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Abstract

Predicted latent and sensible heat fluxes from Land Surface Models (LSMs) are important lower boundary conditions for numerical weather
prediction. While assimilation of remotely sensed surface soil moisture is a proven approach for improving root zone soil moisture, and
presumably latent (LE) and sensible (H) heat flux predictions from LSMs, limitations in model physics and over-parameterisation mean that
physically realistic soil moisture in LSMs will not necessarily achieve optimal heat flux predictions. Moreover, the potential for improved LE and
H predictions from the assimilation of LE and H observations has received little attention by the scientific community, and is tested here with
synthetic twin experiments. A one-dimensional single column LSM was used in 3-month long experiments, with observations of LE, H, surface
soil moisture and skin temperature (from which LE and H are typically derived) sampled from truth model run outputs generated with realistic data
inputs. Typical measurement errors were prescribed and observation data sets separately assimilated into a degraded model run using an Ensemble
Kalman Filter (EnKF) algorithm, over temporal scales representative of available remotely sensed data. Root Mean Squared Error (RMSE)
between assimilation and truth model outputs across the experiment period were examined to evaluate LE, H, and root zone soil moisture and
temperature retrieval. Compared to surface soil moisture assimilation as will be available from SMOS (every 3 days), assimilation of LE and/or H
using a best case MODIS scenario (twice daily) achieved overall better predictions for LE and comparable H predictions, while achieving poorer
soil moisture predictions. Twice daily skin temperature assimilation achieved comparable heat flux predictions to LE and/or H assimilation.
Fortnightly (Landsat) assimilations of LE, H and skin temperature performed worse than 3-day moisture assimilation. While the different spatial
resolutions of these remote sensing data have been ignored, the potential for LE and H assimilation to improve model predicted LE and H is
clearly demonstrated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The land surface provides a continuous feedback of latent
(LE) and sensible (H) heat flux to the atmosphere, which drives
our weather and climate. Hence the accuracy of heat flux
outputs from land surface models (LSMs) plays an important
role in the accuracy of weather and climate forecasts from
coupled atmospheric prediction models (Pitman, 2003). LE and

H result from the partitioning of available net radiation energy at
the land surface, and this feedback is related to a combination of
soil moisture content, soil temperature, various soil physical
properties, vegetation cover, and physical and biological
properties relating to particular vegetation types. LSMs are an
attempt to relate these factors in a mathematical framework,
together with meteorological variables, for predicting water
evaporation from soil and/or its transpiration through vegetation
(LE) and conductance of heat (H) to the atmosphere on a
continuous time scale. The CSIRO Biosphere Model (CBM) is
one such model (Wang et al., 2001) and was used for
undertaking the experiments in this study.

Models such as CBM are limited in that they represent highly
variable and complex physical systems with simplified and/or
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empirically derived mathematical relationships. Another short-
coming of LSMs is that they are often overparameterised —
there is not enough data on model soil and vegetation parameters
to accurately represent the highly variable temporal and spatial
variation of these quantities (Crosson et al., 2002; Franks &
Beven, 1999; Yates et al., 2003). While field measurements can
assist in parameterising models at the point scale with
considerable effort (Mertens et al., 2005), accurate parameterisa-
tion becomes increasingly difficult when modelling across spatial
regions. Model predictions are therefore inherently uncertain,
with prediction uncertainty typically increasing through time.
Data assimilation is one technique commonly used to correct
LSM predictions (e.g. Crosson et al., 2002). This is where
observed quantities of a particular variable with known
uncertainty are used to adjust predicted model state variables
such as soil moisture and temperature, and hence other related
quantities such as LE and H at the observation time (Walker &
Houser, 2001). The data assimilation process compares the
uncertainty in the observation with that in the model prediction to
determine the correction required; the data assimilation technique
applied in this research is the Ensemble Kalman Filter (EnKF)
algorithm (Evensen, 1994).

Many examples exist in literature where data assimilation
has been used to improve LSM predictions with efforts mainly
focussing on improving soil moisture prediction. An early
example by Entekhabi et al. (1994) demonstrates the ability to
retrieve the true soil moisture profile of a model from an initial
poor guess by assimilating remotely sensed passive microwave
and thermal infrared data. The study uses a simplified soil
scheme and is a synthetic experiment primarily aimed at testing
the assimilation algorithm. Walker &Houser (2001) present a
synthetic study on surface soil moisture assimilation motivated
by the need to improve soil moisture initialisation for
climatological and hydrological predictions. Synthetically
generated surface soil moisture observations were assimilated
into a catchment based LSM with degraded initial moisture
values. Observations were assimilated every 3 days to replicate
the temporal scale of surface soil moisture data that would be
available from satellite sensors. It is shown that the assimilation
could retrieve the true soil moisture content for the entire soil
profile. To augment past synthetic studies, Crow & Wood
(2003) mention the need to further test assimilation applications
using real data to better understand the challenges of data
assimilation in an operational context. In their study, airborne
measurements of 1.4 GHz surface brightness temperature
(equivalent to the data that will be available from the SMOS
satellite sensor) were assimilated into a LSM to correct soil
moisture predictions. Surface state and flux predictions from
assimilation outputs were found to be more accurate than
predictions from open loop modelling.

Some early studies (Bouttier et al., 1993; Mahfouf, 1991)
have shown that assimilating screen level (2 m above ground)
air temperature and relative humidity observations can correct
soil moisture for improved numerical weather prediction.
Seuffert et al. (2003) assimilated a combination of synthetic
1.4 GHz brightness temperature observations together with
screen level air temperature and relative humidity measure-

ments to test the potential for improving soil moisture.
Assimilation of all of these variables was shown to result in
the greatest improvement in soil moisture and heat flux
predictions compared to assimilating the screen level variables
or brightness temperature data alone. McNider et al. (1994)
showed using two experiments that assimilation of surface skin
temperature had a positive impact on model predictions. A one-
dimensional experiment was conducted with field measured
thermal infrared data from a downward-looking radiometer, and
a spatial experiment was performed using GOES satellite
thermal infrared observations. A more recent example by
Margulis & Entekhabi (2003) examined the assimilation of skin
temperature together with screen level air temperature and
relative humidity into a coupled land surface-atmospheric
boundary layer model with both a synthetic experiment and a
one-dimensional application using field measured radiometer
data. Again, the results showed that assimilating multiple
observation types allowed for more robust estimation of model
states and fluxes.

The aim of most of these assimilation experiments was to
correct root zone soil moisture prediction and hence indirectly
correct the heat flux predictions, but achieving physically
correct soil moisture estimates through data assimilation does
not guarantee improved heat flux prediction feedbacks to the
atmosphere. Consequently, this study tests the hypothesis that
assimilation of remotely sensed LE and H observations
themselves could potentially produce better heat flux predic-
tions than assimilation of soil moisture observations, or the skin
temperature observations from which they are derived. Only
one example can be found in literature dealing with LE
assimilation (Schuurmans et al., 2003), which shows promising
results. However, the results are largely unverified and more
research is required to determine if and how well assimilation of
LE and H can improve heat flux, soil moisture and soil
temperature predictions from LSMs.

Different techniques for estimating LE and H from remotely
sensed data have been developed and widely reported in litera-
ture over recent years (i.e. Bastiaanssen et al., 1998; Jiang &
Islam, 2001; Kustas & Norman, 1996). The energy balance
algorithms used to estimate these quantities, such as SEBAL
(Bastiaanssen et al., 1998), are based on satellite observations of
thermal infrared measurements of skin temperature, available
from GOES, MODIS and Landsat sensors. Repeat coverage of
these satellites over the same geographical location typically
occur twice daily at 1 km resolution for MODIS (morning and
afternoon), approximately every fortnight at 30 m resolution for
Landsat and hourly at 4 km resolution for the geostationary
GOES satellite. These temporal scales for thermal infrared data
are best case scenarios, which are unlikely over long periods
due to cloud cover. In contrast, the soon to be launched SMOS
satellite will provide data at 50 km resolution on a three daily
temporal scale irrespective of cloud cover (Kerr et al., 2001).
While such variations in spatial resolution are potentially
important, this paper presents a synthetic one-dimensional data
assimilation study as a proof of concept. Moreover, this study
demonstrates the relative impact of LE, H, skin temperature and
surface soil moisture assimilation on LSM prediction of LE, H,
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and root zone soil moisture and temperature, using the typical
remote sensing repeat times for the respective data types,
ignoring potential cloud impacts.

2. Data assimilation

The original Kalman Filter (KF) is an optimal recursive data
processing algorithm first presented by Kalman (1960), and forms
the basis for more modern variations such as the EnKF (Evensen,
1994) which was applied in this study. A good introduction to the
Kalman filter is presented by Maybeck (1979), and Walker &
Houser (2005) provide a review of different data assimilation
techniques relating to hydrology, land surface modelling and
remote sensing. In terms of land surface modelling, data
assimilation aims to use available observations of model variables
with known uncertainty to correct model predictions which are
not optimal due to a combination of uncertain initial conditions,
errors in meteorological forcing data, errors in model physics, and
poor knowledge of model parameters.

When applying the KF to non-linear systems, the Extended
Kalman Filter (EKF) results. This requires calculation of a
tangent linear model which can result in poor state and error
forecasts due to model non-linearities. The EnKF overcomes the
linearisation issue through a Monte Carlo approach, where an
ensemble of parallel model runs is generated for the same time
period. The model error covariance is then determined from the
ensemble spread at the assimilation time step and the ensemble
mean taken as the best estimate of the model state. Reichle et al.
(2002) present a comparison between the EKF and EnKF in a
synthetic soil moisture assimilation study and found the EnKF
to be more robust and flexible in covariance modelling, and its
performance slightly superior.

The EnKF is one form of a number of direct observer
assimilation methods which differs from the EKF only in the
way in which model covariances are estimated. It can be
summarised as follows:

Xa
k ¼ Xf

k þKðZk � Zf
kÞ; ð1Þ

where subscript k refers to the assimilation time step, super-
script f refers to the forecast value and superscript a refers to
an analysis (updated) value. The model state vector is denoted
by X and the observation is denoted by Z. The difference
between an observed and model predicted value (Zk−Z f

k) is
the innovation and is weighted by the Kalman gain (K).
Together they determine the correction added to the forecast
state vector. In addition to projecting from Z to X space, K is a
scaling factor that represents the relative uncertainty of model
predicted and actual observations based on the covariance
matrices. Therefore

K ¼ P f
k H

T ðHP f
k H

T þ RkÞ�1; ð2Þ

where P represents the error covariance of the forecast model
states and R is the error covariance of the observation. The
matrix H is a non-linear operator that relates the state vector X
to the observation Z, with superscript T denoting the matrix
transpose. Therefore, if P is large compared to R (i.e. obser-

vations more trustworthy than model prediction), then K will
approximate to 1 when X and Z are the same scalar quantity
(i.e. H=1), and the innovation will be relied upon heavily to
adjust the forecast states due to the small relative observation
error. Alternatively, where R is large compared to P, K will
approach 0 and the observation will not be trusted sufficiently
leaving the final analysis vector Xk

a relatively unchanged,
since the model's forecast is understood to be more reliable in
this case.

Implementation of the EnKF in this study can be summarised
as follows (Evensen, 1994; Houtekamer & Mitchell, 1998;
Walker &Houser, 2005). The background state covariance matrix
for determining themodel error covariance at assimilation times is
defined as

P f
k ¼ ðx f

k � Px f
k Þðx f

k � Px f
k ÞT

m� 1
; ð3Þ

where x are individual ensemble members of the state forecast
matrixX and the over-bar represents the ensemblemean across all
members. The number of ensemble members is denoted by m.
However, explicit calculations of P k

f are not actually required and
Eq. (1) can be written as

Xa
k ¼ Xf

k þ BT
k bk ; ð4Þ

where

BT
k ¼ P f

k H
T
k ; ð5Þ

and

bk ¼ ðHkP
f
k H

T
k þ RkÞ�1ðyk � Zf

kÞ: ð6Þ
A perturbed observation y replaces the actual observation Z

in Eq. (1) and is defined as

yk ¼ Zk þ f; ð7Þ
with ζ being a random observation error term. For each ob-
servation variable, the typical uncertainty for remotely sensed
measurements is used to determine its error range, representing
covariance R. Prior to assimilation, a random number gen-
erator, which generates numbers with a normal distribution and
zero mean is used to generate a single number within this error
range which is then added to the observation resulting in a
perturbed observation value y (Eq. 7). The random number
generator is then used again to generate an ensemble of ob-
servation values about y resulting in an observation ensemble
with covariance R (more details on observations are given
later). Also

HkP
f
k H

T
k ¼ qkq

T
k

m� 1
; ð8Þ

and

qk ¼ Hkðx f
k � Px f

k Þ ¼ ðz f
k � Pz f

k Þ; ð9Þ

where z are individual ensemble members of the perturbed
observation and the over-bar denotes the ensemble mean.
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Hence, it is unnecessary to solve for H and therefore B can be
calculated as

BT
k ¼ ðx f

k � Px f
k Þ

m� 1
qTk : ð10Þ

Therefore calculation of bk using Eqs. (6), (7) and (8), and Bk
T

using Eq. (10), then substituting into Eq. (4) will update each
individual ensemble member at assimilation time steps.
Ensemble generation used the approach developed by Turner
et al. (2007-this issue), which is discussed further below.

3. Experiment data and methodology

A synthetic experiment was set up as a proof of concept for
the assimilation of remotely sensed LE and H, and intercom-
parison with the assimilation of skin temperature and surface
soil moisture. Synthetically derived observations of LE, H
(including a joint combination of LE and H), surface soil
moisture and skin temperature were separately assimilated into
the CBM forced with data from the first three months of 2003
(January 1 to April 1), and the results compared to see which
approach produced the more accurate prediction of LE, H, root
zone soil moisture and temperature. Two model scenarios were
used in the experiments— a truth scenario where knowledge of
meteorological forcing, state initial conditions and parameters is
assumed to be perfect, and a degraded scenario which used
degraded meteorological forcing, initial conditions and para-
meters. Fig. 1 shows key soil parameter values used in each
scenario. In addition, saturated hydraulic conductivity values of
4.3×10−6 ms−1 for the truth and 1.1×10−5 ms−1 for the
degraded scenario were applied, as were monthly averaged Leaf
Area Index LAI values for January, February and March (0.30,
0.31 and 0.35 for the truth scenario and 0.33, 0.33 and 0.39 for
the degraded scenario). All input data required to run the models
was taken from the Kyeamba Creek catchment in South Eastern
Australia to provide realistic input values. However, the mod-
elling is not intended to represent a particular geographical
location.

3.1. The CSIRO Biosphere Model (CBM)

The CBM is a single column model dealing with the
exchange of energy, water and CO2 between a vertical profile
represented computationally using six soil layers with uniform
soil properties, the land surface, vegetation and the atmosphere
(Wang et al., 2001). The thicknesses of the soil layers from top
to bottom are 2.2, 5.8, 15.4, 40.9, 108.5 and 287.2 cm
respectively with a total soil column thickness of 4.60 m. Each
layer has a value for soil temperature and moisture for calcu-
lating evaporation, respiration and soil heat flux. Moisture
movement through the layers is governed by Richards' equa-
tion, the snow scheme is that of Kowalczyk et al. (1994), and a
bulk aerodynamic formulation is used to model soil evaporation
(Mahfouf & Noilhan, 1991). Amongst the input (forcing) data
required to run the CBM are air temperature, downward short
and long wave radiation, specific humidity, wind speed, pre-
cipitation and barometric pressure.

Four surface types are represented including bare soil, snow
(snow does not occur in this study) and a two-leaf canopy model
(Wang &Leuning, 1998) which calculates fluxes of LE, H and
CO2 for a ‘sunlit’ and ‘shaded’ leaf canopy. A formulation for
canopy turbulence is also included based on theory developed
by Raupach (1989). Some important vegetation parameters in
the model include LAI, canopy height, canopy water storage
capacity per unit LAI, average leaf size, the fraction of roots by
mass in each soil layer and a number of other parameters related
to plant photosynthesis. Vegetation properties for uniform
grassland were applied in this study which included typical
monthly averaged LAI values for grassland in south eastern
Australia and a canopy height of 20 cm. Total values of LE and
H calculated by the model represent the respective sums of LE
and H for the soil surface and for the vegetation canopy. Using
LAI values and a radiation extinction coefficient, the fraction of
radiation transmitted through the vegetation canopy is calcu-
lated from which LE and H can be calculated for both the soil
surface and the canopy.

3.1.1. Model input data
Input forcing data used in this study was taken from a

continuous series of half hourly meteorological data compiled
for the Kyeamba Creek catchment from 2000 to present
(Siriwardena et al., 2003). It consists of point scale data
recorded at the nearest Bureau of Meteorology (BOM) station
(Wagga Wagga, ∼ 30 km distant) and precipitation data
measured at one of the University of Melbourne monitoring
sites within the Kyeamba Creek catchment. Given the half
hourly temporal resolution of meteorological forcing data, the
model was run at half hourly time steps for all of the
experiments. Soil parameter data have been estimated by Neil
McKenzie (pers. comm., 2005, CSIRO Land and Water
Division) based on different soil units across the catchment.
These soil units have associated values for field capacity,
wilting point, soil bulk density and hydraulic conductivity at
saturation, all required as inputs to the CBM. Leaf area index
data was sourced from a monthly average, 0.05° by 0.05°
spatial resolution publicly available data set derived from

Fig. 1. A comparison between key soil parameter values used in truth and
degraded scenarios that were derived from an available catchment data set. Truth
values are from a point location and degraded values are catchment area
weighted averages.
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remotely sensed Advanced Very High Resolution Radiometer
visible infrared and near infrared images (Lu et al., 2001).

3.1.2. Truth scenario
The half hourly Kyeamba Creek meteorological data set

(Siriwardena et al., 2003) was used directly in its available form
for the truth scenario. It includes incoming short wave and long
wave radiation, air temperature, wind speed, and specific
humidity for the catchment. As no data was available for
atmospheric pressure or CO2 concentration, generic values of
980 mbar and 370 ppm were assigned respectively for the entire
time series of the experiment period. Precipitation data used for
the truth forcing was sourced from a University of Melbourne
monitoring site in the Kyeamba Creek catchment. This location
was also used to obtain point estimates of soil and vegetation
parameter input into the truth model. Soil moisture content and
temperature profiles were not available at the same site for the
start of the modelling period (January 1, 2003, 00:30 h).
Therefore initial moisture and temperature values were
estimated for the six CBM layers based on University of
Melbourne data measured at nearby sites for the same time in
other years. While arbitrary initial conditions could have been

assumed for this synthetic study, these observed quantities were
used to provide a set of realistic and internally consistent values.

3.1.3. Degraded scenario
This scenario represents the model prediction results

anticipated from the use of erroneous and/or averaged forcing
and parameters which is a likely situation when modelling with
real data. Hence, spatial input data was averaged within the
Kyeamba Creek catchment boundary, or in the absence of
spatially distributed data either random perturbations were
added (within known uncertainty limits) to the data used in the
truth scenario or data was taken from an alternative location
within the catchment.

Meteorological forcing inputs were generated by adding
random perturbations within determined error ranges to each
meteorological data variable used in the truth scenario. The
error range for each variable was determined through personal
communications with Dr. John Gorman (March 7th, 2006) from
the BOM Observations and Engineering Branch who is
knowledgeable on the typical quality of BOM data. Precipita-
tion was taken from an alternate University of Melbourne
monitoring location in the Kyeamba Creek catchment to that
used for the truth scenario. Table 1 summarises the error ranges
within which the BOM forcing data variables and the University
of Melbourne precipitation data were perturbed including the
average daily standard error between truth and degraded
scenario variables over the 91 day experiment period.

Area weighted averages of available soil and vegetation
parameter data within the Kyeamba Creek catchment boundary
were calculated for the degraded scenario. Poor initialisation of
model states through either lack of data or high uncertainty in
the data is a common source of model error which can increase
model uncertainty over time, even with accurate forcing and
parameters. Initial moisture and temperature values were set to
extreme values (higher soil moisture content and lower
temperature) compared to the typical summer time values at
the start of the experiment period in the truth scenario. This
would test the assimilation in a worst case scenario where no
information is available to initialise model states. Fig. 2 shows
initial soil moisture and temperature value differences between
the truth and degraded scenarios, as well as the ensemble
ranges.

Fig. 3 highlights the effect of degraded inputs on the truth
model. This shows corresponding LE and H outputs from

Table 1
Model forcing variables with associated uncertainty ranges, daily standard errors
between truth and degraded values, data type category and values for calculating
measurement and offset error standard deviations used in ensemble generation
(see Turner et al., 2007-this issue)

Forcing
variable

Quoted
uncertainty

Daily
average
standard
error

Category h domain ξ χ

Short wave
radiation
(W m−2)

±2% 2.2 Semi-
restricted

(0, ∞) 0.01 0.04

Long wave
radiation
(W m−2)

±3% 3.1 Semi-
restricted

(0, ∞) 0.003 0.05

Precipitation
(mm)

±0.2 0.2 Semi-
restricted

(0, ∞) 0.2 0.2

Air temperature
(°C)

±0.5 0.4 Unrestricted (−∞, ∞) 0.9 0.4

Wind speed
(m s−1)

±1.03 0.4 Semi-
restricted

(0, ∞) 1.0 0.3

Specific
humidity
(g kg−1)

±5% 1.2×104 Semi-
restricted

(0, ∞) 0.0025 0.06

Fig. 2. Truth and degraded scenario initial conditions for soil moisture and temperature. Dashed lines show the minimum and maximum of the ensemble ranges for
initial soil moisture and temperature.
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partial open loop simulations resulting from individually using
degraded scenario meteorological forcing, initial condition and
parameter data into the truth model, with the truth and full open
loop (degraded) simulation outputs included for comparison.
The degraded forcing and parameters each cause slight but
noticeable differences in model output compared to the truth,
with degraded parameters having a greater effect on LE than on
H. In contrast, the degraded initial conditions cause the greatest
deviation from the truth and account for most of the error
represented by the full open loop simulation, as they had the
greatest uncertainty imposed.

3.2. Synthetic observation data

Truth scenario outputs were sampled at selected time inter-
vals to create synthetic observation data sets of LE, H, joint LE
and H, surface soil moisture (from the upper-most 2.2 cm thick
soil layer in the CBM) and skin temperature. The time intervals
used to sample these variables correspond with the temporal
scales of remote sensing platforms that provide information on
these quantities (see Table 2). Hence, assimilation of each

observation set into the degraded model scenario was intended
to emulate the assimilation of available observations.

Two separate observation data sets were created for each of
LE, H, joint LE and H, and skin temperature from the truth
scenario outputs; twice daily to emulate MODIS observations
and fortnightly to emulate observations from Landsat. The top
soil layer moisture content was sampled once every three days
to generate a surface soil moisture observation data set

Table 2
Key characteristics of remotely sensed data types tested in this synthetic study

Observed quantity Quoted
accuracy

Corresponding
satellite/sensor

Temporal
resolution

Spatial
resolution

LE (W m−2) ±50 MODIS, Landsat Twice daily,
fortnightly

1 km2, 30m2

H (W m−2) ±50 MODIS, Landsat Twice daily,
fortnightly

1 km2, 30 m2

Surface soil
moisture
(%vol/vol)

±4 SMOS Every 3 days 50 km2

Skin temperature
(K)

±2 MODIS, Landsat Twice daily,
fortnightly

1 km2, 30 m2

Fig. 3. Outputs of LE and H showing the effect on the truth predictions from 3 separate partial open loop simulations — a) Truth simulation with degraded
meteorological forcing, b) Truth simulation with degraded initial conditions, and c) Truth simulation with degraded parameters.
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emulating SMOS observations. Uncertainty for remotely sensed
estimates of these four variables varies throughout the literature
with typical estimates being those given in Table 2 for skin
temperature (Kaleita & Kumar, 2000; Sun et al., 2004), LE and
H (French et al., 2005), and surface soil moisture (Kerr et al.,
2001). These uncertainty ranges were used to prescribe error
perturbations to observations and generate observation ensem-
bles during the assimilation experiments. Prior to each assim-
ilation step, a random error value was added to observations
within the respective uncertainty range for each observation to
generate an observation ensemble as required by the EnKF.

3.3. Model ensemble generation and errors

The EnKF uses an ensemble of model trajectories to
represent likely uncertainty in a model prediction. The main
sources of error in a model prediction include i) erroneous initial
conditions, ii) erroneous meteorological forcing data, and
iii) limitations in model physics. The uncertainty in model
physics and inclusion of biases has not been treated in this
study. Normally distributed random numbers with zero mean
and unit variance were generated and used to calculate error
perturbations for initial conditions and meteorological forcing
data within desired ranges when creating ensembles.

Soil moisture and temperature state initial condition values
across the six CBM layers for the degraded scenario were
perturbed within a selected range to generate ensembles that
reflected the uncertainty in initial conditions. The uncertainty
range was chosen such that the true values (i.e. truth scenario
initial conditions) were captured within the ensemble (Fig. 2).
As a result, degraded scenario initial soil moisture (27% vol/
vol) was perturbed with random error within a possible range of
±15% vol/vol, which spans most of the range between wilting
point (11.9% vol/vol) and porosity (42.3% vol/vol). The initial
soil temperature value (10 °C) was perturbed with random
values within ±15 °C for ensemble generation. Generating
initial condition ensembles with a large spread about the chosen
value is especially important when assimilating with real data if
a priori knowledge of initial conditions is poor, as it increases
the likelihood of including the true value. The techniques
described by Turner et al. (2007-this issue) were employed here
to assign random errors to degraded scenario meteorological
forcing data and generate each forcing data ensemble, using the
parameters specified in Table 1.

4. Results and discussion

Statistically, a greater number of ensemble members results
in an ensemble mean and covariance which is closer to reality.
However, this comes with increased computation burden.
Consequently, it is desirable to use the minimum number of
ensemble members while still obtaining a satisfactory estimate
of the ensemble mean and covariance. Therefore the first
assimilation experiment undertaken was to determine the
minimum number of ensemble members required to achieve
optimal results from application of the EnKF to the CBM, so as
to optimise the computing power available for the subsequent

assimilation experiments. An observation data set consisting of
once daily LE values sampled from the truth scenario output
was used for this purpose, with LE observation errors assigned
as in Table 2.

Assimilation over the experiment period with this set of
observations was performed separately using five different
ensemble sizes — 10, 20, 30, 50 and 100 members. Root
mean square error (RMSE) values were calculated between LE
outputs from the truth simulation and from assimilation runs
performed with each ensemble size to determine an optimal
number of ensemble members. Fig. 4 is a plot of the number of
ensemble members against RMSE values between LE outputs.
The value corresponding to 0 ensembles is the RMSE value
between the truth and full open loop outputs for reference. As the
declination in RMSE was minimal for more than 20 ensembles,
an ensemble size of 20 members was chosen as adequate for
carrying out the remaining assimilation experiments.

Fig. 5 shows a series of plots comparing outputs for the first
6 days of the joint assimilation of LE and H twice per day, with
that of surface soil moisture once every 3 days. The plots show
the initial impacts of the assimilation on four specific CBM
outputs — LE, H, root zone soil moisture and root zone soil
temperature. Root zone soil moisture and temperature are taken
as the average values across the top four soil layers in the model,
weighted by each layer's thickness (2.2, 5.8, 15.4 and 40.9 cm),
covering a total depth of 64.3 cm.

Based on Fig. 5, heat flux outputs for the first 6 days of the
experiment period showed that the twice daily LE and H (proxy
for MODIS derived data) assimilation retrieved truth LE and H
outputs more quickly and accurately than soil moisture
assimilation every 3 days (SMOS observation proxy). The
assimilation frequency is the most likely reason for this.
However, this is an idealised case that assumes cloud-free
conditions. While it is unrealistic to expect twice daily coverage
continually, results from the fortnightly assimilation of LE and
H (proxy for Landsat derived data) show the corresponding loss
of skill that could be expected when extended cloud cover
periods exist. In contrast to the LE and H results, it is evident in
this initial 6 days that soil moisture assimilation is better than
LE and H assimilation for retrieving the true soil moisture, as
expected. A reason for this is that LE and H assimilation has a
direct impact on model LE and H, which is used to adjust both
soil moisture and temperature states accordingly, whereas

Fig. 4. Ensemble size comparison results for the 91 day experiment period,
showing RMSE between truth and assimilated LE outputs for different number
of ensemble members.
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assimilating surface soil moisture has a direct impact on the
model soil moisture alone. Consequently, the soil temperature is
not impacted directly and thus LE and H predictions are initially
degraded by soil moisture assimilation.

A full comparison of all the assimilation results over the entire
91 day experiment period is given in Fig. 6, which summarises
the RMSE between the truth and all of the assimilation outputs

for LE, H, root zone soil moisture and temperature. Of the heat
flux and skin temperature assimilation experiments, assimilating
twice a day (MODIS) achieves better retrieval of truth predictions
than fortnightly assimilation (Landsat). This result is due to
temporal resolutions; results may be different if spatial resolution
effects are taken into account. The spatial resolution differs
greatly betweenMODIS and Landsat, which have 1 km and 30m

Fig. 5. Outputs from joint LE and H and surface soil moisture assimilation, for estimating a) LE, b) H, c) root zone soil moisture and d) root zone soil temperature.
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pixels respectively. If there is significant heterogeneity at scales
less than 1 km in the landscape, this would have potentially
significant impacts on the assimilation accuracy.

Of the twice daily assimilations, the RMSE values indicate
that LE assimilation achieves slightly better LE predictions than
H assimilation and vice-versa. The root zone soil moisture
predictions for LE assimilation are slightly worse than for H
assimilation. Also evident is the considerably lower root zone
soil temperature RMSE from H assimilation, as H is more
closely related to soil temperature in the model formulation than
LE. On the fortnightly time scale, LE assimilation results in
better predictions for both LE and H, while also producing
better root zone soil moisture predictions but poorer soil
temperature than H assimilation. Comparing the individual LE
and H assimilation results for the two time scales, LE
assimilation produces the best LE results in both cases, and
whichever assimilation produces the best soil moisture
prediction also achieves the better H prediction; H assimilation
achieves the best soil temperature in both cases as expected.
Joint LE and H assimilation twice daily achieves similar
improvements to both LE and H predictions compared with
assimilation of each variable individually on a twice daily time
scale. On a fortnightly scale, joint LE and H assimilation
produces similar improvements in LE and H as fortnightly LE
assimilation, and greater improvements than fortnightly H
assimilation.

Assimilating surface soil moisture every 3 days resulted in
poorer LE predictions than any of the twice daily heat flux
assimilation experiments but had considerably lower RMSE for
root zone soil moisture prediction than any other experiment,
reinforcing the qualitative interpretations of the initial 6 days of
assimilation shown in Fig. 5. Regarding H predictions, soil
moisture assimilation produced outputs that have ∼1–2% vol/
vol lower RMSE than from twice per day joint LE and H, and
LE assimilation, but higher RMSE than from twice per day H
assimilation. When considering the spatial resolution of
remotely sensed observation data available (∼1 km×1 km for
LE and H from MODIS and ∼50 km×50 km for surface soil
moisture from SMOS), assimilation of LE and/or H could

potentially produce better overall heat flux predictions from a
LSM such as the CBM for a period that is relatively cloud free,
compared with soil moisture assimilation based on the results
here. However, more detailed analyses are required for a range
of different initial conditions, parameter inputs, temporal and
spatial resolutions in order to show definitively that assimilating
a particular variable can consistently produce better LE and H
predictions.

The assimilation of skin temperature twice a day resulted in
predicted heat flux accuracies that were very similar to those
from twice daily heat flux assimilation experiments. Fortnightly
skin temperature assimilation achieved similar predictions of
LE and H to fortnightly LE and joint LE and H assimilation, and
better predictions than fortnightly H assimilation. When
compared with the heat flux assimilation experiments for
corresponding time scales, skin temperature assimilation has a
strong impact on improving root zone soil temperature, as
shown by the small RMSE values.

The ability of skin temperature assimilation to match the
predictive accuracy of heat fluxes from the heat flux
assimilation experiments is likely to be related to the strong
relationship that skin temperature has with the surface net
radiation, which directly impacts on the surface energy balance
and thus strongly influences both LE and H in the model. An
interesting implication of these results is the apparent lack of
benefit in assimilating LE and H estimates representing
quantities that would be derived from remotely sensed skin
temperature observations as compared to direct skin tempera-
ture assimilation. However, these results may be an artefact of
how the LE and H estimates were derived in this synthetic
study, as the same skin temperature — LE/H relationships are
used in the assimilation as for LE and H observation generation,
which will not be the case with actual remote sensing data.
Therefore LE and H derived from real remotely sensed skin
temperature using an algorithm (such as SEBAL) must be
assimilated and compared with direct skin temperature
assimilation to make definitive statements in this regard. A
key question is whether an energy balance model such as
SEBAL can provide better LE and H estimates than an LSM
through skin temperature assimilation.

5. Conclusions

This paper has compared the assimilation impact of LE, H,
skin temperature and surface soil moisture observations,
representing typically available remotely sensed data and
temporal repeat (MODIS, Landsat and SMOS), to understand
the relative impact on LSM predictions of LE, H, root zone soil
moisture and temperature, in a synthetic experiment framework.
Soil moisture assimilation is the more traditional approach for
improving LSM predictions, and as expected, showed the most
direct impact on root zone soil moisture. While it also improved
heat flux predictions, the other approaches performed compar-
atively in terms of H predictions and slightly better in terms of
LE predictions, when assimilated on a twice daily time scale, as
these variables share more direct relationships with LE and H in
the model. Moreover, they were able to have a direct impact on

Fig. 6. RMSE values for the difference between assimilation and truth outputs of
LE, H, root zone soil moisture (θ) and root zone soil temperature (Tsoil) covering
the 91 day experiment period from assimilating LE, H, surface soil moisture (θ)
and skin temperature (Tskin) combinations.
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soil temperature predictions, which is not possible with direct
soil moisture assimilation.

While this study clearly demonstrates that assimilation of LE
and/or H has the potential to improve LE and H predictions to at
least a similar degree as soil moisture assimilation, when tested
under idealised conditions, the results may be different when
cloud impacts and contrasting spatial resolutions are taken into
consideration. Moreover, assimilating LE and H on a fortnightly
temporal scale that is comparable to Landsat, resulted in
significantly poorer LE and H predictions compared to twice
daily LE and H assimilation that would be available from
MODIS, and 3 day soil moisture assimilation that would be
available from SMOS. This shows that if cloud cover reduces
the temporal quality of remotely sensed LE and H observations
(also of skin temperature), it can reduce the predictive
performance of LE and H considerably. Hence, further research
is required to make definitive conclusions regarding the best
variables to assimilate for improved LE and H prediction. This
includes assimilating over a range of different time scales, soil
moisture conditions, soil and vegetation parameters, and using
real remotely sensed observations so that the different spatial
scales and error sources can be considered. Since LE and/or H,
and skin temperature assimilation has shown promise for
improving predictions of LE and H in these experiments, further
field-based studies are warranted. Moreover, assimilation of a
combination of the available data may provide the best results,
complimenting the different spatial and temporal characteristics
with the different land surface variables that are observed.
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