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The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, provides global maps of soil
moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial
resolution of 40–50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS
pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave
emission. The current baseline soilmoisture retrieval algorithmadopted by SMOS and implemented in the SMOS
Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling
the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is
tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix
Eucalypt forest andmoderate vegetation types (grassland and crops), with the objective of assessing its ability to
correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis
using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type
causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a
significant amount of forest (40–60%). Although the retrieval approach adopted by SMOS partially reduces this
error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a
fraction of the pixel is occupied by forest (4.1%v/v RMSE,−3.1%v/v bias). An extension to the SMOS approach is
proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed
approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE,−0.3%v/v bias) in
pixels characterised by a critical amount of forest (40–60%), at the limited cost of only a crude estimate of the
optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data
set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment
2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area
equivalent in size to a SMOS pixel.
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1. Introduction

Frequent and global soil moisture observations are crucial to many
environmental disciplines such as flood forecasting (Western et al.,
2004), improved modelling of erosion-affected lands (Castillo et al.,
2003), weather and climate forecasting (Conil et al., 2007; Koster
et al., 2003), and agricultural applications (Bolten et al., 2010). The
first satellite mission specifically designed for remote sensing of
near-surface soil moisture is the Soil Moisture and Ocean Salinity
(SMOS) mission from the European Space Agency (ESA), succesfully
launched on November 2, 2009. SMOS carries an L-band (1.4 GHz) 2D
interferometric radiometer that provides near-surface soil moisture
estimates with global coverage, a revisit time of three days and
spatial resolution of 40–50 km (depending on the positionwithin the
field-of-view). The SMOS target accuracy is 4%v/v, which should be
achievable over relatively uniform areas with vegetation water
content up to approximately 5 kg/m2, outside mountainous, urban,
and partially frozen or snow covered areas (CESBIO, 2011; Jackson
et al., 1999; Panciera et al., 2009a; Uitdewilligen et al., 2003).

Soil moisture is generally retrieved from L-band observation by
inversion of a radiative transfer model which simulates the emission of
the Earth's surface under the assumption of spatial homogeneity within
the remote sensor footprint (“uniform pixel” approach). However, the
heterogeneity in surface conditionswithin SMOS footprints (40–50 km)
will obviously be significant. Since the coupling of radiation from
different surface components into the sensor receiving aperture, as
expressed by the radiative transfer and sensor response equations, is
nonlinear, errors may occur in the retrieval of soil moisture at the scale
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of SMOS pixels if these heterogeneities are not accounted for. Several
studies have investigated the effect of heterogeneity of individual land
surface factors (soil moisture, texture and temperature and vegetation
water content) on soil moisture retrieval from passive microwave
observationsusinganalytical analyses. These studies have indicated that
heterogeneity in soil moisture, soil texture and soil temperature results
in soil moisture errors comparable to the instrument noise of a typical
radiometer (Davenport et al., 2008; Galantowicz et al., 2000; Njoku
et al., 1996). However, the effect of heterogeneity in Vegetation Water
Content (VWC) was found to be significant (Bindlish & Barros, 2002;
Van de Griend et al., 2003),with errors as high as 12%v/v volumetric soil
moisture in the worst case of cold, wet soil (Bindlish & Barros, 2002;
Burke & Simmonds, 2003), increasing exponentially with the degree of
VWC heterogeneity (Burke et al., 2004). A limited number of studies
based on coarse-resolution (up to 800 m) airborne data sets collected
during the Washita'92, Southern Great Plains'97 and '99 analysed the
effect of land surface heterogeneity on soil moisture retrieval using real
L-band observations, generally observing that the radiative transfer
parameters of the retrieval algorithms developed with tower-based
radiometers needed to be adjusted for coarse pixels, implicitly
incorporating the effect of land surface heterogeneity. (Drusch et al.,
1999; Guha & Lakshmi, 2002; Jackson, 2001; Jackson et al., 1999).

To compensate for the effect of sub-pixel heterogeneity, a novel
retrieval approach has been adopted for the SMOS mission and
implemented in the SMOS L2 processor (CESBIO, 2011). The approach,
hereby referred to as simply the “SMOS approach”, is based on the
physically-based method proposed by Kerr and Njoku (1993) and
Njoku et al. (1996), and consists of modelling themicrowave emission
from different pixel fractions of the heterogeneous pixel, which are
then aggregated (using areal weighting) to compute the pixel
emission. The method, as implemented in SMOS, relies on the
assumption that land cover is the main source of land surface
variability affecting the soil moisture retrieval. Moreover, in the
presence of only “moderate” canopy conditions (such as crops and
grasslands) and forest with a density below a defined threshold, the
assumption is made that the retrieved parameters (i.e., soil moisture
alone, or both soil moisture and optical depth) are uniform amongst
different scene components (i.e., have the same value for each land
cover fraction within the pixel).

Despite its adoption by the SMOS mission, the approach has thus
far received little consideration in literature. Drusch et al. (1999)
tested the core concept of fractional coverage with the SGP'97
airborne data set. However, the method as applied in that study only
considered a limited number of cases, these being pixels with 100%
vegetation cover and pixels with 80% vegetation cover/20% bare soil,
which do not represent the large variety of real-world conditions.
Moreover, the vegetated fraction was comprised of mostly low-
density vegetation, i.e., mainly rangeland and pasturewith some areas
of crops. Consequently, this study tests the SMOS approach and its
efficacy in compensating for land surface heterogeneity using an
airborne data set that covers a variety of land surface conditions
including a mix of grasslands, crops and Eucalypt forests. The unique
data set used comprises the airborne L-band observations and ground
soil moisture and ancillary data (vegetation, soil temperature, soil
texture and surface roughness) collected during the National Airborne
Field Experiment 2005 (NAFE'05) in the Goulburn catchment, south-
eastern Australia (Panciera et al., 2008). The extent and detail of
ground monitoring performed during NAFE'05 across an entire SMOS
pixel makes this an unprecedented data set to analyse the effect of
land surface heterogeneity on SMOS soil moisture retrieval.

2. Data and methodology

The analysis presented in this paper is divided into three phases.
First, the airborne and ground data from the NAFE'05 experiment are
processed to create coarse-resolution pixels and high resolution soil
moisture maps; the latter are used as validation data to assess the
performance of the soil moisture retrieval at coarse scale. Phase two
uses a traditional two-channel uniform pixel retrieval scheme to
retrieve soil moisture from the coarse observations produced in phase
one, in order to identify the land suface factors whose heterogeneity
have the greatest impact on the soil moisture retrieval and to quantify
the error in soil moisture retrieval induced by such heterogeneity. The
third phase tests a proposed extension to the SMOS L2 approach.

Coarse-resolution brightness temperature (TB) observations were
produced in this study by aggregation of air-borne observations
collected at 1 km resolution on 4 dates across a 40 km×40 km area
during the NAFE'05 experiment. The soil moisture retrieved from
coarse-resolution observations using the three approaches are
compared with validation data sets composed of high-resolution
(1 km) resolution soil moisture maps of the study area, derived from
the 1 km resolution air-borne TB observations. In order to analyse a
variety of retrieval scenarios over different land surface heterogeneity
conditions, which would have be limited if only the 40 km
observations of a single SMOS pixel were considered, the analysis
was additionally conducted at various intermediate resolutions
(5 km, 10 km, 20 km and 30 km). The airborne product used for
validation had been previously verified over eight experimental sites
with ground soil moisture measurements collected over nested grids
at spacing from 6.25 to 1 km, yielding an estimated accuracy better
than 4.8%v/v for crops and grasslands and 6%v/v over the Eucalypt
forest (Panciera et al., 2009a).

2.1. Experiment description

The National Airborne Field Experiment 2005 (NAFE'05) took
place between October 31 and November 25 in the Goulburn River
catchment, located in south-eastern Australia (see Fig. 1). The aircraft
and ground operations were concentrated on a 40km×40 km study
area in the northern part of the catchment, chosen for its moderate
vegetation cover, including crops (mainly wheat and barley),
grassland pasture and a limited area of Eucalypt forest, and the
presence of numerous soil moisture monitoring sites (see Fig. 1).
Airborne passive microwave and concurrent ground data on soil
moisture, vegetation and surface roughness were collected on 18
dates. Heavy rainfalls on October 30 and 31 followed by a dry period
allowed observations across the full range of soil moisture conditions,
with the average soil moisture measured at the continuous monitor-
ing sites decreasing from 47.9%v/v to 11.0%v/v during the experiment.
In this section the NAFE'05 data relevant to this study are briefly
introduced. Full details on the data set, including a description of
the NAFE'05 study region, the airborne and ground instruments, and
the data sets can be found in Panciera et al. (2008) and Panciera et al.
(2009a).

2.1.1. Airborne data
Airborne data were collected using the Polarimetric L-band

Multibeam Radiometer (PLMR). The PLMR is a dual polarised L-band
radiometer which measures both V and H polarised brightness
temperatures (TB) at six incidence angles (7°, 21.5° and 38.5° from
nadir on both sides of the aircraft) when flying in push-broom
configuration. The accuracy of PLMR, derived from daily calibration
during the experiment, was estimated to be better than 1 K (H
polarisation) and 2.5 K (V polarisation) (Panciera, 2009). The data
used in this study to produce coarse-scale SMOS observations were
PLMR observations at 1 km resolution collected from 3,000 m flying
height over the entire 40 km×40 km study area on four consecutive
days a week apart (“Regional flights”, October 31, November 7, 14 and
21). All flights were performed between approximately 7:00 AM and
9:30 AM so as to closely simulate the SMOS overpass time (6:00 AM)
whilst also minimising the possible complications from dew on the
vegetation, which might be significant over some vegetation canopies



Fig. 1. Flightlines, ground validation sites and continuous monitoring sites in the NAFE'05 study area, with land cover map derived from Landsat 5 as background.
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(Saleh et al., 2006). The airborne observations were geo-located using
aircraft position and attitude information and taking into account
topography through aDigital ElevationModel (DEM)of the study area.

Prior to gridding to a 1 km reference grid, the TB observations were
processed to eliminate changes in emissivity due to incidence angle
differences and temporal changes of soil temperature during the
flight, which are undesirable when performing soil moisture retrieval
over large areas. The variation in incidence angle was accounted for
using a procedure proposed by Jackson (2001) which uses beam-
specific correction factors based on the daily average TB for each beam.
Using this procedure, the regional TB observations were normalised to
the incidence angle of the radiometer's outermost beams (38.5°). This
angle was chosen so as to maximise the retrieval accuracy of L-MEB,
which has been shown to be higher at off-nadir angles (Wigneron
et al., 2000), and also because it is very close to the viewing
configuration of the radiometer of the future Soil Moisture Active
Passive (SMAP) mission, extending the relevance of the results
presented in this study. To compensate for the temporal variation of
the surface temperature during the Regional flights (up to 2.6 K
change at 2.5 cm depth between 7:00 and 9:30 AM) the airborne TB
observations were normalised to an intermediate reference time
(8:00 AM) using the surface temperature data from the monitoring
sites. The soil temperature used in the soil moisture retrieval was then
taken as the average soil temperature between the monitoring sites at
the reference time (8:00 AM).

Coarse-resolution TB observations at 38° incidence angle were
produced by aggregating the TB observations collected during the
Regional flights to 5, 10, 20, 30, and 40 km resolutions using a “moving
window” approach. This involved averaging the 1 km TB's falling
within “windows” at each of the resolutions indicated above, which
were moved around the study area in order to increase the sample
size. This technique was chosen to allow the analysis of a much wider
variety of conditions of land surface heterogeneity than is possible
with pixels at 40 km resolution (i.e., uniform pixels as well as
heterogeneous pixels, and heterogeneity of different land surface
factors). The total number of coarse pixels produced was respectively
256, 196, 100, 36 and 4 (over four dates). The reliability of linear
aggregation of high-resolution airborne observations to produce
realistic coarse-scale TB observations was verified by a previous
study by Panciera et al. (2007) using the NAFE'05 multi-resolution
flights, confirming independent analysis by Jackson (2001).
2.1.2. Ground monitoring
Continuous ground observations of rainfall, soil moisture profiles

(0 m–90 cm) and near-surface temperature (2.5 cm and 15 cm) were
provided by eighteen permanent sites, together with continuous soil
temperature (1, 2.5, 4 cm) at eight supplementary sites, four of which
had thermal infrared sensors for canopy temperature (see Fig. 1).
Detailed ground sampling of soil moisture and vegetation properties
was undertaken concurrently with all flights at 8 experimental farms.
These data were used to validate the microwave emission model used
in this study specifically for the study area (Panciera et al., 2009a). Soil
moisture sampling was done using Stevens Water Hydraprobe
dielectric probes, calibrated with over 120 gravimetric field samples
yielding an estimated accuracy of ±3.5%v/v (Merlin et al., 2007).

2.2. L-MEB microwave model

The model used in this study, the L-band Microwave Emission of
the Biosphere model, L-MEB, is the core of the SMOS mission retrieval
algorithm (‘SMOS Level 2’). L-MEB is the result of an extensive review
of the current knowledge of microwave emission by various land
covers and has been described in detail by Wigneron et al. (2007).

2.2.1. Model description
The emission from a vegetated soil surface is modelled in L-MEB

using a ‘τ–ω’ approach with the above canopy brightness temperatures
written as:

TBP ϑð Þ = 1−ωP ϑð Þð Þ 1−γP ϑð Þð Þ 1 + ΓP ϑð ÞγP ϑð Þð ÞTV + 1−ΓP ϑð Þð ÞγP ϑð ÞTEFF ;
ð1Þ

where the subscript p indicates the polarisation (Vertical or Horizontal)
whilst ϑ is the incidence angle, ω the vegetation scattering albedo, γP

is the transmissivity of the vegetation layer, Γ the soil microwave
reflectivity, TV the effective vegetation temperature and TEFF the soil
microwave effective temperature. The first right-hand term of Eq. (1)
represents the direct vegetation emission and the vegetation emission
reflected by the soil and attenuated by the canopy layer, whilst the
second term accounts for the soil emission attenuated by the canopy.

The soil microwave emissivity is related to the reflectivity Γ as:
eG=1−Γ. This is related to the soil dielectric constant (εG) through
the Fresnel equations. The dependence of εG on soil moisture content



Table 1
L-MEB surface type parameters for the main vegetation covers in the study area. θ is soil
moisture. (⁎) the value of optical depth adopted is shown instead of that of parameter b.

Surface type HR QR NRH NRV ttH ttV ωH ωV b

Crop
(wheat and barley)

1.6–
1.1×θ

0 0 −1 1 8 0 0 0.08

Native Grass 1.3–
1.13×θ

0 1 0 1 1 0 0.05 0.12

Forest 0.12 0 0 0.46 0.46 0.07 0.07 0.57⁎

w0=0.3 m3/m3 and b0=0.3 m3/m3 were used for all land cover types.
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for a specific soil type is accounted for using a dielectric mixingmodel.
In this study, the same dielectric mixing models implemented in the
SMOS L2 algorithm were used, i.e., the Dobson model for most soil
types (Dobson et al., 1985) and the Mätzler model in the special case
of very dry sandy soils (Matzler, 1998).

The transmissivity of the vegetation layer γP is calculated from the
vegetation optical depth τP by taking into account the variation in
vegetation slant height with angle as:

γP ϑð Þ = exp −τP ϑð Þ = cosϑð Þ: ð2Þ

In L-MEB a sophisticatedmodelling approach is used to account for
the effect of the vegetation structure on the dependence of the τP on
polarisation and incidence angle. The value of optical depth τP at a
particular incidence angle is expressed as a function of the value of τP
at nadir (τNAD) as in:

τP ϑð Þ = τNAD cos2ϑ + ttP � sin2ϑ
� �

; ð3Þ

where ttV and ttH are empirical vegetation structure parameters that
correct the optical depth for non-nadir views at each polarisation. A
value of ttPN1 or ttPb1 will correspond, respectively, to an increasing
or decreasing trend of τ as a function of the incidence angle ϑ. The
nadir value of the vegetation optical depth τNAD (independent of both
incidence angle and polarisation) can then be related to the
vegetation water content (VWC) or, for global applications, the
vegetation LAI, using empirical relationships, commonly using a linear
relationship based on a land cover specific parameter b for VWC
(Jackson et al., 1982) and b′,b″ for LAI (Wigneron et al., 2007).

The reflectivity (ΓP) of a rough surface is modelled in L-MEB using a
formulation based on Choudhury et al. (1979):

ΓP ϑð Þ = Γ�P ϑð Þ exp −HR ϑð Þ cosNRPϑ
� �

; ð4Þ

where HR is a height parameter accounting for the surface roughness
(related to the standard deviation of surface heights), and parameter
NRP accounts for the dependence of HR on polarisation and view angle.
The approach taken in the SMOS L2 algorithm was adopted in this
study, with HR modelled as a linear function to account for its
observed dependence on soil moisture (CESBIO, 2011; Panciera et al.,
2009b; Saleh et al., 2007)).

The quantity TEFF in Eq. (1) accounts for the contribution of the soil
temperature profile to the emission through:

TEFF = TDEPTH + TSURF−TDEPTHð Þ� θ =w0ð Þb0; ð5Þ

where θ stands for the soil moisture content of the top 5 cm, TDEPTH is
the deep soil temperature (typically at 50 to 100 cm), TSURF is the
surface temperature (approximately corresponding to a depth
interval of 0–5 cm), and w0 and b0 are semi-empirical parameters
depending on the specific soil texture. In this study the values of
w0=0.3 m3/m3 and b0=0.3 m3/m3, calibrated by De Rosnay et al.,
2006; Wigneron et al., 2001), were used.

The L-MEB approach described so far was developed for
moderately vegetated soils such as agricultural areas and prairies. In
the case of forest, a few studies have demonstrated that contributions
from the soil emissionmay still be appreciable at L-band (Grant, 2009;
Ryu et al., 2007). Despite the complex attenuation/scattering
mechanisms occurring in forest canopies, the zero-order τ–ω
approach described so far has been adopted in this study for retrieval
over the forested areas, for consistency with the methodology
adopted by the SMOS L2 algorithm. It should be noted that in the
case of forest the optical depth (τFNAD) and the scattering albedo have
been shown to remain fairly constant with respect to polarisation,
incidence angle and time. This is a result of the fact that branches,
which are the main attenuation factor, generally present a strong
variability in orientation (Della Vecchia et al., 2007; Ferrazzoli et al.,
2002; Grant et al., 2007; Saleh et al., 2004).

2.2.2. Model validation and parameter selection
The L-MEB model has been specifically validated for the NAFE'05

study area using high-resolution (62.5 m) PLMR observations togeth-
er with the detailed ground data on soil moisture, vegetation water
content, and surface roughness collected at the 8 experimental farms
(Panciera et al., 2009a). The retrieval accuracy was found to be better
than 4.8%v/v for all crops and grasslands sites, when using a site
specific, soil moisture dependent calibration of roughness parameter
HR. The soil moisture dependence of parameter HR was supported by
previous results (CESBIO, 2011; Saleh et al., 2007; Saleh et al., 2009)
including an independent studymade during the NAFE'05 experiment
using the EMIRAD air-borne radiometer (Saleh et al., 2009). The
values of all the other land cover-specific parameters required by the
L-MEB model were set as the default values indicated in the SMOS
ATBD (CESBIO, 2011). This set of parameters, including the HR

calibrated by Panciera et al. (2009a), was further verified in this
study using 1 kmPLMRobservations collected over the 8 experimental
farm. Results (not shown) indicated that soil moisture could be
retrieved at 1 km resolution with an accuracy better than 6%v/v.
Although high, these residual errors should be considered in light of
the intrinsic imperfection of the ground measurements associated
with random measurement error of the dielectric probe (not better
than 3.3%v/v) and the random error associated with comparing point
measurements with 62.5 or 1 km pixels due to the natural spatial
variability of soil moisture. This can be well above 5%v/v even at local
scale (Merlin et al., 2008).

Values of parameters τFNAD, ω, tt, NR, and HR for the Eucalypt forest
in the study area were independently calibrated by Grant (2009),
using airborne PLMR data collected during NAFE'05 for radiative
transfer studies of forest over a small patch of forest in the south-
eastern part of the study area. The study indicated that, after specific
calibration of the forest optical depth and scattering albedo, soil
moisture could be retrieved with an accuracy of 6%v/v across 8 days of
observations. The values of the L-MEB parameters used throughout
this study are summarised in Table 1.

2.3. High-resolution soil moisture maps

High-resolution (1 km) soil moisture maps of the entire NAFE'05
study area, to be used as soil moisture validation data sets for the
analysis conducted throughout this study, were derived from the
dual-polarised TB observations collected during Regional flights.
Despite the residual errors, observed in the soil moisture retrieved
at 1 km resolution (see previous section), it was deemed adequate to
utilise the high-resolution maps as soil moisture validation data sets
given their comprehensive spatial coverage, which was crucial in this
study given the need to validate coarse-pixel retrieval.

Consequently, soil moisture and optical depths were estimated
using a 2-parameter inversion of the L-MEB model, using the land-
cover-specific parameters described in Table 1. Given the relatively
small spatial resolution (1 km), each pixel was assumed to be
uniform. This simplification is justified given that the fields in the
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study area are mainly larger than 500 m×500 m. Over forested pixels,
retrieval of both soil moisture and vegetation optical depth may be
highly inaccurate, depending on the density of the canopy (i.e., the
vegetation optical depth). It was therefore decided to constrain the
retrieval by imposing the value of the vegetation optical depth
calibrated with the detailed forest study by Grant (2009), and to
retrieve soil moisture only. This is expected to yield a better soil
moisture retrieval accuracy than the case in which retrieval of both
soil moisture and vegetation optical depth was attempted over the
forest (Parde et al., 2004; Piles et al., 2010).

Ancillary information on land cover type, and soil and vegetation
temperature are required for the inversion of L-MEB. Land cover
across the study area was characterised by supervised classification of
a 30 m resolution Landsat 5 Thematic Mapper scene acquired on
October 21. Maps of soil texture for the study area were produced
using soil particle size analysis performed on 88 soil samples (7 cm in
diameter, 5 cm deep) collected at 2 km spacing uniformly across the
study area, interpolated to the 1 km reference grid using an inverse
distance technique. The soils in the study area were mostly loams
(38% of samples), followed by equal proportions of sandy loams and
clay loams, more frequent respectively in the southern part and
north-eastern part of the study area.

Values for the soil temperatures at 2.5 cm and 15 cmwere derived
from the continuous soil temperature measurements at the eighteen
permanent sites operating across the study area. Due to the lack of soil
temperature measurements deeper than 15 cm, the assumption was
made that the temperature at 15 cm depth is a good estimate of that at
50 cm required for the calculation of TEFF in Eq. (5). Given the early
time of regional flight acquisition, spatial temperature variation across
Fig. 2. Spatial maps of 1 km resolution PLMR brightness temperatures and L-MEB retrieved
Black polygons indicate the boundaries of the experimental farms.
the study area was small (less than 1.5 K at 2.5 cm and 15 cm, as
recorded at the monitoring sites). A spatially uniform value of soil
temperature was therefore assumed in the retrievals for both depths,
taken as the average soil temperature between the monitoring sites at
the reference time to which the TB observations were normalised for
soil temperature change (8:00 AM). The values of the canopy and
2.5 cm soil temperature were also assumed to be in equilibrium, in
line with previous soil moisture studies (Jackson et al., 1999; Njoku
et al., 2002).

The four maps of L-MEB retrieved soil moisture and vegetation
optical depth for the NAFE'05 study area are shown in Fig. 2. Wet
conditions on October 31 and November 7 were associated with the
heavy rainstorms at the beginning of the experiment. Little or no
rainfall was recorded throughout the rest of the experiment, and
accordingly drier soil moisture conditions can be seen for November
14 and 21. During this drydown period, the southern part of the study
area, which is characterised by a low flat plateau with sandstone-
derived soils, driedmore quickly than the northern part, characterised
by steeper hills and black clay soils. The forested area in the southern
part of the study area (see Fig. 1) exhibited drier conditions than the
rest, whilst the cropped areas in the north-western part of the study
area, maintained wetter conditions throughout the month.

2.4. Soil moisture retrieval approaches

The three retrieval approaches used in this study are described
below, and their main characteristics summarised in Table 2. Each
approach was used to retrieve soil moisture from the coarse-
resolution dual-polarised TB observations (5–40 km) produced by
soil moisture and vegetation optical depth for the 40 km×40 km NAFE'05 study area.

image of Fig.�2


Table 2
Main characteristics of the retrieval approaches tested. θ = soil moisture, τ = optical
depth. Subscripts indicate that the parameter is retrieved for the entire pixel (pixel),
moderate vegetation fraction (mod) or forest fraction (for). Parameters not indicated
are set a priori.

Retrieval
approach

Forward model Retrieved
parameters

A priori
parameters

Main
assumptions

Uniform
pixel

Dominant land
cover type only

θpixel, τpixel – • θ and τ uniform

SMOS
approach

Each land cover
type separately

θpixel, τpixel – • θ and τ uniform

Proposed
extension

Each land cover
type separately

θpixel, τmod τfor • θ uniform
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aggregation of airborne data. The error in soil moisture retrieval was
assessed by comparing the coarse-resolution retrieved soil moisture
with the average of the high-resolution soil moisture maps within
each coarse pixel (hereby referred to as the “observed soil moisture”).
The metrics used to assess the performance of the different approaches
are those suggested in the SMOS L2 algorithm validation plan (CESBIO,
2006): that is, the Root Mean Square Error (RMSE) and bias between
retrieved soil moisture and the average of the soil moisture validation
data set, the latter being the arithmetic average of the high-resolution
soil moisture maps described in Section 2.3 within each coarse pixel.
For each land surface variable considered in the analysis, the standard
deviation of the valueof the quantitywithin the coarse pixelwasused to
characterise the magnitude of the variable's sub-pixel heterogeneity.
The only exception was the land cover for which the magnitude of
sub-pixel heterogeneity was characterised using the % cover of the
pixel of the different land cover types.

2.4.1. Uniform pixel approach
The first approach tested in this study is a traditional uniform pixel

approach. This approach was used to identify the land surface factors
whose heterogeneity has the greatest impact on the soil moisture
retrieval, aswell as to quantify the error in soilmoisture retrieval induced
by such heterogeneity. The approach consists of inverting the L-MEB
model to retrieve soil moisture and vegetation optical depth under the
assumption that the pixel is uniform in terms of land cover, soil texture,
soil temperature, canopy temperature and surface roughness. The L-MEB
parameters used in the retrieval are those associated to the dominant
land cover type of the pixel. Values of the L-MEB ancillary data for each
coarse-resolution pixel are calculated by averaging the spatially
distributed values of each land surface factor within the coarse pixel.

2.4.2. The SMOS retrieval approach
The secondapproach tested in this study is the soilmoisture retrieval

scheme implemented in the SMOS L2processor (referred to here as “the
SMOS retrieval approach”), and described in detail in the SMOS ATBD
(CESBIO, 2011). The approach consists of applying L-MEB in forward
mode separately for each land cover typepresent in thepixel to simulate
fraction-specific TB's, which are then aggregated based on the pixel
fraction occupied to give a weighted-average pixel TB. These land cover
fractions are determined using high-resolution thematic maps. One or
two parameters are then retrieved (a pixel average soil moisture, or a
pixel average soil moisture and optical depth, depending on the quality
and quantity of available concurrent observations). When the optical
depth of the forest fraction present in the pixel is expected to be low (as
is the case for the Eucalypt forest in the NAFE'05 study area, due to
sparsely distributed trees), the retrieved parameters are considered to
be the same in each sub-pixel land cover fractions, whilst all other
parameters input of L-MEB model are land-cover-specific (grassland,
forest and crop). According to the Global Forest Resources Assessment
(FRA 2000) of the Food andAgricultural Organization (FAO), forestwith
canopy density similar to that of the Eucalypt woodland in the study
area (30–60% density) represent 8% of the total land mass.

Given the nature of the NAFE'05 study area, this study is limited to
the “nominal” case of the SMOS L2 algorithm, i.e.,when either the low to
moderately vegetated soil or the forest land cover classes are dominant
within the SMOS field of view. Therefore, when running L-MEB in this
study the forward model is applied separately to the grassland, forest
and crop fractions of the footprint.

Since the focus of this study is to test the core fractional coverage
approach implemented in SMOS L2, and not the whole processor,
some simplifications were made which should be considered before
extending the results of this study to an operational SMOS context:
(i) the coarse-resolution observations were considered free of the
errors associated with image reconstruction, ionospheric (Faraday)
rotation and sky and atmospheric contributions compensation which
are estimated to amount to a combined error of 0.5 K (CESBIO, 2011);
and (ii) the radiometric uncertainty considered was that of the PLMR
radiometer (2 K and 0.7 K respectively at V and H polarisation), which
is lower than that estimated for SMOS (3.5 K at boresight and 5.8 K
within 32° from boresight (McMullan et al., 2008). As the radiometric
uncertainty is expected to be themain contributor to the error budget,
the findings of this study should therefore be considered a best-case
scenario of SMOS operational retrieval.

2.4.3. Proposed extension to the SMOS approach
An extension to the SMOS approach is proposed which accounts

for the heterogeneity in vegetation optical depth within the SMOS
pixel. This proposed extension is similar to the SMOS approach
described in the previous section in that it uses a fractional forward
modelling approach to retrieve one value for each free parameter (soil
moisture and optical depth) considered uniform across the pixel.
However, in the proposed extension the optical depth of the forest
fraction is assumed a priori in the forward modelling. Consequently,
the retrieved optical depth corresponds only to that of the moderate
vegetation fraction (grass or crop). The proposed extension is
therefore expected to provide a more accurate retrieval than the
SMOS approach, since the emissions of the various pixel fractions are
modelled using more realistic values of optical depth than in the case
of the SMOS approach.

3. Results

The strategy utilised in the following sections was that of initially
analysing the coarse-scale retrieval using the uniform pixel retrieval
scheme alone, in order to identify the land surface factors whose
heterogeneity have the greatest impact on the soil moisture retrieval
and to quantify the error in soil moisture retrieval when such
heterogeneity is not accounted for. The SMOS retrieval approach and
the proposed extension are then analysed and their performance
compared with the uniform pixel approach.

3.1. Effect of land surface heterogeneity in mixed forest and moderate
vegetation pixels

The effect of land surface heterogeneity on coarse-scale soil
moisture retrieval was analysed in the case of pixels with mixed
forest and moderate vegetation biomass using the uniform pixel
retrieval approach. In Fig. 3 the soil moisture retrieved from the coarse
TB observations is compared with the observed soil moisture. For easy
visualisation, only 5, 20 and 40 km resolutions are displayed in the
figure; the complete error statistics including all resolutions analysed
can be found in Table 3. Whilst in Fig. 3 there is a good agreement
between retrieved soil moisture at all resolutions and soil moisture
conditions, there are many examples of pixels having errors higher
than the SMOS target accuracy (4%v/v). The errors tended to be
greater in wet conditions andwere characterised by overestimation of



Fig. 3. Performance of the soil moisture retrieval at various resolution using the approaches tested in this study: uniform pixel approach (left panel), the current SMOS baseline
algorithm (middle panel) and the proposed extension to the SMOS approach (right panel). The observed soil moisture corresponds to the soil moisture maps derived from 1 km
airborne observations. Black Lines indicate the SMOS target accuracy (±4%v/v).
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the pixel average soil moisture. It is also notable that as the resolution
became coarser, the retrieval was more accurate (RMSE decreased
from 3.1%v/v at 5 km to 2.6%v/v at 30 km resolution) but the
distribution of the error tended to be positively biassed.

In Fig. 4 the retrieval error using the uniform pixel approach is
compared with the sub-pixel heterogeneity of land cover type, soil
moisture, vegetation optical depth and soil texture for each 5 km
pixel. The effect of heterogeneity in soil temperature was not included
in this plot, given the small spatial variability observed at the
continuous monitoring sites across the study area. The effect of the
heterogeneity in surface roughness, although not explicitly shown in
Fig. 4, is implicitly included in the effect of land cover heterogeneity,
since the surface roughness parameter in L-MEB is land cover specific.
Fig. 4 shows that a significant correlation existed between the soil
moisture retrieval error and the variability of land cover type within
the pixel. In particular, a strong correlation was observed between the
retrieval error and the fraction of the pixel occupied by native grass
and forest (panels e and f). Panel f shows that the retrieval errors were
below SMOS target accuracy for very low forest fraction (i.e., pixels
mostly occupied by native grass and a small amount of crops).
However, as the forest fraction increased the retrieval error increased
as well, exceeding the SMOS target accuracy when the forest fraction
was above approximately 30% and achieving a maximum error
(overestimation) of 17.2%v/v when the forest fraction was approxi-
Table 3
Soil moisture error statistics obtained for the study period with all the approaches tested in th
of pixels are indicated in underlined bold. All values are in %v/v soil moisture content.

Pixel resolution
(No. of pixels)

Approach All pixels P
f

RMSE Bias R

5 km (254) Uniform pixel 3.1 0.2 1
SMOS approach 5.2 −2.6 4
Proposed extension 4.4 −1.0 2

10 km (196) Uniform pixel 3.0 0.1 2
SMOS approach 4.3 −2.0 3
Proposed extension 3.2 −0.7 2

20 km (100) Uniform pixel 2.7 1.3 2
SMOS approach 3.1 −1.8 3
Proposed extension 2.5 −0.3 2

30 km (36) Uniform pixel 2.6 1.5 2
SMOS approach 3.1 −2.6 3
Proposed extension 2.4 −0.6 2

40 km (4) Uniform pixel 3.1 2.5 3
SMOS approach 4.9 −4.8 4
Proposed extension 2.5 −1.7 2
mately 50%. A further increase in forest fraction produced a strong
discontinuity in the error, which exhibited an underestimation
(−10%v/v) that decreased quickly until falling below the SMOS
target accuracy again when the pixel was mostly occupied by forest.
This difference in the sign of the error is a consequence of the fact that
the uniform pixel approach considers the pixel to be uniformly
occupied by the land cove type having the highest fraction of the pixel.
Therefore, two pixels presenting similar cover fractions (e.g., fractions
of grass and forest close to 50%) will be modelled with very different
parameters (those of grass or forest), depending on the predominance
of either land cover type, resulting in the strong discontinuity in the
error sign observed. As a result, the pixel average soil moisture is
overestimated when a pixel containing a significant amount of forest
is modelled as having a uniform native grass cover and under-
estimated when the same pixel is modelled as having a uniform forest
cover. These results show that, as a result of the heterogeneity in land
cover, the algorithm distorts the value of the free parameters (in this
case soil moisture and optical depth) in order to match the simulated
pixel microwave emission to that observed. Since the pixel emission-
soil moisture curve is not linearly related to the different emission-soil
moisture curves of the various pixel sub-fractions, the retrieved soil
moisture differs from the true pixel-average soil moisture.

Panels a and b in Fig. 4 suggest a potential impact of the sub-pixel
heterogeneity of soil moisture and vegetation optical depth on the
is study at each resolution of observation. The best results for each resolution and group

ixel type A
orestb40%

Pixel type B
forest 40–60%

Pixel type C
forestN60%

MSE Bias RMSE Bias RMSE Bias

.8 0.3 7.7 2.0 3.2 −2.0

.0 −1.0 4.1 −3.1 1.9 −1.2

.6 −0.3 2.8 −0.3 1.8 0.4

.2 0.7 7.0 −2.1 4.7 −4.2

.5 −1.2 4.2 −3.7 3.2 −2.6

.4 −0.3 2.8 −0.5 2.0 0.0

.7 1.3 – – – –

.1 −1.8 – – – –

.5 −0.3 – – – –

.6 1.5 – – – –

.1 −2.6 – – – –

.4 −0.6 – – – –

.1 2.5 – – – –

.9 −4.8 – – – –

.5 −1.7 – – – –

image of Fig.�3


Fig. 4. Relationship between soil moisture retrieval error at 5 km resolution using the uniform pixel approach and the sub-pixel heterogeneity of (a) soil moisture, (b) vegetation
optical depth, (c) clay and sand content and pixel fraction of crop, (d) crop, (e) native grass, and (f) forest. In panel (a) and (b), pixels with forest fraction between 25% and 75% (black
dots) and forest fraction smaller than 25% or larger than 75% (crosses) are highlighted. In panel (f), pixels with soil moisture standard deviation larger than 10%v/v (black dots) and
smaller than 5% (crosses) are highlighted. Dashed horizontal lines indicate the soil moisture target accuracy (±4%v/v).

Table 4
Resolution dependence of the maximum sub-pixel fractions of each land cover type
(columns 1–3), maximum soil moisture errors obtained using the uniform pixel
approach for all pixels (column 4) and for pixels with fractions similar to those of the
40 km pixel (column 5). (*) Pixels with approximately 73% grassland, 22% forest and
4.6% crop, with number of pixels satisfying the criteria indicated in brackets.

Pixel
resolution

(1)
Native grass
%

(2)
Forest
%

(3)
Crop
%

Maximumretrieval error (%v/v)

(4)
All pixels

(5)
Selected pixels*

5 km 97.8 98.2 20.9 +17.2 +6.6 (48)
10 km 94.4 70.0 17.3 +12.2 +7.3 (48)
20 km 90.2 38.5 11.0 +10.6 +6.7 (24)
30 km 85.8 25.1 7.4 +7.2 +7.2 (24)
40 km 73.0* 22.1⁎ 4.6⁎ +5.5 +5.5 (4)
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retrieval error, with larger errors associated with elevated standard
deviation of soil moisture and optical depth within the pixel.
However, a detailed comparison with panel f reveals that this is
only an indirect effect of the correlation between soil moisture
distribution and optical depth and the land cover type itself. This is
highlighted in panels a and b where data points with almost uniform
land cover (forest fraction smaller than 25% or greater than 75%) are
highlighted with crosses, showing that no correlation was observed
between the retrieval error and the soil moisture or optical depth
heterogeneity in these conditions. In both panels a and b the high
retrieval errors are associated instead with heterogenous land cover
conditions (black dots). Conversely, in panel f an increase in forest
fraction caused an increase of the retrieval error for both uniform soil
moisture (crosses, soil moisture standard deviation smaller than 5%v/v)
and heterogeneous soil moisture conditions (black dots, soil moisture
standard deviation larger than 10%v/v). No significant correlation was
observed between the retrieval error and the sub-pixel heterogeneity
of percentage of clay and sand content (panel c), with the highest errors
at low standard deviations being clearly an artefact of the large number
of pixels having low standard deviation of soil texture.

The analysis conducted thus far with pixels having relatively fine
resolution (5 km) allowed consideration of the largest possible
variety of land cover conditions within the NAFE'05 study area. The
extrapolation of these results to coarser resolutions is subject to
understanding whether the critical land cover conditions seen to
produce the higher retrieval errors (~50% native grass and ~50% forest
fraction) also occur at coarser resolutions. This in turn is subject to the
presence of patches of forest and native grass large enough to occupy
at least 50% of the pixels at coarser resolutions. To verify this, Table 4
shows the maximum sub-pixel fraction for each land cover type
calculated amongst all the pixels analysed at each resolution (note
that the crop, native grass, and forest fractions do not necessarily
amount to 100%, as they may correspond to different pixels). Table 4
indicates that, since the NAFE'05 study area is largely occupied by
native grass, the maximum fraction of pixel occupied by forest (hence
the occurrence of pixels with the critical conditions of land cover
heterogeneity) decreases substantially from 5 km to 40 km resolution.
This resolution dependency is reflected in the decreasing of maximum
retrieval error, also shown in Table 4. In order to work out whether the
retrieval error produced by the critical conditions of land cover
heterogeneity at the 40 km resolution is comparable to that observed

image of Fig.�4
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at 5 km resolution, the error for pixels with land cover fractions similar
to those of the 40 km pixels (73.0% native grass, 22.1% forest and 4.6%
crop) were extracted for each resolution (rightmost column in Table 4).
Note that this error was calculated using the uniform pixel approach.
The retrieval error for this subset of pixels was very similar at all the
resolutions, varying by less than 1.1%v/v from 5 km to 40 km sized
pixels, confirming that the effect of the heterogeneity of land cover is
invariantwith resolution. Given the limited number of 40 km resolution
pixels available for this study, it was not possible with this dataset to
generalise this conclusion on the resolution-invariance of the error due
to land cover heterogeneity. However, the results presented in Table 4
show that this conclusion holds for the NAFE'05 study area. It follows
that, were the critical conditions of land cover heterogeneity observed
for a 40 km resolution pixel, with all other factors remaining constant,
the soilmoisture retrieval error couldbeashighas thatobservedat5 km
resolution,. It should be noted that the correlation of the retrieval error
with the fraction of crops within the pixel could not be properly
analysed in the present study, since the maximum percentage of crop
fraction was quite small (20%) even for the finest resolution pixels.

3.2. SMOS retrieval approach

In this section the SMOS retrieval approach is tested in order to
assess the ability of the approach to account for the sub-pixel
heterogeneity of land cover, which in the previous section was shown
to produce a significant error in soil moisture retrieval under a
uniform pixel assumption. The performance of the SMOS approach as
compared with the uniform pixel approach is shown in Fig. 3 for three
resolutions (5, 20 and 40 km). At 5 km resolution, the SMOS approach
significantly reduced the large errors obtained using the uniform pixel
approach. However, at coarser resolution (20–40 km) the uniform
pixel approach gave overall better results than the SMOS approach. As
anticipated earlier, this apparent discrepancy is due to the fact that
the NAFE'05 study area is mainly occupied by native grass, and
therefore the heterogeneity decreases as the resolution decreases,
being far from the critical conditions of land cover heterogeneity
(~50% native grass and ~50% forest fraction).

To overcome this problem and assess in detail the performance of
the SMOS approach, Table 3 shows the error metrics of the
comparison between SMOS approach and uniform pixel approach
for various resolutions. The pixels were here grouped according to the
forest fraction (the remaining part of the pixel being occupied by
grassland and crop in some cases): In group A, pixels are occupied
predominantly by moderate vegetation (forest fractionb40%); group
B contains heterogeneous pixels with land cover conditions shown in
Section 3.1 to be critical for the retrieval (forest fraction between 40
and 60%); whilst group C contains pixels occupied predominantly by
forest (forest fractionN60%). The SMOS approach significantly reduced
the soil moisture RMSE on all dates in the case of heterogeneous type B
pixels, with a decrease from 7.7%v/v (uniform pixel) to 4.1%v/v. (SMOS
approach). Despite the efficacy of the SMOS approach on type B pixels,
the approach exhibited adrybias (underestimation),which is notable in
Table 3 for both type A (−1%v/v) and type B pixels (−3.1%v/v).
Moreover, in type A pixels this bias was accompanied by a high RMSE,
which increased from1.8%v/vwhenusing theuniformpixel approach to
4.0%v/v when using the SMOS approach. These results suggest that the
fractional forward modelling scheme of the SMOS approach is an
improvement over the uniform pixel approach in pixels characterised
by an approximately equal fraction of forest and moderately vegetated
soil, where the heterogeneous land cover determines high retrieval
errors under the assumption of pixel uniformity. However, in the case of
pixelsmostly occupied bymoderately vegetated soil (crop or grassland)
and a small amount of forest, the SMOS approach is less accurate than a
simple uniform pixel approach, introducing in particular a dry bias.

In order to investigate the origin of this bias, the performance of
the SMOS approachwas analysed in detail for type A pixels in terms of
the sub-pixel land cover fractions of grassland, crop and forest. The
results (not shown) indicate that for pixels mainly occupied by
grassland (N90%), the SMOS approach provided retrieval errors
comparable to that of the uniform pixel approach. This was true
even when a relatively small fraction of the pixel was occupied by
another moderate vegetation land surface type (crop in this case).
However, in the presence of even a small fraction of forest in a pixel
otherwise occupied by grassland, the SMOS approach led to the bias
observed in Table 3. Based on these observations, it is argued that the
SMOS approach will lead to underestimation of the pixel-average soil
moisture as a result of retrieving a single value of optical depth
(assumed to represent the entire pixel), in pixels characterised by a
strong contrast between the radiative transfer properties of forest
areas andmoderately vegetated areas, such as grassland or crops. This
happens because a lower soil moisture value is needed for the
algorithm to find the right balance between themodelled emissions of
the various pixel fractions under the constraint, imposed by the SMOS
approach, of uniform optical depth and soil moisture between the
pixel fractions.

3.3. Proposed extension to the SMOS approach

The extension to the SMOS approach proposed in this study
accounts for the heterogeneity in vegetation optical depth within the
SMOS pixel by imposing the optical depth of the forest fraction a priori
in the forward modelling, whilst retrieving only the optical depth of
the moderate vegetation fraction (grass and/or crop). The perfor-
mance of the proposed extension is compared to that of the other
approaches tested in Fig. 3 and Table 3. It was initially assumed in the
analysis that the optical depth of the forest fraction is known
accurately, andwas consequently set to the value specifically obtained
over the NAFE'05 Eucalypt forest (0.57, J. Grant pers. comm.). The
impact of uncertainties in this a priori information is analysed at the
end of this section. Table 3 shows that the proposed extension led to
an improvement of the soil moisture retrieval accuracy with respect
to the other approaches for pixels of types B and C, with the dry bias
which affected the SMOS approach being reduced to −0.3%v/v and
the RMSE to 2.8%v/v.

Interestingly, the uniform approach was the more accurate of
the approaches tested on uniform and moderately vegetated pixels
(type A) at 5 km resolution, due to the negative bias discussed in
Section 3.2 affecting both the SMOS approach and the proposed
extension. This was further analysed using synthetic scenarios where
themethodswere applied assuming exact knowledge of all the ancillary
data, including the radiative transfer parameters. The results (not
shown) confirmed that this negative bias persisted, suggesting that it is
a direct effect of the fractional forward modeling due to the non-
linearities of the radiative transfer equations. However, the bias is of
second-order with respect to the impact of sub-pixel heterogeneity,
explainingwhy on heterogeneous type B pixels the SMOS approach and
extended approach were more accurate than the uniform approach (as
they compensated for the first-order effect of heterogeneity), whilst on
type A pixels the two methods were less accurate than the uniform
approach (as both methods were affected by the second-order bias).
These results suggest that on uniform land cover conditions a fractional
modelling approach would constitute little or no advantage over a
simple uniform pixel approach.

The analysis is extended in Table 3 to all available resolutions. It
should be noted that, given the nature of the NAFE'05 study area (22%
forest fraction, 4.6% crops and 73% grassland), all pixels with resolution
coarser than 10 kmwere fairly uniform type A pixels. Nevertheless, the
main observations drawn from the analysis at 5 km resolution heldwell
at coarser resolutions. In particular, that the SMOS approach partially
reduced the error due to the heterogeneity of land cover in
heterogeneous group B and forested group C pixels at 10 km. However,
the dry soilmoisture bias continued to affect the SMOS approach at such
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coarser resolutions. Consequently, the proposed extension provided the
most accurate soil moisture retrieval in heterogeneous group B and
forested group C pixels at 5–10 km resolutions. It is important to
highlight that the accuracy of the proposed extension was substantially
constant across resolutions (with only an increase in dry bias, not
exceeding −1.4%v/v), whereas that of the uniform pixel approach
degraded significantly as the resolution became coarser (overall RMSE
for the study period increasing from 1.8%v/v to 3.1%v/v). As a result, the
proposed extensionwasmore accurate than theuniformpixel approach
in pixels at resolutions coarser than 10 km, in contrast with what
observed at 5–10 km resolutions. These results also suggest that,
although the analysis in the case of groups B and C land cover conditions
was limited to resolutions finer than 10 km resolutions, the proposed
extension should be more accurate were such land surface conditions
observed at resolutions more typical of SMOS.

The proposed extension requires as input an a priori estimate of
the forest optical depth. In a SMOS operational context, such estimates
will be derived by empirical relationships with ancillary maps of LAI,
which themselves will be subjected to uncertainties (CESBIO, 2011). It
is therefore important to assess how the assumption made in this
study, that the forest optical depth is known accurately, might impact
the results. This was tested by creating 4 random sets of optical depth
values, all normally distributed around the correct value (0.57) but
with different standard deviations (0.1, 0.2, 0.3 and 0.4). A set of 100
random a priori values of forest optical depth was created for each
standard deviation and soil moisture was estimated for each 5 km
NAFE'05 observation using the proposed approach. The results, shown
in Fig. 5, indicate that the accuracy of the a priori information on the
optical depth of forest had a significant impact in heterogeneous
group B pixels, with a strong increase in RMSE observed as the
uncertainty about the optical depth of forest increased. However, the
proposed extension was more accurate than the SMOS approach for
an optical depth uncertainty up to 0.2, which corresponds to an error
of 35%v/v. Conversely, the accuracy of the a priori information on
Fig. 5. Impact of uncertainty in the a priori information on the forest optical depth on the so
(circles), for pixels of group A (forest fractionb40%, left column), group B (forest fraction=40
the errors obtained using the current SMOS baseline algorithm (thick black line) and the u
optical depth had little impact on the soil moisture retrieval for more
uniformmoderately vegetated pixels (group A). In this case, the RMSE
using the proposed extension was only slightly degraded (by 0.4%v/
v). In pixels mostly covered by forest (Group C), the accuracy of the
proposed extension degraded quickly with increasing optical depth
uncertainty, as expected. It should be noted that whilst the SMOS and
uniform pixel approaches led to significant soil moisture biases in
group B and C pixels, the proposed extension approach was able to
providemore accurate results even in the case of strong uncertainty in
the value of the forest optical depth (70%).

Exact figures on the accuracy of the estimation of the forest optical
depth by means of ancillary LAI data do not currently exist,
particularly for Eucalyptus forests. This is mainly because, differently
than soil moisture, the vegetation optical depth is not a directly
measurable physical quantity. Therefore its accuracy is typically
determined indirectly, through the accuracy of the forest emission
modelled using a particular value of optical depth. However, recent
studies have shown that MODIS LAI products can achieve an accuracy
of 0.5 for forest sites (Wang et al., 2004). A recent review of the
forward modelling approach used in SMOS to derive the forest optical
depth from LAI data (Ferrazzoli, P., pers. comm.) indicates that this
uncertainty would translate to an uncertainty of forest optical depth
of 0.1, which is better than the uncertainty of 0.2 allowed in this
assessment.

4. Conclusions

The fractional coverage forward modelling approach that is core to
the SMOS L2 processor was assessed using extensive airborne L-band
data over pixels composed of a mix of Eucalypt forest and vegetation
pixels with moderate biomass, for varying degrees of soil moisture, soil
texture and vegetation water content heterogeneity. Subsequently an
extension to the SMOS approach was proposed and shown to improve
the soil moisture retrieval accuracy over heterogeneous pixels at the
il moisture retrieval error using the proposed extension to the SMOS retrieval approach
–60%, middle column) and group C (forest fractionN60%, right column). Also shown are
niform pixel approach (thick grey line).
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limited cost of needing a crude estimate of the forest optical depth.
Using a uniform pixel retrieval approach it was first shown that a
significant correlation existed between the soil moisture retrieval error
and the sub-pixel heterogeneity of land cover type. Whilst accurate
retrievals were obtained in uniform vegetated pixel of moderate
biomass (grassland and crop) the error was significant when the pixel
was composed by 50% grassland and 50% forest fraction, with an overall
soil moisture RMSE for the study period of 7.7%v/v (with 2%v/v bias) for
pixels with 40-60% forest fraction.

The fractional coveragemodelling approach adopted by SMOSwas
shown to provide more accurate retrievals in the case of pixels with
40–60% forest; the overall RMSE for the study period was reduced
from 7.7%v/v to 4.1%v/v. However, the SMOS approach was shown to
be less accurate than a uniform pixel approach in the case of uniform,
moderately vegetated pixels (grassland and crop) with a modest
forest fraction (less than 40%). In these cases the overall soil moisture
RMSE was increased from 1.8%v/v to 4.0%v/v. Moreover, the soil
moisture retrieval using the SMOS approach suffered from a dry bias.

An extension to the SMOS approach was proposed which relaxes
the assumption of uniform optical depth between the modelled pixel
fractions, by imposing the optical depth of forest and retrieving only
the optical depth of themoderately vegetated fraction together with a
uniform soil moisture value for the pixel. The proposed extension
significantly improved the retrieval accuracy for the particular
combination of land covers in the study area; in heterogeneous pixels
presenting a 40–60% forest fraction, the overall soil moisture RMSE for
the study period decreased from 4.1%v/v to 2.8%v/v. The dry bias was
also reduced from −3.1%v/v to −0.3%v/v. It was also shown that the
proposed approach provides better soil moisture estimates than the
SMOS baseline approach even with a crude estimate of the optical
depth of forest, corresponding to a 35% relative uncertainty.
Therefore, it is expected that sufficiently accurate estimates of the
optical depth of forest at L-band could be derived from routinely
available global maps of LAI in order to implement the approach
proposed in this study in a SMOS operational context.

Given the limited extent of cropping in the NAFE'05 study area, the
results of this study have been limited to pixels characterisedmainly a
mix of forest and grassland. Further analysis is needed to assess
whether the proposed extension would be efficient in pixels with
large portions of mature crops (such as in intensive irrigation areas in
south-eastern Australia and certain parts of the USA). Moreover, the
approach should be tested with the SMOS data, which was not
available at the time when this study was conducted.
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