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Passivemicrowave remote sensing at L-band has beenwidely acknowledged as themost promising technique to
observe the spatial distribution of near surface (top ~5 cm) soilmoisture at regional to global scales. The launch of
the ESA's Soil Moisture and Ocean Salinity (SMOS) mission in 2009 now means that global space-borne bright-
ness temperature observations are available at L-band (1.41 GHz) to estimate soil moisture every 2 to 3 days
with a target accuracy of 0.04 m3/m3. Moreover, NASA's Soil Moisture Active Passive (SMAP) satellite has been
launched on 31st January 2015, also carrying an L-band radiometer, togetherwith an L-band radar for downscal-
ing the brightness temperature observations to better than 10 km resolution. At the SMOS/SMAP radiometer
scale of ~40 km, the presence of water bodies potentially induces an overestimation of retrieved soil moisture,
if not carefully accounted for in retrieval models. Such water fraction effects on brightness temperature and
soil moisture retrieval accuracy were investigated in this study, using airborne L-band brightness temperature
data collected during three Australian field experiments. The water induced brightness temperature effect and
water fraction were compared under different resolutions, sampling days, and land surface conditions, showing
that the water fraction impact on retrieved soil moisture is independent of scale, but heavily dependent on the
soil water content status. Subsequently, the highest water fraction threshold that can be tolerated in order to
achieve the 0.04 m3/m3 target accuracy without correction has been determined as 0.08 (actual range is from
0.02 for dry bare soil to 0.08 forwet vegetated soil). Using aMODIS derivedwater fraction dataset, thewater frac-
tion dynamics were also studied over Australia during the ten years from 2001 to 2010. The results show that if
the mean water fraction map was used as a static water map to flag or correct water effects, the water body in-
duced soil moisture retrieval error would have exceeded the 0.04 m3/m3 target more than once for 13.5% of the
Australian land 40 km sized radiometer pixels; only 0.6% Australian land pixels would have exceeded this target
with a frequency of 10 times or more per year.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Soilmoisture is a key variable in globalwater, energy, and carbon cy-
cles as it affects the partitioning of rainfall into runoff, vegetation evapo-
transpiration and microorganism activity (Aubert, Loumagne, & Oudin,
2003; Olioso, Chauki, Courault, & Wigneron, 1999; Schnürer, Clarholm,
Boström, & Rosswall, 1986). The measurements of soil moisture in
both time and space are required for many research disciplines such
as hydrology, meteorology, and agriculture (Sellers et al., 1997). Due
to its high temporal and spatial variability, soil moisture is difficult to
be measured at regional to global scales (Crow et al., 2012; Ryu &
Famiglietti, 2006).
.

Over the last 30 years remote sensing techniques have been devel-
oped to estimate the spatial distribution of surface soil moisture using
electromagnetic radiation emitted or reflected from the earth in the
range of visible, infrared and microwave frequencies. Among these ap-
proaches, the passive microwave technique at L-band (1–2 GHz) has
been widely acknowledged as the most promising for water content
measurement in the top ~5-cm soil layer, since it is independent of
solar illumination, is capable to penetrate cloud, is least sensitive to veg-
etation canopy and surface roughness, and is directly related to volu-
metric water content through the soil dielectric constant. Hence, the
first space mission dedicated to soil moisture is based on this approach;
the European Space Agency (ESA) led Soil Moisture and Ocean Salinity
(SMOS) satellite which employs a 2-D interferometric radiometer oper-
ating at L-band (1.41 GHz) to provide global soil moisture every 2–
3 days (Kerr et al., 2010b). Moreover, the National Aeronautics and
Space Administration (NASA) launched the Soil Moisture Active Passive
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(SMAP) mission on 31st January 2015, also with an L-band (1.41 GHz)
radiometer. The SMAP will also have an L-band (1.2 GHz) radar for
downscaling the radiometer brightness temperature observations
(Entekhabi et al., 2010). Both missions aim to provide near surface soil
moisture measurements with a target accuracy of 0.04 m3/m3, but the
soil moisture retrievalmay suffer from land surface heterogeneity with-
in the sensor's ~40-km field-of-view, if it is not accounted for in the re-
trieval algorithm (Merlin et al., 2008).

The brightness temperature of soil is dependent mainly on the
physical temperature of the soil layer and its emissivity, which is in
turn determined by the soil dielectric constant and surface rough-
ness. Due to the large difference between the (real part) dielectric
constants of soil particles (~2) and water (~80), the microwave
brightness temperature observation is highly sensitive to the water
content of soil. Due to the relationship between soil water content
and brightness temperature, soil moisture can be retrieved from
brightness temperature observations. However, the presence of
water bodies within the sensor's field-of-view will result in an over-
estimation in retrieved soil moisture. The effect of water fraction has
been addressed in the SMOS Algorithm Theoretical Basis Document, by
stating that approximately 1% underestimation of standing water frac-
tion in the field-of-view can induce 0.01 m3/m3 soil moisture retrieval
error under the conditions of wet (water content of 0.4 m3/m3) soil
and dense (optical depth of 0.6) vegetation (Kerr et al., 2010a). Conse-
quently, the SMAP mission proposes to use the on-board radar to map
dynamic water bodies, but the ability to do this will be limited by the
3-km spatial resolution of the radar (Kim et al., 2012). Thus it is impor-
tant to have a goodunderstanding of thewater body fraction that can be
tolerated, particularly the cumulative effect from flood irrigation and
small farm dams.

Model simulation (Davenport, Sandells, & Gurney, 2008; Loew,
2008) and a study using space-borne data and in-situ measurements
(Gouweleeuw, van Dijk, Guerschman, Dyce, & Owe, 2012) have been
conducted to investigate the effect of water fraction on brightness tem-
perature and soil moisture retrieval accuracy. While these results show
that the presence of standing water over less than 0.05 of a pixel could
introduce an error in retrieved soil moisture as high as 0.2 m3/m3, the
effect of water fraction on brightness temperature has not been verified
using experimental data. Consequently, the objective of this study is to
use airborne L-bandpassivemicrowave observations and in-situ ground
measurements collected over SMOS/SMAP pixel sized areas to
i) investigate the relationship between water fraction and impact on
both the brightness temperature and the retrieved soil moisture,
when ignoring the presence of water bodies in the soil moisture retriev-
al models, and ii) determine the extent of SMOS/SMAP pixels in
Australia that could be adversely affected as a consequence.
2. Data sets and study areas

This study uses airborne passive microwave observations at L-
band together with coincident ground sampling data collected dur-
ing three field experiments. The National Airborne Field Experiment
in 2006 (NAFE'06; Merlin et al., 2008) and Australian Airborne Cal/
val Experiments for SMOS (AACES-1 and −2; Peischl et al., 2012)
were conducted in the Murrumbidgee River Catchment, southeast
of Australia. The ~82,000 km2 Murrumbidgee River Catchment has
an elevation ranging from ~40 m in the western plains to ~2000 m
in the eastern mountainous areas. The annual rainfall varies from
300 mm in the west to 1900 mm in the high elevated ranges in the
east (Australian Bureau of Rural Science, 2001). Accordingly, the
land surface of the Murrumbidgee River Catchment varies from
bare soil with sparse vegetation in the west, to irrigated fields
mixed with grasslands in the middle, and to forest in the east. The lo-
cation of the study areas, monitoring stations, flight lines, and cali-
bration lakes of all three experiments are shown in Fig. 1.
2.1. Airborne instruments and pre-processing

The main airborne instrument used during the campaigns is the Po-
larimetric L-bandMulti-beam Radiometer (PLMR) which wasmounted
on a scientific aircraft measuring L-band brightness temperature of the
ground. The PLMR is a dual-polarized (vertically and horizontally) six-
beam radiometer operating at 1.401–1.425 GHz. In push-broom config-
uration, the six beams of the PLMR are aligned in the across-track direc-
tion with view angles of 7°, 21.5°, and 38.5° to both sides of the aircraft,
while in multi-angle configuration the PLMR is rotated by 90° such that
all six beams are oriented along the flight direction. Each observation
has a 3-dB beamwidth of 17° along-track and 14° across-track. During
each sampling day, an approximately 6-hour flight was performed to
map brightness temperature over a SMOS/SMAP sized area with a reso-
lution of 1 km, or over a smaller area with a higher resolution.

Before and after each flight the PLMRwas calibrated using the sky as
a cold target and an instrumented blackbody as a hot target. After apply-
ing pre- and post-flight calibration the PLMR has an overall accuracy of
better than 2 K (Panciera et al., 2008). In addition, a large water body
around the study areas, e.g. Tombullen water storage for NAFE'06 and
LakeWyangan for AACES (see Fig. 1), was used as an inflight calibration
check of the PLMR for each flight. In this study, the brightness tempera-
ture observations over the calibration lakeswere also used to determine
the range of brightness temperature of water bodies during the experi-
mental periods.

To make brightness temperature observations comparable between
different resolutions, sampling days, and land surface conditions, the
original brightness temperature observations collected at multiple
viewing angles were normalized to a reference angle of 38.5° using
the approach outlined in Ye, Walker, and Rüdiger (2015), and the tem-
poral variation of land surface temperature during the flight was
corrected to a standard time using a ratio-based method (Jackson,
2001). During the ~6-hour flight in each sampling day, the surface soil
moisture did not change by more than 0.005 m3/m3 unless it was actu-
ally raining, while the soil and vegetation temperature variations were
up to 8 K. This temperature induced temporal variation of the PLMR
brightness temperature observations was corrected by multiplying
each brightness temperature observation with the ratio of effective
soil temperature at the time of observation to that at an approximately
mid-flight reference time, being 12:00 pm for the NAFE'06 and 6:00 am
for the AACES.

The effective soil temperature at each time step was calculated from
the time series of surface soil moisture, surface soil temperature, and
deep soil temperature collected from the monitoring stations within
the study area, using the method of Choudhury, Schmugge, and Mo
(1982).With the temporal correction, the bias of the brightness temper-
ature observations between repeat flights at the start and end of the
data collection period reduced to less than 1 K, which is insignificant
in comparison with the brightness temperature uncertainty that could
be induced by standing water. The temporally corrected brightness
temperature observations were then normalized to the viewing angle
of the PLMR outer beams (38.5°, which is approximately the SMAP
viewing angle) as the reference incidence angle for the purpose of pro-
viding complete coverage at a single incidence angle.

2.2. Monitoring station network

Since 2001 the OzNet hydrological monitoring network (www.
oznet.org.au; Smith et al., 2012) has been operating throughout the
Murrumbidgee River Catchment. It currently has 62 stations for contin-
uousmeasurement of near surface soilmoisture at 0–5 cm/0–8 cm,with
many also having soil moisture measurements for 0–30 cm, 30–60 cm,
and 60–90 cm. Soil moisture is measured using the Steven's Water
Hydraprobe and CS616 water reflectometers. The soil temperature is
measured at 2.5 cm and 15 cm, and rainfall using a tipping bucket rain
gauge. Fig. 2 shows the time series of the spatially averaged near-

http://www.oznet.org.au
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Fig. 1. Location of the NAFE'06 and AACES study areas in theMurrumbidgee River Catchment, southeast of Australia. Location of Tombullen andWyangan calibration lakes is shown in the
lower panels.
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surface soil moisture, soil temperature and rainfall measurements
across OzNet monitoring stations within the Yanco study area during
the period of the NAFE'06, while Fig. 3 shows the same time series dur-
ing the period of AACES-1. In the AACES, additional monitoring stations
were temporally installed in the study areas to collect the temporal var-
iation of rainfall, soil moisture at 0–6 cm (vertically installed) and 25 cm
(horizontally installed) depths, soil temperature at depth of 2.5 cm,
5 cm, 15 cm, and 40 cm, soil surface temperature using a thermal infra-
red sensor, and dew presence using a leaf wetness sensor.

In the calibration lakes, Tombullen water storage for NAFE'06 and
Lake Wyangan for AACES, a floating monitoring station was installed
in the centre of the lake for continuous measurement of surface water
temperature and salinity during the whole period of each campaign.
The middle panels of Figs. 2 and 3 illustrate the time series of water



Fig. 2. TheNAFE'06 time series of spatially averaged soilmoisture and rainfall measurements across all OzNetmonitoring stationswithin the Yanco study area (upper panel), time series of
water surface salinity and water surface temperature of Tombullen water storage, together with soil temperature measurements collected from Y2 site (middle panel), and timetable of
Landsat overpass, MODIS overpasses and PLMR flights at multiple resolutions (lower panel).
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salinity and temperature. Additionally, the spatial variability of surface
water temperature and salinity was examined by making point-based
measurement transects from a boat. This transect sampling was con-
ducted once a week during the NAFE'06 and the AACES. The transect
measurements showed small variations of water surface temperature
(±2 K) and salinity (±4 ppm) across the calibration lakes, which
would induce a brightness temperature uncertainty of less than 3 K
for the water bodies. Given the up to 100 K brightness temperature dif-
ference betweenwater and soil, this was ignored for the purpose of this
analysis, and the calibration lakes assumed as homogeneouswater bod-
ies in this study.

2.3. NAFE'06 campaign

The NAFE'06 was conducted during the Australian summer period
from 30th October to 20th November 2006 over two 40 km × 50 km
areas, i.e. the Yanco and Kyeamba study areas. The main objective of
theNAFE'06was to collect airborne L-band passivemicrowave observa-
tions at high resolution (50 m to 1000 m) for the development and val-
idation of SMOS soil moisture retrieval, downscaling, and assimilation
approaches at SMOS 40 km scale. Since a significant fraction of the
land surface over the Yanco study area was irrigated cropping areas,
such as rice fields that were consistently flooded during the campaign,
data over the Yanco study area is used to investigate the standing
water effect in this study. According to the time series of spatially aver-
aged rainfall and soil moisture measurements across the OzNet stations
within the Yanco study area (Fig. 2), the land surface varied from very
dry conditions at the beginning of the campaign, to drying down after
a rainfall of 5.8 mm on 2nd November, and then experiencing a heavy
rainfall of total 15 mm on 12th and 13th November. This temporal var-
iation of the Yanco study area was captured by airborne PLMR bright-
ness temperature observations at three spatial resolutions, 50 m
(high), 250m (medium), and 1000m (regional), respectively. Addition-
ally, multi-angular brightness temperature observations over the high
resolution flight zone were also collected on the same day as the high
resolution flight.

2.4. AACES campaigns

The AACES series of campaignswere designed to provide airborne L-
band brightness temperature observations concurrently with SMOS
overpasses under summer (AACES-1) andwinter (AACES-2) conditions,
in order to calibrate and validate SMOS brightness temperature obser-
vations and soil moisture products. The 1-km brightness temperature
observations over ten 50 km × 100 km flight patches across the Mur-
rumbidgee River Catchment were collected using the PLMR with the
same configuration as in the NAFE'06. Each flight patch contained two
independent (or four overlapped) SMOS pixels. The ACCES-1 was con-
ducted over all ten flight patches during 18th January to 21st February
2010. Due to the homogeneity of the first four and last three AACES
patches, only Patches 05 to 08 were re-sampled during the AACES-2
being from 8th to 26th September 2010.



Fig. 3. The AACES-1 time series of soil moisture and rainfall measurements collected from themonitoring stations in Patch 05 site (upper panel), time series of water surface salinity and
water surface temperature of Lake Wyangan, together with soil temperature measurements from M7 site (middle panel), and timetable of the AACES-1 flights (lower panel).
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2.5. Standing water distribution data

To investigate the effects of water fraction, the information about dis-
tribution of open water bodies is required. Currently, a number of
methods have been developed to extract inland water extent using re-
motely sensed visible/infrared (e.g., Landsat, Moderate-Resolution Imag-
ing Spectro-radiometer (MODIS), and Systeme Probatoire d'Observation
de la Terre (SPOT)) and SAR (e.g. RADARSAT, JERS-1, and ERS) observa-
tions (Brakenridge, Nghiem, Anderson, & Chien, 2005; Mertes, 2002;
Papa, Prigent, Durand, & Rossow, 2006; Prigent, Matthews, Aires, &
Rossow, 2001; Smith, 1997). Although microwave sensors are able to
penetrate clouds and vegetation, the application of SAR (active micro-
wave remote sensing) to discriminating water targets is adversely affect-
ed by the wind roughening effect (Alsdorf, Rodríguez, & Lettenmaier,
2007), and space-borne passive microwave sensors suffer from their
coarse spatial resolution (Sippel, Hamilton, Melack, & Choudhury, 1994;
Smith, 1997). In contrast, mapping openwater bodies using visible/infra-
red observations ismore straightforward. In this study, theModified Nor-
malizedDifferenceWater Index (MNDWI)was used to detect openwater
bodies due to its improved capability to delineate water bodies from
built-up areas, soil, and vegetation targets (Xu, 2006). According to a syn-
thetic analysis on the dynamic of water index thresholds (Ji, Zhang, &
Wylie, 2009), MNDWI has more stable thresholds than other water indi-
ces. Therefore,water cover information over the Yanco study areawas ex-
tracted from a 30-m Landsat image acquired on 7th November 2006.

Although the MNDWI data derived from high resolution space-borne
visible/infrared observations have high classification accuracy, their
applications are limited by their low revisit frequencies (~30 days on
average). For the purpose of estimating the effect of the standing
water dynamic spatial distribution, an 8-day cloud free water fraction
dataset was used (Guerschman et al., 2011). This MODIS water fraction
dataset was developed by the Commonwealth Scientific and Industrial
Research Organization (CSIRO) in Australia, using surface reflectance
from MODIS bands 5 and 7, the Normalized Difference Vegetation
Index, the Normalized Difference Water Index and the Multi-
resolution index of Valley Bottom Flatness. The water fraction in a
~500-m grid was estimated from the MODIS visible/infrared data
using a classificationmethod whichwas developed by performing a se-
ries of simultaneous classifications using higher resolution Landsat TM
data, via an image segmentation algorithm (Mueller & Lymburner,
2010). The 500-m water fraction data are available over Australia
since the launch of the MODIS in 2000, and the data for ten years
(2001 to 2010) were used in this study.

3. Methodology

The effects of water fraction on SMOS and SMAP brightness temper-
ature observations and soil moisture retrieval accuracy were investigat-
ed in three steps as follows:

i) assess the accuracy of theMNDWI derivedwater covermap from
a Landsat image alongwith theMODIS water fraction data, using
the high and regional resolution brightness temperature obser-
vations collected from the NAFE'06 and AACES;
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ii) examine the effect of water fraction on brightness temperature,
using the multi-resolution and multi-temporal observations col-
lected from the NAFE'06, as well as the AACES observations col-
lected from multiple land surface conditions;

iii) compare observed effect of water fraction with model simula-
tion; and

iv) identify the SMOS pixels potentially affected by standing water
over Australia, using a water fraction threshold for the SMOS/
SMAP target accuracy of 0.04 m3/m3.

4. Assessment of water cover and fraction maps

The multi-angular brightness temperature observations over water-
free areas, and the high resolution brightness temperature observations
over Tombullenwater storage collected during the entire NAFE'06,were
grouped for incidence angles from 0° to 50° in 5° steps and plotted in
Fig. 4. It is clear that a brightness temperature difference of ~150K exists
between water bodies and various land surface conditions. While Fig. 2
shows the soilmoisture, soil temperature, water salinity andwater tem-
perature variation during theNAFE'06, the box andwhisker plot in Fig. 4
shows the corresponding brightness temperature impact for the water
body and land surface over the Yanco study area during the same peri-
od. Consequently, a conservative brightness temperature threshold of
120 K in horizontal polarization and 150 K in vertical polarization was
chosen for the reference incidence angle of 38.5°, to distinguish homo-
geneous water pixels from those for soil surfaces. Consequently, a bina-
ry (1 for water fully covered pixel or 0 for the others) water cover map
was generated from the NAFE'06 High resolution brightness tempera-
ture observations, and used as a reference to assess the accuracy of the
water covermaps derived from Landsat data using theMNDWImethod.

This threshold method is unsuitable for the brightness temperature
observations at the medium and regional resolutions, due to the indi-
vidual open water bodies in the Yanco study area typically being on
order of ~100 m across, meaning that most of the pixels at these scales
were either water-free or only partially covered with standing water.
Moreover, the limited sampling area covered by the high resolution
Fig. 4. The angular relationship of dual-polarized brightness temperature observed over
water-free areas during the multi-angular flights and over Tombullen water storage dur-
ing the regional flights within the entire period of the NAFE'06. The brightness tempera-
ture observations are grouped in 5° steps. The box and whisker illustrate the
distribution of brightness temperature observations in each incidence angle step. The cen-
tral mark and the edges of the box are the median, the 25th and 75th percentiles. The
whiskers show the most extreme data points without consideration of outliers.
(50-m) brightness temperature observations meant that its derived
water cover map could not be used to assess the accuracy of the 500-
m resolution MODIS water fraction map. Thus, the Landsat-derived
water covermap acquired on7thNovember 2006 using theMNDWI ap-
proachwas used for validation of theMODIS water cover fraction prod-
uct. The regional resolution brightness temperature observations
collected during the NAFE'06 and AACES were also used to verifying
the accuracy of the MODIS water fraction indirectly, by assessing the
correlation between itswater fraction and thewater induced brightness
temperature offset.

According to the bottom panel of Fig. 2, there is only one Landsat
overpass during the NAFE'06 campaign, being on 7th November 2006
whennohigh resolution brightness temperature observationswere col-
lected. However, as the upper panel of Fig. 2 shows that there was no
rainfall event between 7th and 8th Novermber, and that the open
water bodies within the Yanco study area were understood to be tem-
porally static during such short time periods, it was assumed that a
water cover map derived from the Landsat image on 7th November
2006 represented the conditions on 8th November 2006.

Fig. 5 shows the brightness temperature and Landsat-derived water
cover maps. The grey colour indicates the areas where high resolution
brightness temperatures were observed using the PLMR, thus they
were compared at pixel level using the two methods. The comparison
shows a 98.25% agreement between observed pixels using the bright-
ness temperature threshold and the MNDWI methods. Therefore, the
accuracy of the water cover map derived from the Landsat data using
the MNDWI method was confirmed and the water cover map on 7th
November 2006 used to identify pixels fully covered with standing
water.

The 30-m resolution Landsat derived water covermapwas integrat-
ed to a water fraction map at 500-m resolution, and used as the refer-
ence to assess the accuracy of the MODIS water fraction dataset. The
Landsat derived water fraction map had a good agreement with the
MODISwater fraction dataset at scales from5 km to 40 km. The regional
resolution brightness temperature observations made during the
NAFE'06 and AACES campaigns were then sampled to a 1-km grid that
overlays the 500-m grid of theMODIS water fraction dataset. The corre-
sponding MODIS water fraction data were also integrated to the same
spatial resolution and compared with the corresponding brightness
temperature data. Fig. 6 shows an example brightness temperature
map at horizontal polarization together with the MODIS water fraction
map for 9th November 2006. It is clear that the twomaps have a similar
pattern between the pixels with standingwater coverage and the pixels
with lower brightness temperature values.

5. Water fraction effects on brightness temperature

The water fraction effects on brightness temperature, and thus the
derived soil moisture retrieval accuracy, were studied using brightness
temperature observations collected under multiple scales, sampling
dates, and land surface conditions during the NAFE'06 and AACES
campaigns.

5.1. Water fraction effects at multiple scales

To decouple the impact of scale from those of other factors, multi-
resolution brightness temperature observations were used for the
same area and sampling day. However, only the Regional and Medium
resolution flights were conducted on 7th November 2006, when the
Landsat-derived water cover data were available. However, the distri-
bution of standing water can be assumed similar between 7th and 8th
November, due to its make up being primarily small farm dams and
flood irrigated rice fields. Additionally, the time series of top 5 cm soil
moisture measurements in Fig. 2 show nearly consistent soil moisture
measurements between these two days.



Fig. 5. Thewater covermaps derived from the airborne high resolution brightness temperatures using the thresholdmethod (left) and the Landsat visible/infrared data using theMNDWI
method over the Yanco study area (right).
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The middle panel of Fig. 2 also shows a similar diurnal variation of
soil temperature at the depth of 5 cm and 15 cm. Although the water
temperature and salinity measurements were missing between 7th
and 8th November, the adjacent data suggest that it is reasonable to as-
sume the salinity of the calibration lake was stable during this time pe-
riod, and the variation of surface water temperature similar, since its
time series pattern was very close to that of 15-cm depth soil tempera-
ture. Hence, the high resolution PLMR observations collected on 8thNo-
vember 2006 were assumed the same as what would have been
observed on 7th November 2006. Subsequently, the multi-resolution
brightness temperature observations were sampled to the nested
grids, by selecting the brightness temperature nearest to the centre
point of the given pixel. The water cover fraction map for each scale
was generated by sampling the 30-m Landsat-derived water cover
map using the MNDWI method with a threshold of zero (Xu, 2006).

Fig. 7 shows the regional, medium, and high resolution brightness
temperature observations at horizontal polarization, and the water
cover map derived from the Landsat data for 7th November 2006 over
the NAFE'06medium resolution flight area. A good agreement between
Fig. 6.Maps of airborne brightness temperature observations at horizontal polarization (left) a
2006.
the distribution of brightness temperature and that of standing water
was found, with the areas identified as water bodies having a very low
brightness temperature compared to the surrounding water-free
areas. Subsequently, themulti-resolution PLMR brightness temperature
observations over the NAFE'06 medium resolution flight area were
compared with corresponding water fraction maps at pixel level.

The comparison results are shown in Fig. 8, with whiskers indicating
the standard deviation of brightness temperature observations at each
water fraction interval. Since the heterogeneity of brightness tempera-
ture increases with spatial resolution, the standard deviation of high
resolution brightness temperature is significantly larger than those of
medium and regional resolution observations.

As anticipated, all four poly-lines representing the three resolutions
within the overlapped areas show a decrease of brightness temperature
with increasing pixelwater fractions.Moreover, the slopes of brightness
temperature to water fraction are similar among the regional, medium,
and high resolution data with only a small bias between them, which
might be due to the change of soil surface temperature between the dif-
ferent resolutions flights. Therefore, the effects of water fraction on
ndMODIS-derived water fraction data over the Yanco study area (right) on 9th November



Fig. 7.Horizontally polarized brightness temperature observations atmultiple resolutions,
together with the Landsat derivedwater cover data using theMNDWI classificationmeth-
od. Data are plotted for the medium resolution flight zone in the Yanco study area.
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brightness temperature, and thus the impact on soil moisture retrieval
accuracy were shown to be independent of observation scale. Conse-
quently, the effects of water fraction at the SMOS/SMAP scale can be
studied using the regional resolution brightness temperature observa-
tions hereafter.

5.2. Water fraction effects at multiple times

During the NAFE'06, a total of 11 regional resolution flights were
conducted over the entire Yanco study area, and used here to investi-
gate the temporal variation of water fraction effects. Given the 500-m
spatial resolution and 8-day composite ofMODIS-derivedwater fraction
data, the water fraction data were integrated to the 1-km regional grid
and compared with the regional resolution brightness temperature
Fig. 8.Relationship betweenpixelwater fraction andmean brightness temperature for the
overlapping areas of the high, medium, and regional resolution flights within themedium
and high resolution flight zones. The whiskers show the standard deviation of brightness
temperature observations for each water fraction step.
observations collected on the same day or one day before/after, as
long as no rainfall event had occurred.

To obtain the relationship between water fraction and its effect on
brightness temperature at SMOS/SMAP scale, a moving window tech-
nique was applied to simulate the SMOS and SMAP 40-km brightness
temperature observations with varying water fractions. The regional
resolution brightness temperature and MODIS water fraction of all 1-
km pixels within a 40 km × 40 km window were averaged to simulate
the SMOS/SMAP brightness temperature observations TBSMOS and their
water fractions fwater respectively. Meanwhile, the mean brightness
temperature of water-free pixels TBfree was assumed as the reference
SMOS/SMAP brightness temperature observations without water frac-
tion effects. Hence, a water induced brightness temperature offset
(ΔTBwater) on the interpretation of brightness temperature observations
can be defined as the difference between TBSMOS and TBfree.

By moving the 40 km× 40 kmwindowwithin the Yanco study area,
a limited range of water fraction (b0.003) were obtained, which is in-
sufficient to cover the water fraction threshold for the SMOS/SMAP
error budget. For awider range ofwater fractions, the size of themoving
window was gradually reduced to 5 km, assuming that the water frac-
tion effects obtained from a smaller scale are the same as those at the
40-km scale. The soundness of this assumption has been confirmed al-
ready in this paper from the multi-resolution study.

Fig. 9 presents the relationship betweenwater fraction andwater in-
duced brightness temperature offset at horizontal and vertical polariza-
tions using the NAFE'06 regional resolution brightness temperature
observations and MODIS water fraction data. The symbol colour indi-
cates the mean soil moisture measurements across the OzNet monitor-
ing stations within the Yanco study area. This relationship was also
simulated by modelling the brightness temperature of a water body
and vegetated soil with ground measured water content, using the L-
MEB model (Wigneron et al., 2007). The ancillary data and parameters
required by the model were from Merlin et al. (2008).

As expected, both observed and simulated standing water induces a
negative brightness temperature offset at both polarizations, whose
magnitude varies linearly with increased pixel water fractions. Steeper
slopes of the horizontally polarized brightness temperature data indi-
cate higher sensitivity to standing water compared to the vertically po-
larized brightness temperature. Since these multi-temporal brightness
temperature observations were collected over the same area during
about three weeks, soil texture and vegetation water content were as-
sumed constant through time, and that the variation of slope was de-
pendent mainly on soil moisture. The dryer the surrounding soil the
larger the water induced brightness temperature offset observed,
which is in agreement with the simulation results. According to Fig. 9,
approximately every 0.1 increase in water fraction results in a bright-
ness temperature offset over 10 K under dry conditions. For a 4-K
brightness temperature error budget, being the target for SMOS, a con-
servativewater fraction of 0.04 can be tolerated in soil moisture retriev-
al providing all other factors are minimal. Due to the uncertainty of
water fraction and variation of soil brightness temperature in the mov-
ing window, the simulated water effect that assumes a consistent soil
component is slightly different from the observed result.

5.3. Water fraction effects at multiple land surface conditions

The effects of water fractionwere further investigated under awider
range of soil and vegetation conditions, using the AACES regional reso-
lution brightness temperature observations. The moving window tech-
nique was again used to establish the relationship between MODIS-
derived water fraction data and water induced brightness temperature
offset for each AACES patch. To minimize the effect of land surface het-
erogeneity, only the patches with a water body larger than 1.25 km2,
thus taking a fraction of 0.05 in a 5 km × 5 km pixel, were considered.
The observed and model simulated water fraction effects on brightness
temperature at horizontal polarization are plotted in Fig. 10. The soil



Fig. 9. The relationship betweenwater fraction and water induced brightness temperature impact coloured according to background soil moisture content. The symbols are derived from
the NAFE'06multi-temporal observationswhile the dashed lines show themodel simulated results for the corresponding soil moisture content. Results are shown for both horizontal and
vertical polarizations.
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moisture in the plot was taken as themean soil moisture measurement
across AACES monitoring stations within each patch.

It is again clear that the ratio between water fraction and induced
brightness temperature uncertainty decreases with increase in soil
moisture. Compared with the NAFE'06, the effect of water fraction was
larger under the AACES-1 hot summer conditions, where every 0.1 in-
crease in water fraction would induce an approximately 20-K bright-
ness temperature offset. During the AACES-2 when vegetation water
content was higher and soil temperature was lower than in the
AACES-1, the water fraction offset was still mainly dependent on soil
moisture. Consequently, every 0.1 increase in water fraction induced a
brightness temperature offset ranging from 20 K under hot dry condi-
tions to only 5 K under wet cold conditions. Accordingly, the water frac-
tion threshold for the 4-K error budget varied from 0.02 to 0.08 for dry
soil to wet soil conditions respectively.

6. Estimation of water effects on the SMOS and SMAP pixels over
Australia

Using the MODIS water fraction data for years 2001 to 2010, the
water effects that would have been expected on brightness temper-
ature, and thus derived soil moisture retrieval accuracy, over the en-
tire Australia were estimated at the SMOS/SMAP scale. Due to the
Fig. 10. The relationship betweenwater fraction andwater induced brightness temperature im
lines show the model simulated results for the corresponding soil moisture content. Results ar
similar pixel size of the SMOS 45-km DGG (Discrete Global Grid;
Sahr, White, & Kimerling, 2003) and SMAP 36-km EASE (Equal-
Area Scalable Earth; Brodzik, Billingsley, Haran, Raup, & Savoie,
2012) grid, only the results on the SMOS grid are presented. For the
MODIS-derived water fraction data of each sampling day, the 500-
m water fraction grid were resampled to the SMOS grid, assuming
that the pixel was a circle centred on a DGG node with a diameter
of 45 km. Due to the overlapping nature of the SMOS observations,
the water fraction effect is plotted on a Voronoi polygon grid gener-
ated from the SMOS DGG points.

The panels (a), (b), and (c) of Fig. 11 show theminimum,maximum,
andmeanwater fraction respectively of each SMOS pixel during the pe-
riod 2001 to 2010. It is clear that most of Australia had a maximum
water fraction less than 0.05, while some areas experienced heavy
rain events leading to more than 0.4 of the land surface being flooded.
If a static inland water fraction map was used in the soil moisture re-
trieval model, to correct or flag the effect of standing water, a large un-
certainty on brightness temperature and thus retrieved soil moisture
could be induced by ignoring the dynamic standingwater contribution.
Assuming the mean water fraction as the static inland water fraction
map, the largest water fraction estimation error likely to be made was
approximated by the maximum water fraction shown in Fig. 11(b), as
the mean water fraction was generally close to zero.
pact. The symbols are derived from the AACESmulti-spatial observations while the dashed
e shown for horizontal polarization only.



Fig. 11.Maps of minimum (a), maximum (b), and mean (c) water fractions of 40-km sized pixels over Australia during the years from 2001 to 2010. Panel (d) shows the number of days
when water fraction of each pixel exceeded the 0.08 water fraction threshold.
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Table 1 provides a statistics summary of the minimum, maximum,
and mean water fraction of SMOS pixels over Australia during the ten
year period 2001 to 2010. In addition, the maximum variation from
themeanwater fraction was also counted for each water fraction inter-
val, and the correspondingwater induced brightness temperature offset
estimated. A water fraction of 0.08 was taken as an optimistic threshold
for the 4-K brightness temperature “error” budget of SMOS for general
soil moisture and vegetation conditions. In the worst case of maximum
water fraction there were 13.5% (5,227 out of a total 38,617) land pixels
expected to have a soil moisture retrieval error that exceeds the target
accuracy of 0.04m3/m3, if themeanwater fractionwas used as the static
water fraction map to apply brightness temperature “corrections”. Ad-
ditionally, the number of days when water fraction exceeded the 0.08
water fraction threshold is shown in Fig. 11(d) for each pixel. According
to the summary of water affected pixels in Table 2, although 86.8% of
pixelswere not affected by the presence of standingwater, the standing
water induced errorwould still have exceeded the target accuracymore
Table 1
Statistics of water fraction and induced brightness temperature offset of SMOS sized pixels ove

Water fraction
range

Estimated water induced
brightness temperature
impact

Percentage of land pixels in
range for the minimum water
fraction mask

Percentage
range for t
fraction m

[−] [K] [%] [%]

0 0 89.5 0.0
0–0.0001 0–0.005 5.9 0.0
0.0001–0.001 0.005–0.05 3.6 0.0
0.001–0.01 0.05–0.5 0.9 20.4
0.01–0.05 0.5–2.5 0.0 57.7
0.05–0.1 2.5–5 0.0 9.8
0.1–0.2 5–10 0.0 6.3
0.2–0.4 10–20 0.0 3.7
0.4–0.6 20–30 0.0 1.3
0.6–1 30–50 0.0 0.9
than 10 times per year on average for 0.6% (252 out of a total 38,617) of
Australian land pixels.

7. Conclusion

The effect of water fraction on brightness temperature was studied
usingmulti-scale, multi-temporal, andmulti-spatial brightness temper-
ature observations collected from the NAFE'06 and AACES-1 and −2
airborne field experiments. The relationship between water fraction
and water induced uncertainty was confirmed to be independent
of spatial scale. However, a dependence of this relationship on soilmois-
ture was found. The tolerable thresholds of water fraction for achieving
a maximum 4-K brightness temperature offset obtained from field ex-
periment data were found to range from 0.02 to 0.08 under the condi-
tions from dry bare soil to wet vegetated soil.

The dynamic of water fraction effects were also investigated using
MODIS-derived water fraction data for a ten year period from 2001 to
r Australia according to Fig. 11.

of land pixels in
he maximum water
ask

Percentage of land pixels in
range for the mean water
fraction mask

Percentage of land pixels with
a water fraction variation in
the range

[%] [%]

0.0 0
3.0 0

55.5 0.04
34.7 22.4
5.2 57.3
0.7 9.1
0.5 5.9
0.3 3.5
0.1 1.1
0.0 0.6



Table 2
Statistics of water effected land pixels at SMOS scale over Australia for 2001 to 2010.

Number of days Number of pixels Percentage of pixels [%]

0 33,514 86.8
1–5 3,426 8.9
6–10 550 1.4
11–50 779 2.0
51–100 96 0.3
101–150 29 0.1
151–200 46 0.1
201–250 21 0.1
251–300 33 0.1
N300 123 0.3
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2010. The map of mean water fraction for SMOS pixels across the ten
years was used as a static water cover map for flagging or correcting
standing water effects. Taking 0.08 as the highest threshold of water
fraction for achieving the SMOS and SMAP 0.04 m3/m3 target accuracy
of soil moisture without water correction, there were 13.5% land pixels
over Australia thatwould have been significantly affected bywater bod-
ies in the assumed worst case that all pixels reached their maximum
water fraction simultaneously. In reality, 86.8% of pixels would not
have been affected by the presence of standing water, while 0.6% of
land pixelswould have had awater induced brightness temperature off-
set that would have exceeded the allowable threshold more than 100
times during the 2001 and 2010 period.
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