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A B S T R A C T

The NASA Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The spacecraft was
to provide high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining for
the first time L-band radiometer and radar observations. On July 7th, 2015, a component of the SMAP radar
failed and the radar ceased operation. However, before this occurred the mission was able to collect and process
~2.5 months of the SMAP high-resolution active-passive soil moisture data (L2SMAP) that coincided with the
Northern Hemisphere's vegetation green-up and crop growth season. In this study, we evaluate the SMAP high-
resolution soil moisture product derived from several alternative algorithms against in situ data from core ca-
libration and validation sites (CVS), and sparse networks. The baseline algorithm had the best comparison
statistics against the CVS and sparse networks. The overall unbiased root-mean-square-difference is close to the
0.04 m3/m3 the SMAP mission requirement. A 3 km spatial resolution soil moisture product was also examined.
This product had an unbiased root-mean-square-difference of ~0.053m3/m3. The SMAP L2SMAP product for
~2.5 months is now validated for use in geophysical applications and research and available to the public
through the NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC).
The L2SMAP product is packaged with the geo-coordinates, acquisition times, and all requisite ancillary in-
formation. Although limited in duration, SMAP has clearly demonstrated the potential of using a combined L-
band radar-radiometer for proving high spatial resolution and accurate global soil moisture.
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1. Introduction

NASA's Soil Moisture Active Passive (SMAP) mission was launched
on January 31st, 2015. The objective of the mission is global mapping
of high-resolution surface soil moisture and landscape freeze/thaw state
(Entekhabi et al., 2010). SMAP utilizes an L-band radar and radiometer
sharing a rotating 6-meter mesh reflector antenna. The SMAP spacecraft
is in a 685-km Sun-synchronous near-polar orbit and views the surface
at a constant 40-degree incidence angle with a 1000-km swath width.
The basic premise of the mission was that merging of the high-resolu-
tion active (radar) and coarse-resolution but high-sensitivity passive
(radiometer) L-band observations would enable an unprecedented
combination of accuracy, resolution, coverage, and revisit-time for soil
moisture and freeze/thaw state retrievals (Entekhabi et al., 2010; Das
et al., 2014). However, on July 7th, 2015, the SMAP radar ceased op-
erations due to a component failure. As a result, the observatory was
only able to provide ~2.5months (from the end of In-Orbit-Check April
13th, 2015 to July 7th, 2015) of the SMAP active-passive product
(L2SMAP) (the radiometer continues to be fully operational). The
product is based on downscaling of gridded 36 km SMAP brightness
temperature (TBp

) data to a higher spatial resolution (9 km) using SMAP
radar backscatter observations and the subsequent inversion of the re-
sulting high-resolution TBp

fields into soil moisture retrievals. Another
higher resolution at 3 km global surface soil moisture data set is also
produced for assessment and potential implementation.

Prior to this investigation, the active-passive algorithm (presented
in subsequent section) had only been implemented with simulated data
and limited aircraft-based observations. The work presented here shows
the operational capability of the SMAP active-passive algorithm and
provides a calibration/validation of the products using various core
sites. Although the duration of the L2SMAP is only ~2.5 months (due to
the malfunction of the SMAP radar), within this period, it provided a
demonstration that the active-passive algorithm could work under all
hydroclimatic domains with moderate and heterogeneous vegetation
cover. The product also provided the first satellite demonstration of the
effectiveness of using the combination of L-band radar and radiometer
observations as an effective approach to high spatial resolution and
accurate soil moisture retrieval. Hence, this product supports the de-
velopment of this approach in current and future missions.

2. Active-passive algorithm review

In the past, numerous studies (Kim and Barros, 2002; Kim and
Barros, 2003; Chauhan et al., 2003; and Reichle et al., 2001) have at-
tempted to obtain high-resolution soil moisture by downscaling coarse
resolution (~50 km) soil moisture products from satellite-based mi-
crowave radiometers. These studies used high-resolution remote sen-
sing observations and fine-scale ancillary geophysical information such
as topography, vegetation, soil type, and precipitation that exert phy-
sical control over the evolution of soil moisture. For example, high-
resolution thermal infrared data from MODIS and soil parameters were
utilized in a deterministic approach to disaggregate the SMOS ~40 km
soil moisture product to a ~1 km soil moisture estimate (Molero et al.,
2016; Merlin et al., 2008). A common factor in these approaches is the
use of static and dynamic geophysical data in the downscaling/dis-
aggregation approach. The geophysical observations come from dif-
ferent sources with some inherent errors, as well as temporal registra-
tion mismatch that can affect the accuracy of the downscaled soil
moisture estimates. For example, the MODIS thermal infrared data is
measured at ~10:00 AM local time and are not co-registered (in the
SMAP mission the radar and radiometer observations are acquired at
the same time i.e., ~6:00 AM for descending orbits) along with the
satellite-based radiometer observations (SMAP and SMOS). This mis-
match of observation times can change the surface soil moisture spatial
pattern. The MODIS thermal infrared penetration depth is also very
shallow (skin deep) as compared to the penetration depth of ~5 cm or

more for the satellite-based L-band microwave radiometer observa-
tions. SMAP mitigates these sources of errors by the use of co-registered
and concurrent L-band radiometer and the L-band radar observations.

Only a few studies have been conducted that attempted to merge
high-resolution radar and coarse resolution radiometer measurements
in order to obtain an intermediate resolution product. Change detection
techniques have demonstrated a potential to monitor temporal evolu-
tion of soil moisture by taking advantage of the approximately linear
dependence of radar backscatter and brightness temperature change on
soil moisture change. The feasibility of using the change detection ap-
proach was demonstrated with the Passive and Active L-band System
airborne sensor (PALS) radar and radiometer data obtained during the
SGP99 campaign (Narayan et al., 2006). A similar approach was also
used to downscale PALS radiometer data with AIRSAR (radr) data from
the SMEX02 campaign. The limitation of this technique is that it only
provides the soil moisture relative change and not the absolute value of
soil moisture. As a consequence, the errors can accumulate because the
cumulative errors propagate over a time period.

A different approach is presented in Zhan et al. (2006) where a
Bayesian method is used to downscale radiometer observations using
radar measurements. Kim and van Zyl (2009) developed a time-series
algorithm based on a linear model of backscatter and soil moisture. In
order to estimate soil moisture at intermediate resolution (9 km), they
determine the two unknowns of the linear model for each pixel within
the coarser radiometer pixel. Piles et al. (2009) presented another
change detection scheme compatible with SMAP that uses the ap-
proximately linear dependence of change in radar backscatter on soil
moisture change at radiometer resolution, the temporal change in
backscatter at the radar resolution and the previous day's soil moisture
data to estimate soil moisture at ~9 km resolution. This is similar to
Narayan et al. (2006) but also suffers from the accumulation of errors
over time. A spatial variability technique developed by Das et al. (2012)
to blend SMAP radar measurement and radiometer-based soil moisture
data also takes advantage of the approximately linear dependence of
backscatter change to soil moisture change at the radiometer resolu-
tion, which constraints the relative backscatter difference within the
coarse radiometer footprint, to estimate soil moisture at ~9 km re-
solution. Unlike Zhan et al. (2006) and Piles et al. (2009), the spatial
variability technique used in Das et al. (2012) does not require the
previous satellite overpass observations to estimate the current soil
moisture value. The SMAP active-passive algorithm (Das et al., 2014)
draws from all the above algorithms and techniques (Molero et al.,
2016; Merlin et al., 2008; Zhan et al., 2006; Narayan et al., 2006; Kim
and van Zyl, 2009; Piles et al., 2009; Das et al., 2012). In particular, it
downscales the coarse-scale radiometer-based gridded brightness tem-
perature using the fine resolution radar backscatter, and then near-
surface soil moisture is retrieved from the downscaled brightness
temperature (Fig. 1).

The SMAP active-passive algorithm (Das et al., 2014) has two
parameters (β (K/dB) and dimensionless Γ), as shown in Eq. (1).

= + − + −β ΓT M T C C σ M σ C σ C σ M( ) ( ) ( )·{[ ( ) ( )] ·[ ( ) ( )]}B j B pp j pp pq pq jp p

(1)

where TBp
(Mj) is the disaggregated brightness temperature (V-pol or H-

pol) at 9 km or 3 km, TBp
(C) is the gridded radiometer brightness tem-

perature (V-pol or H-pol) at 36 km, σpp(Mj) and σpq(Mj) are the co-pol
and cross-pol radar backscatters at the corresponding resolution (9 km
or 3 km), and σpp(Cj) and σpq(Cj) are the co-pol and cross-pol radar
backscatters aggregated to 36 km. The notation Mj represents one of the
indexed (j) medium resolution grid cells within the coarse resolution
‘C'. A comprehensive description and physical basis of Eq. (1) is pre-
sented in Entekhabi et al., (2010) and Das et al. (2014). However, for
the sake of brevity, clarity and completeness Eq. (1) can be summarized
as follow:

=T M Disaggregated brightness temperature at km or km( ) 9 3 .B jp
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+T C Parent scale C radiometer brightness temperature( ) ( ) .Bp

⋅ − +

−
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.
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pp

−Γ Γσ C σ M Scale M heterogeneity parameter

times smaller scale M
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mostly due to vegetation and roughness

·[ ( ) ( )]} ( )

( )

.

pq pq j

pq

For a more comprehensive description of Eq. (1) see Entekhabi et al.
(2010) and Das et al. (2014). The proposed SMAP active-passive algo-
rithm Eq. (1) is preferred over alternative algorithms (Zhan et al., 2006;
Kim and van Zyl, 2009; Piles et al., 2009; Das et al., 2012) due to the
following attributes: i) its inputs (observations) come directly from the
SMAP instruments; ii) the algorithm uses a physical basis to derive the
Eq. (1); and iii) parameters β(C) and Γ are also physically-based and can
be analytically derived (as shown in Entekhabi et al. (2010), Das et al.
(2014) and Jagdhuber et al. (2015) from radiative transfer physics. The
algorithm (Eq. (1)) has also been successfully applied to field campaign
data from SMEX02 (Das et al., 2014) and SMAPVEX12 (Leroux et al.,
2016; Leroux et al., 2017). Moreover, the disaggregated TBp

(Mj) is used
to retrieve soil moisture using the Tau-Omega model, which makes it
consistent with the SMAP radiometer-only soil moisture (L2SMP) pro-
duct.

The disaggregated brightness temperature TB(Mj) is an intermediate
product of the active-passive algorithm. The SMAP active-passive al-
gorithm conserves the energy in the brightness temperature space (TBp

),
i.e., the aggregated average of the TBp

(Mj) is equal to TBp
(C), alternative

representation is ≈ ∑ =
T (C) T (M )B

1
nm j 1

nm
B jp p , where nm is the number of

high resolution grid cells within a coarse resolution 36 km grid cell (e.g.,
nm=16 at 9 km resolution).

Another feature of the SMAP active-passive algorithm is that it is
possible to perform disaggregation three different ways. Fig. 2 illus-
trates these (Option 1, Option 2, and Option 3) ways of implementing
Eq. (1). All three options produce 9 km soil moisture; however, they
differ based on the scales at which downscaled the TBs are obtained
before retrieving soil moisture. The SMAP active-passive baseline al-
gorithm is Option 1. All the options are included in the L2SMAP pro-
duct file. The advantages of Option 2 and Option 3 are: i) the down-
scaling of SMAP TB from 36 km to 3 km resolution; and ii) the retrieval
of soil moisture at 3 km resolution. All three options are also im-
plemented for TBV

(C) and TBH
(C) leading to a total of six options at 9 km

for soil moisture retrieval. Besides these six options, the L2SMAP pro-
duct also contains two soil moisture retrievals at 3 km obtained from
disaggregated TBV

(F) and TBH
(F). However, the disaggregated TBV

(M) at

9 km obtained by disaggregating TBV
(C) using Option 1 is the SMAP

active-passive baseline algorithm. The following sections discuss about
the selection of this option as the baseline algorithm.

3. SMAP active-passive (L2SMAP) product

At National Snow and Ice Data Center (NSIDC) Distributed Active
Archive Center (DAAC), the L2SMAP data is only available for
~2.5 months (April 13th, 2016 through July 7th, 2016) period because
the SMAP radar is inoperable beyond July 7th, 2015. Following this
date, the SMAP active-passive algorithm was discontinued due to a lack
of SMAP radar data (L1S0HiRes). Therefore, this section elaborates on
the results of the L2SMAP product for the ~2.5 months duration only.

3.1. Stability of SMAP active-passive algorithm parameters

The performance of the brightness temperature disaggregation that
results in the 9 km or 3 km soil moisture retrievals is heavily dependent
on obtaining robust estimates of the parameters β and Γ in Eq. (1).
Regressions of the time-series (based on multiple overpasses) for TBp

(C)
and σpp(C) are used to statistically estimate β. The statistically-esti-
mated slope parameters are specific for a given location, and reflect
local roughness and vegetation cover conditions under the assumption
that they are fairly stable during the time period of β estimation. The
parameter Γ is also determined statistically for any particular overpass,
using the radar backscatters σpp and σpq at the finest available resolution
(in this case at 3 km) that are encompassed within the 36 km TBp

(C) grid
cell.

Fig. 3 illustrates the distribution of the β parameter in the emis-
sivity/dB (−/dB) term. Before its application in Eq. (1), the β para-
meter is multiplied with land surface temperature to convert to the K/
dB term. The β parameter values obtained were found to be consistent
with the values that are derived from the analysis of the soil moisture
field experiments (SGP99, SMEX02, CLASIC, and SMAPVEX08), and
3 years of Aquarius data.

Values (magnitude) of the β parameter over arid regions like the
Sahara Desert are lower than expected. The reason for this bias is the
absence of a dynamic range of conditions over arid regions within the
limited duration (~2.5 months) of available data. Fig. 4 shows the
correlation map of TBV

(C) and σvv(C) for the ~2.5 month period. The
map (Fig. 4) also represents the statistical robustness of the estimated β
parameter. High correlations are observed globally over most land
surfaces except for the arid and heavily forested regions. This inferior
quality of β parameter estimates over the arid regions and the heavily
forested regions is due to the lack of dynamic range in TBp

(C) and σpp(C).
Moreover, in the heavily forested regions, the lack of dynamic range in
TBp

(C) and σpp(C) can be attributed to the high volume scattering and a

Fig. 1. Schematic representation of the SMAP baseline active-passive algorithm. L1CTB is the gridded TB product and L1S0HiRes is the gridded σpp and σpq product.
The value of nc=1, nf=144 and nm=16 are the number of grid cells of TB(C), σpp(F) and σpq(F), and downscaled TB(M), respectively, involved in the SMAP active-
passive algorithm. Where ‘C’ stands for coarse spatial resolution (36 km), ‘M’ stands for medium spatial resolution (9 km), and ‘F’ stands for fine spatial resolution
(3 km).
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Fig. 2. Different implementations of the SMAP active-passive algorithm in the SMAP Science Production Software (SPS).

Fig. 3. β parameter computed using all the available SMAP radar (vv-pol) and radiometer (V-pol) data from April 15, 2015 to July 7th, 2015. The β parameter is
actually determined in emissivity/dB terms.

Fig. 4. Correlation map of TBV
(C) and σvv(C) computed using all the available SMAP radar (vv-pol) and radiometer (V-pol) data from April 15, 2015 to July 7th, 2015.
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Fig. 5. Trend in β parameter with respect to the SMAP radar cross-pol σhv data. (a) The full trend of β that includes parameters over barren deserts shown as shaded
region. (b) The curtailed version that is used to derive a regression model (red line) for β parameters used in the SMAP active-passive algorithm for the grid cells
where derived β is inferior or the correlation coefficient (Fig. 4) is below 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Map of Γ parameter at global extent averaged for 04-28-2015 to 05-28-2015.

Fig. 7. Coefficient of variation of Γ parameter computed for 04-28-2015 to 05-28-2015.
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lack of sensitivity to the underlying soil layer. Fig. 5 shows the trend in
the β parameter against the σpq SMAP radar backscatter is associated
with the level of vegetation. An almost linear trend (shown as the red
line in Fig. 5b) is observed in the β parameter with respect to SMAP
radar σpqfor the regions where the correlation is high. The nonlinearity
in the β parameter trend for σpq radar data less than −25 [dB] (Fig. 5a)
is due to inadequate (less than ~2.5months) time series data that leads
to inferior estimation. Given the dynamic range of TBp

(C) and σpp(C)
over arid regions, the trend should follow the red line. Therefore, in the
L2SMAP algorithm implementation, the model that follows the red line
as shown in Fig. 5 is used where the β parameter estimation is higher
correlation than 0.5.

The algorithm parameter Γ exhibits more temporal stability as
compared to the β parameter. Fig. 6 shows the global distribution of the
Γ parameter. The range of values of Γ parameter corresponds with the

parameters derived from the soil moisture field campaigns (SGP99,
SMEX02, CLASIC, and SMAPVEX08) data. To evaluate the stability of
the Γ parameter, the coefficient of variation was computed for one-
month period as shown in Fig. 7. The coefficient of variation is very low
for the most regions of the world suggesting stability in derived Γ
parameter.

3.2. Patterns and features in the SMAP L2SMAP product

The L2SMAP product was analyzed at 9 km and 3 km using the
various options (as discussed in Section 3.1). The results shown hen-
ceforth are composited (averaged) for 7 days to provide a complete
global extent of soil moisture evolution over different biomes and
landcovers. Assessment of global soil moisture from the SMAP active-
passive retrievals shows consistency in the soil moisture range

Fig. 8. SMAP L2SMAP (TBV) Option-1 global images with flags (a) and with cleared flags (b) for soil moisture products.
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(0.02 m3/m3 to 0.5 m3/m3) and probable values. For example, the re-
gions that are very dry (i.e., the Sahara desert) and wet (i.e., the
Amazon Basin) reflect the nature of the oil moisture distribution and
expected variability as influenced by geophysical factors (soil types,
vegetation, weather, and terrain) and landcovers. However, further
evaluation of the soil moisture estimates was conducted over a limited
set of core validation sites (CVS) to evaluate the accuracy and perfor-
mance of the SMAP active-passive retrievals. Fig. 8a illustrates the soil
moisture retrievals using the downscaled TBV

at 9 km obtained from the
SMAP baseline (Option-1) active-passive algorithm. Fig. 8b is the same
as Fig. 8a, except only showing data with valid quality flags. The re-
gions with valid (cleared of all quality flags) soil moisture data as
shown in Fig. 8b are those that meet the SMAP Level-1 requirements
(SMAP mission Level-1 requirement: the baseline science mission shall
provide estimates of soil moisture in the top 5 cm of soil with an error of
no greater than 0.04m3/m3 volumetric (one sigma) at 10 km spatial
resolution and 3-day average intervals over the global land area ex-
cluding regions of snow and ice, frozen ground, mountainous topo-
graphy, open water, urban areas, and vegetation with water content
greater than 5 kg/m2). Similarly, Fig. 9 shows the 3 km soil moisture
retrievals from the SMAP active-passive algorithm generated using the
Option-3 implementation approach discussed in the previous section.
To illustrate the difference between the various resolutions of the SMAP
products and the skill of the SMAP active-passive algorithm to capture
spatial details and heterogeneity with the radiometer coarse observa-
tion and soil moisture retrievals, a comparison is presented in Fig. 10.
The variability within the radiometer coarse grid cell is mostly due to
soil moisture, vegetation and soil roughness, and is captured by high-
resolution SMAP radar backscatter values of σpp and σpq at the finest
available resolution (in this case at 3 km). Fig. 10 clearly shows the
capability of the baseline algorithm (Eq. (1)) to get high-resolution
brightness temperature data and subsequent soil moisture retrievals
using the fine scale information obtained from the high-resolution
SMAP radar.

The SMAP L2SMAP product also includes ancillary and quality re-
lated data fields. A description of these fields is provided in the SMAP

L2SMAP Product Specification Document available through NSIDC.
Some examples of this information are shown in Figs. 11 and 12. A
typical SMAP swath, shown in Fig. 11, is associated with a soil moisture
retrieval quality flag for every EASE2 grid cell at 9 km and 3 km. A flag
value of 0 represents good quality and any value greater than 0 re-
presents substandard quality due to surface flags or due to a quality flag
associated with the disaggregated TBp

or due to the quality of the input
data (TBp

(C) and σpp and σpq). Fig. 12 illustrates the surface flags asso-
ciated with each and every soil moisture retrieval. The surface flags are
stored in the bits (0 means clear and 1 mean present) of a 2 bytes in-
teger. The example shows the flag value of 0 or 1 for any given grid cell
that represents the existence of the particular surface condition (e.g.,
static waterbodies, coastal region, urban flag, and terrain flag). How-
ever, the surface flag also contains information about the transient
nadir flag, as shown in Fig. 12.

4. L2SMAP product validation

4.1. Core validation sites

The SMAP L2SMAP validation was based primarily on comparison
of retrievals with in situ soil moisture measurements (Colliander et al.,
2017; Chan et al., 2016). Other validation methodologies, such as
evaluation against model outputs and comparison with other satellites
soil moisture retrievals were not used because of a limited number of
retrievals (~2.5months) available for the L2SMAP product. The in situ
measurements for the top ~5 cm from soil moisture networks with an
acceptable sensor density within a 9 km EASE2 grid were the primary
validation locations for the L2SMAP product. The SMAP project colla-
borated with various partners from around the world to identify such
locations and established CVS (Colliander et al., 2017). These CVS have
been verified as providing a spatial average of soil moisture at 9 km and
3 km spatial resolutions. However, the spatial averages of soil moisture
from CVS are not without issues because of inherent upscaling errors.
Table 1 lists the CVS as well as potential sites known as candidate sites
that do not meet the requirements or level of maturity to become CVS

Fig. 9. SMAP L2SMAP (TBV) 3 km soil moisture global composite.
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during the period of this investigation. Beside the CVS, sparse networks
(Chen et al., 2017) were also used as a supporting tool to validate the
L2SMAP product. More details about the L2SMAP validation are pro-
vided in the SMAP Active-Passive Product Assessment report, available
through NSIDC (https://nsidc.org/sites/nsidc.org/files/technical-
references/SMAPSPBetaReleaseAssessmentReport_11-01-2017_final.
pdf).

Figs. 13, 14, and 15 show comparisons and statistics of L2SMAP
9 km grid cells for three CVS: Little Washita, TxSON, and Valencia,
respectively. Similar comparisons and statistics were performed for the
L2SMAP 9 km grid cells against the suitable CVS sites. Overall, 10 CVS
(two Yanco and two TxSON sites were averaged) were used as primary
validation for the L2SMAP product. Some of the CVS (e.g., South Fork)
over the Midwest region of CONUS were not included because the
SMAP radar measurements were suspected of having artifacts due to

unresolved radio frequency interference (RFI). These RFI signatures
introduced errors in the backscatter observations leading erroneous
disaggregated brightness temperature. The time series plot in Fig. 13 for
the Little Washita shows a good match between soil moisture trends,
with some bias in soil moisture retrievals, especially when the vegeta-
tion is high during the summer months. The performance of the
L2SMAP product over most of the CVS with non-crop landcovers is
reasonable as illustrated in Fig. 14 for TxSON and Fig. 15 for Valencia.
However, the performance of the L2SMAP over CVS with crop cover is
inferior, possibly because of being out of sync with the vegetation at-
tribute information. The retrieval process uses vegetation-water-con-
tent (VWC) derived from the NDVI climatology (developed from
10 years of MODIS data), which might lead to a mismatch with the
actual status of VWC. Therefore, it is likely that in Fig. 13, Little Wa-
shita CVS the lack of a consistent bias and has higher errors may be

(36 ) [ ]    (A) (3 ) [ ]    (B) (3 ) [ ]       (C) 

(9 ) [ ]       (D) (3 ) [ ]      (E) 

 SM(36km)  (F) SM(3km)     (H) 

Fig. 10. Illustration of the enhancement of spatial details of soil moisture provided by the L2SMAP algorithm on July 1st, 2015 (Central and Western Ethiopia, and
Western part of Kenya). The inputs and outputs from the SMAP active-passive algorithm are: A) input coarse resolution brightness temperature TBV

(C) at 36 km; B)
input high resolution (9 km or 3 km) co-pol backscatter σpp(Mj); C) input high resolution (9 km or3 km) co-pol backscatter σpq(Mj); D) output disaggregated brightness
temperature TBV

(M) at 9 km; E) output disaggregated brightness temperature TBV
(M) at 3 km; F) soil moisture SM (36 km) retrieval from coarse resolution brightness

temperature TBV
(C) at 36 km, SMAP radiometer-only product; G) soil moisture SM (9 km) retrievals from the disaggregated TBV

(M) at 9 km resolution; and H) soil
moisture SM (3 km) retrievals from the disaggregated TBV

(M) at 3 km resolution.

N.N. Das et al. Remote Sensing of Environment 211 (2018) 204–217

211

https://nsidc.org/sites/nsidc.org/files/technical-references/SMAPSPBetaReleaseAssessmentReport_11-01-2017_final.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAPSPBetaReleaseAssessmentReport_11-01-2017_final.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAPSPBetaReleaseAssessmentReport_11-01-2017_final.pdf


caused by the mismatch.
Table 2 shows the comparison statistics (correlation ‘R’, root-mean-

square-error “RMSE”, ‘Bias’, and unbiased root-mean-squared-error
“ubRMSE”) between the CVS upscaled soil moisture averages and the
L2SMAP soil moisture retrievals for the TBV

9 km options. The term

RMSE in the analysis is interchangeably used for root-mean-square-
difference (RMSD). However, RMSD is more appropriate because the
upscaled CVS value is not the truth. Most of the R-values in Table 2 are
relatively high and exhibit a good match of the trend. The overall
ubRMSE of 0.039m3/m3 for Option-1 TBV

at 9 km meets the SMAP

Fig. 11. A typical L2SMAP swath (June 6th, 2015) with associated retrieval quality flag. Pixels that do not have any flags are plotted in black.

Fig. 12. Surface flags of L2SMAP swath (June 6th, 2015) in the L2SMAP product. Pixels that do not have any specific flags are plotted in black.
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mission goal of 0.04m3/m3. Similar statistics were also developed for
all the options of TBH

at 9 km, and TBV
and TBH

at 3 km (not shown).
From the statistics of all the soil moisture retrievals from options at
9 km and at 3 km for TBV

and TBH
(total 8 options), the Option-1 at 9 km

for TBV
based soil moisture retrievals has very comparable ubRMSE and

the highest R-value, therefore, it is considered as the primary soil
moisture product and the associated disaggregation approach as the
L2SMAP baseline algorithm. Nonetheless, the soil moisture retrievals
performed for disaggregated TBV

at 3 km that were compared to CVS
measurements had an ubRMSE of ~0.053m3/m3, which suggests that
the 3 km L2SMAP is a promising soil moisture product.

We also assessed the contribution of the SAR radar observations in
the SMAP active-passive algorithm. There are two ways to approach

this evaluation: 1) by comparing the disaggregated brightness tem-
perature (TBV

at 9 km) with the high-resolution brightness temperature
observed through an airborne platform, and evaluating against the
coarse resolution brightness temperature (TBV

at 36 km) observed by the
SMAP radiometer; and 2) comparing the soil moisture retrievals from
L2SMAP and minimum performance (MP) against a CVS. The MP is
simply obtained by setting β(C)= 0 in Eq. (1) (SMAP active-passive
algorithm) of the manuscript. In other words, MP is simply applying the
coarse resolution TBV

(at 36 km) value to all 9 km cells.
The first approach was presented in Leroux et al. (2016) and Leroux

et al. (2017) that the SMAP active-passive algorithm outperforms the
MP in brightness temperature space. Table 3 shows the performance of
L2SMAP against the MP. The statistics show that the SMAP active-

Table 1
SMAP Cal/Val partner sites providing validation data.

Site name Site PI Area Climate regime IGBP land cover Status

Walnut Gulcha C. Holifield Collins USA (Arizona) Arid Shrub open Used in validation
Reynolds Creekb M. Seyfried USA (Idaho) Arid Grasslands Short data length due to snow cover
Fort Cobb P. Starks USA (Oklahoma) Temperate Grasslands Lesser number of in situ sensors at 9 km
Little Washitaa P. Starks USA (Oklahoma) Temperate Grasslands Used in validation
South Forkc M. Cosh USA (Iowa) Cold Croplands SMAP SAR σ has artifacts
Little Rivera D. Bosch USA (Georgia) Temperate Cropland/natural mosaic Used in validation
TxSONa T. Caldwell USA (Texas) Temperate Grasslands Used in validation
Millbrook M. Temimi USA (New York) Cold Deciduous broadleaf Lesser number of in situ sensors at 9 km
Tonzi Ranchb M. Moghaddam USA (California) Temperate Savannas Used in validation
Kenastona A. Berg Canada Cold Croplands Used in validation
Carmanc H. McNairn Canada Cold Croplands SMAP SAR σ has artifacts
Monte Bueya M. Thibeault Argentina Arid Croplands Used in validation
Bell Ville M. Thibeault Argentina Arid Croplands Lesser number of in situ sensors at 9 km
REMEDHUS J. Martinez Spain Temperate Croplands Lesser number of in situ sensors at 9 km
Valenciaa E. Lopez-Beaza Spain Arid Shrub (open) Used in validation
Twente Z. Su Holland Cold Cropland/natural mosaic Lesser number of in situ sensors at 9 km
Kuwait H. Jassar Kuwait Temperate Barren/sparse Lesser number of in situ sensors at 9 km
Niger T. Pellarin Niger Arid Grasslands Lesser number of in situ sensors at 9 km
Benin T. Pellarin Benin Arid Savannas Lesser number of in situ sensors at 9 km
Naqu Z. Su Tibet Polar Grasslands Lesser number of in situ sensors at 9 km
Maqu Z. Su Tibet Cold Grasslands Lesser number of in situ sensors at 9 km
Ngari Z. Su Tibet Arid Barren/sparse Lesser number of in situ sensors at 9 km
MAHASRI JAXA Mongolia Cold Grasslands Lesser number of in situ sensors at 9 km
Yancoa J. Walker Australia Arid Croplands Used in validation
Kyeamba J. Walker Australia Temperate Croplands Lesser number of in situ sensors at 9 km

a CVS used in assessment.
b Reynolds Creek, the length of record was too short due to snow cover.
c Not used because artifacts were found in the SAR data.

Fig. 13. L2SMAP Assessment for Little Washita, Oklahoma, USA.
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passive algorithm clearly outperforms (better ubRMSE, Bias, and
RMSE) the MP in most of the CVS sites except the highly vegetated
regions.

4.2. Sparse soil moisture networks

The intensive CVS validation performed for the SMAP L2SMAP can
be complemented by sparse networks as well as by new/emerging types
of soil moisture networks. The important difference in interpreting
these data is that they involve one in situ point in a grid cell. Thus,
whatever reservations there might be on the upscaling for the CVS are
of greater concern with sparse networks. However, sparse networks do
offer many sites in different environments.

The established soil moisture networks utilized for the SMAP
L2SMAP comparison were the NOAA Climate Reference Network

(CRN), the USDA NRCS Soil Climate Analysis Network (SCAN), the
Oklahoma Mesonet, the MAHASRI network (in Mongolia), the
SMOSMania network (in southwest Europe), the Pampas network (in
Argentina), and soil moisture estimates derived from the surface re-
flectance at Global Position Stations (in the Western US). From these
sparse soil moisture networks, 311 sites were found to be suitable for
direct comparison with the SMAP L2SMAP overlapping grid cells. The
311 sites were selected based on in situ measurement data quality and
continuity of the observations during the 2.5 months period (April 14th,
2015 to July 7th, 2015). The defining feature of these networks were
the low measurement density that usually resulted in one point per
L2SMAP 9 km grid cell that leads to large upscaling errors in the ability
of a single site location to describe mean soil moisture within a 3 or 9-
km grid cell. The SMAP Project evaluated methodologies for upscaling
measurements from these networks to SMAP defined grid resolutions.

Fig. 14. L2SMAP Assessment for TxSON, Texas, USA.

Fig. 15. L2SMAP Assessment for Valencia, Spain.
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Table 2
SMAP L2SMAP validated release assessment for disaggregated TBV

at 9 km.

Site name ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R

Opt-1 Opt-2 Opt-3 Opt-1 Opt-2 Opt-3 Opt-1 Opt-2 Opt-3 Opt-1 Opt-2 Opt-3

Walnut Gulch 0.016 0.015 0.026 −0.019 −0.019 −0.011 0.024 0.025 0.029 0.190 0.187 0.59
TxSON (2 core sites) 0.042 0.042 0.039 −0.005 −0.007 −0.005 0.047 0.047 0.043 0.860 0.862 0.87
Tonzi Ranch 0.022 0.022 0.022 −0.037 −0.037 −0.038 0.043 0.043 0.044 0.837 0.837 0.836
Little Washita 0.046 0.045 0.045 −0.062 −0.071 −0.071 0.078 0.084 0.084 0.714 0.705 0.719
Little River 0.026 0.026 0.031 0.066 0.066 0.094 0.071 0.071 0.099 0.764 0.764 0.718
Kenaston 0.042 0.042 0.043 0.002 0.002 0.002 0.042 0.042 0.043 0.489 0.489 0.481
Monte Buey 0.067 0.067 0.064 0.021 0.021 0.019 0.071 0.071 0.067 0.904 0.909 0.895
Valencia 0.033 0.033 0.033 −0.006 −0.006 −0.009 0.034 0.034 0.034 0.456 0.456 0.456
Yanco (2 core sites) 0.057 0.055 0.061 0.037 0.041 0.037 0.073 0.071 0.074 0.698 0.740 0.710
SMAP Average 0.039 0.039 0.041 −0.001 −0.001 0.002 0.053 0.054 0.057 0.66 0.66 0.69
Averages are based on the values reported for each CVS

Table 3
SMAP L2SMAP baseline (BL that is Opt-1) compared against the minimum performance (MP) at 9 km.

Site name ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R

BL MP BL MP BL MP BL MP

Walnut Gulch 0.016 0.036 −0.019 −0.016 0.024 0.035 0.190 0.86
TxSON 0.042 0.039 −0.005 −0.033 0.047 0.055 0.860 0.84
Tonzi Ranch 0.022 0.032 −0.037 −0.068 0.043 0.076 0.837 0.75
Little Washita 0.046 0.045 −0.062 −0.053 0.078 0.072 0.714 0.825
Little River 0.026 0.032 0.066 0.06 0.071 0.069 0.764 0.67
Kenaston 0.042 0.063 0.002 −0.033 0.042 0.07 0.489 0.611
Monte Buey 0.067 0.058 0.021 −0.001 0.071 0.059 0.904 0.929
Valencia 0.033 0.038 −0.006 −0.039 0.034 0.055 0.456 0.5
Yanco (2 core sites) 0.057 0.062 0.037 0.036 0.073 0.081 0.698 0.85
SMAP average 0.039 0.045 −0.001 −0.0163 0.053 0.064 0.66 0.76
Averages are based on the values reported for each CVS

Fig. 16. Results of comparison between L2SMAP with the sparse network sites (311 in situ sites): A) unbiased RMSE; and B) correlation for L2SMAP soil moisture
retrievals for all algorithm options.
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Due to the very short data record for the L2SMAP product, these ap-
proaches could not be applied here. However, despite this source of
bias, sparse networks can adequately describe relative errors (existing
e.g. between various algorithm versions). In addition, sparse networks
do offer many sites in different environments.

The L2SMAP product retrievals available for 311 global sparse
network sites from many different landcovers were compared with in
situ observations. Fig. 16 cross-compares the metrics of all options of
the L2SMAP (9 km and 3 km) products. Despite the potential errors
associated with spatial representativeness, the ubRMSE and bias values
obtained from these sparse networks are similar to those obtained from
the CVS. These results (Fig. 16) provide further confidence in the pre-
vious conclusions based on the CVS. In addition, the SMAP L2SMAP
TBV Option-1 has one of the best overall ubRMSE and correlation as
compared to all other options algorithms implemented at 9 km and
3 km.

4.3. Consistency with the 36 km SMAP radiometer-only product

Intercomparison of the SMAP L2SMAP soil moisture with the L2SMP
soil moisture is useful in assessment of the L2SMAP because both use
the same radiative-transfer-model and brightness temperature data in
their respective algorithms. The soil moisture product from the des-
cending pass (6 AM) L2SMP was matched with the L2SMAP descending
pass product. For comparison, the L2SMAP soil moisture at 9 km is
averaged to 36 km EASE2 grid using a drop-in-a-bucket (averaging all
the 9 km grid cells within the overlapping 36 km grid cell) technique.
Retrieval quality flags provided in the respective product files are

applied to both L2SMAP and L2SMP to allow comparison of high-
quality soil moisture retrievals. The data available for the entire
L2SMAP period was used in this intercomparison. Fig. 17 shows that
there is good agreement between the L2SMAP (averaged to 36 km) and
the 36 km L2SMP soil moisture estimates for the 30 day period. The
differences in the L2SMAP and L2SMP are within the acceptable limit
because soil moisture upscaling by averaging is not purely linear. No-
ticeable differences at 36 km are visible only over regions with high
vegetation, for example over forests (Amazon, Congo basin), and sandy
bare soil with rock outcrops (as visible in the Sahara Desert). Fig. 18
presents the results of Fig. 17 using cumulative density function (CDF)
for both products. The CDF shows almost no difference in soil moisture
retrievals between the L2SMAP (9 km averaged to 36 km) and the
L2SMP grid cells for nearly 85% of the global landmass. The differ-
ences, of −0.06 to 0.04m3/m3, is mostly found in the highly vegetated
regions and is expected because of the nonlinear nature of Tau-Omega
parameters when applied at 9 km and 36 km spatial scales.

5. Discussion

The SMAP observatory is a first of its kind mission that delivered
coincident and collocated measurements using an L-band radar and an
L-band radiometer. This provided a unique opportunity to obtain the
status of geophysical information such as soil moisture at much higher
spatial resolutions than previously possible using satellite remote sen-
sing. The SMAP active-passive algorithm was able to achieve the mis-
sion goal by producing high-resolution soil moisture (L2SMAP) at 9 km
and 3 km. A validated release of the SMAP L2SMAP data to NSDIC also
meets the SMAP mission requirements. However, some further poten-
tial for improvement in the SMAP L2SMAP data quality may be possible
by reducing the errors in soil moisture retrievals. These include further
optimizing the Tau-Omega model parameters for various landcovers at
resolutions of 9 km and 3 km. Currently, the SMAP L2SMAP retrievals
use the same Tau-Omega parameters as the L2SMP retrievals at 36 km.
Another important step to improving the L2SMAP data quality is the
inclusion of retrieved vegetation-optical-depth (VOD) or Tau. The Tau
values used for L2SMAP retrievals were derived from a 10-year cli-
matology of NDVI based VWC (Tau= b*VWC, b is a parameter based
on landcover, typically close to 0.1). The drawback of using VWC cli-
matology for Tau is prominently visible over CVS with cropland land-
cover. Using a retrieved Tau or alternatively, the real VWC (based on
real NDVI) instead of climatological value may help reduce the high
ubRMSE observed for cropland regions. Another possibility for im-
proving the L2SMAP product is through the inclusion of the most recent
SMAP radar backscatter data for σpp and σpq and the L1CS0HiRes pro-
ducts that will also have the unresolved RFI issue fixed that are present
over the Midwest region of North America. This will enable inclusion of

Fig. 17. Comparison of L2SMAP and L2SMP soil moisture (modulus of absolute difference) without using retrieval quality flags.

Fig. 18. CDF of the absolute difference between the L2SMAP and L2SMP soil
moisture computed from the whole month of June 2015 that included ~800
half orbits.

N.N. Das et al. Remote Sensing of Environment 211 (2018) 204–217

216



CVS such as South Fork and Carman where problems with RFI were
identified.

6. Conclusion

The active-passive algorithm developed during the SMAP prelaunch
period using field campaigns airborne data was successfully im-
plemented on the SMAP radiometer and radar data available for
~2.5 months period. Six alternative active-passive algorithm options at
9 km and two active-passive algorithm options at 3 km were im-
plemented, and retrievals were performed on the disaggregated/
downscaled brightness temperatures. The retrieved soil moisture esti-
mates were then validated using CVS comparisons supplemented by
Sparse Networks with metrics and time series plots. These analyses
indicated that the Option-1 (TBV

) has better and comparable unbiased
root-mean-square-errors (ubRMSE), bias, and correlation R than the
rest of algorithms. Option-1 (TBV

) also had one of the best performances
in the sparse network analysis. Based on the results, it is recommended
that the Option-1 (TBV

) be adopted as the baseline algorithm for the
SMAP active-passive algorithm. In the CVS analysis, the overall
ubRMSE of the Option-1 (TBV

) is 0.039m3/m3, which is close to the
SMAP mission requirement. SMAP L2SMAP retrievals were also com-
pared globally with the SMAP L2SMP retrievals. The agreement be-
tween the L2SMAP retrievals and the L2SMP retrievals is good. Some of
the observed differences are expected in areas where more surface
heterogeneity exists or over highly vegetated regions. Intercomparisons
using the other SMAP option algorithms indicated similar performance.
Further improvement in the SMAP L2SMAP product is also possible
through optimizing the parameters and also by improving the input
ancillary information used in soil moisture retrievals. The SMAP Project
plans to release an updated and improved SMAP L2SMAP product in
future. However, the current SMAP L2SMAP product at 9 km and 3 km
in NSDIC is good for use in geophysical applications and research.
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