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A B S T R A C T

This study compared surface soil moisture from 11 separate remote sensing and modelled products across
Australia in a common framework. The comparison was based on a correlation analysis between soil moisture
products and in situ data collated from three separate ground-based networks: OzFlux, OzNet and CosmOz.
The correlation analysis was performed using both original data sets and temporal anomalies, and was
supported by examination of the time series plots. The interrelationships between the products were also
explored using cluster analyses. The products considered in this study include: Soil Moisture Ocean Salinity
(SMOS; both Land Parameter Retrieval Model (LPRM) and L-band Microwave Emission of the Biosphere
(LMEB) algorithms), Advanced Microwave Scanning Radiometer 2 (AMSR2; both LPRM and Japan Aerospace
Exploration Agency (JAXA) algorithms) and Advanced Scatterometer (ASCAT) satellite-based products, and
WaterDyn, Australian Water Resource Assessment Landscape (AWRA-L), Antecedent Precipitation Index
(API), Keetch-Byram Drought Index (KBDI), Mount’s Soil Dryness Index (MSDI) and CABLE/BIOS2 model-
based products. The comparison of the satellite and model data sets showed variation in their ability to reflect
in situ soil moisture conditions across Australia owing to individual product characteristics. The comparison
showed the satellite products yielded similar ranges of correlation coefficients, with the possible exception
of AMSR2 JAXA. SMOS (both algorithms) achieved slightly better agreement with in situ measurements than
the alternative satellite products overall. Among the models, WaterDyn yielded the highest correlation most
consistently across the different locations and climate zones considered. All products displayed a weaker
performance in estimating soil moisture anomalies than the original data sets (i.e. the absolute values),
showing all products to be more effective in detecting interannual and seasonal soil moisture dynamics
rather than individual events. Using cluster analysis we found satellite products generally grouped together,
whereas models were more similar to other models. SMOS (based on LMEB algorithm and ascending overpass)
and ASCAT (descending overpass) were found to be very similar to each other in terms of their temporal soil
moisture dynamics, whereas AMSR2 (based on LPRM algorithm and descending overpass) and AMSR2 (based
on JAXA algorithm and ascending overpass) were dissimilar. Of the model products, WaterDyn and CABLE
were similar to each other, as were the API/AWRA-L and KBDI/MSDI pairs. The clustering suggests systematic
commonalities in error structure and duplication of information may exist between products. This evaluation
has highlighted relative strengths, weaknesses, and complementarities between products, so the drawbacks
of each may be minimised through a more informed assessment of fitness for purpose by end users.
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1. Introduction

The importance of soil moisture as an environmental variable
is evident from its key role in the hydrological cycle. Soil mois-
ture influences rainfall-runoff processes, infiltration, groundwater
recharge, and constrains evapotranspiration and photosynthesis. It
thus partly governs water and energy exchanges between the land,
vegetation and the atmosphere (Albergel et al., 2012; Brocca et al.,
2011; Su et al., 2013; Taylor et al., 2012) and influences multi-
scale feedbacks (Seneviratne et al., 2010). Understanding how soil
moisture varies in time and space is essential for producing environ-
mental forecasts and improving their predictions (Draper, 2011; Owe
et al., 2008).

The relevance of soil moisture is also evident in the growing num-
ber of applications employing soil moisture data around the world.
Some applications include: assimilation into land surface models (e.g.
Renzullo et al., 2014) for numerical weather forecasting (e.g. Draper
et al., 2009, Dharssi et al., 2011), national water accounting (e.g. Viney
et al., 2014) and bushfire danger warning (e.g. Van Dijk et al., 2015;
Finkele et al., 2006, Kumar et al., in press), as well as evaluation
of regional climate indices and long-term hydrological trends (e.g.
Brocca et al., 2014; Liu et al., 2009; Liu et al., 2007), evaluation and
improvement of convective processes in climate models (Taylor et al.,
2012), drought monitoring and evaluation (e.g. Van Dijk et al., 2013;
Pozzi et al., 2013), and flood prediction (e.g. Wanders et al., 2014),
among others. Many of these applications have been or are currently
being employed in Australia in an effort to better understand and
predict the water resources of a country with long-standing climatic
variability.

There are several operational or near-operational sources of soil
moisture information for Australia. Sources of soil moisture infor-
mation are generally from one of three broad categories: in situ
measurements, satellite remotely sensed estimates, and model pre-
dictions. Ground-based approaches measure in situ soil moisture at
a point scale using techniques that utilise the dielectric constant of
the soil (e.g. time domain reflectometry (TDR) and soil capacitance
measurements) or matric potential of the soil (e.g. tensiometer and
resistance unit measurements) typically on a sub-daily time step.
Alternatively in situ measurements may also be taken over a broader
scale (tens of hectares) using cosmic-ray neutron detectors, also on
a sub-daily time step. Remotely sensed soil moisture estimates may
be obtained on an even larger scale (tens or hundreds of square kilo-
metres) from a growing number of satellite platforms that are able
to provide data on a daily basis or every few days. Active or passive
satellite instruments operating in the microwave bands are suited to
the acquisition of soil moisture due to the large contrast in the dielec-
tric constant between water and soil (Schmugge, 1983). Several
radiative transfer models and a change detection algorithm have
been developed (e.g. Maeda and Taniguchi, 2013, Owe et al., 2001,
Wagner et al., 1999) to retrieve soil moisture from the microwave
and radar measurements and are currently in use.

Soil moisture may also be estimated through land surface
schemes or hydrological models, with spatial and temporal resolu-
tion depending on model structure and purpose. The accuracy of
the modelled soil moisture is significantly influenced by the accu-
racy and spatial coverage of the input precipitation and soil hydraulic
property data, in addition to the adequacy of the model structure
and assumptions. Soil moisture data sets from remotely sensed and
modelled sources are systematically different in the way they esti-
mate soil moisture, and may be better suited to some climatic and
environmental conditions than others. The objective of this study is
therefore to answer the following research questions:

1. How do currently used remotely sensed and modelled products
of surface soil moisture compare across Australia, and what
are the driving processes?

2. Which products are most similar to each other and demon-
strate similar error structures?

A number of previous studies have compared satellite and/or
modelled soil moisture with in situ data within Australia (e.g. Brocca
et al., 2014, Renzullo et al., 2014, Liu et al., 2009). Although the agree-
ment between the data sets may be well established for the locations
of the in situ stations, previous efforts have mainly focused on ground
data from south-eastern Australia, such as the Murrumbidgee River
catchment (e.g. Van der Schalie et al., 2015; Panciera et al., 2014;
Dorigo et al., 2015; Su et al., 2013; Yee et al., 2013; Albergel et al.,
2012; Mladenova et al., 2011; Draper et al., 2009) where a net-
work of in situ stations are located, and often cover relatively short
observation periods.

In light of the increasing number of important applications that
utilise soil moisture data, the increasing number of approaches for
its estimation, and the often limited geographical area, time frame
and range of climate zones in previous studies, this study builds upon
previous comparisons carried out over Australia in several ways.

Firstly, the coverage of in situ locations used as a reference
for comparison is enlarged by extending the number of sta-
tions to include three separate networks, which include the
emergent cosmic-ray technology as well as more traditional TDR
and frequency-domain sensors. The networks include OzFlux (e.g.
Cleverly, 2011), OzNet (Smith et al., 2012) and CosmOz (Hawdon et
al., 2014), which when combined provide in situ soil moisture infor-
mation over a broader range of geographies and climate zones across
Australia than any of the networks individually. The entire time
period of available data for all networks is considered, beginning
with the earliest data (2001) and continuing through 2014.

Secondly, this study collates soil moisture data from multiple
relevant sources, which hitherto have not been compared in a single
study, across both model and remote sensing platforms. Collation
of these different sources of soil moisture data in this comparison
has allowed them to be viewed side by side and evaluated in a com-
mon framework. Also within individual remote sensing platforms,
data sets developed with different radiative transfer algorithms by
different research teams are considered.

Thirdly, the interrelationships between the products them-
selves are explored through cluster analyses. Addressing these
research questions will provide a more detailed understanding of
the strengths and weaknesses of a number of soil moisture products
and further the appreciation of complementarity between sources,
allowing the drawbacks of each to be minimised through a more
informed assessment of fitness for purpose.

2. Materials

2.1. In situ data

The in situ data collated for this study forms the reference for
comparison with satellite and model derived soil moisture estimates.
In situ data were obtained and processed from three separate net-
works: OzFlux, OzNet and CosmOz (Fig. 1). Data from the combined
in situ network are available for a range of time periods, beginning in
2001.

While in situ data has been used as a reference for comparison
in this study, the point measurements that largely comprise the
data set may or may not be representative of a wider spatial foot-
print across the landscape as seen by satellite and model products.
Which source of soil moisture data may be considered as the ‘truth’
is debatable. To compare satellite and model products of soil mois-
ture across different regions of Australia, it is practical to utilise a
ground-based network as a reference, where a multi-year record
of calibrated soil moisture observations is available within most
climate regions across Australia.
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Fig. 1. In situ network station locations with major Köppen climate zones (Bureau of
Meteorology, 2012).

Soil moisture is measured differently between the networks, and
is further described in the following sections. While the systematic
differences in measurement approach add complexity to the com-
parative analysis, the three networks can complement each other
when comparing to soil moisture estimated from satellite and model
products. For instance the shallower observation depths of the OzNet
and OzFlux networks are more comparable to the shallow observa-
tion depths of satellites and models; yet the dependence of satellite
observation depth with time, mainly depending on soil wetness
conditions (e.g. Jackson et al., 2012; see Sections 2.2 and 2.3), is
more like the behaviour of the CosmOz sensors. Furthermore the
measurement footprint of the CosmOz stations is closer to that of
satellite footprints than the point measurements of the OzNet and
OzFlux networks. Such systematic differences may be evident from
the comparison.

The inclusion of data from an in situ station was based on several
criteria. Firstly, in situ measurements must be available within the
study time period (1 January 2001 to 31 December 2014) as well as
the shorter period of July 2012 to July 2013, which is common to the
satellite and model products. Secondly, station locations were used
where the number of coincident daily data points between the in situ
and time series from all products was greater than or equal to 10 data
points per season in both the longer and common periods of com-
parison. This is to ensure a correlation is made between the in situ
station and all products at a given location, based on data from all
seasons. Lastly, the data needed to be publicly available. Table 1 pro-
vides an overview of the in situ stations meeting these criteria and
subsequently focused on in this study. The in situ stations considered
span a range of environments, situated across wetter and drier areas
(annual average rainfall ranged between 175 and 700 mm/year) and
multiple climate zones (tropical, sub-tropical, grassland and tem-
perate; Table 1). For this study sites have been named based on
the state or territory they reside in, i.e. the Northern Territory (NT),
Queensland (QLD), New South Wales (NSW) and Victoria (VIC).

2.1.1. OzFlux
OzFlux is part of a global network of over 500 micromete-

orological stations worldwide that provide energy, carbon and
water exchange observations with the atmosphere and numerous
ecosystem types (www.ozflux.org.au; Baldocchi, 2008). In Australia,
OzFlux consists of approximately 37 stations, of which 30 are cur-
rently active. Profile soil moisture in the OzFlux network is measured
at individual stations using frequency-domain reflectometers (gen-
erally Campbell Scientific CS-616 (USA) probes) every 30 min. Data
are provided at four levels of processing. Level 3 data has been sub-
ject to detailed quality control and has been used in this study.
Data sets were downloaded directly from the OzFlux data portal
(data.ozflux.org.au/portal) with soil moisture data given in volumet-
ric units. Data from the OzFlux network were publicly available at 22
of the 37 stations across Australia, including 20 active stations and
two stations which are no longer operational. Of these 22 stations,
seven provided soil moisture data in the topsoil’s upper 10 cm and
met the criteria for inclusion.

2.1.2. OzNet
OzNet contains 63 monitoring stations within its network

spanning the 82,000 km2 Murrumbidgee River catchment in south-
eastern Australia (Smith et al., 2012;http://oznet.org.au). All moni-
toring stations measure soil moisture, soil temperature and rainfall
(Smith et al., 2012), every 20 to 30 min. The first stations were
installed in 2001 and focused on root-zone soil moisture measure-
ment (profile to a depth of 90 cm), with later installations measuring
the top 0–5 cm (Smith et al., 2012). The older stations use Campbell
Scientific (USA) water content reflectometers, and convert to volu-
metric soil moisture using calibration equations involving soil type
and temperature information. The newer stations utilise Stevens
Hydraprobe (USA) sensors, inferring volumetric soil moisture from
the dielectric constant and conductivity measured (Merlin et al.,
2007). Within the OzNet monitoring network two stations satisfied
the applied criteria for inclusion.

2.1.3. CosmOz
CosmOz is a network of cosmic-ray sensors currently installed

and operating (and calibrated) at nine locations around Australia.
Each location houses a CRP-1000b Hydroinnova (USA) cosmic-ray
sensor, which counts fast neutrons produced by cosmic rays passing
through the earth’s atmosphere (Hawdon et al., 2014). The probes
are located approximately 2 m above ground and count neutrons
in the soil and air above it (Hawdon et al., 2014). The fast neutron
count is primarily controlled by the soil water content, where neu-
trons are moderated by hydrogen atoms within the water molecule.
Thus the lower the neutron count, the more scattering that has taken
place and the higher the soil moisture, and vice versa. Neutron count
is corrected for several processes such as the effect of atmospheric
pressure, vapour pressure changes and the variation in incoming
neutron intensity (Hawdon et al., 2014). Neutron counts can also be
affected by water in the vegetation surrounding the probe. In the
CosmOz network, the effect of vegetation water on neutron count is
effectively eliminated by calibrating each probe to local soil moisture
conditions, assuming the hydrogen pool in the vegetation remains
stable. This is considered a reasonable assumption for the sites of
interest in this study and time period. Once corrections have been
made, the neutron count is converted to volumetric soil moisture
using a calibration function (Desilets et al., 2010) which is adjusted
to known wet and dry soil moisture conditions.

Hourly soil moisture time series data were obtained from
Hawdon et al. (2014) (http://cosmoz.csiro.au) for this study at four
locations (Table 1) consistent with the in situ selection criteria.

http://www.ozflux.org.au
http://data.ozflux.org.au/portal
http://oznet.org.au
http://cosmoz.csiro.au
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Table 1
Summary of in situ stations.

Site name Network name Location Data period Depth
[cm]

Köppen
climate zone

Land type MARa

[mm]
MATRb

[◦ C]
Reference

OzFlux NT-01 Alice Springs Mulga 22.3S, 133.2E 2010–2013 0–10 Grassland Semi-arid mulga 260 7–35 Cleverly (2011)
NT-02 Dry River 15.3S, 132.4E 2008–2013 0–5 Grassland Open forest savannah 560 14–36 Beringer (2013)
NT-03 Red Dirt Melon

Farm
14.6S, 132.5E 2011–2013 0–5 Tropical Tropical savannah 600 17–33 Beringer (2014)

NT-04 Sturt Plains 17.2S, 133.4E 2008–2013 0–5 Grassland Grassy plain 670 12–36 Beringer (2013a)
QLD-01 Arcturus Emerald 23.9S, 148.5E 2011–2013 0–5 Subtropical Pasture 520 9–34 Schroder (2014)
VIC-01 Riggs Creek 36.6S, 145.6E 2010–2013 0–5 Temperate Pasture 310 5–34 Beringer (2014a)
VIC-02 Whroo 36.7S, 145.0E 2011–2013 0–10 Temperate Box woodland 575c 5–32 Beringer (2013b);

Bureau of Meteorology
(2016)

OzNet NSW–01 Y2 34.7S, 146.1E 2003–2014 0–5 Grassland Dryland cropping 210 −1–43c Smith et al. (2012);
Bureau of Meteorology
(2016a)

NSW-02 Y9 35.0S, 146.0E 2003–2014 0–5 Grassland Dryland cropping 345 −1–43c Smith et al. (2012);
Bureau of Meteorology
(2016a)

CosmOz NSW-03 Baldry 32.9S, 148.5E 2011–2014 Variable Temperate Pasture 700 −1–42c CSIRO (2015); Bureau of
Meteorology (2016b)

NSW-04 Yanco 35.0S, 146.3E 2011–2014 Variable Grassland Grazed 175 −1–43c CSIRO (2015); Bureau of
Meteorology (2016a)

QLD-02 Robson 17.1S, 145.6E 2010–2014 Variable Subtropical Tropical rainforest 510 7–37c CSIRO (2015); Bureau of
Meteorology (2016c)

QLD-03 Weany 19.9S, 146.5E 2010–2014 Variable Grassland Grazed open woodland 650 4–41c CSIRO (2015); Bureau of
Meteorology (2016d)

a MAR = mean annual rainfall at the site over the stated data period.
b MATR = mean annual temperature range at the site over the stated data period.
c Data from nearest BOM station for the stated data period, with MATR defined as the range between the mean minimum and mean maximum annual values.

2.2. Satellite data

2.2.1. SMOS
The Soil Moisture Ocean Salinity (SMOS) satellite launched in

November 2009 carries the Microwave Imaging Radiometer with
Aperture Synthesis (MIRAS) radiometer that operates in the L-band,
utilising a single channel at 1.4 GHz to estimate volumetric soil mois-
ture to approximately 5 cm depth (Kerr et al., 2010), increasing
or decreasing mainly depending on lower or higher soil mois-
ture content. The Y-shaped instrument carries 69 regularly spaced
dual-polarisation antennas that achieve an average spatial resolu-
tion of approximately 43 km, sampling the earth once every 3 days
(Kerr et al., 2010). SMOS has an equatorial crossing time of 0600 h
(ascending) and 1800 h (descending) local time.

In this study two SMOS products have been utilised. Firstly, the
official product of volumetric soil moisture ‘SMOS_LMEB’ (version
RE04) was obtained from the Centre Aval de Traitement des Données
SMOS (CATDS), operated for the Centre National d’Etudes Spatiales
(CNES, France) by IFREMER (Brest, France) for the period 15 January
2010 to 31 December 2014 (see http://catds.ifremer.fr/Products).
Secondly, volumetric soil moisture estimates derived by the Land
Parameter Retrieval Model (LPRM) algorithm for the period 1 July
2010 to 31 December 2014 were obtained from Van der Schalie et al.
(2016), here named ‘SMOS_LPRM’.

The LPRM is a forward radiative transfer model that uses both
horizontally and vertically polarised microwave brightness tem-
peratures to partition the detected surface emission into soil and
vegetation components using an analytical solution by Meesters
et al. (2005). The model is run iteratively, varying the soil moisture
term until the simulated brightness temperature converges with the
observed. Once the model has converged, a dielectric mixing model
(Wang and Schmugge, 1980) and a global database of soil physical
properties (Rodell et al., 2004) are applied to determine the abso-
lute soil moisture values (Owe et al., 2001). The official LMEB product
similarly uses an iterative forward radiative transfer model. The main

point of difference between the two algorithms is the classification of
land cover types within the footprint (estimated from high resolution
land use maps) that are used to estimate the contribution of each
cover type to the surface microwave emission (Wigneron et al., 2007)
in the LMEB approach. Furthermore, the official LMEB algorithm con-
strains the model based on changes to vegetation optical thickness
as measured by overpasses in a given time period (Kerr et al., 2012).

Both the SMOS_LPRM and SMOS_LMEB products were provided
as volumetric soil moisture estimates on a global 25 km Equal Area
Scalable Earth 2 (EASE2) grid with a cylindrical equal area projection.
Each data set was resampled to a daily 0.25◦ × 0.25◦ regular grid and
quality controlled using flags for open water, snow, frost and coastal
areas. The SMOS_LMEB data set was also filtered using the associ-
ated SMOS level 3 data quality control index, retaining soil moisture
estimates with an uncertainty below 0.06 m3/m3.

2.2.2. AMSR2
The Advanced Microwave Scanning Radiometer 2 (AMSR2)

instrument on board the Japan Aerospace Exploration Agency (JAXA)
Global Change Observation Mission - Water 1 (GCOM-W1) satellite
was launched in May 2012 into the A-Train satellite constellation.
The AMSR2 instrument contains seven dual polarised frequency
channels centred at 6.9, 7.3, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz
(Imaoka et al., 2010). The C-band (6.9 and 7.3 GHz) and X-band
frequencies (10.7 GHz) are utilised for volumetric soil moisture esti-
mation at a spatial resolution of approximately 50 km (Imaoka et al.,
2010), sensitive to the top 1–2 cm of soil (Escorihuela et al., 2010,
Owe et al., 2008). AMSR2 has an equatorial overpass time of 1330 h
(ascending) and 0130 h (descending) local time, with near complete
earth coverage approximately every two days.

In this study soil moisture data from two different retrieval algo-
rithms were obtained: the official JAXA soil moisture product (here
named ‘AMSR2_JAXA’) utilising X-band retrievals, and the soil mois-
ture product derived using the LPRM (here named ‘AMSR2_LPRM’)
for both the C-band and X-band retrievals. The JAXA algorithm is

http://catds.ifremer.fr/Products
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a forward radiative transfer model that simulates brightness tem-
peratures under various combinations of land parameters (such as
vegetation signal attenuation and optical depth properties; fraction
of pixel covered by vegetation) to develop look-up tables of soil
moisture and vegetation water content (Maeda and Taniguchi, 2013;
Jackson et al., 2010). The JAXA algorithm has been calibrated to in situ
data obtained in south-eastern Australia, Mongolia and Thailand
(Maeda and Taniguchi, 2013).

The AMSR2_JAXA product was obtained from JAXA GCOM-W1
Data Providing Service (https://gcom-w1.jaxa.jp/auth.html) for the
period 3 July 2012 to 31 December 2014. Product version 1.1 has
been used in this study (the most recent version 2.0 was not available
for the whole study period). The AMSR2_LPRM volumetric soil mois-
ture data were obtained from Parinussa et al. (2015) for the period
2 July 2012 to 31 December 2014. Both products were provided as
daily volumetric soil moisture estimates on a global 0.25◦ × 0.25◦
regular grid, quality controlled for open water, frozen conditions and
coastal areas.

2.2.3. ASCAT
The Advanced Scatterometer (ASCAT) instrument on board the

Meteorological Operational-A (Metop-A) satellite was launched in
October 2006, and is a real aperture radar with six sideways-looking
antennae operating in the C-band (5.3 GHz) with a vertical polarisa-
tion (Wagner et al., 2013).

ASCAT measurements are available at spatial resolutions of
50 km and 25 km (Wagner et al., 2013), with global coverage
achieved approximately every 1.5 days. Measurements are taken
over Australia approximately twice a day (Su et al., 2013) with
an equatorial crossing time of 2130 h (ascending) and 0930 h
(descending) local time (Wagner et al., 2013). ASCAT is a radar instru-
ment that measures the backscatter of transmitted C-band pulses
(Wagner et al., 2013). The production and subsequent retrieval of the
backscattered signal is what makes ASCAT an ‘active’ satellite plat-
form, as distinguished from the previous satellites which ‘passively’
detect radiation upwelling from the earth’s surface.

The six antennae (three either side) of Metop-A provide three
independent measurements of backscatter coefficients, which allows
radar backscatter at different incidence and azimuth angles to be reg-
istered (Wagner et al., 1999a). The influence of soil moisture can be
observed from the backscatter observations by removing the effect
of vegetation through the employment of a time series based change
detection algorithm, developed by Wagner et al. (1999). The effect
of vegetation is removed by estimating the typical yearly phenolog-
ical cycles around the world (Brocca et al., 2011). Surface roughness
also has a strong influence on backscatter values (Wagner et al.,
2013; Verhoest et al., 2008) but is assumed to remain constant in
time (Brocca et al., 2011). In this algorithm the backscatter, extrap-
olated to a reference angle of 40◦, is scaled based on the minimum
and maximum historical values (Albergel et al., 2012). Assuming land
cover remains relatively static over long periods of time changes
are attributed to variations in soil moisture, yielding soil moisture
in relative terms (Wagner et al., 2013). A time series of relative soil
moisture is then obtained between 0% (dry) and 100% (wet) of refer-
ence conditions, for a depth of less than 2 cm (Wagner et al., 2013;
Schmugge, 1983). The reference ‘dry’ and ‘wet’ values are estimated
from extremes in backscatter measurements taken between August
1991 and May 2007 (Naeimi et al., 2009).

The 25 km operational resolution soil moisture product (here
named ‘ASCAT_TUW’) on a discrete global grid produced by Vienna
Institute of Technology (http://rs.geo.tuwien.ac.at/products/surface-
soil-moisture/ascat/) was used in this study for the period 1 Jan-
uary 2007 to 31 December 2013. The data were resampled to a daily
0.25◦ × 0.25◦ regular grid commensurate with the other satellite
data sets, and quality controlled for open water, frozen conditions
and coastal areas.

2.3. Model data

The models considered in this study have been developed by a
number of research teams and are diverse in approach and pur-
pose. Inevitably different modelling approaches lead to different
representations of soil moisture, and with estimations made at
different depths and times. This reality is reflected in the range
of products considered in this study, all of which are currently
utilised in Australia for various purposes. In an effort to limit the
impact of model estimates at different times and depths on the
assessment, an additional period common to all products is con-
sidered, as well as an additional and deeper uniform depth where
possible.

Despite differences in model approach, all models considered in
this study share common precipitation forcing prepared by Jones
et al. (2009) as part of the Australian Water Availability Project
(AWAP). The gridded data set contains daily precipitation at 0.05◦
resolution and is based solely on interpolated station data. The accu-
racy of the spatial product was assessed through a cross-validation
procedure which repeatedly deleted 5% of stations at a time and
the error in the analysis of the remaining stations calculated (Jones
et al., 2009). For the period 2001–2007 the daily rainfall values have
a root mean square error of 3.1 mm and a mean absolute error of
0.9 mm (Jones et al., 2009). In the context of this study common pre-
cipitation forcing among model products is seen as an advantage, as
precipitation is a key driver of soil moisture variability and there-
fore differences between products may instead be related to other
model-specific factors.

2.3.1. WaterDyn
The AWAP project, developed by the Commonwealth Scientific

and Industrial Research Organisation (CSIRO), the Australian Bureau
of Meteorology (BOM) and the Australian Bureau of Agricultural
and Resource Economics and Sciences, implements a continental-
scale water balance over Australia using the WaterDyn model at a
resolution of 0.05◦ (Raupach et al., 2009).

Water balance calculations are carried out for two spatially-
varying soil layers: a shallow soil layer with thicknesses ranging from
8 to 70 cm (typically 20 cm at the sites considered in this study), and
a lower layer with thicknesses between 50 and 190 cm, depending
on soil type (Raupach et al., 2009; Briggs, 2016, pers. comm). In this
study estimates from the upper soil layer are considered. The mass
balance of water flux across the boundaries of the upper layer is esti-
mated based on a precipitation input, and a combined output from
transpiration, soil evaporation, surface runoff and drainage to the
deeper layer (Raupach et al., 2009). An estimate of relative water con-
tent is then made based on the saturated volumetric water content
and depth of the layer.

Time series of daily average relative soil water content (between
0 and 1) for the whole of Australia were obtained for this study for
the period 1 January 2001 to 31 December 2013, based on AWAP
WaterDyn model version 26M.

2.3.2. CABLE
The CSIRO Atmosphere Biosphere Land Exchange (CABLE) is a

land surface scheme that simulates coupled carbon and water cycles
and was configured here on a 0.05◦ grid. For this study volumet-
ric soil moisture estimates were extracted from a modified version
of CABLE in the BIOS2 modelling environment (Haverd et al., 2013).
In BIOS2, the soil and carbon modules of CABLE v1.4 were replaced
by the SLI soil model (Haverd and Cuntz, 2010) and CASA-CNP bio-
geochemical model (Wang et al., 2007), respectively (Haverd et al.,
2013). CABLE/BIOS2 was forced with soil data mapped in the Digital
Atlas of Australian Soils (Northcote et al., 1960, 1975); and vegetation
cover of each grid cell, which was subdivided into woody and grassy
vegetation and assigned a Leaf Area Index (LAI; Haverd et al., 2013).

https://gcom-w1.jaxa.jp/auth.html
http://rs.geo.tuwien.ac.at/products/surface-soil-moisture/ascat/
http://rs.geo.tuwien.ac.at/products/surface-soil-moisture/ascat/


484 C. Holgate et al. / Remote Sensing of Environment 186 (2016) 479–500

The model was run at an hourly timestep between 1990 and
2014, with the period 1990–2000 used to initialise soil moisture.
The model defines 10 soil layers including 0–2.2 cm, 2.2–8 cm,
8–15 cm, 15–30 cm, 30–60 cm, 60–90 cm, 90–120 cm, 120–240 cm,
240 –540 cm and 540–990 cm. To compare with in situ measure-
ments, soil moisture estimates from the shallowest two model layers
have been aggregated using a weighted arithmetic mean to produce
a time series for the 0–8 cm layer.

2.3.3. AWRA-L
The Australian Water Resource Assessment (AWRA) system was

developed by BOM and CSIRO as part of an effort to deliver compre-
hensive water accounting information across the country (Vaze et al.,
2013; Stenson et al., 2011). The AWRA landscape model (AWRA-L)
is a grid-based distributed biophysical model of the water balance
between the atmosphere, soil, groundwater and surface water stores
(Viney et al., 2015). AWRA-L estimates a daily running water balance
on a 0.05◦ × 0.05◦ grid across Australia (Viney et al., 2015) commen-
surate with meteorological forcing data sourced from AWAP.

The water balance is computed for each grid cell for two hydro-
logical response units: shallow-rooted vegetation and deep-rooted
vegetation (Viney et al., 2015). The unsaturated zone is partitioned
into three layers, each with a maximum spatially varying water
holding capacity: top layer (0–10 cm), shallow root zone layer
(10–100 cm) and a deep root zone layer (100–600 cm). Water enters
the top soil layer as net precipitation (precipitation minus intercep-
tion) and may leave as soil evaporation, surface runoff or drainage
through to deeper layers (Viney et al., 2015).

In this study the AWRA-L (version 5) water storage values [mm]
from the top layer (0–10 cm) have been utilised. In order to evaluate
soil moisture estimates alongside the other products, the AWRA-L
water storage estimates have been scaled between local minimum
and maximum values to produce a time series of relative soil wetness
values between 0 and 1 for the period 1 January 2001 to 31 December
2014.

2.3.4. API
The Antecedent Precipitation Index (API) is an empirical rela-

tion describing soil wetness conditions that has historically been
utilised in rainfall-runoff calculations (Choudhury and Blanchard,
1983; Kohler and Linsley, 1951). API has been used in the past to esti-
mate catchment wetness conditions prior to storm events given the
strong influence of soil wetness on runoff generating processes and
the difficulty in accurately measuring soil moisture over large areas.
The API is commonly of the form shown in Eq. (1).

APIt = cAPIt−1 + Pt [mm] (1)

The index of the preceding day (APIt−1) [mm] is multiplied by
a recession coefficient (c) [–], and Pt [mm] is the amount of rain-
fall recorded on day (t) the index is to be calculated. The recession
coefficient is a measure of the decline of the influence of past pre-
cipitation (Kohler and Linsley, 1951), i.e. the decline in memory of
the soil column. The recession coefficient of the product used in this
study was represented by the function:

c = 0.85 + d(20 − Tmax,t) [–] (2)

where Tmax,t is the maximum daily temperature [◦ C] and d is a sen-
sitivity parameter [◦ C−1] (Crow et al., 2005). The API data set was
generated by Kumar et al. (in press) on a daily time step for the whole
of Australia on a 0.05◦ × 0.05◦ grid for the period 1 January 2012
to 31 December 2014. Since API values are precipitation depths, the
time series was scaled to the local minimum and maximum values
to produce a data set of relative soil wetness between 0 and 1. API

is simply a proxy representing soil moisture due to a precipitation
depth, and does not relate to a specific soil column depth.

2.3.5. KBDI
The Keetch-Byram Drought Index (KBDI; Keetch and Byram,

1968) is an empirical relation describing the cumulative soil mois-
ture deficit of shallow soil layers. KBDI is currently in use in some
parts of Australia as part of a suite of tools used to predict and
manage bushfire hazard. KBDI is a simplified, running, daily water
balance where soil moisture deficit (SMD) is determined by the
difference between the daily effective rainfall (Peff,t) and daily evap-
otranspiration (ETt), as shown by Eq. (3).

SMDt = SMDt−1 − Peff ,t + ETt [mm] (3)

Peff,t [mm] is the portion of rainfall falling on a catchment that infil-
trates into the soil, and is lessened by a constant 5 mm of the first
part of an event (Finkele et al., 2006). ETt [mm] is calculated through
an empirical equation which is controlled by the previous day’s
KBDI value (SMDt−1), the previous day’s maximum temperature and
the mean annual rainfall (Finkele et al., 2006). Conceptually ET is
expected to be a function of vegetation density, which is itself con-
sidered to be an exponential function of mean annual rainfall (Keetch
and Byram, 1968).

The SMDt−1 [mm] calculated through the running water balance
represents the amount of water required to bring the soil column
back to field capacity, and ranges between 0 and 200 mm (Finkele
et al., 2006). The value of 200 mm comes from the original depth of
water selected by Keetch and Byram (1968) to represent the field
capacity of a soil profile depth where drought events are thought
to have a clear impact on bushfire hazard. The actual depth of soil
this represents thus depends on the soil type, where a greater depth
would be represented in a sandy soil for example, compared to a
clayey soil with a higher porosity. For this study the converse of the
soil moisture deficit has been scaled to its local minimum and maxi-
mum values to produce a relative soil moisture time series between
0 and 1 (i.e. 200 mm deficit at wilting point = 100% deficit = 0%
soil moisture; 0 mm deficit at field capacity = 0% deficit = 100% soil
moisture).

KBDI values have been generated by Kumar et al. (in press) for
the period 1 January 2001 to 31 December 2014 using rainfall and
temperature data from AWAP on a daily time step for the whole of
Australia on a 0.05◦ × 0.05◦ grid.

2.3.6. MSDI
Mount’s Soil Dryness Index (Mount, 1972) is a similar empirical

relation to KBDI in that it is a cumulative soil moisture deficit index,
and is also currently used in Australia for bushfire hazard manage-
ment. MSDI is represented by the same formula as KBDI (see Eq. (3)),
but differs in its determination of the Peff and ET terms. To estimate
ET the MSDI model assumes a linear relation between mean monthly
pan evaporation and mean monthly maximum temperature data
measured in Australian capital cities. To calculate Peff,t and partition
precipitation into infiltration, runoff or interception, the MSDI model
considers the type of vegetation present and assigns each vegetation
class their own values of canopy interception, canopy storage, wet
evaporation rates and a flash runoff fraction Finkele et al. (2006). For
the data set used in this study the vegetation type of each model
cell has been estimated through a linear relationship between vege-
tation class and leaf area index detailed in Finkele et al. (2006). Like
the KBDI data set, the converse of the MSDI soil moisture deficit has
been scaled to its local minimum and maximum values to produce
a relative soil moisture time series. The MSDI time series has been
generated by Kumar et al. (in press) for the period 1 January 1974 to
31 December 2014 using rainfall and temperature data from AWAP
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on a daily time step for the whole of Australia on a 0.05◦ × 0.05◦
grid.

3. Methodology

Direct comparison between the in situ data and the satellite and
model soil moisture products is challenging due to the system-
atic differences between each data source. Soil moisture measure-
ments differ in terms of (a) observation depth, (b) temporal change
of the observation depth, (c) horizontal support and (d) sampling
frequency. For instance the fixed observation depth of the OzNet and
OzFlux networks (often taking measurements at several integrated
depths, including measurements from the top 0–10 cm or 0–5 cm
of soil) contrasts with the variable depth of the CosmOz sensors,
which vary in their observation depth depending on soil conditions
(Hawdon et al., 2014, Zreda et al., 2008, Franz et al., 2012) and in this
study typically vary between 0–7 and 0–50 cm. These contrast with
the typical observation depth of the top ≈1–5 cm as seen by satel-
lites, depending on wavelength, soil conditions, moisture content
and cover (Kerr et al., 2010; Owe et al., 2008).

Contrasts exist between the point scale measurement of the
OzNet and OzFlux networks and the intermediate spatial scale of the
CosmOz network. The horizontal support of the cosmic-ray probes
is a circle of approximately 600 m diameter around the probe, i.e.
approximately 30 ha (Hawdon et al., 2014). Furthermore the model
and satellite products represent estimates over tens of square kilo-
metres. Analysis of comparison between products with different
spatial support is further complicated by soil moisture variability
being controlled by the processes at play at different scales
(Vinnikov et al., 1999), and at different levels of wetness (Brocca
et al., 2014).

Lastly, soil moisture measurements differ in their sampling
frequency, and in the networks considered in this study range from
20 min in the OzNet network, to 30 min in the OzFlux network, to
hourly in the CosmOz network.

Compounding these issues of scale are the different sources of
uncertainty and error associated with each data source. These sys-
tematic differences prevent absolute agreement between the differ-
ent products (Brocca et al., 2011; Draper et al., 2009).

For these reasons the comparisons of satellite and model products
are based on their relative temporal agreement with the in situ
data, using the Pearson correlation coefficient as the primary sta-
tistical metric. From this, four methods were implemented to
compare the satellite and model products to the in situ mea-
surements to assess their relative performance across Australia,
and potential interrelationships, and are outlined in the sections
following.

3.1. Pearson correlation coefficient

The degree of association between the in situ reference data
and product data sets was calculated using the Pearson correlation
coefficient (R) according to Eq. (4).

R =

1
n

n∑
t=1

(ht,p − hp)(ht,i − hi)√
1
n

n∑
t=1

(ht,p − hp)2 1
n

n∑
t=1

(ht,i − hi)2

(4)

ht,p and ht,i refer to the daily average soil moisture of a product
(p; either satellite or model) and in situ (i) respectively, and hp or hi its
average over the time series from t = 1 to n days. Correlations were
only performed when at least 10 coincident data points each season
were present between the reference in situ data set and the compar-
ison product, to ensure a sufficient sample size in determining if the

calculated correlation is likely to be different from zero. At stations
where this threshold was met or exceeded, correlation analysis was
performed using the maximum number of coincident observations
in the study time period (1 January 2001 to 31 December 2014), as
well as in a shorter period (July 2012 to July 2013). The longer period
allowed interannual cycles to be studied with multi-year climatol-
ogy. The shorter time period was chosen to constrain the correlation
to a period common to all products. By studying both the longer
and common periods, the correlation analysis avoids being strongly
influenced by data gaps and the inclusion or exclusion of extreme
events (Loew, 2014). In both cases the correlation statistic was only
analysed at sites where the entire seasonal cycle was observed. The
significance of each correlation was also calculated using a p-value
of 0.01.

The data from each in situ station were transformed into a time
series of daily averages, bringing the range of measurement frequen-
cies into a common format. This time series of daily in situ soil mois-
ture for the study time frame forms the reference for comparison
with other products.

Each satellite soil moisture product was resampled to a common
0 .25◦ × 0.25◦ regular grid. The satellite pixel whose centroid is co-
located with each in situ station coordinate on the grid was chosen
and the corresponding daily soil moisture time series extracted.
Where several satellite pixels fall within the reprojected grid cell the
arithmetic average was taken. Soil moisture data from each of the
models were provided as daily time series at the location coordinates
of the in situ stations. In this way time series of daily soil moisture
values were compiled at each station for each of the in situ, satellite
and model estimates.

Product soil moisture estimates have not been weighted to spe-
cific depth fractions of overlap with the in situ measurements, since
most products provide soil moisture estimates at depths varying
with soil conditions (i.e. all but the WaterDyn, CABLE and AWRA-
L products). To compare the different products the correlation has
been calculated between in situ measurements (for measurement
depths listed in Table 1) and product soil moisture estimates (for the
indicative depths listed in Table 2).

Consistent with the shallow nature of satellite observing depths,
soil moisture estimates have been taken from the top layer of each
model. Where models provide estimates at deeper defined inter-
vals (i.e. WaterDyn, AWRA-L and CABLE), additional in situ soil
moisture observations were considered to provide some assess-
ment of how the evaluation differs when a uniform corresponding
depth interval is used. Deeper in situ observations were available
at OzNet sites NSW-01 and NSW-02 for the intervals 0–30 cm, 30–
60 cm and 60–90 cm. Using a weighted arithmetic mean, a single
in situ soil moisture time series for the depth interval 0–90 cm
was calculated for both NSW-01 and NSW-02. The in situ measure-
ments were then correlated with each of the WaterDyn, CABLE and
AWRA-L time series based on their respective overlapping layer
fractions.

3.2. Temporal anomaly

Correlation was also determined for the temporal anomalies of
each data set. The performance of each product was evaluated using
both the original and anomaly time series to respectively highlight
agreement in soil moisture seasonality (Dorigo et al., 2015; Brocca
et al., 2011; Reichle et al., 2004), as distinct from the skill of a product
in detecting single events (Brocca et al., 2011).

Typically, the temporal anomaly time series is calculated using
the difference between the soil moisture measurement and its
long-term mean; however as the time periods covered by the dif-
ferent products evaluated in this study vary significantly, the soil
moisture anomalies (hanom) were calculated using a 29-day moving
average in the common time period (based on Albergel et al., 2009;
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Table 2
Summary of comparison data sets.

Product Algorithm Version Overpass Frequency [GHz] Data period Spatial resolution [km] Depth [cm]

Satellites SMOS LPRM 2016 A 1.4 2010–2014 ≈43 ≈0–5
SMOS LMEB RE04 A 1.4 2010–2014 ≈43 ≈0–5
AMSR2 LPRM 1.1 D 6.9 2012–2014 ≈50 ≈0–2
AMSR2 JAXA 1.1 A 10.7 2012–2014 ≈50 ≈0–2
ASCAT TUW WARP5.5 D 5.3 2007–2013 ≈25 ≈0–2

Models WaterDyn – 26M – – 2001–2013 ≈5 0–8 to 0–70b

CABLE – BIOS2 – – 2001–2014 ≈5 0–8a

AWRA-L – 5.0 – – 2001–2014 ≈5 0–10
API – – – – 2012–2014 ≈5 Variable
KBDI – – – – 2001–2014 ≈5 Variable
MSDI – – – – 2001–2014 ≈5 Variable

a Weighted mean of 0–2.2 cm & 2.2–8 cm intervals.
b Typically 0–20 cm at sites considered in this study.

Kim et al., 2015). For each soil moisture measurement (either in situ
or product) at time t (ht), a period of 14 days prior and 14 days after
was defined. Provided at least seven measurements were available in
this period, the average soil moisture (hanom) and standard deviation
(s) were calculated in order to calculate the anomaly as per Eq. (5).

hanom =
ht − h(t−14:t+14)

s(t−14:t+14)
(5)

3.3. Time series visualisation

The comparison of products based on the correlation was sup-
ported by visual analysis of the soil moisture time series plots. The
aim of studying the time series plots was to identify and highlight
features of product temporal behaviour not apparent in the corre-
lation analysis, lending insight to the processes driving temporal
behaviour of each product across Australia.

3.4. Cluster analysis

A cluster analysis was conducted to explore the interrelationships
between the products themselves. While the ability of a product
to successfully reproduce in situ temporal behaviour was measured
using R, the purpose of the cluster analysis was to show those
products that closely associate with each other. Close association
between products indicates similarity. Identifying similarity or lack
thereof helps determine which data sets have duplicate content
and may share commonalities in error structure, and which are
complementary, potentially providing useful information given that
multiple products are currently employed in single applications (e.g.
data assimilation).

Hierarchical cluster analyses were performed at each station loca-
tion to construct dendrograms where products are grouped when
their degree of association is maximal. Each dendrogram is devel-
oped by ranking all possible pairs of products based on their degree
of association. A hierarchy tree (dendrogram) is then created based
on the ranking, beginning with the two products with the closest
degree of association, all the way to the products with the least
association, with the height of each link in the tree reflecting the
relative degree of association between the products. The analysis
was based on the Euclidean distance between product pairs of 1-R2

values.

3.5. Satellite overpass and frequency band selection

Prior to the product comparison, a preliminary analysis was
undertaken to determine which satellite overpass (ascending or
descending part of the orbit) and frequency band data sets should be
used in the comparison. Fig. 2 shows the range of correlation coeffi-
cients R and standard deviation for ascending and descending passes
for each of the satellite soil moisture products: SMOS_LPRM L-band,
SMOS_LMEB L-band, AMSR2_LPRM C-band, AMSR2_LPRM X-band,
AMSR2_JAXA X-band, and ASCAT_TUW C-band. The correlation was
calculated between in situ and the satellite product over the longer
time period of comparison and at all sites (Table 1).

Particularly interesting from Fig. 2 are the lower minimum corre-
lations of AMSR2_LPRM C-band in the daytime overpass (ascending)
compared to its night-time overpass. Data from night-time satel-
lite overpasses are often considered more suitable for comparison
with in situ soil moisture as night-time conditions are considered
to provide better soil moisture estimates due to the increased
thermal equilibrium conditions of the surface soil, canopy and near-
surface air (Owe et al., 2008). The wider range of correlation for the
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Fig. 2. Minimum and maximum coefficients of correlation between in situ and satellite soil moisture estimates across all stations (left axis) and standard deviation (right axis), for
different satellite overpasses and frequency bands. Note the units of standard deviation for ASCAT are percentage relative wetness. ASC = ascending overpass, DSC = descending
overpass.
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AMSR2_LPRM C-band daytime ascending overpass is a result of a
lower correlation result at the northern Australian station location
NT-04 (R = 0.20).

Considering the night-time descending overpass, AMSR2_LPRM
C-band yields a more favourable range of correlation than
AMSR2_LPRM X-band. This is consistent with the expectation that
X-band retrievals are more susceptible to scattering and absorption
due to vegetation influences due to its shorter wavelength (De Jeu
et al., 2008) and represent a shallower soil depth compared to C-band
retrievals, and therefore yield poorer correlation results. Considering
these factors and the difference in the range of correlation between
ascending and descending for SMOS and ASCAT was less than 0.01
(Fig. 2), the night-time or early morning data sets have been selected
for further analysis in this study. For the AMSR2_JAXA product, corre-
lations were generally better under day-time ascending passes, lead-
ing to a higher correlation coefficients compared to the night-time
descending data set in Fig. 2.

In summary, from this analysis the following products have
been used for subsequent analysis: SMOS_LPRM_A, SMOS_LMEB_A,
ASCAT_TUW_D, AMSR2_LPRM_D (C-band) and AMSR2_JAXA_A
(where products are named as satellite_algorithm_overpass).

4. Results

4.1. Comparison of products

The comparisons in terms of the correlation coefficient (R)
between in situ soil moisture measurements and satellite or model
products are presented in Tables 3 and 5. All correlations are between
the in situ soil moisture depth intervals listed in Table 1, and the
product depth intervals listed in Table 2. Correlation coefficients
are shown for both the longer period of coincident data within
the study timeframe of 2001–2014 (Table 3) and common period
of July 2012–July 2013 (Table 5). Values in bold indicate the high-
est correlation among either satellite or model products. A relative
comparison of R (longer period) for each product across Australia is
illustrated in Fig. 3, shown with major Köppen climate classification
zones.

The results of the additional comparison between in situ soil
moisture and modelled estimates at deeper depths are provided in
Table 4 for the longer period of comparison.

Overall the satellite products yielded roughly similar ranges of cor-
relation coefficients, with the possible exception of AMSR2_JAXA_A.
The SMOS products performed slightly better than the alternative

Table 4
Summary of correlation between 0 and 90 cm in situ measurements and model
products, longer period (2001–2014).

Station Models

WaterDyn CABLE AWRA-L

NSW-01 0.68 0.76 0.80
NSW-02 0.66 0.72 0.66

satellite-based data sets, yielding higher correlation coefficients than
the other satellite products at 11 out of 13 sites. In the longer period of
comparison, SMOS_LMEB_A achieved correlation coefficients in the
range 0.64–0.83 and 0.48–0.88 in the common period. SMOS_LPRM_A
yielded a range between 0.37 and 0.89 in the longer period, or 0.67
and 0.89 when omitting QLD-02, where SMOS_LMEB_A returned a
non-significant correlation. SMOS_LPRM_A achieved a better correla-
tion with in situ measurements than SMOS_LMEB_A at over half of the
locations in the longer period of comparison, and showed the high-
est skill among all satellite products on eight occasions compared to
three occasions for SMOS_LMEB_A. However SMOS_LMEB_A returned
fewer non-significant correlations than SMOS_LPRM_A in the com-
mon period owing to a comparatively larger number of data points
available at each site (e.g. NT-01, QLD-01, VIC-01 and NSW-03). With
the exception of QLD-02, Fig. 3 highlights that the strong, long-term
agreement of the SMOS products is consistent across climate zones.

ASCAT_TUW_D and AMSR2_LPRM_D performed similarly well,
with correlation coefficients in the range of 0.57–0.82 and 0.58–
0.84, respectively, in the longer time period of comparison.
ASCAT_TUW_D and AMSR2_LPRM_D were slightly less similar to
each other in the common period of comparison, yielding a range of
0.54–0.87 and 0.39–0.89 respectively, similar to SMOS_LMEB for a
comparable number of data points.

The AMSR2_JAXA_A product performed most poorly among the
satellite data sets, achieving a larger range of 0.26–0.80 in the
longer period, and 0.38–0.86 in the common period. Approxi-
mately half the sites yielded R < 0.6 in both periods of comparison.
The wider range of correlation coefficients from AMSR2_JAXA_A
reflects a more variable agreement across climate zones than the
other satellites (Fig. 3). The higher correlation coefficients found
at stations NSW-01 and NSW-02 suggest a potential calibration
effect in this area, as data from this area have been used in the
AMSR2_JAXA algorithm calibration process (Maeda and Taniguchi,
2013).

Table 3
Summary of correlation between in situ data and satellite and model products, longer period (2001–2014). Values in bold indicate the highest correlation among either satellite
or model products.

Station Satellites Models

SMOS SMOS AMSR2 AMSR2 ASCAT WaterDyn CABLE AWRA-L API KBDI MSDI
LPRM A LMEB A LPRM D JAXA A TUW D

OzFlux NT-01 0.74 0.68 0.65 0.52 0.63 0.79 0.81 0.77 0.79 0.45 0.58
NT-02 0.87 0.73 0.68 0.71 0.84 0.88 0.89 0.89 0.84 0.75 0.75
NT-03 0.77 0.65 0.78 0.77 0.81 0.83 0.82 0.79 0.84 0.72 0.71
NT-04 0.74 0.72 0.57 0.55 0.73 0.84 0.85 0.73 0.64 0.86 0.87
QLD-01 0.67 0.64 0.64 0.51 0.58 0.78 0.80 0.72 0.72 0.64 0.55
VIC-01 NS 0.79 0.66 0.38 0.70 0.83 0.70 0.58 0.76 0.59 0.72
VIC-02 0.75 0.71 0.63 0.26 0.59 0.78 0.67 0.69 0.82 0.50 0.71

OzNet NSW-01 0.74 0.78 0.77 0.78 0.68 0.84 0.80 0.80 0.72 0.45 0.66
NSW-02 0.78 0.81 0.80 0.80 0.69 0.83 0.80 0.80 0.77 0.42 0.68

CosmOz NSW-03 0.85 0.81 0.82 0.67 0.83 0.87 0.77 0.61 0.71 0.63 0.84
NSW-04 0.80 0.75 0.73 0.57 0.72 0.76 0.68 0.63 0.68 0.25 0.44
QLD-02 0.37 NS 0.62 0.43 0.75 0.82 0.87 0.70 0.63 0.84 0.73
QLD-03 0.89 0.83 0.75 0.63 0.84 0.88 0.89 0.77 0.82 0.73 0.77
Range 0.37–0.89 0.64–0.83 0.57–0.82 0.26–0.80 0.58–0.84 0.76–0.88 0.67–0.89 0.58–0.89 0.63–0.84 0.25–0.86 0.44–0.87
N (sum) 5104 6650 4861 5363 6740 16,171 17,456 17,456 10,103 17,456 17,456
N (range) 212–590 265–716 225–612 236–681 251–896 619–2250 619–2309 619–2309 531–1096 619–2309 619–2309

NS: not significant.
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Table 5
Summary of correlation between in situ data and satellite and model products, common period (2012–2013). Values in bold indicate the highest correlation among either satellite
or model products.

Station Satellites Models

SMOS SMOS AMSR2 AMSR2 ASCAT WaterDyn CABLE AWRA-L API KBDI MSDI
LPRM A LMEB A LPRM D JAXA A TUW D

OzFlux NT-01 NS 0.62 0.66 0.45 0.45 0.57 0.69 0.67 0.72 −0.15 0.31
NT-02 0.72 0.70 0.70 0.78 0.83 0.89 0.90 0.88 0.89 0.72 0.70
NT-03 0.81 0.69 0.78 0.77 0.89 0.90 0.90 0.81 0.88 0.86 0.82
NT-04 0.57 0.53 0.54 0.55 0.39 0.80 0.71 0.66 0.61 0.74 0.84
QLD-01 NS 0.48 0.63 0.45 0.41 0.63 0.64 0.58 0.58 0.70 0.52
VIC-01 NS 0.84 0.66 0.39 0.75 0.90 0.78 0.66 0.81 0.67 0.76
VIC-02 0.79 0.78 0.71 0.38 0.74 0.79 0.72 0.56 0.70 0.70 0.85

OzNet NSW-01 0.69 0.79 0.82 0.79 0.73 0.79 0.80 0.74 0.69 0.56 0.75
NSW-02 0.81 0.83 0.87 0.82 0.80 0.86 0.86 0.84 0.80 0.54 0.78

CosmOz NSW-03 NS 0.85 0.85 0.72 0.86 0.90 0.77 0.58 0.76 0.64 0.92
NSW-04 0.87 0.88 0.78 0.86 0.85 0.90 0.79 0.79 0.84 0.36 0.80
QLD-02 0.35 NS 0.57 0.40 0.78 0.85 0.85 0.64 0.69 0.83 0.73
QLD-03 NS 0.80 0.85 0.55 0.73 0.78 0.90 0.70 0.80 0.70 0.78
Range 0.35–0.87 0.48–0.88 0.54–0.87 0.38–0.86 0.39–0.89 0.57–0.90 0.64–0.90 0.56–0.88 0.58–0.89 −0.15–0.86 0.31–0.92
N (sum) 1455 2147 2684 3226 2002 4696 4696 4696 4696 4696 4696
N (range) 75–151 68–194 173–253 211–273 130–176 330–366 330–366 330–366 330–366 330–366 330–366

NS: not significant.

One difficulty in comparing time series from different satellite
platforms, or different retrieval algorithms for a single platform, is
the discrepancy in sampling times. The correlation results presented
thus far have been based on all days within the study period where
both in in situ time series and the product to be correlated with had
finite values. Inevitably this leads to a different number of sampling
points to compare (see N in Table 3 for example), as well as a dif-
ference in the timing of those points between products. Preliminary
tests were carried out to provide some indication of how the corre-
lation varies when sampling points are colocated in time between
the satellite products. The agreement between a satellite product and
in situ estimates was re-assessed using data points colocated in time
between satellite product pairs.

For instance when the two SMOS products were colocated in
time, the range of R varied little to previous estimates shown in
Table 3. The correlation between SMOS_LPRM_A and in situ measure-
ments ranged between 0.40 and 0.89, and SMOS_L3_A between 0.61
and 0.81. Changes at individual sites were within approximately ±5%
of values listed in Table 3 for N = 6650. Similarly little change in the
range of R was observed when the two AMSR2 products were colo-
cated in time. AMSR2_LPRM_D ranged between 0.52 and 0.82, and
AMSR2_JAXA_A between 0.26 and 0.79, for N = 4903.

The comparison was extended to compare R-values when tem-
porally colocating products from different satellite platforms. When
SMOS_L3_A and ASCAT_TUW_D were colocated in time, the corre-
lation coefficients between SMOS_L3_A and in situ measurements
ranged between 0.63 and 0.85. This is similar to the range previously
estimated (Table 3), for a reduced number of points (N = 3551).
ASCAT_TUW_D ranged between 0.58 and 0.84, the same range as
previous (Table 3) where almost twice the number of data points
were considered.

When AMSR2_LPRM_D and ASCAT_TUW_D were colocated in
time, AMSR2_LPRM_D R-values ranged between 0.49 and 0.85.
Correlation coefficients at individual sites varied approximately
±10%, with the exception of QLD-02 (reducing from 0.62 previ-
ously to 0.50); however this was based on considerably fewer data
points (N = 1891 compared to 4861 previously, Table 3). The range
in ASCAT_TUW_D R-values changed little (0.45–0.89) but NT-04 saw
a considerable reduction in R, from 0.73 (Table 3) to 0.45, again based
on fewer data points.

Lastly, when SMOS_L3_A and AMSR2_LPRM_D were colocated in
time, AMSR2_LPRM_D varied little from previous estimates, rang-
ing between 0.55 and 0.82 (N = 3436). The correlation between
SMOS_L3_A and in situ measurements did vary considerably at

NT-04, reducing to 0.53. Otherwise, correlation coefficients remained
within approximately ±10% of previous estimates shown in
(Table 3).

Correlation between the in situ measurements and modelled pre-
dictions varied between products. The WaterDyn product was the
clear front runner, followed closely by CABLE. WaterDyn achieved
the strongest agreement with in situ measurements among all the
models in both the longer and common periods, and indeed was
stronger than all satellite products. The higher correlation coeffi-
cients of WaterDyn compared to all satellite products was based on
notably more data points (Tables 3 and 5). The correlation between
WaterDyn and in situ measurements ranged between 0.76 and 0.88
in the longer period of comparison, and 0.57 and 0.90 in the com-
mon period. The highly consistent strength of WaterDyn across
climate zones is reflected in Fig. 3. CABLE and API also performed
well and were generally strong across climate zones (Fig. 3), with
CABLE yielding somewhat higher correlation coefficients with in situ
measurements than API. Despite the simplicity of API, agreement
with in situ data was strong, ranging between 0.63 and 0.84 in the
longer period and 0.58 and 0.89 in the common period. AWRA-L
yielded similar ranges in both the longer and common periods of
comparison (0.58–0.89 and 0.56–0.88 respectively). MSDI yielded
a smaller range in correlation than KBDI in the longer period of
comparison (0.44–0.87 and 0.25–0.86 respectively). In the common
period the range in KBDI was wider still (−0.15–0.86), with the neg-
ative correlation value at NT-01 a result of several smaller wetting
events being missed in the model output. KBDI was most variable
across climate zones, displaying particular variability among the
grassland stations (Fig. 3).

It is noted that the deeper and variable observation depth of the
CosmOz stations was not detrimental to the correlation compared
to the stations with fixed, shallower TDR and frequency-domain
sensors. Significant, positive correlation coefficients were found at
all CosmOz stations for all products, in both the longer and common
period of comparison (with the exception of SMOS at two sites where
the number of satellite data points was relatively low). This suggests
that the temporal evolution of soil moisture in the deeper soil zone of
CosmOz readings is similar to the shallower soil zone as estimated by
the satellite and some model products, indicating hydraulic coupling
of the layers.

Similarly, the strong correlation between the WaterDyn and in
situ data sets indicates the greater depth interval of the upper Water-
Dyn model layer effectively simulates the temporal dynamics of the
shallower surface layer measured by the in situ stations.
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Fig. 3. Correlation across climate zones by product, longer period (2001–2014). Sites are in the same order (from top to bottom) as Table 3.

However, when looking at the results of the correlation (longer
period) between OzNet measurements and each of the WaterDyn,
CABLE and AWRA-L models constrained to the same depth
(0–90 cm) in Table 4, correlation coefficients either remained the
same or decreased. WaterDyn decreased by 0.16 and 0.17 at NSW-01
and NSW-02 respectively. AWRA-L remained the same at NSW-01
and decreased by 0.14 at NSW-02. CABLE decreased to a lesser extent,
by 0.04 and 0.08 at NSW-01 and NSW-02 respectively.

4.2. Comparison of temporal anomalies

The results of the correlation between in situ data and satellite
and model anomalies are presented in Table 6. The range of corre-
lation coefficients between the products was similar. SMOS_LPRM_A
ranged between 0.27 and 0.54, similar to SMOS_LMEB_A (0.20–
0.55). A significant correlation between in situ measurements and
SMOS estimates was not found at a number of sites, particularly
SMOS_LPRM_A, due to a comparatively low number of data points;
however a significant correlation was possible in many instances at a
significance level of p = 0.05 (not shown). At sites where both prod-
ucts yielded a significant correlation, values were similar between
products (Table 6). AMSR2_LPRM_D and AMSR2_JAXA_A yielded a

similar range of correlation coefficients, ranging between 0.20 and
0.55 and 0.24 and 0.56, respectively. ASCAT_TUW_D achieved a
similar range (0.22–0.49) for relatively fewer data points.

The models showed greater skill in simulating in situ temporal
anomalies than the satellite products. WaterDyn and CABLE con-
tinued to perform strongly relative to the other products, ranging
between 0.38 and 0.77 and 0.33 and 0.78, respectively, with AWRA-L
following closely with 0.34–0.76. As in the relative product com-
parison, the agreement of KBDI was somewhat weaker than MSDI,
ranging between 0.25 and 0.70 compared to 0.29 and 0.78.

The temporal anomaly of all products showed a weaker
correlation with in situ data than the original time series, indicating
all products are more effective at detecting interannual and seasonal
patterns than single events. This is likely a result of the disparity
between product and in situ spatial support. Single events mea-
sured by in situ sensors represent a small point in space and thus
the influence of local conditions. Even the spatial support of the
CosmOz in situ estimates, covering approximately 30 ha surrounding
the instrument, represent at best only 1.2% of the grid cell of the
highest resolution products (WaterDyn, CABLE, AWRA-L, API, KBDI,
MSDI) and at worst 0.05% of the lower resolution satellite products
(SMOS_LPRM_A, SMOS_LMEB_A, AMSR2_LPRM_D, AMSR2_JAXA_A).
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Table 6
Summary of correlation of temporal anomalies, common period. Values in bold indicate the highest correlation among either satellite or model products.

Station Satellites Models

SMOS SMOS AMSR2 AMSR2 ASCAT WaterDyn CABLE AWRA-L API KBDI MSDI
LPRM A LMEB A LPRM D JAXA A TUW D

OzFlux NT-01 NS 0.40 0.39 NS NS 0.55 0.71 0.76 0.72 0.47 0.55
NT-02 NS 0.20 0.30 0.36 0.43 0.50 0.46 0.39 0.43 0.53 0.41
NT-03 0.37 0.23 0.35 0.54 0.53 0.76 0.78 0.66 0.65 0.70 0.67
NT-04 NS NS 0.24 NS 0.22 0.57 0.38 0.45 0.38 0.57 0.53
QLD-01 NS 0.30 0.20 0.44 NS 0.68 0.63 0.61 0.61 0.48 0.60
VIC-01 NS 0.34 0.32 0.36 NS 0.77 0.67 0.59 0.65 0.70 0.78
VIC-02 NS NS 0.22 0.24 NS 0.47 0.33 0.34 0.40 0.40 0.40

OzNet NSW-01 0.38 0.34 0.46 0.38 0.30 0.52 0.51 0.52 0.51 0.38 0.41
NSW-02 0.54 0.55 0.52 0.56 0.26 0.67 0.69 0.68 0.65 0.48 0.57

CosmOz NSW-03 NS 0.33 0.48 0.27 0.33 0.58 0.59 0.55 0.62 0.32 0.51
NSW-04 0.27 0.22 0.39 0.30 0.30 0.38 0.37 0.37 0.37 0.25 0.29
QLD-02 NS NS NS NS 0.44 0.47 0.49 0.47 0.48 0.43 0.35
QLD-03 NS 0.39 0.55 0.39 0.49 0.50 0.56 0.46 0.51 0.44 0.50
Range 0.27–0.54 0.20–0.55 0.20–0.55 0.24–0.56 0.22–0.49 0.38–0.77 0.33–0.78 0.34–0.76 0.37–0.72 0.25–0.70 0.29–0.78
N (sum) 1455 1999 2721 3003 1859 4354 4354 4354 4354 4354 4354
N (range) 75–151 64–178 158–235 202–254 125–164 317–337 317–337 317–337 317–337 317–337 317–337

NS: Not significant.

At the larger product scales soil moisture dynamics are more likely
to be influenced by broad atmospheric controls (Brocca et al., 2014).

4.3. Time series visualisation

Visual inspection of the time series at each station location pro-
vided further insight into the differences in agreement of satellite
and model soil moisture products with in situ measurements. The
purpose of this section is to summarise the main features of interest
within the time series to complement the findings of the correlation
analysis.

The SMOS_LPRM_A and SMOS_LMEB_A products were shown to
yield slightly higher correlation coefficients than other satellite prod-
ucts in the correlation analysis overall. This was reflected in the time
series plots, where both products had a good visual fit to the in situ
data. An example plot is shown in Fig. 4 at station NSW-03. Sea-
sonal and annual cycles had a better visual fit to the in situ data
than shorter term dynamics, particularly at the drier northern loca-
tions. Both SMOS products displayed a reduced sensitivity to soil
moisture change during dry periods (e.g. soil moisture < 0.1 m3/m3),
especially at the drier sites of the Northern Territory. It is noted
that SMOS_LMEB_A often showed contrary short-term temporal
behaviour to SMOS_LPRM_A during the periods of reduced sensi-
tivity. The two AMSR2 soil moisture products were not as similar

as the two SMOS products. AMSR2_LPRM_D showed a tendency
to dry down more slowly than in situ, displaying a more concave
drying process. This behaviour was evident at all stations to some
extent, but was most apparent at the end of the wet season at the
drier Northern Territory locations, reflected in their lower correlation
values there. An example of this effect is shown for NT-01 in Fig. 5.
This effect was not observed in the AMSR2_JAXA_A time series. At
some south-eastern Australian stations the winter wet period was on
one occasion lagged by several months in the AMSR2_JAXA_A time
series (NSW-04) or missed entirely (VIC-01 and VIC-02), resulting in
a poorer correlation at these locations compared to the other satellite
products (Table 3).

Similar to the other satellite products, the ASCAT_TUW_D product
had a good visual fit to the in situ data, more so at annual and
seasonal scales than for short-term dynamics. The time series of
the ASCAT_TUW_D product was smoother than in situ at the drier,
northern Australia stations, particularly those characterised by open
wooded vegetation (e.g. NT-02, illustrated in Fig. 6).

Analysis of the WaterDyn, CABLE and API time series consis-
tently showed a good visual temporal fit to in situ data across station
locations (e.g. Fig. 7).

Analysis of the KBDI product time series showed a tendency to dry
too slowly after wet periods and individual rainfall events (e.g. Fig. 8).
The visual fit of the time series to in situ was generally better at the
northern and eastern Australian locations. Long-term soil moisture
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Fig. 4. SMOS_LPRM_A and SMOS_LMEB_A at NSW-03 (CosmOz network). In situ time series on left axes; product time series on right axes.
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Fig. 5. AMSR2_LPRM_D at NT-01 (OzFlux network). In situ time series on left axes; product time series on right axes.

dynamics were not represented well at most stations in the south-
east, as reflected in Fig. 3.

MSDI showed similar characteristics to KBDI in the time series
plots. Dry down dynamics were also slow compared to the in situ, but
to a lesser extent than KBDI at all sites and therefore MSDI achieved
more favourable correlation values in both the longer and common
periods of comparison.

Unlike the KBDI product, the AWRA-L time series occasionally
showed a tendency to dry down too quickly compared to in situ
measurements (Fig. 8). While this observation was evident at all
stations, it was most prominent at the northern Australian locations
where in situ measurements showed a prolonged period of decreas-
ing soil moisture following the wet season. Nonetheless the overall
wet/dry seasonal patterns were reflected well in the AWRA-L time
series.

Theshort-termvariability in insituanomalieswasnoticeablylarger
at locations where cosmic-ray instruments were used. Soil mois-
ture measurements from cosmic-ray sensors are subject to correction
procedures, the largest of which relates to changes in atmospheric
pressure (Hawdon et al., 2014), and may account for the increased
short-term variability. This pattern of higher short-term variability
at cosmic-ray sites compared to TDR and frequency-domain sensor
sites in a similar location was also visible in the time series of abso-
lute soil moisture values, but with more pronounced differences in
correlation between products in the anomaly time series.

4.4. Cluster analysis

The cluster analysis was based on a matrix of 1-R2 values, with the
aim of highlighting products that closely associate with each other.
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Fig. 6. ASCAT_TUW_D at NT-02 (OzFlux network). In situ time series on left axes; product time series on right axes.
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Fig. 7. CABLE, WaterDyn and API at NSW-02 (OzNet network). In situ and CABLE time series on left axes; WaterDyn and API time series on right axes.
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Fig. 8. AWRA-L (0–10 cm), KBDI and MSDI at NT-01 (OzFlux network). In situ time series on left axes; product time series on right axes.

Products that group together may indicate similarities in their error
structure. Grouping is expected given that dependence exists among
some products (e.g. model products use the same AWAP forcing data
and both SMOS products use the same input brightness temperature
data, as do the AMSR2 products).

A cluster analysis was carried out for each station location. The
1-R2 matrices included all products (and in situ estimates) with the
exception of SMOS_LPRM_A, which could not be correlated with
some products due to a lack of coincident data, and so could not be
included in the clustering matrices. Furthermore a cluster analysis
could not be performed at QLD-02 due to a lack of significant
correlation between SMOS_LMEB_A and other products at the p =
0.01 level. The hierarchical cluster dendrograms are provided in the
Appendix for the longer period of comparison.

In general, satellite products clustered with other satellite prod-
ucts, and model products with model products, this being clearest
at grassland climate zone locations NT-01, NT-04, NSW-01, NSW-
02 and NSW-04, and temperate zone location VIC-02. At the
remaining sites, the satellite/satellite and model/model groupings
were less evident, often due to ASCAT_TUW_D, AMSR2_LPRM_D or
AMSR2_JAXA_A grouping with one or more of the model products.
Interestingly, SMOS_LMEB_A and ASCAT_TUW_D grouped at eight
out of the 12 locations; however, no clear patterns between climate
zones or vegetation types/density were apparent. As expected,
KBDI and MSDI showed a close association and paired at all but
one site. The WaterDyn, CABLE, AWRA-L and API products grouped
together at most locations, with AWRA-L grouping with API at nine
locations. WaterDyn and CABLE paired closely, particularly at the
NT grassland zone stations. AMSR2_LPRM_D and AMSR2_JAXA_A
did not group (i.e. were different to each other) at 10 out of 12
sites. In situ measurements grouped closely with models at nine
out of 12 sites, but did not show a preference for a particular
model product.

It is noted that filtering of the product time series, or analysis of
the time series on a longer time scale (e.g. monthly), may potentially
bring out similarities not observed here. Strong variability in the soil
moisture record is present at daily time scales. On a daily time scale,
there is a mismatch of sampling times between satellites and in situ
measurements, and often models are forced with inexact timing of
precipitation events (Reichle et al., 2004).

5. Discussion

5.1. Comparison with previous studies

The results of the correlation analysis are comparable to other
studies, which mainly focus on the OzNet in situ network in

south-eastern Australia. For example Van der Schalie et al. (2015)
compared SMOS_LPRM (ascending) to OzNet sites NSW-01 and
NSW-02 for the period 2010–2011. The LPRM was run for the SMOS
data set using two alternative sources of effective soil temperature
input data and several incidence angles. Their study estimated cor-
relation coefficients at sites NSW-01 and NSW-02 (on average for all
incidence angles and input sources) of 0.75 and 0.88, respectively.
This compared well to the findings in this study (R = 0.74 and R =
0.69 in the longer and common periods at NSW-01, and R = 0.78
and 0.81 at NSW-02; Tables 3 and 5). Van der Schalie et al. (2015)
also compared in situ data to the SMOS_LMEB product, and estimated
very similar correlation coefficients to SMOS_LPRM.

Su et al. (2013) also compared OzNet in situ data to satellite
products, including ASCAT_TUW and SMOS_LMEB, for the period
2001–2012. Average correlation between all sites and ASCAT_TUW
was estimated to be 0.67 (descending overpass), similar to that
found in this study for the period 2001–2014 (range of 0.68–0.72 of
stations NSW-01, NSW-02 and NSW-04; Table 3). The association
between SMOS_LMEB and in situ was weaker in the previous study
(R = 0.71 compared to 0.78–0.81 here, ascending overpass) noting
that the 2013 study used an earlier version of the SMOS_LMEB
product.

Frost et al. (2015) compared monthly 0–5 cm in situ surface
soil moisture measurements from 38 sites in the OzNet network
(December 2001–May 2012) to estimates derived from CABLE,
WaterDyn and AWRA-L models, as well as ASCAT_TUW. CABLE and
WaterDyn were found to perform more strongly than AWRA-L and
ASCAT_TUW_D at OzNet sites, consistent with the findings in this
study. Furthermore, Frost et al. (2015) found that CABLE and AWRA-
L were better than WaterDyn when compared to deeper profile
(0–90 cm) in situ measurements, a result reflected in this study.

Lastly, Kumar et al. (in press) compared KBDI and MSDI estimates
with OzNet data for the period September 2009 to May 2011. Kumar
et al. (in press) reported the average correlation between the 0–30
cm in situ measurements and KBDI as 0.60, and 0.71 for MSDI. These
values are higher than those found in this study between the 0–10
cm in situ measurements and KBDI (0.45 and 0.42 at NSW-01 and
NSW-02 respectively) and MSDI (0.66 and 0.68 at NSW-01 and NSW-
02 respectively).

5.2. Satellite performance

The range of agreement with in situ estimates was similar
among the satellite products, with the exception of AMSR2_JAXA_A.
SMOS_LPRM_A and SMOS_LMEB_A showed a closer association to
in situ estimates at most sites compared to other satellite products.
Both SMOS products better reflected annual and seasonal variation



C. Holgate et al. / Remote Sensing of Environment 186 (2016) 479–500 493

than short-term events. The process driving the strength of the SMOS
L-band instrument is the estimation of soil moisture at a greater
observation depth than the other satellites, which utilise the shorter
wavelengths of the C- and X-bands. The longer wavelength of the
L-band instrument is also beneficial in that it is less influenced by
cloud and vegetation cover (De Jeu et al., 2008). These benefits are
consistent with the findings of this study, where close association
with in situ data was found consistently across station locations with
different soil and vegetation characteristics and climate zones with
the exception of QLD-02, a site located within dense tropical vege-
tation. At this site both SMOS products showed limited agreement
with in situ measurements, corresponding to the known limitation of
the LPRM over densely forested areas (Van der Schalie et al., 2016).
At this particular site, ASCAT_TUW_D was better able to reflect in situ
temporal dynamics than SMOS. Furthermore, both SMOS products
displayed a reduced sensitivity to soil moisture change during dry
periods, especially at the drier sites of the Northern Territory. This is
in line with De Jeu et al. (2008), where it was shown that the dielec-
tric constant has a reduced sensitivity to changes in soil moisture
under dry conditions.

AMSR2_LPRM (C-band) exhibited clear differences in correspon-
dence with in situ measurements during the daytime (ascending)
and night-time (descending) parts of the orbit (Fig. 2). The process
driving this finding is likely in part the differing of canopy and sur-
face soil temperatures from the assumption of equality in the LPRM
method. More intense heating of the ground surface in the day-
time is noted by Owe et al. (2008) as being a significant problem for
arid, semi-arid and possibly temperate regions as well, especially in
areas with a high proportion of bare soil, a common feature across
much of Australia. The estimation of effective temperature is an area
of ongoing improvement in the LPRM development. Furthermore,
vegetation density may also be affecting the difference in daytime
ascending and night-time descending overpass retrievals, especially
at the tropical rainforest site QLD-02. Lei et al. (2015) show that
in the United States the relative advantage of night-time retrievals
(of AMSR-E, predecessor of AMSR2) degraded over more heavily
vegetated areas, and may help explain this result.

The AMSR2_LPRM_D product showed a moderately close asso-
ciation with in situ data overall, yet displayed slower dry down
behaviour particularly within the grassland and tropical locations of
the Northern Territory. The process driving this observation may be
the greater influence of vegetation on the brightness temperatures in
the C-band, causing the area of the satellite footprint to appear wet-
ter for longer at the end of wet periods than in the deeper penetrating
L-band. For example where in situ sensors are located in an area of
bare soil or grass within a woodland or savannah, the soil moisture
as recorded by the sensor would a priori be expected to rise and fall
more rapidly compared to a smoother signal from the taller, more
established vegetation within the satellite footprint. The smoother
soil moisture signal of the satellite product is matched by the vegeta-
tion optical depth signal, sourced in parallel with AMSR2 C-band soil
moisture retrievals.

While the dry down processes observed in the ASCAT_TUW_D
time series better matched in situ data than AMSR2_LPRM_D, it
showed a similarly smooth signal at some locations. However, a
strength of ASCAT_TUW is the ability to separate backscatter due
to soil moisture and vegetation. The soil moisture data set may be
improved in future through the inclusion of dynamic vegetation
correction (Vreugdenhil et al., 2016).

Moreover, the success of ASCAT_TUW_D in reflecting in situ
temporal dynamics at a site of dense tropical vegetation (QLD-02)
compared to the SMOS and AMSR2 products may be indicative of
a potential relative product strength. This is in line with previous
studies that compared soil moisture estimates retrieved from ASCAT
with those retrieved from passive microwave sensors (e.g. Al-Yaari
et al., 2014).

AMSR2_JAXA_A performed most poorly among the satellite
products in terms of correlation of relative soil moisture values.
The assumption in the JAXA algorithm of a constant surface and
canopy temperature of 295 K (≈22 ◦ C) at all locations and times is
not reflective of the range of Australian conditions (e.g. see mean
annual temperature ranges of sites in Table 1), and may represent an
important weakness of this product over Australia.

Tests carried out to assess how the correlation varied when
different satellite product pairs were colocated in time showed dif-
ferences of approximately 5–10% compared to the correlation based
on all coincident satellite and in situ finite values. Considerable dif-
ferences were observed at site NT-04 (in the SMOS_L3_A data set
when colocated with AMSR2_LPRM_D), suggesting the agreement
between in situ and remotely sensed soil moisture may be more sen-
sitive at this site than at others considered. This is reasonable given
that NT-04 is located within a grassy plain in northern Australia
where soil moisture is typically quite variable. However, it should
be kept in mind that the change in correlation at these two sites
when satellite pairs were colocated in time was based on fewer data
points than when all coincident satellite and in situ points were
considered.

5.3. Model performance

In the correlation analysis the WaterDyn product had the
strongest agreement with in situ measurements across all products
considered in this study, and most consistently across locations in
different climate zones and with different soil and vegetation char-
acteristics. The calculation of the upper soil layer water mass balance
and subsequent conversion to relative soil moisture proved to effec-
tively simulate soil moisture temporal dynamics as measured by the
in situ sensors. CABLE was similarly able to reproduce in situ temporal
dynamics, but was less consistent across climate zones (particularly
at the temperate locations) compared to WaterDyn.

The API data set was found to be quite successful in simulat-
ing annual and seasonal dynamics of soil moisture across all station
locations and climate zones considered in this study. The variation
in performance across locations may be indicative of variation in
the rainfall input data quality, and would need to be further tested,
including an inspection of gauge inputs to the gridded data. The
success is particularly compelling given the simplified nature of the
index, based only on rainfall and temperature data inputs. The sim-
plicity of the API index is considered a strength of this product. How-
ever API does not consider ecohydrological processes and energy
fluxes. Instead, these are strengths of the AWRA-L model, which is
process-based and includes sub-routines for water and energy fluxes,
allowing vegetation to adjust accordingly.

Although the AWRA-L product correlated well with shallow
in situ measurements at most locations, AWRA-L showed poorer
agreement than API at seven locations (longer period). While
no clear geographical or climatic pattern was discernible in the
AWRA-L correlation results, it is possible that the association was
affected by the calibration of the model to streamflow observations.
When comparing deeper (0–90 cm) soil moisture measurements and
AWRA-L, the correlation remained the same at one site (NSW-01)
and reduced at another (NSW-02). Frost et al. (2015) undertook
a more comprehensive assessment of deeper (0–90 cm) soil mois-
ture measurements with AWRA-L in south-east Australia (at over 30
sites) and found correlation coefficients in the order 0.7 < R < 0.8,
indicating AWRA-L may be able to effectively simulate both surface
and root-zone soil moisture in this area. Frost et al. (2015) found
CABLE to perform similarly to AWRA-L in the deeper profile in this
area, and WaterDyn slightly worse.

The weaker agreement of KBDI reflected the poor simulation of
drying processes observed in the in situ measurements. In terms of
mimicking in situ soil moisture temporal behaviour, the processes
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driving the weakness of KBDI were two-fold. Firstly, ET is a func-
tion of vegetation cover in the KBDI model, which is itself a function
of mean annual rainfall. It does not consider other factors affecting
the likelihood of the vegetation being present such as soil type or
latitude (Keetch and Byram, 1968). Moreover, modelled ET was only
controlled by rainfall and temperature (and the previous day’s soil
moisture condition), without consideration of other meteorological
factors such as net radiation, wind speed, or relative humidity.
Secondly, the KBDI model is simplified and does not consider addi-
tional processes such as deep drainage or spatiotemporal changes
to infiltration. Overall, KBDI displayed the greatest variability in
performance across the sites, showing particular variability among
the locations in the grassland climate zone.

While the MSDI model is similar to KBDI, its relative strength lies
in the different simulation of rainfall-runoff and ET. In KBDI rainfall
infiltrating the soil is lessened by a constant 5 mm of the first part
of the event, regardless of vegetation cover or how the loss is parti-
tioned between canopy interception and runoff (Finkele et al., 2006).
MSDI treats them separately, and varies them depending on vegeta-
tion cover. Each grid cell is assigned one of seven vegetation classes,
each with their own values of canopy interception, canopy storage
and wet evaporation rates (Finkele et al., 2006). While the estima-
tion of ET in the MSDI model is slightly more comprehensive than in
KBDI, a weakness of MSDI is that it uses linear relationships between
monthly pan evaporation and monthly maximum temperatures from
capital cities in the south-east of Australia only, and yet is applied
nation-wide across all climate zones (Kumar et al. in press; Finkele et
al., 2006). Lastly, evaporation is again only a function of rainfall and
temperature, and vegetation cannot adjust based on water or energy
availability as it can in AWRA-L.

Although the model products achieved stronger coefficients of
correlation than the satellite products in many instances, it should be
noted that the strength of the model products may be in part due to
their higher resolution (Table 2). Despite the model products show-
ing stronger agreement with in situ measurements than the satellite
products in many instances, this was not always the case, and may
be partially attributed to the greater number of data points used in
the correlation between model and in situ estimates (Tables 3 and 5),
as well as to the differences in methodological approach.

5.4. Interrelationships between products

The results of the cluster analysis showed some grouping of
products. Generally satellite products grouped with other satellite
products, and model products with other model products, indicating
potential duplication of information and potential similarities in
error structures between satellite-satellite and model-model groups.
However the general distinction between satellite and model prod-
ucts from each other indicates complementarity may exist between
the data sets. Both have implications for applications utilising multi-
ple products such as land surface model data assimilation.

It may be expected that products sharing commonalities in their
approach (e.g. models share AWAP forcing data; some satellites
share the same microwave sensing frequency) would cluster closely
together. However, despite general grouping of satellite products
with other satellites and models with models, this was not always
the case. For instance, the lack of grouping between the AMSR2
products at most sites highlights the dissimilar nature of these soil
moisture estimates, despite their common brightness temperatures,
indicating a potential lack of commonality in their error structures
and potential complementarity.

On the other hand, despite their very different approaches, the
strong intercorrelation (R > 0.85) and close grouping of API and
AWRA-L in the cluster analyses indicates that the net effect of precip-
itation infiltration, soil evaporation and drainage of the top soil layer

in the AWRA-L model produces very similar temporal behaviour to
the API model, driven only by precipitation and temperature.

WaterDyn and CABLE intercorrelated strongly in the cluster
analyses (R > 0.75) and particularly at the Northern Territory sites
(R > 0.94). The two models also yielded similarly strong correlation
coefficients with in situ at the Northern Territory sites, particularly
in the longer period (both R > 0.79). This indicates that the models
are most similar in their ability to successfully reproduce in situ tem-
poral dynamics, and suggests that their model approaches are most
similar to each other, at these sites.

Moreover, KBDI and MSDI paired closely, intercorrelating very
strongly (range: 0.73–0.99) across the sites. This result confirms the
similarity in the index model approaches, and indicates potential
similarity in error structure.

Lastly, the tendency of SMOS_LMEB_A and ASCAT_TUW_D to
cluster together at most locations reflects their strong temporal
intercorrelation (range: 0.64–0.87) despite their differing sensors,
algorithms and observation depths. That there was no clear pattern
between climate zones and vegetation type/density from the clus-
tering suggests other factors may be influencing the strong simi-
larity in temporal soil moisture dynamics between SMOS_LMEB_A
and ASCAT_TUW_D. Future clustering with SMOS_LPRM_A may
help distinguish whether the similarity is algorithm-based, or
more attributable to instrument features such as spatial resolution,
microwave frequency and observation depth, or other factors.

6. Conclusions

This study sought to compare a wide range of sources of surface
soil moisture information in a common framework, to understand
how their relative performance varies across Australia and how
products interrelate. To this end, 11 sources of soil moisture data
were evaluated; five satellite and six model products, plus in situ
data from three separate networks across the country. The Pearson
correlation coefficient was used as the primary statistical metric to
evaluate the relative temporal fit between satellite and model data
sets with in situ measurements, which served as a reference.

The comparison of the products, as measured by their correlation
with in situ estimates, varied between products and locations around
Australia. The satellite products displayed an overall similar level of
temporal association with in situ measurements, with the possible
exception of AMSR2_JAXA_A. The two SMOS products showed the
closest association with in situ estimates at most sites across the cli-
mate zones, owing to the deeper observation depth of the L-band
sensor, with the exception of one site located in an area of dense
tropical vegetation.

The AMSR2_LPRM_D and ASCAT_TUW_D products showed
slower dry down behaviour than in situ measurements, likely a result
of the greater influence of vegetation on the brightness temperatures
in the C-band. The poorer temporal association of AMSR2_JAXA_A
with in situ compared to the other satellite products may be due to
the assumption in the retrieval algorithm of a constant surface and
canopy temperature at all locations and times, and assumption not
reflective of the range of Australian conditions.

The WaterDyn model, followed closely by CABLE, showed the
closest association with in situ estimates out of the model prod-
ucts. API and AWRA-L also yielded strong agreement with in situ
estimates.

API highlights how a simplified measure can in this case prove
to be almost as successful as comprehensive process-based models
in simulating temporal surface soil moisture dynamics on a daily
basis. API is an index used as a proxy for soil moisture, and is a func-
tion of rainfall and temperature only. The variation in performance
across sites may be indicative of variation in quality of the input data,
particularly rainfall, and requires further examination. The utility
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of satellite-based rainfall may also be considered, and may prove
particularly useful in gauge-sparse areas.

KBDI displayed slower dry down behaviour compared to in
situ measurements and had the highest variability across sites
and climate zones of all products. The related index, MSDI, was
slightly more successful at reproducing in situ temporal dynamics
but showed poorer consistency than the strongest performing
models.

The comparison of products may differ when considering
different temporal and spatial scales, and it is recommended that
future work consider this where commensurate with product appli-
cation. All products were better able to reflect the interannual and
seasonal temporal behaviour of the in situ reference than short-term
dynamics, as reflected in the poorer temporal anomaly correlation
results.

In situ soil moisture data sourced from cosmic-ray sensors were
evaluated alongside soil moisture data collected from more tradi-
tional TDR and frequency-domain sensors. Cosmic-ray sensors vary
in effective depth dependent on soil moisture, as satellite observa-
tions do. Future research may consider investigating the difference in
correlation between satellite remotely sensed estimates and cosmic-
ray sensors and their TDR counterparts, where both sets of in situ
data are available at the same station location.

Clustering analysis revealed a general grouping of satellite prod-
ucts with other satellite products, and model products with model
products. The general distinction between model and satellite prod-
ucts indicated potential complementarity between the data sources,
whereas clustering of product pairs within the model and satellite

categories suggested potential similarities in error structure and
duplicate information may exist between products.
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Appendix: cluster dendrograms by station
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