m profile has been widely taken as a compromise (McNairn et al., 
2014; Neelam et al., 2020; Ye et al., 2020a; Zhao et al., 2020b). 

In total, four profiles were measured for each of the quadrants 
labeled 1-4, and two profiles were measured in quadrant 3r. The mea
surements were performed across and along the rows for the periodic 
surfaces. The profiles measured across the rows were decomposed into 
random (micro-scale) and periodic (macro-scale) components (Fig. 3). 
The periodic components (in orange in Fig. 3) of the profiles in quadrant 
1 as well as quadrants 3 and 4 were approximated using two-term and 
one-term sinusoidal functions, respectively. The fitting residuals (in 
green in Fig. 3) were taken as the random roughness component across 
the rows. The rms height, correlation length and rms slope in all five 
quadrants were calculated and averaged (with standard deviation) from 
using the random roughness components in the two perpendicular di
rections (Table 1). The roughness properties did not change much dur
ing the observing period, as indicated by the small standard deviation in 
Table 1, making it fair to assume a constant roughness condition over 
the analysis period. Consequently, the time-average of the rms height 
and correlation length measurements was used in this paper. 

Fig. 4 presents the collected data during the study period. The TB 
data at 38◦ for L-band and 40◦ for P-band collected at around 6 am were 
plotted and used in this paper, with 6 am used to minimize uncertainties 
from the soil temperature gradient and diurnal temperature variations 
(Fig. 4a). An approximately 40◦ incidence angle was used because 40◦ to 
45◦ has been proven to provide the best retrieval accuracy (Zhao et al., 
2020a) and 40◦ is also the incidence angle adopted by SMAP (Entekhabi 
et al., 2014). 

The time series of soil moisture and temperature collected from 
stations 126 and 127 is plotted in Fig. 4b and c. Stations 126 and 127 
showed similar soil moisture evolution over time, but with higher near- 
surface soil moisture values at station 126. The reason for this offset is 
that station 126 was in the flat quadrant, while station 127 was in the 
furrowed quadrant (Figs. 1a and 2); the drier moisture condition in the 
furrowed quadrants was also supported by the HDAS measurements 
shown in Fig. 4b. Considering the HDAS measurement agreement with 
the station soil moisture in the flat and periodic quadrants, in this paper 
station 126 was used as the soil moisture reference for quadrant 2 and 
station 127 was used as the soil moisture reference for quadrants 1, 3, 
and 4. 

Consistent with the TB observations, the time-averaged soil moisture 
at around 6 am in the 0-5-cm layer was used to evaluate the retrieved 
soil moisture at P- and L-band. While the thermal sensing depth was 
calculated to be approximately 10 cm at L-band and 20 cm at P-band for 
a 0.3-m3/m3 moisture condition (Njoku and Entekhabi, 1996), the 
moisture retrieval depth was much less, being approximately 5 cm or 
less at L-band (Escorihuela et al., 2010; Liu et al., 2012; Zheng et al., 
2019) and up to 10 cm at P-band (Shen et al., 2021). However, Shen 
et al. (2021) showed that the moisture retrieval depth varies with 
moisture condition and profile shape, and thus differs from time to time. 
Consequently, the moisture retrieval depth for the conditions of this 
study was calculated using the moisture retrieval depth model from 
Shen et al. (2021), being approximately 4-5 cm at P-band and 2-3 cm at 
L-band. Given the difficulty to monitor soil moisture in a layer shallower 
than 5 cm, and that the soil moisture between neighboring layers is 
highly correlated, the soil moisture observation in the 0-5-cm layer has 
been used as the reference for both the P- and L-band retrievals in this 
paper. 

3. Method 

3.1. Physical model for random roughness 

To estimate the impact of soil surface roughness, a physical model 

Fig. 1. Illustrations of the tower-based experiment at Cora Lynn, Victoria, Australia, including a) location map of the site; b) the tower carrying PPMR and PLMR; c) a 
station monitoring soil moisture and temperature evolution; and d) diagram showing the installation of the stations. 
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Fig. 2. Photos of the roughness conditions (left column) and soil profiles (right column) of the quadrants for the data used in this paper. Quadrants 3 and 4 were 
plowed in one pass and had the same roughness structures but with different orientations (perpendicular and parallel, respectively) relative to the tower look di
rection. Quadrant 3r is quadrant 3 under a different roughness configuration. 
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(Ulaby et al., 1982; Fung, 1994) was used to calculate soil emissivity 
based on Kirchhoff’s reciprocity theorem such that 

eP = 1 − ΓP = 1 − Γnon
P − Γcoh

P , (1)  

where Γnon
P and Γcoh

P are the noncoherent and coherent soil surface 
reflectivity, and subscript P denotes either H- or V-pol. The Γcoh

P can be 
calculated as 

Γcoh
P = Γ*

Pexp
{
− [2kscos(θ) ]2

}
, (2)  

where k is the wave number, s is the rms height of the soil surface, and Γ*
P 

is the specular reflectivity calculated from the Fresnel equation as a 
function of the relative soil dielectric constant εr (εr = εr

′ − jεr
′ ′) 

including real (′) and imaginary (′ ′) parts 

Γ*
H =

⃒
⃒
⃒
⃒
⃒

cos(θ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εr − sin2(θ)
√

cos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

⃒
⃒
⃒
⃒
⃒

2 (3)  

Γ*
V =

⃒
⃒
⃒
⃒
⃒

εrcos(θ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

εrcos(θ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εr − sin2(θ)

√

⃒
⃒
⃒
⃒
⃒

2. (4) 

The Γnon
P can be obtained by integrating the bistatic scattering coef

ficient σs over the upper hemisphere 

Γnon
H =

1
4πcos(θ)

∫2π

0

∫π/2

0

[
σs

HH(θ,ϕ, θs,ϕs) + σs
HV(θ,ϕ, θs,ϕs)

]
sin(θs)dθsdϕs

(5)  

Γnon
V =

1
4πcos(θ)

∫2π

0

∫π/2

0

[
σs

VV (θ,ϕ, θs,ϕs) + σs
VH(θ,ϕ, θs,ϕs)

]
sin(θs)dθsdϕs,

(6)  

where θ and ϕ are the zenith and azimuth of the incident direction, 
respectively, while θs and ϕs are the zenith and azimuth of the scattering 
direction, respectively. Moreover, σs

PQ (subscripts P and Q denote either 
H and V or V and H polarizations) was modeled by the I2EM (Improved 
Integral Equation Model, Fung et al., 2002), being a physical model that 
solves Maxwell’s equations by accounting for the boundary conditions 
on a rough soil surface. The I2EM was compared with another descen
dant of the IEM (Fung et al., 1992; Fung, 1994), i.e., the Advanced IEM 
(AIEM, Chen et al., 2003), by Wu et al. (2008), showing that the I2EM 
performed equally to or even better than the AIEM for low frequencies 
and small roughness, which is the case in this research. In addition, the 
I2EM has been used in similar simulations of the emissivity of soil sur
faces (e.g., Ulaby et al., 2014). 

The main equation of the I2EM used in this research is 

σs
PQ = S(θ, θs)

k2

2
exp

[
− s2( k2

z + k2
sz

) ]∑∞

n=1
s2n

⃒
⃒
⃒In

PQ

⃒
⃒
⃒2W(n)

(
ksx − kx, ksy − ky

)

n!
,

(7)  

where S(θ,θs) is the bistatic shadowing function, kx = k sin (θ) cos (ϕ), ky 
= k sin (θ) sin (ϕ), kz = k cos (θ), with ksx, ksy, ksz similarly defined in 
terms of the scattering angles θs and ϕs, and W(n) is the Fourier transform 
of the nth power of the surface correlation coefficient. The inputs to the 
I2EM are dielectric constant, observation frequency and surface prop
erties including the type of correlation function, rms height and corre
lation length. An exponential correlation function was assumed in this 
research since soil surfaces are mostly considered exponential-like (Fung 
and Kuo, 2006; Schwank et al., 2009; Zhu et al., 2020). 

The dielectric constant was related to soil moisture in this paper 
using the model of Mironov et al. (2013), because it accounts for the 
interfacial (Maxwell-Wagner) relaxation of water in the soil, which is 
important at P-band (Mironov et al., 2013). The Mironov model neglects 
the dependence of temperature on the dielectric constant by assuming a 
constant temperature of 20 ◦C. While the Peplinski model is also 
applicable at P-band (Peplinski et al., 1995), it was proven to have a 
much larger standard deviation from dielectric measurements (~0.3 

Table 1 
Characterization of the roughness structures in the five quadrants.  

Quadrant Row structure Periodic roughness Random roughness 

Azimuth (◦) Period (cm) Amplitude (cm) RMS height (cm) Correlation length (cm) RMS slope 

1 Sinusoidal bench 90 165 12 1.3 ± 0.2 5.4 ± 1.9 0.3 ± 0.1 
2 Flat – – – 0.8 ± 0.3 11.1 ± 4.4 0.1 ± 0.1 
3 Sinusoidal 90 80 10 1.1 ± 0.3 5.5 ± 1.3 0.2 ± 0.1 
4 Sinusoidal 0 
3r Flat – – – 1.6 ± 0.6 6.8 ± 2.2 0.2 ± 0.0 

The measurements in Q1, Q3, and Q4 were decomposed into periodic and random components for calculating the periodic and random roughness statistics, 
respectively. Quadrants 3 and 4 were plowed in one pass and had the same roughness structure (just different orientations relative to the tower look direction), and 
therefore the measurements in these two quadrants were averaged. 

Fig. 3. Decomposition of measured roughness profile into periodic and random 
profiles, for a) the sinusoidal bench profile of quadrant 1 and b) the sinusoidal 
profile of quadrants 3 and 4. 
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compared to 0.014 using the Mironov model) and thus not adopted here 
(Mironov et al., 2013). 

3.2. Physical model for sinusoidal surface 

A one-dimensional sinusoidal surface with height Ζ(y) can be 
described by 

Ζ(y) = A
[

1 + cos
(

2πy
Λ

)]

, (8)  

with amplitude A and spatial period Λ. Assuming that there are many 
spatial periods Λ within the antenna footprint, the emissivity of this 
sinusoidal surface (esin

P ) can be integrated across a single period such that 
(Ulaby et al., 2014) 

esin
P (ϕ) =

1
Λcos(θ)

∫ Λ

0
ePsec

(

α
)

cos
(

θ’
)

dy, (9)  

where θ is the beam incidence angle, ϕ is the beam azimuth angle, eP is 
the emissivity of the local small-scale surface with local incidence angle 
θ′ calculated using Eq. (1), and α is the angle whose tangent is equal to 
the slope of the surface Ζ(y). Please refer to Ulaby et al. (2014) for more 
details on this model. Apart from the regular inputs of the I2EM model, 
additional input requirements include azimuth, amplitude and period of 
the sinusoidal surface. 

3.3. Semi-empirical model 

This paper adopted the semi-empirical zero-order incoherent model 
(Ulaby et al., 1986) as the forward model to retrieve soil moisture from 
the tower brightness temperature observations. The total intensity of the 
thermal emission measured by radiometers (TBP) is the sum of the 
brightness temperature from soil (TBs

P) and the downwelling sky emis
sion (TBsky_down) reflected by the soil (TBsky

P ) 

TBP = TBs
P + TBsky

P =
(

1 − ΓP

)
Ts

eff + TBsky_downΓP, (10)  

with ΓP and Ts
eff representing the reflectivity and effective temperature 

of the soil, respectively. The TBsky_down was assumed to be constant and 
calculated to be 13.9 K at P-band and 5.3 K at L-band (ITU, 2015). 

Kirchhoff’s reciprocity theorem relates eP to ΓP through 

eP = 1 − ΓP, (11)  

where ΓP can be computed using the HQN model (Choudhury et al., 
1979; Wang and Choudhury, 1981; Prigent et al., 2000) 

ΓP = Γ*
Pexp

[
− HRcosNRP (θ)

]
(12)  

for low frequencies, i.e., P- and L-band, with the QR parameter set to zero 
as it is commonly believed to be negligible (Wigneron et al., 2001; 
Wigneron et al., 2011; Lawrence et al., 2013). The empirical parameters 
HR and NRP characterize the intensity of the roughness effects and po
larization dependence, respectively. The Γ*

P is the specular reflectivity 
calculated by the Fresnel equations (Eqs. (3) and (4)). 

According to radiative transfer theory, Ts
eff can be computed as 

(Choudhury et al., 1982) 

T s
eff =

∫ ∞

0
T(z)α(z)exp

[

−

∫ z

0
α(z’)dz’

]

dz, (13)  

where T(z) is the soil temperature at depth z, and α(z) is the power 
absorption coefficient depending on the soil dielectric constant εr and 
the observation wavelength λ written as (Ulaby et al., 1986) 

α(z) = 2(2π/λ)|Im[
̅̅̅̅̅̅̅̅̅̅
εr(z)

√
] |, (14)  

where Im[ ] represents the imaginary part. In this paper, the effective 
temperature was calculated using Eqs. (13) and (14) as well as the soil 
moisture and temperature measurements. The soil was modeled as a 
semi-infinite medium using the soil moisture and temperature obser
vations from the twelve hydra-probes of the station, respectively, with 
the soil moisture and temperature below 60 cm assumed to be the same 
as those observed in the 55-60-cm layer. 

Roughness has been found to impact microwave radiometry by 
reducing polarization difference, i.e., the depolarization effect (Shi 
et al., 2002; Mialon et al., 2012). Accordingly, the magnitude of the 
depolarization effect was calculated as 

Fig. 4. Collected data including a) TB observations at 6 am in quadrant 1 as an example; b) station time-series soil moisture with weekly HDAS measurements 
(boxplots) on two occasions; and c) station time-series soil temperature. The data gaps in a) resulted from the tower being lowered due to high wind on those days. 
Only the data collected from the top 3 of the 12 sensors are plotted in b) and c). Corresponding to the soil moisture evolutions of station 126 (in blue) for quadrant 2 
and station 127 (in red) for quadrants 1, 3, and 4, the HDAS measurements in quadrant 2, and quadrants 1, 3, and 4, are plotted as the blue and red boxplots in b), 
respectively, showing the maximum, 75% percentile, median, 25% percentile, and minimum. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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ΔΓ = (ΓH − ΓV) −
(
Γ*

H − Γ*
V

)
. (15)  

3.4. Inversion algorithm 

In this paper the roughness parameters were retrieved together with 
the soil moisture as a single process, using the full-time series of P- and L- 
band observations (Fig. 4) over each quadrant individually, i.e., 24 
observations at both H- and V-pol per band per quadrant were used to 
retrieve 15 unknowns (i.e., soil moisture across 12 days plus HR, NRH, 
NRV). No calibration of these parameters was undertaken to ensure a fair 
comparison of the roughness impact for P- and L-band. With the 
assumption that the roughness remained constant over the study period, 
use of the full-time series of measurements allowed for a robust esti
mation of the retrieved roughness parameters, as they become less 
sensitive to measurement noise and/or small imperfections in the for
ward model (Konings et al., 2016). 

Inversion of the forward model used a generalized least-squares 
iterative algorithm to minimize a cost function (CF) computed from 
the differences between observed (TBobs

P ) and simulated (TBP) TB, 
expressed as 

CF =

∑(
TBobs

P − TBP
)

2

σ(TB)2 +
∑

i

(
Pini

i − Pi
)

2

σ(Pi)2 , (16)  

where the sum of the difference between TBobs
P and TBP was calculated 

using both polarizations at ~40◦ incidence angle during the retrieval 
period, σ(TB) is the standard deviation related to the TB observations, Pi 
(i = 1,2,3,4) is the value of the retrieved parameter (SM, HR, NRH, and 
NRV), Pini

i is the initial value of each retrieved parameter, and σ(Pi) is the 
standard deviation associated with these initial values. 

4. Results 

4.1. Theoretical impact of random surface roughness 

Fig. 5 shows the smooth surface roughness limit for different wave
lengths and incidence angles according to the Fraunhofer criterion 
(Ulaby et al., 1982). Accordingly, it can be seen that at 40◦ incidence 
angle, the roughness effects can notionally be ignored at both P- and L- 
band providing the rms roughness height is lower than 0.8 cm. However, 
for a surface with rms height ranging from 0.8 to 1.6 cm it can only be 
considered electromagnetically smooth at P-band. Moreover, if the rms 
height increases beyond 1.6 cm, it suggests that the roughness cannot be 
neglected even at P-band. 

Fig. 6 presents the simulated emissivity using the physical model 
(Eqs. (1)–(7)) for a specular surface, a smooth surface with 0.8-cm rms 
height and 11.1-cm correlation length as observed in quadrant 2, and a 
relatively rough surface with 1.6-cm rms height and 6.8-cm correlation 
length as observed in quadrant 3r, encompassing the roughness range of 
typical flat soil surfaces, being mostly located within the range of 0.5-2 
cm and 4-15 cm for rms height and correlation length, respectively 
(Mialon et al., 2012; Lawrence et al., 2013; Fernandez-Moran et al., 
2015). In Fig. 6, the offset from the specular surface curve can charac
terize the impact of the random roughness, being reduced at longer 
wavelengths. Accordingly, a surface with 0.8-cm rms height and 11.1- 
cm correlation length could be considered smooth at 0.3 GHz/100-cm 
wavelength and 0.75 GHz/40-cm wavelength, evidenced by the over
lapped blue and orange curves. This also was true at 1.4 GHz/21-cm 
wavelength for incidence angles close to 40◦. For the rough surface, the 
roughness effects could be ignored at 0.3 GHz/100-cm wavelength but 
not at 0.75 GHz/40-cm wavelength or 1.4 GHz/21-m wavelength. 
However, it can still be seen that the impact at 1.4 GHz/21-cm wave
length was more pronounced than that at 0.75 GHz/40-cm wavelength. 

4.2. Forward simulation using the Fresnel model 

Fig. 7 shows the simulated against observed emissivity at both P- and 
L-band. From the comparison of P- and L-band emissivity in Fig. 7, it can 
be observed that overall P-band outperformed L-band in terms of both 
correlation coefficient (R) and unbiased root-mean-square error 
(ubRMSE), indicating that P-band observations were more representa
tive to the 0-5-cm soil moisture compared to L-band observations. Due to 
the smoothness of quadrant 2, the scatter plots of quadrant 2 were very 
close to the 1:1 line for both P- and L-band. This demonstrates the 
possibility for the roughness impact of smooth soil surfaces, such as 
those in quadrant 2, to be limited at P- and L-band. However, the 
roughness impact was more considerable in the other four quadrants, 
having either periodic roughness or large random roughness. In addi
tion, H-pol observations seemed to be influenced by roughness to a 
larger degree than V-pol observations, particularly in those quadrants 
with large roughness. 

4.3. Physical simulation of multi-scale roughness 

Fig. 8 shows the comparison of simulated and observed emissivity 
using the physical model over different periodic surfaces. Only sinu
soidal surfaces (quadrants 3 and 4) were considered herein to explore 
the multi-roughness and azimuth issue. First, only the random roughness 
was modeled using the physical model (Eqs. (1)–(7)) by ignoring peri
odic roughness. Next, the physical model for sinusoidal surfaces (Eqs. 
(1)–(9)) was used to simulate the multi-scale roughness with random 
roughness on top of periodic roughness. The roughness measurements in 
Table 1 were used in simulations accordingly. 

Similar to Fig. 7, it can be seen in Fig. 8 that P-band had a better 
performance than L-band in all scenarios. Although the ubRMSE in 
quadrant 3 was the same at P- and L-band, P-band had higher R values 
compared to L-band. From the comparison of top and bottom rows, the 
performance in quadrant 4 was improved substantially after accounting 
for the periodic roughness, while the statistics were degraded in quad
rant 3. Notably, Promes et al. (1988) observed that another similar 
model (Wang et al., 1980) had a better agreement with observations for 
parallel- than perpendicular-look direction. Therefore, it is suggested 
that this type of model should be used with caution over periodic 

Fig. 5. The maximum rms height to consider a surface electromagnetically 
smooth for a given observation wavelength in the microwave range, calculated 
using the Fraunhofer criterion (Ulaby et al., 1982). 
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surfaces with a perpendicular-look direction. 

4.4. Soil moisture retrieval using the semi-empirical model 

Soil moisture retrieval was carried out using the semi-empirical 
model introduced in Section 3.3 through minimizing the cost function 
in Eq. (16). Table 2 presents the root-mean-square error (RMSE) for the 
four retrieval schemes in each quadrant. The initial values of all 
retrieved parameters were set to zero to avoid any potentially 
misleading prior knowledge in the retrieval (Wigneron et al., 2011). All 
four schemes made the retrieved SM and HR “free” variables by omitting 
them from the cost function (Eq. (16)). 

Scheme 1 used the Fresnel model only and did not account for the 
roughness impact with the HQN model, with RMSE being similar at P- 
and L-band in quadrants 1 to 4 but not in quadrant 3r. Schemes 2 and 3 
used the HQN model and the same roughness parameters (HR, NRH, and 
NRV) as SMOS (Kerr et al., 2017) and SMAP (O’Neill et al., 2015) for bare 
soil, respectively. These two schemes had a similar parameter configu
ration and therefore the same RMSE in all quadrants except quadrant 4 
for L-band. The average accuracy of the five quadrants for schemes 2 and 
3 was the same, being 0.03 m3/m3 and 0.04 m3/m3 at P- and L-band 
respectively. Scheme 4 was a 4-parameter retrieval that retrieved HR, 
NRH, and NRV together with SM, achieving the best performance in terms 
of the average RMSE. Overall, P-band was found to have a 0.01- to 0.02- 
m3/m3 improvement over L-band when using the HQN model, except for 
quadrant 2 where P- and L-band had the same RMSE, possibly due to the 
low roughness. 

The R and ubRMSE were also computed for scheme 4 as an example 

and shown in Table 3. Similar to the RMSE results in Table 2, it can be 
observed that P-band still outperformed L-band in each quadrant. For 
quadrant 2 with a smooth soil surface, while the ubRMSE at P- and L- 
band was the same, the R value was higher at P-band. Compared to the 
ubRMSE in quadrant 2, the ubRMSE in other quadrants was similar at P- 
band while much higher at L-band. 

Table 4 shows the roughness parameters retrieved simultaneously 
with soil moisture using scheme 4. Quadrant 2 had relatively low values 
of HR and NRP, indicating a minimal random roughness impact at P- and 
L-band. Compared to quadrant 2, the quadrants with periodic roughness 
(quadrants 1, 3, and 4) and the flat quadrant with higher roughness 
(quadrant 3r) had a more substantial roughness impact on radiometric 
observations, evidenced by the larger HR values and the larger difference 
between NRH and NRV. 

Fig. 9 shows the magnitude of the depolarization effect of roughness 
(ΔΓ) using Eq. (15) and different NRP values. It can be seen from the 
figure that both the SMOS (NRH = 2 and NRV = 0) and SMAP (NRH = NRV 
= 2) parameterization did not imply a substantial depolarization effect, 
being close to 0. Mapping the NRP values in Table 4 to Fig. 9, it was found 
that P-band had a reduced depolarization compared to L-band, con
firming the reduced roughness impact at P-band. 

5. Discussion 

5.1. Impact of random roughness 

The Fraunhofer criterion (Fig. 5) and physical modeling (Fig. 6) 
indicated that brightness temperature observations at a longer 

Fig. 6. Emissivity simulated using the physical model over different soil surfaces and at three frequencies, i.e., 0.3 GHz, 0.75 GHz, and 1.4 GHz. The dielectric 
constant was assumed to be 12 – j2.4 (~0.25 m3/m3 in soil moisture). The specular surface was assumed to have zero rms height and 50-cm correlation length. The 
rms height and correlation length of quadrants 2 and 3r, being the break points according to the Fraunhofer criterion, were adopted in the simulation as the smooth 
and rough surface here, respectively. 

Fig. 7. Comparison of emissivity simulations using the Fresnel model against observations at P- and L-band.  
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Fig. 8. Emissivity simulations compared against observations at P- and L-band using the physical model over sinusoidal surfaces. Top row: only random roughness 
was simulated; and bottom row: both periodic and random roughness was simulated. 

Table 2 
RMSE (m3/m3) of the retrieved SM using different retrieval schemes in each quadrant.  

Scheme No. Retrieval scheme  P-band  L-band 

Q1 Q2 Q3 Q4 Q3r Avg Q1 Q2 Q3 Q4 Q3r Avg 

1 Retrieved parameter: SM 
σ(TB) = 0.5 

0.05 0.03 0.05 0.06 0.05 0.05 0.06 0.03 0.04 0.05 0.08 0.05 

2 Constant parameter: HR = 0.1, NRH = 2, NRV = 0 
Retrieved parameter: SM 
σ(TB) = 0.5 

0.03 0.02 0.03 0.04 0.04 0.03 0.05 0.02 0.04 0.04 0.07 0.04 

3 Constant parameter: HR = 0.15, NRH = NRV = 2 
Retrieved parameter: SM 
σ(TB) = 0.5 

0.03 0.02 0.03 0.04 0.04 0.03 0.05 0.02 0.04 0.03 0.07 0.04 

4 Retrieved parameter: SM, HR, NRH, NRV 

σ(TB) = 0.5, σ(NRP) = 5 
0.02 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.04 0.05 0.04 0.04  

Table 3 
R and ubRMSE (m3/m3) of the retrieved SM using scheme 4 in each quadrant.  

Metrics  P-band  L-band 

Q1 Q2 Q3 Q4 Q3r Avg Q1 Q2 Q3 Q4 Q3r Avg 

R 0.92 0.94 0.92 0.92 0.93 0.93 0.86 0.81 0.94 0.95 0.82 0.88 
ubRMSE 0.02 0.01 0.02 0.01 0.02 0.02 0.04 0.01 0.04 0.03 0.03 0.03  
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wavelength should have a reduced impact from random roughness. The 
soil moisture retrieval (Tables 2 and 3) showed that the difference of the 
RMSE and ubRMSE in quadrants 2 and 3r was reduced at P-band (0.01 
m3/m3) compared to L-band (0.02 m3/m3). Therefore, it could be 
concluded that P-band had a reduced roughness impact over typical 
random roughness conditions. 

The retrieval result using scheme 1 in Table 2 shows that the RMSE of 
both P- and L-band in quadrant 2 was 0.03 m3/m3, being smaller than 
the 0.04-m3/m3 target accuracy of SMOS and SMAP even though 
scheme 1 did not account for the roughness effect. By contrast, the RMSE 
of quadrant 3r was 0.05 m3/m3 and 0.08 m3/m3 at P- and L-band 
respectively. This indicates that the roughness impact for smooth flat 
surfaces (quadrant 2) can be potentially ignored while the impact for 
rougher flat surfaces (quadrant 3r) should not be neglected either at P- or 
L-band. This is confirmed by Fig. 7 where lower ubRMSEs (0.01-0.02 
m3/m3) were found in quadrant 2, but higher ubRMSEs (0.02-0.03 m3/ 
m3) were observed in quadrant 3r. 

5.2. Impact of periodic roughness 

Compared with L-band, a reduced impact from periodic roughness 
was observed at P-band. From the retrieval result of schemes 2 and 3 in 
Table 2, it can be seen that using the SMOS and SMAP default roughness 
parameters resulted in a good performance in quadrant 2 at both P- and 
L-band (RMSE = 0.02 m3/m3), but the performance over periodic soil 
was not as good, being 0.03-0.04 m3/m3 at P-band and 0.04-0.05 m3/m3 

at L-band. When retrieving roughness parameters along with soil 
moisture in scheme 4, the RMSE in quadrants 1, 3, and 4 for P-band was 
reduced to the same level as that for quadrant 2 at 0.02 m3/m3, while the 
RMSE for L-band was higher in quadrants 1, 3, and 4 (0.04-0.05 m3/m3) 
than in quadrant 2 (0.02 m3/m3). Similar differences can also be seen 

from the ubRMSE results in Table 3. In addition, it can be noticed from 
Table 2 that the RMSE for L-band in quadrant 4 was slightly higher using 
scheme 4 (0.05 m3/m3) compared to using schemes 2 and 3 (0.04 and 
0.03 m3/m3, respectively), indicating that it is necessary to account for 
the impact of the periodic roughness as also shown in Fig. 8. However, 
this only happened at L-band, demonstrating that use of P-band can 
reduce the impact of periodic roughness. Although the quadrants with 
periodic surfaces also had larger random roughness than the flat quad
rant, e.g., 1.1-cm rms height for quadrants 3 and 4 and 0.8-cm rms 
height for quadrant 2 (Table 1), this should not vitiate the stated 
conclusion because the 0.3-cm difference could be ignored compared to 
the substantial periodic roughness influence, as shown in Fig. 8. 

In terms of the retrieval performance (Tables 2 and 3) and the 
retrieved roughness parameters (Table 4), quadrant 1 (sinusoidal bench 
and perpendicularly oriented) was found to behave similarly to quad
rant 3 (sinusoidal and perpendicularly oriented). Importantly, the 
orientation of the row structure mattered; while the retrieval perfor
mance was not substantially different between quadrants 3 and 4 
(Table 3), the parallel row structure in quadrant 4 led to a larger HR 
value and lower absolute value of NRP (Table 4), in spite of the same row 
spacing and height. It should be noted that, although it fits with intuition 
that parallel row structures impose less roughness impact than perpen
dicular row structures, this is not the case according to either this 
research or the literature (Wang et al., 1980; Ulaby et al., 2014). 

Although there have been a few models for simulating surfaces with 
multi-scale roughness (Wang et al., 1980; Ulaby et al., 2014), it is still 
impractical to use them in global soil moisture retrieval. Reasons 
include, 1) these models rely heavily on accurate roughness measure
ments including period, amplitude, and azimuth of the row structures 
which are difficult to obtain globally; and 2) the model accuracy was not 
always satisfactory (e.g., Fig. 8) even though the roughness measure
ments were carefully sampled in the field. This finding is supported by 
Promes et al. (1988) who evaluated the model from Wang et al. (1980) 
using ground-based observations and found this model tended to over
estimate the influence of the row structure. A potential reason to explain 
this is that these models were developed based on some assumptions, e. 
g., the radiometer footprint contains many spatial periods, which may 
not be fulfilled when the footprint extends across only a few meters in 
ground-based experiments. 

The current SMOS and SMAP algorithm does not specifically 
consider any correction of this periodic roughness effect. Reasons in 
addition to the difficulties noted earlier include that a mixture of flat soil 
and/or periodic soil structures with different orientations are often 
present in a large footprint, potentially averaging those effects. None
theless, this paper has demonstrated that P-band can achieve a higher 
retrieval accuracy than L-band when utilizing the current SMOS and 
SMAP algorithm over periodic surfaces. 

5.3. Depolarization effects 

The depolarization is due to the fact that roughness impacts amplify 
H-pol emissivity to a greater degree compared to V-pol emissivity (Shi 
et al., 2002; Mialon et al., 2012), in line with Figs. 6 and 7. This results in 
a reduced difference between H- and V-pol observations. In the mono- 
angular retrieval of this paper, NRP can be seen as a coefficient of HR 
that characterizes the intensity of roughness. A larger NRP value makes 
the roughness coefficient, i.e., exp(− HRcosNRP(θ)) in Eq. (12) closer to 

Table 4 
Retrieved roughness parameters in each quadrant using scheme 4.  

Parameter P-band L-band 

Q1 Q2 Q3 Q4 Q3r Q1 Q2 Q3 Q4 Q3r 

HR 0.10 0.03 0.11 0.18 0.21 0.06 0.07 0.08 0.20 0.10 
NRH − 2.4 0 − 2.9 − 2.3 − 1.9 − 4.4 − 1.6 − 3.9 − 3.5 − 5.5 
NRV 2.4 0 3.0 2.4 2.0 4.4 1.6 4.0 3.5 5.6  

Fig. 9. Magnitude of the depolarization effect (ΔΓ) calculated using different 
NRH and NRV values. The dielectric constant, HR and incidence angle were 
assumed to be 12 – j2.4 (~0.25 m3/m3 in soil moisture), 0.1 and 40◦, 
respectively. 
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one, indicating a reduced roughness impact. Accordingly, ΔNR, i.e., ΔNR 
= NRH − NRV, is able to characterize the depolarization effect. 

Although NRH and NRV values differ from case to case, non-negative 
ΔNR values have been often reported in the literature (Mialon et al., 
2012; Lawrence et al., 2013) and used in the SMOS and SMAP retrieval 
algorithms (O’Neill et al., 2015; Kerr et al., 2017). However, in Table 4 
negative ΔNR values were obtained, possibly due to a substantial de
polarization induced by the large roughness impact, particularly in 
quadrants 1, 3, 4, and 3r. Moreover, the different retrieval configuration 
adopted in this paper could be another explanation. The multi-angular 
configuration adopted by Mialon et al. (2012) possibly imposed more 
constraints on NRP, leading to a different result. However, a negative 
relation of ΔNR and roughness was established by Mialon et al. (2012) 
and Lawrence et al. (2013), suggesting that ΔNR could also become 
negative as roughness increases. Accordingly, negative ΔNR was also 
seen by a few studies (Montpetit et al., 2015; Peng et al., 2017), in 
accordance with the current investigation. 

Depolarization could adversely impact soil moisture retrieval. Kon
ings et al. (2015) pointed out that a robust retrieval can only be guar
anteed if the degree of information (DoI) of a set of observations is larger 
than the number of the retrieved parameters. Accordingly, this depo
larization reduces the independence of the observations at H- and V-pol 
and thus the DoI. It can be noticed from Fig. 9 that ΔΓ is more likely to be 
non-positive, in line with literature observations that roughness-induced 
depolarization was often seen (Newton and Rouse, 1980; Wang et al., 
1983; Mialon et al., 2012). A positive ΔΓ value is scarce to observe over 
bare soil because it indicates that roughness enlarges the difference 
between the reflectivity at both polarizations. This phenomenon can 
only be observed at low incidence angles (e.g., less than 20◦) over pe
riodic soil surfaces (Wang et al., 1980; Zheng et al., 2012). Conse
quently, NRP values should be used with caution when ΔNR is larger than 
5, as indicated by the red area in Fig. 9. 

5.4. Uncertainties 

Although all results lend support to concluding that P-band is less 
sensitive to random and periodic roughness than L-band for the typical 
soil roughness landscapes tested in this paper, it should be noted that the 
difference in RMSE between P- and L-band could also be attributed to 
the potential error from using a mismatched moisture retrieval depth. 
The compromise of the evaluation in this paper is using the 5-cm 
moisture observation to evaluate the retrieved soil moisture of around 
0-4/5 cm at P-band and 0-2/3 cm at L-band, due to the difficulty in 
measuring the soil moisture evolution of the top few centimeters. While 
it is possible to model the soil moisture at these depths, reliance on 
model estimates will bring further uncertainties and make the results 
somewhat unreliable. 

To mitigate this issue, ubRMSE was also calculated since it removes 
the systematic error induced from the mismatched moisture depth. 
However, there may also be random errors imposed on the RMSE that 
cannot be removed by calculating ubRMSE. Accordingly, the reduced 
roughness impact of P-band was demonstrated in this paper by 
comparing the statistics in rough surfaces to those in flat surfaces instead 
of directly comparing the statistics of P- and L-band. 

While L-band was found in some cases to have shallower moisture 
retrieval depth than the widely accepted 5 cm (Escorihuela et al., 2010; 
Zheng et al., 2019; Shen et al., 2021), most studies are still using the soil 
moisture observations at around 5 cm to validate soil moisture products 
(Zeng et al., 2015) and calibrate the HQN model parameters (Mialon 
et al., 2012). This potentially leads to a dependence of the calibrated 
roughness parameters on soil moisture, which has been found to be 
reduced by using the soil moisture at a shallower moisture retrieval 
depth (Escorihuela et al., 2010). From this perspective, the retrieval 
error caused by the mismatched moisture depth in this paper can be 
taken as the “effective” roughness impact if a 5-cm moisture retrieval 
depth is assumed at both P- and L-band. 

The Fraunhofer criterion and the I2EM also have limitations that 
might lead to some uncertainties in the results. The Fraunhofer criterion 
considers only the vertical roughness (i.e., rms height) by assuming a 
considerably larger period of the soil structures than the observation 
wavelength. In addition, the isotropic roughness properties assumed by 
the I2EM may sometimes be invalid in practice. 

6. Conclusion 

This paper compared random and periodic roughness impacts on P- 
and L-band passive microwave brightness temperature to demonstrate 
the potential improvement in soil moisture retrieval from using the 
longer wavelength P-band observations rather than the shorter L-band 
observations over smooth to relatively rough soil. P-band was found to 
be less impacted by random and periodic roughness than L-band, evi
denced by more comparable statistics across different roughness con
ditions. An important result is that the roughness impact for smooth flat 
surfaces (e.g., quadrant 2 with 0.8-cm rms height and 11.1-cm correla
tion length) can be ignored, and still provide a satisfactory retrieval 
performance at both P- and L-band. However, the impact of roughness 
became important when the rms height reached 1.6 cm with a correla
tion length of 6.8 cm (quadrant 3r) at both P- and L-band, with P-band 
observations showing less impact than L-band. 

Periodic roughness was seen to degrade the retrieval performance 
from flat surfaces, and could not be fully accounted for using the SMOS 
and SMAP default roughness parameters. However, when retrieving 
roughness parameters along with soil moisture, the ubRMSE at P-band 
over periodic soil surfaces was improved to a similar level (0.01-0.02 
m3/m3) of that for a flat soil (0.01 m3/m3), while L-band showed a 
higher ubRMSE over periodic soil surfaces (0.03-0.04 m3/m3) than that 
over flat soil surfaces (0.01 m3/m3). This indicates reduced periodic 
surface roughness effects at P- compared to L-band. 
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Mediterranean ecosystem L-band characterisation EXperiment (MELBEX-I) over 
natural shrubs. Remote Sens. Environ. 114, 844–853. 

X. Shen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0005
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0005
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0005
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0010
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0010
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0010
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0015
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0015
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0015
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0020
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0020
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0020
http://refhub.elsevier.com/S0034-4257(21)00545-9/rf0020


Remote Sensing of Environment 269 (2022) 112825

12

Chen, K.-S., Wu, T.-D., Tsang, L., Li, Q., Shi, J., Fung, A.K., 2003. Emission of rough 
surfaces calculated by the integral equation method with comparison to three- 
dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 41, 
90–101. 

Choudhury, B.J., Schmugge, T.J., Chang, A., Newton, R.W., 1979. Effect of surface 
roughness on the microwave emission from soils. J. Geophys. Res. Oceans 84, 
5699–5706. 

Choudhury, B.J., Schmugge, T.J., Mo, T., 1982. A parameterization of effective soil 
temperature for microwave emission. J. Geophys. Res. Oceans 87, 1301–1304. 

Colliander, A., Cosh, M.H., Misra, S., Jackson, T.J., Crow, W.T., Chan, S., Bindlish, R., 
Chae, C., Holifield Collins, C., Yueh, S.H., 2017. Validation and scaling of soil 
moisture in a semi-arid environment: SMAP validation experiment 2015 
(SMAPVEX15). Remote Sens. Environ. 196, 101–112. 

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., 
Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., 
Koster, R.D., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., 
Shi, J.C., Spencer, M.W., Thurman, S.W., Tsang, L., Van Zyl, J., 2010. The soil 
moisture active passive (SMAP) Mission. Proc. IEEE 98, 704–716. 

Entekhabi, D., Yueh, S., O’Neill, P.E., Kellogg, K.H., Allen, A., Bindlish, R., Brown, M., 
Chan, S., Colliander, A., Crow, W.T., 2014. SMAP Handbook–Soil Moisture Active 
Passive: Mapping Soil Moisture and Freeze/Thaw from Space. 

Escorihuela, M.J., Chanzy, A., Wigneron, J.P., Kerr, Y.H., 2010. Effective soil moisture 
sampling depth of L-band radiometry: a case study. Remote Sens. Environ. 114, 
995–1001. 

Fernandez-Moran, R., Wigneron, J.P., Lopez-Baeza, E., Al-Yaari, A., Coll-Pajaron, A., 
Mialon, A., Miernecki, M., Parrens, M., Salgado-Hernanz, P.M., Schwank, M., 2015. 
Roughness and vegetation parameterizations at L-band for soil moisture retrievals 
over a vineyard field. Remote Sens. Environ. 170, 269–279. 

Fung, A.K., 1994. Microwave Scattering and Emission Models and their Applications. 
Fung, A., Kuo, N., 2006. Backscattering from multi-scale and exponentially correlated 

surfaces. J. Electromagnet. Wave Appl. 20, 3–11. 
Fung, A.K., Li, Z., Chen, K.S., 1992. Backscattering from a randomly rough dielectric 

surface. IEEE Trans. Geosci. Remote Sens. 30, 356–369. 
Fung, A.K., Liu, W.Y., Chen, K.S., Tsay, M.K., 2002. An improved Iem model for bistatic 

scattering from rough surfaces. J. Electromagnet. Wave Appl. 16, 689–702. 
Gao, Y., 2016. Joint Active Passive Microwave Soil Moisture Retrieval. Monash 

University. 
ITU, 2015. International telecommunication union recommendation: Radio noise. In: 

ITU-R P.372–12. 
Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., 

Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., 
Hahne, A., Martin-Neira, M., Mecklenburg, S., 2010. The SMOS mission: new tool for 
monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687. 

Kerr, Y.H., Waldteufel, P., Richaume, P., Ferrazzoli, P., Wigneron, J.P., . Algorithm 
Theoretical Basis Document (ATBD) for the SMOS Level 2 Soil Moisture Processor 
Development Continuation Project v3.10. In (p. 132). https://earth.esa.int 
/documents/10174/1854519/SMOS_L2_SM_ATBD:. SM-ESL (CBSA). 

Konings, A.G., McColl, K.A., Piles, M., Entekhabi, D., 2015. How many parameters can be 
maximally estimated from a set of measurements? IEEE Geosci. Remote Sens. Lett. 
12, 1081–1085. 

Konings, A.G., Piles, M., Rötzer, K., Mccoll, K.A., Chan, S.K., Entekhabi, D., 2016. 
Vegetation optical depth and scattering albedo retrieval using time series of dual- 
polarized L-band radiometer observations. Remote Sens. Environ. 172, 178–189. 

Lawrence, H., Wigneron, J.P., Demontoux, F., Mialon, A., Kerr, Y.H., 2013. Evaluating 
the semiempirical H–Q model used to calculate the L-band emissivity of a rough bare 
soil. IEEE Trans. Geosci. Remote Sens. 51, 4075–4084. 

Liu, P.-W., De Roo, R.D., England, A.W., Judge, J., 2012. Impact of moisture distribution 
within the sensing depth on L-and C-band emission in sandy soils. IEEE J. Select. 
Top. Appl. Earth Observ. Remote Sens. 6, 887–899. 

McNairn, H., Jackson, T.J., Wiseman, G., Bélair, S., Berg, A., Bullock, P., Colliander, A., 
Cosh, M.H., Kim, S.-B., Magagi, R., 2014. The soil moisture active passive validation 
experiment 2012 (SMAPVEX12): prelaunch calibration and validation of the SMAP 
soil moisture algorithms. IEEE Trans. Geosci. Remote Sens. 53, 2784–2801. 

Merlin, O., Walker, J.P., Panciera, R., Young, R., Kalma, J.D., Kim, E.J., 2007. Soil 
moisture measurement in heterogeneous terrain. In: Modsim International Congress 
on Modelling & Simulation Land Water & Environmental Management Integrated 
Systems for Sustainability, pp. 2604–2610. 

Merlin, O., Walker, J.P., Kalma, J.D., Kim, E.J., Hacker, J., Panciera, R., Young, R., 
Summerell, G., Hornbuckle, J., Hafeez, M., Jackson, T., 2008. The NAFE’06 data set: 
towards soil moisture retrieval at intermediate resolution. Adv. Water Resour. 31, 
1444–1455. 

Mialon, A., Wigneron, J.P., Rosnay, P.D., Escorihuela, M.J., Kerr, Y.H., 2012. Evaluating 
the L-MEB model from long-term microwave measurements over a rough field, 
SMOSREX 2006. IEEE Trans. Geosci. Remote Sens. 50, 1458–1467. 

Mironov, V.L., Bobrov, P.P., Fomin, S.V., 2013. Multirelaxation generalized refractive 
mixing dielectric model of moist soils. IEEE Geosci. Remote Sens. Lett. 10, 603–606. 

Montpetit, B., Royer, A., Wigneron, J.P., Chanzy, A., Mialon, A., 2015. Evaluation of 
multi-frequency bare soil microwave reflectivity models. Remote Sens. Environ. 162, 
186–195. 

Neelam, M., Colliander, A., Mohanty, B.P., Cosh, M.H., Misra, S., Jackson, T.J., 2020. 
Multiscale surface roughness for improved soil moisture estimation. IEEE Trans. 
Geosci. Remote Sens. 58, 5264–5276. 

Newton, R.W., Rouse, J.W., 1980. Microwave radiometer measurements of soil moisture 
content. Antenna Propag. IEEE Trans. 28, 680–686. 

Newton, R.W., Black, Q.R., Makanvand, S., Blanchard, A.J., Jean, B.R., 1982. Soil 
moisture information and thermal microwave emission. IEEE Trans. Geosci. Remote 
Sens. 275–281. 

Njoku, E.G., Entekhabi, D., 1996. Passive microwave remote sensing of soil moisture. 
J. Hydrol. 184, 101–129. 

Njoku, E., O’Neill, P., 1982. Multifrequency microwave radiometer measurements of soil 
moisture. Geosci. Remote Sens. IEEE Trans. 20, 468–475. 

Oh, Y., Kay, Y.C., 1998. Condition for precise measurement of soil surface roughness. 
IEEE Trans. Geosci. Remote Sens. 36, 691–695. 

O’Neill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., 2015. SMAP Algorithm 
Theoretical Basis Document (ATBD) Level 2 & 3 Soil Moisture (Passive) Data 
Products Revision B. In (p. 80). https://smap.jpl.nasa.gov/documents/: JPL.  

Paloscia, S., Pampaloni, P., Chiarantini, L., Coppo, P., Gagliani, S., Luzi, G., 1993. 
Multifrequency passive microwave remote sensing of soil moisture and roughness. 
Int. J. Remote Sens. 14, 467–483. 

Panciera, R., Walker, J.P., Kalma, J.D., Kim, E.J., Hacker, J.M., Merlin, O., Berger, M., 
Skou, N., 2008. The NAFE’05/CoSMOS data set: toward SMOS soil moisture 
retrieval, downscaling, and assimilation. IEEE Trans. Geosci. Remote Sens. 46, 
736–745. 

Panciera, R., Walker, J.P., Merlin, O., 2009. Improved understanding of soil surface 
roughness parameterization for L-band passive microwave soil moisture retrieval. 
IEEE Geosci. Remote Sens. Lett. 6, 625–629. 

Peng, B., Zhao, T., Shi, J., Lu, H., Mialon, A., Kerr, Y.H., Liang, X., Guan, K., 2017. 
Reappraisal of the roughness effect parameterization schemes for L-band radiometry 
over bare soil. Remote Sens. Environ. 199, 63–77. 

Peplinski, N.R., Ulaby, F.T., Dobson, M.C., 1995. Dielectric properties of soils in the 0.3- 
1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 33, 803–807. 

Pham, H., Kim, E.J., England, A.W., 2005. An analytical calibration approach for 
microwave polarimetric radiometers. IEEE Trans. Geosci. Remote Sens. 43, 
2443–2451. 

Prigent, C., Wigneron, J.-P., Rossow, W.B., Pardo-Carrion, J.R., 2000. Frequency and 
angular variations of land surface microwave emissivities: can we estimate SSM/T 
and AMSU emissivities from SSM/I emissivities? IEEE Trans. Geosci. Remote Sens. 
38, 2373–2386. 

Promes, P.M., Jackson, T.J., Neill, P.E.O., 1988. Significance of agricultural row 
structure on the microwave emissivity of soils. IEEE Trans. Geosci. Remote Sens. 26, 
580–589. 

Rosnay, P.D., Calvet, J.C., Kerr, Y., Wigneron, J.P., Lema Tre, F.O., Escorihuela, M.J., 
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