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A B S T R A C T

The recent and projected investments across the world on radar satellite missions (e.g., Sentinel-1, SAOCOM,
BIOMASS and NISAR) provide a great opportunity for operational radar soil moisture mapping with high spatial
and temporal resolution. However, there is no retrieval algorithm that can make complementary use of the
multi-frequency data from those missions, due to the large uncertainties in observations collected by the dif-
ferent sensors, different validity regions of the forward models, and the fact that inversion algorithms have been
designed for specific data sources. In this study, the principle of ensemble learning was introduced to provide
two general soil moisture retrieval frameworks accounting for these issues. Instead of trying to find an optimal
global solution, multiple soil moisture retrievals (termed sub-retrievals) with moderate performance were first
obtained using different channels and/or time instances randomly selected from the available data, with the
retrieved ensemble of results being the final output. The ensemble retrievals, taking one existing snapshot
method and two multi-temporal methods as the base retrieval algorithms, were evaluated using a synthetic data
set with the effectiveness confirmed under various uncertainty sources. An evaluation using the Fifth Soil
Moisture Active Passive Experiment (SMAPEx-5) data set showed that the ensemble retrieval outperformed the
non-ensemble retrieval in most cases, with a decrease of 0.004 to 0.014 m3/m3 in Root Mean Square Error
(RMSE) and an increase of 0.01 to 0.16 in correlation coefficient (R). Weakly biased and correlated sub-retrievals
were confirmed to be the basic requirement of an effective ensemble retrieval, being consistent with use of
ensemble learning in other applications.

1. Introduction

Information on soil moisture at high spatial and temporal resolution
is in demand from a variety of sectors. Synthetic Aperture Radar (SAR)
has shown promising results at field scale (Kornelsen and Coulibaly,
2013), with large scale mapping becoming possible because of the re-
cent investment in radar satellites by many countries (e.g., Sentinel-1,
SAOCOM and NovaSAR-S). Limited by the poor global coverage of in-
dividual SAR satellites (> 10 days), joint use of multiple satellites has
been suggested and tested by Zhu et al. (2019a) to reach the 1–5 days
temporal repeat requirement of most applications (Walker and Houser,
2004).

Multi-temporal and/or multi-configuration (incidence angle, polar-
ization and frequency) data has a demonstrated potential in solving ill-
posed soil moisture inversions (Baghdadi et al., 2006; Balenzano et al.,
2011; Bindlish and Barros, 2000; Kim et al., 2014; Ouellette et al.,
2017; Pierdicca et al., 2008; Zhu et al., 2019b; Zribi et al., 2005) with
assumptions or prior knowledge of roughness, vegetation and/or soil
moisture. However, joint soil moisture mapping from multiple SAR
missions can be more challenging than from a single SAR, with

potentially larger measurement and model errors. Current airborne and
spaceborne radars commonly have an absolute calibration accuracy of
better than 1 dB (Zhu et al., 2018), being sufficient for reliable soil
moisture mapping. However, many studies have demonstrated the large
calibration imbalance among different sensors operating at the same
frequency (Baghdadi et al., 2014; Gorrab et al., 2015; Pettinato et al.,
2013), and different beams or imaging modes of an individual sensor
(Schmidt et al., 2018; Shimada et al., 2009).

Similarly, the available surface and vegetation scattering models
have varying performances at different frequencies, polarizations, and
incidence angles. For instance, the widely used Integral Equation Model
(IEM) is prone to large errors at high incidence angles (Mancini et al.,
1999) and short wavelengths (Choker et al., 2017). The Distorted Born
Approximation (DBA) tends to have a large underestimation at C-band
VV polarization over vertically-dominant vegetation layers
(Cookmartin et al., 2000; Huang et al., 2017). Moreover, the single-
look-complex (SLC) data collected by different sensors, beams, and
imaging modes (e.g., ScanSAR and StripMap) have varying spacing. A
different number of looks should therefore be applied in the multi-look
to have a consistent retrieval grid, resulting in different residual speckle
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and thermal noise level. The varying geometric accuracy of different
data sources (Shimada et al., 2009) is another uncertainty source,
especially for a heterogeneous area.

To address these uncertainties, many studies have applied empirical
calibration or correction factors to forward scattering models (Baghdadi
et al., 2016; Lievens et al., 2011; Panciera et al., 2014), being an ef-
fective way to partly remove the biases among different data sources
and the mismatch between measured and predicted radar data. The
speckle and thermal noise of radar data have also been considered in
the cost function of soil moisture inversion in many studies where the
noise was commonly assumed to follow a zero-mean Gaussian dis-
tribution (Kim et al., 2012; Mattia et al., 2006; Notarnicola et al., 2008;
Pierdicca et al., 2008; Pierdicca et al., 2010). Consequently, Zhu et al.
(2019b) integrated the soil moisture temporal trend with the cost
function to reduce the anomaly fluctuations in time series radar mea-
surements resulting in an improved soil moisture retrieval. The use of
those methods, however, is cumbersome for multi-SAR-retrieval, be-
cause a reliable estimation or assumption of the measurement and
model errors is not readily available for data with various frequencies,
polarizations, incidence angles and spacing.

In this study, the concept of ensemble machine learning was in-
troduced to multi-SAR-mission soil moisture retrieval, with the ex-
pectation of reducing the effect of model and measurement errors. In
ensemble learning, a set of alternative models are generated for the
same task, with the outputs of those models (e.g. classifiers and pre-
dictors) being ensembled as the result. A straightforward example of
why ensemble learning can lead to improved prediction/classification
is provided in Fig. 1. A total of 21 independent binary classifiers were
generated to vote for an output using the rule of “winner takes all”. In
other words, the ensemble of those classifiers would have an incorrect
prediction when more than half of them (> 10) have incorrect pre-
dictions. For moderate accuracy classifiers (the bottom panel of Fig. 1)
with an error rate of 0.3, the probability that more than 10 classifiers
predict incorrectly is ~0.03 (∑i=11

21C21i0.721−i ⋅ 0.3i, where C21i de-
notes choosing i from 21) and thus the ensemble of those classifiers
results in an accuracy of 0.97. To have a successful ensemble, those
binary classifiers should have independent predictions and should be
better than a random guess (i.e. error rate = 0.5). However, the con-
dition of independent predictions is commonly hard to meet. In real
applications, a necessary and sufficient condition for the success of
ensemble methods is that individual models be better than a random
guess and have different errors for the same task (Hansen and Salamon,
1990). Many ensemble methods have been proposed for various ap-
plications, with the main difference being the way to generate the di-
versity of individual models. The diversity can be introduced using
different subsets of the input data, e.g., the Bootstrap aggregating
(Bagging, Breiman, 1996), and using random model parameters, or
structures, e.g., the random forest (Breiman, 2001).

These ensemble methods have been widely used in remote sensing
classification (Belgiu and Drăguţ, 2016; Healey et al., 2018), down-
scaling (Abbaszadeh et al., 2019; Hutengs and Vohland, 2016) and
geophysical parameter regression (Huang et al., 2019; Stojanova et al.,
2010; Zhang et al., 2018a). Different from those data-driven methods
with a supervised training process, the ensemble principle, that mul-
tiple diverse and moderate solutions can produce a robust solution, was
introduced here for multi-SAR-retrieval without a training process. The
multi-SAR-mission data was randomly split into multiple subsets, fol-
lowed by independent soil moisture retrieval (sub-retrievals) on each
subset using existing retrieval methods, with the averaged results as
output. This process is similar to the multi-model forecasts and decision
fusion method which dates back to the 1960s (Bates and Granger, 1969)
followed by many recent studies (Baez-Villanueva et al., 2020; Li et al.,
2017; Quets et al., 2019), where the combination of multiple forecasts
yields a lower root mean square error (RMSE) than any single forecast.
Different from those methods, the principle of ensemble learning was
used here to guide the construction of multiple sub-retrievals.

Consequently, a synthetic radar data set with various uncertainty
sources was generated in this study for making a comprehensive eva-
luation, followed by a real case study using the Fifth Soil Moisture
Active and Passive Experiment (SMAPEx-5) data set.

2. Methodology

2.1. Ensemble frameworks

The ensemble retrieval framework proposed here was designed to
suit most existing soil moisture retrieval methods, which can be
grouped into snapshot methods and multi-temporal methods depending
on their time instances. Accordingly, two separate frameworks are
presented in Fig. 2. In the snapshot ensemble (Fig. 2a), Ne subsets were
randomly selected from the available data. An existing snapshot
method was then applied to retrieve soil moisture using each subset
respectively, being sub-retrievals in Fig. 2a. The retrieved soil moisture
values of Ne sub-retrievals were then ensemble-averaged as output,
being the ensemble retrieval. To reflect the benefit from the ensemble,
the retrieval using all available data was treated as the benchmark in
this study.

Similar to the classic ensemble learning paradigm of Bagging
(Breiman, 1996), the difference required in sub-retrievals is introduced
by manipulating the input data feature (channel) space. Two para-
meters are required, being the ensemble size (Ne) and the number of
channels (Nc) selected in each sub-retrieval, where a channel refers to
an independent observation, e.g., C-band HH at an incidence angle of
30 deg. A snapshot ensemble retrieval with Ne= 5 and Nc=3 indicates
that 5 sub-retrievals were made. Each sub-retrieval used 3 channels
randomly selected from the available channels (4 in Fig. 2 a) with re-
placement, while the corresponding snapshot benchmark retrieval used
all available channels as shown in Fig. 2 a. The five retrieved soil
moisture values were then averaged as a single value as the output.

Similarly, Ne time series subsets of the available time series radar
data are randomly selected for soil moisture retrieval in the multi-
temporal ensemble (Fig. 2b). Despite the random selection of radar
configurations (frequency, incidence angle and polarization) for each
time instance, a random selection of time instances from the full time
series can also be made, referred to here as temporal sampling. For
example, no data was selected for day 2 in the second subset of Fig. 2b.
An additional parameter of temporal sampling size (Nt) is thus required
to determine the number of time instances involved in each sub-re-
trieval. Given a time series of 8 days, a multi-temporal ensemble re-
trieval with Ne=5, Nc= 1 and Nt= 7means that 5 sub-retrievals were
made on the randomly selected 7 of the 8 dates with replacement
(temporal sampling). For each selected date, one of the available
channels (4 and 5 for day 1 and 2 in Fig. 2 b respectively) was selected
with replacement. The corresponding benchmark retrieval used all
channels as shown in Fig. 2 b. Since Nt = 7, each sub-retrieval only
retrieved the soil moisture on the 7 selected days. However, the en-
sembled results still covered the entire time series as in the example
depicted in Fig. 3.

Each sub-retrieval inherits part of the measurement and model
uncertainty of the single retrieval (benchmark) in Fig. 2 because of the
random sampling according to sensor configuration and/or time. Si-
milar to the ensemble of binary classifiers presented in Fig. 1, the effect
of uncertainty is expected to be reduced at the final step of averaging
multiple sub-retrievals. The random selection in radar configuration
can reduce the effect of data and model imbalance among different
frequencies, incidence angles and polarizations, while the random se-
lection in time can partly remove the effect of outliers over time. As the
user-defined parameters (Ne, Nc and Nt) could have a significant effect
on the ensemble performance, the impact of these parameters was
analyzed in detail herein. To facilitate others to build on this work, the
code of the proposed ensemble framework is provided at https://
github.com/rszlj/MultiSAR-Soil-Moisture-Retrieval.
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Fig. 1. The probability that 21 independent binary classifiers will make an error, assuming the error rate of each classifier is 0.6 (top), 0.5 (middle) and 0.3 (bottom).
The ensemble of the 21 classifiers will make the incorrect prediction when more than 10 of the classifiers predict incorrectly using the rule of “winner takes all”. Thus,
the summation of bins on the right side of the red line is the error rate of the ensemble model, being 0.82, 0.5 and 0.03 for the top, middle and bottom, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The ensemble retrieval framework for (a) snapshot methods and (b) multi-temporal methods. The two frameworks share a similar process that Ne sub-
retrievals are made through selecting different input channels with replacement and having the Ne retrieval results averaged as the output.
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2.2. Soil moisture retrieval methods

Several soil moisture retrieval methods were compared with their
ensemble version presented in Fig. 2 for a comprehensive evaluation of
the proposed concept. In the snapshot multi-frequency method, soil
moisture of a bare soil surface was determined by minimizing the cost
function:
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where σmodel, j
0(s, l,mv) and σj0 are the backscattering coefficients from

forward models and the observation in dB, respectively, with the sub-
script j being the order of m input channels. Parameters s, l and mv
denote root mean square roughness height [cm], roughness correlation
length [cm] and soil moisture [m3/m3] respectively. A genetic algo-
rithm was then applied to search the optimal solution of Eq. 1, being
similar to previous studies using multi-frequency data (e.g. Bindlish and
Barros, 2000, 2001; Zhang et al., 2018b).

For the multi-temporal retrieval, the cost function was extended to
include time series data with assumed time-invariant roughness and/or
vegetation such that:
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where subscript i refers to the ith date of a time series of n days.
Notably, mi can vary in time as shown in Fig. 2b because the available
satellite acquisitions vary in time. Soil moisture retrieval is only un-
dertaken on dates with data. The same genetic algorithm was used to
derive the time series soil moisture (mv1, mv2, …, mvn) and the time-
invariant roughness parameters s and l. A similar cost function has been
used by Kim et al. (2012, 2014) and confirmed to outperform the
snapshot methods. Moreover, a dry-down trend of soil moisture can be
integrated into Eq. 2 for improved results (Zhu et al., 2019a, 2019b). In
this study, the snapshot method (Eq. 1), the multi-temporal method
(Eq. 2) and the multi-temporal method with a dry-down constraint were
used, abbreviated SSM, MT and MTD hereafter.

2.3. Evaluation metrics

The main contribution of this study is applying existing soil
moisture retrieval methods within the ensemble framework to provide
improved soil moisture mapping without the knowledge of data and
model uncertainties. Accordingly, the evaluation is focused on the po-
tential improvement from using the ensemble concept rather than the

performance of a specific forward model or soil moisture retrieval al-
gorithm. The widely used bias, correlation coefficient (R) and root
mean square error (RMSE) were selected as the indicators of retrieval
improvement. These metrics were calculated for the benchmark and
ensemble retrieval described in Fig. 2.

To further explore the impacts of the robustness and diversity of
sub-retrieval on the ensemble retrieval, the mean squared error (MSE)
of the ensemble retrieval was decomposed according to (Ueda and
Nakano, 1996):

= + +
N N
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2
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where bias and var are the average bias and variance of individual sub-
retrievals respectively. The covar is the averaged covariance of sub-re-
trievals given by:
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where covij is the covariance of the ith and jth sub-retrieval. According
to Eq. 3, for a large number of sub-retrievals Ne, MSE and RMSE are
mainly dependent on bias and covar. Generating multiple sub-retrievals
with small bias and covar is thus key to a successful ensemble retrieval.
Since bias equals to the bias of ensemble retrieval, covar was calculated
to show the correlation (diversity) of sub-retrievals.

3. Data

3.1. SMAPEx-5 data set

The SMAPEx-5 was carried out in the Yanco area, NSW. During the
three-week campaign (7th – 27th September 2015), L-band airborne
radar data and intensive ground sampling including soil moisture,
roughness and vegetation were collected for in-orbit calibration and
validation of the NASA Soil Moisture Active and Passive (SMAP) mis-
sion (Ye et al., 2020). This data set has been used to develop and va-
lidate the multi-temporal retrieval with a dry down constraint (MTD) in
Zhu et al. (2019 a, b, c). In this study, the same data set was used to
evaluate the ensemble version of MTD. Accordingly, only a brief sum-
mary of the SMAPEx-5 data set used in this analysis is provided here,
with the details in Zhu et al. (2019a).

Extensive ground soil moisture sampling (0–5 cm) was made across
eight flying dates. These measurements were made on a uniform grid of
250 m spacing over six 3 × 3 km focus areas. The soil moisture sam-
pling dates and the time series soil moisture variation from 36 OzNet
soil moisture monitoring stations (http://www.oznet.org.au/) are de-
picted in Fig. 4. The average soil moisture of OzNet was observed to
have a dry-down trend from 0.3 to 0.15 m3/m3. Roughness was mea-
sured interleaved with the soil moisture sampling dates in selected
paddocks using a sequence of pin profiler measurements over 3 m
transects. The measured s and l for isotropic surfaces ranged from 0.5 to
3 cm and 5 to 35 cm respectively, with large s values (up to 9 cm)
observed in paddocks with periodic row features. Vegetation water
content (VWC) was measured destructively on selected paddocks. The
VWC of the two main vegetation types (wheat and grass) ranged from
1.17 to 3.72 kg/m2 and 0.53 to 1.62 kg/m2 respectively.

A time series of twenty SAR acquisitions at L-, C- and X-band were
collected for fifteen different dates of the three-week campaign (Fig. 4).
The eight L-band (1.26 GHz) acquisitions were collected concurrently
with the ground soil moisture sampling, using the airborne Polarimetric
L-band Imaging SAR (PLIS, Zhu et al., 2018). The seven C-band RAD-
ARSAT-2 (5.4 GHz) were acquired on DoY 252, 254, 255, 257, 262, 264
and 269 respectively, including three quad-polarization and four dual-
polarization products. The X-band data set consisted of five COSMO-
SkyMed STRIPMAP HIMAGE, collected on DoY 251, 253, 261, 263 and
269 respectively. Different multi-looks were applied to get a similar

Fig. 3. Conceptual figure showing the ensemble of 5 sub-retrievals with an
Nt= 7 given a time series of 8 days. Since Nt= 7, each sub-retrieval is made on
the randomly selected 7 of 8 dates, with the unselected date being no data.
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grid size, being then resampled to a uniform grid of ~25 m. Please refer
to Zhu et al. (2019a) for more details.

3.2. Synthetic data set

A synthetic radar data set (Table 1) over bare soil surfaces with
various potential uncertainties was generated using the Improved IEM
(IIEM, Fung et al., 2002) for a comprehensive evaluation. Although the
IIEM is not perfect, especially in simulating the cross-polarization
backscatter, this has not degraded the synthetic study because the IIEM
was also used in the inversion. Three noise sources were considered,
representing various uncertainties encountered in the soil moisture
retrieval:

i) Speckle and thermal noise. Radar data has inherent speckle noise
because of the coherent nature of a radar system. While the speckle
noise can be partly removed by multi-look, the remaining noise can
still have a significant effect on soil moisture retrieval over a sa-
tisfactory spatial resolution of< 100 m. Following the simulation
of Sentinel-1 and SMAP radar data by Balenzano et al. (2011) and
Kim et al. (2012), the speckle noise was described as Gaussian with
a zero mean and a standard deviation of 0.7 dB in this study. This
assumption is equivalent to the residual speckle noise after a multi-
look operation of ~39 looks. For Sentinel-1 Interferometric Wide
Swath data (5 × 20 m), the equivalent spacing of the multi-looked
data is ~60 m.

ii) Imbalance among different polarizations. Both radar measurements
and forward models can have an imbalance among different po-
larizations. The measurements are commonly well calibrated with a
negligible bias, e.g. 0.3 dB in intensity for Sentinel-1 (Schmidt et al.,
2018), 0.05 dB for PALSAR (Shimada et al., 2009), and
0.18–0.34 dB for several airborne radar systems (Zhu et al., 2018).
However, the biases of current forward models among different
polarizations can be on the order of 1 dB (Choker et al., 2017).
Accordingly, a maximum imbalance of 1 dB was used by applying a

systematic bias of +0.5 dB, −0.5 dB and 0 dB to the HH, HV and
VV simulations, respectively.

iii) Imbalance among different frequencies and incidence angles. This
results from the data calibration and failure of models to capture
the frequency and angular effects. Since a detailed knowledge of
this source is not available, the biases of the IEM measured in a
laboratory experiment (Mancini et al., 1999) were used here. A
systematic bias of −5 dB, −1 dB, −1.5 dB and − 2 dB was applied
to C-band 23°, C-band 35°, L-band 23° and L-band 35° simulations,
respectively.

Three synthetic data sets, A, B and C, were generated with different
uncertainty sources (Table 1). For each subset, 200 simulations of eight-
day time series soil moisture on the eight SMAPEx-5 ground sampling
days were randomly generated from a normal distribution N(ai, bi). The
ai and bi refers to the average value and standard deviation of OzNet
observations on the ith date (Fig. 3). The soil surface root mean square
height s of each simulation was randomly generated from a uniform
distribution U(0.5, 3) ranging from 0.5 to 3 cm, while the correlation
length l was generated from U(5, 35). Notably, only one s and l were
generated for each simulation (a time series of 8 days), denoting that
roughness was constant over time. An exponential correlation function
was used in all simulations for simplicity.

Time series speckle-free backscattering coefficients (HH, HV, and
VV) were then calculated using the IEM and the simulated soil moisture
and roughness. Two frequencies (1.26 GHz and 5.4 GHz) and two in-
cidence angles (23° and 35°) were considered, being consistent with the
uncertainty source iii above. These radar configurations were con-
sidered to cover the most commonly used radar data for soil moisture
retrieval provided by current L- and C-band satellites. The uncertainty
sources were finally added to the speckle-free backscattering coeffi-
cients (Table 1). Taking the C-band HH polarization at 23° as an ex-
ample, apart from the speckle noise, a systematic bias of −4.5 dB
(+0.5 dB for HH and − 5 dB for C-band 23°) was used in data set C.
Accordingly, in each data set there are 200 time series of backscattering

Fig. 4. Time series of the top 5 cm soil
moisture from all OzNet sites over the
Yanco area in 2015 and the acquisition
dates of L-band PLIS, C-band RADARSAT-2
and X-band COSMO-SkyMed during the
SMAPEx-5 period. The average and stan-
dard deviation of soil moisture of each
sampling date was used to generate the time
series soil moisture in the synthetic data set.

Table 1
Summary of the inputs and radar configurations for generating the synthetic radar data set. The autocorrelation function required in the IIEM was fixed as an
exponential function. An eight-day time series of soil moisture was randomly generated according to the statistics in Fig. 3, being a simulation of the eight ground
sampling dates of SMAPEx-5. U(a, b) refers to a uniform distribution ranging from a to b, while N(a, b) is a normal distribution with the average and standard
deviation being a and b respectively. The s and l are the soil surface root mean square roughness height and roughness correlation length, respectively.

Data set s [cm] l [cm] Frequency [GHz] Incidence angle
[°]

Uncertainty source [dB] Number of
simulations

A U(0.5, 3) U(5, 35) 1.26 and 5.4 23 and 35 Speckle N(0, 0.7) 200
B U(0.5, 3) U(5, 35) 1.26 and 5.4 23 and 35 Uncertainty source of set A + polarization imbalance (0.5 for HH, −0.5 for HV) 200
C U(0.5, 3) U(5, 35) 1.26 and 5.4 23 and 35 Uncertainty source of set B + frequency and incidence angle imbalance (−5, −1,

−1.5 and − 2 dB at C-band 23°, C-band 35°, L-band 23° and L-band 35°)
200

L. Zhu, et al. Remote Sensing of Environment 251 (2020) 112099
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coefficients having 8 dates, with each date having 12 channels (3 po-
larization × 2 frequency × 2 incidence angle).

4. Results

4.1. Evaluation using the synthetic data sets

A comprehensive evaluation of the ensemble methods was first
carried out using the synthetic data set. Soil moisture was retrieved
using three methods individually (i.e. SSM, MT and MTD as defined

Fig. 5. The effect of ensemble number (Ne) on retrieval accuracy of data set A (left), B (middle) and C (right). The number of channels (Nc) is 3 for all methods. The
temporal sampling size (Nt) is 8 for both MT and MTD. The SSM, MT, and MTD refer to the snapshot method, multi-temporal method, and multi-temporal method
with a dry-down constraint. Notably, the line representing the R of the SSM benchmark on set A (middle left) is overlapped by that of MTD.
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previously) and their ensemble versions, and then compared with the
truth (simulated soil moisture). The ensemble number (Ne) and the
number of channels (Nc) are required in the snapshot ensembles, with
an additional parameter of temporal sampling size (Nt) for multi-tem-
poral ensembles. The effect and the selection of those parameters were
investigated as follows.

4.1.1. The effect of ensemble number (Ne)
The effect of Ne was analyzed first with a fixed Nc of 3 for all

methods and a fixed Nt of 8 for multi-temporal methods. The results of
the three data sets are shown in Fig. 5. In the benchmark retrievals, the
two multi-temporal benchmarks achieved a slightly smaller RMSE on
data sets A and B than the SSM benchmark, with the difference being
less than 0.006 m3/m3. A relatively large difference of 0.07 in R was
observed between two multi-temporal benchmarks and the SSM
benchmark. This can result from the reduced sensitivity of multi-tem-
poral methods to random noise, given data sets A and B were mainly
affected by random speckle noise. Small biases (< 0.02 m3/m3) were

Fig. 6. The effect of number of channels Nc on retrieval accuracy. The ensemble number (Ne) is 10 for all methods. The temporal sampling size (Nt) is 8 for both MT
and MTD.
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observed for all three benchmark retrievals on data sets A and B, in line
with the zero bias of data set A and the small systematic bias (+0.5 dB
for HH and − 0.5 dB for HV) of data set B. In contrast, large negative
retrieval biases were observed for the SSM benchmark (−0.114 m3/m3)
and MD benchmark (−0.048 m3/m3) on data set C because of the large
systematic biases among different frequency and incidence angles
(Table 1). The MTD benchmark performed much better than the MT
benchmark in all three metrics on set C, confirming that additional
constraints (e.g., the dry down constraint) are still required for complex
multi-temporal retrieval scenarios.

The RMSE of the SSM ensemble was reduced as Ne increased on the
three data sets, being nearly constant for Ne > 10. A relatively large Ne
of up to 15 was able to improve the R on all data sets. In contrast, the
bias of the SSM ensemble and the averaged covariance of the SSM sub-
retrievals changed little for different Ne. The different responses of bias
and averaged covariance to Ne can be explained by Eq. 3. The ensemble
bias and the averaged covariance.

only relate to the expectation of bias and covariance for individual
sub-retrieval's, being independent on Ne. The RMSE on the other hand
reduced gradually as the effect of sub-retrievals' total variance
( +N N Nvar/ ( 1)covar/e e e) reduced gradually for an increased Ne. A
similar relationship between Ne and performance was observed for the
MT and MTD ensemble but having reduced benefit from using a large
Ne compared to the SSM ensemble.

The SSM ensemble outperformed the benchmark for Ne > 6 on
data sets A and B in terms of RMSE, while it achieved a lower RMSE
than the benchmark on data set C in all cases of Ne. An increasing Ne of
9, 10 and 11 was required for the SSM ensemble to outperform the
benchmark R on set A, B and C, respectively. The MT ensemble
achieved lower RMSE than the benchmark on all three data sets.
However, the required Ne for the MT ensemble to achieve a higher R
than the benchmark increased from 2 on data set A to 9 on data set C.
The MTD outperformed the benchmark on all data sets in terms of
RMSE and R.

The different behaviors of these three methods regarding Ne can be
related to data noise and the sensitivity of sub-retrievals to the noise.
The SSM sub-retrievals are most sensitive to noise, followed by the MT
and MTD sub-retrievals (Zhu et al., 2019b). This means that the result
of each SSM sub-retrieval can be more unstable than that of multi-
temporal methods. Consequently, the SSM sub-retrievals had the largest
averaged variance (var) and the smallest averaged covariance (covar,
the fourth row of Fig. 5), while the MTD sub-retrievals had the smallest
averaged variance and the largest averaged covariance. According to
Eq. 3, a large Ne can reduce the contribution of averaged variance
( Nvar/ e) but increase the effect of averaged covariance () on MSE and
thus RMSE and R. As a result, the SSM ensemble can benefit most using
a large Ne, followed by MT and MTD. The data noise level played a
similar role of the algorithm's sensitivity to noise. For example, the SSM
and MT sub-retrievals had lower averaged covariance on data set C than
data set A because of the larger uncertainty of data set C. As a result, the
SSM and MT ensemble required a larger Ne to have higher R than the
benchmark on set C. Notably, for data set C that was mainly affected by
the systematic bias, the RMSE of ensemble retrieval was dominated by
the averaged bias of sub-retrievals independent of Ne. Although the
optimal Ne related to the noise, an Ne of 10 is suggested considering the
limited changes using a larger Ne and the fact that the required com-
putation cost of an ensemble retrieval is Ne times that of the benchmark
and each sub-retrieval.

4.1.2. The effect of channel number (Nc)
Fig. 6 shows the effect of Nc on ensemble retrieval accuracy. The

performance of SSM ensemble was improved as Nc increased on data set
A and B, being superior to the benchmark for Nc > 2. The major im-
provement (0.15 in R, 0.02 m3/m3 in RMSE and 0.01 in bias) was made
by increasing Nc from 2 to 6, with little and even negative contribution
of using a larger Nc. For the MT ensemble, it achieved better results

than the benchmark in all cases of Nc on data set A and B. However,
negligible improvement (< 0.03 in R,< 0.006 m3/m3 in RMSE and 0 in
bias) was observed as Nc increased from 2 to 11. Similarly, the MTD
ensemble was found to be independent on Nc and outperform the
benchmark in all cases on data set A and B.

On data set C, the R of the SSM ensemble and MT ensemble in-
creased as Nc increased, being consistent with the results on data sets A
and B. However, a contrary trend was observed for RMSE, which in-
creased from 0.091 to 0.131 m3/m3 for the SSM ensemble and from
0.067 to.

0.071 m3/m3 for the MT ensemble. This can be explained by the
increased bias of sub-retrievals using a larger Nc. Using more input
channels with large negative biases led to larger underestimation in
SSM and MT sub-retrievals (first row of Fig. 6). In contrast, the MTD
sub-retrievals were less sensitive to the varying biases among different
channels and thus the RMSE of the MTD ensemble changed only a little
for different Nc on data set C.

The effect of Nc on ensemble retrieval is more complex than that of
Ne because it relates to all three terms of Eq. 3. For data sets A and B
that were mainly affected by random noise, the SSM sub-retrievals were
more reliable using more channels (a large Nc). Specially, the averaged
bias of SSM sub-retrievals had the largest decrease when increased Nc
from 2 to 4 because three unknows (mv, l and s) need to be determined
in individual SSM sub-retrievals. Conversely, a larger Nc means that
individual sub-retrievals are more likely to share the same channels and
thus results in a higher covariance (the last row of Fig. 5), reducing the
benefit of the ensemble. For the two multi-temporal methods, the
number of input channels (Nc × 8 days here) can be much larger than
that of unknowns (2 roughness +8 soil moisture values) as surface
roughness was assumed to be time-invariant. Consequently, the MT and
MTD sub-retrievals already had good performance for a small Nc (e.g. 2)
and so a large Nc can only slightly change the averaged variance and
slightly reduce the covariance.

For data set C, more input channels led to large biases in individual
sub-retrievals (the first row of Fig. 5). The RMSE of the SSM ensemble
and MT ensemble was dominated by the bias of sub-retrievals. How-
ever, the R still increased with more channels, being independent of the
systematic bias. It is clear that the “optimal” Nc varies with different
noise level, noise type and the soil moisture retrieval methods. A small
Nc of 1 or 2 is suggested for the two multi-temporal methods regardless
of the noise source and type. A relatively large Nc of 4–6 is suggested to
have a competitive R and for the potential systematic bias to be re-
moved in post-processing.

4.1.3. The effect of temporal sampling size (Nt)
The effect of Nt on the MTD ensemble was investigated in Fig. 7,

with the Ne and Nc being 10 and 3, respectively. Notably, Nt is subject to
the length of available time series data that meet the assumption of
time-invariant roughness. Since the length of simulated time series was
8 days with constant roughness, Nt was varied from 2 to 7 to ensure a
multi-temporal retrieval with random sampling in time. The Nt= 8 was
also included to show the retrieval without temporal sampling.

The RMSE showed a “smiling” curve on data set A and B, with the
smallest RMSE (~0.036 m3/m3) achieved at Nt = 4–6. This is partly
related to the relatively larger bias observed at Nt= 1 (~0.015 m3/m3)
and 8 (~0.028 m3/m3). The R of the MTD ensemble increased first from
~0.875 at Nt= 1 to ~0.935 at Nt= 5 and then decreased to ~0.918 at
Nt = 8 on data set A and B. Individual MTD sub-retrievals using a
longer time series are more robust, as the temporal evolution of longer
moisture series can better constrain the soil moisture retrieval (Zhu
et al., 2019b). Accordingly, the MTD ensemble based on larger Nt can
have better results in R. An increasing Nt, on the other hand, means
increased similarity of data used in sub-retrievals. Unfortunately, MTD
only retrieved soil moisture on the selected dates which are different in
various sub-retrievals. The averaged covariance of sub-retrievals thus
cannot be calculated. Although only a limited improvement in RMSE (~
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0.012 m3/m3) and R (0.016) was observed for using an Nt < 8, the
effectiveness of using temporal sampling in the multi-temporal retrieval
was confirmed on data sets A and B. A different relationship between Nt
and retrieval accuracy was found on data set C because of the large and
varying bias among different channels. Longer time series are therefore
required to obtain more reliable sub-retrieval in view of RMSE and bias.
However, the highest R (~0.90) was achieved using Nt = 6 and 7,
confirming the effectiveness of temporal sampling (using Nt < 8 here)
on data set C.

4.2. Evaluation using the SMAPEx-5 dataset

The MTD ensemble was also evaluated using the SMAPEx-5 dataset,
with the retrieval results being compared with that of the MTD
benchmark. Notably, this subsection is focused on comparison of the
MTD benchmark and MTD ensemble, with the detailed performance of
MTD benchmark that is already presented in Zhu et al. (2019b). Similar
to the synthetic study, the MTD benchmark used different combinations
of all available data, as shown in Table 2. Following the synthetic
studies, the parameters of Nc and Ne were 1 and 10 respectively. Nt was
set to 80% of the total time instances, whose values are listed in Table 2.
For example, Nt = 6 for the retrieval using L-band only (8 acquisitions
collected on different dates).

Table 2 lists the performance of MTD and its ensemble version using
various radar data. For each algorithm, a total of 5 retrievals were made
at the paddock scale (~0.1–0.5 km) using different data configurations:
L-band only as well as two- and three-frequency combinations, simu-
lating the single and multi-radar retrievals. In general, the ensemble
version of MTD outperformed the MTD in all cases, except the retrieval
over wheat using C- and X-band data. The improvement in RMSE and R
ranged from 0.004 to 0.014 m3/m3 and 0.01 to 0.16 respectively,
confirming the effectiveness of the ensemble strategy.

Importantly, the MTD ensemble seemed to be more suitable for soil

moisture retrieval from data collected by multiple satellites than the
MTD benchmark. Specifically, the L-band-only retrieval had the best
results in the MTD benchmark, with the retrieved results being slightly
deteriorated by combining the C-band and/or X-band data. This was
ascribed to the failure of modeling uncertainties in multi-frequency
data (Zhu et al., 2019a). Conversely, the MTD ensemble seemed to be
less sensitive to such uncertainties. Dual-frequency retrieval (L + C and
L + X) had similar results to that using L-band only. Retrieval using L-,
C- and X-band data achieved the best results over bare and wheat. The
positive effect of the additional surface information contained in the
multi-frequency data overwhelmed the negative effect of the accom-
panied uncertainty.

Fig. 8 shows the retrieved soil moisture at the paddock scale of both
algorithms using L-, C- and X-band. The main improvement of using the
ensemble retrieval here was to have fewer ‘outliers’ outside the±
0.06 m3/m3 target. For instance, the MTD had many more points in the
red circles than its ensemble version. The reason for this difference is
that multiple sub-retrievals in the MTD ensemble are less likely to have
consistent large overestimations or underestimations using different
input data, and thus result in a more reliable retrieval.

5. Discussion

5.1. Conditions for effective ensemble retrievals

The principle behind the ensemble machine learning was in-
troduced to provide a simple but effective way of utilizing the in-
creasingly available radar data in soil moisture retrieval. Similar to the
conditions of successful ensemble learning in various applications (e.g.,
Lessmann et al., 2019; Minku et al., 2009; Zhang et al., 2016a; Zhu
et al., 2016), ensemble retrievals require robust and diverse sub-re-
trievals as demonstrated in the synthetic study. While it is straightfor-
ward to post-check the robustness and diversity of sub-retrievals using

Fig. 7. The effect of temporal sampling size (Nt) on the ensemble performance for the multi-temporal algorithm with a dry-down constraint (MTD).

Table 2
Comparison of MTD and its ensemble version using the SMAPEx-5 data set. The bold values are the best results in each landcover type, while those with underline are
cases where MTD performed better than its ensemble version. The Nt/Nd denotes Nt dates were randomly selected from the Nd dates with data.

Data Bare soil Grass Wheat Nt/Nd

RMSE R Bias RMSE R Bias RMSE R Bias

Benchmark
(MTD)
(Zhu et al., 2019a)

L 0.061 0.74 −0.012 0.047 0.91 −0.014 0.058 0.84 −0.004 −/8
L + C 0.061 0.73 −0.004 0.050 0.89 −0.022 0.059 0.82 −0.003 −/11
L + X 0.062 0.73 −0.007 0.055 0.87 0.006 0.058 0.83 0.006 −/13
C + X 0.067 0.61 −0.009 0.056 0.87 −0.026 0.071 0.80 −0.014 −/12
L + C + X 0.062 0.75 −0.007 0.054 0.87 −0.019 0.058 0.83 0.006 −/15

Ensemble MTD L 0.057 0.77 0.010 0.040 0.92 −0.005 0.054 0.84 0.001 6/8
L + C 0.057 0.79 0.016 0.038 0.92 0.003 0.055 0.83 0.001 9/11
L + X 0.057 0.75 0.009 0.042 0.90 −0.005 0.052 0.85 0.006 10/13
C + X 0.054 0.77 −0.014 0.046 0.93 −0.035 0.072 0.84 −0.057 10/12
L + C + X 0.053 0.80 0.001 0.040 0.92 −0.013 0.052 0.86 −0.005 12/15
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bias, variance, and covariance, it is hard to select channels for the op-
timal ensemble before soil moisture retrieval because of the varying
complexity of retrieval scenarios. Generally, more channels are sug-
gested for sub-retrievals when i) the input data and the forward model
have large uncertainties; and ii) the base algorithm used is sensitive to
noise. Fig. 6 suggests a minimum of 2 channels in each sub-retrieval for
effective snapshot ensembles on data set A and B. This is not easy to be
met even with the forthcoming “big radar” data, because many more
channels are required to generate multiple (e.g., 10) different sub-re-
trievals. Assumptions, such as a time-invariant surface condition in a
short period (Zhang et al., 2016b) are thus required to have sufficient
independent observations for the target date. In contrast, multi-tem-
poral algorithms are less sensitive to data uncertainties and can have a
longer time series in soil moisture retrieval (i.e., more channels) for
areas with limited roughness and vegetation changes, thus enabling
numerous robust sub-retrievals.

In this study, the difference or diversity of sub-retrievals was gen-
erated using random combinations of input channels and/or time in-
stances, being similar to the widely used ensemble learning paradigm of
Bagging (Breiman, 1996). The difference of sub-retrievals can also re-
sult from 1) using different retrieval algorithms, e.g. randomly taking
the MTD and MT as the base algorithm; and 2) using different forward
models, e.g. the random use of the Oh model and IEM over bare soil.
Those options are expected to reduce the uncertainty of individual
models, surface parameterizations in model calibration or inversion
algorithms. For example, the IEM predictions have been shown to have
a bias of 0.3–4.2 dB at X-band HH pol (Choker et al., 2017) as a result of
a roughness parameterization failure and the over-simplified model
assumptions, resulting in an overestimated sub-retrieval. This can be
partly corrected by another sub-retrieval using the Oh model (Oh et al.,
2002) which has a bias of −1 dB bias for the same channel (Choker
et al., 2017). The joint use of those options is also possible, with their
counterparts in ensemble learning well documented (Zhang and Ma,
2012). Moreover, strategies used in ensemble forecasting (Li et al.,
2017) can also lend support to the ensemble soil moisture retrieval.

5.2. Relationship between the ensemble and benchmark single retrieval

The proposed ensemble framework is compatible with most existing
soil moisture retrieval algorithms. However, the two random selection
strategies of input data (Fig. 2) cannot be used directly. Especially, time
series data at the same polarization, incidence angle and frequency
should be used in order to have temporal difference/ratio in several
multi-temporal methods (e.g., Balenzano et al., 2011; Ouellette et al.,
2017) and thus different sub-retrievals can only be generated by se-
lecting Nt time instances from the full time series.

Since an ensemble retrieval consists of multiple sub-retrievals using
existing soil moisture retrieval algorithms, it inherits the same as-
sumptions of the retrieval algorithms used. For the snapshot multi-
frequency retrieval (Eq. 1), all the input data should be collected on the
same date with negligible changes in surface conditions. All sub-re-
trievals had the same task to derive the average or effective soil
moisture of the target date. However, the different penetration depths
of different radar configurations (frequency, incidence angle, polar-
ization) would make the sensed soil moisture vary among different sub-
retrievals. This challenge is from the multi-frequency retrieval approach
itself and is also true for the benchmark retrieval using all multi-fre-
quency data. A commonly used assumption is that the soil moisture is
uniform for the top 5 cm and that all available data at L-, C- and X-band
have the same penetration depth. For multi-temporal retrieval, the
ensemble version also shares the same assumptions made for traditional
multi-temporal retrievals, including time-invariant roughness and ve-
getation, and uniform soil moisture in top 5 cm if multi-configuration
data was used. Accordingly, one should be careful to use different re-
trieval algorithms in the same ensemble retrieval.

An important difference between the ensemble retrieval and the
single retrieval is the technical choice of solving the complex retrieval
from irregular multi-frequency data collected by multiple satellites. As
aforementioned, soil moisture retrieval from multi-frequency data is
still challenging, commonly requiring a careful combination of the
multi-frequency data (Ulaby et al., 2014), and needing reliable forward
models to cover the available radar configurations (Zhu et al., 2019a).
Although those challenges also need to be addressed in the ensemble
retrieval, it is not necessary to have an “optimal” solution to the whole
retrieval process because each sub-retrieval only requires a moderate
accuracy. Accordingly, ensemble retrieval can significantly reduce the
complexity of algorithm development, at the expense of slightly in-
creased computational cost in running the multiple sub-retrievals.
Fortunately, it is straightforward to parallelise the ensemble retrieval
because all sub-retrievals are independent without requiring any com-
munication. Moreover, the requirement of sub-retrieval with moderate
accuracy also means a reduced sensitivity to data uncertainties in-
troduced across the whole preprocessing chain.

6. Conclusion

Stochastic ensemble methods based on existing soil moisture re-
trieval algorithms were presented to retrieve soil moisture from radar
data collected by multiple satellites, being a flexible option for soil
moisture mapping with the coming era of big SAR data. The proposed
ensemble methods were comprehensively evaluated using a synthetic
data set for bare soil and the SMAPEx-5 data set with three landcover

Fig. 8. In situ versus retrieved soil moisture at the paddock scale from MTD (benchmark) and MTD ensemble using time series L-, C- and X-band data. The solid line is
the 1:1 relationship while the dashed lines denote the±0.06 m3/m3 target accuracy. The red circles are examples where MTD ensemble has fewer outliers than MTD.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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types. Results confirmed that ensemble retrieval outperformed the
benchmark retrievals in most cases. The improvement in RMSE on the
real data set was up to 0.015 m3/m3, with its potential on other data
sets confirmed in the synthetic study. A global ensemble size of 10 was
found to be sufficient to provide satisfactory results for all retrieval
methods. The principle that multiple moderate soil moisture retrieval
can be merged into an improved retrieval is expected to provide a
simple but effective alternative for multi-frequency soil moisture re-
trieval.

Declaration of Competing Interest

None.

Acknowledgments

The SMAPEx-5 field campaign was supported by an Australian
Research Council Discovery Project (DP140100572).

References

Abbaszadeh, P., Moradkhani, H., Zhan, X., 2019. Downscaling SMAP radiometer soil
moisture over the CONUS using an ensemble learning method. Water Resour. Res. 55,
324–344.

Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Beck, H.E., McNamara, I., Ribbe, L.,
Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J.D., Thinh, N.X., 2020. RF-MEP: a
novel random Forest method for merging gridded precipitation products and ground-
based measurements. Remote Sens. Environ. 239, 111606.

Baghdadi, N., Holah, N., Zribi, M., 2006. Soil moisture estimation using multi-incidence
and multi-polarization ASAR data. Int. J. Remote Sens. 27, 1907–1920.

Baghdadi, N., El Hajj, M., Dubois-Fernandez, P., Zribi, M., Belaud, G., Cheviron, B., 2014.
Signal level comparison between TerraSAR-X and COSMO-SkyMed SAR sensors. IEEE
Geosci. Remote Sens. Lett. 12, 448–452.

Baghdadi, N., Choker, M., Zribi, M., Hajj, M., Paloscia, S., Verhoest, N., Lievens, H., Baup,
F., Mattia, F., 2016. A new empirical model for radar scattering from bare soil sur-
faces. Remote Sens. 8, 920.

Balenzano, A., Mattia, F., Satalino, G., Davidson, M.W., 2011. Dense temporal series of C-
and L-band SAR data for soil moisture retrieval over agricultural crops. Ieee Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 4, 439–450.

Bates, J.M., Granger, C.W., 1969. The combination of forecasts. J. Oper. Res. Soc. 20,
451–468.

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31.

Bindlish, R., Barros, A.P., 2000. Multifrequency soil moisture inversion from SAR mea-
surements with the use of IEM. Remote Sens. Environ. 71, 67–88.

Bindlish, R., Barros, A.P., 2001. Parameterization of vegetation backscatter in radar-
based, soil moisture estimation. Remote Sens. Environ. 76, 130–137.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24, 123–140.
Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Choker, M., Baghdadi, N., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N.E., Lievens, H.,

Mattia, F., 2017. Evaluation of the Oh, Dubois and IEM backscatter models using a
large dataset of SAR data and experimental soil measurements. Water 9, 38.

Cookmartin, G., Saich, P., Quegan, S., Cordey, R., Burgess-Allen, P., Sowter, A., 2000.
Modeling microwave interactions with crops and comparison with ERS-2 SAR ob-
servations. IEEE Trans. Geosci. Remote Sens. 38, 658–670.

Fung, A., Liu, W., Chen, K., Tsay, M., 2002. An improved IEM model for bistatic scattering
from rough surfaces. Journal of Electromagnetic Waves and Applications 16,
689–702.

Gorrab, A., Zribi, M., Baghdadi, N., Mougenot, B., Chabaane, Z.L., 2015. Potential of X-
band TerraSAR-X and COSMO-SkyMed SAR data for the assessment of physical soil
parameters. Remote Sens. 7, 747–766.

Hansen, L.K., Salamon, P., 1990. Neural network ensembles. IEEE Transactions on Pattern
Analysis & Machine Intelligence 993–1001.

Healey, S.P., Cohen, W.B., Yang, Z., Brewer, C.K., Brooks, E.B., Gorelick, N., Hernandez,
A.J., Huang, C., Hughes, M.J., Kennedy, R.E., 2018. Mapping forest change using
stacked generalization: an ensemble approach. Remote Sens. Environ. 204, 717–728.

Huang, H., Tsang, L., Njoku, E.G., Colliander, A., Liao, T.-H., Ding, K.-H., 2017.
Propagation and scattering by a layer of randomly distributed dielectric cylinders
using Monte Carlo simulations of 3D Maxwell equations with applications in mi-
crowave interactions with vegetation. IEEE Access 5, 11985–12003.

Huang, H., Liu, C., Wang, X., Zhou, X., Gong, P., 2019. Integration of multi-resource
remotely sensed data and allometric models for forest aboveground biomass esti-
mation in China. Remote Sens. Environ. 221, 225–234.

Hutengs, C., Vohland, M., 2016. Downscaling land surface temperatures at regional scales
with random forest regression. Remote Sens. Environ. 178, 127–141.

Kim, S.-B., Tsang, L., Johnson, J.T., Huang, S., Van Zyl, J.J., Njoku, E.G., 2012. Soil
moisture retrieval using time-series radar observations over bare surfaces. IEEE
Trans. Geosci. Remote Sens. 50, 1853–1863.

Kim, S.-B., Moghaddam, M., Tsang, L., Burgin, M., Xu, X., Njoku, E.G., 2014. Models of L-

band radar backscattering coefficients over global terrain for soil moisture retrieval.
IEEE Trans. Geosci. Remote Sens. 52, 1381–1396.

Kornelsen, K.C., Coulibaly, P., 2013. Advances in soil moisture retrieval from synthetic
aperture radar and hydrological applications. J. Hydrol. 476, 460–489.

Lessmann, S., Haupt, J., Coussement, K., De Bock, K.W., 2019. Targeting customers for
profit: an ensemble learning framework to support marketing decision-making. Inf.
Sci.

Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., Di, Z., 2017. A review on statistical post-
processing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip.
Rev. Water 4, e1246.

Lievens, H., Verhoest, N., De Keyser, E., Vernieuwe, H., Matgen, P., Álvarez-Mozos, J., De
Baets, B., 2011. Effective roughness modelling as a tool for soil moisture retrieval
from C-and L-band SAR. Hydrol. Earth Syst. Sci. Discuss. 7, 4995–5031.

Mancini, M., Hoeben, R., Troch, P.A., 1999. Multifrequency radar observations of bare
surface soil moisture content: a laboratory experiment. Water Resour. Res. 35,
1827–1838.

Mattia, F., Satalino, G., Dente, L., Pasquariello, G., 2006. Using a priori information to
improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions.
IEEE Trans. Geosci. Remote Sens. 44, 900–912.

Minku, L.L., White, A.P., Yao, X., 2009. The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22, 730–742.

Notarnicola, C., Angiulli, M., Posa, F., 2008. Soil moisture retrieval from remotely sensed
data: neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote
Sens. 46, 547–557.

Oh, Y., Sarabandi, K., Ulaby, F.T., 2002. Semi-empirical model of the ensemble-averaged
differential Mueller matrix for microwave backscattering from bare soil surfaces.
IEEE Trans. Geosci. Remote Sens. 40, 1348–1355.

Ouellette, J.D., Johnson, J.T., Balenzano, A., Mattia, F., Satalino, G., Kim, S.-B., Dunbar,
R.S., Colliander, A., Cosh, M.H., Caldwell, T.G., 2017. A time-series approach to es-
timating soil moisture from vegetated surfaces using L-band radar backscatter. IEEE
Trans. Geosci. Remote Sens. 55, 3186–3193.

Panciera, R., Tanase, M.A., Lowell, K., Walker, J.P., 2014. Evaluation of IEM, Dubois, and
Oh radar backscatter models using airborne L-band SAR. IEEE Trans. Geosci. Remote
Sens. 52, 4966–4979.

Pettinato, S., Santi, E., Paloscia, S., Pampaloni, P., Fontanelli, G., 2013. The inter-
comparison of X-band SAR images from COSMO-SkyMed and TerraSAR-X satellites:
case studies. Remote Sens. 5, 2928–2942.

Pierdicca, N., Castracane, P., Pulvirenti, L., 2008. Inversion of electromagnetic models for
bare soil parameter estimation from multifrequency polarimetric SAR data. Sensors 8,
8181–8200.

Pierdicca, N., Pulvirenti, L., Bignami, C., 2010. Soil moisture estimation over vegetated
terrains using multitemporal remote sensing data. Remote Sens. Environ. 114,
440–448.

Quets, J., De Lannoy, G.J., Al Yaari, A., Chan, S., Cosh, M.H., Gruber, A., Reichle, R.H.,
Van der Schalie, R., Wigneron, J.-P., 2019. Uncertainty in soil moisture retrievals: an
ensemble approach using SMOS L-band microwave data. Remote Sens. Environ. 229,
133–147.

Schmidt, K., Ramon, N.T., Schwerdt, M., 2018. Radiometric accuracy and stability of
sentinel-1A determined using point targets. Int. J. Microw. Wirel. Technol. 10,
538–546.

Shimada, M., Isoguchi, O., Tadono, T., Isono, K., 2009. PALSAR radiometric and geo-
metric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932.

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., Džeroski, S., 2010. Estimating ve-
getation height and canopy cover from remotely sensed data with machine learning.
Ecological Informatics 5, 256–266.

Ueda, N., Nakano, R., 1996. Generalization error of ensemble estimators. In: Proceedings
of International Conference on Neural Networks (ICNN'96). IEEE, pp. 90–95.

Ulaby, F.T., Long, D.G., Blackwell, W.J., Elachi, C., Fung, A.K., Ruf, C., Sarabandi, K.,
Zebker, H.A., Van Zyl, J., 2014. Microwave Radar and Radiometric Remote Sensing.
The University of Michigan Press, Ann Arbor.

Walker, J.P., Houser, P.R., 2004. Requirements of a global near-surface soil moisture
satellite mission: accuracy, repeat time, and spatial resolution. Adv. Water Resour.
27, 785–801.

Ye, N., Walker, J.P., Wu, X., Jeu, R.D., Gao, Y., Jackson, T.J., Jonard, F., Kim, E., Merlin,
O., Pauwels, V., Renzullo, L.J., Rüdiger, C., Sabaghy, S., Hebel, V., Yueh, S.H., Zhu,
L., 2020. The Soil Moisture Active Passive Experiments: Validation of the SMAP
Products in Australia. (Ieee Transactions on Geoscience and Remote Sensing).

Zhang, C., Ma, Y., 2012. Ensemble Machine Learning: Methods and Applications.
Springer.

Zhang, W., Zou, H., Luo, L., Liu, Q., Wu, W., Xiao, W., 2016a. Predicting potential side
effects of drugs by recommender methods and ensemble learning. Neurocomputing
173, 979–987.

Zhang, X., Chen, B., Fan, H., Huang, J., Zhao, H., 2016b. The potential use of multi-band
SAR data for soil moisture retrieval over bare agricultural areas: Hebei, China.
Remote Sens. 8, 7.

Zhang, C., Denka, S., Cooper, H., Mishra, D.R., 2018a. Quantification of sawgrass marsh
aboveground biomass in the coastal Everglades using object-based ensemble analysis
and Landsat data. Remote Sens. Environ. 204, 366–379.

Zhang, X., Chen, B., Zhao, H., Li, T., Chen, Q., 2018b. Physical-based soil moisture re-
trieval method over bare agricultural areas by means of multi-sensor SAR data. Int. J.
Remote Sens. 39, 3870–3890.

Zhu, L., Xiao, P., Feng, X., Zhang, X., Huang, Y., Li, C., 2016. A co-training, mutual
learning approach towards mapping snow cover from multi-temporal high-spatial
resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 122, 179–191.

Zhu, L., Walker, J.P., Ye, N., Rüdiger, C., Hacker, J., Panciera, R., Tanase, M.A., Wu, X.,
Gray, D., Stacy, N., Goh, A., Yardley, H., Mead, J., 2018. The Polarimetric L-band

L. Zhu, et al. Remote Sensing of Environment 251 (2020) 112099

11

http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0005
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0005
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0005
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0010
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0010
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0010
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0010
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0015
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0015
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0020
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0020
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0020
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0025
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0025
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0025
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0030
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0030
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0030
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0035
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0035
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0040
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0040
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0045
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0045
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0050
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0050
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0055
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0060
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0065
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0065
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0065
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0070
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0070
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0070
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0075
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0075
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0075
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0080
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0080
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0080
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0085
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0085
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0090
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0090
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0090
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0095
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0095
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0095
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0095
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0100
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0100
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0100
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0105
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0105
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0110
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0110
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0110
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0115
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0115
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0115
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0120
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0120
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0125
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0125
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0125
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0130
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0130
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0130
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0135
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0135
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0135
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0140
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0140
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0140
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0145
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0145
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0145
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0150
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0150
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0155
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0155
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0155
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0160
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0160
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0160
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0165
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0165
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0165
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0165
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0170
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0170
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0170
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0175
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0175
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0175
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0180
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0180
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0180
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0185
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0185
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0185
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0190
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0190
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0190
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0190
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0195
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0195
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0195
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0200
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0200
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0205
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0205
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0205
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0210
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0210
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0215
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0215
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0215
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0220
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0220
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0220
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0225
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0225
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0225
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0225
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0230
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0230
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0235
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0235
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0235
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0240
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0240
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0240
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0245
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0245
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0245
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0250
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0250
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0250
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0255
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0255
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0255
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0260
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0260


imaging synthetic aperture radar (PLIS): description, calibration and cross-validation.
Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing
11, 4513–4525.

Zhu, L., Walker, J.P., Tsang, L., Huang, H., Ye, N., Rüdiger, C., 2019a. A multi-frequency
framework for soil moisture retrieval from time series radar data. Remote Sens.
Environ. 235, 111433.

Zhu, L., Walker, J.P., Tsang, L., Huang, H., Ye, N., Rüdiger, C., 2019b. Soil moisture
retrieval from time series multi-angular radar data using a dry down constraint.

Remote Sens. Environ. 231, 111237.
Zhu, L., Walker, J.P., Ye, N., Rüdiger, C., 2019c. Roughness and vegetation change de-

tection: a pre-processing for soil moisture retrieval from multi-temporal SAR imagery.
Remote Sens. Environ. 225, 93–106.

Zribi, M., Baghdadi, N., Holah, N., Fafin, O., 2005. New methodology for soil surface
moisture estimation and its application to ENVISAT-ASAR multi-incidence data in-
version. Remote Sens. Environ. 96, 485–496.

L. Zhu, et al. Remote Sensing of Environment 251 (2020) 112099

12

http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0260
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0260
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0260
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0265
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0265
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0265
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0270
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0270
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0270
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0275
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0275
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0275
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0280
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0280
http://refhub.elsevier.com/S0034-4257(20)30472-7/rf0280

	Stochastic ensemble methods for multi-SAR-mission soil moisture retrieval
	1 Introduction
	2 Methodology
	2.1 Ensemble frameworks
	2.2 Soil moisture retrieval methods
	2.3 Evaluation metrics

	3 Data
	3.1 SMAPEx-5 data set
	3.2 Synthetic data set

	4 Results
	4.1 Evaluation using the synthetic data sets
	4.1.1 The effect of ensemble number (Ne)
	4.1.2 The effect of channel number (Nc)
	4.1.3 The effect of temporal sampling size (Nt)

	4.2 Evaluation using the SMAPEx-5 dataset

	5 Discussion
	5.1 Conditions for effective ensemble retrievals
	5.2 Relationship between the ensemble and benchmark single retrieval

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References




