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The baseline radiometer brightness temperature (Tb) downscaling algorithm for NASA's Soil Moisture Active
Passive (SMAP) mission, scheduled for launch in January 2015, is tested using an airborne simulation of the
SMAP data stream. The algorithm synergistically uses 3 km Synthetic Aperture Radar (SAR) backscatter (σ) to
downscale a 36 km radiometer Tb to 9 km. While the algorithm has already been tested using experimental
datasets from field campaigns in the USA, it is imperative that it is tested for a comprehensive range of land
surface conditions (i.e. in different hydro-climatic regions) before global application. Consequently, this study
evaluates the algorithm using data collected from the Soil Moisture Active Passive Experiments (SMAPEx) in
south-eastern Australia, that closely simulate the SMAP data stream for a single SMAP radiometer pixel over a
3-week interval, with repeat coverage every 2–3 days. The results suggest that the average root-mean-square
error (RMSE) in downscaled Tb is 3.1 K and 2.6 K for h- and v-polarizations respectively, when downscaled to
9 kmresolution. This increases to 8.2K and6.6 Kwhen applied at 1 kmresolution. Downscaling over the relatively
homogeneous grassland areas resulted in 2 K lower RMSE than for the heterogeneous cropping area. Overall, the
downscaling error was around 2.4 K when applied at 9 km resolution for five of the nine days, which meets the
2.4 K error target of the SMAP mission.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Soil moisture is of great importance to global water cyclemonitoring
and prediction, especially in agriculture, hydrology and meteorology
(Seneviratne et al., 2010; Wagner et al., 2003). With the development
of remote sensing technology (Jackson, Hsu, & O'Neill, 2002; Wagner
et al., 2007), globalmapping of soil moisture from satellites is becoming
a viable alternative to traditional monitoring of soil moisture by in situ
networks of stations (Hain, Crow, Mecikalski, Anderson, & Holmes,
2011). Consequently, methods are being developed to make use of
this emerging soil moisture information to constrain numerical model
prediction of soil moisture, and hence improve the forecasting of
weather and floods (Albergel et al., 2010; Draper, Mahfouf, & Walker,
2011; Houser, De Lannoy, & Walker, 2012; Reichle, Walker, Koster, &
Houser, 2002), leading to significant societal benefits.

Over the past decade, passive microwave remote sensing has
emerged as the most promising approach for soil moisture mapping,
due to its stronger and more direct connection between the observed
brightness temperature (Tb) and the near surface soil moisture (top
eering, Room 156/Building 60,
Tel.: +61 3 9905 4957.
5 cm), than with active microwave sensing (radar backscatter) or ther-
mal data (Kerr, 2007). The best results were found at low frequency
(~1.4 GHz), due to the reduced effects by the atmosphere, surface
roughness, vegetation attenuation, and increased observation depth.

The Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al.,
2001) is the first satellite mission dedicated to soil moisture measure-
ment using L-band passive microwave observations, launched by
the European Space Agency in 2009. Despite its high sensitivity to
near-surface soil moisture, radiometer technology suffers from having
a relatively low spatial resolution of approximately 40 km, due to limi-
tations on the maximum antenna size that can be operated in space.
Conversely, active microwave observations, which are more difficult
to be interpreted for soil moisture content due to the confounding
effects of vegetation and surface roughness, have a much finer spatial
resolution (b3 km). Therefore, NASA is developing the Soil Moisture
Active Passive (SMAP) mission (Entekhabi et al., 2010) scheduled for
launch in January 2015 that will take advantage of the synergy between
active and passive observations. Accordingly, Das, Entekhabi, and Njoku
(2011) have developed a baseline algorithm to overcome the individual
limitations of satellite-based L-band radiometer and radar observations.

This baseline algorithmdownscales the coarse scale brightness tem-
peratures using the finer resolution radar backscatter cross-sections.
The final soil moisture product is then retrieved from the downscaled
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brightness temperature at 9 km spatial resolution, which is deemed
suitable for hydro-meteorological applications such as flood prediction
and agricultural activities (Albertson & Parlange, 1999; Weaver &
Avissar, 2001). The algorithm has been tested with airborne field cam-
paign data collected by the Passive and Active L-band System (PALS)
instrument over various regions of the Continental United States
(Das et al., 2011, 2014). However, more extensive testing of the
algorithm over different land covers and hydro-climatic regimes is
imperative before application to the global SMAP data stream. The
target accuracy of this brightness temperature downscaling algorithm
is 2.4 K as explicitly stated in the SMAP Algorithm Theoretical Basis
Document (ATBD, Entekhabi, Das, Njoku, Johnson, & Shi, 2012).

Other downscaling approaches have been studied using synthetic
active and passive observations, such as theBayesianmerging algorithm
(Zhan, Houser, Walker, & Crow, 2006), which uses an inherently
different strategy, resulting in a downscaled soil moisture product di-
rectly through the synergy of the active and passive data in a Bayesian
framework. However, such a technique has only been tested in an
Observation System Simulation Experiment (OSSE) framework not
with real data. A further candidate downscaling approach is based on
the change detectionmethod, using the assumption of an approximately
linear dependence of radar backscatter and brightness temperature
change on soil moisture change (Narayan, Lakshmi, & Jackson, 2006;
Piles, Entekhabi, & Camps, 2009). However, this downscaling algorithm
has limitations because of its operational implementation, and is not
well-tested using field campaign data.

In this study, the baseline brightness temperature downscaling
method for the SMAP mission (Das et al., 2014), which is based on the
assumption of a near-linear relationship between radar backscatter
(σ) and radiometer brightness temperature (Tb), is tested using
airborne passive and active microwave observations collected over a
semi-arid landscape during the SoilMoisture Active Passive Experiments
(SMAPEx) conducted in Australia in 2010–2011, allowing assessment of
the robustness of this baseline downscaling algorithmover different land
conditions. The linear regression parameters are estimated using SMAP-
type passive and active microwave data at 36 km resolution. These pa-
rameters are then applied in the algorithm using aggregated radar data
at 3 km to derive downscaled passive microwave observations at 9 km
resolution, with the objective to evaluate the accuracy of the brightness
temperature downscaling method. Although the ultimate objective of
the SMAP mission is to produce a downscaled soil moisture product,
this can only be achieved once the assumption that the baseline bright-
ness temperature downscaling procedure is sufficiently accurate. Subse-
quent to this, the standard and well-accepted passive microwave soil
moisture retrieval algorithms are applied. Therefore, the purpose of
this paper is to challenge the baseline brightness temperature downscal-
ing approach as proposed in the SMAP ATBD (Das et al., 2014; Entekhabi
et al., 2012) and to test its robustness in terms of the downscaled bright-
ness temperature values, according to the requirements set out in ATBD
(Entekhabi et al., 2012). Testing of the final soil moisture retrieval accu-
racy following the downscaling of the brightness temperature is outside
the scope of this study.
2. Data set

The Soil Moisture Active Passive Experiments (Panciera et al., 2014)
comprised a series of three campaigns undertaken over a one-year time
frame (winter July 5–10, 2010; summer December 4–8, 2010; and
spring September 5–23, 2011), and were specifically designed to
contribute to the development of radar and radiometer soil moisture
retrieval algorithms for the SMAP mission. The SMAPEx study area,
with a size of approximately 38 km × 36 km, is situated within the
Murrumbidgee River catchment (34.67°S, 35.01°S, 145.97°E, 146.36°E)
as shown in Fig. 1. This site was chosen for testing the SMAP downscal-
ing algorithm performance due to its flat topography, high density of
soil moisture monitoring stations, and spatial variability in soil, vegeta-
tion and land use.

The SMAPEx area is characterized as semi-arid with a relatively flat
topography, comprising of approximately 30% cropping area. The soil
types are predominantly clays, red brown earths, and sand over clay,
thus allowing an investigation of the downscaling algorithm under
unique geophysical and meteorological conditions that are so far not
tested for the downscaling algorithm. As shown in Fig. 1, the western
part of the SMAPEx site is dominated by cropping areas, while the east-
ern half consists mostly of grassland areas, including a large water body
in the north-eastern quarter (approximately 500 m × 5 km in size).
Some woodlands along the south-to-north flowing Yanco River, as
well as some small forest areas in the far East of the SMAPEx area, are
also present. This study site represents the heterogeneous land cover
conditions that are typical of many landscapes, and thus required
to evaluate the robustness of the SMAP active–passive baseline down-
scaling algorithm performance.

The SMAPEx airborne instruments allowed the acquisition of con-
current active and passive microwave remote sensing measurements
at 1.26 GHz and 1.41 GHz (L-band) frequencies respectively, being
the same as the future SMAP sensors. Those data were collected by cov-
ering an area the size of a SMAP radiometer footprint (approximately
36 km × 38 km for the EASE grid at 35°S latitude) over a landscape
typical of south-eastern Australia, using a research aircraft. The
SMAPex airborne instrument suite consists of the Polarimetric L-band
Multibeam Radiometer (PLMR) and the Polarimetric L-band Imaging
Synthetic Aperture Radar (PLIS), which when used together on the
same aircraft can provide a SMAP-like data stream for developing and
testing of the algorithms applicable to the SMAP mission viewing
configuration. The SMAPEx flights also mimicked a time series of SMAP-
like observations with a 2–3 day revisit time. A complete description of
the experiment design can be found in Panciera et al. (2014).

In order to closely replicate the prototype SMAP data stream for de-
velopment and testing of the downscaling techniques, data collected
during the SMAPEx field campaigns were processed in terms of resolu-
tion aggregation (36 km for passive and 3 km for active) and incidence-
angle normalization (to 40° reference angle), to be in line with the
spatial resolutions of SMAP (Wu, Walker, Rüdiger, Panciera, & Gray, in
press). The accuracy of the simulated SMAP data stream used in this
study has been determined as comparable to the error budget of the
SMAP data stream, which is approximately 1.0 dB for backscatter at
3 km resolution and 1.3 K for brightness temperature at 36 km resolu-
tion (Wu et al., in press). The original resolutions of the data sets are
1 km for the PLMR brightness temperatures and 10–30 m for the PLIS
backscatter. Since they have been upscaled to 36 km and 3 km respec-
tively for the purpose of application, the PLIS data were also aggregated
to 1 km and9 km to evaluate the performance of the SMAPdownscaling
algorithm at different spatial resolutions, since the native resolution of
the SMAP radar is actually 1 km. Moreover, the reference Tb data used
for evaluation of the downscaling results come from the original 1 km
PLMR, and were therefore aggregated to resolutions of 3 km and 9 km
for use as reference at a range of scales.

The radiometer and radar data used to test this baseline downscal-
ing algorithm were from the third SMAPEx campaign (SMAPEx-3,
September 5–23, 2011), which was conducted during the spring vege-
tation growing season. This campaign was used since it comprised
nine regional flights over a 3-week time period with the 2–3 day revisit
time of SMAP. A sample of the simulated SMAP data stream used in this
study is shown in Fig. 2.

3. Methodology

The baseline downscaling algorithm (Das et al., 2014) to be imple-
mented for the SMAP mission aims to merge coarse resolution L-band
passivemicrowave brightness temperature (Tb, in Kelvin)with fine res-
olution L-band active microwave backscatter coefficient (σ, in decibel)



Fig. 1. Overview of the SMAPEx site showing the SMAP pixel sized study site, and the SMAP grid on which the 36 km resolution radiometer data, 3 km resolution radar data and 9 km
resolution active–passive downscaled product will be provided, together with area R in the north-eastern corner where the rainfall events happened during the third SMAPEx field
campaign.
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based on the main assumption of a near-linear relationship between
them when observed at the same time, scale, and incidence angle. The
algorithm is briefly described in the following paragraphs, while a
complete description is available in Das et al. (2014).

In the following the naming convention of ‘C’ (coarse), and ‘F’ (fine)
represents the Tb and/or σ at 36 km and 3 km, respectively. Implemen-
tation of this method requires a background Tb at C resolution, with the
variation of Tb imposed by the distribution of fine scale σ within C
modulated by β(C) using the linear regression between Tb and σ at C
resolution according to:

Tbp F j

� �
¼ Tbp Cð Þ þ β Cð Þ

� σpp F j

� �
−σpp Cð Þ

h i
þ Γ� σpq

Cð Þ−σpq
F j

� �h in o
: ð1Þ

where p indicates the polarization, includingh- and v-pol; and ppmeans
co-polarization of radar observations σ, including hh or vv-pol. Correla-
tions between four different combinations of Tbp and σpp have been
Fig. 2. Example of the simulated SMAP prototype data from PLMR and PLIS observations acro
(a) backscatter (σ) at vv-polarization and at 3 km resolution aggregated from PLIS; (b) bright
(c) Tb at v-polarization and at 3 km resolution aggregated from PLMR; (d) Tb at v-polarization
analyzed and will be presented in this paper. Tbp(Fj) is the brightness
temperature value of a particular pixel “j” of resolution F, and σpp(Fj)
is the corresponding radar backscatter value of pixel “j”. In this study
the value for σpp(C) (in the unit of dB) was obtained by aggregating
10 m resolution PLIS data (in power units) within the coarse footprint
C, with Tbp(C) aggregated from 1 km resolution PLMR observations
(in Kelvin). Consequently, β(C), which depends on vegetation cover
and type as well as surface roughness, is assumed to be time-invariant
andhomogenous over the entire 36 km pixel and that it can be obtained
through the time-series of Tbp(C) and σpp(C). Since the radar also pro-
vides high-resolution cross-polarization (hv-pol) backscatter measure-
ments at resolution F, which is mainly sensitive to vegetation and
surface roughness, the sub-grid heterogeneity of vegetation/surface
characteristics within resolution C can be captured as [σpq(C) −
σpq(Fj)] by the radar, where pq represents hv-pol. This heterogeneity in-
dicator is then converted to variations in co-polarization pp backscatter
by multiplying a sensitivity parameter Γ for each particular grid cell C
and season defined as Γ = [δσpp(Fj) / δσpq(Fj)]C. In other words, the
ss 9 days of SMAPEx-3 experiment (D1 to D9), with incidence angle normalized to 40°:
ness temperature (Tb) at v-polarization and at 36 km resolution aggregated from PLMR;
and at 9 km resolution aggregated from PLMR.
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Fig. 3. (a) Correlation between brightness temperature (Tb) and backscatter (σ) at different polarizations as shown, and spatial distribution of average Radar Vegetation Index (RVI) across
the 9 days (both correlation coefficient and RVI are displayed on a scale from 0 to 1) at 3 km spatial resolution; (b) plot of these correlation coefficients between Tb and σ at different po-
larizations according to RVI.
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term Γ × [σpq(C) − σpq(Fj)] can be described as the projection of the
cross-polarization sub-grid heterogeneity onto the co-polarization
space, thus converting the information of vegetation and surface charac-
teristics to the variation of co-polarization backscatter. This term is
converted to brightness temperature through multiplication by β(C)
in Eq. (1).

Using Eq. (1) in this study, the 36 km resolution Tb is downscaled to
3 km resolution. The Tb at the intermediate resolution, i.e. 9 km, can be
obtained by twomethods: i) directly upscaling the 3 kmdownscaled Tb
to 9 km through linear aggregation; or ii) first averaging the backscatter
data (in power unit) from 3 km to 9 km, and subsequently using it in
place of the fine resolution backscatter data in Eq. (1). Both methods
are assessed in this paper. Moreover, due to the high resolution back-
scatter provided by the SMAPEx airborne instruments, the 36 km reso-
lution Tb can be downscaled to 1 km resolution using 1 km resolution σ,
thus assessing the skill of this downscaling algorithm at three different
scales: 1 km, 3 km and 9 km.

The downscaled Tb at fine resolution is heavily dependent on the
quality of the overall radiometer data at coarse scale, the relative back-
scatter difference within the coarse grid, and the relationship with Tb as
represented by the regression slope that is added to the background
value. The performance of the downscaling algorithm at different reso-
lutions is evaluated by comparing the downscaled Tbwith the PLMR Tb
data at 1 km, 3 km and 9 km resolutions (aggregated from its original
1 km resolution), respectively, in order to assess themerit of this down-
scaling method in preparation for SMAP.

4. Results

4.1. Robustness of the linear active–passive relationship

The robustness of the linear relationship between Tb and σ is tested
in this section for the six possible polarization combinations (i.e. Tbh and
σhh, Tbv and σhh, Tbh and σvv, Tbv and σvv, Tbh and σhv, Tbv and σhv),
aiming to determine the best combination for estimating the parameter
β. Consequently, the brightness temperature and backscatter observa-
tions from PLMR and PLIS were spatially aggregated to 3 km resolution,
resulting in a total of 144 pixelswithin the study area, presenting differ-
ent levels of vegetation heterogeneity. Examples of those data are
shown in Fig. 2(a) and (c).
The correlation coefficient R2, used to quantify the correlation be-
tween Tb and σ for each 3 km pixel, was calculated using the entire
time series of Tb and σ of each individual pixel. Results for the different
polarization combinations are shown in Fig. 3. Out of those, σ at
vv-polarization showed the best correlation with Tb at both h- and v-
polarizations; these results are in good agreementwith those presented
inDas et al. (2011). Therefore, the relationships ofσvv and Tbvwere used
to estimate β at v-pol, while σvv and Tbh were used to estimate β at
h-pol, thus retrieving the downscaled Tb at h- and v-pol, respectively.

The influence of vegetation conditions on the correlation between Tb
and σ was also investigated. The Radar Vegetation Index (RVI) was
introduced as an indicator of the compound vegetation conditions
(including vegetation water content, vegetation biomass), which can
be obtained directly from the radar observations using the different
polarizations by

RVI ¼ 8� σhv= σvv þ σhh þ 2� σhvð Þ; ð2Þ

where the radar backscatter values are in units of power (Kim& van Zyl,
2009). Fig. 3 shows the average RVI values in each 3 km pixel calculated
from the 9 days of radar observations aggregated to 3 km, in order to
characterize the vegetation conditions. This was done assuming that
vegetation conditions (and thus their associated RVI values) did not
change significantly across the 3-week period. For this experiment,
the standard deviation (in time) of the RVI was found to be less than
0.1 across the entire study area.

While the R2 between Tb and σ was generally larger in the western
two thirds than in the east of the SMAPEx area, the values of RVI were
smaller in the west than in the east. Although it was expected that the
highest correlation would be for low vegetation areas, the reason for
the higher RVI in the east is due to some small forests in the area and
trees along the Yanco River (see Fig. 3). This indicates that the down-
scaling algorithm performance will be poorer in areas with denser
vegetation.

The sensitivity of Tb to changes in σ was analyzed using the slope
of the linear regression (parameter β) as a measure of quality. The rela-
tionship between β and RVI is displayed in Figs. 4 and 5, with Fig. 4
showing the relationship between Tbv and σvv anomalies under differ-
ent vegetation conditions (i.e. different RVIs), and the sensitivity param-
eter β estimated from observations of Tbv and σvv within the entire

image of Fig.�3


Fig. 4. Relationship between brightness temperature at v-polarization (Tbv) and backscatter anomalies at vv-polarization (σvv) at 3 km resolution, for different vegetation characteristics
according to the Radar Vegetation Index (RVI) calculated from 3 km radar observations.
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study area. Both RVI and β were aggregated to 3 km resolution. These
scatter plots show that: 1) Tbv and σvv have a near-linear relationship;
2) the magnitude of β reduces as vegetation density increases, indicat-
ing that the sensitivity of brightness temperature to backscatter de-
creases, thus showing the dependence of sensitivity on the vegetation
density. Fig. 5 shows the parameter β and its associated standard devi-
ation plotted as a function of the RVI. The standard deviation of β esti-
mation is higher at the RVI extremes, mainly due to the limited counts
of Tb and σ pairs for those values. According to the numbers of points
in each plot, most of the points are within the range of RVI from 0.3 to
0.6, indicating that vegetation with RVI 0.3–0.6 dominates this study
area. Investigation of the relationship between RVI and the accuracy of
the downscaling algorithm for a specific area is out of the scope of this
Fig. 5. Dependency of regression parameter β (a) and associated standard deviation (b) of estim
izations was estimated using backscatter (σ) at vv-polarization for brightness temperature (Tb
study, butwill possibly provide a directmethod of estimating the down-
scaling performance globally from SMAP radar observations.

Given that σvv showed the best correlation with Tbv, the sensitivity
parameter β for performing the downscaling in this study has been es-
timated based on the combination of Tbv and σvv. In this particular
downscaling algorithm, βwas estimated from Tb andσ data both aggre-
gated to 36 km resolution, in order to align with the resolutions of
SMAP. As a result, using the 9-days' time series of aggregated Tbv and
σvv, β over the entire area has been estimated as approximately
−2.2 K/dB, with the average RVI across the whole area being around
0.5, aligning with the correlation between β and RVI as shown in
Figs. 4 and 5. The same approach was applied to estimate β using Tbh
and σvv, for the downscaling of Tb at h-pol. In this case, similar trends
ation from the Radar Vegetation Index (RVI) at 3 km resolution. The β at h- and v-polar-
) at h- and v-polarizations.
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for β estimation and its standard error were found with respect to RVI,
as shown in Fig. 5. However, the magnitude of β at different RVIs is on
average 1.2 K/dB higher than that estimated from Tbv and σvv, implying
that the sensitivity of Tbh to σvv is higher than the sensitivity of Tbv to
σvv. Regardless of the actual variation of vegetation within the entire
area,βwas estimated as a single value across the 36 kmarea as outlined
in the SMAP baseline active–passive algorithm. Based on this prelimi-
nary analysis of the relationship between RVI and β, it is suggested
that a more detailed investigation of the spatial distribution of βwithin
the 36 km area should be undertaken, including an investigation of a
potential spatially varying β implementation in the SMAP baseline
algorithm.

4.2. Estimation of Γ

The parameter Γ, i.e. the sensitivity of σvv to σhv, can be estimated
using snapshots of σvv and σhv values at each pixel within a certain
area. Since radar backscatter σ at hv-pol is more related to the vegeta-
tion canopy than to the soil, the distribution of σhv across the entire
area can be used to characterize the heterogeneity of vegetation condi-
tions in that area. Therefore, downscaling results can be improved by
including the influence of vegetation on the backscatter observation,
by converting the σhv variation within the entire area to σvv variation,
by multiplying with the sensitivity Γ.

In order to obtain an estimate for the parameter Γ, the study areawas
divided into 16 sub-areas of 9 kmby 9 km in size, and the value of Γwas
calculated using the snapshots of all σvv–σhv pairs at 1 km resolution
containedwithin each of those sub-areas, allowing an analysis of the re-
lationship between estimation of Γ and RVI. Accordingly, the day-to-day
variation and average of Γ with respect to RVI are shown in Fig. 6, to-
gether with an example of the distribution of Γ at each 9 km sub-area
across the entire study area on Day 9 (23rd September, 2011). It is
shown that for RVI values ranging from 0.4 to 0.9 the estimation of Γ is
similar, on the order of 0.45, while for RVI values less than 0.4, Γ is
much higher, indicating that the sensitivity of σvv to σhv increases
Fig. 6. Estimation of parameter Γ: (a) Γ plotted as a function of the Radar Vegetation Index (RVI)
over the entire study area on Day 9; each pixel has a size of 9 km × 9 km (low: 0.3; high: 0.6)
when the vegetation cover reduces. Again, larger standard deviations
were found for both extremes due to low counts of pixels.

4.3. Accuracy of downscaling

According to the baseline approach the downscaled brightness tem-
perature at fine resolution are a function of the background Tb value
plus a variation of Tb within the entire area derived from the variation
of the backscatter from the mean. In this study, the background Tb is
taken as the aggregated 36 km Tb from PLMR, and the variation of Tb
at higher resolution is characterized by the variation ofσvv fromPLIS ob-
servations, aggregated to the downscaling resolution. The influence of
vegetation is then deduced using σhv, due to its strong correlation
with vegetation conditions. Consequently, the downscaled Tb results
were retrieved at resolutions of 1 km, 3 km and 9 km, either from aggre-
gating the 1 km resolution downscaled Tb to 3 km and 9 km resolution
respectively, or from first aggregating the 1 km resolution radar obser-
vations to 3 km and 9 km before using them to disaggregate the
36 km Tb. Both methods were applied and showed similar results;
results shown in this paper are based on the former method. Prior to
applying the downscaling algorithm, the main water body in the far
north-eastern section of the area, and some irrigated cropping areas
within the western part of the regional area, were removed (these
areas collectively represented approximately 1% of the entire study
region) to reduce the influence of surface water on the resulting down-
scaling accuracy.

Based on the estimation of β at h- and v-polarizations and the day to
day matrix of Γ estimates derived in the previous sections, the baseline
downscaling algorithm performance was evaluated for each of the nine
days of SMAPEx airborne acquisitions. In order to analyze the influence
of vegetation characteristics on the resulting downscaled Tb, the down-
scaling algorithm was applied in two scenarios: in scenario “A1”, the
vegetation heterogeneity across the study area was ignored; in scenario
“A2”, the vegetation heterogeneity across the study area was taken into
account. In otherwords, A1was characterized by setting Γ=0,while A2
on different days; (b) standard deviation of Γ estimation; and (c) example of Γ distribution
.

image of Fig.�6


Table 1
Accuracy of the SMAP baseline downscaling algorithm. Root mean square error (RMSE) between downscaled brightness temperature (Tb) and reference Tb is shown for the entire study
area across the 9-days (D1 to D9) with respect to polarization and resolution of the final downscaled product; results based on scenario A1 (Γ = 0) and scenario A2 (Γ ≠ 0) are shown.

Downscaling
resolution (km)

D1 D2` D3 D4 D5 D6 D7 D8 D9 Average

h v h v h v h v h v h v h v h v h v h v

1 A1 11.7 9.1 10.4 8.2 10.5 7.9 10.6 8.3 9.1 6.8 9.0 6.7 8.1 6.0 8.4 6.2 8.2 5.8 9.5 7.2
A2 10.5 8.4 9.5 8.0 9.0 7.1 9.2 8.0 8.1 6.2 8.1 6.1 6.3 5.2 7.0 5.6 6.6 5.1 8.2 6.6

3 A1 9.1 7.0 7.7 6.1 7.6 5.6 7.6 5.9 5.8 4.4 6.2 4.3 5.1 3.6 5.4 3.8 5.2 3.6 6.6 4.9
A2 8.6 6.7 7.3 6.0 5.6 4.6 6.8 5.5 4.9 4.2 5.2 4.1 4.2 3.3 4.2 3.3 3.3 3.2 5.5 4.5

9 A1 6.0 4.7 4.7 3.9 4.9 3.5 4.9 3.8 3.2 2.5 3.3 2.4 2.5 1.8 3.2 2.2 2.9 1.8 3.9 2.9
A2 5.8 4.5 4.6 3.7 3.9 3.1 4.0 3.5 2.5 2.4 2.4 2.1 1.5 1.5 2.0 1.7 1.9 1.5 3.1 2.6
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used Γ≠ 0 in Eq. (1). In the following, the results of the downscaling are
compared among the two scenarios.

Downscaling results on each day of SMAPEx-3 are shown in Table 1
for different resolutions and polarizations. It is noted from Table 1 that
the downscaled results at v-polarization had relatively lower RMSE
than those at h-polarization, likely due to thebetter correlation between
σvv and Tbv than between σvv and Tbh. Moreover, there is an obvious
reduction of RMSE at both polarizations when applied to a larger
scale, e.g. from 1 km to 3 km and 9 km respectively, which can be
attributed to the reduction of random (white) noise following the
aggregation of the backscatter data.

Apart from resolution and polarization, the RMSE was further
reduced when taking into account the variation of vegetation across
the entire area, confirming that the Γ term in Eq. (1) can be used to com-
pensate the influence of vegetation conditions to some degree, thus
yielding a more accurate finer resolution brightness temperature
product. Quantitative results are provided in Table 1, showing that
the average RMSE of the 9 days at v-polarization was lower by 1–2 K
than ath-polarization, and decreased by approximately 5 Kwhen aggre-
gating from 1 km to 9 km. As before, after considering the influence of
vegetation heterogeneity (scenario A2 with Γ≠ 0), the RMSE of down-
scaled Tb had an improvement of 1.2 K at h-polarization and 0.5 K at
v-polarization over the results based on the assumption of a homoge-
neous vegetation (scenario A1, Γ = 0). Moreover, during 5 out of
9 days the RMSE was found to be around 2.4 K at 9 km resolution,
which is within the target error of the SMAP mission (2.4 K when the
vegetation water content is less than 5 kg/m2), confirming that the
baseline downscaling algorithm has the potential to retrieve medium
resolution brightness temperature with an error of around 2.4 K over
heterogeneous areas.

In order to confirm that the use of σvv is more efficient than σhh, as
suggested by the correlation analysis between Tb and σ, an additional
test was performed using coarse resolution Tb and fine resolution σhh

to retrieve Tb at scales of 1 km, 3 km and 9 km. The performance levels
of the algorithmusingσvv andσhh arepresented in Table 2, showing that
the RMSE based on σvv is around 0.2 to 0.9 K lower than that based on
σhh, confirming the results fromFig. 3where therewas a stronger corre-
lation of σvv to Tb than σhh.

Examples of downscaled Tb maps are shown in Fig. 7 for Day 9 at
1 km, 3 km and 9 km resolutions, alongside the reference data from
PLMR, and the pixel-by-pixel Tb difference between downscaled and
reference values. It is noted that the downscaling errors are generally
larger in the western part of the study area than the central section,
Table 2
Downscaling algorithm performance in terms of root mean square error (RMSE) when
using backscatter at hh- and vv-polarizations, together with the RMSE difference between
these two polarizations.

Downscaling resolution (km) σvv σhh Difference

h v h v h v

1 8.2 6.6 9.1 7.2 −0.9 −0.6
3 5.5 4.5 6.2 5.0 −0.7 −0.5
9 3.1 2.6 3.3 3.3 −0.2 −0.2
which is mainly due to the western part being dominated by irrigated
and dry-land cropping areas, while the central area is largely covered
by grassland. A consequence of the large heterogeneity of the cropping
areas was a relatively large RMSE in those areas, as highlighted by
the RMSE behavior from west to east of the entire region in Fig. 8.
Dependence of RMSE for the 36 strips (each with 1 km width when
progressing from west to east and having 36 km length in the north–
south direction) covering the SMAPEx study area is displayed in Fig. 8.
Overall, the RMSE of the central area, the dominantly grassland area
between distances of 18 km and 28 km, is around 2 K lower than
elsewhere.

As shown in Figs. 3 to 5, β estimation should be lower than−3 K/dB
(at v-pol) and −4 K/dB (at h-pol) in the western area and should be
higher than −2 K/dB (at h- & v-pol) in the eastern area due to the
variation in RVI across the entire region. However, since the constant
value of β from 36 km Tb and σ is used in this study, which is−2.2 K/dB
(at v-pol) and −3.4 K/dB (at h-pol), there is an under-estimation in
the west and over-estimation in the east, which is directly related to
themagnitude of β variation from the nominal value used and therefore
further influencing the accuracy of this downscaling algorithm. More-
over, the RMSE in the east is relatively high, due to the influence from
the large areas of woodland along the river which runs approximately
south to north in that part, and some other areas of dense forest.

A further evaluation of the skill of this particular downscaling algo-
rithm was through the correlation between downscaled and reference
Tb at 9 km resolution (Figs. 9 and 10). While these two black dashed
lines represent RMSE less than 2.4 K (the SMAP target), the outer two
black solid lines represent RMSE less than 4 K (the SMOS target). It is
noted from Figs. 9 and 10 that more than 93% of the points from D3
(“D” represents “Day”) to D9 are within the SMOS target range, and
five of them (from D5 to D9) have more than 90% of points within the
SMAP target range, showing that the baseline downscaling algorithm
can provide accurate Tb at 9 km.

Nonetheless, the results of the first days i.e. D1 to D4 displayed rela-
tively poor performancewhen compared to the later days. In particular,
D1 and D2 contain significant noise levels. One possible reason is attrib-
uted to increased heterogeneity in near surface soil moisture due to the
heavy rainfall events in the northeastern part of the study area at the
beginning of SMAPEx-3 as shown in Figs. 1 and 2(c), subsequently
resulting in more heterogeneous radiometer and radar observations. It
is shown in Figs. 9 and 10 that D1 to D4 had a higher standard deviation
of Tb (reference Tb) when compared to the other days. Since Tb is more
sensitive to the immediate soil moisture changes due to the rain in this
region, the value of Tb drop according to soil moisture increase is more
significant than the radar backscatter changes, as the latter is more in-
fluenced by the vegetation cover and consequently less sensitive to
the soil moisture changes. Consequently, the sensitivity of backscatter
to Tb change decreases, resulting in an obvious difference in β for the
area subjected to rainfall when compared with the other drier areas,
which would have dominated the derivation of the β value used. This
is underlined by the RMSE in the north-eastern part (area R) of the
study area being around 3 K higher than throughout the remaining
area (at 3 km resolution), impacting the overall large RMSE for that
day, as shown in Fig. 11. In addition, the average RVI of area R is ~0.56,



Fig. 7. An example of downscaling results on SMAPEx-3 Day 9 (23rd Sept., 2011): (a) Downscaled brightness temperature (Tb) at v-polarization for 1 km, 3 km & 9 km resolutions;
(b) reference Tb at v-polarization for 1 km, 3 km & 9 km resolutions; and (c) absolute difference between downscaled Tb and reference Tb of each 1 km, 3 km & 9 km resolution pixel.
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which is approximately 0.15 higher than the average RVI of the entire
area, further affecting the correlation between Tb andσ in this particular
area. The reason is that higher RVI is a consequence of denser vegetation
and therefore more influence of the vegetation on the radar observa-
tions, and accordingly a higher error when downscaling due to the
lower correlation between Tb and σ at higher RVI values (see Fig. 3).
Therefore, both denser vegetation and more heterogeneous wetness
Fig. 8. Downscaling root mean square error (RMSE) at 1 km resolution for each strip,
having 36 km length in north–south direction and 1 km width in west–east direction,
starting from the west of the SMAPEx study area and progressing to the east, on Day 9
(23rd September, 2011); cropping area in the west, relatively homogeneous grassland
area in the middle, and woodland along the river and some forest in the east.
conditions associated to rainfall events have worked together to result
in the higher errors on D1 to D4. The influence from the rain event
reduced during the dry-down, especially after D4, as shown through
the decrease in RMSE from D5 onwards.

A comparison between this downscaling algorithm and the mini-
mum performance was also conducted. The minimum performance
was defined as a uniform Tb according to the value of Tb at 36 km reso-
lution. In this case, the average RMSE across all 9 days was around 4.8 K
at h-pol and 4.2 K at v-pol at 9 km resolution, being approximately 1.6 K
higher than for the baseline downscaling algorithm.

The above analysis on the accuracy of the downscaling algorithm
was done after removing the water-bodies and irrigated fields, which
collectively represented approximately 1% of the entire SMAPEx study
area. The downscaling performance was also evaluated when including
the water bodies that had previously been masked out in the aggrega-
tion procedure, in order to simulate more realistic SMAP data (as
many water bodies will not be reliably identified for masking). Conse-
quently, this allowed the effect of relatively small water bodies on the
accuracy of the downscaling approach to be quantified.Without remov-
ing the water-bodies, the average RMSE of all nine days at 9 km resolu-
tion increased to 3.6 K and 3.4 K at h- and v-polarizations, respectively,
which is approximately 0.7 K higher than results with thewater-bodies
accurately removed. Therefore, when applying the baseline downscal-
ing algorithm to an area that includes more than 1% of water-bodies
the downscaling error would be even larger.

To account for any day-to-day soil temperature variation, βwas also
estimated using the emissivity and σ, with emissivity calculated as Tb
divided by soil temperature on that day. The new estimate of β was
thenmultiplied by the soil temperature, before substituting for the pre-
vious value of β based on Tb and σ. However, the average RMSE of
downscaling Tb based on this new estimation of β was 3.4 K at h-pol
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Fig. 9. Scatter plots of downscaled and reference brightness temperature (Tb) at 9 km resolution on each of SMAPEx-3 Day 1 to Day 9, at h-pol (open dots) and v-pol (solid dots); inner
black solid line: RMSE is 0 K; two black dashed lines: RMSE = 2.4 K (SMAP Tb target accuracy); outer two black solid lines: RMSE = 4 K (SMOS Tb target accuracy).
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and 2.7 K at v-pol at 9 km resolution, being only slightly different to pre-
vious results.

4.4. Reliability of baseline downscaling algorithm

In this study, the accuracy of downscaling results was primarily de-
termined by the parameter β as shown in Eq. (1). Themain limitation of
the downscaling method introduced in Das et al. (2014) is the assump-
tion of a constant β across the entire study area. The parameter β, used
to denote the sensitivity of Tb to σ, in reality varies with respect to the
land surface conditions, as shown in Figs. 4 and 5. Therefore, the as-
sumption of a constant value of β could not represent the real distribu-
tion of β due to the heterogeneity of the study area. For example, if the
study areawas entirely covered by homogenous grassland, then the use
of a singleβwould bemore appropriate for use in downscaling. Howev-
er, as shown in the above results, the variation on land cover types
across the entire site, or soil moisture heterogeneity due to raining
events in someparticular areas, or somewater-bodies, or surface rough-
ness, or vegetation evolution due to different seasons would result in
different values of β across the site.
As βwas estimated from time-series of Tb and σ at 36 km, more ac-
curate regression could be obtained from a longer time period so as to
make it statistically significant. However, the vegetation and roughness
conditions are changing as time goes on, which will result in different β
estimates through time. Therefore, a moving window of β estimation
should be adopted when applying the downscaling algorithm to a
long time period. This is not done in this study but should be acknowl-
edged for future application.

5. Conclusions

The objective of this study was to test the robustness of the baseline
downscaling approach proposed for the SMAPmission, using a simulat-
ed SMAP data stream from the SMAPEx field campaign in Australia. The
errors associated with the downscaling algorithm were assessed for
several resolutions of the final downscaled product and at both h- and
v-polarizations. The average RMSE of downscaled Tb across 9 days at
9 km resolution was 3.1 K and 2.6 K at h- and v-polarizations, which in-
creased to 5.5 K and 4.5 K at 3 km resolution, and 8.2 K and 6.6 K at 1 km
resolution. The algorithmwas found to perform poorly in the early days
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Fig. 10. Scatter plots of downscaled and reference brightness temperature (Tb) at 9 km
resolution for all SMAPEx-3 acquisitions (Day 1 to Day 9), at h-pol and v-pol. Solid dots
and stars represent data from SMAPEx-3Day 5 to Day 9,while the open dots and stars rep-
resent data from SMAPEx-3 Day 1 to Day 4. Inner black solid line: RMSE is 0 K; two black
dashed lines: RMSE = 2.4 K (SMAP Tb target accuracy); outer black solid lines: RMSE =
4 K (SMOS Tb target accuracy).
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of the experiment due to large rainfall events in the study area that cre-
ated a large spatial heterogeneity in terms of soil moisture content. In
contrast, the last 5 days of the experiment, characterized by a drying
down period and no rainfall, showed an increase in the algorithm
performance, with an RMSE consistently better than 2.4 K at 9 km
resolution, indicating that the baseline downscaling algorithm has the
potential to fulfill the requirements of SMAP.

It was also shown that the accuracy of the downscaling approach
was primarily determined by the correlation between Tb and σ, which
was in fact affected by the vegetation characteristics across the entire
study area and the sensitivity of brightness temperature relative to
radar backscatter (as quantified by the slope β of the linear regression).
Moreover, it was found that σ at vv-polarization was best correlated to
Tb at both polarizations, therefore being more suitable for use in the
downscaling algorithm than σ at hh- and hv-polarizations. While a bet-
ter estimation of β at 36 km scalemay be expected fromSMAP than that
achieved here, due to the relatively short nature of this experiment, the
impact from temporal changes would be an important consideration.
Fig. 11. Comparison between the root mean square error (RMSE) of the north-eastern
(area “R”) of the SMAPEx study area, and RMSE of the entire study area. Calculations are
for 3 km resolution at both polarizations across 9 days.
Some preliminary results on the relationship between β and RVI,
and the relationship between Γ and RVI have been discussed in this
study. They indicate that an improvement in the parameterization of β
and Γ may be obtained through their correlation with RVI, allowing a
better retrieval and more accurate spatial distribution of β and Γ across
the entire area. In future studies it is also important to investigate the
estimation of β and Γ at the pixel resolution with respect to land
cover, vegetation water content, surface roughness etc., and how these
can improve the accuracy of the downscaling algorithm by incorporat-
ing this fine scale information into the downscaling approach.
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